WorldWideScience

Sample records for disease increased oxygen

  1. Carbogen inhalation increases oxygen transport to hypoperfused brain tissue in patients with occlusive carotid artery disease: increased oxygen transport to hypoperfused brain

    DEFF Research Database (Denmark)

    Ashkanian, Mahmoud; Gjedde, Albert; Mouridsen, Kim

    2009-01-01

    to inhaled oxygen (the mixture known as carbogen). In the present study, we measured CBF by positron emission tomography (PET) during inhalation of test gases (O(2), carbogen, and atmospheric air) in healthy volunteers (n = 10) and in patients with occlusive carotid artery disease (n = 6). Statistical...... and Sa(O2) are readily obtained with carbogen, while oxygen increases only Sa(O2). Thus, carbogen improves oxygen transport to brain tissue more efficiently than oxygen alone. Further studies with more subjects are, however, needed to investigate the applicability of carbogen for long-term inhalation...

  2. Increased cerebral oxygen extraction capacity in patients with Alzheimer’s disease

    DEFF Research Database (Denmark)

    Eskildsen, Simon Fristed; Gyldensted, Louise; Nagenthiraja, Kartheeban

    Vascular risk factors are suspected to play a role in the etiology of Alzheimer’s disease. Recently, a model that relates capillary dysfunction to the development of AD was proposed [1]. The model predicts that increased capillary dysfunction leads to increased oxygen extraction in order to support...

  3. Hyperbaric oxygen therapy in periodontal diseases

    Directory of Open Access Journals (Sweden)

    Swapna A. Mahale

    2013-01-01

    Full Text Available Hyperbaric oxygen (HBO 2 has been successfully used in several medical fields. The therapeutic effect is related to elevated partial oxygen pressure in the tissues. The pressure itself enhances oxygen solubility in the tissue fluids. HBO 2 has shown to affect angiogenesis, bone metabolism and bone turnover. Studies have been conducted to analyze the effects of HBO 2 therapy on periodontal disease. HBO 2 increases local oxygen distribution, especially at the base of the periodontal pocket, which inhibits the growth of anaerobic bacteria and allows the ischemic tissues to receive an adequate intake of oxygen sufficient for a rapid recovery of cell metabolism. It is increasingly being accepted as a beneficial adjunct to diverse clinical conditions. Nonhealing ulcers, chronic wounds and refractory osteomyelitis are a few conditions for which HBO therapy (HBOT has been extensively tried out. The dental surgeons have found a good ally in HBOT in managing dental condition.

  4. Oxygen titration strategies in chronic neonatal lung disease.

    Science.gov (United States)

    Primhak, Robert

    2010-09-01

    The history of oxygen therapy in neonatology has been littered with error. Controversies remain in a number of areas of oxygen therapy, including targets and strategies in supplemental oxygen therapy in Chronic Neonatal Lung Disease (CNLD). This article reviews some of these controversies, and makes some recommendations based on the available evidence. In graduates of neonatal units who are left with CNLD, oxygen saturation should be kept above 93-95%, with levels below 90% being avoided as far as possible. Titration of oxygen should be done using oximetry recordings which include periods of different activities. Weaning of oxygen supplementation should only be done based on satisfactory recordings during a trial of a lower flow. There is insufficient evidence to say whether weaning for increasing hours a day or stepwise weaning to a continuous lower flow is a better method. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. The Role of Oxygen Sensors, Hydroxylases, and HIF in Cardiac Function and Disease

    Directory of Open Access Journals (Sweden)

    W. H. Davin Townley-Tilson

    2015-01-01

    Full Text Available Ischemic heart disease is the leading cause of death worldwide. Oxygen-sensing proteins are critical components of the physiological response to hypoxia and reperfusion injury, but the role of oxygen and oxygen-mediated effects is complex in that they can be cardioprotective or deleterious to the cardiac tissue. Over 200 oxygen-sensing proteins mediate the effects of oxygen tension and use oxygen as a substrate for posttranslational modification of other proteins. Hydroxylases are an essential component of these oxygen-sensing proteins. While a major role of hydroxylases is regulating the transcription factor HIF, we investigate the increasing scope of hydroxylase substrates. This review discusses the importance of oxygen-mediated effects in the heart as well as how the field of oxygen-sensing proteins is expanding, providing a more complete picture into how these enzymes play a multifaceted role in cardiac function and disease. We also review how oxygen-sensing proteins and hydroxylase function could prove to be invaluable in drug design and therapeutic targets for heart disease.

  6. Oxygen, a Key Factor Regulating Cell Behavior during Neurogenesis and Cerebral Diseases.

    Science.gov (United States)

    Zhang, Kuan; Zhu, Lingling; Fan, Ming

    2011-01-01

    Oxygen is vital to maintain the normal functions of almost all the organs, especially for brain which is one of the heaviest oxygen consumers in the body. The important roles of oxygen on the brain are not only reflected in the development, but also showed in the pathological processes of many cerebral diseases. In the current review, we summarized the oxygen levels in brain tissues tested by real-time measurements during the embryonic and adult neurogenesis, the cerebral diseases, or in the hyperbaric/hypobaric oxygen environment. Oxygen concentration is low in fetal brain (0.076-7.6 mmHg) and in adult brain (11.4-53.2 mmHg), decreased during stroke, and increased in hyperbaric oxygen environment. In addition, we reviewed the effects of oxygen tensions on the behaviors of neural stem cells (NSCs) in vitro cultures at different oxygen concentration (15.2-152 mmHg) and in vivo niche during different pathological states and in hyperbaric/hypobaric oxygen environment. Moderate hypoxia (22.8-76 mmHg) can promote the proliferation of NSCs and enhance the differentiation of NSCs into the TH-positive neurons. Next, we briefly presented the oxygen-sensitive molecular mechanisms regulating NSCs proliferation and differentiation recently found including the Notch, Bone morphogenetic protein and Wnt pathways. Finally, the future perspectives about the roles of oxygen on brain and NSCs were given.

  7. Oxygen, a key factor regulating cell behaviour during neurogenesis and cerebral diseases

    Directory of Open Access Journals (Sweden)

    Kuan eZhang

    2011-04-01

    Full Text Available Oxygen is vital to maintain the normal functions of alomost all the organs, especially for brain which is one of the heaviest oxygen consumers in the body. The important roles of oxygen on the brain are not only reflected in the development, but also showed in the pathological processes of many cerebral diseases. In the current review, we summarized the oxygen levels in brain tissues tested by real-time measurements during the embryonic and adult neurogenesis, the cerebral diseases or in the hyperbaric/hypobaric oxygen environment. Oxygen concentration is low in fetal brain (0.01%- 1% and in adult brain (1.5%-7%, decreased during stroke, and increased in hyperbaric oxygen environment. In addition, we reviewed the effects of oxygen tensions on the behaviors of neural stem cells (NSCs in vitro cultures at different oxygen concentration (2%-20% and in vivo niche during different pathological states and in hyperbaric/hypobaric oxygen environment. Moderate hypoxia (3%-10% is known can promote the proliferation of NSCs and enhance the differentiation of NSCs into the TH-positive neurons. Next, we briefly presented the oxygen-sensitive molecular mechanisms regulating NSCs proliferation and differentiation recently found including the Notch, BMP and Wnt pathways. Finally, the future perspectives about the roles of oxygen on brain and NSCs were given.

  8. Oxygen therapy for interstitial lung disease: a systematic review

    Directory of Open Access Journals (Sweden)

    Emily C. Bell

    2017-02-01

    Full Text Available This review aims to establish the impact of oxygen therapy on dyspnoea, health-related quality of life (HRQoL, exercise capacity and mortality in interstitial lung disease (ILD. We included studies that compared oxygen therapy to no oxygen therapy in adults with ILD. No limitations were placed on study design or intervention type. Two reviewers independently evaluated studies for inclusion, assessed risk of bias and extracted data. The primary outcome was dyspnoea. Eight studies evaluated the acute effects of oxygen (n=1509. There was no effect of oxygen therapy on modified Borg dyspnoea score at end exercise (mean difference (MD −0.06 units, 95% CI −0.24–0.13; two studies, n=27. However, effects on exercise outcomes consistently favoured oxygen therapy. One study showed reduction in dyspnoea at rest with oxygen in patients who were acutely unwell (MD visual analogue scale 30 mm versus 48 mm, p<0.05; n=10. Four studies of long-term oxygen therapy (n=2670 had high risk of bias and no inferences could be drawn. This systematic review showed no effects of oxygen therapy on dyspnoea during exercise in ILD, although exercise capacity was increased. Future trials should evaluate whether acute improvements in exercise capacity with oxygen can be translated into improved physical activity and HRQoL.

  9. Renal oxygenation and hemodynamics in acute kidney injury and chronic kidney disease

    Science.gov (United States)

    Singh, Prabhleen; Ricksten, Sven-Erik; Bragadottir, Gudrun; Redfors, Bengt; Nordquist, Lina

    2013-01-01

    Summary 1. Acute kidney injury (AKI) puts a major burden on health systems that may arise from multiple initiating insults, including ischemia-reperfusion injury, cardiovascular surgery, radio-contrast administration as well as sepsis. Similarly, the incidence and prevalence of chronic kidney disease (CKD) continues to increase with significant morbidity and mortality. Moreover, an increasing number of AKI patients survive to develop CKD and end-stage kidney disease (ESRD). 2. Although the mechanisms for development of AKI and progression of CKD remain poorly understood, initial impairment of oxygen balance is likely to constitute a common pathway, causing renal tissue hypoxia and ATP starvation that will in turn induce extracellular matrix production, collagen deposition and fibrosis. Thus, possible future strategies for one or both conditions may involve dopamine, loop-diuretics, inducible nitric oxide synthase inhibitors and atrial natriuretic peptide, substances that target kidney oxygen consumption and regulators of renal oxygenation such as nitric oxide and heme oxygenase-1. PMID:23360244

  10. Renal transplantation induces mitochondrial uncoupling, increased kidney oxygen consumption, and decreased kidney oxygen tension

    NARCIS (Netherlands)

    Papazova, Diana A.; Friederich-Persson, Malou; Joles, Jaap A.; Verhaar, Marianne C.

    2015-01-01

    Hypoxia is an acknowledged pathway to renal injury and ischemia-reperfusion (I/R) and is known to reduce renal oxygen tension (PO2). We hypothesized that renal I/R increases oxidative damage and induces mitochondrial uncoupling, resulting in increased oxygen consumption and hence kidney

  11. Positron emission tomography in cerebrovascular disease: The relationship between regional cerebral blood flow, blood volume and oxygen metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Herold, S.

    1985-03-01

    Positron emission tomography in cerebrovascular disease has demonstrated the importance of the relationship between regional cerebral blood flow and the cerebral metabolic activity. In acute stroke it has been found that within the first hours after the onset of symptoms cerebral blood flow in the affected area is more depressed than cerebral oxygen utilisation. This relative preservation of oxygen utilisation results from an increase in the oxygen extraction ratio far above its normal value. However, the oxygen extraction fraction subsequently falls in the following days indicating the transition from a situation of possibly reversible ischaemia to irreversible infarction. In patients with carotid occlusive disease an increase in the oxygen extraction ratio has been observed only in very few cases. It has been shown, however, that at an earlier stage the relationship between CBF and CBV (as CBF/CBV-ratio) provides a sensitive measure of diminished perfusion pressure which could be helpful for the selection of patients for EC-IC bypass surgery. In patients with sickle cell anaemia it has been found that oxygen delivery to the brain is maintained by an increase in cerebral blood flow, whereas the oxygen extraction ratio is not increased despite the presence of a low oxygen affinity haemoglobin. Preliminary observations in classical migraine suggest an ischaemic situation during the attack.

  12. Supplemental oxygen prevents exercise-induced oxidative stress in muscle-wasted patients with chronic obstructive pulmonary disease.

    NARCIS (Netherlands)

    Helvoort, H.A.C. van; Heijdra, Y.F.; Heunks, L.M.A.; Meijer, P.L.; Ruitenbeek, W.; Thijs, H.M.; Dekhuijzen, P.N.R.

    2006-01-01

    RATIONALE: Although oxygen therapy is of clear benefit in patients with severe chronic obstructive pulmonary disease (COPD), recent studies have shown that short-term supplementary oxygen may increase oxidative stress and inflammation within the airways. OBJECTIVE: We investigated whether systemic

  13. LOW OXYGENATION STATUS INCREASES NAUSEA-VOMITING INCIDENCE IN HEMODIALYSIS PATIENTS

    Directory of Open Access Journals (Sweden)

    Cornelia DY Nekada

    2017-08-01

    Full Text Available Background and Objective: Data from Indonesia Basic Health Research (2013 states that the chronic renal failure in Indonesia is increasing, especially in Yogyakarta with the prevalence of chronic renal failure of 0,3%. If the patients of chronic renal failure are in End Stage Renal Disease (ESRD, the kidney needs replacement therapy to help its function. This therapy is called Continuous Renal Replacement Therapy (CRRT or Hemodialysis (HD. Hemodialysis therapy may influence to the imbalance of oxyhemoglobin in the blood. Patients undergoing hemodialysis may experience intradialytic nausea and vomiting. The objective of this study is to identify whether there is a relationship between pre-dialysis oxygenation status through oxygen saturation (SpO2 and respiratory rate (RR examination and the intradialytic nausea-vomiting occurrence. Method: This research is a comparative research with analytical cross sectional design. This research was conducted in hemodialysis room in Public Hospital of Panembahan Senopati Bantul. The subject of the research was taken using total sampling, by paying attention to research ethics. The total research subjects are 183 respondents. The researchers measured the oxygen saturation and patients’ respiratory rate and examined the intradialytic nausea and vomiting complaints. Result: The analysis result of Fisher’s exact in this research shows p value of 0,000 both in bivariate analysis of oxygen saturation to the nausea and vomiting occurrence and in bivariate analysis of the respiratory rate to the nausea and vomiting occurrence. The multivariate analysis employing regression logistic shows that the OR of oxygen saturation is 73,57, this means that the measurement of the abnormal oxygen saturation has the chance of seventy three times more to the nausea and vomiting occurrence, if compared to the patients with normal oxygen saturation. Conclusion and Suggestion: Intradialytic nausea and vomiting is one of the causes

  14. Relationship Between Cerebral Oxygenation and Hemodynamic and Oxygen Transport Parameters in Surgery for Acquired Heart Diseases

    Directory of Open Access Journals (Sweden)

    A. I. Lenkin

    2012-01-01

    Full Text Available Objective: to evaluate the relationship between cerebral oxygenation and hemodynamic and oxygen transport parameters in surgical correction of concomitant acquired heart diseases. Subjects and methods. Informed consent was received from 40 patients who required surgery because of concomitant (two or more acquired heart defects. During procedure, perioperative monitoring of oxygen transport and cerebral oxygenation was performed with the aid of PiCCO2 monitor (Pulsion Medical Systems, Germany and a Fore-Sight cerebral oximeter (CASMED, USA. Anesthesia was maintained with propofol and fen-tanyl, by monitoring the depth of anesthesia. Early postoperative intensive therapy was based on the protocol for early targeted correction of hemodynamic disorders. Oxygen transport and cerebral oxygenation parameters were estimated intraopera-tively and within 24 postoperative hours. A statistical analysis including evaluation of Spearman correlations was performed with the aid of SPSS 15.0. Results. During perfusion, there was a relationship between cerebral oximetry values and hemat-ocrit levels, and oxygen partial pressure in the venous blood. Furthermore, a negative correlation between cerebral oximetry values and blood lactate levels was found 30 minutes after initiation of extracorporeal circulation (EC. During the study, there was a positive correlation between cerebral oxygenation and values of cardiac index, central venous saturation, and oxygen delivery index. There was a negative relationship between cerebral oxygenation and extravascular lung water at the beginning of surgery and a correlation between cerebral oximetry values and oxygenation index by the end of the first 24 postoperative hours. Conclusion. The cerebral oxygenation values correlate -with the main determinants of oxygen transport during EC and after cardiac surgical procedures. Cerebral oximetry may be used in early targeted therapy for the surgical correction of acquired combined

  15. Cerebral oxygen delivery is reduced in newborns with congenital heart disease.

    Science.gov (United States)

    Lim, Jessie Mei; Kingdom, Theodore; Saini, Brahmdeep; Chau, Vann; Post, Martin; Blaser, Susan; Macgowan, Christopher; Miller, Steven P; Seed, Mike

    2016-10-01

    To investigate preoperative cerebral hemodynamics in newborns with congenital heart disease. We hypothesized that cerebral blood flow and oxygen delivery would be decreased in newborns with congenital heart disease compared with controls. Using a "feed-and-sleep" approach to performing neonatal magnetic resonance imaging, we measured cerebral blood flow by using a slice prescription perpendicular to the right and left internal carotid arteries and basilar artery at the level of the clivus. We calculated brain volume by segmenting a 3-dimensional steady-state free procession acquisition of the whole brain, allowing quantification of cerebral blood flow indexed to brain volume. Cerebral oxygen delivery was calculated as the product of cerebral blood flow and preductal systemic arterial oxygen content obtained via a combination of conventional pulse oximetry and laboratory analysis of venous blood samples for hemoglobin concentration. A complete set of measurements were obtained in 32 newborns with heart disease and 31 controls. There was no difference in gestational age between the heart disease and control groups. There was no difference in cerebral blood flow compared with controls (103.5 ± 34.0 vs 119.7 ± 40.4 mL/min), whereas cerebral oxygen delivery was significantly lower in the congenital heart disease subjects (1881 ± 625.7 vs 2712 ± 915.7 mLO2/min). Ten newborns with congenital heart disease had diffuse excessive high signal intensity in their white matter and 2 had white matter injury whereas another 5 had both. Newborns with unrepaired cyanotic congenital heart disease have decreased cerebral oxygen delivery due to arterial desaturation. If brain growth and development are adversely affected through oxygen conformance, our findings could have clinical implications in terms of timing of surgical repair. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  16. Pulmonary venous flow index as a predictor of pulmonary vascular resistance variability in congenital heart disease with increased pulmonary flow: a comparative study before and after oxygen inhalation.

    Science.gov (United States)

    Rivera, Ivan Romero; Mendonça, Maria Alayde; Andrade, José Lázaro; Moises, Valdir; Campos, Orlando; Silva, Célia Camelo; Carvalho, Antonio Carlos

    2013-09-01

    There is no definitive and reliable echocardiographic method for estimating the pulmonary vascular resistance (PVR) to differentiate persistent vascular disease from dynamic pulmonary hypertension. The aim of this study was to analyze the relationship between the pulmonary venous blood flow velocity-time integral (VTIpv) and PVR. Eighteen patients (10 females; 4 months to 22 years of age) with congenital heart disease and left to right shunt were studied. They underwent complete cardiac catheterization, including measurements of the PVR and Qp:Qs ratio, before and after 100% oxygen inhalation. Simultaneous left inferior pulmonary venous flow VTIpv was obtained by Doppler echocardiography. The PVR decreased significantly from 5.0 ± 2.6 W to 2.8 ± 2.2 W (P = 0.0001) with a significant increase in the Qp:Qs ratio, from 3.2 ± 1.4 to 4.9 ± 2.4 (P = 0.0008), and the VTIpv increased significantly from 22.6 ± 4.7 cm to 28.1 ± 6.2 cm (P = 0.0002) after 100% oxygen inhalation. VTIpv correlated well with the PVR and Qp:Qs ratio (r = -0.74 and 0.72, respectively). Diagnostic indexes indicated a sensitivity of 86%, specificity of 75%, accuracy of 83%, a positive predictive value of 92% and a negative predictive value of 60%. The VTIpv correlated well with the PVR. The measurement of this index before and after oxygen inhalation may become a useful noninvasive test for differentiating persistent vascular disease from dynamic and flow-related pulmonary hypertension. © 2013, Wiley Periodicals, Inc.

  17. Oxygen, a key factor regulating cell behaviour during neurogenesis and cerebral diseases

    OpenAIRE

    Kuan eZhang; Lingling eZhu; Ming eFan

    2011-01-01

    Oxygen is vital to maintain the normal functions of alomost all the organs, especially for brain which is one of the heaviest oxygen consumers in the body. The important roles of oxygen on the brain are not only reflected in the development, but also showed in the pathological processes of many cerebral diseases. In the current review, we summarized the oxygen levels in brain tissues tested by real-time measurements during the embryonic and adult neurogenesis, the cerebral diseases or in the ...

  18. [Effect of oxygen tubing connection site on percutaneous oxygen partial pressure and percutaneous carbon dioxide partial pressure in patients with chronic obstructive pulmonary disease during noninvasive positive pressure ventilation].

    Science.gov (United States)

    Mi, S; Zhang, L M

    2017-04-12

    Objective: We evaluated the effects of administering oxygen through nasal catheters inside the mask or through the mask on percutaneous oxygen partial pressure (PcO(2))and percutaneous carbon dioxide partial pressure (PcCO(2)) during noninvasive positive pressure ventilation (NPPV) to find a better way of administering oxygen, which could increase PcO(2) by increasing the inspired oxygen concentration. Methods: Ten healthy volunteers and 9 patients with chronic obstructive pulmonary disease complicated by type Ⅱ respiratory failure were included in this study. Oxygen was administered through a nasal catheter inside the mask or through the mask (oxygen flow was 3 and 5 L/min) during NPPV. PcO(2) and PcCO(2) were measured to evaluate the effects of administering oxygen through a nasal catheter inside the mask or through the mask, indirectly reflecting the effects of administering oxygen through nasal catheter inside the mask or through the mask on inspired oxygen concentration. Results: Compared to administering oxygen through the mask during NPPV, elevated PcO(2) was measured in administering oxygen through the nasal catheter inside the mask, and the differences were statistically significant ( P 0.05). Conclusion: Administering oxygen through a nasal catheter inside the mask during NPPV increased PcO(2) by increasing the inspired oxygen concentration but did not increase PcCO(2). This method of administering oxygen could conserve oxygen and be suitable for family NPPV. Our results also provided theoretical basis for the development of new masks.

  19. Gradually Increased Oxygen Administration Improved Oxygenation and Mitigated Oxidative Stress after Resuscitation from Severe Hemorrhagic Shock.

    Science.gov (United States)

    Luo, Xin; Yin, Yujing; You, Guoxing; Chen, Gan; Wang, Ying; Zhao, Jingxiang; Wang, Bo; Zhao, Lian; Zhou, Hong

    2015-11-01

    The optimal oxygen administration strategy during resuscitation from hemorrhagic shock (HS) is still controversial. Improving oxygenation and mitigating oxidative stress simultaneously seem to be contradictory goals. To maximize oxygen delivery while minimizing oxidative damage, the authors proposed the notion of gradually increased oxygen administration (GIOA), which entails making the arterial blood hypoxemic early in resuscitation and subsequently gradually increasing to hyperoxic, and compared its effects with normoxic resuscitation, hyperoxic resuscitation, and hypoxemic resuscitation in severe HS. Rats were subjected to HS, and on resuscitation, the rats were randomly assigned to four groups (n = 8): the normoxic, the hyperoxic, the hypoxemic, and the GIOA groups. Rats were observed for an additional 1 h. Hemodynamics, acid-base status, oxygenation, and oxidative injury were observed and evaluated. Central venous oxygen saturation promptly recovered only in the hyperoxic and the GIOA groups, and the liver tissue partial pressure of oxygen was highest in the GIOA group after resuscitation. Oxidative stress in GIOA group was significantly reduced compared with the hyperoxic group as indicated by the reduced malondialdehyde content, increased catalase activity, and the lower histologic injury scores in the liver. In addition, the tumor necrosis factor-α and interleukin-6 expressions in the liver were markedly decreased in the GIOA group than in the hyperoxic and normoxic groups as shown by the immunohistochemical staining. GIOA improved systemic/tissue oxygenation and mitigated oxidative stress simultaneously after resuscitation from severe HS. GIOA may be a promising strategy to improve resuscitation from HS and deserves further investigation.

  20. Renal Tissue Oxygenation in Essential Hypertension and Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Menno Pruijm

    2013-01-01

    Full Text Available Animal studies suggest that renal tissue hypoxia plays an important role in the development of renal damage in hypertension and renal diseases, yet human data were scarce due to the lack of noninvasive methods. Over the last decade, blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI, detecting deoxyhemoglobin in hypoxic renal tissue, has become a powerful tool to assess kidney oxygenation noninvasively in humans. This paper provides an overview of BOLD-MRI studies performed in patients suffering from essential hypertension or chronic kidney disease (CKD. In line with animal studies, acute changes in cortical and medullary oxygenation have been observed after the administration of medication (furosemide, blockers of the renin-angiotensin system or alterations in sodium intake in these patient groups, underlining the important role of renal sodium handling in kidney oxygenation. In contrast, no BOLD-MRI studies have convincingly demonstrated that renal oxygenation is chronically reduced in essential hypertension or in CKD or chronically altered after long-term medication intake. More studies are required to clarify this discrepancy and to further unravel the role of renal oxygenation in the development and progression of essential hypertension and CKD in humans.

  1. Supplemental Oxygen During High-Intensity Exercise Training in Nonhypoxemic Chronic Obstructive Pulmonary Disease.

    Science.gov (United States)

    Neunhäuserer, Daniel; Steidle-Kloc, Eva; Weiss, Gertraud; Kaiser, Bernhard; Niederseer, David; Hartl, Sylvia; Tschentscher, Marcus; Egger, Andreas; Schönfelder, Martin; Lamprecht, Bernd; Studnicka, Michael; Niebauer, Josef

    2016-11-01

    Physical exercise training is an evidence-based treatment in chronic obstructive pulmonary disease, and patients' peak work rate is associated with reduced chronic obstructive pulmonary disease mortality. We assessed whether supplemental oxygen during exercise training in nonhypoxemic patients with chronic obstructive pulmonary disease might lead to superior training outcomes, including improved peak work rate. This was a randomized, double-blind, controlled, crossover trial. Twenty-nine patients with chronic obstructive pulmonary disease (aged 63.5 ± 5.9 years; forced expiratory volume in 1 second percent predicted, 46.4 ± 8.6) completed 2 consecutive 6-week periods of endurance and strength training with progressive intensity, which was performed 3 times per week with supplemental oxygen or compressed medical air (flow via nasal cannula: 10 L/min). Each session of electrocardiography-controlled interval cycling lasted 31 minutes and consisted of a warm-up, 7 cycles of 1-minute intervals at 70% to 80% of peak work rate alternating with 2 minutes of active recovery, and final cooldown. Thereafter, patients completed 8 strength-training exercises of 1 set each with 8 to 15 repetitions to failure. Change in peak work rate was the primary study end point. The increase in peak work rate was more than twice as high when patients exercised with supplemental oxygen compared with medical air (0.16 ± 0.02 W/kg vs 0.07 ± 0.02 W/kg; P work rate was 39.1% of the overall training effect, whereas it had no influence on strength gain (P > .1 for all exercises). We report that supplemental oxygen in nonhypoxemic chronic obstructive pulmonary disease doubled the effect of endurance training but had no effect on strength gain. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Assessment of oxygen saturation in dental pulp of permanent teeth with periodontal disease.

    Science.gov (United States)

    Giovanella, Larissa Bergesch; Barletta, Fernando Branco; Felippe, Wilson Tadeu; Bruno, Kely Firmino; de Alencar, Ana Helena Gonçalves; Estrela, Carlos

    2014-12-01

    In individuals with periodontal disease, dental pulp status should be determined before a treatment plan is made. Pulse oximeters are promising diagnostic tools to evaluate pulp vascularization. This study used pulse oximetry to determine the level of oxygen saturation in dental pulp of intact permanent teeth with periodontal attachment loss (PAL) and gingival recession (GR) and to evaluate the correlation between periodontal disease and level of oxygen saturation in the pulp. This study included 67 anterior teeth of 35 patients; all teeth showed intact crowns, PAL, a periodontal pocket (PP), and GR. The teeth underwent periodontal examination, cold and electric pulp testing, and pulse oximetry measurements. The Pearson correlation coefficient and a linear regression coefficient were calculated to evaluate the degree of correlation between periodontal disease markers (PAL, PP, and GR) and the level of oxygen saturation in dental pulp. These tests also evaluated possible associations between oxygen saturation and cold and electric pulp testing. PAL, PP, and GR had negative correlations with oxygen saturation in dental pulp. Conversely, no statistically significant association was found between oxygen saturation in dental pulp and the response to electric sensibility testing. Oxygen saturation was lower in the pulp of permanent teeth with PAL, PP, and GR, indicating that periodontal disease correlates with the level of oxygen saturation in the pulp. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Benefits of supplemental oxygen in exercise training in nonhypoxemic chronic obstructive pulmonary disease patients.

    Science.gov (United States)

    Emtner, Margareta; Porszasz, Janos; Burns, Mary; Somfay, Attila; Casaburi, Richard

    2003-11-01

    Supplemental oxygen improves exercise tolerance of normoxemic and hypoxemic chronic obstructive pulmonary disease (COPD) patients. We determined whether nonhypoxemic COPD patients undergoing exercise training while breathing supplemental oxygen achieve higher intensity and therefore improve exercise capacity more than patients breathing air. A double-blinded trial was performed involving 29 nonhypoxemic patients (67 years, exercise SaO2 > 88%) with COPD (FEV1 = 36% predicted). All exercised on cycle ergometers for 45 minutes, 3 times per week for 7 weeks at high-intensity targets. During exercise, they received oxygen (3 L/minute) (n = 14) or compressed air (3 L/minute) (n = 15). Both groups had a higher exercise tolerance after training and when breathing oxygen. However, the oxygen-trained group increased the training work rate more rapidly than the air-trained group. The mean +/- SD work rate during the last week was 62 +/- 19 W (oxygen-trained group) and 52 +/- 22 W (air-trained group) (p work rate tests increased more in the oxygen-trained group (14.5 minutes) than in the air-trained group (10.5 minutes) (p < 0.05). At isotime, the breathing rate decreased four breaths per minute in the oxygen-trained group and one breath per minute in the air-trained group (p = 0.001). We conclude that supplemental oxygen provided during high-intensity training yields higher training intensity and evidence of gains in exercise tolerance in laboratory testing.

  4. Ventilatory control and supplemental oxygen in premature infants with apparent chronic lung disease.

    Science.gov (United States)

    Coste, Ferdinand; Ferkol, Thomas; Hamvas, Aaron; Cleveland, Claudia; Linneman, Laura; Hoffman, Julie; Kemp, James

    2015-05-01

    Our goal was to evaluate changes in respiratory pattern among premature infants born at newborn intensive care unit. 37 of 49 infants (75.5%) failed the challenge, with severe or sustained falls in SpO2%. Also, 16 of 37 infants (43.2%) who failed had marked increases in the amount of periodic breathing at the time of challenge failure. An unstable respiratory pattern is unmasked with a decrease in inspired oxygen or airflow support in many premature infants. Although infants with significant chronic lung disease may also be predisposed to more periodic breathing, these data suggest that the classification of chronic lung disease of prematurity based solely on clinical requirements for supplemental oxygen or airflow do not account for multiple mechanisms that are likely contributing to the need for respiratory support. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. Does recombinant human Epo increase exercise capacity by means other than augmenting oxygen transport?

    DEFF Research Database (Denmark)

    Lundby, C; Robach, P; Boushel, R

    2008-01-01

    This study was performed to test the hypothesis that administration of recombinant human erythropoietin (rHuEpo) in humans increases maximal oxygen consumption by augmenting the maximal oxygen carrying capacity of blood. Systemic and leg oxygen delivery and oxygen uptake were studied during...... before rHuEpo treatment). Blood buffer capacity remained unaffected by rHuEpo treatment and hemodilution. The augmented hematocrit did not compromise peak cardiac output. In summary, in healthy humans, rHuEpo increases maximal oxygen consumption due to augmented systemic and muscular peak oxygen delivery....

  6. Effects of exercise training on calf muscle oxygen extraction and blood flow in patients with peripheral artery disease.

    Science.gov (United States)

    Baker, Wesley B; Li, Zhe; Schenkel, Steven S; Chandra, Malavika; Busch, David R; Englund, Erin K; Schmitz, Kathryn H; Yodh, Arjun G; Floyd, Thomas F; Mohler, Emile R

    2017-12-01

    We employed near-infrared optical techniques, diffuse correlation spectroscopy (DCS), and frequency-domain near-infrared spectroscopy (FD-NIRS) to test the hypothesis that supervised exercise training increases skeletal muscle microvascular blood flow and oxygen extraction in patients with peripheral artery disease (PAD) who experience claudication. PAD patients ( n = 64) were randomly assigned to exercise and control groups. Patients in the exercise group received 3 mo of supervised exercise training. Calf muscle blood flow and oxygen extraction were optically monitored before, during, and after performance of a graded treadmill protocol at baseline and at 3 mo in both groups. Additionally, measurements of the ankle-brachial index (ABI) and peak walking time (PWT) to maximal claudication were made during each patient visit. Supervised exercise training was found to increase the maximal calf muscle blood flow and oxygen extraction levels during treadmill exercise by 29% (13%, 50%) and 8% (1%, 12%), respectively [ P group population were significantly higher than corresponding changes in the control group ( P training also increased PWT by 49% (18%, 101%) ( P = 0.01). However, within statistical error, the ABI, resting calf muscle blood flow and oxygen extraction, and the recovery half-time for hemoglobin\\myoglobin desaturation following cessation of maximal exercise were not altered by exercise training. The concurrent monitoring of both blood flow and oxygen extraction with the hybrid DCS/FD-NIRS instrument revealed enhanced muscle oxidative metabolism during physical activity from exercise training, which could be an underlying mechanism for the observed improvement in PWT. NEW & NOTEWORTHY We report on noninvasive optical measurements of skeletal muscle blood flow and oxygen extraction dynamics before/during/after treadmill exercise in peripheral artery disease patients who experience claudication. The measurements tracked the effects of a 3-mo supervised

  7. Carbonic anhydrase inhibition increases retinal oxygen tension and dilates retinal vessels

    DEFF Research Database (Denmark)

    Pedersen, Daniella Bach; Koch Jensen, Peter; la Cour, Morten

    2005-01-01

    Carbonic anhydrase inhibitors (CAIs) increase blood flow in the brain and probably also in the optic nerve and retina. Additionally they elevate the oxygen tension in the optic nerve in the pig. We propose that they also raise the oxygen tension in the retina. We studied the oxygen tension in the...... in the pig retina and optic nerve before and after dorzolamide injection. Also the retinal vessel diameters during carbonic anhydrase inhibition were studied....

  8. Acrolein-Induced Increases in Blood Pressure and Heart Rate Are Coupled with Decreased Blood Oxygen Levels During Exposure in Hypertensive Rats

    Science.gov (United States)

    Exposure to air pollution increases the risk of cardiovascular morbidity and mortality, especially in individuals with pre-existing cardiovascular disease. Recent studies link exposure to air pollution with reduced blood oxygen saturation suggesting that hypoxia is a potential me...

  9. Short-term molecular acclimation processes of legume nodules to increased external oxygen concentration

    Directory of Open Access Journals (Sweden)

    Ulrike eAvenhaus

    2016-01-01

    Full Text Available Nitrogenase is an oxygen labile enzyme. Microaerobic conditions within the infected zone of nodules are maintained primarily by an oxygen diffusion barrier located in the nodule cortex. Flexibility of the oxygen diffusion barrier is important for the acclimation processes of nodules in response to changes in external oxygen concentration. The hypothesis of the present study was that there are additional molecular mechanisms involved. Nodule activity of Medicago truncatula plants were continuously monitored during a change from 21 to 25 or 30 % oxygen around root nodules by measuring nodule H2 evolution. Within about two minutes of the increase in oxygen concentration, a steep decline in nitrogenase activity occurred. A quick recovery commenced about eight minutes later. A qPCR-based analysis of the expression of genes for nitrogenase components showed a tendency towards upregulation during the recovery. The recovery resulted in a new constant activity after about 30 minutes, corresponding to approximately 90 % of the pre-treatment level. An RNAseq-based comparative transcriptome profiling of nodules at that point in time revealed that genes for nodule-specific cysteine-rich (NCR peptides, defensins, leghaemoglobin and chalcone and stilbene synthase were significantly upregulated when considered as a gene family. A gene for a nicotianamine synthase-like protein (Medtr1g084050 showed a strong increase in count number. The gene appears to be of importance for nodule functioning, as evidenced by its consistently high expression in nodules and a strong reaction to various environmental cues that influence nodule activity. A Tnt1-mutant that carries an insert in the coding sequence (cds of that gene showed reduced nitrogen fixation and less efficient acclimation to an increased external oxygen concentration. It was concluded that sudden increases in oxygen concentration around nodules destroy nitrogenase, which is quickly counteracted by an increased

  10. Effects of a helium/oxygen mixture on individuals’ lung function and metabolic cost during submaximal exercise for participants with obstructive lung diseases

    Directory of Open Access Journals (Sweden)

    Häussermann S

    2015-09-01

    Full Text Available Sabine Häussermann,1 Anja Schulze,1 Ira M Katz,2,3 Andrew R Martin,4 Christiane Herpich,1 Theresa Hunger,1 Joëlle Texereau2 1Inamed GmbH, Gauting, Germany; 2Medical R&D, Air Liquide Santé International, Centre de Recherche Paris-Saclay, Les Loges-en-Josas, France; 3Department of Mechanical Engineering, Lafayette College, Easton, PA, USA; 4Department of Mechanical Engineering, University of Alberta, Edmonton, AB, CanadaBackground: Helium/oxygen therapies have been studied as a means to reduce the symptoms of obstructive lung diseases with inconclusive results in clinical trials. To better understand this variability in results, an exploratory physiological study was performed comparing the effects of helium/oxygen mixture (78%/22% to that of medical air.Methods: The gas mixtures were administered to healthy, asthmatic, and chronic obstructive pulmonary disease (COPD participants, both moderate and severe (6 participants in each disease group, a total of 30; at rest and during submaximal cycling exercise with equivalent work rates. Measurements of ventilatory parameters, forced spirometry, and ergospirometry were obtained.Results: There was no statistical difference in ventilatory and cardiac responses to breathing helium/oxygen during submaximal exercise. For asthmatics, but not for the COPD participants, there was a statistically significant benefit in reduced metabolic cost, determined through measurement of oxygen uptake, for the same exercise work rate. However, the individual data show that there were a mixture of responders and nonresponders to helium/oxygen in all of the groups.Conclusion: The inconsistent response to helium/oxygen between individuals is perhaps the key drawback to the more effective and widespread use of helium/oxygen to increase exercise capacity and for other therapeutic applications. Keywords: helium/oxygen, inspiratory capacity, oxygen uptake, COPD, asthma, obstructive airway diseases, exercise, heliox

  11. High oxygen partial pressure increases photodynamic effect on HeLa cell lines in the presence of chloraluminium phthalocyanine.

    Science.gov (United States)

    Bajgar, Robert; Kolarova, Hana; Bolek, Lukas; Binder, Svatopluk; Pizova, Klara; Hanakova, Adela

    2014-08-01

    Photodynamic therapy (PDT) is linked with oxidative damage of biomolecules causing significant impairment of essential cellular functions that lead to cell death. It is the reason why photodynamic therapy has found application in treatment of different oncological, cardiovascular, skin and eye diseases. Efficacy of PDT depends on combined action of three components; sensitizer, light and oxygen. In the present study, we examined whether higher partial pressure of oxygen increases lethality in HeLa cell lines exposed to light in the presence of chloraluminium phthalocyanine disulfonate (ClAlPcS2). ClAlPcS2- sensitized HeLa cells incubated under different oxygen conditions were exposed to PDT. Production of singlet oxygen ((1)O2) and other forms of reactive oxygen species (ROS) as well as changes in mitochondrial membrane potential were determined by appropriately sensitive fluorescence probes. The effect of PDT on HeLa cell viability under different oxygen conditions was quantified using the standard methylthiazol tetrazolium (MTT) test. At the highest oxygen concentration of 28 ± 2 mg/l HeLa cells were significantly more sensitive to light-activated ClAlPcS2 (EC50=0.29 ± 0.05 μM) in comparison to cells incubated at lower oxygen concentrations of 8 ± 0.5 and 0.5 ± 0.1 mg/l, where the half maximal effective concentration was 0.42 ± 0.06 μM and 0.94 ± 0.14 μM, respectively. Moreover, we found that the higher presence of oxygen is accompanied with higher production of singlet oxygen, a higher rate of type II photodynamic reactions, and a significant drop in the mitochondrial membrane potential. These results demonstrate that the photodynamic effect in cervical cancer cells utilizing ClAlPcS2 significantly depends on oxygen level. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  12. The Oxygen Paradox, the French Paradox, and age-related diseases.

    Science.gov (United States)

    Davies, Joanna M S; Cillard, Josiane; Friguet, Bertrand; Cadenas, Enrique; Cadet, Jean; Cayce, Rachael; Fishmann, Andrew; Liao, David; Bulteau, Anne-Laure; Derbré, Frédéric; Rébillard, Amélie; Burstein, Steven; Hirsch, Etienne; Kloner, Robert A; Jakowec, Michael; Petzinger, Giselle; Sauce, Delphine; Sennlaub, Florian; Limon, Isabelle; Ursini, Fulvio; Maiorino, Matilde; Economides, Christina; Pike, Christian J; Cohen, Pinchas; Salvayre, Anne Negre; Halliday, Matthew R; Lundquist, Adam J; Jakowec, Nicolaus A; Mechta-Grigoriou, Fatima; Mericskay, Mathias; Mariani, Jean; Li, Zhenlin; Huang, David; Grant, Ellsworth; Forman, Henry J; Finch, Caleb E; Sun, Patrick Y; Pomatto, Laura C D; Agbulut, Onnik; Warburton, David; Neri, Christian; Rouis, Mustapha; Cillard, Pierre; Capeau, Jacqueline; Rosenbaum, Jean; Davies, Kelvin J A

    2017-12-01

    transduction pathways to increase expression of protective genes, by mechanisms that are completely different from those by which the same agent induces toxicity at high concentrations. In this review, we explore the influences and effects of paradoxes such as the Oxygen Paradox and the French Paradox on the etiology, progression, and outcomes of many of the major human age-related diseases, as well as the basic biological phenomenon of ageing itself.

  13. Low oxygen level increases proliferation and metabolic changes in bovine granulosa cells.

    Science.gov (United States)

    Shiratsuki, Shogo; Hara, Tomotaka; Munakata, Yasuhisa; Shirasuna, Koumei; Kuwayama, Takehito; Iwata, Hisataka

    2016-12-05

    The present study addresses molecular backgrounds underlying low oxygen induced metabolic changes and 1.2-fold change in bovine granulosa cell (GCs) proliferation. RNA-seq revealed that low oxygen (5%) upregulated genes associated with HIF-1 and glycolysis and downregulated genes associated with mitochondrial respiration than that in high oxygen level (21%). Low oxygen level induced high glycolytic activity and low mitochondrial function and biogenesis. Low oxygen level enhanced GC proliferation with high expression levels of HIF-1, VEGF, AKT, mTOR, and S6RP, whereas addition of anti-VEGF antibody decreased cellular proliferation with low phosphorylated AKT and mTOR expression levels. Low oxygen level reduced SIRT1, whereas activation of SIRT1 by resveratrol increased mitochondrial replication and decreased cellular proliferation with reduction of phosphorylated mTOR. These results suggest that low oxygen level stimulates the HIF1-VEGF-AKT-mTOR pathway and up-regulates glycolysis, which contributes to GC proliferation, and downregulation of SIRT1 contributes to hypoxia-associated reduction of mitochondria and cellular proliferation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Cerebral blood flow and oxygen metabolism in patients with Parkinson's disease

    International Nuclear Information System (INIS)

    Kitamura, Shin; Ujike, Takashi; Kuroki, Soemu; Sakamoto, Shizuki; Soeda, Toshiyuki; Terashi, Akiro; Iio, Masaaki.

    1988-01-01

    The purpose of this study was to determine functional changes in the cerebral cortex and basal ganglia in Parkinson's disease (PD). Cerebral blood flow (CBF), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO 2 ) were determined using 0-15 positron emission tomography in 10 PD patients and five age-matched healthy volunteers. There was a tendency among PD patients towards a decreased CBF and CMRO 2 in the cerebral cortex and basal ganglia. These values were significantly lower in the frontal cortex in the PD group than the control group. There was no difference in OEF between the groups. A more decreased cerebral oxygen metabolism was observed in patients staged as severer on the scale of Hoehn and Yahr. There was no correlation between cerebral oxygen metabolism and tremor, rigidity, or bradykinesis. A decreased cerebral oxygen metabolism was associated with mental disorders, such as depression, hallucination, and dementia. These results may provide an important clue for the understanding of mesocortical dopaminergic pathway and the relationship between PD and dementia. (N.K.)

  15. Cerebral blood flow and oxygen metabolism in patients with Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Shin; Ujike, Takashi; Kuroki, Soemu; Sakamoto, Shizuki; Soeda, Toshiyuki; Terashi, Akiro; Iio, Masaaki

    1988-10-01

    The purpose of this study was to determine functional changes in the cerebral cortex and basal ganglia in Parkinson's disease (PD). Cerebral blood flow (CBF), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO/sub 2/) were determined using 0-15 positron emission tomography in 10 PD patients and five age-matched healthy volunteers. There was a tendency among PD patients towards a decreased CBF and CMRO/sub 2/ in the cerebral cortex and basal ganglia. These values were significantly lower in the frontal cortex in the PD group than the control group. There was no difference in OEF between the groups. A more decreased cerebral oxygen metabolism was observed in patients staged as severer on the scale of Hoehn and Yahr. There was no correlation between cerebral oxygen metabolism and tremor, rigidity, or bradykinesis. A decreased cerebral oxygen metabolism was associated with mental disorders, such as depression, hallucination, and dementia. These results may provide an important clue for the understanding of mesocortical dopaminergic pathway and the relationship between PD and dementia. (N.K.).

  16. Non-alcoholic fatty liver disease, to struggle with the strangle: Oxygen availability in fatty livers.

    Science.gov (United States)

    Anavi, Sarit; Madar, Zecharia; Tirosh, Oren

    2017-10-01

    Nonalcoholic fatty liver diseases (NAFLD) is one of the most common chronic liver disease in Western countries. Oxygen is a central component of the cellular microenvironment, which participate in the regulation of cell survival, differentiation, functions and energy metabolism. Accordingly, sufficient oxygen supply is an important factor for tissue durability, mainly in highly metabolic tissues, such as the liver. Accumulating evidence from the past few decades provides strong support for the existence of interruptions in oxygen availability in fatty livers. This outcome may be the consequence of both, impaired systemic microcirculation and cellular membrane modifications which occur under steatotic conditions. This review summarizes current knowledge regarding the main factors which can affect oxygen supply in fatty liver. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Liquid films on shake flask walls explain increasing maximum oxygen transfer capacities with elevating viscosity.

    Science.gov (United States)

    Giese, Heiner; Azizan, Amizon; Kümmel, Anne; Liao, Anping; Peter, Cyril P; Fonseca, João A; Hermann, Robert; Duarte, Tiago M; Büchs, Jochen

    2014-02-01

    In biotechnological screening and production, oxygen supply is a crucial parameter. Even though oxygen transfer is well documented for viscous cultivations in stirred tanks, little is known about the gas/liquid oxygen transfer in shake flask cultures that become increasingly viscous during cultivation. Especially the oxygen transfer into the liquid film, adhering on the shake flask wall, has not yet been described for such cultivations. In this study, the oxygen transfer of chemical and microbial model experiments was measured and the suitability of the widely applied film theory of Higbie was studied. With numerical simulations of Fick's law of diffusion, it was demonstrated that Higbie's film theory does not apply for cultivations which occur at viscosities up to 10 mPa s. For the first time, it was experimentally shown that the maximum oxygen transfer capacity OTRmax increases in shake flasks when viscosity is increased from 1 to 10 mPa s, leading to an improved oxygen supply for microorganisms. Additionally, the OTRmax does not significantly undermatch the OTRmax at waterlike viscosities, even at elevated viscosities of up to 80 mPa s. In this range, a shake flask is a somehow self-regulating system with respect to oxygen supply. This is in contrary to stirred tanks, where the oxygen supply is steadily reduced to only 5% at 80 mPa s. Since, the liquid film formation at shake flask walls inherently promotes the oxygen supply at moderate and at elevated viscosities, these results have significant implications for scale-up. © 2013 Wiley Periodicals, Inc.

  18. Huge supply/demand increases seen in oxygenate forecasts

    International Nuclear Information System (INIS)

    Rhoades, A.K.

    1992-01-01

    Industry originally projected that oxygenate supply would not be able to meet the demand created by U.S. oxygenated and reformulated gasoline mandates. This paper reports that those projections have been reserved in two recent industry reports - one from Chemical Market Associates Inc. (CMAI) and one from Pace Consultants Inc. Pace's report, by Paulo Nery and Nathan Sims, predicts gasoline and oxygenates demand, and examines the role ethanol may play in changing those values. CMAI's report estimates captive supply and demand of butylenes and oxygenates. Oxygenates are entering the domestic gasoline market this winter as a result of the 1990 U.S. Clean Air Act Amendments. Methyl tertiary butyl ether (MTBE) is the most important oxygenate, although ethanol, ethyl tertiary butyl ether (ETBE), and tertiary amyl methyl ether (TAME) are gathering market strength. Ethanol's strength is derived from President Bush's ruling granting a waiver to reformulated gasoline containing ethanol. This waiver allows ethanol blends to have a vapor pressure 1 psi higher than other types of gasoline

  19. Blood pressure and calf muscle oxygen extraction during plantar flexion exercise in peripheral artery disease.

    Science.gov (United States)

    Luck, J Carter; Miller, Amanda J; Aziz, Faisal; Radtka, John F; Proctor, David N; Leuenberger, Urs A; Sinoway, Lawrence I; Muller, Matthew D

    2017-07-01

    Peripheral artery disease (PAD) is an atherosclerotic vascular disease that affects 200 million people worldwide. Although PAD primarily affects large arteries, it is also associated with microvascular dysfunction, an exaggerated blood pressure (BP) response to exercise, and high cardiovascular mortality. We hypothesized that fatiguing plantar flexion exercise that evokes claudication elicits a greater reduction in skeletal muscle oxygenation (SmO 2 ) and a higher rise in BP in PAD compared with age-matched healthy subjects, but low-intensity steady-state plantar flexion elicits similar responses between groups. In the first experiment, eight patients with PAD and eight healthy controls performed fatiguing plantar flexion exercise (from 0.5 to 7 kg for up to 14 min). In the second experiment, seven patients with PAD and seven healthy controls performed low-intensity plantar flexion exercise (2.0 kg for 14 min). BP, heart rate (HR), and SmO 2 were measured continuously using near-infrared spectroscopy (NIRS). SmO 2 is the ratio of oxygenated hemoglobin to total hemoglobin, expressed as a percent. At fatigue, patients with PAD had a greater increase in mean arterial BP (18 ± 2 vs. vs. 10 ± 2 mmHg, P = 0.029) and HR (14 ± 2 vs. 6 ± 2 beats/min, P = 0.033) and a greater reduction in SmO 2 (-54 ± 10 vs. -12 ± 4%, P = 0.001). However, both groups had similar physiological responses to low-intensity, nonpainful plantar flexion exercise. These data suggest that patients with PAD have altered oxygen uptake and/or utilization during fatiguing exercise coincident with an augmented BP response. NEW & NOTEWORTHY In this laboratory study, patients with peripheral artery disease performed plantar flexion exercise in the supine posture until symptoms of claudication occurred. Relative to age- and sex-matched healthy subjects we found that patients had a higher blood pressure response, a higher heart rate response, and a greater reduction in skeletal muscle oxygenation as

  20. Comparison of six-minute walking tests conducted with and without supplemental oxygen in patients with chronic obstructive pulmonary disease and exercise-induced oxygen desaturation

    International Nuclear Information System (INIS)

    Ozalevli, S.; Ozden, A.; Gocen, Z.; Cimrin, Arif Hikmet

    2007-01-01

    There are contradictory reports in the literature on the supplemental oxygen administered before or after exercise tests. In light of this, we compared the results of 6-minute walking tests performed in room-air conditions (A6MWT) in patients with supplemental oxygen (O6MWT) in patients with chronic obstructive pulmonary disease (COPD) and exercise-induced oxygen desaturation. Thirty-one patients with COPD were included in the study. The A6MWT and O6MWT were performed in randomized order on each patient. During the tests, severity dyspenia and tiring of the leg were evaluated by the Modified Borg Scale. Heart rate and pulsed oxygen saturation and blood pressure were measured by pulse oximeter. Walking distance was longer with the O6MWT than with the A6MWT (P=0.001). The O6MWT resulted in a smaller increase in dyspnea, leg fatigue and heart rate and a smaller drop in pulsed saturation than the A6MWT (P<0.05). The walking distance with O6MWT correlated with respiratory function and hemodynamic parameters (P<0.05). The O6MWT, which produced less hemodynamic stress and was safer than the A6MWT, might provide more accurate information on exercise limitations for patients with COPD. These results suggest that the O6MWT can be used as a standard walking exercise test for patients with COPd and exercise-induced oxygen desaturation. (author)

  1. [EFFICIENCY OF COMBINATION OF ROFLUMILAST AND QUERCETIN FOR CORRECTION OXYGEN- INDEPENDENT MECHANISMS AND PHAGOCYTIC ACTIVITY OF MACROPHAGE CELLS OF PATIENTS WITH ACUTE EXACERBATION OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE WHEN COMBINED WITH CORONARY HEART DISEASE].

    Science.gov (United States)

    Gerych, P; Yatsyshyn, R

    2015-01-01

    Studied oxygen independent reaction and phagocytic activity of macrophage cells of patients with chronic obstructive pulmonary disease (COPD) II-III stage when combined with coronary heart disease (CHD). The increasing oxygen independent reactions monocytes and neutrophils and a decrease of the parameters that characterize the functional state of phagocytic cells, indicating a decrease in the functional capacity of macrophage phagocytic system (MPS) in patients with acute exacerbation of COPD, which runs as its own or in combination with stable coronary heart disease angina I-II. FC. Severity immunodeficiency state in terms of cellular component of nonspecific immunity in patients with acute exacerbation of COPD II-III stage in conjunction with the accompanying CHD increases with the progression of heart failure. Inclusion of basic therapy of COPD exacerbation and standard treatment of coronary artery disease and drug combinations Roflumilastand quercetin causes normalization of phagocytic indices MFS, indicating improved immune status and improves myocardial perfusion in terms of daily ECG monitoring.

  2. Carbon dioxide narcosis due to inappropriate oxygen delivery: a case report.

    Science.gov (United States)

    Herren, Thomas; Achermann, Eva; Hegi, Thomas; Reber, Adrian; Stäubli, Max

    2017-07-28

    Oxygen delivery to patients with chronic obstructive pulmonary disease may be challenging because of their potential hypoxic ventilatory drive. However, some oxygen delivery systems such as non-rebreathing face masks with an oxygen reservoir bag require high oxygen flow for adequate oxygenation and to avoid carbon dioxide rebreathing. A 72-year-old Caucasian man with severe chronic obstructive pulmonary disease was admitted to the emergency department because of worsening dyspnea and an oxygen saturation of 81% measured by pulse oximetry. Oxygen was administered using a non-rebreathing mask with an oxygen reservoir bag attached. For fear of removing the hypoxic stimulus to respiration the oxygen flow was inappropriately limited to 4L/minute. The patient developed carbon dioxide narcosis and had to be intubated and mechanically ventilated. Non-rebreathing masks with oxygen reservoir bags must be fed with an oxygen flow exceeding the patient's minute ventilation (>6-10 L/minute.). If not, the amount of oxygen delivered will be too small to effectively increase the arterial oxygen saturation. Moreover, the risk of carbon dioxide rebreathing dramatically increases if the flow of oxygen to a non-rebreathing mask is lower than the minute ventilation, especially in patients with chronic obstructive pulmonary disease and low tidal volumes. Non-rebreathing masks (with oxygen reservoir bags) must be used cautiously by experienced medical staff and with an appropriately high oxygen flow of 10-15 L/minute. Nevertheless, arterial blood gases must be analyzed regularly for early detection of a rise in partial pressure of carbon dioxide in arterial blood in patients with chronic obstructive pulmonary disease and a hypoxic ventilatory drive. These patients are more safely managed using a nasal cannula with an oxygen flow of 1-2L/minute or a simple face mask with an oxygen flow of 5L/minute.

  3. Anxiety-induced plasma norepinephrine augmentation increases reactive oxygen species formation by monocytes in essential hypertension.

    Science.gov (United States)

    Yasunari, Kenichi; Matsui, Tokuzo; Maeda, Kensaku; Nakamura, Munehiro; Watanabe, Takanori; Kiriike, Nobuo

    2006-06-01

    An association between anxiety and depression and increased blood pressure (BP) and cardiovascular disease risk has not been firmly established. We examined the hypothesis that anxiety and depression lead to increased plasma catecholamines and to production of reactive oxygen species (ROS) by mononuclear cells (MNC) in hypertensive individuals. We also studied the role of BP in this effect. In Protocol 1, a cross-sectional study was performed in 146 hypertensive patients to evaluate whether anxiety and depression affect BP and ROS formation by MNC through increasing plasma catecholamines. In Protocol 2, a 6-month randomized controlled trial using a subtherapeutic dose of the alpha(1)-adrenergic receptor antagonist doxazosin (1 mg/day) versus placebo in 86 patients with essential hypertension was performed to determine whether the increase in ROS formation by MNC was independent of BP. In Protocol 1, a significant relationship was observed between the following: trait anxiety and plasma norepinephrine (r = 0.32, P anxiety may increase plasma norepinephrine and increase ROS formation by MNC independent of BP in hypertensive patients.

  4. Oxygen Therapy

    Directory of Open Access Journals (Sweden)

    Bonnie Solmes

    2000-01-01

    Full Text Available LTOT is prescribed for people with chronic lung disease in whom there is a decrease in the ability of the lungs to supply enough oxygen to the body. The heart is obliged to pump faster to meet the body's oxygen requirements. This may place undue stress on the heart, resulting in palpitations, dizziness and fatigue. A low oxygen level in arterial blood is also harmful to the heart, the brain and the pulmonary blood vessels. Oxygen therapy is used to break this cycle. A person with low blood oxygen will often be able to accomplish more with less fatigue with the help of supplemental oxygen therapy. Shortness of breath is a mechanical problem resulting from the effects of chronic obstructive pulmonary disease. Oxygen therapy may or may not reduce shortness of breath, but it will help the lungs and heart to function with less stress.

  5. Mitigating an increase of specific power consumption in a cryogenic air separation unit at reduced oxygen production

    Science.gov (United States)

    Singla, Rohit; Chowdhury, Kanchan

    2017-02-01

    Specific power consumed in a Linde double column air separation unit (ASU) increases as the quantity of oxygen produced at a given purity is decreased due to the changes of system requirement or market demand. As the plant operates in part load condition, the specific power consumption (SPC) increases as the total power consumption remains the same. In order to mitigate the increase of SPC at lower oxygen production, the operating pressure of high pressure column (HPC) can be lowered by extending the low pressure column (LPC) by a few trays and adding a second reboiler. As the duty of second reboiler in LPC is increased, the recovery of oxygen decreases with a lowering of the HPC pressure. This results in mitigation of the increase of SPC of the plant. A Medium pressure ASU with dual reboiler that produces pressurised gaseous and liquid products of oxygen and nitrogen is simulated in Aspen Hysys 8.6®, a commercial process simulator to determine SPC at varying oxygen production. The effects of reduced pressure of air feed into the cold box on the size of heat exchangers (HX) are analysed. Operation strategy to obtain various oxygen production rates at varying demand is also proposed.

  6. Localized increase of tissue oxygen tension by magnetic targeted drug delivery

    Science.gov (United States)

    Liong, Celine; Ortiz, Daniel; Ao-ieong, Eilleen; Navati, Mahantesh S.; Friedman, Joel M.; Cabrales, Pedro

    2014-07-01

    Hypoxia is the major hindrance to successful radiation therapy of tumors. Attempts to increase the oxygen (O2) tension (PO2) of tissue by delivering more O2 have been clinically disappointing, largely due to the way O2 is transported and released by the hemoglobin (Hb) within the red blood cells (RBCs). Systemic manipulation of O2 transport increases vascular resistance due to metabolic autoregulation of blood flow to prevent over oxygenation. This study investigates a new technology to increase O2 delivery to a target tissue by decreasing the Hb-O2 affinity of the blood circulating within the targeted tissue. As the Hb-O2 affinity decreases, the tissue PO2 to satisfy tissue O2 metabolic needs increases without increasing O2 delivery or extraction. Paramagnetic nanoparticles (PMNPs), synthetized using gadolinium oxide, were coated with the cell permeable Hb allosteric effector L35 (3,5-trichlorophenylureido-phenoxy-methylpropionic acid). L35 decreases Hb affinity for O2 and favors the release of O2. The L35-coated PMNPs (L35-PMNPs) were intravenously infused (10 mg kg-1) to hamsters instrumented with the dorsal window chamber model. A magnetic field of 3 mT was applied to localize the effects of the L35-PMNPs to the window chamber. Systemic O2 transport characteristics and microvascular tissue oxygenation were measured after administration of L35-PMNPs with and without magnetic field. The tissue PO2 in untreated control animals was 25.2 mmHg. L35-PMNPs without magnetic field decreased tissue PO2 to 23.4 mmHg, increased blood pressure, and reduced blood flow, largely due to systemic modification of Hb-O2 affinity. L35-PMNPs with magnetic field increased tissue PO2 to 27.9 mmHg, without systemic or microhemodynamic changes. These results indicate that localized modification of Hb-O2 affinity can increase PO2 of target tissue without affecting systemic O2 delivery or triggering O2 autoregulation mechanisms. This technology can be used to treat local hypoxia and to

  7. Oxygen intrusion into anoxic fjords leads to increased methylmercury availability

    Science.gov (United States)

    Veiteberg Braaten, Hans Fredrik; Pakhomova, Svetlana; Yakushev, Evgeniy

    2013-04-01

    Mercury (Hg) appears in the oxic surface waters of the oceans at low levels (sub ng/L). Because inorganic Hg can be methylated into the toxic and bioaccumulative specie methylmercury (MeHg) levels can be high at the top of the marine food chain. Even though marine sea food is considered the main risk driver for MeHg exposure to people most research up to date has focused on Hg methylation processes in freshwater systems. This study identifies the mechanisms driving formation of MeHg during oxygen depletion in fjords, and shows how MeHg is made available in the surface water during oxygen intrusion. Studies of the biogeochemical structure in the water column of the Norwegian fjord Hunnbunn were performed in 2009, 2011 and 2012. In autumn of 2011 mixing flushing events were observed and lead to both positive and negative effects on the ecosystem state in the fjord. The oxygenated water intrusions lead to a decrease of the deep layer concentrations of hydrogen sulfide (H2S), ammonia and phosphate. On the other hand the intrusion also raised the H2S boundary from 8 m to a shallower depth of just 4 m. Following the intrusion was also observed an increase at shallower depths of nutrients combined with a decrease of pH. Before flushing events were observed concentrations of total Hg (TotHg) increased from 1.3 - 1.7 ng/L in the surface layer of the fjord to concentrations ranging from 5.2 ng/L to 6.4 ng/L in the anoxic zone. MeHg increased regularly from 0.04 ng/L in the surface water to a maximum concentration of 5.2 ng/L in the deeper layers. This corresponds to an amount of TotHg present as MeHg ranging from 2.1 % to 99 %. The higher concentrations of MeHg in the deeper layer corresponds to an area where no oxygen is present and concentrations of H2S exceeds 500 µM, suggesting a production of MeHg in the anoxic area as a result of sulphate reducing bacteria activity. After flushing the concentrations of TotHg showed a similar pattern ranging from 0.6 ng/L in the

  8. Ameliorative effects of low dose/low dose-rate irradiation on reactive oxygen species-related diseases model mice

    International Nuclear Information System (INIS)

    Nomura, Takaharu

    2008-01-01

    Living organisms have developed complex biological system which protects themselves against environmental radiation, and irradiation with proper dose, dose-rate and irradiation time can stimulate their biological responses against oxidative stress evoked by the irradiation. Because reactive oxygen species are involved in various human diseases, non-toxic low dose/low dose-rate radiation can be utilized for the amelioration of such diseases. In this study, we used mouse experimental models for fatty liver, nephritis, diabetes, and ageing to elucidate the ameliorative effect of low dose/low dose-rate radiation in relation to endogenous antioxidant activity. Single irradiation at 0.5 Gy ameliorates carbon tetrachloride-induced fatty liver. The irradiation increases hepatic anti-oxidative system involving glutathione and glutathione peroxidase, suggesting that endogenous radical scavenger is essential for the ameliorative effect of low dose radiation on carbon tetrachloride-induced fatty liver. Single irradiation at 0.5 Gy ameliorates ferric nitrilotriacetate-induced nephritis. The irradiation increases catalase and decreases superoxide dismutase in kidney. The result suggests that low dose radiation reduced generation of hydroxide radical generation by reducing cellular hydroperoxide level. Single irradiation at 0.5 Gy at 12 week of age ameliorates incidence of type I diabetes in non-obese diabetic (NOD) mice through the suppression of inflammatory activity of splenocytes, and resultant apoptosis of β-cells in pancreas. The irradiation activities of superoxide dismutase and catalase, which coordinately diminish intracellular reactive oxygen species. Continuous irradiation at 0.70 mGy/hr from 10 week of age elongates life span, and suppresses alopecia in type II diabetesmice. The irradiation improved glucose clearance without affecting insulin-resistance, and increased pancreatic catalase activity. The results suggest that continuous low dose-rate irradiation protect

  9. The role of oxygen-increased respirator in humans ascending to high altitude

    Directory of Open Access Journals (Sweden)

    Shen Guanghao

    2012-08-01

    Full Text Available Abstract Background Acute mountain sickness (AMS is common for people who live in low altitude areas ascending to the high altitude. Many instruments have been developed to treat mild cases of AMS. However, long-lasting and portable anti-hypoxia equipment for individual is not yet available. Methods Oxygen-increased respirator (OIR has been designed to reduce the risk of acute mountain sickness in acute exposure to low air pressure. It can increase the density of oxygen by increasing total atmospheric pressure in a mask. Male subjects were screened, and eighty-eight were qualified to perform the experiments. The subjects were divided into 5 groups and were involved in some of the tests at 4 different altitudes (Group 1, 2: 3700 m; Group 3,4,5: 4000 m, 4700 m, 5380 m with and without OIR. These tests include heart rate, saturation of peripheral oxygen (SpO2, malondialdehyde (MDA, superoxide dismutase (SOD, blood lactate (BLA and PWC (physical work capacity -170. Results The results showed that higher SpO2, lower heart rate (except during exercise and better recovery of heart rate were observed from all the subjects ’with OIR’ compared with ’without OIR’ (P Conclusions We suggested that OIR may play a useful role in protecting people ascending to high altitude before acclimatization.

  10. Voluntary exercise confers protection against age-related deficits in brain oxygenation in awake mice model of Alzheimer's disease

    Science.gov (United States)

    Lu, Xuecong; Moeini, Mohammad; Li, Baoqiang; Sakadžić, Sava; Lesage, Frédéric

    2018-02-01

    Alzheimer's disease (AD) is a neurodegenerative disease characterized by short-term memory loss and cognitive inabilities. This work seeks to study the effects of voluntary exercise on the change in oxygen delivery in awake mice models of Alzheimer's disease by monitoring brain tissue oxygenation. Experiments were performed on Young (AD_Y, 3-4 months, n=8), Old (AD_O, 6-7 months, n=8), and Old with exercise (AD_OEX, 6-7 months, n=8) transgenic APPPS1 mice and their controls. Brain tissue oxygenation was measured by two photon phosphorescence lifetime microscopy on the left sensory motor cortex. We found that the average tissue PO2 decreased with age but were regulated by exercise. The results suggest a potential for exercise to improve brain function with age and AD.

  11. The hydroxypyridinone iron chelator CP94 increases methyl-aminolevulinate-based photodynamic cell killing by increasing the generation of reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Yuktee Dogra

    2016-10-01

    Full Text Available Methyl-aminolevulinate-based photodynamic therapy (MAL-PDT is utilised clinically for the treatment of non-melanoma skin cancers and pre-cancers and the hydroxypyridinone iron chelator, CP94, has successfully been demonstrated to increase MAL-PDT efficacy in an initial clinical pilot study. However, the biochemical and photochemical processes leading to CP94-enhanced photodynamic cell death, beyond the well-documented increases in accumulation of the photosensitiser protoporphyrin IX (PpIX, have not yet been fully elucidated. This investigation demonstrated that MAL-based photodynamic cell killing of cultured human squamous carcinoma cells (A431 occurred in a predominantly necrotic manner following the generation of singlet oxygen and ROS. Augmenting MAL-based photodynamic cell killing with CP94 co-treatment resulted in increased PpIX accumulation, MitoSOX-detectable ROS generation (probably of mitochondrial origin and necrotic cell death, but did not affect singlet oxygen generation. We also report (to our knowledge, for the first time the detection of intracellular PpIX-generated singlet oxygen in whole cells via electron paramagnetic resonance spectroscopy in conjunction with a spin trap.

  12. The Effect of Low Oxygen Stress on Phytophthora cinnamomi Infection and Disease of Cork Oak Roots

    Science.gov (United States)

    Karel A. Jacobs; James D. MacDonald; Alison M. Berry; Laurence R. Costello

    1997-01-01

    The incidence and severity of Phytophthora cinnamomi Rands root disease was quantified in cork oak (Quercus suber L.) roots subjected to low oxygen (hypoxia) stress. Seedling root tips were inoculated with mycelial plugs of the fungus and incubated in ≤1, 3-4, or 21 percent oxygen for 5 days. Ninety-four percent of roots...

  13. Hyperbaric oxygen therapy as an effective adjunctive treatment for chronic Lyme disease

    Directory of Open Access Journals (Sweden)

    Chien-Yu Huang

    2014-05-01

    Full Text Available Lyme disease is the most commonly reported vector-borne illness in the United States, but it is relatively rare in Taiwan. Lyme disease can be treated with antibiotic agents, but approximately 20% of these patients experience persistent or intermittent subjective symptoms, so-called chronic Lyme disease (CLD. The mechanisms of CLD remain unclear and the symptoms related to CLD are difficult to manage. Hyperbaric oxygen therapy (HBOT was applied in CLD therapy in the 1990s. However, reported information regarding the effectiveness of HBOT for CLD is still limited. Here, we present a patient with CLD who was successfully treated with HBOT.

  14. The effect of helium-oxygen-assisted mechanical ventilation on chronic obstructive pulmonary disease exacerbation: A systemic review and meta-analysis.

    Science.gov (United States)

    Wu, Xu; Shao, Chuan; Zhang, Liang; Tu, Jinjing; Xu, Hui; Lin, Zhihui; Xu, Shuguang; Yu, Biyun; Tang, Yaodong; Li, Shanqun

    2018-03-01

    Chronic obstructive pulmonary disease (COPD) is often accompanied by acute exacerbations. Patients of COPD exacerbation suffering from respiratory failure often need the support of mechanical ventilation. Helium-oxygen can be used to reduce airway resistance during mechanical ventilation. The aim of this study is to evaluate the effect of helium-oxygen-assisted mechanical ventilation on COPD exacerbation through a meta-analysis. A comprehensive literature search through databases of Pub Med (1966∼2016), Ovid MEDLINE (1965∼2016), Cochrane EBM (1991∼2016), EMBASE (1974∼2016) and Ovid MEDLINE was performed to identify associated studies. Randomized clinical trials met our inclusion criteria that focus on helium-oxygen-assisted mechanical ventilation on COPD exacerbation were included. The quality of the papers was evaluated after inclusion and information was extracted for meta-analysis. Six articles and 392 patients were included in total. Meta-analysis revealed that helium-oxygen-assisted mechanical ventilation reduced Borg dyspnea scale and increased arterial PH compared with air-oxygen. No statistically significant difference was observed between helium-oxygen and air-oxygen as regards to WOB, PaCO 2 , OI, tracheal intubation rates and mortality within hospital. Our study suggests helium-oxygen-assisted mechanical ventilation can help to reduce Borg dyspnea scale. In terms of the tiny change of PH, its clinical benefit is negligible. There is no conclusive evidence indicating the beneficial effect of helium-oxygen-assisted mechanical ventilation on clinical outcomes or prognosis of COPD exacerbation. © 2017 John Wiley & Sons Ltd.

  15. Spontaneous calcium waves in Bergman glia increase with age and hypoxia and may reduce tissue oxygen.

    Science.gov (United States)

    Mathiesen, Claus; Brazhe, Alexey; Thomsen, Kirsten; Lauritzen, Martin

    2013-02-01

    Glial calcium (Ca(2+)) waves constitute a means to spread signals between glial cells and to neighboring neurons and blood vessels. These waves occur spontaneously in Bergmann glia (BG) of the mouse cerebellar cortex in vivo. Here, we tested three hypotheses: (1) aging and reduced blood oxygen saturation alters wave activity; (2) glial Ca(2+) waves change cerebral oxygen metabolism; and (3) neuronal and glial wave activity is correlated. We used two-photon microscopy in the cerebellar cortexes of adult (8- to 15-week-old) and aging (48- to 80-week-old) ketamine-anesthetized mice after bolus loading with OGB-1/AM and SR101. We report that the occurrence of spontaneous waves is 20 times more frequent in the cerebellar cortex of aging as compared with adult mice, which correlated with a reduction in resting brain oxygen tension. In adult mice, spontaneous glial wave activity increased on reducing resting brain oxygen tension, and ATP-evoked glial waves reduced the tissue O(2) tension. Finally, although spontaneous Purkinje cell (PC) activity was not associated with increased glia wave activity, spontaneous glial waves did affect intracellular Ca(2+) activity in PCs. The increased wave activity during aging, as well as low resting brain oxygen tension, suggests a relationship between glial waves, brain energy homeostasis, and pathology.

  16. Modifying TiO{sub 2} surface architecture by oxygen plasma to increase dye sensitized solar cell efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Rajmohan, Gayathri Devi [Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds, Victoria 3216 (Australia); Dai, Xiujuan J., E-mail: jane.dai@deakin.edu.au [Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds, Victoria 3216 (Australia); Tsuzuki, Takuya; Lamb, Peter R. [Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds, Victoria 3216 (Australia); Plessis, Johan du [School of Applied Sciences, RMIT University, GPO Box 2476 V, Melbourne, Victoria 3001 (Australia); Huang, Fuzhi; Cheng, Yi-Bing [Department of Materials Engineering, Monash University, Melbourne, Victoria 3800 (Australia)

    2013-10-31

    Oxygen plasma treatment of TiO{sub 2} films has been used to improve the efficiency of dye sensitized solar cells. Both a commercial TiO{sub 2} sample and a TiO{sub 2} thin film synthesized by a sol-gel technique were treated using a custom built inductively coupled plasma apparatus. X-ray photoelectron spectroscopy revealed that oxygen-plasma treatment increased the number of oxygen functional groups (hydroxyl groups) and introduced some Ti{sup 3+} species on the surface of TiO{sub 2}. A sample solar cell with plasma treated TiO{sub 2} showed an overall solar-to-electricity conversion efficiency of 4.3%, about a 13% increase over untreated TiO{sub 2}. The photon conversion efficiency for the plasma treated TiO{sub 2} was 34% higher than untreated TiO{sub 2}. This enhanced cell-performance is partly due to increased dye adsorption from an increase in surface oxygen functional groups and also may be partly due to Ti{sup 3+} states on the surface of TiO{sub 2}. - Highlights: • Oxygen plasma is used to generate hydroxyl groups on the surface of TiO{sub 2} • Parallel study was conducted using a spin coated TiO{sub 2} and a Commercial TiO{sub 2} film. • The plasma functionalization caused increased dye uptake. • Some species in Ti{sup 3+} state are also generated after oxygen plasma. • Dye sensitised solar cell with functionalised electrode showed improved efficiency.

  17. Trends in brain oxygenation during mental and physical exercise measured using near-infrared spectroscopy (NIRS): potential for early detection of Alzheimer's disease

    Science.gov (United States)

    Allen, Monica S.; Allen, Jeffery W.; Mikkilineni, Shweta; Liu, Hanli

    2005-04-01

    Motivation: Early diagnosis of Alzheimer's disease (AD) is crucial because symptoms respond best to available treatments in the initial stages of the disease. Recent studies have shown that marked changes in brain oxygenation during mental and physical tasks can be used for noninvasive functional brain imaging to detect Alzheimer"s disease. The goal of our study is to explore the possibility of using near infrared spectroscopy (NIRS) and mapping (NIRM) as a diagnostic tool for AD before the onset of significant morphological changes in the brain. Methods: A 16-channel NIRS brain imager was used to noninvasively measure spatial and temporal changes in cerebral hemodynamics induced during verbal fluency task and physical activity. The experiments involved healthy subjects (n = 10) in the age range of 25+/-5 years. The NIRS signals were taken from the subjects' prefrontal cortex during the activities. Results and Conclusion: Trends of oxygenated and deoxygenated hemoglobin in the prefrontal cortex of the brain were observed. During the mental stimulation, the subjects showed significant increase in oxygenated hemoglobin [HbO2] with a simultaneous decrease in deoxygenated hemoglobin [Hb]. However, physical exercise caused a rise in levels of HbO2 with small variations in Hb. This study basically demonstrates that NIRM taken from the prefrontal cortex of the human brain is sensitive to both mental and physical tasks and holds potential to serve as a diagnostic means for early detection of Alzheimer's disease.

  18. Improved Intratumoral Oxygenation Through Vascular Normalization Increases Glioma Sensitivity to Ionizing Radiation

    International Nuclear Information System (INIS)

    McGee, Mackenzie C.; Hamner, J. Blair; Williams, Regan F.; Rosati, Shannon F.; Sims, Thomas L.; Ng, Catherine Y.; Gaber, M. Waleed; Calabrese, Christopher; Wu Jianrong; Nathwani, Amit C.; Duntsch, Christopher; Merchant, Thomas E.; Davidoff, Andrew M.

    2010-01-01

    Purpose: Ionizing radiation, an important component of glioma therapy, is critically dependent on tumor oxygenation. However, gliomas are notable for areas of necrosis and hypoxia, which foster radioresistance. We hypothesized that pharmacologic manipulation of the typically dysfunctional tumor vasculature would improve intratumoral oxygenation and, thus, the antiglioma efficacy of ionizing radiation. Methods and Materials: Orthotopic U87 xenografts were treated with either continuous interferon-β (IFN-β) or bevacizumab, alone, or combined with cranial irradiation (RT). Tumor growth was assessed by quantitative bioluminescence imaging; the tumor vasculature using immunohistochemical staining, and tumor oxygenation using hypoxyprobe staining. Results: Both IFN-β and bevaziumab profoundly affected the tumor vasculature, albeit with different cellular phenotypes. IFN-β caused a doubling in the percentage of area of perivascular cell staining, and bevacizumab caused a rapid decrease in the percentage of area of endothelial cell staining. However, both agents increased intratumoral oxygenation, although with bevacizumab, the effect was transient, being lost by 5 days. Administration of IFN-β or bevacizumab before RT was significantly more effective than any of the three modalities as monotherapy or when RT was administered concomitantly with IFN-β or bevacizumab or 5 days after bevacizumab. Conclusion: Bevacizumab and continuous delivery of IFN-β each induced significant changes in glioma vascular physiology, improving intratumoral oxygenation and enhancing the antitumor activity of ionizing radiation. Additional investigation into the use and timing of these and other agents that modify the vascular phenotype, combined with RT, is warranted to optimize cytotoxic activity.

  19. Oxygen restriction increases the infective potential of Listeria monocytogenes in vitro in Caco-2 cells and in vivo in guinea pigs

    Directory of Open Access Journals (Sweden)

    Licht Tine

    2007-06-01

    Full Text Available Abstract Background Listeria monocytogenes has been implicated in several food borne outbreaks as well as sporadic cases of disease. Increased understanding of the biology of this organism is important in the prevention of food borne listeriosis. The infectivity of Listeria monocytogenes ScottA, cultivated with and without oxygen restriction, was compared in vitro and in vivo. Fluorescent protein labels were applied to allow certain identification of Listeria cells from untagged bacteria in in vivo samples, and to distinguish between cells grown under different conditions in mixed infection experiments. Results Infection of Caco-2 cells revealed that Listeria cultivated under oxygen-restricted conditions were approximately 100 fold more invasive than similar cultures grown without oxygen restriction. This was observed for exponentially growing bacteria, as well as for stationary-phase cultures. Oral dosage of guinea pigs with Listeria resulted in a significantly higher prevalence (p Listeria in fecal samples was observed after dosage with oxygen-restricted bacteria. These differences were seen after challenge with single Listeria cultures, as well as with a mixture of two cultures grown with and without oxygen restriction. Conclusion Our results show for the first time that the environmental conditions to which L. monocytogenes is exposed prior to ingestion are decisive for its in vivo infective potential in the gastrointestinal tract after passage of the gastric barrier. This is highly relevant for safety assessment of this organism in food.

  20. Increased tissue oxygenation explains the attenuation of hyperemia upon repetitive pneumatic compression of the lower leg.

    Science.gov (United States)

    Messere, Alessandro; Ceravolo, Gianluca; Franco, Walter; Maffiodo, Daniela; Ferraresi, Carlo; Roatta, Silvestro

    2017-12-01

    The rapid hyperemia evoked by muscle compression is short lived and was recently shown to undergo a rapid decrease even in spite of continuing mechanical stimulation. The present study aims at investigating the mechanisms underlying this attenuation, which include local metabolic mechanisms, desensitization of mechanosensitive pathways, and reduced efficacy of the muscle pump. In 10 healthy subjects, short sequences of mechanical compressions ( n = 3-6; 150 mmHg) of the lower leg were delivered at different interstimulus intervals (ranging from 20 to 160 s) through a customized pneumatic device. Hemodynamic monitoring included near-infrared spectroscopy, detecting tissue oxygenation and blood volume in calf muscles, and simultaneous echo-Doppler measurement of arterial (superficial femoral artery) and venous (femoral vein) blood flow. The results indicate that 1 ) a long-lasting (>100 s) increase in local tissue oxygenation follows compression-induced hyperemia, 2 ) compression-induced hyperemia exhibits different patterns of attenuation depending on the interstimulus interval, 3 ) the amplitude of the hyperemia is not correlated with the amount of blood volume displaced by the compression, and 4 ) the extent of attenuation negatively correlates with tissue oxygenation ( r  = -0,78, P < 0.05). Increased tissue oxygenation appears to be the key factor for the attenuation of hyperemia upon repetitive compressive stimulation. Tissue oxygenation monitoring is suggested as a useful integration in medical treatments aimed at improving local circulation by repetitive tissue compression. NEW & NOTEWORTHY This study shows that 1 ) the hyperemia induced by muscle compression produces a long-lasting increase in tissue oxygenation, 2 ) the hyperemia produced by subsequent muscle compressions exhibits different patterns of attenuation at different interstimulus intervals, and 3 ) the extent of attenuation of the compression-induced hyperemia is proportional to the level of

  1. Arterial Spin Labeling and Blood Oxygen Level-Dependent MRI Cerebrovascular Reactivity in Cerebrovascular Disease

    DEFF Research Database (Denmark)

    Smeeing, Diederik P J; Hendrikse, Jeroen; Petersen, Esben T

    2016-01-01

    BACKGROUND: The cerebrovascular reactivity (CVR) results of blood oxygen level-dependent (BOLD) and arterial spin labeling (ASL) MRI studies performed in patients with cerebrovascular disease (steno-occlusive vascular disease or stroke) were systematically reviewed. SUMMARY: Thirty-one articles...... found a significant lower ASL CVR in the ipsilateral hemispheres of patients compared to controls. KEY MESSAGES: This review brings support for a reduced BOLD and ASL CVR in the ipsilateral hemisphere of patients with cerebrovascular disease. We suggest that future studies will be performed in a uniform...... way so reference values can be established and could be used to guide treatment decisions in patients with cerebrovascular disease....

  2. Review of 1,000 consecutive extracorporeal membrane oxygenation runs as a quality initiative.

    Science.gov (United States)

    Lovvorn, Harold N; Hardison, Daphne C; Chen, Heidi; Westrick, Ashly C; Danko, Melissa E; Bridges, Brian C; Walsh, William F; Pietsch, John B

    2017-08-01

    (P < .001), the veno-arterial mode (P < .001), and in adults (P = .044). Our extracorporeal membrane oxygenation program, an Extracorporeal Life Support Organization-designated Center of Excellence, has experienced substantial growth in volume and indications, including increasing age and disease severity. Considering the entire cohort, pre-extracorporeal membrane oxygenation ventilation exceeding 7 days was associated with an increased probability of death. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The elusive baseline of marine disease: are diseases in ocean ecosystems increasing?

    Directory of Open Access Journals (Sweden)

    Jessica R Ward

    2004-04-01

    Full Text Available Disease outbreaks alter the structure and function of marine ecosystems, directly affecting vertebrates (mammals, turtles, fish, invertebrates (corals, crustaceans, echinoderms, and plants (seagrasses. Previous studies suggest a recent increase in marine disease. However, lack of baseline data in most communities prevents a direct test of this hypothesis. We developed a proxy to evaluate a prediction of the increasing disease hypothesis: the proportion of scientific publications reporting disease increased in recent decades. This represents, to our knowledge, the first quantitative use of normalized trends in the literature to investigate an ecological hypothesis. We searched a literature database for reports of parasites and disease (hereafter "disease" in nine marine taxonomic groups from 1970 to 2001. Reports, normalized for research effort, increased in turtles, corals, mammals, urchins, and molluscs. No significant trends were detected for seagrasses, decapods, or sharks/rays (though disease occurred in these groups. Counter to the prediction, disease reports decreased in fishes. Formulating effective resource management policy requires understanding the basis and timing of marine disease events. Why disease outbreaks increased in some groups but not in others should be a priority for future investigation. The increase in several groups lends urgency to understanding disease dynamics, particularly since few viable options currently exist to mitigate disease in the oceans.

  4. Renal oxygen content is increased in healthy subjects after angiotensin-converting enzyme inhibition

    Directory of Open Access Journals (Sweden)

    Anna Stein

    2012-07-01

    Full Text Available OBJECTIVE: The association between renal hypoxia and the development of renal injury is well established. However, no adequate method currently exists to non-invasively measure functional changes in renal oxygenation in normal and injured patients. METHOD: R2* quantification was performed using renal blood oxygen level-dependent properties. Five healthy normotensive women (50±5.3 years underwent magnetic resonance imaging in a 1.5T Signa Excite HDx scanner (GE Healthcare, Waukesha, WI. A multiple fast gradient-echo sequence was used to acquire R2*/T2* images (sixteen echoes from 2.1 ms/slice to 49.6 ms/slice in a single breath hold per location. The images were post-processed to generate R2* maps for quantification. Data were recorded before and at 30 minutes after the oral administration of an angiotensin II-converting enzyme inhibitor (captopril, 25 mg. The results were compared using an ANOVA for repeated measurements (mean + standard deviation followed by the Tukey test. ClinicalTrials.gov: NCT01545479. RESULTS: A significant difference (p<0.001 in renal oxygenation (R2* was observed in the cortex and medulla before and after captopril administration: right kidney, cortex = 11.08 ± 0.56ms, medulla = 17.21 ± 1.47ms and cortex = 10.30 ± 0.44ms, medulla = 16.06 ± 1.74ms, respectively; and left kidney, cortex= 11.79 ± 1.85ms, medulla = 17.03 ± 0.88ms and cortex = 10.89 ± 0.91ms, medulla = 16.43 ± 1.49ms, respectively. CONCLUSIONS: This result suggests that the technique efficiently measured alterations in renal blood oxygenation after angiotensin II-converting enzyme inhibition and that it may provide a new strategy for identifying the early stages of renal disease and perhaps new therapeutic targets.

  5. Carbon monoxide and coronary heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Scheidemandel, V

    1974-01-01

    Studies on the relationship between increased carboxyhemoglobin levels in the blood and coronary heart disease in smokers and city dwellers are reviewed. The evidence of myocardial infarction is significantly higher in smokers than in nonsmokers which is due, apart from nicotine which promotes coronary arteriosclerosis, to inhaled carbon monoxide which leads to increased carboxyhemoglobin levels and most likely plays a role in the risk of arteriosclerosis and the coronary heart disease. Apart from combining with hemoglobin, CO increases the circulation rate and the coronary blood flow, and reduces the coronary arteriovenous oxygen difference, which is indicative of a reduced rate of oxygen extraction by the myocardium against an increased myocardial oxygen demand. The reduction of the oxygen extraction correlates with the increased COHb level. Inhaled CO lowers the threshold of angina pectoris due to the reduced myocardial oxygen tension. Also, considerable reduction of the oxygen diffusion from the capillaries toward the mitochondria due to the combination of CO with myoglobin is observed. Chronically increased CO levels in the blood and tissues not only accelerate the development of arteriosclerosis, but also induce a process directly injurious to the myocardial metabolism. (Air Pollut. Abstr.)

  6. Increased iron sequestration in alveolar macrophages in chronic obstructive pulmonary disease.

    Directory of Open Access Journals (Sweden)

    Quentin Philippot

    Full Text Available Free iron in lung can cause the generation of reactive oxygen species, an important factor in chronic obstructive pulmonary disease (COPD pathogenesis. Iron accumulation has been implicated in oxidative stress in other diseases, such as Alzheimer's and Parkinson's diseases, but little is known about iron accumulation in COPD. We sought to determine if iron content and the expression of iron transport and/or storage genes in lung differ between controls and COPD subjects, and whether changes in these correlate with airway obstruction. Explanted lung tissue was obtained from transplant donors, GOLD 2-3 COPD subjects, and GOLD 4 lung transplant recipients, and bronchoalveolar lavage (BAL cells were obtained from non-smokers, healthy smokers, and GOLD 1-3 COPD subjects. Iron-positive cells were quantified histologically, and the expression of iron uptake (transferrin and transferrin receptor, storage (ferritin and export (ferroportin genes was examined by real-time RT-PCR assay. Percentage of iron-positive cells and expression levels of iron metabolism genes were examined for correlations with airflow limitation indices (forced expiratory volume in the first second (FEV1 and the ratio between FEV1 and forced vital capacity (FEV1/FVC. The alveolar macrophage was identified as the predominant iron-positive cell type in lung tissues. Furthermore, the quantity of iron deposit and the percentage of iron positive macrophages were increased with COPD and emphysema severity. The mRNA expression of iron uptake and storage genes transferrin and ferritin were significantly increased in GOLD 4 COPD lungs compared to donors (6.9 and 3.22 fold increase, respectively. In BAL cells, the mRNA expression of transferrin, transferrin receptor and ferritin correlated with airway obstruction. These results support activation of an iron sequestration mechanism by alveolar macrophages in COPD, which we postulate is a protective mechanism against iron induced oxidative

  7. Comparison of portable oxygen concentrators in a simulated airplane environment.

    Science.gov (United States)

    Fischer, Rainald; Wanka, Eva R; Einhaeupl, Franziska; Voll, Klaus; Schiffl, Helmut; Lang, Susanne M; Gruss, Martin; Ferrari, Uta

    2013-01-01

    Portable oxygen concentrators (POC) are highly desirable for patients with lung disease traveling by airplane, as these devices allow theoretically much higher travel times if additional batteries can be used. However, it is unclear whether POCs produce enough oxygen in airplanes at cruising altitude, even if complying with aviation regulations. We evaluated five frequently used POCs (XPO2 (Invacare, USA), Freestyle (AirSep C., USA), Evergo (Philipps Healthcare, Germany), Inogen One (Inogen, USA), Eclipse 3 (Sequal, USA)) at an altitude of 2650 m (as simulated airplane environment) in 11 patients with chronic obstructive lung disease (COPD) and compared theses POCs with the standard oxygen system (WS120, EMS Ltd., Germany) used by Lufthansa. Oxygen was delivered by each POC for 30 min to each patient at rest, blood gases were then drawn from the arterialized ear lobe. All POCs were able to deliver enough oxygen to increase the PaO(2) of our subjects by at least 1.40 kPa (10 mmHg). However, to achieve this increase, the two most lightweight POCs (Freestyle and Invacare XPO2) had to be run at their maximum level. This causes a significant reduction of battery life. The three other POCs (EverGo, Inogen One, Eclipse 3) and the WS120 were able to increase the PaO(2) by more than 2.55 kPa (20 mmHg), which provides extra safety for patients with more severe basal hypoxemia. When choosing the right oxygen system for air travel in patients in COPD, not only weight, but also battery life and maximum possible oxygen output must be considered carefully. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Impact of Increasing Levels of Oxygen Consumption on the Evolution of Color, Phenolic, and Volatile Compounds of Nebbiolo Wines.

    Science.gov (United States)

    Petrozziello, Maurizio; Torchio, Fabrizio; Piano, Federico; Giacosa, Simone; Ugliano, Maurizio; Bosso, Antonella; Rolle, Luca

    2018-01-01

    Since the end of the last century, many works have been carried out to verify the effect of controlled oxygen intake on the chemical and organoleptic characteristics of red wines. In spite of the large number of studies on this subject, oxygen remains a cutting-edge research topic in oenology. Oxygen consumption leads to complex and not univocal changes in wine composition, sometimes positive such as color stabilization, softening of mouthfeel, increase of aroma complexity. However, the variability of these effects, which depend both on the oxygenation conditions and the composition of the wine, require more efforts in this research field to effectively manage wine oxygen exposure. The present study is focused on the evolution of the chemical composition of four different Nebbiolo wines, each of them added with 4 different doses of oxygen (7, 14, 21, and 28 mg/L total intake) during the first month of storage. In this perspective, the evolution over time of wine color and polyphenols was studied. Acetaldehyde, glyceraldehyde and glyoxylic acid were quantified by HPLC. These compounds can play a role in wine aging creating condensed colored and stable products involving anthocyanins with or without tannins. Moreover, some volatile aldehydes correlated with oxidized olfactory notes, including methional and (E)-2-alkenals, have been quantified by GC-MS. Overall, during storage a decrease of color intensity, total and free anthocyanins and an increase in polymeric pigments (in particular the contribution to the red color of pigments not-bleachable by SO 2 or dTAT%) and some minor aldehydes was observed. Nevertheless, the differences in color parameters between the samples with different doses of oxygen were modest. These evidences were in contrast with an evident and detectable increase of free acetaldehyde content at increasing doses of oxygen measured after 60 days of storage. The effect of oxygen on color and production of SO 2 non-bleachable pigments during aging

  9. Impact of Increasing Levels of Oxygen Consumption on the Evolution of Color, Phenolic, and Volatile Compounds of Nebbiolo Wines

    Science.gov (United States)

    Petrozziello, Maurizio; Torchio, Fabrizio; Piano, Federico; Giacosa, Simone; Ugliano, Maurizio; Bosso, Antonella; Rolle, Luca

    2018-01-01

    Since the end of the last century, many works have been carried out to verify the effect of controlled oxygen intake on the chemical and organoleptic characteristics of red wines. In spite of the large number of studies on this subject, oxygen remains a cutting-edge research topic in oenology. Oxygen consumption leads to complex and not univocal changes in wine composition, sometimes positive such as color stabilization, softening of mouthfeel, increase of aroma complexity. However, the variability of these effects, which depend both on the oxygenation conditions and the composition of the wine, require more efforts in this research field to effectively manage wine oxygen exposure. The present study is focused on the evolution of the chemical composition of four different Nebbiolo wines, each of them added with 4 different doses of oxygen (7, 14, 21, and 28 mg/L total intake) during the first month of storage. In this perspective, the evolution over time of wine color and polyphenols was studied. Acetaldehyde, glyceraldehyde and glyoxylic acid were quantified by HPLC. These compounds can play a role in wine aging creating condensed colored and stable products involving anthocyanins with or without tannins. Moreover, some volatile aldehydes correlated with oxidized olfactory notes, including methional and (E)-2-alkenals, have been quantified by GC-MS. Overall, during storage a decrease of color intensity, total and free anthocyanins and an increase in polymeric pigments (in particular the contribution to the red color of pigments not-bleachable by SO2 or dTAT%) and some minor aldehydes was observed. Nevertheless, the differences in color parameters between the samples with different doses of oxygen were modest. These evidences were in contrast with an evident and detectable increase of free acetaldehyde content at increasing doses of oxygen measured after 60 days of storage. The effect of oxygen on color and production of SO2 non-bleachable pigments during aging

  10. Retinal oximetry in patients with ischaemic retinal diseases

    DEFF Research Database (Denmark)

    Rilvén, Sandra; Torp, Thomas Lee; Grauslund, Jakob

    2017-01-01

    The retinal oximeter is a new tool for non-invasive measurement of retinal oxygen saturation in humans. Several studies have investigated the associations between retinal oxygen saturation and retinal diseases. In the present systematic review, we examine whether there are associations between...... retinal oxygen saturation and retinal ischaemic diseases. We used PubMed and Embase to search for retinal oxygen saturation and retinal ischaemic diseases. Three separate searches identified a total of 79 publications. After two levels of manual screening, 10 studies were included: six about diabetic...... retinopathy (DR) and four about retinal vein occlusion. No studies about retinal artery occlusion were included. In diabetes, all studies found that increases in retinal venous oxygen saturation (rvSatO2 ) were associated with present as well as increasing levels of DR. Four of six studies also found...

  11. Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue.

    Science.gov (United States)

    Sakadžić, Sava; Mandeville, Emiri T; Gagnon, Louis; Musacchia, Joseph J; Yaseen, Mohammad A; Yucel, Meryem A; Lefebvre, Joel; Lesage, Frédéric; Dale, Anders M; Eikermann-Haerter, Katharina; Ayata, Cenk; Srinivasan, Vivek J; Lo, Eng H; Devor, Anna; Boas, David A

    2014-12-08

    What is the organization of cerebral microvascular oxygenation and morphology that allows adequate tissue oxygenation at different activity levels? We address this question in the mouse cerebral cortex using microscopic imaging of intravascular O2 partial pressure and blood flow combined with numerical modelling. Here we show that parenchymal arterioles are responsible for 50% of the extracted O2 at baseline activity, and the majority of the remaining O2 exchange takes place within the first few capillary branches. Most capillaries release little O2 at baseline acting as an O2 reserve that is recruited during increased neuronal activity or decreased blood flow. Our results challenge the common perception that capillaries are the major site of O2 delivery to cerebral tissue. The understanding of oxygenation distribution along arterio-capillary paths may have profound implications for the interpretation of blood-oxygen-level dependent (BOLD) contrast in functional magnetic resonance imaging and for evaluating microvascular O2 delivery capacity to support cerebral tissue in disease.

  12. Prodrugs activated by reactive oxygen species for use in the treatment of inflammatory diseases and cancer

    DEFF Research Database (Denmark)

    2018-01-01

    Prodrugs activated predominantly or exclusively in inflammatory tissue, more particularly prodrugs of methotrexate and derivatives thereof, which are selectively activated by Reactive Oxygen Species (ROS) in inflammatory tissues associated with cancer and inflammatory diseases, as well as method...

  13. Significant social events and increasing use of life-sustaining treatment: trend analysis using extracorporeal membrane oxygenation as an example.

    Science.gov (United States)

    Chen, Yen-Yuan; Chen, Likwang; Huang, Tien-Shang; Ko, Wen-Je; Chu, Tzong-Shinn; Ni, Yen-Hsuan; Chang, Shan-Chwen

    2014-03-04

    Most studies have examined the outcomes of patients supported by extracorporeal membrane oxygenation as a life-sustaining treatment. It is unclear whether significant social events are associated with the use of life-sustaining treatment. This study aimed to compare the trend of extracorporeal membrane oxygenation use in Taiwan with that in the world, and to examine the influence of significant social events on the trend of extracorporeal membrane oxygenation use in Taiwan. Taiwan's extracorporeal membrane oxygenation uses from 2000 to 2009 were collected from National Health Insurance Research Dataset. The number of the worldwide extracorporeal membrane oxygenation cases was mainly estimated using Extracorporeal Life Support Registry Report International Summary July 2012. The trend of Taiwan's crude annual incidence rate of extracorporeal membrane oxygenation use was compared with that of the rest of the world. Each trend of extracorporeal membrane oxygenation use was examined using joinpoint regression. The measurement was the crude annual incidence rate of extracorporeal membrane oxygenation use. Each of the Taiwan's crude annual incidence rates was much higher than the worldwide one in the same year. Both the trends of Taiwan's and worldwide crude annual incidence rates have significantly increased since 2000. Joinpoint regression selected the model of the Taiwan's trend with one joinpoint in 2006 as the best-fitted model, implying that the significant social events in 2006 were significantly associated with the trend change of extracorporeal membrane oxygenation use following 2006. In addition, significantly social events highlighted by the media are more likely to be associated with the increase of extracorporeal membrane oxygenation use than being fully covered by National Health Insurance. Significant social events, such as a well-known person's successful extracorporeal membrane oxygenation use highlighted by the mass media, are associated with the use of

  14. Microvascular oxygen extraction during maximal isometric contraction in patients with chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Flavia Fernandes Manfredi de Freitas

    Full Text Available Abstract Introduction: COPD presents decrease in oxidative metabolism with possible losses of cardiovascular adjustments, suggesting slow kinetics microvascular oxygen during intense exercise. Objective: To test the hypothesis that chronic obstructive pulmonary disease (COPD patients have lower muscle performance in physical exercise not dependent on central factors, but also greater muscle oxygen extraction, regardless of muscle mass. Methods: Cross-sectional study with 11 COPD patients and nine healthy subjects, male, paired for age. Spirometry and body composition by DEXA were evaluated. Muscular performance was assessed by maximal voluntary isometric contraction (MVIC in isokinetic dynamometer and muscle oxygen extraction by the NIRS technique. Student t-test and Pearson correlation were applied. A significance level of p<0.05 was adopted. Results: Patients had moderate to severe COPD (FEV1 = 44.5 ± 9.6% predicted; SpO2 = 94.6 ± 1.6%. Lean leg mass was 8.3 ± 0.9 vs. 8.9 ± 1.0 kg (p =0.033, when comparing COPD and control patients, respectively. The decreased muscle oxygen saturation corrected by muscle mass was 53.2% higher (p=0.044 in the COPD group in MVIC-1 and 149.6% higher (p=0.006 in the MVIC-2. Microvascular extraction rate of oxygen corrected by muscle mass and total work was found to be 114.5% higher (p=0.043 in the COPD group in MVIC-1 and 210.5% higher (p=0.015 in the MVIC-2. Conclusion: COPD patients have low muscle performance and high oxygen extraction per muscle mass unit and per unit of work. The high oxygen extraction suggests that quantitative and qualitative mechanisms can be determinants of muscle performance in patients with COPD.

  15. Hepatic encephalopathy is associated with decreased cerebral oxygen metabolism and blood flow, not increased ammonia uptake

    DEFF Research Database (Denmark)

    Dam, Gitte; Keiding, Susanne; Munk, Ole Lajord

    2013-01-01

    Studies have shown decreased cerebral oxygen metabolism (CMRO(2)) and blood flow (CBF) in patients with cirrhosis with hepatic encephalopathy (HE). It remains unclear, however, whether these disturbances are associated with HE or with cirrhosis itself and how they may relate to arterial blood...... associated with HE rather than the liver disease as such. The changes in CMRO(2) and CBF could not be linked to blood ammonia concentration or CMRA....

  16. 3D modeling of effects of increased oxygenation and activity concentration in tumors treated with radionuclides and antiangiogenic drugs

    Energy Technology Data Exchange (ETDEWEB)

    Lagerloef, Jakob H.; Kindblom, Jon; Bernhardt, Peter [Department of Radiation Physics, Goeteborg University, Goeteborg 41345 (Sweden); Department of Oncology, Sahlgrenska University Hospital, Goeteborg 41345 (Sweden); Department of Radiation Physics, Goeteborg University, Goeteborg, Sweden and Department of Nuclear Medicine, Sahlgrenska University Hospital, Goeteborg 41345 (Sweden)

    2011-08-15

    Purpose: Formation of new blood vessels (angiogenesis) in response to hypoxia is a fundamental event in the process of tumor growth and metastatic dissemination. However, abnormalities in tumor neovasculature often induce increased interstitial pressure (IP) and further reduce oxygenation (pO{sub 2}) of tumor cells. In radiotherapy, well-oxygenated tumors favor treatment. Antiangiogenic drugs may lower IP in the tumor, improving perfusion, pO{sub 2} and drug uptake, by reducing the number of malfunctioning vessels in the tissue. This study aims to create a model for quantifying the effects of altered pO{sub 2}-distribution due to antiangiogenic treatment in combination with radionuclide therapy. Methods: Based on experimental data, describing the effects of antiangiogenic agents on oxygenation of GlioblastomaMultiforme (GBM), a single cell based 3D model, including 10{sup 10} tumor cells, was developed, showing how radionuclide therapy response improves as tumor oxygenation approaches normal tissue levels. The nuclides studied were {sup 90}Y, {sup 131}I, {sup 177}Lu, and {sup 211}At. The absorbed dose levels required for a tumor control probability (TCP) of 0.990 are compared for three different log-normal pO{sub 2}-distributions: {mu}{sub 1} = 2.483, {sigma}{sub 1} = 0.711; {mu}{sub 2} = 2.946, {sigma}{sub 2} = 0.689; {mu}{sub 3} = 3.689, and {sigma}{sub 3} = 0.330. The normal tissue absorbed doses will, in turn, depend on this. These distributions were chosen to represent the expected oxygen levels in an untreated hypoxic tumor, a hypoxic tumor treated with an anti-VEGF agent, and in normal, fully-oxygenated tissue, respectively. The former two are fitted to experimental data. The geometric oxygen distributions are simulated using two different patterns: one Monte Carlo based and one radially increasing, while keeping the log-normal volumetric distributions intact. Oxygen and activity are distributed, according to the same pattern. Results: As tumor pO{sub 2

  17. Dorzolamide increases retinal oxygen tension after branch retinal vein occlusion

    DEFF Research Database (Denmark)

    Noergaard, Michael Hove; Bach-Holm, Daniella; Scherfig, Erik

    2008-01-01

    To study the effect of dorzolamide on the preretinal oxygen tension (RPO(2)) in retinal areas affected by experimental branch retinal vein occlusion (BRVO) in pigs.......To study the effect of dorzolamide on the preretinal oxygen tension (RPO(2)) in retinal areas affected by experimental branch retinal vein occlusion (BRVO) in pigs....

  18. Impact of Increasing Levels of Oxygen Consumption on the Evolution of Color, Phenolic, and Volatile Compounds of Nebbiolo Wines

    Directory of Open Access Journals (Sweden)

    Maurizio Petrozziello

    2018-04-01

    Full Text Available Since the end of the last century, many works have been carried out to verify the effect of controlled oxygen intake on the chemical and organoleptic characteristics of red wines. In spite of the large number of studies on this subject, oxygen remains a cutting-edge research topic in oenology. Oxygen consumption leads to complex and not univocal changes in wine composition, sometimes positive such as color stabilization, softening of mouthfeel, increase of aroma complexity. However, the variability of these effects, which depend both on the oxygenation conditions and the composition of the wine, require more efforts in this research field to effectively manage wine oxygen exposure. The present study is focused on the evolution of the chemical composition of four different Nebbiolo wines, each of them added with 4 different doses of oxygen (7, 14, 21, and 28 mg/L total intake during the first month of storage. In this perspective, the evolution over time of wine color and polyphenols was studied. Acetaldehyde, glyceraldehyde and glyoxylic acid were quantified by HPLC. These compounds can play a role in wine aging creating condensed colored and stable products involving anthocyanins with or without tannins. Moreover, some volatile aldehydes correlated with oxidized olfactory notes, including methional and (E-2-alkenals, have been quantified by GC-MS. Overall, during storage a decrease of color intensity, total and free anthocyanins and an increase in polymeric pigments (in particular the contribution to the red color of pigments not-bleachable by SO2 or dTAT% and some minor aldehydes was observed. Nevertheless, the differences in color parameters between the samples with different doses of oxygen were modest. These evidences were in contrast with an evident and detectable increase of free acetaldehyde content at increasing doses of oxygen measured after 60 days of storage. The effect of oxygen on color and production of SO2 non-bleachable pigments

  19. Rational use of oxygen in medical disease and anesthesia

    DEFF Research Database (Denmark)

    Meyhoff, Christian S; Staehr, Anne K; Rasmussen, Lars S

    2012-01-01

    Supplemental oxygen is often administered during anesthesia and in critical illness to treat hypoxia, but high oxygen concentrations are also given for a number of other reasons such as prevention of surgical site infection (SSI). The decision to use supplemental oxygen is, however, controversial......, because of large heterogeneity in the reported results and emerging reports of side-effects. The aim of this article is to review the recent findings regarding benefits and harms of oxygen therapy in anesthesia and acute medical conditions....

  20. Insulin resistance and maximal oxygen uptake

    DEFF Research Database (Denmark)

    Seibaek, Marie; Vestergaard, Henrik; Burchardt, Hans

    2003-01-01

    BACKGROUND: Type 2 diabetes, coronary atherosclerosis, and physical fitness all correlate with insulin resistance, but the relative importance of each component is unknown. HYPOTHESIS: This study was undertaken to determine the relationship between insulin resistance, maximal oxygen uptake......, and the presence of either diabetes or ischemic heart disease. METHODS: The study population comprised 33 patients with and without diabetes and ischemic heart disease. Insulin resistance was measured by a hyperinsulinemic euglycemic clamp; maximal oxygen uptake was measured during a bicycle exercise test. RESULTS......: There was a strong correlation between maximal oxygen uptake and insulin-stimulated glucose uptake (r = 0.7, p = 0.001), and maximal oxygen uptake was the only factor of importance for determining insulin sensitivity in a model, which also included the presence of diabetes and ischemic heart disease. CONCLUSION...

  1. Reactive oxygen species in disease: Rebuttal of a conventional concept

    Directory of Open Access Journals (Sweden)

    Luis Vitetta

    2015-09-01

    Full Text Available The production of intracellular reactive oxygen species and reactive nitrogen species has long been proposed as leading to the random deleterious modification of macromolecules (i.e., nucleic acids, proteins with an associated progressive development of the age associated systemic diseases (e.g., diabetes, Parkinson’s disease as well as contributing to the ageing process.   Superoxide anion (hydrogen peroxide and nitric oxide (peroxynitrite comprise regulated intracellular second messenger pro-oxidant systems, with specific sub-cellular locales of production and are essential for the normal function of the metabolome and cellular electro-physiology.  We have posited that the formation of superoxide anion and its metabolic product hydrogen peroxide, and nitric oxide, do not conditionally lead to random damage of macromolecular species such as nucleic acids or proteins.  Under normal physiological conditions their production is intrinsically regulated that is very much consistent with their second messenger purpose of function.   We further propose that the concept of an orally administered small molecule antioxidant as a therapy to abrogate free radical activity (to control oxidative stress is a chimera.  As such we consider that free radicals are not a major overwhelming player in the development of the chronic diseases or the ageing process.

  2. Persistent increase in oxygen consumption and impaired neurovascular coupling after spreading depression in rat neocortex

    DEFF Research Database (Denmark)

    Hansen, Henning Piilgaard; Lauritzen, Martin

    2009-01-01

    trauma. Here we tested the hypothesis that single episodes of CSD induced acute hypoxia, and prolonged impairment of neurovascular and neurometabolic coupling. Cortical spreading depression was induced in rat frontal cortex, whereas cortical electrical activity and local field potentials (LFPs) were......Cortical spreading depression (CSD) is associated with a dramatic failure of brain ion homeostasis and increased energy metabolism. There is strong clinical and experimental evidence to suggest that CSD is the mechanism of migraine, and involved in progressive neuronal injury in stroke and head...... recorded by glass microelectrodes, cerebral blood flow (CBF) by laser-Doppler flowmetry, and tissue oxygen tension (tpO(2)) with polarographic microelectrodes. Cortical spreading depression increased cerebral metabolic rate of oxygen (CMRO(2)) by 71%+/-6.7% and CBF by 238%+/-48.1% for 1 to 2 mins...

  3. Oxygen therapy - infants

    Science.gov (United States)

    ... breathe increased amounts of oxygen to get normal levels of oxygen in their blood. Oxygen therapy provides babies with the extra oxygen. Information Oxygen is a gas that the cells in your body need to work properly. The ...

  4. Thiazolidinone prodrugs activated by reactive oxygen species for use in the treatment of inflammatory diseases and cancer

    DEFF Research Database (Denmark)

    2018-01-01

    Prodrugs activated predominantly or exclusively in inflammatory tissue, more particularly prodrugs of methotrexate and derivatives thereof, which are selectively activated by Reactive Oxygen Species (ROS) in inflammatory tissues associated with cancer and inflammatory diseases, as well as method...

  5. Replacing the Transfusion of 1–2 Units of Blood with Plasma Expanders that Increase Oxygen Delivery Capacity: Evidence from Experimental Studies

    Directory of Open Access Journals (Sweden)

    Amy G. Tsai

    2014-10-01

    Full Text Available At least a third of the blood supply in the world is used to transfuse 1–2 units of packed red blood cells for each intervention and most clinical trials of blood substitutes have been carried out at this level of oxygen carrying capacity (OCC restoration. However, the increase of oxygenation achieved is marginal or none at all for molecular hemoglobin (Hb products, due to their lingering vasoactivity. This has provided the impetus for the development of “oxygen therapeutics” using Hb-based molecules that have high oxygen affinity and target delivery of oxygen to anoxic areas. However it is still unclear how these oxygen carriers counteract or mitigate the functional effects of anemia due to obstruction, vasoconstriction and under-perfusion. Indeed, they are administered as a low dosage/low volume therapeutic Hb (subsequently further diluted in the circulatory pool and hence induce extremely small OCC changes. Hyperviscous plasma expanders provide an alternative to oxygen therapeutics by increasing the oxygen delivery capacity (ODC; in anemia they induce supra-perfusion and increase tissue perfusion (flow by as much as 50%. Polyethylene glycol conjugate albumin (PEG-Alb accomplishes this by enhancing the shear thinning behavior of diluted blood, which increases microvascular endothelial shear stress, causes vasodilation and lowering peripheral vascular resistance thus facilitating cardiac function. Induction of supra-perfusion takes advantage of the fact that ODC is the product of OCC and blood flow and hence can be maintained by increasing either or both. Animal studies suggest that this approach may save a considerable fraction of the blood supply. It has an additional benefit of enhancing tissue clearance of toxic metabolites.

  6. [Domiciliary oxygen therapy].

    Science.gov (United States)

    Abdel Kafi, S

    2010-09-01

    In Belgium, oxygen therapy is becoming more and more accessible. When oxygen is needed for short periods or for special indications as palliative care, an agreement between mutual insurance companies and pharmacists allows the practitioner the home installation of gazeous oxygen cylinder or of oxygen concentrator. When long term oxygen therapy (LTOT) is indicated for patients with respiratory insufficiency, the pneumologist must first ask the INAMI the authorization to install one of the following modalities: oxygen concentrator with or without demand oxygen delivery cylinder and liquid oxygen. The goal of LTOT is to increase survival and quality of life. The principal and well accepted indication for LTOT is severe hypoxemia. The beneficial effects of oxygen therapy limited at night or on exertion are controversial. In order to increase patient's autonomy, oxygen can be prescribed for ambulation, respecting prescription's rules. At each step of oxygen therapy implementing (indication, choice of the device and follow-up) the patient under oxygen may benefit from a joint approach between the general practitioner and the chest specialist.

  7. Influence of cerebrovascular arteriosclerosis on cerebral oxygenation during exercise

    International Nuclear Information System (INIS)

    Nagayama, Osamu; Koike, Akira; Hoshimoto, Masayo; Yamaguchi, Kaori; Tajima, Akihiko; Goda, Ayumi; Uejima, Tokuhisa; Aizawa, Tadanori; Itoh, Haruki

    2007-01-01

    Although it is assumed that cerebral oxygenation during exercise is influenced by both cardiopulmonary function and cerebrovascular arteriosclerosis, the latter factor has not been fully clarified. In the present study the relationship between the degree of cerebrovascular arteriosclerosis and cerebral oxygenation during exercise was investigated. A total of 109 patients (69 patients with coronary artery disease, 40 patients with hypertensive heart disease) (61.7±9.7 years) performed a symptom-limited exercise test with respiratory gas measurements (CPX). From the respiratory gas analysis, peak O 2 uptake (VO 2 ), the slope of the increase in VO 2 to the increase in work rate (ΔVO 2 /ΔWR), and the slope of the increase in ventilation to the increase in CO 2 output (VE/VCO 2 slope) were calculated. Oxyhemoglobin (O 2 Hb) at the forehead was monitored using near-infrared spectroscopy. The brain ischemic score was counted based upon fluid-attenuated inversion recovery images of magnetic resonance imaging and expressed from 0 to 4. When compared with patients with a lower ischemic score ( 2 Hb during exercise (-1.08±2.7 vs 0.77±4.1 μmol/L, p=0.011). Of brain ischemic score, left ventricular ejection fraction, peak VO 2 , ΔVO 2 /ΔWR, and the VE/VCO 2 slope, ΔVO 2 /ΔWR was found to be the sole independent index determining cerebral O 2 Hb during exercise. The CPX parameters were also significantly related to the degree of cerebrovascular arteriosclerosis. Although cerebral oxygenation during exercise is mainly related to cardiopulmonary function, the degree of cerebrovascular arteriosclerosis partly influences cerebral oxygenation in patients with risk factors for atherosclerosis. (author)

  8. Pentagalloyl glucose increases elastin deposition, decreases reactive oxygen species and matrix metalloproteinase activity in pulmonary fibroblasts under inflammatory conditions.

    Science.gov (United States)

    Parasaram, Vaideesh; Nosoudi, Nasim; Chowdhury, Aniqa; Vyavahare, Naren

    2018-04-30

    Emphysema is characterized by degradation of lung alveoli that leads to poor airflow in lungs. Irreversible elastic fiber degradation by matrix metalloproteinases (MMPs) and reactive oxygen species (ROS) activity leads to loss of elasticity and drives the progression of this disease. We investigated if a polyphenol, pentagalloyl glucose (PGG) can increase elastin production in pulmonary fibroblasts. We also studied the effect of PGG treatment in reducing MMP activity and ROS levels in cells. We exposed rat pulmonary fibroblasts to two different types of inflammatory environments i.e., tumor necrosis factor-α (TNF-α) and cigarette smoke extract (CSE) to mimic the disease. Parameters like lysyl oxidase (LOX) and elastin gene expression, MMP-9 activity in the medium, lysyl oxidase (LOX) activity and ROS levels were studied to assess the effect of PGG on pulmonary fibroblasts. CSE inhibited lysyl oxidase (LOX) enzyme activity that resulted in a decreased elastin formation. Similarly, TNF-α treated cells showed less elastin in the cell layers. Both these agents caused increase in MMP activity and ROS levels in cells. However, when supplemented with PGG treatment along with these two inflammatory agents, we saw a significant increase in elastin deposition, reduction in both MMP activity and ROS levels. Thus PGG, which has anti-inflammatory, anti-oxidant properties coupled with its ability to aid in elastic fiber formation, can be a multifunctional drug to potentially arrest the progression of emphysema. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Mixed oxygen ion/electron-conducting ceramics for oxygen separation

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J.W.; Armstrong, T.R.; Armstrong, B.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-08-01

    Mixed oxygen ion and electron-conducting ceramics are unique materials that can passively separate high purity oxygen from air. Oxygen ions move through a fully dense ceramic in response to an oxygen concentration gradient, charge-compensated by an electron flux in the opposite direction. Compositions in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, perovskites where M=Sr, Ca, and Ba, and N=Mn, Ni, Cu, Ti, and Al, have been prepared and their electrical, oxygen permeation, oxygen vacancy equilibria, and catalytic properties evaluated. Tubular forms, disks, and asymmetric membrane structures, a thin dense layer on a porous support of the same composition, have been fabricated for testing purposes. In an oxygen partial gradient, the passive oxygen flux through fully dense structures was highly dependent on composition. An increase in oxygen permeation with increased temperature is attributed to both enhanced oxygen vacancy mobility and higher vacancy populations. Highly acceptor-doped compositions resulted in oxygen ion mobilities more than an order of magnitude higher than yttria-stabilized zirconia. The mixed conducting ceramics have been utilized in a membrane reactor configuration to upgrade methane to ethane and ethylene. Conditions were established to balance selectivity and throughput in a catalytic membrane reactor constructed from mixed conducting ceramics.

  10. Inspiratory Muscle Training and Arterial Blood Oxygen Saturation in Patients With Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Bakhshandeh Bavarsad

    2015-01-01

    Full Text Available Background One of the problems of the patients with chronic obstructive pulmonary disease (COPD is the weakness of the respiratory muscles that causes oxygen desaturation at rest and activity and decreases exercise tolerance. Objectives This study aimed to investigate the effect of inspiratory muscle training on arterial oxygen saturation (SPO2. Patients and Methods Forty patients with mild to very severe COPD were recruited for this study, which is a randomized control trail. The patients were randomized to IMT (inspiratory muscle training and control group. Training was performed with Respivol (a kind of inspiratory muscle trainer for 8 weeks (15 min/d for 6 d/week. SPSS software version 16 was used to analyze the data by performing independent t test, paired t test, and Fisher exact test. Results Results showed that, after 8 weeks of inspiratory muscle training, there was a little increase (but not statistically significant improvement in SPO2 (from 92.6 ± 8.71 % to 95.13 ± 7.08 %, with P = 0.06, whereas it remained unchanged in the control group (from 96.0 ± 3.46 % to 96.4 ± 3.35 % with P = 0.51. No statistically significant difference was seen between the two groups (P > 0.05. Conclusions Although inspiratory muscles training can prevent desaturation, which is caused by activity, it fails to improve it.

  11. Alcoholic Cirrhosis Increases Risk for Autoimmune Diseases

    DEFF Research Database (Denmark)

    Grønbæk, Lisbet; Vilstrup, Hendrik; Deleuran, Bent

    2015-01-01

    IRR, 1.56; 95% CI, 1.26-1.92), celiac disease (aIRR, 5.12; 95% CI, 2.58-10.16), pernicious anemia (aIRR, 2.35; 95% CI, 1.50-3.68), and psoriasis (aIRR, 4.06; 95% CI, 3.32-4.97). There was no increase in the incidence rate for rheumatoid arthritis (aIRR, 0.89; 95% CI, 0.69-1.15); the incidence rate......BACKGROUND & AIMS: Alcoholic cirrhosis is associated with hyperactivation and dysregulation of the immune system. In addition to its ability to increase risk for infections, it also may increase the risk for autoimmune diseases. We studied the incidence of autoimmune diseases among patients...... (controls) of the same sex and age. The incidence rates of various autoimmune diseases were compared between patients with cirrhosis and controls and adjusted for the number of hospitalizations in the previous year (a marker for the frequency of clinical examination). RESULTS: Of the 24,679 patients...

  12. [Correlation between the inspired fraction of oxygen, maternal partial oxygen pressure, and fetal partial oxygen pressure during cesarean section of normal pregnancies].

    Science.gov (United States)

    Castro, Carlos Henrique Viana de; Cruvinel, Marcos Guilherme Cunha; Carneiro, Fabiano Soares; Silva, Yerkes Pereira; Cabral, Antônio Carlos Vieira; Bessa, Roberto Cardoso

    2009-01-01

    Despite changes in pulmonary function, maternal oxygenation is maintained during obstetric regional blocks. But in those situations, the administration of supplementary oxygen to parturients is a common practice. Good fetal oxygenation is the main justification; however, this has not been proven. The objective of this randomized, prospective study was to test the hypothesis of whether maternal hyperoxia is correlated with an increase in fetal gasometric parameters in elective cesarean sections. Arterial blood gases of 20 parturients undergoing spinal block with different inspired fractions of oxygen were evaluated and correlated with fetal arterial blood gases. An increase in maternal inspired fraction of oxygen did not show any correlation with an increase of fetal partial oxygen pressure. Induction of maternal hyperoxia by the administration of supplementary oxygen did not increase fetal partial oxygen pressure. Fetal gasometric parameters did not change even when maternal parameters changed, induced by hyperoxia, during cesarean section under spinal block.

  13. Deletion of CGLD1 Impairs PSII and Increases Singlet Oxygen Tolerance of Green Alga Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Jiale Xing

    2017-12-01

    Full Text Available The green alga Chlamydomonas reinhardtii is a key model organism for studying photosynthesis and oxidative stress in unicellular eukaryotes. Using a forward genetics approach, we have identified and characterized a mutant x32, which lacks a predicted protein named CGLD1 (Conserved in Green Lineage and Diatom 1 in GreenCut2, under normal and stress conditions. We show that loss of CGLD1 resulted in minimal photoautotrophic growth and PSII activity in the organism. We observed reduced amount of PSII complex and core subunits in the x32 mutant based on blue-native (BN/PAGE and immunoblot analysis. Moreover, x32 exhibited increased sensitivity to high-light stress and altered tolerance to different reactive oxygenic species (ROS stress treatments, i.e., decreased resistance to H2O2/or tert-Butyl hydroperoxide (t-BOOH and increased tolerance to neutral red (NR and rose bengal (RB that induce the formation of singlet oxygen, respectively. Further analysis via quantitative real-time PCR (qRT-PCR indicated that the increased singlet-oxygen tolerance of x32 was largely correlated with up-regulated gene expression of glutathione-S-transferases (GST. The phenotypical and physiological implications revealed from our experiments highlight the important roles of CGLD1 in maintaining structure and function of PSII as well as in protection of Chlamydomonas under photo-oxidative stress conditions.

  14. Oxygen therapy in acute exacerbations of chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Ringbaek, T.; Lange, P.; Mogensen, T.

    2008-01-01

    Acute exacerbation of COPD is a major cause of hospitalisation in Denmark. Most of the patients require supplemental oxygen in the acute phase and some patients continue oxygen therapy at home after discharge. In this paper we discuss the physiological mechanisms of respiratory failure seen...... in acute exacerbations of COPD. The principles for oxygen therapy in the acute phase are described and recommendations for oxygen therapy are suggested Udgivelsesdato: 2008/5/5...

  15. Myocardial oxygen consumption at rest and during submaximal ...

    African Journals Online (AJOL)

    Overweight and obesity are major risk factors for cardiovascular diseases. The objective of this study was to determine the effect of increased adiposity on myocardial oxygen consumption at rest and during submaximal exercise in young adults. The study consisted of 85 young adults (18-22years) grouped into 3 based on ...

  16. Oxygenation measurement by multi-wavelength oxygen-dependent phosphorescence and delayed fluorescence: catchment depth and application in intact heart

    NARCIS (Netherlands)

    Balestra, Gianmarco M.; Aalders, Maurice C. G.; Specht, Patricia A. C.; Ince, Can; Mik, Egbert G.

    2015-01-01

    Oxygen delivery and metabolism represent key factors for organ function in health and disease. We describe the optical key characteristics of a technique to comprehensively measure oxygen tension (PO(2)) in myocardium, using oxygen-dependent quenching of phosphorescence and delayed fluorescence of

  17. Long-term oxygen therapy: Are we prescribing appropriately?

    Directory of Open Access Journals (Sweden)

    Mª Rosa Güell Rous

    2008-06-01

    Full Text Available Mª Rosa Güell RousDepartament de Pneumologia, Hospital de la Santa Creu I de Sant Pau, Barcelona, SpainAbstract: Long-term oxygen therapy (LTOT is the treatment proven to improve survival in chronic obstructive pulmonary disease (COPD patients with chronic respiratory failure. It also appears to reduce the number of hospitalizations, increase effort capacity, and improve health-related quality of life. Standard LTOT criteria are related to COPD patients who have PaO2 <60 mmHg, are in a clinical stable situation, and are receiving optimal pharmacological treatment. According to LTOT guidelines, oxygen should be prescribed for at least 18 hours per day although some authors consider 24 hours would be more beneficial. The benefits of LTOT depend on correction of hypoxemia. Arterial blood gases should be measured at rest. During exercise, an effort test should be done to assure adequate SaO2. During sleep, continuous monitoring of SaO2 and PaCO2 should be performed to confirm correction of SaO2 overnight. An arterial blood gas sample should be taken at awakening to assess PaCO2 in order to prevent hypoventilation from the oxygen therapy. Several issues that need to be addressed are the use of LTOT in COPD patients with moderate hypoxemia, the efficacy of LTOT in patients who desaturate during exercise or during sleep, the optimal dosage of oxygen supplementation, LTOT compliance, and the LTOT prescription in diseases other than COPD.Keywords: long-term oxygen therapy, COPD, oxygen supplementation, chronic respiratory failure, hypoxemia

  18. Skeletal muscle-specific expression of PGC-1α-b, an exercise-responsive isoform, increases exercise capacity and peak oxygen uptake.

    Directory of Open Access Journals (Sweden)

    Miki Tadaishi

    Full Text Available Maximal oxygen uptake (VO(2max predicts mortality and is associated with endurance performance. Trained subjects have a high VO(2max due to a high cardiac output and high metabolic capacity of skeletal muscles. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α, a nuclear receptor coactivator, promotes mitochondrial biogenesis, a fiber-type switch to oxidative fibers, and angiogenesis in skeletal muscle. Because exercise training increases PGC-1α in skeletal muscle, PGC-1α-mediated changes may contribute to the improvement of exercise capacity and VO(2max. There are three isoforms of PGC-1α mRNA. PGC-1α-b protein, whose amino terminus is different from PGC-1α-a protein, is a predominant PGC-1α isoform in response to exercise. We investigated whether alterations of skeletal muscle metabolism by overexpression of PGC-1α-b in skeletal muscle, but not heart, would increase VO(2max and exercise capacity.Transgenic mice showed overexpression of PGC-1α-b protein in skeletal muscle but not in heart. Overexpression of PGC-1α-b promoted mitochondrial biogenesis 4-fold, increased the expression of fatty acid transporters, enhanced angiogenesis in skeletal muscle 1.4 to 2.7-fold, and promoted exercise capacity (expressed by maximum speed by 35% and peak oxygen uptake by 20%. Across a broad range of either the absolute exercise intensity, or the same relative exercise intensities, lipid oxidation was always higher in the transgenic mice than wild-type littermates, suggesting that lipid is the predominant fuel source for exercise in the transgenic mice. However, muscle glycogen usage during exercise was absent in the transgenic mice.Increased mitochondrial biogenesis, capillaries, and fatty acid transporters in skeletal muscles may contribute to improved exercise capacity via an increase in fatty acid utilization. Increases in PGC-1α-b protein or function might be a useful strategy for sedentary subjects to perform exercise

  19. Effects of oxygen concentration on atmospheric pressure dielectric barrier discharge in Argon-Oxygen Mixture

    Science.gov (United States)

    Li, Xuechun; Li, Dian; Wang, Younian

    2016-09-01

    A dielectric barrier discharge (DBD) can generate a low-temperature plasma easily at atmospheric pressure and has been investigated for applications in trials in cancer therapy, sterilization, air pollution control, etc. It has been confirmed that reactive oxygen species (ROS) play a key role in the processes. In this work, we use a fluid model to simulate the plasma characteristics for DBD in argon-oxygen mixture. The effects of oxygen concentration on the plasma characteristics have been discussed. The evolution mechanism of ROS has been systematically analyzed. It was found that the ground state oxygen atoms and oxygen molecular ions are the dominated oxygen species under the considered oxygen concentrations. With the oxygen concentration increasing, the densities of electrons, argon atomic ions, resonance state argon atoms, metastable state argon atoms and excited state argon atoms all show a trend of decline. The oxygen molecular ions density is high and little influenced by the oxygen concentration. Ground state oxygen atoms density tends to increase before falling. The ozone density increases significantly. Increasing the oxygen concentration, the discharge mode begins to change gradually from the glow discharge mode to Townsend discharge mode. Project supported by the National Natural Science Foundation of China (Grant No. 11175034).

  20. Determinants of resting cerebral blood flow in sickle cell disease

    NARCIS (Netherlands)

    Bush, Adam M.; Borzage, Matthew T.; Choi, Soyoung; Václavů, Lena; Tamrazi, Benita; Nederveen, Aart J.; Coates, Thomas D.; Wood, John C.

    2016-01-01

    Stroke is common in children with sickle cell disease and results from an imbalance in oxygen supply and demand. Cerebral blood flow (CBF) is increased in patients with sickle cell disease to compensate for their anemia, but adequacy of their oxygen delivery has not been systematically demonstrated.

  1. Relationship between oxygen free radicals, cytokines, cortisol and stress complications in patients with acute cerebrovascular disease

    International Nuclear Information System (INIS)

    Zhu Yingbin; Wang Bingjie; Li Yunchao

    2010-01-01

    Objective: To investigate the relationship between oxygen free radicals, cytokines, cortisol and stress complications in patients with acute cerebrovascular disease (ACVD). Methods: Serum levels of superoxide dismutases (SOD), malonaldehyde (MDA) (with biochemistry) interleukin-6 (IL-6), tumor necrosis factor (TNF-α) and cortisol (with RIA) were measured in 32 patients with acute cerebrovascular disease (ACVD) plus stress complications and 48 patients without stress complications as well as 36 controls. Results: Serum SOD contents in non-stressed group were higher than those in stressed group (P<0.05) but lower than those of the controls (P<0.05). However the levels of MDA, IL-6, TNF-α and cortisol were highest in the stressed group and lowest in the controls (all P<0.05). Conclusion: Oxygen free radicals, IL-6, TNF-α and cortisol were involved in stress complications in patients with ACVD. Monitoring the levels of serum SOD, MDA, IL-6, TNF-α and cortisol could be useful for predicting stress complications and evaluating the therapeutic effect. (authors)

  2. Hydrogen-oxygen steam generator applications for increasing the efficiency, maneuverability and reliability of power production

    Science.gov (United States)

    Schastlivtsev, A. I.; Borzenko, V. I.

    2017-11-01

    The comparative feasibility study of the energy storage technologies showed good applicability of hydrogen-oxygen steam generators (HOSG) based energy storage systems with large-scale hydrogen production. The developed scheme solutions for the use of HOSGs for thermal power (TPP) and nuclear power plants (NPP), and the feasibility analysis that have been carried out have shown that their use makes it possible to increase the maneuverability of steam turbines and provide backup power supply in the event of failure of the main steam generating equipment. The main design solutions for the integration of hydrogen-oxygen steam generators into the main power equipment of TPPs and NPPs, as well as their optimal operation modes, are considered.

  3. Low Oxygen Modulates Multiple Signaling Pathways, Increasing Self-Renewal, While Decreasing Differentiation, Senescence, and Apoptosis in Stromal MIAMI Cells

    Science.gov (United States)

    Rios, Carmen; D'Ippolito, Gianluca; Curtis, Kevin M.; Delcroix, Gaëtan J.-R.; Gomez, Lourdes A.; El Hokayem, Jimmy; Rieger, Megan; Parrondo, Ricardo; de las Pozas, Alicia; Perez-Stable, Carlos; Howard, Guy A.

    2016-01-01

    Human bone marrow multipotent mesenchymal stromal cell (hMSC) number decreases with aging. Subpopulations of hMSCs can differentiate into cells found in bone, vasculature, cartilage, gut, and other tissues and participate in their repair. Maintaining throughout adult life such cell subpopulations should help prevent or delay the onset of age-related degenerative conditions. Low oxygen tension, the physiological environment in progenitor cell-rich regions of the bone marrow microarchitecture, stimulates the self-renewal of marrow-isolated adult multilineage inducible (MIAMI) cells and expression of Sox2, Nanog, Oct4a nuclear accumulation, Notch intracellular domain, notch target genes, neuronal transcriptional repressor element 1 (RE1)-silencing transcription factor (REST), and hypoxia-inducible factor-1 alpha (HIF-1α), and additionally, by decreasing the expression of (i) the proapoptotic proteins, apoptosis-inducing factor (AIF) and Bak, and (ii) senescence-associated p53 expression and β-galactosidase activity. Furthermore, low oxygen increases canonical Wnt pathway signaling coreceptor Lrp5 expression, and PI3K/Akt pathway activation. Lrp5 inhibition decreases self-renewal marker Sox2 mRNA, Oct4a nuclear accumulation, and cell numbers. Wortmannin-mediated PI3K/Akt pathway inhibition leads to increased osteoblastic differentiation at both low and high oxygen tension. We demonstrate that low oxygen stimulates a complex signaling network involving PI3K/Akt, Notch, and canonical Wnt pathways, which mediate the observed increase in nuclear Oct4a and REST, with simultaneous decrease in p53, AIF, and Bak. Collectively, these pathway activations contribute to increased self-renewal with concomitant decreased differentiation, cell cycle arrest, apoptosis, and/or senescence in MIAMI cells. Importantly, the PI3K/Akt pathway plays a central mechanistic role in the oxygen tension-regulated self-renewal versus osteoblastic differentiation of progenitor cells. PMID:27059084

  4. Oxygen Deficit: The Bio-energetic Pathophysiology

    Directory of Open Access Journals (Sweden)

    ABHAY KUMAR PANDEY

    2014-09-01

    Full Text Available Scarcity of oxygen in humans arises via three modes. The environment may have low oxygen to breath. There can be disease in respiratory system causing hindrance to uptake of oxygen from environment and the circulatory system may be sluggish to supply to body parts that starve for oxygen. Thirdly the chemico-cellular components of blood which carry oxygen may be lowered or defective. In reference to body cells several limiting sites and mechanisms affect the amount of oxygen delivered to them, and these are under regulatory control of several functional and metabolic systems.

  5. Use of Atomic Oxygen for Increased Water Contact Angles of Various Polymers for Biomedical Applications

    Science.gov (United States)

    deGroh, Kim; Berger, Lauren; Roberts, Lily

    2009-01-01

    The purpose of this study was to determine the effect of atomic oxygen (AO) exposure on the hydrophilicity of nine different polymers for biomedical applications. Atomic oxygen treatment can alter the chemistry and morphology of polymer surfaces, which may increase the adhesion and spreading of cells on Petri dishes and enhance implant growth. Therefore, nine different polymers were exposed to atomic oxygen and water-contact angle, or hydrophilicity, was measured after exposure. To determine whether hydrophilicity remains static after initial atomic oxygen exposure, or changes with higher fluence exposures, the contact angles between the polymer and water droplet placed on the polymer s surface were measured versus AO fluence. The polymers were exposed to atomic oxygen in a 100-W, 13.56-MHz radio frequency (RF) plasma asher, and the treatment was found to significantly alter the hydrophilicity of non-fluorinated polymers. Pristine samples were compared with samples that had been exposed to AO at various fluence levels. Minimum and maximum fluences for the ashing trials were set based on the effective AO erosion of a Kapton witness coupon in the asher. The time intervals for ashing were determined by finding the logarithmic values of the minimum and maximum fluences. The difference of these two values was divided by the desired number of intervals (ideally 10). The initial desired fluence was then multiplied by this result (2.37), as was each subsequent desired fluence. The flux in the asher was determined to be approximately 3.0 x 10(exp 15) atoms/sq cm/sec, and each polymer was exposed to a maximum fluence of 5.16 x 10(exp 20) atoms/sq cm.

  6. Neonatal and pediatric extracorporeal membrane oxygenation in developing Latin American countries

    Directory of Open Access Journals (Sweden)

    Javier Kattan

    2017-03-01

    Conclusions: The best results in short‐ and long‐term survival are in patients with isolated respiratory diseases. Today extracorporeal membrane oxygenation therapy is a standard therapy in some Latin American referral centers. It is hoped that these new extracorporeal membrane oxygenation centers will have a positive impact on the survival of newborns and children with respiratory or cardiac failure, and that they will be available for an increasing number of patients from this region in the near future.

  7. Retinal Vessel Oxygen Saturation during 100% Oxygen Breathing in Healthy Individuals.

    Directory of Open Access Journals (Sweden)

    Olof Birna Olafsdottir

    Full Text Available To detect how systemic hyperoxia affects oxygen saturation in retinal arterioles and venules in healthy individuals.Retinal vessel oxygen saturation was measured in 30 healthy individuals with a spectrophotometric retinal oximeter (Oxymap T1. Oximetry was performed during breathing of room air, 100% oxygen (10 minutes, 6L/min and then again room air (10 minutes recovery.Mean oxygen saturation rises modestly in retinal arterioles during 100% oxygen breathing (94.5%±3.8 vs. 92.0%±3.7% at baseline, p<0.0001 and dramatically in retinal venules (76.2%±8.0% vs. 51.3%±5.6%, p<0.0001. The arteriovenous difference decreased during 100% oxygen breathing (18.3%±9.0% vs. 40.7%±5.7%, p<0.0001. The mean diameter of arterioles decreased during 100% oxygen breathing compared to baseline (9.7±1.4 pixels vs. 10.3±1.3 pixels, p<0.0001 and the same applies to the mean venular diameter (11.4±1.2 pixels vs. 13.3±1.5 pixels, p<0.0001.Breathing 100% oxygen increases oxygen saturation in retinal arterioles and more so in venules and constricts them compared to baseline levels. The dramatic increase in oxygen saturation in venules reflects oxygen flow from the choroid and the unusual vascular anatomy and oxygen physiology of the eye.

  8. Effect of hypolimnetic oxygenation on oxygen depletion rates in two water-supply reservoirs.

    Science.gov (United States)

    Gantzer, Paul A; Bryant, Lee D; Little, John C

    2009-04-01

    Oxygenation systems, such as bubble-plume diffusers, are used to improve water quality by replenishing dissolved oxygen (DO) in the hypolimnia of water-supply reservoirs. The diffusers induce circulation and mixing, which helps distribute DO throughout the hypolimnion. Mixing, however, has also been observed to increase hypolimnetic oxygen demand (HOD) during system operation, thus accelerating oxygen depletion. Two water-supply reservoirs (Spring Hollow Reservoir (SHR) and Carvins Cove Reservoir (CCR)) that employ linear bubble-plume diffusers were studied to quantify diffuser effects on HOD. A recently validated plume model was used to predict oxygen addition rates. The results were used together with observed oxygen accumulation rates to evaluate HOD over a wide range of applied gas flow rates. Plume-induced mixing correlated well with applied gas flow rate and was observed to increase HOD. Linear relationships between applied gas flow rate and HOD were found for both SHR and CCR. HOD was also observed to be independent of bulk hypolimnion oxygen concentration, indicating that HOD is controlled by induced mixing. Despite transient increases in HOD, oxygenation caused an overall decrease in background HOD, as well as a decrease in induced HOD during diffuser operation, over several years. This suggests that the residual or background oxygen demand decreases from one year to the next. Despite diffuser-induced increases in HOD, hypolimnetic oxygenation remains a viable method for replenishing DO in thermally-stratified water-supply reservoirs such as SHR and CCR.

  9. Release of intracellular Calcium increase production of mitochondrial reactive oxygen species in renal distal epithelial cells

    DEFF Research Database (Denmark)

    Bjerregaard, Henning F.

    peroxide (H2O2) has traditionally been regarded as toxic by-products of aerobic metabolism. However, recent findings indicate that H2O2 act as a signalling molecule. The aim of the present study was to monitor, in real time, the rates of ROS generation in order to directly determine their production......Release of intracellular Calcium increase production of mitochondrial reactive oxygen species in renal distal epithelial cells. Henning F. Bjerregaard, Roskilde University, Department of Science, Systems and Models , 4000 Roskilde, Denmark. HFB@ RUC.DK Reactive oxygen species (ROS) like, hydrogen...... to G-protein stimulation of phospholipase C and release of inositol -3 phosphate. Cd (0.4 mM) treatment of A6 cells enhanced the ROS production after one minutes incubation. The production rate was constant for at least 10 to 20 min. Experiments showed that the Cd induced increase in ROS production...

  10. Calcific Uremic Arteriolopathy: Pathophysiology, Reactive Oxygen Species and Therapeutic Approaches

    Directory of Open Access Journals (Sweden)

    Kurt M. Sowers

    2010-01-01

    Full Text Available Calcific uremic arteriolopathy (CUA/calciphylaxis is an important cause of morbidity and mortality in patients with chronic kidney disease requiring renal replacement. Once thought to be rare, it is being increasingly recognized and reported on a global scale. The uremic milieu predisposes to multiple metabolic toxicities including increased levels of reactive oxygen species and inflammation. Increased oxidative stress and inflammation promote this arteriolopathy by adversely affecting endothelial function resulting in a prothrombotic milieu and significant remodeling effects on vascular smooth muscle cells. These arteriolar pathological effects include intimal hyperplasia, inflammation, endovascular fibrosis and vascular smooth muscle cell apoptosis and differentiation into bone forming osteoblast-like cells resulting in medial calcification. Systemic factors promoting this vascular condition include elevated calcium, parathyroid hormone and hyperphosphatemia with consequent increases in the calcium × phosphate product. The uremic milieu contributes to a marked increased in upstream reactive oxygen species—oxidative stress and subsequent downstream increased inflammation, in part, via activation of the nuclear transcription factor NFκB and associated downstream cytokine pathways. Consitutive anti-calcification proteins such as Fetuin-A and matrix GLA proteins and their signaling pathways may be decreased, which further contributes to medial vascular calcification. The resulting clinical entity is painful, debilitating and contributes to the excess morbidity and mortality associated with chronic kidney disease and end stage renal disease. These same histopathologic conditions also occur in patients without uremia and therefore, the term calcific obliterative arteriolopathy could be utilized in these conditions.

  11. A theoretical model for the effects of reduced hemoglobin-oxygen affinity on tumor oxygenation

    International Nuclear Information System (INIS)

    Kavanagh, Brian D.; Secomb, Timothy W.; Hsu, Richard; Lin, P.-S.; Venitz, Jurgen; Dewhirst, Mark W.

    2002-01-01

    Purpose: To develop a theoretical model for oxygen delivery to tumors, and to use the model to simulate the effects of changing the affinity of hemoglobin for oxygen on tumor oxygenation. Methods and Materials: Hemoglobin affinity is expressed in terms of P 50 , the partial pressure of oxygen (Po 2 ) at half saturation. Effects of changing P 50 on arterial Po 2 are predicted using an effective vessel approach to describe diffusive oxygen transport in the lungs, assuming fixed systemic oxygen demand and fixed blood flow rate. The decline in oxygen content of blood as it flows through normal tissue before entering the tumor region is assumed fixed. The hypoxic fraction of the tumor region is predicted using a three-dimensional simulation of diffusion from a network of vessels whose geometry is derived from observations of tumor microvasculature in the rat. Results: In air-breathing rats, predicted hypoxic fraction decreases with moderate increases in P 50 , but increases with further increases of P 50 , in agreement with previous experimental results. In rats breathing hyperoxic gases, and in humans breathing either normoxic or hyperoxic gases, increased P 50 is predicted to improve tumor oxygenation. Conclusions: The results support the administration of synthetic agents to increase P 50 during radiation treatment of tumors

  12. Prevalence and prediction of exercise-induced oxygen desaturation in patients with chronic obstructive pulmonary disease.

    Science.gov (United States)

    van Gestel, A J R; Clarenbach, C F; Stöwhas, A C; Teschler, S; Russi, E W; Teschler, H; Kohler, M

    2012-01-01

    Previous studies with small sample sizes reported contradicting findings as to whether pulmonary function tests can predict exercise-induced oxygen desaturation (EID). To evaluate whether forced expiratory volume in one second (FEV(1)), resting oxygen saturation (SpO(2)) and diffusion capacity for carbon monoxide (DLCO) are predictors of EID in chronic obstructive pulmonary disease (COPD). We measured FEV(1), DLCO, SpO(2) at rest and during a 6-min walking test as well as physical activity by an accelerometer. A drop in SpO(2) of >4 to daily physical activity (r = -0.31, p = 0.008). EID is highly prevalent among patients with COPD and can be predicted by FEV(1). EID seems to be associated with impaired daily physical activity which supports its clinical importance. Copyright © 2012 S. Karger AG, Basel.

  13. Determination of relative CMRO2 from CBF and BOLD changes: significant increase of oxygen consumption rate during visual stimulation

    DEFF Research Database (Denmark)

    Kim, S.G.; Rostrup, Egill; Larsson, H.B.

    1999-01-01

    signal changes were measured simultaneously using the flow-sensitive alternating inversion recovery (FAIR) technique. During hypercapnia established by an end-tidal CO2 increase of 1.46 kPa, CBF in the visual cortex increased by 47.3 +/- 17.3% (mean +/- SD; n = 9), and deltaR2* was -0.478 +/- 0.147 sec......The blood oxygenation level-dependent (BOLD) effect in functional magnetic resonance imaging depends on at least partial uncoupling between cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) changes. By measuring CBF and BOLD simultaneously, the relative change in CMRO2 can...

  14. High altitude may alter oxygen availability and renal metabolism in diabetics as measured by hyperpolarized [1-1C]pyruvate magnetic resonance imaging

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Lycke, Sara; Palm, Fredrik

    2014-01-01

    inspired oxygen did not alter renal metabolism in the control group. Reduced oxygen availability in the diabetic kidney altered energy metabolism by increasing lactate and alanine formation by 23% and 34%, respectively, whereas the bicarbonate flux was unchanged. Thus, the increased prevalence and severity......The kidneys account for about 10% of the whole body oxygen consumption, whereas only 0.5% of the total body mass. It is known that intrarenal hypoxia is present in several diseases associated with development of kidney disease, including diabetes, and when renal blood flow is unaffected....... The importance of deranged oxygen metabolism is further supported by deterioration of kidney function in patients with diabetes living at high altitude. Thus, we argue that reduced oxygen availability alters renal energy metabolism. Here, we introduce a novel magnetic resonance imaging (MRI) approach to monitor...

  15. Does intraoperative low arterial partial pressure of oxygen increase the risk of surgical site infection following emergency exploratory laparotomy in horses?

    Science.gov (United States)

    Costa-Farré, Cristina; Prades, Marta; Ribera, Thaïs; Valero, Oliver; Taurà, Pilar

    2014-04-01

    Decreased tissue oxygenation is a critical factor in the development of wound infection as neutrophil mediated oxidative killing is an essential mechanism against surgical pathogens. The objective of this prospective case series was to assess the impact of intraoperative arterial partial pressure of oxygen (PaO2) on surgical site infection (SSI) in horses undergoing emergency exploratory laparotomy for acute gastrointestinal disease. The anaesthetic and antibiotic protocol was standardised. Demographic data, surgical potential risk factors and PaO2, obtained 1h after induction of anaesthesia were recorded. Surgical wounds were assessed daily for infection during hospitalisation and follow up information was obtained after discharge. A total of 84 adult horses were included. SSI developed in 34 (40.4%) horses. Multivariate logistic regression showed that PaO2, anaesthetic time and subcutaneous suture material were predictors of SSI (AUC=0.76, sensitivity=71%, specificity=65%). The use of polyglycolic acid sutures increased the risk and horses with a PaO2 value 2h had the highest risk of developing SSI (OR=9.01; 95% CI 2.28-35.64). The results of this study confirm the hypothesis that low intraoperative PaO2 contributes to the development of SSI following colic surgery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Oxygen enrichment incineration

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested

  17. Oxygen enrichment incineration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested.

  18. Inhaled nitric oxide augments nitric oxide transport on sickle cell hemoglobin without affecting oxygen affinity

    OpenAIRE

    Gladwin, Mark T.; Schechter, Alan N.; Shelhamer, James H.; Pannell, Lewis K.; Conway, Deirdre A.; Hrinczenko, Borys W.; Nichols, James S.; Pease-Fye, Margaret E.; Noguchi, Constance T.; Rodgers, Griffin P.; Ognibene, Frederick P.

    1999-01-01

    Nitric oxide (NO) inhalation has been reported to increase the oxygen affinity of sickle cell erythrocytes. Also, proposed allosteric mechanisms for hemoglobin, based on S-nitrosation of β-chain cysteine 93, raise the possibilty of altering the pathophysiology of sickle cell disease by inhibiting polymerization or by increasing NO delivery to the tissue. We studied the effects of a 2-hour treatment, using varying concentrations of inhaled NO. Oxygen affinity, as measured by P50, did not respo...

  19. Cardiac arrest caused by sibutramine obtained over the Internet: a case of a young woman without pre-existing cardiovascular disease successfully resuscitated using extracorporeal membrane oxygenation.

    Science.gov (United States)

    Bunya, Naofumi; Sawamoto, Keigo; Uemura, Shuji; Kyan, Ryoko; Inoue, Hiroyuki; Nishida, Junichi; Kouzu, Hidemichi; Kokubu, Nobuaki; Miura, Tetsuji; Narimatsu, Eichi

    2017-07-01

    Sibutramine is a weight loss agent that was withdrawn from the market in the USA and European Union because it increases adverse events in patients with cardiovascular diseases. However, non-prescription weight loss pills containing sibutramine can be still easily purchased over the Internet. A 21-year-old woman without history of cardiovascular diseases developed cardiac arrest. She was a user of a weight loss pills, containing sibutramine and hypokalemia-inducing agents, imported from Thailand over the Internet. She was successfully resuscitated without any neurological deficits by using extracorporeal membrane oxygenation for refractory ventricular fibrillation. This case indicates that sibutramine can cause cardiac arrest even in subjects without pre-existing cardiovascular disease when combined with agents that promote QT prolongation.

  20. The Injection of Air/Oxygen Bubble into the Anterior Chamber of Rabbits as a Treatment for Hyphema in Patients with Sickle Cell Disease

    Directory of Open Access Journals (Sweden)

    Emre Ayintap

    2014-01-01

    Full Text Available Purpose. To investigate the changes of partial oxygen pressure (PaO2 in aqueous humour after injecting air or oxygen bubble into the anterior chamber in sickle cell hyphema. Methods. Blood samples were taken from the same patient with sickle cell disease. Thirty-two rabbits were divided into 4 groups. In group 1 (n=8, there was no injection. Only blood injection constituted group 2 (n=8, both blood and air bubble injection constituted group 3 (n=8, and both blood and oxygen bubble injection constituted group 4 (n=8. Results. The PaO2 in the aqueous humour after 10 hours from the injections was 78.45 ± 9.9 mmHg (Mean ± SD for group 1, 73.97 ± 8.86 mmHg for group 2, 123.35 ± 13.6 mmHg for group 3, and 306.47 ± 16.5 mmHg for group 4. There was statistically significant difference between group 1 and group 2, when compared with group 3 and group 4. Conclusions. PaO2 in aqueous humour was increased after injecting air or oxygen bubble into the anterior chamber. We offer to leave an air bubble in the anterior chamber of patients with sickle cell hemoglobinopathies and hyphema undergoing an anterior chamber washout.

  1. Endogenous adaptation to low oxygen modulates T-cell regulatory pathways in EAE.

    Science.gov (United States)

    Esen, Nilufer; Katyshev, Vladimir; Serkin, Zakhar; Katysheva, Svetlana; Dore-Duffy, Paula

    2016-01-19

    In the brain, chronic inflammatory activity may lead to compromised delivery of oxygen and glucose suggesting that therapeutic approaches aimed at restoring metabolic balance may be useful. In vivo exposure to chronic mild normobaric hypoxia (10 % oxygen) leads to a number of endogenous adaptations that includes vascular remodeling (angioplasticity). Angioplasticity promotes tissue survival. We have previously shown that induction of adaptive angioplasticity modulates the disease pattern in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE). In the present study, we define mechanisms by which adaptation to low oxygen functionally ameliorates the signs and symptoms of EAE and for the first time show that tissue hypoxia may fundamentally alter neurodegenerative disease. C57BL/6 mice were immunized with MOG, and some of them were kept in the hypoxia chambers (day 0) and exposed to 10 % oxygen for 3 weeks, while the others were kept at normoxic environment. Sham-immunized controls were included in both hypoxic and normoxic groups. Animals were sacrificed at pre-clinical and peak disease periods for tissue collection and analysis. Exposure to mild hypoxia decreased histological evidence of inflammation. Decreased numbers of cluster of differentiation (CD)4+ T cells were found in the hypoxic spinal cords associated with a delayed Th17-specific cytokine response. Hypoxia-induced changes did not alter the sensitization of peripheral T cells to the MOG peptide. Exposure to mild hypoxia induced significant increases in anti-inflammatory IL-10 levels and an increase in the number of spinal cord CD25+FoxP3+ T-regulatory cells. Acclimatization to mild hypoxia incites a number of endogenous adaptations that induces an anti-inflammatory milieu. Further understanding of these mechanisms system may pinpoint possible new therapeutic targets to treat neurodegenerative disease.

  2. Leptospirosis: a globally increasing zoonotic disease.

    LENUS (Irish Health Repository)

    Rock, Clare

    2010-01-01

    A 27-year-old previously healthy man was admitted to the intensive care unit with severe jaundice, dyspnoea with haemoptysis, anaemia, thrombocytopenia and acute renal injury. He had no recent history of foreign travel but had been building a shed in his back garden in Cork, Ireland, for the preceding week. The patient\\'s history, clinical observations, haematological and radiological results were all consistent with icteric leptospirosis or Weil\\'s disease. This was confirmed on serological testing. He completed 7 days intravenous ceftriaxone and made a complete recovery. While endemic in tropical climates, leptospirosis incidence is increasing in temperate climates. Recent cases seen in temperate climates can be severe, particularly with pulmonary manifestations. The report of this case serves to increase awareness of this re-emerging potentially fatal infectious disease.

  3. Cocaine- and amphetamine-regulated transcript peptide increases mitochondrial respiratory chain complex II activity and protects against oxygen-glucose deprivation in neurons.

    Science.gov (United States)

    Sha, Dujuan; Wang, Luna; Zhang, Jun; Qian, Lai; Li, Qiming; Li, Jin; Qian, Jian; Gu, Shuangshuang; Han, Ling; Xu, Peng; Xu, Yun

    2014-09-25

    The mechanisms of ischemic stroke, a main cause of disability and death, are complicated. Ischemic stroke results from the interaction of various factors including oxidative stress, a key pathological mechanism that plays an important role during the acute stage of ischemic brain injury. This study demonstrated that cocaine- and amphetamine-regulated transcript (CART) peptide, specifically CART55-102, increased the survival rate, but decreased the mortality of neurons exposed to oxygen-glucose deprivation (OGD), in a dose-dependent manner. The above-mentioned effects of CART55-102 were most significant at 0.4nM. These results indicated that CART55-102 suppressed neurotoxicity and enhanced neuronal survival after oxygen-glucose deprivation. CART55-102 (0.4nM) significantly diminished reactive oxygen species levels and markedly increased the activity of mitochondrial respiratory chain complex II in oxygen-glucose deprived neurons. In summary, CART55-102 suppressed oxidative stress in oxygen-glucose deprived neurons, possibly through elevating the activity of mitochondrial respiratory chain complex II. This result provides evidence for the development of CART55-102 as an antioxidant drug. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Reactive oxygen species in health and disease : Finding the right balance

    NARCIS (Netherlands)

    van der Wijst, Monique

    2016-01-01

    When oxygen takes up an electron, reactive oxygen species are formed. These free radicals can react with important molecules in our body (DNA, proteins), just like iron rusts (oxidation). Too many reactive oxygen species, called oxidative stress, result in cellular damage causing either cell death

  5. The importance of understanding epidemiology in order to inform financial decisions: a lesson from the Scottish Home Oxygen Service.

    Science.gov (United States)

    Wood, R; Grant, I; Bain, M

    2012-11-01

    To ensure that decisions on the future planning of the Scottish Home Oxygen Service reflect population needs by examining the epidemiology of the main conditions that require home oxygen therapy and trends in their management. Analysis of routinely available vital event and health service data supplemented by published literature. Use of linked data to provide person-based analyses. Consideration of trends in key risk factors, disease incidence, prevalence and mortality for chronic neonatal lung disease, cystic fibrosis, chronic interstitial lung disease in adults and chronic obstructive pulmonary disease. Examination of trends in management of these conditions including hospital admissions, length of stay and re-admissions. The prevalence of all the conditions studied has increased in Scotland over recent years due to a combination of increased incidence, increased survival, more active case finding and demographic changes. There have been changes in management with trends towards shorter hospital stays. The clinical need for home oxygen therapy is likely to continue to increase over the next 10-20 years. It will encompass all age groups and a complex range of conditions. Public health needs to be proactive in providing relevant needs assessment information to ensure that planning within financial constraints is appropriately informed on population needs. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  6. Humidification of inspired oxygen is increased with pre-nasal cannula, compared to intranasal cannula.

    Science.gov (United States)

    Dellweg, Dominic; Wenze, Markus; Hoehn, Ekkehard; Bourgund, Olaf; Haidl, Peter

    2013-08-01

    Oxygen therapy is usually combined with a humidification device, to prevent mucosal dryness. Depending on the cannula design, oxygen can be administered pre- or intra-nasally (administration of oxygen in front of the nasal ostia vs cannula system inside the nasal vestibulum). The impact of cannula design on intra-nasal humidity, however, has not been investigated to date. First, to develop a system, that samples air from the nasal cavity and analyzes the humidity of these samples. Second, to investigate nasal humidity during pre-nasal and intra-nasal oxygen application, with and without humidification. We first developed and validated a sampling and analysis system to measure humidity from air samples. By means of this system we measured inspiratory air samples from 12 subjects who received nasal oxygen with an intra-nasal and pre-nasal cannula at different flows, with and without humidification. The sampling and analysis system showed good correlation to a standard hygrometer within the tested humidity range (r = 0.99, P humidification (P = .001, P humidification. With the addition of humidification we observed no significant change in humidity at any flow, and independent of pre- or intranasal oxygen administration. Pre-nasal administration of dry oxygen achieves levels of intranasal humidity similar to those achieved by intranasal administration in combination with a bubble through humidifier. Pre-nasal oxygen simplifies application and may reduce therapy cost.

  7. Cooking and oxygen. An explosive recipe.

    Science.gov (United States)

    Burns, H L; Ralston, D; Muller, M; Pegg, S

    2001-02-01

    Home oxygen therapy is commonly prescribed for the treatment of chronic obstructive pulmonary disease (COPD). The risks of smoking while using this therapy have been well described. To discuss the Royal Brisbane Hospital Burns Unit's experience and present case studies which illustrate the danger of alternative ignition sources while using home oxygen. The dangers of home oxygen therapy can be minimised by careful patient selection, education and ongoing monitoring.

  8. Osmotic phenomena in application for hyperbaric oxygen treatment.

    Science.gov (United States)

    Babchin, A; Levich, E; Melamed M D, Y; Sivashinsky, G

    2011-03-01

    Hyperbaric oxygen (HBO) treatment defines the medical procedure when the patient inhales pure oxygen at elevated pressure conditions. Many diseases and all injuries are associated with a lack of oxygen in tissues, known as hypoxia. HBO provides an effective method for fast oxygen delivery in medical practice. The exact mechanism of the oxygen transport under HBO conditions is not fully identified. The objective of this article is to extend the colloid and surface science basis for the oxygen transport in HBO conditions beyond the molecular diffusion transport mechanism. At a pressure in the hyperbaric chamber of two atmospheres, the partial pressure of oxygen in the blood plasma increases 10 times. The sharp increase of oxygen concentration in the blood plasma creates a considerable concentration gradient between the oxygen dissolved in the plasma and in the tissue. The concentration gradient of oxygen as a non-electrolyte solute causes an osmotic flow of blood plasma with dissolved oxygen. In other words, the molecular diffusion transport of oxygen is supplemented by the convective diffusion raised due to the osmotic flow, accelerating the oxygen delivery from blood to tissue. A non steady state equation for non-electrolyte osmosis is solved asymptotically. The solution clearly demonstrates two modes of osmotic flow: normal osmosis, directed from lower to higher solute concentrations, and anomalous osmosis, directed from higher to lower solute concentrations. The fast delivery of oxygen from blood to tissue is explained on the basis of the strong molecular interaction between the oxygen and the tissue, causing an influx of oxygen into the tissue by convective diffusion in the anomalous osmosis process. The transport of the second gas, nitrogen, dissolved in the blood plasma, is also taken into the consideration. As the patient does not inhale nitrogen during HBO treatment, but exhales it along with oxygen and carbon dioxide, the concentration of nitrogen in blood

  9. Increasing incidence of Crohn's disease in Victorian children.

    Science.gov (United States)

    Phavichitr, Nopaorn; Cameron, Donald J S; Catto-Smith, Anthony G

    2003-03-01

    The incidence of Crohn's disease has been increasing in Western communities, but there are no published studies which have examined this change in children in Australia. The centralization of pediatric gastroenterology services in Victoria provides an opportunity to examine these changes within one state. We undertook a retrospective study over a 31-year period of all children aged 16 years or less initially diagnosed with Crohn's disease at either the Royal Children's Hospital, or Monash Medical Center, Melbourne, Victoria. We identified 351 patients who met the diagnostic criteria between 1971 and 2001. The incidence of Crohn's disease in children aged 16 years or less rose from 0.128 to 2.0 per 100,000 per year over the three decades (r = 0.964, P Victorian children. The pattern of disease has also changed with colonic disease now more frequent, and inflammatory indices less abnormal. The increased use of endoscopy has established the frequent involvement of the upper gastrointestinal tract.

  10. Polysomnography for the management of oxygen supplementation therapy in infants with chronic lung disease of prematurity.

    Science.gov (United States)

    Kulkarni, Gaurav; de Waal, Koert; Grahame, Sally; Collison, Adam; Roddick, Laurence; Hilton, Jodi; Gulliver, Tanya; Whitehead, Bruce; Mattes, Joerg

    2018-04-25

    Some infants with bronchopulmonary dysplasia (BPD) may require oxygen supplementation at home but a role for overnight polysomnography (PSG) in the management of home oxygen therapy has been rarely described. Forty-one infants with BPD born at less than 30 weeks gestational age were discharged with continuous home oxygen supplementation therapy between 2010 and 2013. PSG data were recorded on oxygen supplementation versus room air at median post conceptual age of 2 months (range 1-5.5 months) (first PSG after discharge to home). Those infants who continued oxygen supplementation therapy at home had at least one more PSG before oxygen therapy was discontinued (last PSG). We also collected PSG data in 10 healthy term infants (median age 3.5 months; range 2-4 months). In infants with BPD in room air, increased numbers of central apnoeas, hypopnoeas and SaO 2 desaturations were the predominant PSG features with a median apnoea-hypopnoea index (AHI) of 16.8 events per hour (range 0-155). On oxygen supplementation therapy, median AHI dramatically improved (2.2, range 0-22; p < 0.001) and was not different from control infants (2.0, range 0-3.9; p = 0.31). AHI on room air at the last PSG when home oxygen was ceased was 4.1 per hour (range 0-13.8) slightly higher than in healthy infants. Central sleep disordered breathing in infants with BPD dramatically normalises with low flow nasal cannula home oxygen therapy and improves with age. Mild central sleep disordered breathing remains detectable, although much improved, when compared to healthy infants at the time when the decision to cease home oxygen therapy was made by the physician.

  11. Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages

    International Nuclear Information System (INIS)

    O'Toole, Timothy E.; Zheng Yuting; Hellmann, Jason; Conklin, Daniel J.; Barski, Oleg; Bhatnagar, Aruni

    2009-01-01

    Acrolein is a ubiquitous component of environmental pollutants such as automobile exhaust, cigarette, wood, and coal smoke. It is also a natural constituent of several foods and is generated endogenously during inflammation or oxidation of unsaturated lipids. Because increased inflammation and episodic exposure to acrolein-rich pollutants such as traffic emissions or cigarette smoke have been linked to acute myocardial infarction, we examined the effects of acrolein on matrix metalloproteinases (MMPs), which destabilize atherosclerotic plaques. Our studies show that exposure to acrolein resulted in the secretion of MMP-9 from differentiated THP-1 macrophages. Acrolein-treatment of macrophages also led to an increase in reactive oxygen species (ROS), free intracellular calcium ([Ca 2+ ] i ), and xanthine oxidase (XO) activity. ROS production was prevented by allopurinol, but not by rotenone or apocynin and by buffering changes in [Ca 2+ ] I with BAPTA-AM. The increase in MMP production was abolished by pre-treatment with the antioxidants Tiron and N-acetyl cysteine (NAC) or with the xanthine oxidase inhibitors allopurinol or oxypurinol. Finally, MMP activity was significantly stimulated in aortic sections from apoE-null mice containing advanced atherosclerotic lesions after exposure to acrolein ex vivo. These observations suggest that acrolein exposure results in MMP secretion from macrophages via a mechanism that involves an increase in [Ca 2+ ] I , leading to xanthine oxidase activation and an increase in ROS production. ROS-dependent activation of MMPs by acrolein could destabilize atherosclerotic lesions during brief episodes of inflammation or pollutant exposure.

  12. Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages.

    Science.gov (United States)

    O'Toole, Timothy E; Zheng, Yu-Ting; Hellmann, Jason; Conklin, Daniel J; Barski, Oleg; Bhatnagar, Aruni

    2009-04-15

    Acrolein is a ubiquitous component of environmental pollutants such as automobile exhaust, cigarette, wood, and coal smoke. It is also a natural constituent of several foods and is generated endogenously during inflammation or oxidation of unsaturated lipids. Because increased inflammation and episodic exposure to acrolein-rich pollutants such as traffic emissions or cigarette smoke have been linked to acute myocardial infarction, we examined the effects of acrolein on matrix metalloproteinases (MMPs), which destabilize atherosclerotic plaques. Our studies show that exposure to acrolein resulted in the secretion of MMP-9 from differentiated THP-1 macrophages. Acrolein-treatment of macrophages also led to an increase in reactive oxygen species (ROS), free intracellular calcium ([Ca2+](i)), and xanthine oxidase (XO) activity. ROS production was prevented by allopurinol, but not by rotenone or apocynin and by buffering changes in [Ca2+](I) with BAPTA-AM. The increase in MMP production was abolished by pre-treatment with the antioxidants Tiron and N-acetyl cysteine (NAC) or with the xanthine oxidase inhibitors allopurinol or oxypurinol. Finally, MMP activity was significantly stimulated in aortic sections from apoE-null mice containing advanced atherosclerotic lesions after exposure to acrolein ex vivo. These observations suggest that acrolein exposure results in MMP secretion from macrophages via a mechanism that involves an increase in [Ca2+](I), leading to xanthine oxidase activation and an increase in ROS production. ROS-dependent activation of MMPs by acrolein could destabilize atherosclerotic lesions during brief episodes of inflammation or pollutant exposure.

  13. Plasma reactive oxygen metabolites and non-enzymatic antioxidant capacity are not affected by an acute increase of metabolic rate in zebra finches

    NARCIS (Netherlands)

    Beamonte Barrientos, Rene; Verhulst, Simon

    Understanding the sources of variation in oxidative stress level is a challenging issue due to the implications of oxidative stress for late age diseases, longevity and life-history trade-offs. Reactive oxygen species that cause oxidative stress are mostly a by-product of energy metabolism and it is

  14. Neonatal and pediatric extracorporeal membrane oxygenation in developing Latin American countries.

    Science.gov (United States)

    Kattan, Javier; González, Álvaro; Castillo, Andrés; Caneo, Luiz Fernando

    To review the principles of neonatal-pediatric extracorporeal membrane oxygenation therapy, prognosis, and its establishment in limited resource-limited countries in Latino America. The PubMed database was explored from 1985 up to the present, selecting from highly-indexed and leading Latin American journals, and Extracorporeal Life Support Organization reports. Extracorporeal membrane oxygenation provides "time" for pulmonary and cardiac rest and for recovery. It is used in the neonatal-pediatric field as a rescue therapy for more than 1300 patients with respiratory failure and around 1000 patients with cardiac diseases per year. The best results in short- and long-term survival are among patients with isolated respiratory diseases, currently established as a standard therapy in referral centers for high-risk patients. The first neonatal/pediatric extracorporeal membrane oxygenation Program in Latin America was established in Chile in 2003, which was also the first program in Latin America to affiliate with the Extracorporeal Life Support Organization. New extracorporeal membrane oxygenation programs have been developed in recent years in referral centers in Argentina, Colombia, Brazil, Mexico, Perú, Costa Rica, and Chile, which are currently funding the Latin American Extracorporeal Life Support Organization chapter. The best results in short- and long-term survival are in patients with isolated respiratory diseases. Today extracorporeal membrane oxygenation therapy is a standard therapy in some Latin American referral centers. It is hoped that these new extracorporeal membrane oxygenation centers will have a positive impact on the survival of newborns and children with respiratory or cardiac failure, and that they will be available for an increasing number of patients from this region in the near future. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  15. Neonatal and pediatric extracorporeal membrane oxygenation in developing Latin American countries

    Directory of Open Access Journals (Sweden)

    Javier Kattan

    Full Text Available Abstract Objective: To review the principles of neonatal-pediatric extracorporeal membrane oxygenation therapy, prognosis, and its establishment in limited resource-limited countries in Latino America. Sources: The PubMed database was explored from 1985 up to the present, selecting from highly-indexed and leading Latin American journals, and Extracorporeal Life Support Organization reports. Summary of the findings: Extracorporeal membrane oxygenation provides “time” for pulmonary and cardiac rest and for recovery. It is used in the neonatal-pediatric field as a rescue therapy for more than 1300 patients with respiratory failure and around 1000 patients with cardiac diseases per year. The best results in short- and long-term survival are among patients with isolated respiratory diseases, currently established as a standard therapy in referral centers for high-risk patients. The first neonatal/pediatric extracorporeal membrane oxygenation Program in Latin America was established in Chile in 2003, which was also the first program in Latin America to affiliate with the Extracorporeal Life Support Organization. New extracorporeal membrane oxygenation programs have been developed in recent years in referral centers in Argentina, Colombia, Brazil, Mexico, Perú, Costa Rica, and Chile, which are currently funding the Latin American Extracorporeal Life Support Organization chapter. Conclusions: The best results in short- and long-term survival are in patients with isolated respiratory diseases. Today extracorporeal membrane oxygenation therapy is a standard therapy in some Latin American referral centers. It is hoped that these new extracorporeal membrane oxygenation centers will have a positive impact on the survival of newborns and children with respiratory or cardiac failure, and that they will be available for an increasing number of patients from this region in the near future.

  16. Oxygen transfer rate during the production of alginate by Azotobacter vinelandii under oxygen-limited and non oxygen-limited conditions

    Directory of Open Access Journals (Sweden)

    Peña Carlos F

    2011-02-01

    Full Text Available Abstract Background The oxygen transfer rate (OTR and dissolved oxygen tension (DOT play an important role in determining alginate production and its composition; however, no systematic study has been reported about the independent influence of the OTR and DOT. In this paper, we report a study about alginate production and the evolution of the molecular mass of the polymer produced by a wild-type A. vinelandii strain ATCC 9046, in terms of the maximum oxygen transfer rate (OTRmax in cultures where the dissolved oxygen tension (DOT was kept constant. Results The results revealed that in the two dissolved oxygen conditions evaluated, strictly controlled by gas blending at 0.5 and 5% DOT, an increase in the agitation rate (from 300 to 700 rpm caused a significant increase in the OTRmax (from 17 to 100 mmol L-1 h-1 for DOT of 5% and from 6 to 70 mmol L-1 h-1 for DOT of 0.5%. This increase in the OTRmax improved alginate production, as well as the specific alginate production rate (SAPR, reaching a maximal alginate concentration of 3.1 g L-1 and a SAPR of 0.031 g alg g biom-1 h-1 in the cultures at OTRmax of 100 mmol L-1 h-1. In contrast, the mean molecular mass (MMM of the alginate isolated from cultures developed under non-oxygen limited conditions increased by decreasing the OTRmax, reaching a maximal of 550 kDa at an OTRmax of 17 mmol L-1 h-1 . However, in the cultures developed under oxygen limitation (0.5% DOT, the MMM of the polymer was practically the same (around 200 kDa at 300 and 700 rpm, and this remained constant throughout the cultivation. Conclusions Overall, our results showed that under oxygen-limited and non oxygen-limited conditions, alginate production and its molecular mass are linked to the OTRmax, independently of the DOT of the culture.

  17. Interfacial oxygen and nitrogen induced dipole formation and vacancy passivation for increased effective work functions in TiN/HfO[sub 2] gate stacks

    KAUST Repository

    Hinkle, C. L.; Galatage, R. V.; Chapman, R. A.; Vogel, E. M.; Alshareef, Husam N.; Freeman, C.; Wimmer, E.; Niimi, H.; Li-Fatou, A.; Shaw, J. B.; Chambers, J. J.

    2010-01-01

    V are achieved with anneals that incorporate oxygen throughout the TiN with [O]=2.8×1021 cm−3 near the TiN/HfO2interface. However, further increasing the oxygen concentration via more aggressive anneals results in a relative decrease of the EWF and increase

  18. Substantia Nigra Free Water Increases Longitudinally in Parkinson Disease.

    Science.gov (United States)

    Guttuso, T; Bergsland, N; Hagemeier, J; Lichter, D G; Pasternak, O; Zivadinov, R

    2018-02-01

    Free water in the posterior substantia nigra obtained from a bi-tensor diffusion MR imaging model has been shown to significantly increase over 1- and 4-year periods in patients with early-stage idiopathic Parkinson disease compared with healthy controls, which suggests that posterior substantia nigra free water may be an idiopathic Parkinson disease progression biomarker. Due to the known temporal posterior-to-anterior substantia nigra degeneration in idiopathic Parkinson disease, we assessed longitudinal changes in free water in both the posterior and anterior substantia nigra in patients with later-stage idiopathic Parkinson disease and age-matched healthy controls for comparison. Nineteen subjects with idiopathic Parkinson disease and 19 age-matched healthy control subjects were assessed on the same 3T MR imaging scanner at baseline and after approximately 3 years. Baseline mean idiopathic Parkinson disease duration was 7.1 years. Both anterior and posterior substantia nigra free water showed significant intergroup differences at baseline ( P Parkinson disease versus healthy controls); however, only anterior substantia nigra free water showed significant longitudinal group × time interaction increases ( P = .021, idiopathic Parkinson disease versus healthy controls). There were no significant longitudinal group × time interaction differences found for conventional diffusion tensor imaging or free water-corrected DTI assessments in either the anterior or posterior substantia nigra. Results from this study provide further evidence supporting substantia nigra free water as a promising disease-progression biomarker in idiopathic Parkinson disease that may help to identify disease-modifying therapies if used in future clinical trials. Our novel finding of longitudinal increases in anterior but not posterior substantia nigra free water is potentially a result of the much longer disease duration of our cohort compared with previously studied cohorts and the known

  19. Interfacial oxygen and nitrogen induced dipole formation and vacancy passivation for increased effective work functions in TiN/HfO[sub 2] gate stacks

    KAUST Repository

    Hinkle, C. L.

    2010-03-09

    Effective work function (EWF) changes of TiN/HfO2annealed at low temperatures in different ambient environments are correlated with the atomic concentration of oxygen in the TiN near the metal/dielectric interface. EWF increases of 550 meV are achieved with anneals that incorporate oxygen throughout the TiN with [O]=2.8×1021 cm−3 near the TiN/HfO2interface. However, further increasing the oxygen concentration via more aggressive anneals results in a relative decrease of the EWF and increase in electrical thickness. First-principles calculations indicate the exchange of O and N atoms near the TiN/HfO2interface cause the formation of dipoles that increase the EWF.

  20. Oxygen therapy devices and portable ventilators for improved physical activity in daily life in patients with chronic respiratory disease.

    Science.gov (United States)

    Furlanetto, Karina Couto; Pitta, Fabio

    2017-02-01

    Patients with hypoxemia and chronic respiratory failure may need to use oxygen therapy to correct hypoxemia and to use ventilatory support to augment alveolar ventilation, reverse abnormalities in blood gases (in particular hypercapnia) and reduce the work of breathing. Areas covered: This narrative review provides an overview on the use of oxygen therapy devices or portable ventilators for improved physical activity in daily life (PADL) as well as discusses the issue of lower mobility in daily life among stable patients with chronic respiratory disease who present indication for long-term oxygen therapy (LTOT) or home-based noninvasive ventilation (NIV). A literature review of these concepts was performed by using all related search terms. Expert commentary: Technological advances led to the development of light and small oxygen therapy devices and portable ventilators which aim to facilitate patients' mobility and ambulation. However, the day-by-day dependence of a device may reduce mobility and partially impair patients' PADL. Nocturnal NIV implementation in hypercapnic patients seems promising to improve PADL. The magnitude of their equipment-related physical inactivity is underexplored up to this moment and more long-term randomized clinical trials and meta-analysis examining the effects of ambulatory oxygen and NIV on PADL are required.

  1. [Emotional stress-induced Shanghuo syndrome increases disease susceptibility].

    Science.gov (United States)

    Zhu, Si-Rui; Luo, Xiang; Li, Yi-Fang; Hiroshi, Kurihara; He, Rong-Rong

    2018-04-01

    Shanghuo(excessive internal heat) is a special organic state based on the concept of traditional Chinese medicine(TCM), commonly known as the abnormal heating syndrome of body in folks. With the acceleration of modern life rhythm and the increase of the social competition pressure, emotional stress has become an important cause for the spread of Shanghuo symptoms. What's more, Shanghuo can impact the body physiological functions to cause the onset, recurrence and progression of common diseases, harming the health of the body. According to the long-term research findings, the author found that Shanghuo referred to the imbalance of multiple physiological functions, such as nerve, immunity and metabolism, caused by emotional stress. "Shanghuo" is not a disease itself, but it can increase the susceptibility to a variety of diseases. This study reviewed the traditional medicine theory and the modern medical studies, and explored the relevance and correlation mechanisms between the Shanghuo symptoms and disease susceptibility, so as to provide a reference to improve the state of sub-health and prevent or treat modern diseases. Copyright© by the Chinese Pharmaceutical Association.

  2. Hypoxic training increases maximal oxygen consumption in Thoroughbred horses well-trained in normoxia.

    Science.gov (United States)

    Ohmura, Hajime; Mukai, Kazutaka; Takahashi, Yuji; Takahashi, Toshiyuki; Jones, James H

    2017-01-01

    Hypoxic training is effective for improving athletic performance in humans. It increases maximal oxygen consumption (V̇O 2 max) more than normoxic training in untrained horses. However, the effects of hypoxic training on well-trained horses are unclear. We measured the effects of hypoxic training on V̇O 2 max of 5 well-trained horses in which V̇O 2 max had not increased over 3 consecutive weeks of supramaximal treadmill training in normoxia which was performed twice a week. The horses trained with hypoxia (15% inspired O 2 ) twice a week. Cardiorespiratory valuables were analyzed with analysis of variance between before and after 3 weeks of hypoxic training. Mass-specific V̇O 2 max increased after 3 weeks of hypoxic training (178 ± 10 vs. 194 ± 12.3 ml O 2 (STPD)/(kg × min), Phorses, at least for the durations of time evaluated in this study. Training while breathing hypoxic gas may have the potential to enhance normoxic performance of Thoroughbred horses.

  3. [Massive increase of foetal abdominal circumference due to hereditary polycystic kidney disease].

    Science.gov (United States)

    Dukic, L; Schaffelder, R; Schaible, T; Sütterlin, M; Siemer, J

    2010-06-01

    Autosomal recessive polycystic kidney disease (ARPKD) is a rare condition with a poor prognosis. We report on a 30-year-old primagravid woman in the 34th) week of gestation who was admitted to our hospital. ARPKD of the foetus had been sonographically suspected since the 26th week of gestation. Ultrasound examination showed big polycystic kidneys on both sides. The non-consanguineous parents wanted a maximum therapy for the infant. Foetal digitalisation because of heart insufficiency and prophylactic lung maturation was started. In the further course, Doppler sonographic values worsened and a Caesarean section was performed in the 34th week of gestation at the demand of the parents and due to the expected problems in case of a vaginal delivery. The weight of the newborn was 3,780 g and the abdominal circumference was 50 cm. The newborn was intubated immediately after birth and artificial ventilation was performed. Extracorporeal membrane oxygenation was not possible due to the bad cardial condition. The boy died 16 h after delivery. The parents refused genetic examination and autopsy of the newborn. ARPKD is a severe disease that may have obstetric relevance, due to the massively increased abdominal circumference. Therefore, termination of pregnancy or preterm induction of labor should be considered in order to avoid Caesarean section. Additionally, early prenatal diagnosis with genetic analysis of PRKD1 in cases of suspected ARPKD can be helpful. Georg Thieme Verlag KG Stuttgart, New York.

  4. Activity-dependent increases in local oxygen consumption correlate with postsynaptic currents in the mouse cerebellum in vivo

    DEFF Research Database (Denmark)

    Mathiesen, Claus; Caesar, Kirsten; Thomsen, Kirsten Engelund

    2011-01-01

    Evoked neural activity correlates strongly with rises in cerebral metabolic rate of oxygen (CMRO(2)) and cerebral blood flow (CBF). Activity-dependent rises in CMRO(2) fluctuate with ATP turnover due to ion pumping. In vitro studies suggest that increases in cytosolic Ca(2+) stimulate oxidative m...

  5. Increased self-transcendence in patients with intractable diseases.

    Science.gov (United States)

    Iwamoto, Rie; Yamawaki, Niwako; Sato, Takeshi

    2011-12-01

    Patients with intractable disease require long-term treatment and experience repeated bouts of progressive symptoms and resolutions, which cause them severe suffering. The aim of this study was to elucidate the concepts of self-transcendence and subjective well-being in patients with intractable disease. Forty-four patients with intractable disease (men/women: 22/22) participated. The diseases of the participants were classified into five systems: (i) neural/muscle system; (ii) digestive system; (iii) immunity/blood system; (iv) visual system; and (v) bone/joint system. The controls were 1854 healthy individuals (men/women: 935/869). Participants completed the Self-Transcendence Scale (STS) and the Japanese version of the World Health Organization-Subjective Inventory. The Japanese version of the Mini-International Neuropsychiatric Interview was also used for the intractable disease group. Analysis of covariance found a significant increase in STS score among the intractable disease group (P self-transcendence. The results also showed that there was a strong correlation between self-transcendence and respondents' subjective well-being. Our results suggest that patients with life-changing intractable disease can have a high level of self-transcendence, which may lead them to regain mental well-being, and increase their psychological health even in situations that cause physical and mental suffering. © 2011 The Authors. Psychiatry and Clinical Neurosciences © 2011 Japanese Society of Psychiatry and Neurology.

  6. Can systemically generated reactive oxygen species help to monitor disease activity in generalized vitiligo? A pilot study

    Directory of Open Access Journals (Sweden)

    Richeek Pradhan

    2014-01-01

    Full Text Available Background: Generalized vitiligo is a disease with unpredictable bursts of activity, goal of treatment during the active phase being to stabilize the lesions. This emphasizes the need for a prospective marker for monitoring disease activity to help decide the duration of therapy. Aims and Objectives: In the present study, we examined whether reactive oxygen species (ROS generated in erythrocytes can be translated into a marker of activity in vitiligo. Materials and Methods: Level of intracellular ROS was measured flow cytometrically in erythrocytes from venous blood of 21 patients with generalized vitiligo and 21 healthy volunteers using the probe dichlorodihydrofluorescein diacetate. Results: The levels of ROS differed significantly between patients and healthy controls, as well as between active versus stable disease groups. In the active disease group, ROS levels were significantly lower in those being treated with systemic steroids than those that were not. ROS levels poorly correlated with disease duration or body surface area involved. Conclusion: A long-term study based on these findings can be conducted to further validate the potential role of ROS in monitoring disease activity vitiligo.

  7. Safety in the use of compressed air versus oxygen for the ophthalmic patient.

    Science.gov (United States)

    Rodgers, Laura A; Kulwicki, Anahid

    2002-02-01

    Oxygen, routinely administered during surgery to avoid hypoxia, poses risks including increased likelihood of surgical room fires and predisposition to retinal phototoxicity in patients. Compressed air to supplement ventilation may be safer than oxygen. The purpose of this study was to determine whether hypoxia occurs more frequently when compressed air replaces supplemental oxygen during ophthalmic surgery. A convenience sample of 111 patients was randomly assigned to receive supplemental oxygen (group 1) or compressed air (group 2). Patients with serious cardiac or pulmonary disease were excluded. Blood oxygen levels were monitored during surgery by pulse oximetry. Oxygen was administered to all group 2 patients whose oxygen saturation fell to less than 90% or by more than 5% below baseline. No differences were observed between groups in age, ASA classification, type of surgery, or anesthetic drugs or doses. Minor, but statistically higher oxygen values were observed in group 1. The frequency with which oxygen saturation decreased below 90% or below 5% of baseline was similar in both groups. Supplemental oxygen is not required routinely in selected patients undergoing ophthalmic surgery. By using compressed air, the risk of operating room fires and retinal phototoxicity may be reduced.

  8. L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats

    NARCIS (Netherlands)

    Legrand, Matthieu; Almac, Emre; Mik, Egbert G.; Johannes, Tanja; Kandil, Asli; Bezemer, Rick; Payen, Didier; Ince, Can

    2009-01-01

    Legrand M, Almac E, Mik EG, Johannes T, Kandil A, Bezemer R, Payen D, Ince C. L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats. Am J Physiol Renal Physiol 296: F1109-F1117, 2009. First published February 18, 2009;

  9. Acute supramaximal exercise increases the brain oxygenation in relation to cognitive workload

    Directory of Open Access Journals (Sweden)

    Cem Seref Bediz

    2016-04-01

    Full Text Available Single bout of exercise can improve the performance on cognitive tasks. However, cognitive responses may be controversial due to different type, intensity, and duration of exercise. In addition, the mechanism of the effect of acute exercise on brain is still unclear. This study was aimed to investigate the effects of supramaximal exercise on cognitive tasks by means of brain oxygenation monitoring. The brain oxygenation of Prefrontal cortex (PFC was measured on 35 healthy male volunteers via functional Near Infrared Spectroscopy (fNIRS system. Subjects performed 2-Back test before and after the supramaximal exercise (Wingate Anaerobic Test lasting 30-s on cycle ergometer. The PFC oxygenation change evaluation revealed that PFC oxygenation rise during post-exercise 2-Back task was considerably higher than those in pre-exercise 2-Back task. In order to describe the relationship between oxygenation change and exercise performance, subjects were divided into two groups as high performers (HP and low performers (LP according to their peak power values (PP obtained from the supramaximal test. The oxy-hemoglobin (oxy-Hb values were compared between pre- and post-exercise conditions within subjects and also between subjects according to peak power. When performers were compared, in the HP group, the oxy-Hb values in post-exercise 2-Back test were significantly higher than those in pre-exercise 2-Back test. HP had significantly higher post-exercise oxy-Hb change (Δ than those of LP. In addition, peak power values of the total group were significantly correlated with Δoxy-Hb. The key findings of the present study revealed that acute supramaximal exercise has an impact on the brain oxygenation during a cognitive task. Also, the higher the anaerobic PP describes the larger the oxy-Hb response in post-exercise cognitive task. The current study also demonstrated a significant correlation between peak power (exercise load and post-exercise hemodynamic

  10. Ambient oxygen promotes tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Ho Joong Sung

    2011-05-01

    Full Text Available Oxygen serves as an essential factor for oxidative stress, and it has been shown to be a mutagen in bacteria. While it is well established that ambient oxygen can also cause genomic instability in cultured mammalian cells, its effect on de novo tumorigenesis at the organismal level is unclear. Herein, by decreasing ambient oxygen exposure, we report a ∼50% increase in the median tumor-free survival time of p53-/- mice. In the thymus, reducing oxygen exposure decreased the levels of oxidative DNA damage and RAG recombinase, both of which are known to promote lymphomagenesis in p53-/- mice. Oxygen is further shown to be associated with genomic instability in two additional cancer models involving the APC tumor suppressor gene and chemical carcinogenesis. Together, these observations represent the first report directly testing the effect of ambient oxygen on de novo tumorigenesis and provide important physiologic evidence demonstrating its critical role in increasing genomic instability in vivo.

  11. Oxygen, the lead actor in the pathophysiologic drama: enactment of the trinity of normoxia, hypoxia, and hyperoxia in disease and therapy.

    Science.gov (United States)

    Kulkarni, Aditi C; Kuppusamy, Periannan; Parinandi, Narasimham

    2007-10-01

    Aerobic life has evolved a dependence on molecular oxygen for its mere survival. Mitochondrial oxidative phosphorylation absolutely requires oxygen to generate the currency of energy in aerobes. The physiologic homeostasis of these organisms is strictly maintained by optimal cellular and tissue-oxygenation status through complex oxygen-sensing mechanisms, signaling cascades, and transport processes. In the event of fluctuating oxygen levels leading to either an increase (hyperoxia) or decrease (hypoxia) in cellular oxygen, the organism faces a crisis involving depletion of energy reserves, altered cell-signaling cascades, oxidative reactions/events, and cell death or tissue damage. Molecular oxygen is activated by both nonenzymatic and enzymatic mechanisms into highly reactive oxygen species (ROS). Aerobes have evolved effective antioxidant defenses to counteract the reactivity of ROS. Although the ROS are also required for many normal physiologic functions of the aerobes, overwhelming production of ROS coupled with their insufficient scavenging by endogenous antioxidants will lead to detrimental oxidative stress. Needless to say, molecular oxygen is at the center of oxygenation, oxidative phosphorylation, and oxidative stress. This review focuses on the biology and pathophysiology of oxygen, with an emphasis on transport, sensing, and activation of oxygen, oxidative phosphorylation, oxygenation, oxidative stress, and oxygen therapy.

  12. Noninvasive optical quantification of absolute blood flow, blood oxygenation, and oxygen consumption rate in exercising skeletal muscle

    Science.gov (United States)

    Gurley, Katelyn; Shang, Yu; Yu, Guoqiang

    2012-07-01

    This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (\\Vdot O2) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and \\Vdot O2 in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and THC), tissue oxygen saturation (StO2), relative BF (rBF), and relative oxygen consumption rate (r\\Vdot O2). The rBF and r\\Vdot O2 signals were calibrated with absolute baseline BF and \\Vdot O2 obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology.

  13. Modeling of Cerebral Oxygen Transport Based on In vivo Microscopic Imaging of Microvascular Network Structure, Blood Flow, and Oxygenation.

    Science.gov (United States)

    Gagnon, Louis; Smith, Amy F; Boas, David A; Devor, Anna; Secomb, Timothy W; Sakadžić, Sava

    2016-01-01

    Oxygen is delivered to brain tissue by a dense network of microvessels, which actively control cerebral blood flow (CBF) through vasodilation and contraction in response to changing levels of neural activity. Understanding these network-level processes is immediately relevant for (1) interpretation of functional Magnetic Resonance Imaging (fMRI) signals, and (2) investigation of neurological diseases in which a deterioration of neurovascular and neuro-metabolic physiology contributes to motor and cognitive decline. Experimental data on the structure, flow and oxygen levels of microvascular networks are needed, together with theoretical methods to integrate this information and predict physiologically relevant properties that are not directly measurable. Recent progress in optical imaging technologies for high-resolution in vivo measurement of the cerebral microvascular architecture, blood flow, and oxygenation enables construction of detailed computational models of cerebral hemodynamics and oxygen transport based on realistic three-dimensional microvascular networks. In this article, we review state-of-the-art optical microscopy technologies for quantitative in vivo imaging of cerebral microvascular structure, blood flow and oxygenation, and theoretical methods that utilize such data to generate spatially resolved models for blood flow and oxygen transport. These "bottom-up" models are essential for the understanding of the processes governing brain oxygenation in normal and disease states and for eventual translation of the lessons learned from animal studies to humans.

  14. Comparison of the OxyMask and Venturi Mask in the Delivery of Supplemental Oxygen: Pilot Study in Oxygen-Dependent Patients

    OpenAIRE

    Beecroft, Jaime M; Hanly, Patrick J

    2006-01-01

    BACKGROUND: The OxyMask (Southmedic Inc, Canada) is a new face mask for oxygen delivery that uses a small ‘diffuser’ to concentrate and direct oxygen toward the mouth and nose. The authors hypothesized that this unique design would enable the OxyMask to deliver oxygen more efficiently than a Venturi mask (Hudson RCI, USA) in patients with chronic hypoxemia.METHODS: Oxygen-dependent patients with chronic, stable respiratory disease were recruited to compare the OxyMask and Venturi mask in a ra...

  15. Changes in hemoglobin-oxygen affinity with shape variations of red blood cells

    Science.gov (United States)

    Chowdhury, Aniket; Dasgupta, Raktim; Majumder, Shovan K.

    2017-10-01

    Shape variations of red blood cells (RBCs) are known to occur upon exposure to various drugs or under diseased conditions. The commonly observed discocytic RBCs can be transformed to echinocytic or stomatocytic shape under such conditions. Raman spectra of the three major shape variations, namely discocyte, echinocyte, and stomatocyte, of RBCs were studied while subjecting the cells to oxygenated and deoxygenated conditions. Analysis of the recorded spectra suggests an increased level of hemoglobin (Hb)-oxygen affinity for the echinocytes. Also, some level of Hb degradation could be noticed for the deoxygenated echinocytes. The effects may arise from a reduced level of intracellular adenosine triphosphate in echinocytic cells and an increased fraction of submembrane Hb.

  16. Decreased muscle oxygenation and increased arterial blood flow in the non-exercising limb during leg exercise.

    Science.gov (United States)

    Shiroishi, Kiyoshi; Kime, Ryotaro; Osada, Takuya; Murase, Norio; Shimomura, Kousuke; Katsumura, Toshihito

    2010-01-01

    We evaluated arterial blood flow, muscle tissue oxygenation and muscle metabolism in the non-exercising limb during leg cycling exercise. Ten healthy male volunteers performed a graded leg cycling exercise at 0, 40, 80, 120 and 160 watts (W) for 5 min each. Tissue oxygenation index (TOI) of the non-exercising left forearm muscle was measured using a near-infrared spatially resolved spectroscopy (NIR(SRS)), and non-exercising forearm blood flow ((NONEX)FBF) in the brachial artery was also evaluated by a Doppler ultrasound system. We also determined O(2) consumption of the non-exercising forearm muscle (NONEXV(O)(2mus)) by the rate of decrease in O(2)Hb during arterial occlusion at each work rate. TOI was significantly decreased at 160 W (p exercising muscle may be reduced, even though (NONEX)FBF increases at high work rates during leg cycling exercise.

  17. Rates of oxygen uptake increase independently of changes in heart rate in late stages of development and at hatching in the green iguana, Iguana iguana.

    Science.gov (United States)

    Sartori, Marina R; Abe, Augusto S; Crossley, Dane A; Taylor, Edwin W

    2017-03-01

    Oxygen consumption (VO 2 ), heart rate (f H ), heart mass (M h ) and body mass (M b ) were measured during embryonic incubation and in hatchlings of green iguana (Iguana iguana). Mean f H and VO 2 were unvarying in early stage embryos. VO 2 increased exponentially during the later stages of embryonic development, doubling by the end of incubation, while f H was constant, resulting in a 2.7-fold increase in oxygen pulse. Compared to late stage embryos, the mean inactive level of VO 2 in hatchlings was 1.7 fold higher, while f H was reduced by half resulting in a further 3.6 fold increase in oxygen pulse. There was an overall negative correlation between mean f H and VO 2 when data from hatchlings was included. Thus, predicting metabolic rate as VO 2 from measurements of f H is not possible in embryonic reptiles. Convective transport of oxygen to supply metabolism during embryonic incubation was more reliably indicated as an index of cardiac output (CO i ) derived from the product of f H and M h . However, a thorough analysis of factors determining rates of oxygen supply during development and eclosion in reptiles will require cannulation of blood vessels that proved impossible in the present study, to determine oxygen carrying capacity by the blood and arteriovenous oxygen content difference (A-V diff), plus patterns of blood flow. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Oxygen diffusion and oxygen effect in tumor tissue

    International Nuclear Information System (INIS)

    Eissa, H.M.; Hehn, G.

    1979-06-01

    The diffusion of oxygen in tumor cords of bronchus carcinoma of the lung have been studied with refined computer methods for solving the diffusion equation in axis symmetric tumor structures. In this tumor configuration we may find three different regions consisting of euoxic cells, hypoxic tumor cells and necrotic parts. In the case of oxygen supply from a capillary inside a cylinder of tumor tissue with radius 200 μm or in a tumor cord of radius 300 μm with oxygen supply by capillaries outside, we get a relation of well oxygenated cells to hypoxic cells approximately as 1:8 or as 1:1.1 respectively. Of course most of the tumor cords observed in histological slices have smaller diameters, so that an average of approximately 20% hypoxic cells can be assumed. Based on the work of Ardenne, the diffusion of oxygen and glucose in a tumor of type DS-carcinosarcom has been investigated in both intact tumor and tumor treated with ionizing radiation. We can show that a strong reoxygenation effect takes place in that the well supplied regions may increase in some tumor configurations up to a factor of four by volume. The biological consequences of the oxygen pressure determined in tumor cells are discussed in detail. The investigation of oxygen diffusion in the intercapillary tumor region should give a quantitative physical basis for considering the oxygen effect with the aim to explain the advantages of neutron therapy against conventional radiotherapy. (orig./MG) [de

  19. Optic nerve oxygenation

    DEFF Research Database (Denmark)

    Stefánsson, Einar; Pedersen, Daniella Bach; Jensen, Peter Koch

    2005-01-01

    The oxygen tension of the optic nerve is regulated by the intraocular pressure and systemic blood pressure, the resistance in the blood vessels and oxygen consumption of the tissue. The oxygen tension is autoregulated and moderate changes in intraocular pressure or blood pressure do not affect...... the optic nerve oxygen tension. If the intraocular pressure is increased above 40 mmHg or the ocular perfusion pressure decreased below 50 mmHg the autoregulation is overwhelmed and the optic nerve becomes hypoxic. A disturbance in oxidative metabolism in the cytochromes of the optic nerve can be seen...... at similar levels of perfusion pressure. The levels of perfusion pressure that lead to optic nerve hypoxia in the laboratory correspond remarkably well to the levels that increase the risk of glaucomatous optic nerve atrophy in human glaucoma patients. The risk for progressive optic nerve atrophy in human...

  20. Rectal temperature changes and oxygen toxicity in dogs treated in a monoplace chamber.

    Science.gov (United States)

    Shmalberg, Justin; Davies, Wendy; Lopez, Stacy; Shmalberg, Danielle; Zilberschtein, Jose

    2015-01-01

    Hyperbaric oxygen treatments are increasingly administered to pet dogs, using veterinary-specific monoplace chambers. The basic physiologic responses, chamber performance and oxygen toxicity rates have not yet been evaluated in dogs in a clinical setting. As a result, a series of consecutive 45-minute, 2-atmospheres absolute (atm abs) hyperbaric treatments with 100% oxygen were evaluated in a veterinary rehabilitation center (n = 285). 65 dogs with a mean body weight of 21 ± 15 kg (1.4-71 kg) were treated with an average of four sessions each. The mean rectal temperature of canine patients decreased 0.07 degrees C (0.1 degrees F) during treatments (p = 0.04). Intra-chamber temperature and humidity both increased: +1.0 degrees C (1.7 degrees F, p 0.75) were identified between body weights, body condition scores, maximal oxygen concentrations, starting or ending rectal temperature, chamber humidity and chamber temperature. Oxygen toxicity was not observed during the observational period. Patients were most commonly treated for intervertebral disc disease (n = 16 dogs) and extensive traumatic wounds (n = 10 dogs), which represented a large number of the total study sessions (19% and 16%, respectively).

  1. Oxygenation measurements in head and neck cancers during hyperbaric oxygenation

    International Nuclear Information System (INIS)

    Becker, A.; Kuhnt, T.; Dunst, J.; Liedtke, H.; Krivokuca, A.; Bloching, M.

    2002-01-01

    Background: Tumor hypoxia has proven prognostic impact in head and neck cancers and is associated with poor response to radiotherapy. Hyperbaric oxygenation (HBO) offers an approach to overcome hypoxia. We have performed pO 2 measurements in selected patients with head and neck cancers under HBO to determine in how far changes in the oxygenation occur and whether a possible improvement of oxygenation parameters is maintained after HBO. Patients and Methods: Seven patients (five male, two female, age 51-63 years) with squamous cell cancers of the head and neck were investigated (six primaries, one local recurrence). The median pO 2 prior to HBO was determined with the Eppendorf histograph. Sites of measurement were enlarged cervical lymph nodes (n = 5), the primary tumor (n = 1) and local recurrence (n = 1). Patients then underwent HBO (100% O 2 at 240 kPa for 30 minutes) and the continuous changes in the oxygenation during HBO were determined with a Licox probe. Patients had HBO for 30 minutes (n = 6) to 40 minutes (n = 1). HBO was continued because the pO 2 had not reached a steady state after 30 minutes. After decompression, patients ventilated pure oxygen under normobaric conditions and the course of the pO 2 was further measured over about 15 minutes. Results: Prior to HBO, the median tumor pO 2 in the Eppendorf histography was 8.6 ± 5.4 mm Hg (range 3-19 mm Hg) and the pO 2 measured with the Licox probe was 17.3 ± 25.5 mm Hg (range 0-73 mm Hg). The pO 2 increased significantly during HBO to 550 ± 333 mm Hg (range 85-984 mm Hg, p = 0.018). All patients showed a marked increase irrespective of the oxygenation prior to HBO. The maximum pO 2 in the tumor was reached after 10-33 minutes (mean 17 minutes). After leaving the hyperbaric chamber, the pO 2 was 282 ± 196 mm Hg. All patients maintained an elevated pO 2 for further 5-25 minutes (138 ± 128 mm Hg, range 42-334 mm Hg, p = 0.028 vs the pO 2 prior to HBO). Conclusions: Hyperbaric oxygenation resulted in a

  2. Continuous oxygen therapy for hypoxic pulmonary disease

    DEFF Research Database (Denmark)

    Ringbaek, Thomas J

    2005-01-01

    Continuous oxygen therapy (COT) has become widely accepted in the last 20 years in patients with continuous hypoxemia. This review focuses on guidelines for COT, adherence to these guidelines, and the effect of COT on survival, hospitalization, and quality of life. Guidelines for COT are mainly b...... based on three randomized studies where documentation of hypoxemia (P(a)O2...

  3. Metabolic Prosthesis for Oxygenation of Ischemic Tissue

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, Elias [ORNL

    2009-01-01

    This communication discloses new ideas and preliminary results on the development of a "metabolic prosthesis" for local oxygenation of ischemic tissue under physiological neutral conditions. We report for the first time the selective electrolysis of physiological saline by repetitively pulsed charge-limited electrolysis for the production of oxygen and suppression of free chlorine. For example, using 800 A amplitude current pulses and <200 sec pulse durations, we demonstrated prompt oxygen production and delayed chlorine production at the surface of a shiny 0.85 mm diameter spherical platinum electrode. The data, interpreted in terms of the ionic structure of the electric double layer, suggest a strategy for in situ production of metabolic oxygen via a new class of "smart" prosthetic implants for dealing with ischemic disease such as diabetic retinopathy. We also present data indicating that drift of the local pH of the oxygenated environment can be held constant using a feedback-controlled three electrode electrolysis system that chooses anode and cathode pair based on pH data provided by local microsensors. The work is discussed in the context of diabetic retinopathy since surgical techniques for multielectrode prosthetic implants aimed at retinal degenerative diseases have been developed.

  4. Hypercapnic Respiratory Acidosis During An In-Flight Oxygen Assessment.

    Science.gov (United States)

    Spurling, Kristofer J; Moonsie, Ian K; Perks, Joseph L

    2016-02-01

    Patients with respiratory disease are at risk of excessive hypoxemia in the hypobaric commercial aircraft cabin environment, and the consensus is that this is easily corrected with supplementary oxygen. However, despite the risks of hypercapnia with increasing inspired oxygen in some patients being well established, this issue is not currently addressed in medical guidelines for air travel. A 76-yr-old woman with chronic type 2 respiratory failure underwent hypoxic challenge testing (HCT) to assess in-flight oxygen requirements. She is stable on home ventilation, and baseline arterial blood gases showed mild hypoxemia (Pao2 9.12 kPa), normal P(a)co(2) (5.64 kPa) and pH (7.36) with 98% S(p)O(2). HCT was performed delivering 15% FIo(2) via a mask, and the patient desaturated to respiratory acidosis (pH 7.25). The patient was advised against flying due to hypoxemia during HCT and the precipitous drop in pH on oxygen. It is possible to hyperoxygenate patients with type 2 respiratory failure in flight with the minimum level of supplementary oxygen available on many aircraft. In these cases P(a)co(2) and pH should be scrutinized during HCT before recommending in-flight oxygen. No current guidelines discuss the risk of hypercapnia from in-flight oxygen; it is therefore recommended that this be addressed in future revisions of medical air travel guidelines, should further research indicate it.

  5. Event-Associated Oxygen Consumption Rate Increases ca. Five-Fold When Interictal Activity Transforms into Seizure-Like Events In Vitro

    Directory of Open Access Journals (Sweden)

    Karl Schoknecht

    2017-09-01

    Full Text Available Neuronal injury due to seizures may result from a mismatch of energy demand and adenosine triphosphate (ATP synthesis. However, ATP demand and oxygen consumption rates have not been accurately determined, yet, for different patterns of epileptic activity, such as interictal and ictal events. We studied interictal-like and seizure-like epileptiform activity induced by the GABAA antagonist bicuculline alone, and with co-application of the M-current blocker XE-991, in rat hippocampal slices. Metabolic changes were investigated based on recording partial oxygen pressure, extracellular potassium concentration, and intracellular flavine adenine dinucleotide (FAD redox potential. Recorded data were used to calculate oxygen consumption and relative ATP consumption rates, cellular ATP depletion, and changes in FAD/FADH2 ratio by applying a reactive-diffusion and a two compartment metabolic model. Oxygen-consumption rates were ca. five times higher during seizure activity than interictal activity. Additionally, ATP consumption was higher during seizure activity (~94% above control than interictal activity (~15% above control. Modeling of FAD transients based on partial pressure of oxygen recordings confirmed increased energy demand during both seizure and interictal activity and predicted actual FAD autofluorescence recordings, thereby validating the model. Quantifying metabolic alterations during epileptiform activity has translational relevance as it may help to understand the contribution of energy supply and demand mismatches to seizure-induced injury.

  6. Persistent increase in oxygen consumption and impaired neurovascular coupling after spreading depression in rat neocortex.

    Science.gov (United States)

    Piilgaard, Henning; Lauritzen, Martin

    2009-09-01

    Cortical spreading depression (CSD) is associated with a dramatic failure of brain ion homeostasis and increased energy metabolism. There is strong clinical and experimental evidence to suggest that CSD is the mechanism of migraine, and involved in progressive neuronal injury in stroke and head trauma. Here we tested the hypothesis that single episodes of CSD induced acute hypoxia, and prolonged impairment of neurovascular and neurometabolic coupling. Cortical spreading depression was induced in rat frontal cortex, whereas cortical electrical activity and local field potentials (LFPs) were recorded by glass microelectrodes, cerebral blood flow (CBF) by laser-Doppler flowmetry, and tissue oxygen tension (tpO(2)) with polarographic microelectrodes. Cortical spreading depression increased cerebral metabolic rate of oxygen (CMRO(2)) by 71%+/-6.7% and CBF by 238%+/-48.1% for 1 to 2 mins. For the following 2 h, basal tpO(2) and CBF were reduced whereas basal CMRO(2) was persistently elevated by 8.1%+/-2.9%. In addition, within first hour after CSD we found impaired neurovascular coupling (LFP versus CBF), whereas neurometabolic coupling (LFP versus CMRO(2)) remained unaffected. Impaired neurovascular coupling was explained by both reduced vascular reactivity and suppressed function of cortical inhibitory interneurons. The protracted effects of CSD on basal CMRO(2) and neurovascular coupling may contribute to cellular dysfunction in patients with migraine and acutely injured cerebral cortex.

  7. Optimal oxygen saturation in premature infants

    Directory of Open Access Journals (Sweden)

    Meayoung Chang

    2011-09-01

    Full Text Available There is a delicate balance between too little and too much supplemental oxygen exposure in premature infants. Since underuse and overuse of supplemental oxygen can harm premature infants, oxygen saturation levels must be monitored and kept at less than 95% to prevent reactive oxygen species-related diseases, such as retinopathy of prematurity and bronchopulmonary dysplasia. At the same time, desaturation below 80 to 85% must be avoided to prevent adverse consequences, such as cerebral palsy. It is still unclear what range of oxygen saturation is appropriate for premature infants; however, until the results of further studies are available, a reasonable target for pulse oxygen saturation (SpO2 is 90 to 93% with an intermittent review of the correlation between SpO2 and the partial pressure of arterial oxygen tension (PaO2. Because optimal oxygenation depends on individuals at the bedside making ongoing adjustments, each unit must define an optimal target range and set alarm limits according to their own equipment or conditions. All staff must be aware of these values and adjust the concentration of supplemental oxygen frequently.

  8. Enhanced oxygen consumption in Herbaspirillum seropedicae fnr mutants leads to increased NifA mediated transcriptional activation.

    Science.gov (United States)

    Batista, Marcelo Bueno; Wassem, Roseli; Pedrosa, Fábio de Oliveira; de Souza, Emanuel Maltempi; Dixon, Ray; Monteiro, Rose Adele

    2015-05-07

    Orthologous proteins of the Crp/Fnr family have been previously implicated in controlling expression and/or activity of the NifA transcriptional activator in some diazotrophs. This study aimed to address the role of three Fnr-like proteins from H. seropedicae SmR1 in controlling NifA activity and consequent NifA-mediated transcription activation. The activity of NifA-dependent transcriptional fusions (nifA::lacZ and nifB::lacZ) was analysed in a series of H. seropedicae fnr deletion mutant backgrounds. We found that combined deletions in both the fnr1 and fnr3 genes lead to higher expression of both the nifA and nifB genes and also an increased level of nifH transcripts. Expression profiles of nifB under different oxygen concentrations, together with oxygen consumption measurements suggest that the triple fnr mutant has higher respiratory activity when compared to the wild type, which we believe to be responsible for greater stability of the oxygen sensitive NifA protein. This conclusion was further substantiated by measuring the levels of NifA protein and its activity in fnr deletion strains in comparison with the wild-type. Fnr proteins are indirectly involved in controlling the activity of NifA in H. seropedicae, probably as a consequence of their influence on respiratory activity in relation to oxygen availability. Additionally we can suggest that there is some redundancy in the physiological function of the three Fnr paralogs in this organism, since altered respiration and effects on NifA activity are only observed in deletion strains lacking both fnr1 and fnr3.

  9. Oxygen Effects in Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    Deshai Botheju

    2009-10-01

    Full Text Available Interaction of free oxygen in bio-gasification is a sparsely studied area, apart from the common argument of oxygen being toxic and inhibitory for anaerobic micro-cultures. Some studies have, however, revealed increased solubilisation of organic matter in the presence of some free oxygen in anaerobic digestion. This article analyses these counterbalancing phenomena with a mathematical modelling approach using the widely accepted biochemical model ADM 1. Aerobic oxidation of soluble carbon and inhibition of obligatory anaerobic organisms are modelled using standard saturation type kinetics. Biomass dependent first order hydrolysis kinetics is used to relate the increased hydrolysis rate with oxygen induced increase in biomass growth. The amended model, ADM 1-Ox (oxygen, has 25 state variables and 22 biochemical processes, presented in matrix form. The computer aided simulation tool AQUASIM 2.1 is used to simulate the developed model. Simulation predictions are evaluated against experimental data obtained using a laboratory batch test array comprising miniature anaerobic bio-reactors of 100 ml total volume each, operated under different initial air headspaces giving rise to the different oxygen loading conditions. The reactors were initially fed with a glucose solution and incubated at 35 Celsius, for 563 hours. Under the oxygen load conditions of 22, 44 and 88 mg/L, the ADM1-Ox model simulations predicted the experimental methane potentials quite adequately. Both the experimental data and the simulations suggest a linear reduction of methane potential with respect to the increase in oxygen load within this range.

  10. Activity-dependent increases in local oxygen consumption correlate with post-synaptic currents in the mouse cerebellum in vivo

    DEFF Research Database (Denmark)

    Mathiesen, Claus; Caesar, Kirsten; Thomsen, Kirsten Joan

    2011-01-01

    Evoked neural activity correlates strongly with rises in cerebral metabolic rate of oxygen (CMRO2) and cerebral blood flow. Activity-dependent rises in CMRO2 fluctuate with ATP turnover due to ion pumping. In vitro studies suggest that increases in cytosolic Ca2+ stimulate oxidative metabolism vi...

  11. Blood oxygenation level dependent (BOLD). Renal imaging. Concepts and applications; Blood Oxygenation Level Dependent (BOLD). Bildgebung der Nieren. Konzepte und Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Nissen, Johanna C.; Haneder, Stefan; Schoenberg, Stefan O.; Michaely, Henrik J. [Heidelberg Univ. Medizinische Fakultaet Mannheim (Germany). Inst. fuer Klinische Radiologie und Nuklearmedizin; Mie, Moritz B.; Zoellner, Frank G. [Heidelberg Univ. Medizinische Fakultaet Mannheim (DE). Inst. fuer Computerunterstuetzte Klinische Medizin (CKM)

    2010-07-01

    Many renal diseases as well as several pharmacons cause a change in renal blood flow and/or renal oxygenation. The blood oxygenation level dependent (BOLD) imaging takes advantage of local field inhomogeneities and is based on a T2{sup *}-weighted sequence. BOLD is a non-invasive method allowing an estimation of the renal, particularly the medullary oxygenation, and an indirect measurement of blood flow without administration of contrast agents. Thus, effects of different drugs on the kidney and various renal diseases can be controlled and observed. This work will provide an overview of the studies carried out so far and identify ways how BOLD can be used in clinical studies. (orig.)

  12. Yeast alter micro-oxygenation of wine: oxygen consumption and aldehyde production.

    Science.gov (United States)

    Han, Guomin; Webb, Michael R; Richter, Chandra; Parsons, Jessica; Waterhouse, Andrew L

    2017-08-01

    Micro-oxygenation (MOx) is a common winemaking treatment used to improve red wine color development and diminish vegetal aroma, amongst other effects. It is commonly applied to wine immediately after yeast fermentation (phase 1) or later, during aging (phase 2). Although most winemakers avoid MOx during malolactic (ML) fermentation, it is often not possible to avoid because ML bacteria are often present during phase 1 MOx treatment. We investigated the effect of common yeast and bacteria on the outcome of micro-oxygenation. Compared to sterile filtered wine, Saccharomyces cerevisiae inoculation significantly increased oxygen consumption, keeping dissolved oxygen in wine below 30 µg L -1 during micro-oxygenation, whereas Oenococcus oeni inoculation was not associated with a significant impact on the concentration of dissolved oxygen. The unfiltered baseline wine also had both present, although with much higher populations of bacteria and consumed oxygen. The yeast-treated wine yielded much higher levels of acetaldehyde, rising from 4.3 to 29 mg L -1 during micro-oxygenation, whereas no significant difference was found between the bacteria-treated wine and the filtered control. The unfiltered wine exhibited rapid oxygen consumption but no additional acetaldehyde, as well as reduced pyruvate. Analysis of the acetaldehyde-glycerol acetal levels showed a good correlation with acetaldehyde concentrations. The production of acetaldehyde is a key outcome of MOx and it is dramatically increased in the presence of yeast, although it is possibly counteracted by the metabolism of O. oeni bacteria. Additional controlled experiments are necessary to clarify the interaction of yeast and bacteria during MOx treatments. Analysis of the glycerol acetals may be useful as a proxy for acetaldehyde levels. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Oxygen therapy reduces postoperative tachycardia

    DEFF Research Database (Denmark)

    Stausholm, K; Kehlet, H; Rosenberg, J

    1995-01-01

    Concomitant hypoxaemia and tachycardia in the postoperative period is unfavourable for the myocardium. Since hypoxaemia per se may be involved in the pathogenesis of postoperative tachycardia, we have studied the effect of oxygen therapy on tachycardia in 12 patients randomly allocated to blinded...... air or oxygen by facemask on the second or third day after major surgery. Inclusion criteria were arterial hypoxaemia (oxygen saturation 90 beat.min-1). Each patient responded similarly to oxygen therapy: an increase in arterial oxygen saturation and a decrease...... in heart rate (p oxygen has a positive effect on the cardiac oxygen delivery and demand balance....

  14. Increased peripheral vascular disease risk progressively constrains perfusion adaptability in the skeletal muscle microcirculation

    Science.gov (United States)

    Butcher, Joshua T.; Frisbee, Stephanie J.; Olfert, I. Mark; Chantler, Paul D.; Tabone, Lawrence E.; d'Audiffret, Alexandre C.; Shrader, Carl D.; Goodwill, Adam G.; Stapleton, Phoebe A.; Brooks, Steven D.; Brock, Robert W.; Lombard, Julian H.

    2015-01-01

    To determine the impact of progressive elevations in peripheral vascular disease (PVD) risk on microvascular function, we utilized eight rat models spanning “healthy” to “high PVD risk” and used a multiscale approach to interrogate microvascular function and outcomes: healthy: Sprague-Dawley rats (SDR) and lean Zucker rats (LZR); mild risk: SDR on high-salt diet (HSD) and SDR on high-fructose diet (HFD); moderate risk: reduced renal mass-hypertensive rats (RRM) and spontaneously hypertensive rats (SHR); high risk: obese Zucker rats (OZR) and Dahl salt-sensitive rats (DSS). Vascular reactivity and biochemical analyses demonstrated that even mild elevations in PVD risk severely attenuated nitric oxide (NO) bioavailability and caused progressive shifts in arachidonic acid metabolism, increasing thromboxane A2 levels. With the introduction of hypertension, arteriolar myogenic activation and adrenergic constriction were increased. However, while functional hyperemia and fatigue resistance of in situ skeletal muscle were not impacted with mild or moderate PVD risk, blood oxygen handling suggested an increasingly heterogeneous perfusion within resting and contracting skeletal muscle. Analysis of in situ networks demonstrated an increasingly stable and heterogeneous distribution of perfusion at arteriolar bifurcations with elevated PVD risk, a phenomenon that was manifested first in the distal microcirculation and evolved proximally with increasing risk. The increased perfusion distribution heterogeneity and loss of flexibility throughout the microvascular network, the result of the combined effects on NO bioavailability, arachidonic acid metabolism, myogenic activation, and adrenergic constriction, may represent the most accurate predictor of the skeletal muscle microvasculopathy and poor health outcomes associated with chronic elevations in PVD risk. PMID:26702145

  15. Increased long-term mortality after a high perioperative inspiratory oxygen fraction during abdominal surgery

    DEFF Research Database (Denmark)

    Meyhoff, Christian Sylvest; Jorgensen, Lars N; Wetterslev, Jørn

    2012-01-01

    A high perioperative inspiratory oxygen fraction (80%) has been recommended to prevent postoperative wound infections. However, the most recent and one of the largest trials, the PROXI trial, found no reduction in surgical site infection, and 30-day mortality was higher in patients given 80% oxygen...

  16. Prior exercise speeds pulmonary oxygen uptake kinetics and increases critical power during supine but not upright cycling.

    Science.gov (United States)

    Goulding, Richie P; Roche, Denise M; Marwood, Simon

    2017-09-01

    What is the central question of this study? Critical power (CP) represents the highest work rate for which a metabolic steady state is attainable. The physiological determinants of CP are unclear, but research suggests that CP might be related to the time constant of phase II oxygen uptake kinetics (τV̇O2). What is the main finding and its importance? We provide the first evidence that τV̇O2 is mechanistically related to CP. A reduction of τV̇O2 in the supine position was observed alongside a concomitant increase in CP. This effect may be contingent on measures of oxygen availability derived from near-infrared spectroscopy. Critical power (CP) is a fundamental parameter defining high-intensity exercise tolerance and is related to the time constant of phase II pulmonary oxygen uptake kinetics (τV̇O2). To test the hypothesis that this relationship is causal, we determined the impact of prior exercise ('priming') on CP and τV̇O2 in the upright and supine positions. Seventeen healthy men were assigned to either upright or supine exercise groups, whereby CP, τV̇O2 and muscle deoxyhaemoglobin kinetics (τ [HHb] ) were determined via constant-power tests to exhaustion at four work rates with (primed) and without (control) priming exercise at ∼31%Δ. During supine exercise, priming reduced τV̇O2 (control 54 ± 18 s versus primed 39 ± 11 s; P exercise had no effect on τV̇O2 (control 37 ± 12 s versus primed 35 ± 8 s; P = 0.82), τ [HHb] (control 10 ± 5 s versus primed 14 ± 10 s; P = 0.10) or CP (control 235 ± 42 W versus primed 232 ± 35 W; P = 0.57) during upright exercise. The concomitant reduction of τV̇O2 and increased CP following priming in the supine group, effects that were absent in the upright group, provide the first experimental evidence that τV̇O2 is mechanistically related to critical power. The increased τ [HHb+Mb] suggests that this effect was mediated, at least in part, by improved oxygen

  17. Increasing the Resolution of Chronic Obstructive Pulmonary Disease Definition. Lessons from a Cohort with Remote but Extensive Exposure to Secondhand Tobacco Smoke.

    Science.gov (United States)

    Arjomandi, Mehrdad; Zeng, Siyang; Blanc, Paul D; Gold, Warren M

    2018-04-01

    tomographic imaging of the lungs [%LAA exp-860to-950 ]) (n = 23). The RV/TLC of the cohort was (median [interquartile range] {total range}) 91.6% [84.9-98.8%] {58.0-130.6%} of the predicted normal value, and had wide variability over quintiles of FEV 1 /FVC and FEV 1 (coefficients of variation, 13.6-27.8% and 11.1-32.9%, respectively). In age-, sex-, and height-adjusted models, respiratory symptoms were associated only with RV/TLC (P = 0.011). Maximum oxygen consumption was inversely associated with RV/TLC (r 2  = 0.47; P = 0.017), rate of increase in %EFL (r 2  = 0.44; P = 0.008), and LAA exp-860to-950 (r 2  = 0.27; P = 0.037) even after adjustment for FEV 1 /FVC or FEV 1 . Receiver operating characteristic analysis for median of maximum oxygen consumption yielded an area under the curve of 0.63 for RV/TLC, compared with 0.53 for both FEV 1 /FVC and FEV 1 . Air trapping in those with exposure to secondhand tobacco smoke but without overt obstruction identifies a subgroup with increased risk for respiratory morbidity, and may provide an additional dimension for definition of chronic obstructive pulmonary disease not captured by spirometry.

  18. Enhanced oxygen delivery induced by perfluorocarbon emulsions in capillary tube oxygenators.

    Science.gov (United States)

    Vaslef, S N; Goldstick, T K

    1994-01-01

    Previous studies showed that a new generation of perfluorocarbon (PFC) emulsions increased tissue PO2 in the cat retina to a degree that could not be explained by the small increase in arterial O2 content seen after the infusion of low doses of 1 g PFC/kg body weight. It seems that increased O2 delivery at the tissue level after PFC infusion is caused by a local effect in the microcirculation. The authors studies this effect in vitro at steady state in a closed loop circuit, consisting of one of two types of capillary tube oxygenators, deoxygenator(s), a reservoir bag filled with anticoagulated bovine blood or saline (control), and a roller pump, to see if the addition of PFC would have an effect on the PO2 difference (delta PO2) across the capillary tube membrane oxygenator at a blood flow rate of 3 l/min. Perfluorocarbon was added in three incremental doses, each giving about 0.7 vol% of PFC. The delta PO2 across the oxygenator was measured before and after each dose. The mean percent increases in delta PO2 in blood for two types of oxygenators were 19.2 +/- 8% (mean +/- SD, n = 6, P = 0.002) and 9.9 +/- 4% (n = 3, P = 0.05), respectively, whereas the mean percent change in delta PO2 in saline was -4.9 +/- 2% (n = 2, P = 0.2). Inlet PO2s to the oxygenator were only minimally increased. The authors conclude that O2 delivery was significantly enhanced after injection of PFC in blood in this capillary tube model. A near wall excess of PFC particles may account for the augmentation of O2 diffusion in this model.

  19. Os radicais livres de oxigênio e as doenças pulmonares Oxygen free radicals and pulmonary disease

    Directory of Open Access Journals (Sweden)

    Dahir Ramos de Andrade Júnior

    2005-02-01

    significant tissue damage. We present also the main antioxidants that guard against oxidative stress, including glutathione, glutathione peroxidase, superoxide dismutase, catalase, and N-acetylcysteine. The influence of oxygen free radicals on the principal pulmonary diseases are also discussed, with special emphasis given to oxygen free radicals in cigarette smoke, chronic obstructive pulmonary disease, asthma, sleep apnea syndrome and acute respiratory distress syndrome.

  20. The long-term effect of ambulatory oxygen in normoxaemic COPD patients

    DEFF Research Database (Denmark)

    Ringbaek, Thomas; Martinez, Gerd; Lange, Peter

    2013-01-01

    To study the long-term benefits of ambulatory oxygen (AO) in combination with pulmonary rehabilitation (PR) in chronic obstructive pulmonary disease (COPD) patients experiencing exertional desaturation.......To study the long-term benefits of ambulatory oxygen (AO) in combination with pulmonary rehabilitation (PR) in chronic obstructive pulmonary disease (COPD) patients experiencing exertional desaturation....

  1. The treatment of tumors by the induction of anemia and irradiation in hyperbaric oxygen

    International Nuclear Information System (INIS)

    Sealy, R.; Jacobs, P.; Wood, L.; Levin, W.; Barry, L.; Boniaszczuk, J.; Blekkenhorst, G.

    1989-01-01

    Because increased effects have been achieved when murine tumors are irradiated after a period of hypoxia and because of anecdotal clinical experiences of an improved result after irradiation of previously anemic patients in hyperbaric oxygen, the relationship between irradiation and increased survival was investigated in seventy-two patients with advanced head and neck or cervical cancer. Anemia was achieved by means of a two-stage isovolemic venesection maintained for seventy-two hours, hemoglobin was returned to a normal level, and treatment in hyperbaric oxygen was started. Marked tumor shrinkage after the induction of anemia and before radiotherapy was seen and was probably disease, site, and hemoglobin level related. As a result, a possible new approach to cancer therapy is suggested. After completion of therapy, the 1-year disease-free survival for patients with head and neck and cervical cancer was not improved, but the 21-month survival for cervical cancer was improved. Further studies are strongly urged

  2. Low Oxygen Consumption is Related to a Hypomethylation and an Increased Secretion of IL-6 in Obese Subjects with Sleep Apnea-Hypopnea Syndrome.

    Science.gov (United States)

    Lopez-Pascual, Amaya; Lasa, Arrate; Portillo, María P; Arós, Fernando; Mansego, María L; González-Muniesa, Pedro; Martinez, J Alfredo

    2017-01-01

    Deoxyribonucleic acid (DNA) methylation is an epigenetic modification involved in gene expression regulation, usually via gene silencing, which contributes to the risks of many multifactorial diseases. The aim of the present study was to analyze the influence of resting oxygen consumption on global and gene DNA methylation as well as protein secretion of inflammatory markers in blood cells from obese subjects with sleep apnea-hypopnea syndrome (SAHS). A total of 44 obese participants with SAHS were categorized in 2 groups according to their resting oxygen consumption. DNA methylation levels were evaluated using a methylation-sensitive high resolution melting approach. The analyzed interleukin 6 (IL6) gene cytosine phosphate guanine (CpG) islands showed a hypomethylation, while serum IL-6 was higher in the low compared to the high oxygen consumption group (p DNA methylation of tumor necrosis factor (B = -0.82, 95% CI -1.33 to -0.30) and long interspersed nucleotide element 1 (B = -0.46; 95% CI -0.87 to -0.04) gene CpGs were found. Finally, studied CpG methylation levels of serpin peptidase inhibitor, clade E member 1 (r = 0.43; p = 0.01), and IL6 (r = 0.41; p = 0.02) were positively associated with fat-free mass. These findings suggest a potential role of oxygen in the regulation of inflammatory genes. Oxygen consumption measurement at rest could be proposed as a clinical biomarker of metabolic health. © 2017 S. Karger AG, Basel.

  3. Pancreas Oxygen Persufflation Increases ATP Levels as Shown by Nuclear Magnetic Resonance

    Science.gov (United States)

    Scott, W.E.; Weegman, B.P.; Ferrer-Fabrega, J.; Stein, S.A.; Anazawa, T.; Kirchner, V.A.; Rizzari, M.D.; Stone, J.; Matsumoto, S.; Hammer, B.E.; Balamurugan, A.N.; Kidder, L.S.; Suszynski, T.M.; Avgoustiniatos, E.S.; Stone, S.G.; Tempelman, L.A.; Sutherland, D.E.R.; Hering, B.J.; Papas, K.K.

    2010-01-01

    Background Islet transplantation is a promising treatment for type 1 diabetes. Due to a shortage of suitable human pancreata, high cost, and the large dose of islets presently required for long-term diabetes reversal; it is important to maximize viable islet yield. Traditional methods of pancreas preservation have been identified as suboptimal due to insufficient oxygenation. Enhanced oxygen delivery is a key area of improvement. In this paper, we explored improved oxygen delivery by persufflation (PSF), ie, vascular gas perfusion. Methods Human pancreata were obtained from brain-dead donors. Porcine pancreata were procured by en bloc viscerectomy from heparinized donation after cardiac death donors and were either preserved by either two-layer method (TLM) or PSF. Following procurement, organs were transported to a 1.5-T magnetic resonance (MR) system for 31P nuclear magnetic resonance spectroscopy to investigate their bioenergetic status by measuring the ratio of adenosine triphosphate to inorganic phosphate (ATP:Pi) and for assessing PSF homogeneity by MRI. Results Human and porcine pancreata can be effectively preserved by PSF. MRI showed that pancreatic tissue was homogeneously filled with gas. TLM can effectively raise ATP:Pi levels in rat pancreata but not in larger porcine pancreata. ATP:Pi levels were almost undetectable in porcine organs preserved with TLM. When human or porcine organs were preserved by PSF, ATP:Pi was elevated to levels similar to those observed in rat pancreata. Conclusion The methods developed for human and porcine pancreas PSF homogeneously deliver oxygen throughout the organ. This elevates ATP levels during preservation and may improve islet isolation outcomes while enabling the use of marginal donors, thus expanding the usable donor pool. PMID:20692395

  4. Methane Post-Processor Development to Increase Oxygen Recovery beyond State-of-the-Art Carbon Dioxide Reduction Technology

    Science.gov (United States)

    Abney, Morgan B.; Greenwood, Zachary; Miller, Lee A.; Alvarez, Giraldo; Iannantuono, Michelle; Jones, Kenny

    2013-01-01

    State-of-the-art life support carbon dioxide (CO2) reduction technology, based on the Sabatier reaction, is theoretically capable of 50% recovery of oxygen from metabolic CO2. This recovery is constrained by the limited availability of reactant hydrogen. Post-processing of the methane byproduct from the Sabatier reactor results in hydrogen recycle and a subsequent increase in oxygen recovery. For this purpose, a Methane Post-Processor Assembly containing three sub-systems has been developed and tested. The assembly includes a Methane Purification Assembly (MePA) to remove residual CO2 and water vapor from the Sabatier product stream, a Plasma Pyrolysis Assembly (PPA) to partially pyrolyze methane into hydrogen and acetylene, and an Acetylene Separation Assembly (ASepA) to purify the hydrogen product for recycle. The results of partially integrated testing of the sub-systems are reported

  5. Oxygen-enhanced MRI for patients with connective tissue diseases: Comparison with thin-section CT of capability for pulmonary functional and disease severity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Yoshiharu, E-mail: yosirad@kobe-u.ac.jp [Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Nishio, Mizuho [Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Koyama, Hisanobu [Division of Radiology, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Yoshikawa, Takeshi; Matsumoto, Sumiaki [Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Seki, Shinichiro [Division of Radiology, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Tsubakimoto, Maho [Division of Radiology, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Nakagami-Gun, Okinawa (Japan); Sugimura, Kazuro [Division of Radiology, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan)

    2014-02-15

    Purpose: To prospectively and directly compare oxygen-enhanced (O{sub 2}-enhanced) MRI with thin-section CT for pulmonary functional loss and disease severity assessment in connective tissue disease (CTD) patients with interstitial lung disease (ILD). Materials and methods: Thin-section CT, O{sub 2}-enhanced MRI, pulmonary function test and serum KL-6 were administered to 36 CTD patients with ILD (23 men, 13 women; mean age: 63.9 years) and nine CTD patients without ILD (six men, and three women; mean age: 62.0 years). A relative-enhancement ratio (RER) map was generated from O{sub 2}-enhanced MRI and mean relative enhancement ratio (MRER) for each subject was calculated from all ROI measurements. CT-assessed disease severity was evaluated with a visual scoring system from each of the thin-section CT data. MRER and CT-assessed disease severities of CTD patients with and without ILD were then statistically compared. To assess capability for pulmonary functional loss and disease severity assessment in CTD patients, correlations of MRER and CT-assessed disease severity with pulmonary functional parameters and serum KL-6 in all subjects were statistically determined. Results: MRER and CT-assessed disease severity showed significant differences between CTD patients with (MRER: 0.15 ± 0.08, CT-assessed disease severity: 13.0 ± 7.4%) and without ILD (MRER: 0.25 ± 0.06, p = 0.0011; CT-assessed disease severity: 1.6 ± 1.6%, p < 0.0001). MRER and CT-assessed disease severity correlated significantly with pulmonary functional parameters and serum KL-6 in all subjects (0.61 ≤ r ≤ 0.79, p < 0.05). Conclusion: O{sub 2}-enhanced MRI was found to be as useful as thin-section CT for pulmonary functional loss and disease severity assessment of CTD patients with ILD.

  6. Oxygen-enhanced MRI for patients with connective tissue diseases: Comparison with thin-section CT of capability for pulmonary functional and disease severity assessment

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Nishio, Mizuho; Koyama, Hisanobu; Yoshikawa, Takeshi; Matsumoto, Sumiaki; Seki, Shinichiro; Tsubakimoto, Maho; Sugimura, Kazuro

    2014-01-01

    Purpose: To prospectively and directly compare oxygen-enhanced (O 2 -enhanced) MRI with thin-section CT for pulmonary functional loss and disease severity assessment in connective tissue disease (CTD) patients with interstitial lung disease (ILD). Materials and methods: Thin-section CT, O 2 -enhanced MRI, pulmonary function test and serum KL-6 were administered to 36 CTD patients with ILD (23 men, 13 women; mean age: 63.9 years) and nine CTD patients without ILD (six men, and three women; mean age: 62.0 years). A relative-enhancement ratio (RER) map was generated from O 2 -enhanced MRI and mean relative enhancement ratio (MRER) for each subject was calculated from all ROI measurements. CT-assessed disease severity was evaluated with a visual scoring system from each of the thin-section CT data. MRER and CT-assessed disease severities of CTD patients with and without ILD were then statistically compared. To assess capability for pulmonary functional loss and disease severity assessment in CTD patients, correlations of MRER and CT-assessed disease severity with pulmonary functional parameters and serum KL-6 in all subjects were statistically determined. Results: MRER and CT-assessed disease severity showed significant differences between CTD patients with (MRER: 0.15 ± 0.08, CT-assessed disease severity: 13.0 ± 7.4%) and without ILD (MRER: 0.25 ± 0.06, p = 0.0011; CT-assessed disease severity: 1.6 ± 1.6%, p < 0.0001). MRER and CT-assessed disease severity correlated significantly with pulmonary functional parameters and serum KL-6 in all subjects (0.61 ≤ r ≤ 0.79, p < 0.05). Conclusion: O 2 -enhanced MRI was found to be as useful as thin-section CT for pulmonary functional loss and disease severity assessment of CTD patients with ILD

  7. An Approach for Hydrogen Recycling in a Closed-loop Life Support Architecture to Increase Oxygen Recovery Beyond State-of-the-Art

    Science.gov (United States)

    Abney, Morgan B.; Miller, Lee; Greenwood, Zachary; Alvarez, Giraldo

    2014-01-01

    State-of-the-art atmosphere revitalization life support technology on the International Space Station is theoretically capable of recovering 50% of the oxygen from metabolic carbon dioxide via the Carbon Dioxide Reduction Assembly (CRA). When coupled with a Plasma Pyrolysis Assembly (PPA), oxygen recovery increases dramatically, thus drastically reducing the logistical challenges associated with oxygen resupply. The PPA decomposes methane to predominantly form hydrogen and acetylene. Because of the unstable nature of acetylene, a down-stream separation system is required to remove acetylene from the hydrogen stream before it is recycled to the CRA. A new closed-loop architecture that includes a PPA and downstream Hydrogen Purification Assembly (HyPA) is proposed and discussed. Additionally, initial results of separation material testing are reported.

  8. Cortical oxygenation suggests increased effort during cognitive inhibition in ecstasy polydrug users.

    Science.gov (United States)

    Roberts, C A; Montgomery, Catharine

    2015-11-01

    It is understood that 3,4-methylenedioxymethamphetamine (ecstasy) causes serotonin dysfunction and deficits in executive functioning. When investigating executive function, functional neuroimaging allows the physiological changes underlying these deficits to be investigated. The present study investigated behavioural and brain indices of inhibition in ecstasy-polydrug users. Twenty ecstasy-polydrug users and 20 drug-naïve participants completed an inhibitory control task (Random Letter Generation (RLG)) while prefrontal haemodynamic response was assessed using functional near infrared spectroscopy (fNIRS). There were no group differences on background measures including sleep quality and mood state. There were also no behavioural differences between the two groups. However, ecstasy-polydrug users displayed significant increases in oxygenated haemoglobin (oxy-Hb) from baseline compared to controls at several voxels relating to areas of the inferior right medial prefrontal cortex, as well the right and left dorsolateral prefrontal cortex. Regression analysis revealed that recency of ecstasy use was a significant predictor of oxy-Hb increase at two voxels over the right hemisphere after controlling for alcohol and cannabis use indices. Ecstasy-polydrug users show increased neuronal activation in the prefrontal cortex compared to non-users. This is taken to be compensatory activation/recruitment of additional resources to attain similar performance levels on the task, which may be reversible with prolonged abstinence. © The Author(s) 2015.

  9. Therapeutic effect of forearm low level light treatment on blood flow, oxygenation, and oxygen consumption

    Science.gov (United States)

    Wang, Pengbo; Sun, Jiajing; Meng, Lingkang; Li, Zebin; Li, Ting

    2018-02-01

    Low level light/laser therapy (LLLT) is considered as a novel, non-invasive, and potential therapy in a variety of psychological and physical conditions, due to its effective intricate photobiomodulation. The mechanism of LLLT is that when cells are stimulated by photons, mitochondria produce a large quantity of ATP, which accelerates biochemical responses in the cell. It is of great significance to gain a clear insight into the change or interplay of various physiological parameters. In this study, we used functional near-infrared spectroscopy (fNIRS) and venous-occlusion plethysmography to measure the LLLT-induced changes in blood flow, oxygenation, and oxygen consumption in human forearms in vivo. Six healthy human participants (4 males and 2 females) were administered with 810-nm light emitted by LED array in ten minutes and blood flow, oxygenation and oxygen consumption were detected in the entire experiment. We found that LLLT induced an increase of blood flow and oxygen consumption on the treated site. Meanwhile, LLLT took a good role in promoting oxygenation of regional tissue, which was indicated by a significant increase of oxygenated hemoglobin concentration (Δ[HbO2]), a nearly invariable deoxygenated hemoglobin concentration (Δ[Hb]) and a increase of differential hemoglobin concentration (Δ[HbD] = Δ[HbO2] - Δ[Hb]). These results not only demonstrate enormous potential of LLLT, but help to figure out mechanisms of photobiomodulation.

  10. Beta-hydroxybutyrate increases reactive oxygen species in late but not in early postimplantation embryonic cells in vitro.

    Science.gov (United States)

    Forsberg, H; Eriksson, U J; Melefors, O; Welsh, N

    1998-02-01

    Embryonic dysmorphogenesis has been blocked by antioxidant treatment in vivo and in vitro, suggesting that embryonic excess of reactive oxygen species (ROS) has a role in the teratogenic process of diabetic pregnancy. We report that the basal levels of ROS in dispersed rat embryonic cells in vitro, as determined by fluorescence of dichlorofluorescein (DCF), were not different in cells from control and diabetic pregnancy at day 10 or 12. Beta-hydroxybutyrate (beta-HB) and succinic acid monomethyl ester both augmented DCF fluorescence in cells from day 12 embryos of normal and diabetic rats but not from day 10 embryos. Cells of day 10 and day 12 embryos from normal and diabetic rats responded to increasing glucose concentrations with a dosage-dependent alleviation of DCF fluorescence. Day 10 embryonic cells exhibited high glucose utilization rates and high pentose phosphate shunt rates, but low mitochondrial oxidation rates. Moreover, in vitro culture of embryos between gestational days 9 and 10 in the presence of 20% oxygen induced an increased and glucose-sensitive oxidation of glucose compared with embryos not cultured in vitro. At gestation day 12, however, pentose phosphate shunt rates showed a decrease, whereas the mitochondrial beta-HB oxidation rates were increased compared with those at gestation day 10. This was paralleled by a lower expression of glucose 6-phosphate dehydrogenase- and phosphofructokinase-mRNA levels at day 12 than at day 10. On the other hand, H-ferritin mRNA expression at day 12 was high compared with day 10. None of the mRNA species investigated were affected by the diabetic state of the mother. It was concluded that beta-HB-induced stimulation of mitochondrial oxidative events may lead to the generation of ROS at gestational day 12, but probably not at day 10, when only a minute amount of mitochondrial activity occurs. Thus our results do not support the notion of diabetes-induced mitochondrial oxidative stress before the development of

  11. Effect of hyperbaric oxygen therapy on SAS and SDS in children with ischemic encephalopathy

    Directory of Open Access Journals (Sweden)

    Pei-Yun Li

    2017-08-01

    Full Text Available Objective: To study and analyze the effect of early psychological intervention on the scores of SAS and SDS in children with hypoxic-ischemic encephalopathy undergoing hyperbaric oxygen therapy. Methods: A total of 64 children with hypoxic - ischemic encephalopathy enrolled in our hospital from July 2015 to July 2016 and their parents were selected as study subjects. The patients were treated with hyperbaric oxygen therapy, while their parents were given early psychological intervention. By the way of increasing parents’ awareness of the disease, helping parents build confidence in their children’s treatment and encouraging them to participate in daily training for their children to relieve their anxiety and depression. The parents' knowledge of the disease before and during treatment, the treatment of hyperbaric oxygen therapy and the change of SAS and SDS were observed. Results: After effective intervention, the scores of SAS and SDS of 64 patients’ parents were significantly lower than those before treatment. After 1 courses of intervention, the score of SAS was (43.36 ± 1.27 points, and the score of SDS was (45.22 ± 8.13 points. After 2 courses of intervention, the score of SAS was (41.07 ± 1.21 and the score of SDS was (42.35 ± 7.44 points, and parents' awareness of hypoxic-ischemic encephalopathy was significantly increased, and the differences between the two groups were statistically significant. Conclusion: Early psychological intervention on parents of children with hypoxic-ischemic encephalopathy can effectively improve the awareness of parents on the disease, so as to improve their acceptance of hyperbaric oxygen therapy; significantly reduce the parents’ SAS, SDS score. It is beneficial to build a good doctor-patient and nurse-patient relationship, improve the treatment effect and shorten the treatment time.

  12. Effects of iron salts and haemosiderin from a thalassaemia patient on oxygen radical damage as measured in the comet assay

    NARCIS (Netherlands)

    Anderson, D.; Yardley-Jones, A.; Hambly, R.J.; Vives-Bauza, C.; Smykatz-Kloss, V.; Chua-anusorn, W.; Webb, J.

    2000-01-01

    Thalassaemia is a group of genetic diseases where haemoglobin synthesis is impaired. This chronic anaemia leads to increased dietary iron absorption, which develops into iron overload pathology. Treatment through regular transfusions increases oxygen capacity but also provides iron through the red

  13. Patients with inflammatory bowel disease have increased risk of autoimmune and inflammatory diseases

    DEFF Research Database (Denmark)

    Halling, Morten L; Kjeldsen, Jens; Knudsen, Torben

    2017-01-01

    were significantly increased (P celiac disease, type 1 diabetes (T1D), sarcoidosis, asthma, iridocyclitis, psoriasis, pyoderma gangrenosum, rheumatoid arthritis, and ankylosing spondylitis. Restricted to UC (P ...AIM: To investigate whether immune mediated diseases (IMD) are more frequent in patients with inflammatory bowel disease (IBD). METHODS: In this population based registry study, a total of 47325 patients with IBD were alive and registered in the Danish National Patient Registry on December 16, 2013....... Controls were randomly selected from the Danish Civil Registration System (CRS) and matched for sex, age, and municipality. We used ICD 10 codes to identify the diagnoses of the included patients. The IBD population was divided into three subgroups: Ulcerative colitis (UC), Crohn's disease (CD) and Both...

  14. Oxygen Tension in the Aqueous Humor of Human Eyes under Different Oxygenation Conditions

    Directory of Open Access Journals (Sweden)

    Farideh Sharifipour

    2013-01-01

    Full Text Available Purpose: To measure oxygen tension in the aqueous humor of human eyes under different oxygenation conditions. Methods: This prospective comparative interventional case series consisted of two parts. In the first part, 120 consecutive patients scheduled for cataract surgery were randomized into group I (control group in which surgery was performed under local anesthesia inhaling 21% oxygen; group II in whom general anesthesia using 50% oxygen was employed; and group III receiving general anesthesia with 100% oxygen. After aspirating 0.2 ml aqueous humor under sterile conditions, the aqueous sample and a simultaneously drawn arterial blood sample were immediately analyzed using a blood gas analyzer. In part II the same procedures were performed in 10 patients after fitting a contact lens and patching the eye for 20 minutes (group IV and in 10 patients after transcorneal delivery of oxygen at a flow rate of 5 L/min (group V. Results: Mean aqueous PO2 in groups I, II and III was 112.3±6.2, 141.1±20.4, and 170.1±27 mmHg, respectively (P values <0.001 and mean arterial PO2 was 85.7±7.9, 184.6±46, and 379.1±75.9 mmHg, respectively (P values <0.001. Aqueous PO2 was 77.2±9.2 mmHg in group IV and 152.3±10.9 mmHg in group V (P values <0.001. There was a significant correlation between aqueous and blood PO2 (r=0.537, P<0.001. The contribution of atmospheric oxygen to aqueous PO2 was 23.7%. Conclusion: Aqueous oxygen tension is mostly dependent on the systemic circulation and in part on the atmosphere. Increasing inspiratory oxygen and transcorneal oxygen delivery both increase aqueous PO2 levels.

  15. Multimodel inference applied to oxygen recovery kinetics after 6-min walk tests in patients with chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Baty, Florent; Ritz, Christian; Jensen, Signe Marie

    2017-01-01

    6-min walk tests (6MWT) are routinely performed in patients with chronic obstructive pulmonary disease (COPD). Oxygen uptake ([Formula: see text]) kinetics during 6MWT can be modeled and derived parameters provide indicators of patients' exercise capacity. Post-exercise [Formula: see text] recovery...... also provides important parameters of patients' fitness which has not been extensively investigated in COPD. Several nonlinear regression models with different underlying biological assumptions may be suitable for describing recovery kinetics. Multimodel inference (model averaging) can then be used...... to capture the uncertainty in considering several models. Our aim was to apply multimodel inference in order to better understand the physiological underpinnings of [Formula: see text] recovery after 6MWT in patients with COPD. 61 patients with COPD (stages 2 to 4) were included in this study. Oxygen...

  16. Radiological Diagnosis of Recirculatory Congenital Heart Disease with Increased Pulmonary Blood Flow

    International Nuclear Information System (INIS)

    Bartusevichiene, A.; Rulevichius, A.; Dobrovolskis, K.R.

    1995-01-01

    The number of patients with congenital diseases is increasing therefore early diagnosis of these diseases is of crucial importance. Radiological diagnostics of recirculatory congenital heart disease with increased pulmonary blood flow, i.e. atrial septal defect (ASD), ventricle septal defect (VSD), ductus arteriosus (Botalli) persistence (DAP) and atrioventricular communication (AVC) have been analysed. Recirculatory congenital heart disease with increased pulmonary blood flow (ASD, VSD, DAP)radiologically causes similar lung, lung roots and pulmonary arterial changes. After the radiomorphological and radiofunctional examination of chest organs the following symptoms of the disease were defined: all the patients had hypervolemy, enlarged structural lungs roots, enlarged pulmonary arterial arch. These radiofunctional symptoms help to differentiate congenital heart diseases case by case. (author). 7 refs., 6 figs., 1 tab

  17. Oxygen uptake kinetics during and after exercise are useful markers of coronary artery disease in patients with exercise electrocardiography suggesting myocardial ischemia

    International Nuclear Information System (INIS)

    Tajima, Akihiko; Ohkoshi, Nobuyuki; Kawara, Tokuhiro; Aizawa, Tadanori; Itoh, Haruki; Maeda, Tomoko; Osada, Naohiko; Omiya, Kazuto; Wasserman, K.

    2009-01-01

    The aim of the current study was to determine if the slowed exercise oxygen uptake (VO 2 ) kinetics, which is developed by myocardial ischemia, would be accompanied by delayed recovery VO 2 kinetics in patients with coronary artery disease (CAD). Thirty-seven patients with significant ST depression during treadmill exercise underwent cardiopulmonary exercise testing with cycle ergometer. Measurements performed are the ratios of change in increase in oxygen (O 2 ) uptake relative to increase in work rate (ΔVO 2 /ΔWR) across anaerobic threshold (AT) and 1 mm ST depression point (ST-dep), the time constants of VO 2 during recovery (T 1/2 VO 2 ), stress radio-isotope scintigraphy and coronary angiography. Patients were divided into CAD positive (CAD+) and CAD negative (CAD-) groups, based on coronary angiography. In CAD+, ΔVO 2 /ΔWR decreased above AT and ST-dep, in contrast to CAD- patients. The T 1/2 VO 2 in CAD+ (103.1±13.0 s) was greater than that of CAD- (76.5±8.7 s) and showed negative correlations to the ratios of ΔVO 2 /ΔWR across AT and ST-dep. These parameters improved in the patients who underwent coronary bypass surgery. Exercise and recovery VO 2 kinetics were slowed when myocardial ischemia was provoked by exercise. Measurement of exercise and recovery VO 2 kinetics improve the accuracy of the exercise electrocardiogram diagnosis of CAD. (author)

  18. Oxygen-transfer performance of a newly designed, very low-volume membrane oxygenator.

    Science.gov (United States)

    Burn, Felice; Ciocan, Sorin; Carmona, Natalia Mendez; Berner, Marion; Sourdon, Joevin; Carrel, Thierry P; Tevaearai Stahel, Hendrik T; Longnus, Sarah L

    2015-09-01

    Oxygenation of blood and other physiological solutions are routinely required in fundamental research for both in vitro and in vivo experimentation. However, very few oxygenators with suitable priming volumes (parallel-oriented microporous polypropylene hollow fibres, placed inside a hollow shell with a lateral-luer outlet, and sealed at both extremities. With this design, perfusate is delivered via the core-tube to the centre of the mini-oxygenator, and exits via the luer port. A series of mini-oxygenators were constructed and tested in an in vitro perfusion circuit by monitoring oxygen transfer using modified Krebs-Henseleit buffer or whole porcine blood. Effects of perfusion pressure and temperature over flows of 5-60 ml × min(-1) were assessed. Twelve mini-oxygenators with a mean priming volume of 1.5 ± 0.3 ml were evaluated. With buffer, oxygen transfer reached a maximum of 14.8 ± 1.0 ml O2 × l(-1) (pO2: 450 ± 32 mmHg) at perfusate flow rates of 5 ml × min(-1) and decreased with an increase in perfusate flow to 7.8 ± 0.7 ml ml O2 × l(-1) (pO2: 219 ± 24 mmHg) at 60 ml × min(-1). Similarly, with blood perfusate, oxygen transfer also decreased as perfusate flow increased, ranging from 33 ± 5 ml O2 × l(-1) at 5 ml × min(-1) to 11 ± 2 ml O2 × l(-1) at 60 ml × min(-1). Furthermore, oxygen transfer capacity remained stable with blood perfusion over a period of at least 2 h. We have developed a new miniaturized membrane oxygenator with an ultra-low priming volume (circuits, such as small animal extracorporeal circulation and ex vivo organ perfusion. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  19. Hydrogen/oxygen injection stopping method for nuclear power plant and emergent hydrogen/oxygen injection device

    International Nuclear Information System (INIS)

    Ishida, Ryoichi; Ota, Masamoto; Takagi, Jun-ichi; Hirose, Yuki

    1998-01-01

    The present invention provides a device for suppressing increase of electroconductivity of reactor water during operation of a BWR type reactor, upon occurrence of reactor scram of the plant or upon stopping of hydrogen/oxygen injection due to emergent stoppage of an injection device so as not to deteriorate the integrity of a gas waste processing system upon occurrence of scram. Namely, when injection of hydrogen/oxygen is stopped during plant operation, the injection amount of hydrogen is reduced gradually. Subsequently, injection of hydrogen is stopped. With such procedures, the increase of electroconductivity of reactor water can be suppressed upon stoppage of hydrogen injection. When injection of hydrogen/oxygen is stopped upon shut down of the plant, the amount of hydrogen injection is changed depending on the change of the feedwater flow rate, and then the plant is shut down while keeping hydrogen concentration of feedwater to a predetermined value. With such procedures, increase of the reactor water electroconductivity can be suppressed upon stoppage of hydrogen injection. Upon emergent stoppage of the hydrogen/oxygen injection device, an emergent hydrogen/oxygen injection device is actuated to continue the injection of hydrogen/oxygen. With such procedures, elevation of reactor water electroconductivity can be suppressed. (I.S.)

  20. Macrophage models of Gaucher disease for evaluating disease pathogenesis and candidate drugs.

    Science.gov (United States)

    Aflaki, Elma; Stubblefield, Barbara K; Maniwang, Emerson; Lopez, Grisel; Moaven, Nima; Goldin, Ehud; Marugan, Juan; Patnaik, Samarjit; Dutra, Amalia; Southall, Noel; Zheng, Wei; Tayebi, Nahid; Sidransky, Ellen

    2014-06-11

    Gaucher disease is caused by an inherited deficiency of glucocerebrosidase that manifests with storage of glycolipids in lysosomes, particularly in macrophages. Available cell lines modeling Gaucher disease do not demonstrate lysosomal storage of glycolipids; therefore, we set out to develop two macrophage models of Gaucher disease that exhibit appropriate substrate accumulation. We used these cellular models both to investigate altered macrophage biology in Gaucher disease and to evaluate candidate drugs for its treatment. We generated and characterized monocyte-derived macrophages from 20 patients carrying different Gaucher disease mutations. In addition, we created induced pluripotent stem cell (iPSC)-derived macrophages from five fibroblast lines taken from patients with type 1 or type 2 Gaucher disease. Macrophages derived from patient monocytes or iPSCs showed reduced glucocerebrosidase activity and increased storage of glucocerebroside and glucosylsphingosine in lysosomes. These macrophages showed efficient phagocytosis of bacteria but reduced production of intracellular reactive oxygen species and impaired chemotaxis. The disease phenotype was reversed with a noninhibitory small-molecule chaperone drug that enhanced glucocerebrosidase activity in the macrophages, reduced glycolipid storage, and normalized chemotaxis and production of reactive oxygen species. Macrophages differentiated from patient monocytes or patient-derived iPSCs provide cellular models that can be used to investigate disease pathogenesis and facilitate drug development. Copyright © 2014, American Association for the Advancement of Science.

  1. Decline in arterial partial pressure of oxygen after exercise: a surrogate marker of pulmonary vascular obstructive disease in patients with atrial septal defect and severe pulmonary hypertension.

    Science.gov (United States)

    Laksmivenkateshiah, Srinivas; Singhi, Anil K; Vaidyanathan, Balu; Francis, Edwin; Karimassery, Sundaram R; Kumar, Raman K

    2011-06-01

    To examine the utility of decline in arterial partial pressure of oxygen after exercise as a marker of pulmonary vascular obstructive disease in patients with atrial septal defect and pulmonary hypertension. Treadmill exercise was performed in 18 patients with atrial septal defect and pulmonary hypertension. Arterial blood gas samples were obtained before and after peak exercise. A decline in the arterial pressure of oxygen of more than 10 millimetres of mercury after exercise was considered significant based on preliminary tests conducted on the controls. Cardiac catheterisation was performed in all patients and haemodynamic data sets were obtained on room air, oxygen, and a mixture of oxygen and nitric oxide (30-40 parts per million). There were 10 patients who had more than a 10 millimetres of mercury drop in arterial partial pressure of oxygen after exercise and who had a basal pulmonary vascular resistance index of more than 7 Wood units per square metre. Out of eight patients who had less than a 10 millimetres of mercury drop in arterial partial pressure of oxygen after exercise, seven had a basal pulmonary vascular resistance index of less than 7 Wood units per square metre, p equals 0.0001. A decline in arterial partial pressure of oxygen of more than 10 millimetres of mercury predicted a basal pulmonary vascular resistance index of more than 7 Wood units per square metre with a specificity of 100% and a sensitivity of 90%. A decline in arterial partial pressure of oxygen following exercise appears to predict a high pulmonary vascular resistance index in patients with atrial septal defect and pulmonary hypertension. This test is a useful non-invasive marker of pulmonary vascular obstructive disease in this subset.

  2. Oxygen and animal evolution: Did a rise of atmospheric oxygen trigger the origin of animals?

    DEFF Research Database (Denmark)

    Mills, Daniel Brady; Canfield, Donald Eugene

    2014-01-01

    Recent studies challenge the classical view that the origin of animal life was primarily controlled by atmospheric oxygen levels. For example, some modern sponges, representing early-branching animals, can live under 200 times less oxygen than currently present in the atmosphere - levels commonly...... thought to have been maintained prior to their origination. Furthermore, it is increasingly argued that the earliest animals, which likely lived in low oxygen environments, played an active role in constructing the well-oxygenated conditions typical of the modern oceans. Therefore, while oxygen is still...

  3. Oxygen-saving effect of a new cardiotonic agent, MCI-154, in diseased human hearts.

    Science.gov (United States)

    Mori, M; Takeuchi, M; Takaoka, H; Hata, K; Hayashi, Y; Yamakawa, H; Yokoyama, M

    1997-03-01

    The aim of this study was to examine the left ventricular mechanoenergetic effects of a novel Ca2+ sensitizing agent, MCI-154, on diseased human hearts compared with dobutamine. Unlike conventional cardiotonic agents, a Ca2+ sensitizer that could produce a positive inotropic action by altering the responsiveness of myofilament to Ca2+ could generate force with smaller amounts of Ca2+; thus, it may potentially save energy expenditure. The left ventricular pressure-volume relation and myocardial oxygen consumption per beat (Vo2) were measured by a conductance (volume) catheter and a Webster catheter. Left ventricular contractility (Emax), systolic pressure-volume area (PVA [index of left ventricular total mechanical energy]) and Vo2 were assessed before and after infusion of MCI-154 or dobut-amine. The PVA-independent Vo2 (Vo2 mainly for excitation-contraction coupling) was assessed as the Vo2 at zero PVA. Both agents increased Emax comparably (dobutamine: from 3.55 +/- 1.10 [mean +/- SD] to 5.04 +/- 1.16 mm Hg/ml per m2, p delta PVA-independent Vo2/delta Emax) was less with MCI-154 than with dobutamine (0.14 +/- 0.18 vs. 1.10 +/- 0.80 J/mm Hg per ml per m2, p action mediated by MCI-154 could provide an energetic advantage over the conventional cardiotonic action with currently used inotropic agents.

  4. Surface acoustic wave oxygen pressure sensor

    Science.gov (United States)

    Oglesby, Donald M. (Inventor); Upchurch, Billy T. (Inventor); Leighty, Bradley D. (Inventor)

    1994-01-01

    A transducer for the measurement of absolute gas-state oxygen pressure from pressures of less than 100 Pa to atmospheric pressure (1.01 x 10(exp 5) Pa) is based on a standard surface acoustic wave (SAW) device. The piezoelectric material of the SAW device is coated with a compound which will selectively and reversibly bind oxygen. When oxygen is bound by the coating, the mass of the coating increases by an amount equal to the mass of the bound oxygen. Such an increase in the mass of the coating causes a corresponding decrease in the resonant frequency of the SAW device.

  5. Blood oxygenation level dependent (BOLD). Renal imaging. Concepts and applications

    International Nuclear Information System (INIS)

    Nissen, Johanna C.; Haneder, Stefan; Schoenberg, Stefan O.; Michaely, Henrik J.

    2010-01-01

    Many renal diseases as well as several pharmacons cause a change in renal blood flow and/or renal oxygenation. The blood oxygenation level dependent (BOLD) imaging takes advantage of local field inhomogeneities and is based on a T2 * -weighted sequence. BOLD is a non-invasive method allowing an estimation of the renal, particularly the medullary oxygenation, and an indirect measurement of blood flow without administration of contrast agents. Thus, effects of different drugs on the kidney and various renal diseases can be controlled and observed. This work will provide an overview of the studies carried out so far and identify ways how BOLD can be used in clinical studies. (orig.)

  6. Alzheimer skin fibroblasts show increased susceptibility to free radicals.

    Science.gov (United States)

    Tesco, G; Latorraca, S; Piersanti, P; Piacentini, S; Amaducci, L; Sorbi, S

    1992-11-01

    We have studied the response to toxic oxygen metabolites of fibroblasts derived from skin biopsies of 5 patients with familial (FAD) and 4 with sporadic (AD) Alzheimer's disease compared with those derived from 4 normal controls. Fibroblasts were damaged by the generation of oxygen metabolites during the enzymatic oxidation of acetaldehyde by 50 munits of xanthine-oxidase (Xo). To quantify cell damage we measured lactate dehydrogenase (LDH) activity in the culture medium and cell viability in fibroblast cultures. We found a significant increase in LDH activity in the FAD vs. controls and also in the AD vs. controls.

  7. Longevity of animals under reactive oxygen species stress and disease susceptibility due to global warming.

    Science.gov (United States)

    Paital, Biswaranjan; Panda, Sumana Kumari; Hati, Akshaya Kumar; Mohanty, Bobllina; Mohapatra, Manoj Kumar; Kanungo, Shyama; Chainy, Gagan Bihari Nityananda

    2016-02-26

    The world is projected to experience an approximate doubling of atmospheric CO2 concentration in the next decades. Rise in atmospheric CO2 level as one of the most important reasons is expected to contribute to raise the mean global temperature 1.4 °C-5.8 °C by that time. A survey from 128 countries speculates that global warming is primarily due to increase in atmospheric CO2 level that is produced mainly by anthropogenic activities. Exposure of animals to high environmental temperatures is mostly accompanied by unwanted acceleration of certain biochemical pathways in their cells. One of such examples is augmentation in generation of reactive oxygen species (ROS) and subsequent increase in oxidation of lipids, proteins and nucleic acids by ROS. Increase in oxidation of biomolecules leads to a state called as oxidative stress (OS). Finally, the increase in OS condition induces abnormality in physiology of animals under elevated temperature. Exposure of animals to rise in habitat temperature is found to boost the metabolism of animals and a very strong and positive correlation exists between metabolism and levels of ROS and OS. Continuous induction of OS is negatively correlated with survivability and longevity and positively correlated with ageing in animals. Thus, it can be predicted that continuous exposure of animals to acute or gradual rise in habitat temperature due to global warming may induce OS, reduced survivability and longevity in animals in general and poikilotherms in particular. A positive correlation between metabolism and temperature in general and altered O2 consumption at elevated temperature in particular could also increase the risk of experiencing OS in homeotherms. Effects of global warming on longevity of animals through increased risk of protein misfolding and disease susceptibility due to OS as the cause or effects or both also cannot be ignored. Therefore, understanding the physiological impacts of global warming in relation to

  8. Longevity of animals under reactive oxygen species stress and disease susceptibility due to global warming

    Science.gov (United States)

    Paital, Biswaranjan; Panda, Sumana Kumari; Hati, Akshaya Kumar; Mohanty, Bobllina; Mohapatra, Manoj Kumar; Kanungo, Shyama; Chainy, Gagan Bihari Nityananda

    2016-01-01

    The world is projected to experience an approximate doubling of atmospheric CO2 concentration in the next decades. Rise in atmospheric CO2 level as one of the most important reasons is expected to contribute to raise the mean global temperature 1.4 °C-5.8 °C by that time. A survey from 128 countries speculates that global warming is primarily due to increase in atmospheric CO2 level that is produced mainly by anthropogenic activities. Exposure of animals to high environmental temperatures is mostly accompanied by unwanted acceleration of certain biochemical pathways in their cells. One of such examples is augmentation in generation of reactive oxygen species (ROS) and subsequent increase in oxidation of lipids, proteins and nucleic acids by ROS. Increase in oxidation of biomolecules leads to a state called as oxidative stress (OS). Finally, the increase in OS condition induces abnormality in physiology of animals under elevated temperature. Exposure of animals to rise in habitat temperature is found to boost the metabolism of animals and a very strong and positive correlation exists between metabolism and levels of ROS and OS. Continuous induction of OS is negatively correlated with survivability and longevity and positively correlated with ageing in animals. Thus, it can be predicted that continuous exposure of animals to acute or gradual rise in habitat temperature due to global warming may induce OS, reduced survivability and longevity in animals in general and poikilotherms in particular. A positive correlation between metabolism and temperature in general and altered O2 consumption at elevated temperature in particular could also increase the risk of experiencing OS in homeotherms. Effects of global warming on longevity of animals through increased risk of protein misfolding and disease susceptibility due to OS as the cause or effects or both also cannot be ignored. Therefore, understanding the physiological impacts of global warming in relation to

  9. Oxygen dependency of porfiromycin cytotoxicity

    International Nuclear Information System (INIS)

    Marshall, R.S.; Rauth, A.M.

    1987-01-01

    The authors determined the oxygen dependency of toxicity for the bioreductive alkylating agents mitomycin C (MMC) and porfiromycin (PM) to investigate whether the toxicities of these agents increase in the range of oxygen tensions over which cells become increasingly radioresistant. In the present work the oxygen dependency of PM in CHO cells was determined by assaying survival as a function of time of exposure to 1.0 μg/ml PM under various known levels of oxygen. While PM demonstrated preferential hypoxic cell toxicity, aerobic cell survival was reduced ten-fold after five hours of exposure. Conversely, PM toxicity after a five hour hypoxic exposure to <0.001% oxygen appeared to be greater than that observed for similar MMC exposures, suggesting that PM may be more selective than MMC in killing hypoxic rather than aerobic cells. The authors are currently investigating this preferential toxicity in two human cell lines, one of which is resistant to these agents. At present, these observations suggest that PM may be more effective than MMC at destroying tumour cells in regions of intermediate and low oxygen tensions which may survive radiotherapy, though the range of oxygen tensions which mediate toxicity is similar for both agents

  10. Smoking increases the incidence of complicated diverticular disease of the sigmoid colon.

    Science.gov (United States)

    Turunen, P; Wikström, H; Carpelan-Holmström, M; Kairaluoma, P; Kruuna, O; Scheinin, T

    2010-01-01

    The aim of this study was to establish whether smoking is associated with complicated diverticular disease and adverse outcomes of operative treatment of diverticular disease. Smoking has been associated with increased rate of perforations in acute appendicitis as well as failure of colonic anastomosis in patients resected for colonic tumours. It has also been suggested that smoking is a risk factor for complicated diverticular disease of the colon. Retrospective investigation of records of 261 patients electively operated for diverticular disease in Helsinki University Central Hospital during a period of five years. The smokers underwent sigmoidectomy at a younger age than the non-smokers (p = 0.001) and they had an increased rate of perforations (p = 0.040) and postoperative recurrent diverticulitis episodes (p = 0.019). We conclude that smoking increases the likelihood of complications in diverticulosis coli. The development of complicated disease also seems to proceed more rapidly in smokers.Key words: Sigmoid resection; laparoscopy; laparoscopic sigmoidectomy; smoking and diverticular disease; complicated diverticular disease; diverticulitis.

  11. Morphological Pulmonary Diffusion Capacity for Oxygen of Burmese Pythons (Python molurus): a Comparison of Animals in Healthy Condition and with Different Pulmonary Infections.

    Science.gov (United States)

    Starck, J M; Weimer, I; Aupperle, H; Müller, K; Marschang, R E; Kiefer, I; Pees, M

    2015-11-01

    A qualitative and quantitative morphological study of the pulmonary exchange capacity of healthy and diseased Burmese pythons (Python molurus) was carried out in order to test the hypothesis that the high morphological excess capacity for oxygen exchange in the lungs of these snakes is one of the reasons why pathological processes extend throughout the lung parenchyma and impair major parts of the lungs before clinical signs of respiratory disease become apparent. Twenty-four Burmese pythons (12 healthy and 12 diseased) were included in the study. A stereology-based approach was used to quantify the lung parenchyma using computed tomography. Light microscopy was used to quantify tissue compartments and the respiratory exchange surface, and transmission electron microscopy was used to measure the thickness of the diffusion barrier. The morphological diffusion capacity for oxygen of the lungs and the anatomical diffusion factor were calculated. The calculated anatomical diffusion capacity was compared with published values for oxygen consumption of healthy snakes, and the degree to which the exchange capacity can be obstructed before normal physiological function is impaired was estimated. Heterogeneous pulmonary infections result in graded morphological transformations of pulmonary parenchyma involving lymphocyte migration into the connective tissue and thickening of the septal connective tissue, increasing thickness of the diffusion barrier and increasing transformation of the pulmonary epithelium into a columnar pseudostratified or stratified epithelium. The transformed epithelium developed by hyperplasia of ciliated cells arising from the tip of the faveolar septa and by hyperplasia of type II pneumocytes. These results support the idea that the lungs have a remarkable overcapacity for oxygen consumption and that the development of pulmonary disease continuously reduces the capacity for oxygen consumption. However, due to the overcapacity of the lungs, this

  12. Network-based association of hypoxia-responsive genes with cardiovascular diseases

    International Nuclear Information System (INIS)

    Wang, Rui-Sheng; Oldham, William M; Loscalzo, Joseph

    2014-01-01

    Molecular oxygen is indispensable for cellular viability and function. Hypoxia is a stress condition in which oxygen demand exceeds supply. Low cellular oxygen content induces a number of molecular changes to activate regulatory pathways responsible for increasing the oxygen supply and optimizing cellular metabolism under limited oxygen conditions. Hypoxia plays critical roles in the pathobiology of many diseases, such as cancer, heart failure, myocardial ischemia, stroke, and chronic lung diseases. Although the complicated associations between hypoxia and cardiovascular (and cerebrovascular) diseases (CVD) have been recognized for some time, there are few studies that investigate their biological link from a systems biology perspective. In this study, we integrate hypoxia genes, CVD genes, and the human protein interactome in order to explore the relationship between hypoxia and cardiovascular diseases at a systems level. We show that hypoxia genes are much closer to CVD genes in the human protein interactome than that expected by chance. We also find that hypoxia genes play significant bridging roles in connecting different cardiovascular diseases. We construct a hypoxia-CVD bipartite network and find several interesting hypoxia-CVD modules with significant gene ontology similarity. Finally, we show that hypoxia genes tend to have more CVD interactors in the human interactome than in random networks of matching topology. Based on these observations, we can predict novel genes that may be associated with CVD. This network-based association study gives us a broad view of the relationships between hypoxia and cardiovascular diseases and provides new insights into the role of hypoxia in cardiovascular biology. (paper)

  13. Oxygen enhancement of groundwater using an oxygen releasing compound in a funnel-and-gate system

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, D G

    1994-01-01

    ORC is a fine white MgO[sub 2] powder treated with a patented process so that a slow, relatively steady release of oxygen occurs when the powder is in contact with water. Recent work suggests ORC could potentially be used to increase the dissolved oxygen (DO) concentration of ground water, thereby enhancing the biodegradation of dissolved phase contaminants such as benzene and toluene from gasoline spills. Field and laboratory tests were performed to evaluate the oxygen release characteristics of ORC when mixed with filter sand and exposed to groundwater from an aquifer in Ontario. Quasi steady state oxygen release rates of 0.013-0.030 and 0.030 mg O[sub 2]/d per g of ORC were determined from the column and field tests respectively. The column tests indicated that steady state oxygen release conditions from the ORC required ca 90 d after initial contact with water, but field data indicated that oxygen release rate may continue to decrease. Falling head permeameter tests indicated that a maximum drop in hydraulic conductivity occurred within the first 48 h of exposure of ORC to water. Both laboratory and field studies indicated that ORC-contacted water increased in pH. Field studies further suggested an inverse correlation between pH increases and the ability of ORC to enhance DO concentration of ground water. The use of ORC in a funnel-and-gate scheme appears to be an effective means of increasing the DO concentration in ground water, thereby stimulating the in-situ bioremediation of many organic contaminants. 30 refs., 17 figs., 12 tabs.

  14. Right ventricular oxygen supply/demand balance in exercising dogs.

    Science.gov (United States)

    Hart, B J; Bian, X; Gwirtz, P A; Setty, S; Downey, H F

    2001-08-01

    This is the first investigation of right ventricular (RV) myocardial oxygen supply/demand balance in a conscious animal. A novel technique developed in our laboratory was used to collect right coronary (RC) venous blood samples from seven instrumented, conscious dogs at rest and during graded treadmill exercise. Contributions of the RV oxygen extraction reserve and the RC flow reserve to exercise-induced increases in RV oxygen demand were measured. Strenuous exercise caused a 269% increase in RV oxygen consumption. Expanded arteriovenous oxygen content difference (A-V(Delta)O2) provided 58% of this increase in oxygen demand, and increased RC blood flow (RCBF) provided 42%. At less strenuous exercise, expanded A-V(Delta)O2 provided 60-80% of the required oxygen, and increases in RCBF were small and driven by increased aortic pressure. RC resistance fell only at strenuous exercise after the extraction reserve had been mobilized. Thus RC resistance was unaffected by large decreases in RC venous PO2 until an apparent threshold at 20 mmHg was reached. Comparisons of RV findings with published left ventricular data from exercising dogs demonstrated that increased O2 demand of the left ventricle is met primarily by increasing coronary flow, whereas increased O2 extraction makes a greater contribution to RV O2 supply.

  15. Increased Risk of Gallstone Disease Following Colectomy for Ulcerative Colitis

    DEFF Research Database (Denmark)

    Mark-Christensen, Anders; Brandsborg, Søren; Laurberg, Søren

    2017-01-01

    Objectives:Biochemical studies suggest that patients who have had a colectomy or restorative proctocolectomy with ileal pouch-anal anastomosis (IPAA) are at an increased risk of developing gallstone disease, but epidemiological studies are lacking. We evaluated the risk of gallstone disease follo...

  16. Implantable oxygen microelectrode suitable for medium-term investigations of post-surgical tissue hypoxia and changes in tumor tissue oxygenation produced by radiotherapy

    International Nuclear Information System (INIS)

    Burke, T.R.; Johnson, R.J.; Krishnamsetty, C.B.; Sako, K.; Karakousis, C.; Wojtas, F.

    1980-01-01

    Teflon-covered platinum oxygen probes were used to monitor tissue oxygen levels in post-surgical cancer patients and those treated with radiotherapy. Progressive wound healing was usually accompanied by a decrease in tissue pO2. Radiotherapy produced a slight increase in pO2 while hyperthermia effected a significant increase in the oxygen level during 100% oxygen breathing

  17. Quantification of amyloid deposits and oxygen extraction fraction in the brain with multispectral optoacoustic imaging in arcAβ mouse model of Alzheimer's disease

    Science.gov (United States)

    Ni, Ruiqing; Vaas, Markus; Rudin, Markus; Klohs, Jan

    2018-02-01

    Beta-amyloid (Aβ) deposition and vascular dysfunction are important contributors to the pathogenesis in Alzheimer's disease (AD). However, the spatio-temporal relationship between an altered oxygen metabolism and Aβ deposition in the brain remains elusive. Here we provide novel in-vivo estimates of brain Aβ load with Aβ-binding probe CRANAD-2 and measures of brain oxygen saturation by using multi-spectral optoacoustic imaging (MSOT) and perfusion imaging with magnetic resonance imaging (MRI) in arcAβ mouse models of AD. We demonstrated a decreased cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) in the cortical region of the arcAβ mice compared to wildtype littermates at 24 months. In addition, we showed proof-of-concept for the detection of cerebral Aβ deposits in brain from arcAβ mice compared to wild-type littermates.

  18. Safety and Tolerability of Hyperbaric Oxygen Therapy in Cats and Dogs.

    Science.gov (United States)

    Birnie, Gemma L; Fry, Darren R; Best, Matthew P

    2018-05-14

    This prospective clinical trial was designed to evaluate the safety of hyperbaric oxygen therapy (HBOT) in a population of cats and dogs with a variety of naturally occurring diseases. Seventy-eight dogs and twelve cats with various naturally occurring disease conditions, who had the potential to benefit from HBOT, were enrolled in the study. These patients were treated with HBOT in a monoplace hyperbaric oxygen chamber at 2 air pressure absolute for a treatment length of either 45 min or 60 min. There were 230 hyperbaric oxygen treatments performed during the study period. No major adverse effects were observed. There were 76 minor adverse effects recorded, which were not considered to be of clinical significance. Hyperbaric oxygen therapy was well tolerated and there were no major adverse effects recorded during treatment.

  19. Increased intracranial volume in Parkinson's disease

    DEFF Research Database (Denmark)

    Krabbe, Katja; Karlsborg, Merete; Hansen, Andreas

    2005-01-01

    segmentation and outlining of regions in order to identify regional volume changes that might be useful in the diagnosis of the two diseases. RESULTS: Patients with PD had significantly larger intracranial volumes (ICVs) and significantly smaller putaminal and sustantia nigra volumes than controls. MSA...... patients had significantly smaller substantia nigra and caudate volumes than controls but normal intracranial volume. In both patient groups there was a further trend towards smaller amygdala volumes. DISCUSSION: Increased ICV in PD patients is a new finding that may be explained by genetic factors...

  20. Widespread recent increases in county-level heart disease mortality across age groups.

    Science.gov (United States)

    Vaughan, Adam S; Ritchey, Matthew D; Hannan, Judy; Kramer, Michael R; Casper, Michele

    2017-12-01

    Recent national trends show decelerating declines in heart disease mortality, especially among younger adults. National trends may mask variation by geography and age. We examined recent county-level trends in heart disease mortality by age group. Using a Bayesian statistical model and National Vital Statistics Systems data, we estimated overall rates and percent change in heart disease mortality from 2010 through 2015 for four age groups (35-44, 45-54, 55-64, and 65-74 years) in 3098 US counties. Nationally, heart disease mortality declined in every age group except ages 55-64 years. County-level trends by age group showed geographically widespread increases, with 52.3%, 58.5%, 69.1%, and 42.0% of counties experiencing increases with median percent changes of 0.6%, 2.2%, 4.6%, and -1.5% for ages 35-44, 45-54, 55-64, and 65-74 years, respectively. Increases were more likely in counties with initially high heart disease mortality and outside large metropolitan areas. Recent national trends have masked local increases in heart disease mortality. These increases, especially among adults younger than age 65 years, represent challenges to communities across the country. Reversing these trends may require intensification of primary and secondary prevention-focusing policies, strategies, and interventions on younger populations, especially those living in less urban counties. Published by Elsevier Inc.

  1. Coinheritance of High Oxygen Affinity Hb Helsinki [HBB: c.248A>T; β82(EF6)Lys→Met] with Hb H Disease.

    Science.gov (United States)

    Lee, Shir-Ying; Goh, Jia-Hui; Tan, Karen M L; Liu, Te-Chih

    2017-05-01

    Hb Helsinki [HBB: c.248A>T; β82(EF6)Lys→Met] is a high oxygen affinity hemoglobin (Hb) causing polycythemia, whereas Hb H (β4) disease causes mild to severe chronic hemolytic anemia. The clinical characteristics, gel electrophoresis, capillary electrophoresis (CE) and molecular genotyping of a case of Hb Helsinki coinherited with Hb H disease in an ethnic Malay is described, illustrating the interaction between the β-globin variant and coinheritance of three α gene deletions. The proband was asymptomatic, exhibited microcytosis and a normal with Hb value.

  2. Increasing mortality burden among adults with complex congenital heart disease.

    Science.gov (United States)

    Greutmann, Matthias; Tobler, Daniel; Kovacs, Adrienne H; Greutmann-Yantiri, Mehtap; Haile, Sarah R; Held, Leonhard; Ivanov, Joan; Williams, William G; Oechslin, Erwin N; Silversides, Candice K; Colman, Jack M

    2015-01-01

    Progress in management of congenital heart disease has shifted mortality largely to adulthood. However, adult survivors with complex congenital heart disease are not cured and remain at risk of premature death as young adults. Thus, our aim was to describe the evolution and mortality risk of adult patient cohorts with complex congenital heart disease. Among 12,644 adults with congenital heart disease followed at a single center from 1980 to 2009, 176 had Eisenmenger syndrome, 76 had unrepaired cyanotic defects, 221 had atrial switch operations for transposition of the great arteries, 158 had congenitally corrected transposition of the great arteries, 227 had Fontan palliation, and 789 had repaired tetralogy of Fallot. We depict the 30-year evolution of these 6 patient cohorts, analyze survival probabilities in adulthood, and predict future number of deaths through 2029. Since 1980, there has been a steady increase in numbers of patients followed, except in cohorts with Eisenmenger syndrome and unrepaired cyanotic defects. Between 1980 and 2009, 308 patients in the study cohorts (19%) died. At the end of 2009, 85% of survivors were younger than 50 years. Survival estimates for all cohorts were markedly lower than for the general population, with important differences between cohorts. Over the upcoming two decades, we predict a substantial increase in numbers of deaths among young adults with subaortic right ventricles, Fontan palliation, and repaired tetralogy of Fallot. Anticipatory action is needed to prepare clinical services for increasing numbers of young adults at risk of dying from complex congenital heart disease. © 2014 The Authors. Congenital Heart Disease Published by Wiley Periodicals, Inc.

  3. Exogenous and endogenous angiotensin‐II decrease renal cortical oxygen tension in conscious rats by limiting renal blood flow

    Science.gov (United States)

    Emans, Tonja W.; Janssen, Ben J.; Pinkham, Maximilian I.; Ow, Connie P. C.; Evans, Roger G.; Joles, Jaap A.; Malpas, Simon C.; Krediet, C. T. Paul

    2016-01-01

    Key points Our understanding of the mechanisms underlying the role of hypoxia in the initiation and progression of renal disease remains rudimentary.We have developed a method that allows wireless measurement of renal tissue oxygen tension in unrestrained rats.This method provides stable and continuous measurements of cortical tissue oxygen tension (PO2) for more than 2 weeks and can reproducibly detect acute changes in cortical oxygenation.Exogenous angiotensin‐II reduced renal cortical tissue PO2 more than equi‐pressor doses of phenylephrine, probably because it reduced renal oxygen delivery more than did phenylephrine.Activation of the endogenous renin–angiotensin system in transgenic Cyp1a1Ren2 rats reduced cortical tissue PO2; in this model renal hypoxia precedes the development of structural pathology and can be reversed acutely by an angiotensin‐II receptor type 1 antagonist.Angiotensin‐II promotes renal hypoxia, which may in turn contribute to its pathological effects during development of chronic kidney disease. Abstract We hypothesised that both exogenous and endogenous angiotensin‐II (AngII) can decrease the partial pressure of oxygen (PO2) in the renal cortex of unrestrained rats, which might in turn contribute to the progression of chronic kidney disease. Rats were instrumented with telemeters equipped with a carbon paste electrode for continuous measurement of renal cortical tissue PO2. The method reproducibly detected acute changes in cortical oxygenation induced by systemic hyperoxia and hypoxia. In conscious rats, renal cortical PO2 was dose‐dependently reduced by intravenous AngII. Reductions in PO2 were significantly greater than those induced by equi‐pressor doses of phenylephrine. In anaesthetised rats, renal oxygen consumption was not affected, and filtration fraction was increased only in the AngII infused animals. Oxygen delivery decreased by 50% after infusion of AngII and renal blood flow (RBF) fell by 3.3 ml min−1

  4. Comparable cerebral oxygenation patterns in younger and older adults during dual-task walking with increasing load

    Directory of Open Access Journals (Sweden)

    Sarah A. Fraser

    2016-10-01

    Full Text Available The neuroimaging literature on dual-task gait clearly demonstrates increased prefrontal cortex (PFC involvement when performing a cognitive task while walking. However, findings from direct comparisons of the cerebral oxygenation patterns of younger (YA and older (OA adults during dual-task walking are mixed and it is unclear how YA and OA respond to increasing cognitive load (difficulty while walking. This functional near infra-red (fNIRS study examined cerebral oxygenation of YA and OA during self-paced dual-task treadmill walking at two different levels of cognitive load (auditory n-back. Changes in accuracy (% as well as oxygenated (HbO and deoxygenated (HbR hemoglobin were examined. For the HbO and HbR measures, eight regions of interest (ROIs were assessed: the anterior and posterior dorsolateral and ventrolateral PFC (aDLPFC, pDLPFC, aVLPFC, pVLPFC in each hemisphere. Nineteen YA (M = 21.83 yrs and 14 OA (M = 66.85 yrs walked at a self-selected pace while performing auditory 1-back and 2-back tasks. Walking alone (single motor: SM and performing the cognitive tasks alone (single cognitive: SC were compared to dual-task walking (DT = SM + SC. In the behavioural data, participants were more accurate in the lowest level of load (1-back compared to the highest (2-back; p ˂ .001. YA were more accurate than OA overall (p = .009, and particularly in the 2-back task (p = .048. In the fNIRS data, both younger and older adults had task effects (SM < DT in specific ROIs for ∆HbO (3 YA, 1 OA and ∆HbR (7 YA, 8 OA. After controlling for walk speed differences, direct comparisons between YA and OA did not reveal significant age differences, but did reveal a difficulty effect in HbO in the left aDLPFC (p = .028 and significant task effects (SM < DT in HbR for 6 of the 8 ROIs. Findings suggest that YA and OA respond similarly to manipulations of cognitive load when walking on a treadmill at a self-selected pace.

  5. [Undernutrition in chronic respiratory diseases].

    Science.gov (United States)

    Zielonka, Tadeusz M; Hadzik-Błaszczyk, Małgorzata

    2015-01-01

    Respiratory diseases such as asthma, COPD, lung cancer, infections, including also tuberculosis constitute the most frequent diseases in the word. Undernutrition frequently accompanies these diseases. Early diagnosis of malnutrition and implementation of appropriate treatment is very important. A nutritional interview and anthropometric examinations, such as body mass index, fat free mass and fat mass are used to diagnose it. Nutritional therapy affects the course and prognosis of these diseases. Diet should be individually adjusted to the calculated caloric intake that increases during exacerbation of disease, because of increased respiratory effort. Too large supply of energy can cause increase metabolism, higher oxygen consumption and PaCO2 increase each dangerous for patients with respiratory insufficiency. Main source of carbohydrates for these patients should be products with low glycemic index and with high dietary fiber contents. Large meals should be avoided since they cause rapid satiety, abdominal discomfort and have negative impact on the work of the respiratory muscles, especially of the diaphragm. Dietary supplements can be used in case of ineffectiveness of diet or for the patients with severe undernutrition.

  6. Preliminary Study of Oxygen-Enhanced Longitudinal Relaxation in MRI: A Potential Novel Biomarker of Oxygenation Changes in Solid Tumors

    International Nuclear Information System (INIS)

    O'Connor, James P.B.; Naish, Josephine H.; Parker, Geoff J.M.; Waterton, John C.; Watson, Yvonne; Jayson, Gordon C.; Buonaccorsi, Giovanni A.; Cheung, Sue; Buckley, David L.; McGrath, Deirdre M.; West, Catharine M.L.; Davidson, Susan E.; Roberts, Caleb; Mills, Samantha J.; Mitchell, Claire L.; Hope, Lynn; Ton, N. Chan; Jackson, Alan

    2009-01-01

    Purpose: There is considerable interest in developing non-invasive methods of mapping tumor hypoxia. Changes in tissue oxygen concentration produce proportional changes in the magnetic resonance imaging (MRI) longitudinal relaxation rate (R 1 ). This technique has been used previously to evaluate oxygen delivery to healthy tissues and is distinct from blood oxygenation level-dependent (BOLD) imaging. Here we report application of this method to detect alteration in tumor oxygenation status. Methods and materials: Ten patients with advanced cancer of the abdomen and pelvis underwent serial measurement of tumor R 1 while breathing medical air (21% oxygen) followed by 100% oxygen (oxygen-enhanced MRI). Gadolinium-based dynamic contrast-enhanced MRI was then performed to compare the spatial distribution of perfusion with that of oxygen-induced ΔR 1 . Results: ΔR 1 showed significant increases of 0.021 to 0.058 s -1 in eight patients with either locally recurrent tumor from cervical and hepatocellular carcinomas or metastases from ovarian and colorectal carcinomas. In general, there was congruency between perfusion and oxygen concentration. However, regional mismatch was observed in some tumor cores. Here, moderate gadolinium uptake (consistent with moderate perfusion) was associated with low area under the ΔR 1 curve (consistent with minimal increase in oxygen concentration). Conclusions: These results provide evidence that oxygen-enhanced longitudinal relaxation can monitor changes in tumor oxygen concentration. The technique shows promise in identifying hypoxic regions within tumors and may enable spatial mapping of change in tumor oxygen concentration.

  7. Reversible effects of oxygen partial pressure on genes associated with placental angiogenesis and differentiation in primary-term cytotrophoblast cell culture.

    Science.gov (United States)

    Debiève, F; Depoix, C; Gruson, D; Hubinont, C

    2013-09-01

    Timely regulated changes in oxygen partial pressure are important for placental formation. Disturbances could be responsible for pregnancy-related diseases like preeclampsia and intrauterine growth restriction. We aimed to (i) determine the effect of oxygen partial pressure on cytotrophoblast differentiation; (ii) measure mRNA expression and protein secretion from genes associated with placental angiogenesis; and (iii) determine the reversibility of these effects at different oxygen partial pressures. Term cytotrophoblasts were incubated at 21% and 2.5% O2 for 96 hr, or were switched between the two oxygen concentrations after 48 hr. Real-time PCR and enzyme-linked immunosorbent assays (ELISAs) were used to evaluate cell fusion and differentiation, measuring transcript levels for those genes involved in cell fusion and placental angiogenesis, including VEGF, PlGF, VEGFR1, sVEGFR1, sENG, INHA, and GCM1. Cytotrophoblasts underwent fusion and differentiation in 2.5% O2 . PlGF expression was inhibited while sVEGFR1 expression increased. VEGF and sENG mRNA expressions increased in 2.5% compared to 21% O2 , but no protein was detected in the cell supernatants. Finally, GCM1 mRNA expression increased during trophoblast differentiation at 21% O2 , but was inhibited at 2.5% O2 . These mRNA expression effects were reversed by returning the cells to 21% O2 . Thus, low-oxygen partial pressure does not inhibit term-cytotrophoblast cell fusion and differentiation in vitro. Lowering the oxygen partial pressure from 21% to 2.5% caused normal-term trophoblasts to reversibly modify their expression of genes associated with placental angiogenesis. This suggests that modifications observed in pregnancy diseases such as preeclampsia or growth retardation are probably due to an extrinsic effect on trophoblasts. Copyright © 2013 Wiley Periodicals, Inc.

  8. A blood-oxygenation-dependent increase in blood viscosity due to a static magnetic field

    International Nuclear Information System (INIS)

    Yamamoto, Toru; Nagayama, Yuki; Tamura, Mamoru

    2004-01-01

    As the magnetic field of widely used MR scanners is one of the strongest magnetic fields to which people are exposed, the biological influence of the static magnetic field of MR scanners is of great concern. One magnetic interaction in biological subjects is the magnetic torque on the magnetic moment induced by biomagnetic substances. The red blood cell is a major biomagnetic substance, and the blood flow may be influenced by the magnetic field. However, the underlying mechanisms have been poorly understood. To examine the mechanisms of the magnetic influence on blood viscosity, we measured the time for blood to fall through a glass capillary inside and outside a 1.5 T MR scanner. Our in vitro results showed that the blood viscosity significantly increased in a 1.5 T MR scanner, and also clarified the mechanism of the interaction between red blood cells and the external magnetic field. Notably, the blood viscosity increased depending on blood oxygenation and the shear rate of the blood flow. Thus, our findings suggest that even a 1.5 T magnetic field may modulate blood flow

  9. Validation of a novel device to objectively measure adherence to long-term oxygen therapy

    Directory of Open Access Journals (Sweden)

    Sun-Kai V Lin

    2008-10-01

    Full Text Available Sun-Kai V Lin1, Daniel K Bogen1, Samuel T Kuna2,31Department of Bioengineering; 2Department of Medicine, Pulmonary, Allergy and Critical Care Division, and Center for Sleep and Respiratory Neurobiology, University of Pennsylvania, Pennsylvania, USA; 3Department of Medicine, Philadelphia Veterans Affairs Medical Center Philadelphia, Pennsylvania, USARationale: We have developed a novel oxygen adherence monitor that objectively measures patient use of long-term oxygen therapy. The monitor attaches to the oxygen source and detects whether or not the patient is wearing the nasal cannula.Objective: The study’s purpose was to validate the monitor’s performance in patients with chronic obstructive pulmonary disease during wakefulness and sleep.Methods: Ten adult males with stable chronic obstructive pulmonary disease (mean ± SD FEV1 37.7 ± 14.9% of predicted on long-term continuous oxygen therapy were tested in a sleep laboratory over a 12–13 hour period that included an overnight polysomnogram.Measurements: The monitor’s measurements were obtained at 4-minute intervals and compared to actual oxygen use determined by review of time-synchronized video recordings.Main results: The monitor made 1504/1888 (79.7% correct detections (unprocessed data across all participants: 957/1,118 (85.6% correct detections during wakefulness and 546/770 (70.9% during sleep. All errors were false negatives, ie, the monitor failed to detect that the participant was actually wearing the cannula. Application of a majority-vote filter to the raw data improved overall detection accuracy to 84.9%.Conclusions: The results demonstrate the monitor’s ability to objectively measure whether or not men with chronic obstructive pulmonary disease are receiving their oxygen treatment. The ability to objectively measure oxygen delivery, rather than oxygen expended, may help improve the management of patients on long-term oxygen therapy.Keywords: chronic obstructive pulmonary

  10. Investigation of ferromagnetism in oxygen deficient hafnium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Erwin; Kurian, Jose; Krockenberger, Yoshiharu; Alff, Lambert [Institut fuer Materialwissenschaft, TU Darmstadt (Germany); Suter, Andreas [PSI, Villingen (Switzerland); Wilhelm, Fabrice; Rogalev, Andrei [ESRF, Grenoble (France)

    2008-07-01

    Oxygen deficient thin films of hafnium oxide were grown on single crystal r-cut and c-cut sapphire by reactive molecular beam epitaxy. RF-activated oxygen was used for the in situ oxidation of hafnium oxide thin films. Oxidation conditions were varied substantially in order to create oxygen deficiency in hafnium oxide films intentionally. The films were characterized by X-ray and magnetic measurements. X-ray diffraction studies show an increase in lattice parameter with increasing oxygen deficiency. Oxygen deficient hafnium oxide thin films also showed a decreasing bandgap with increase in oxygen deficiency. The magnetisation studies carried out with SQUID did not show any sign of ferromagnetism in the whole oxygen deficiency range. X-ray magnetic circular dichroism measurements also confirmed the absence of ferromagnetism in oxygen deficient hafnium oxide thin films.

  11. Neuroprotection of hyperbaric oxygen therapy in sub-acute traumatic brain injury: not by immediately improving cerebral oxygen saturation and oxygen partial pressure.

    Science.gov (United States)

    Zhou, Bao-Chun; Liu, Li-Jun; Liu, Bing

    2016-09-01

    Although hyperbaric oxygen (HBO) therapy can promote the recovery of neural function in patients who have suffered traumatic brain injury (TBI), the underlying mechanism is unclear. We hypothesized that hyperbaric oxygen treatment plays a neuroprotective role in TBI by increasing regional transcranial oxygen saturation (rSO 2 ) and oxygen partial pressure (PaO 2 ). To test this idea, we compared two groups: a control group with 20 healthy people and a treatment group with 40 TBI patients. The 40 patients were given 100% oxygen of HBO for 90 minutes. Changes in rSO 2 were measured. The controls were also examined for rSO 2 and PaO 2 , but received no treatment. rSO 2 levels in the patients did not differ significantly after treatment, but levels before and after treatment were significantly lower than those in the control group. PaO 2 levels were significantly decreased after the 30-minute HBO treatment. Our findings suggest that there is a disorder of oxygen metabolism in patients with sub-acute TBI. HBO does not immediately affect cerebral oxygen metabolism, and the underlying mechanism still needs to be studied in depth.

  12. The Effect of Oxygen on Bile Resistance in Listeria monocytogenes

    Science.gov (United States)

    Wright, Morgan L; Pendarvis, Ken; Nanduri, Bindu; Edelmann, Mariola J; Jenkins, Haley N; Reddy, Joseph S; Wilson, Jessica G; Ding, Xuan; Broadway, Paul R; Ammari, Mais G; Paul, Oindrila; Roberts, Brandy; Donaldson, Janet R

    2016-01-01

    Listeria monocytogenes is a Gram-positive facultative anaerobe that is the causative agent of the disease listeriosis. The infectious ability of this bacterium is dependent upon resistance to stressors encountered within the gastrointestinal tract, including bile. Previous studies have indicated bile salt hydrolase activity increases under anaerobic conditions, suggesting anaerobic conditions influence stress responses. Therefore, the goal of this study was to determine if reduced oxygen availability increased bile resistance of L. monocytogenes. Four strains representing three serovars were evaluated for changes in viability and proteome expression following exposure to bile in aerobic or anaerobic conditions. Viability for F2365 (serovar 4b), EGD-e (serovar 1/2a), and 10403S (serovar 1/2a) increased following exposure to 10% porcine bile under anaerobic conditions (P 0.05) in bile resistance between aerobic and anaerobic conditions, indicating that oxygen availability does not influence resistance in this strain. The proteomic analysis indicated F2365 and EGD-e had an increased expression of proteins associated with cell envelope and membrane bioenergetics under anaerobic conditions, including thioredoxin-disulfide reductase and cell division proteins. Interestingly, HCC23 had an increase in several dehydrogenases following exposure to bile under aerobic conditions, suggesting that the NADH:NAD+ is altered and may impact bile resistance. Variations were observed in the expression of the cell shape proteins between strains, which corresponded to morphological differences observed by scanning electron microscopy. These data indicate that oxygen availability influences bile resistance. Further research is needed to decipher how these changes in metabolism impact pathogenicity in vivo and also the impact that this has on susceptibility of a host to listeriosis. PMID:27274623

  13. Recombination and detachment in oxygen discharges: the role of metastable oxygen molecules

    International Nuclear Information System (INIS)

    Gudmundsson, J T

    2004-01-01

    A global (volume averaged) model of oxygen discharges is used to study the transition from a recombination dominated discharge to a detachment dominated discharge. The model includes the metastable oxygen molecules O 2 (a 1 Δ g ) and O 2 (b 1 Σ g + ) and the three Herzberg states O 2 (A 3 Σ u + , A' 3 Δ u , c 1 Σ u - ). Dissociative attachment of the oxygen molecule in the ground state O 2 ( 3 Σ g - ) and the metastable oxygen molecule O 2 (a 1 Δ g ) are the dominating channels for creation of the negative oxygen ion O - . At high pressures, dissociative attachment of the Herzberg states contributes significantly to the creation of the negative oxygen ion, O - . The detachment by a collision of the metastable oxygen molecule O 2 (b 1 Σ g + ) with the oxygen ion, O - , is a significant loss process for the O - at pressures above 10 mTorr. Its contribution to the loss is more significant at a lower applied power, but at the higher pressures it is always significant. Detachment by collision with O( 3 P) is also an important loss mechanism for O - . We find that ion-ion recombination is the dominating loss process for negative ions in oxygen discharges at low pressures and calculate the critical pressure where the contributions of recombination reactions and detachment reactions are equal. This critical pressure depends on the applied power, increases with applied power and is in the range 5-14 mTorr in the pressure and power range investigated

  14. Oxygen-enhanced magnetic resonance ventilation imaging of lung

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Chen Qun; Hatabu, Hiroto

    2001-01-01

    The oxygen-enhanced magnetic resonance (MR) ventilation imaging is a new technique, and the full extent of its physiological significance has not been elucidated. This review article includes background on (1) respiratory physiology; (2) mechanism and optimization of oxygen-enhanced MR imaging technique; (3) recent applications in animal and human models; and (4) merits and demerits of the technique in comparison with hyperpolarized noble gas MR ventilation imaging. Application of oxygen-enhanced MR ventilation imaging to patients with pulmonary diseases has been very limited. However, we believe that further basic studies, as well as clinical applications of this new technique will define the real significance of oxygen-enhanced MR ventilation imaging in the future of pulmonary functional imaging and its usefulness for diagnostic radiology

  15. Oxygen discharge and post-discharge kinetics experiments and modeling for the electric oxygen-iodine laser system.

    Science.gov (United States)

    Palla, A D; Zimmerman, J W; Woodard, B S; Carroll, D L; Verdeyen, J T; Lim, T C; Solomon, W C

    2007-07-26

    Laser oscillation at 1315 nm on the I(2P1/2)-->I(2P3/2) transition of atomic iodine has been obtained by a near resonant energy transfer from O2(a1Delta) produced using a low-pressure oxygen/helium/nitric oxide discharge. In the electric discharge oxygen-iodine laser (ElectricOIL) the discharge production of atomic oxygen, ozone, and other excited species adds levels of complexity to the singlet oxygen generator (SOG) kinetics which are not encountered in a classic purely chemical O2(a1Delta) generation system. The advanced model BLAZE-IV has been introduced to study the energy-transfer laser system dynamics and kinetics. Levels of singlet oxygen, oxygen atoms, and ozone are measured experimentally and compared with calculations. The new BLAZE-IV model is in reasonable agreement with O3, O atom, and gas temperature measurements but is under-predicting the increase in O2(a1Delta) concentration resulting from the presence of NO in the discharge and under-predicting the O2(b1Sigma) concentrations. A key conclusion is that the removal of oxygen atoms by NOX species leads to a significant increase in O2(a1Delta) concentrations downstream of the discharge in part via a recycling process; however, there are still some important processes related to the NOX discharge kinetics that are missing from the present modeling. Further, the removal of oxygen atoms dramatically inhibits the production of ozone in the downstream kinetics.

  16. Development of pulmonary vascular response to oxygen

    International Nuclear Information System (INIS)

    Morin, F.C. III; Egan, E.A.; Ferguson, W.; Lundgren, C.E.

    1988-01-01

    The ability of the pulmonary circulation of the fetal lamb to respond to a rise in oxygen tension was studied from 94 to 146 days of gestation. The unanesthetized ewe breathed room air at normal atmospheric pressure, followed by 100% oxygen at three atmospheres absolute pressure in a hyperbaric chamber. In eleven near-term lambs, fetal arterial oxygen tension (Pa O 2 ) increased from 25 to 55 Torr, which increased the proportion or right ventricular output distributed to the fetal lungs from 8 to 59%. In five very immature lambs fetal Pa O 2 increased from 27 to 174 Torr, but the proportion of right ventricular output distributed to the lung did not change. In five of the near-term lambs, pulmonary blood flow was measured. For each measurement of the distribution of blood flow, approximately 8 x 10 5 spheres of 15-μm diameter, labeled with either 153 Gd, 113 Sn, 103 Ru, 95 Nb, or 46 Sc were injected. It increased from 34 to 298 ml · kg fetal wt -1 · min -1 , an 8.8-fold increase. The authors conclude that the pulmonary circulation of the fetal lamb does not respond to an increase in oxygen tension before 101 days of gestation; however, near term an increase in oxygen tension alone can induce the entire increase in pulmonary blood flow that normally occurs after the onset of breathing at birth

  17. Improvement of AD Biosynthesis Response to Enhanced Oxygen Transfer by Oxygen Vectors in Mycobacterium neoaurum TCCC 11979.

    Science.gov (United States)

    Su, Liqiu; Shen, Yanbing; Gao, Tian; Luo, Jianmei; Wang, Min

    2017-08-01

    In steroid biotransformation, soybean oil can improve the productivity of steroids by increasing substrate solubility and strengthen the cell membrane permeability. However, little is known of its role as oxygen carrier and its mechanism of promoting the steroid biotransformation. In this work, soybean oil used as oxygen vector for the enhancement of androst-4-ene-3,17-dione (AD) production by Mycobacterium neoaurum TCCC 11979 (MNR) was investigated. Upon the addition of 16% (v/v) soybean oil, the volumetric oxygen transfer coefficient (K L a) value increased by 44%, and the peak molar yield of AD (55.76%) was achieved. Analysis of intracellular cofactor levels showed high NAD + , ATP level, and a low NADH/NAD + ratio. Meanwhile, the two key enzymes of the tricarboxylic acid (TCA) cycle, namely, isocitrate dehydrogenase and α-ketoglutarate dehydrogenase, were upregulated after incubation with soybean oil. These enhancements induced by the increasing of oxygen supply showed positive effects on phytosterol (PS) bioconversion. Results could contribute to the understanding of effects of soybean oil as oxygen vector on steroid biotransformation and provided a convenient method for enhancing the efficiency of aerobic steroid biocatalysis.

  18. Response profiles of oxygen uptake efficiency during exercise in healthy children

    NARCIS (Netherlands)

    Bongers, Bart C.; Hulzebos, Erik H J; Helbing, Willem A.; Ten Harkel, Arend D J; Van Brussel, Marco; Takken, Tim

    2015-01-01

    Background Oxygen uptake efficiency (OUE), the relation between oxygen uptake (VO2) and minute ventilation (VE), differs between healthy children and children with heart disease. This study aimed to investigate the normal response profiles of OUE during a progressive cardiopulmonary exercise test.

  19. Dynamic oxygen-enhanced MRI of cerebrospinal fluid.

    Directory of Open Access Journals (Sweden)

    Taha M Mehemed

    Full Text Available Oxygen causes an increase in the longitudinal relaxation rate of tissues through its T1-shortening effect owing to its paramagnetic properties. Due to such effects, MRI has been used to study oxygen-related signal intensity changes in various body parts including cerebrospinal fluid (CSF space. Oxygen enhancement of CSF has been mainly studied using MRI sequences with relatively longer time resolution such as FLAIR, and T1 value calculation. In this study, fifteen healthy volunteers were scanned using fast advanced spin echo MRI sequence with and without inversion recovery pulse in order to dynamically track oxygen enhancement of CSF. We also focused on the differences of oxygen enhancement at sulcal and ventricular CSF. Our results revealed that CSF signal after administration of oxygen shows rapid signal increase in both sulcal CSF and ventricular CSF on both sequences, with statistically significant predominant increase in sulcal CSF compared with ventricular CSF. CSF is traditionally thought to mainly form from the choroid plexus in the ventricles and is absorbed at the arachnoid villi, however, it is also believed that cerebral arterioles contribute to the production and absorption of CSF, and controversy remains in terms of the precise mechanism. Our results demonstrated rapid oxygen enhancement in sulcal CSF, which may suggest inhaled oxygen may diffuse into sulcal CSF space rapidly probably due to the abundance of pial arterioles on the brain sulci.

  20. Clinical oxygen enhancement ratio of tumors in carbon ion radiotherapy: the influence of local oxygenation changes

    DEFF Research Database (Denmark)

    Antonovic, Laura; Lindblom, Emely; Dasu, Alexandru

    2014-01-01

    , using the repairable–conditionally repairable (RCR) damage model with parameters for human salivary gland tumor cells. The clinical oxygen enhancement ratio (OER) was defined as the ratio of doses required for a tumor control probability of 50% for hypoxic and well-oxygenated tumors. The resulting OER...... was well above unity for all fractionations. For the hypoxic tumor, the tumor control probability was considerably higher if LOCs were assumed, rather than static oxygenation. The beneficial effect of LOCs increased with the number of fractions. However, for very low fraction doses, the improvement related...... to LOCs did not compensate for the increase in total dose required for tumor control. In conclusion, our results suggest that hypoxia can influence the outcome of carbon ion radiotherapy because of the non-negligible oxygen effect at the low LETs in the SOBP. However, if LOCs occur, a relatively high...

  1. Spontaneous calcium waves in Bergman glia increase with age and hypoxia and may reduce tissue oxygen

    DEFF Research Database (Denmark)

    Mathiesen, Claus; Brazhe, Alexey; Thomsen, Kirsten Joan

    2013-01-01

    Glial calcium (Ca(2+)) waves constitute a means to spread signals between glial cells and to neighboring neurons and blood vessels. These waves occur spontaneously in Bergmann glia (BG) of the mouse cerebellar cortex in vivo. Here, we tested three hypotheses: (1) aging and reduced blood oxygen sa...... activity during aging, as well as low resting brain oxygen tension, suggests a relationship between glial waves, brain energy homeostasis, and pathology.......Glial calcium (Ca(2+)) waves constitute a means to spread signals between glial cells and to neighboring neurons and blood vessels. These waves occur spontaneously in Bergmann glia (BG) of the mouse cerebellar cortex in vivo. Here, we tested three hypotheses: (1) aging and reduced blood oxygen...... saturation alters wave activity; (2) glial Ca(2+) waves change cerebral oxygen metabolism; and (3) neuronal and glial wave activity is correlated. We used two-photon microscopy in the cerebellar cortexes of adult (8- to 15-week-old) and aging (48- to 80-week-old) ketamine-anesthetized mice after bolus...

  2. Oxygen--a limiting factor for brain recovery.

    Science.gov (United States)

    Hadanny, Amir; Efrati, Shai

    2015-09-01

    Effective brain metabolism is highly dependent on a narrow therapeutic window of oxygen. In major insults to the brain (e.g., intracerebral hemorrhage), a slight decrease in oxygen supply, as occurs in a hypobaric environment at high altitude, has devastating effects on the injured brain tissue. Conversely, increasing brain oxygenation, by the use of hyperbaric oxygen therapy, can improve brain metabolism and its dependent regenerative processes.

  3. Oxygen - a limiting factor for brain recovery

    OpenAIRE

    Hadanny, Amir; Efrati, Shai

    2015-01-01

    Effective brain metabolism is highly dependent on a narrow therapeutic window of oxygen. In major insults to the brain (e.g., intracerebral hemorrhage), a slight decrease in oxygen supply, as occurs in a hypobaric environment at high altitude, has devastating effects on the injured brain tissue. Conversely, increasing brain oxygenation, by the use of hyperbaric oxygen therapy, can improve brain metabolism and its dependent regenerative processes.

  4. Effects of Hyperbaric Oxygen Treatment on Renal System.

    Science.gov (United States)

    Tezcan, Orhan; Caliskan, Ahmet; Demirtas, Sinan; Yavuz, Celal; Kuyumcu, Mahir; Nergiz, Yusuf; Guzel, Abdulmenap; Karahan, Oguz; Ari, Seyhmus; Soker, Sevda; Yalinkilic, Ibrahim; Turkdogan, Kenan Ahmet

    2017-01-01

    Hyperbaric oxygen (HBO) treatment is steadily increasing as a therapeutic modality for various types of diseases. Although good clinical outcomes were reported with HBO treatment for various diseases, the multisystemic effects of this modality are still unclear. This study aimed to investigate the renal effects of HBO experimentally. Fourteen New Zealand White rabbits were divided into 2 groups randomly as the control group and the study group. The study group received HBO treatment for 28 days (100% oxygen at 2.5 atmospheres for 90 minutes daily) and the control group was used to obtain normal renal tissue of the animal genus. After the intervention period, venous blood samples were obtained, and renal tissue samples were harvested for comparisons. Normal histological morphology was determined with Masson trichrome staining and periodic acid-Schiff staining in the control group. Atrophic glomerular structures, vacuolated tubule cells, and degeneration were detected in the renal samples of the study group with Masson trichrome staining. Additionally, flattening was observed on the brush borders of the proximal tubules, and tubular dilatation was visualized with periodic acid-Schiff staining. The histopathologic disruption of renal morphology was verified with detection of significantly elevated kidney function laboratory biomarkers in the study group. Our findings suggests that HBO has adverse effects on renal glomerulus and proximal tubules. However, the functional effects of this alteration should be investigated with further studies.

  5. Hyperbaric oxygen upregulates cochlear constitutive nitric oxide synthase

    Directory of Open Access Journals (Sweden)

    Kao Ming-Ching

    2011-02-01

    Full Text Available Abstract Background Hyperbaric oxygen therapy (HBOT is a known adjuvant for treating ischemia-related inner ear diseases. Controversies still exist in the role of HBOT in cochlear diseases. Few studies to date have investigated the cellular changes that occur in inner ears after HBOT. Nitric oxide, which is synthesized by nitric oxide synthase (NOS, is an important signaling molecule in cochlear physiology and pathology. Here we investigated the effects of hyperbaric oxygen on eardrum morphology, cochlear function and expression of NOS isoforms in cochlear substructures after repetitive HBOT in guinea pigs. Results Minor changes in the eardrum were observed after repetitive HBOT, which did not result in a significant hearing threshold shift by tone burst auditory brainstem responses. A differential effect of HBOT on the expression of NOS isoforms was identified. Upregulation of constitutive NOS (nNOS and eNOS was found in the substructures of the cochlea after HBOT, but inducible NOS was not found in normal or HBOT animals, as shown by immunohistochemistry. There was no obvious DNA fragmentation present in this HBOT animal model. Conclusions The present evidence indicates that the customary HBOT protocol may increase constitutive NOS expression but such upregulation did not cause cell death in the treated cochlea. The cochlear morphology and auditory function are consequently not changed through the protocol.

  6. Oxygen and disorder effect in the magnetic properties of manganite films

    Energy Technology Data Exchange (ETDEWEB)

    Sirena, M. E-mail: sirenam@ib.cnea.gov.ar; Haberkorn, N.; Granada, M.; Steren, L.B.; Guimpel, J

    2004-05-01

    We have made a systematic study of the magnetic properties of low doped manganite films submitted to different oxygenation treatments. We have found that oxygenation dynamics depends critically of the strain field in the sample. The T{sub C} and the Mr increase as the oxygen content is increased. A decrease of the coercive field of the LSMO-STO films was observed, indicating that annealing treatments increase the oxygen content reducing oxygen vacancies.

  7. Oxygen and disorder effect in the magnetic properties of manganite films

    International Nuclear Information System (INIS)

    Sirena, M.; Haberkorn, N.; Granada, M.; Steren, L.B.; Guimpel, J.

    2004-01-01

    We have made a systematic study of the magnetic properties of low doped manganite films submitted to different oxygenation treatments. We have found that oxygenation dynamics depends critically of the strain field in the sample. The T C and the Mr increase as the oxygen content is increased. A decrease of the coercive field of the LSMO-STO films was observed, indicating that annealing treatments increase the oxygen content reducing oxygen vacancies

  8. Oxygen microclusters in Czochralski-grown Si probed by positron annihilation

    International Nuclear Information System (INIS)

    Uedono, Akira; Wei Long; Tanigawa, Shoichiro; Kawano, Takao; Ikari, Atsushi; Kawakami, Kazuto; Itoh, Hisayoshi.

    1994-01-01

    Trapping of positrons by oxygen microclusters in Czochralski-grown Si was studied. Lifetime spectra of positrons were measured for Si specimens annealed in the temperature range between 450degC and 1000degC. Positrons were found to be trapped by oxygen microclusters, and the trapping rate of positrons into such defects increased with increasing annealing temperature. In order to investigate the clustering behaviors of oxygen atoms in more derail, vacancy-oxygen complexes, V n O m (n,m=1,2, ···), were introduced by 3MeV electron irradiation. The concentration of monovacancy-oxygen complexes VO m (m=2,3, ···) increased with increasing annealing temperature. These facts were attributed that the oxygen microclusters, O m , were introduced by annealing above 700degC. (author)

  9. Kinetics of oxygen species in an electrically driven singlet oxygen generator

    International Nuclear Information System (INIS)

    Azyazov, V.N.; Torbin, A.P.; Pershin, A.A.; Mikheyev, P.A.; Heaven, M.C.

    2015-01-01

    Highlights: • Vibrational excitation of O_3 increases the rate constant for O_3 + O_2(a) → 2O_2(X) + O. • Vibrationally excited O_3 is produced by the O + O_2(X) + M → O_3 + M reaction. • Ozone concentrations are impacted by the reactions of vibrationally excited O_3. • Relevant to ozone concentrations in oxygen discharges and the upper atmosphere. - Abstract: The kinetics of oxygen species in the gaseous medium of a discharge singlet oxygen generator has been revisited. Vibrationally excited ozone O_3(υ) formed in O + O_2 recombination is thought to be a significant agent in the deactivation of singlet oxygen O_2(a"1Δ), oxygen atom removal and ozone formation. It is shown that the process O_3(υ ⩾ 2) + O_2(a"1Δ) → 2O_2 + O is the main O_2(a"1Δ) deactivation channel in the post-discharge zone. If no measures are taken to decrease the oxygen atom concentration, the contribution of this process to the overall O_2(a"1Δ) removal is significant, even in the discharge zone. A simplified model for the kinetics of vibrationally excited ozone is proposed. Calculations based on this model yield results that are in good agreement with the experimental data.

  10. Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching.

    Science.gov (United States)

    Vega Thurber, Rebecca L; Burkepile, Deron E; Fuchs, Corinne; Shantz, Andrew A; McMinds, Ryan; Zaneveld, Jesse R

    2014-02-01

    Nutrient loading is one of the strongest drivers of marine habitat degradation. Yet, the link between nutrients and disease epizootics in marine organisms is often tenuous and supported only by correlative data. Here, we present experimental evidence that chronic nutrient exposure leads to increases in both disease prevalence and severity and coral bleaching in scleractinian corals, the major habitat-forming organisms in tropical reefs. Over 3 years, from June 2009 to June 2012, we continuously exposed areas of a coral reef to elevated levels of nitrogen and phosphorus. At the termination of the enrichment, we surveyed over 1200 scleractinian corals for signs of disease or bleaching. Siderastrea siderea corals within enrichment plots had a twofold increase in both the prevalence and severity of disease compared with corals in unenriched control plots. In addition, elevated nutrient loading increased coral bleaching; Agaricia spp. of corals exposed to nutrients suffered a 3.5-fold increase in bleaching frequency relative to control corals, providing empirical support for a hypothesized link between nutrient loading and bleaching-induced coral declines. However, 1 year later, after nutrient enrichment had been terminated for 10 months, there were no differences in coral disease or coral bleaching prevalence between the previously enriched and control treatments. Given that our experimental enrichments were well within the ranges of ambient nutrient concentrations found on many degraded reefs worldwide, these data provide strong empirical support to the idea that coastal nutrient loading is one of the major factors contributing to the increasing levels of both coral disease and coral bleaching. Yet, these data also suggest that simple improvements to water quality may be an effective way to mitigate some coral disease epizootics and the corresponding loss of coral cover in the future. © 2013 John Wiley & Sons Ltd.

  11. The influence of endogenously generated reactive oxygen species on the inotropic and chronotropic effects of adrenoceptor and ET-receptor stimulation

    NARCIS (Netherlands)

    Sand, Carsten; Peters, Stephan L. M.; Pfaffendorf, Martin; van Zwieten, Pieter A.

    2003-01-01

    Reactive oxygen species (ROS) play a role in cardiovascular diseases such as heart failure and hypertension. Furthermore, increasing evidence has accumulated suggesting that ROS can also be formed subsequent to the stimulation of various receptors, thus functioning as second messengers. The

  12. Oxygen, nitric oxide and articular cartilage

    Directory of Open Access Journals (Sweden)

    B Fermor

    2007-04-01

    Full Text Available Molecular oxygen is required for the production of nitric oxide (NO, a pro-inflammatory mediator that is associated with osteoarthritis and rheumatoid arthritis. To date there has been little consideration of the role of oxygen tension in the regulation of nitric oxide production associated with arthritis. Oxygen tension may be particularly relevant to articular cartilage since it is avascular and therefore exists at a reduced oxygen tension. The superficial zone exists at approximately 6% O2, while the deep zone exists at less than 1% O2. Furthermore, oxygen tension can alter matrix synthesis, and the material properties of articular cartilage in vitro.The increase in nitric oxide associated with arthritis can be caused by pro-inflammatory cytokines and mechanical stress. Oxygen tension significantly alters endogenous NO production in articular cartilage, as well as the stimulation of NO in response to both mechanical loading and pro-inflammatory cytokines. Mechanical loading and pro-inflammatory cytokines also increase the production of prostaglandin E2 (PGE2. There is a complex interaction between NO and PGE2, and oxygen tension can alter this interaction. These findings suggest that the relatively low levels of oxygen within the joint may have significant influences on the metabolic activity, and inflammatory response of cartilage as compared to ambient levels. A better understanding of the role of oxygen in the production of inflammatory mediators in response to mechanical loading, or pro-inflammatory cytokines, may aid in the development of strategies for therapeutic intervention in arthritis.

  13. Increasing arterial oxygen partial pressure during cardiopulmonary resuscitation is associated with improved rates of hospital admission.

    Science.gov (United States)

    Spindelboeck, Walter; Schindler, Otmar; Moser, Adrian; Hausler, Florian; Wallner, Simon; Strasser, Christa; Haas, Josef; Gemes, Geza; Prause, Gerhard

    2013-06-01

    As recent clinical data suggest a harmful effect of arterial hyperoxia on patients after resuscitation from cardiac arrest (CA), we aimed to investigate this association during cardiopulmonary resuscitation (CPR), the earliest and one of the most crucial phases of recirculation. We analysed 1015 patients who from 2003 to 2010 underwent out-of-hospital CPR administered by emergency medical services serving 300,000 inhabitants. Inclusion criteria for further analysis were nontraumatic background of CA and patients >18 years of age. One hundred and forty-five arterial blood gas analyses including oxygen partial pressure (paO2) measurement were obtained during CPR. We observed a highly significant increase in hospital admission rates associated with increases in paO2 in steps of 100 mmHg (13.3 kPa). Subsequently, data were clustered according to previously described cutoffs (≤ 60 mmHg [8 kPa

  14. Combined Increases in Mitochondrial Cooperation and Oxygen Photoreduction Compensate for Deficiency in Cyclic Electron Flow in Chlamydomonas reinhardtii[W][OPEN

    Science.gov (United States)

    Dang, Kieu-Van; Plet, Julie; Tolleter, Dimitri; Jokel, Martina; Cuiné, Stéphan; Carrier, Patrick; Auroy, Pascaline; Richaud, Pierre; Johnson, Xenie; Alric, Jean; Allahverdiyeva, Yagut; Peltier, Gilles

    2014-01-01

    During oxygenic photosynthesis, metabolic reactions of CO2 fixation require more ATP than is supplied by the linear electron flow operating from photosystem II to photosystem I (PSI). Different mechanisms, such as cyclic electron flow (CEF) around PSI, have been proposed to participate in reequilibrating the ATP/NADPH balance. To determine the contribution of CEF to microalgal biomass productivity, here, we studied photosynthesis and growth performances of a knockout Chlamydomonas reinhardtii mutant (pgrl1) deficient in PROTON GRADIENT REGULATION LIKE1 (PGRL1)–mediated CEF. Steady state biomass productivity of the pgrl1 mutant, measured in photobioreactors operated as turbidostats, was similar to its wild-type progenitor under a wide range of illumination and CO2 concentrations. Several changes were observed in pgrl1, including higher sensitivity of photosynthesis to mitochondrial inhibitors, increased light-dependent O2 uptake, and increased amounts of flavodiiron (FLV) proteins. We conclude that a combination of mitochondrial cooperation and oxygen photoreduction downstream of PSI (Mehler reactions) supplies extra ATP for photosynthesis in the pgrl1 mutant, resulting in normal biomass productivity under steady state conditions. The lower biomass productivity observed in the pgrl1 mutant in fluctuating light is attributed to an inability of compensation mechanisms to respond to a rapid increase in ATP demand. PMID:24989042

  15. Medical oxygen and air travel.

    Science.gov (United States)

    Lyznicki, J M; Williams, M A; Deitchman, S D; Howe, J P

    2000-08-01

    This report responds to a resolution that asked the American Medical Association (AMA) to take action to improve airport and airline accommodations for passengers requiring medical oxygen. Information for the report was derived from a search of the MEDLINE database and references listed in pertinent articles, as well as through communications with experts in aerospace and emergency medicine. Based on this information, the AMA Council on Scientific Affairs determined that commercial air travel exposes passengers to altitude-related hypoxia and gas expansion, which may cause some passengers to experience significant symptoms and medical complications during flight. Medical guidelines are available to help physicians evaluate and counsel potential passengers who are at increased risk of inflight hypoxemia. Supplemental oxygen may be needed for some passengers to maintain adequate tissue oxygenation and prevent hypoxemic complications. For safety and security reasons, federal regulations prohibit travelers from using their own portable oxygen system onboard commercial aircraft. Many U.S. airlines supply medical oxygen for use during flight but policies and procedures vary. Oxygen-dependent passengers must make additional arrangements for the use of supplemental oxygen in airports. Uniform standards are needed to specify procedures and equipment for the use of medical oxygen in airports and aboard commercial aircraft. Revision of federal regulations should be considered to accommodate oxygen-dependent passengers and permit them to have an uninterrupted source of oxygen from departure to destination.

  16. Increased risk of sudden cardiac arrest in obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Warnier, Miriam Jacoba; Blom, Marieke Tabo; Bardai, Abdennasser

    2013-01-01

    BACKGROUND: We aimed to determine whether (1) patients with obstructive pulmonary disease (OPD) have an increased risk of sudden cardiac arrest (SCA) due to ventricular tachycardia or fibrillation (VT/VF), and (2) the SCA risk is mediated by cardiovascular risk-profile and/or respiratory drug use...... with electrocardiographic documentation of VT/VF were included. Conditional logistic regression analysis was used to assess the association between SCA and OPD. Pre-specified subgroup analyses were performed regarding age, sex, cardiovascular risk-profile, disease severity, and current use of respiratory drugs. RESULTS...... is associated with an increased observed risk of SCA. The most increased risk was observed in patients with a high cardiovascular risk-profile, and in those who received SABA and, possibly, those who received AC at the time of SCA....

  17. Effects of motexafin gadolinium on tumor oxygenation and cellular oxygen consumption

    International Nuclear Information System (INIS)

    Donnelly, E.T.; Liu, Y.; Rockwell, S.; Magda, D.

    2003-01-01

    Full text: Recent work in our laboratory showed that motexafin gadolinium (MGd, Xcytrin), a drug currently in Phase III clinical trials as an adjuvant to radiation therapy, modulates the oxygen tensions in EMT6 tumors. The median pO 2 increased from the control value of 1.5±0.4 mmHg to 7.4 ± 3.8 mmHg six hours after treatment with 40 μmol/kg MGd and the percentage of severely hypoxic readings in the tumors ( 7 plateau phase EMT6 cells in 3 mL Dulbecco's Modified Eagle's Medium supplemented with 10% dialyzed fetal bovine serum, which contains no ascorbic acid. In the absence of ascorbic acid, 100 μM MGd did not alter the cellular oxygen consumption rate for EMT6 cells significantly. Marked inhibition of cellular oxygen consumption was observed when cells were incubated with 100 μM MGd in medium supplemented with equimolar ascorbic acid (a 31.5% decrease in consumption was observed after 6 hours of treatment). The 5% mannitol vehicle solution with equimolar ascorbic acid had no discernible effect on cellular oxygen consumption. Ascorbic acid may facilitate cellular uptake of MGd via the intermediate formation of a MGd-oxalate complex. These studies suggest that changes in cellular oxygen consumption could contribute to the changes in tumor oxygenation seen after administration of MGd. These experiments were supported by Pharmacyclics and training grant T32CA09085 from the NIH (E.T.D.). We thank Dr. Raymond Russell for allowing us to use his oxygen electrode apparatus

  18. Intensification and deepening of the Arabian Sea oxygen minimum zone in response to increase in Indian monsoon wind intensity

    Science.gov (United States)

    Lachkar, Zouhair; Lévy, Marina; Smith, Shafer

    2018-01-01

    The decline in oxygen supply to the ocean associated with global warming is expected to expand oxygen minimum zones (OMZs). This global trend can be attenuated or amplified by regional processes. In the Arabian Sea, the world's thickest OMZ is highly vulnerable to changes in the Indian monsoon wind. Evidence from paleo-records and future climate projections indicates strong variations of the Indian monsoon wind intensity over climatic timescales. Yet, the response of the OMZ to these wind changes remains poorly understood and its amplitude and timescale unexplored. Here, we investigate the impacts of perturbations in Indian monsoon wind intensity (from -50 to +50 %) on the size and intensity of the Arabian Sea OMZ, and examine the biogeochemical and ecological implications of these changes. To this end, we conducted a series of eddy-resolving simulations of the Arabian Sea using the Regional Ocean Modeling System (ROMS) coupled to a nitrogen-based nutrient-phytoplankton-zooplankton-detritus (NPZD) ecosystem model that includes a representation of the O2 cycle. We show that the Arabian Sea productivity increases and its OMZ expands and deepens in response to monsoon wind intensification. These responses are dominated by the perturbation of the summer monsoon wind, whereas the changes in the winter monsoon wind play a secondary role. While the productivity responds quickly and nearly linearly to wind increase (i.e., on a timescale of years), the OMZ response is much slower (i.e., a timescale of decades). Our analysis reveals that the OMZ expansion at depth is driven by increased oxygen biological consumption, whereas its surface weakening is induced by increased ventilation. The enhanced ventilation favors episodic intrusions of oxic waters in the lower epipelagic zone (100-200 m) of the western and central Arabian Sea, leading to intermittent expansions of marine habitats and a more frequent alternation of hypoxic and oxic conditions there. The increased

  19. Intensification and deepening of the Arabian Sea oxygen minimum zone in response to increase in Indian monsoon wind intensity

    Directory of Open Access Journals (Sweden)

    Z. Lachkar

    2018-01-01

    Full Text Available The decline in oxygen supply to the ocean associated with global warming is expected to expand oxygen minimum zones (OMZs. This global trend can be attenuated or amplified by regional processes. In the Arabian Sea, the world's thickest OMZ is highly vulnerable to changes in the Indian monsoon wind. Evidence from paleo-records and future climate projections indicates strong variations of the Indian monsoon wind intensity over climatic timescales. Yet, the response of the OMZ to these wind changes remains poorly understood and its amplitude and timescale unexplored. Here, we investigate the impacts of perturbations in Indian monsoon wind intensity (from −50 to +50 % on the size and intensity of the Arabian Sea OMZ, and examine the biogeochemical and ecological implications of these changes. To this end, we conducted a series of eddy-resolving simulations of the Arabian Sea using the Regional Ocean Modeling System (ROMS coupled to a nitrogen-based nutrient–phytoplankton–zooplankton–detritus (NPZD ecosystem model that includes a representation of the O2 cycle. We show that the Arabian Sea productivity increases and its OMZ expands and deepens in response to monsoon wind intensification. These responses are dominated by the perturbation of the summer monsoon wind, whereas the changes in the winter monsoon wind play a secondary role. While the productivity responds quickly and nearly linearly to wind increase (i.e., on a timescale of years, the OMZ response is much slower (i.e., a timescale of decades. Our analysis reveals that the OMZ expansion at depth is driven by increased oxygen biological consumption, whereas its surface weakening is induced by increased ventilation. The enhanced ventilation favors episodic intrusions of oxic waters in the lower epipelagic zone (100–200 m of the western and central Arabian Sea, leading to intermittent expansions of marine habitats and a more frequent alternation of hypoxic and oxic conditions there

  20. Increased arterial stiffness in children with congenital heart disease.

    Science.gov (United States)

    Häcker, Anna-Luisa; Reiner, Barbara; Oberhoffer, Renate; Hager, Alfred; Ewert, Peter; Müller, Jan

    2018-01-01

    Objective Central systolic blood pressure (SBP) is a measure of arterial stiffness and strongly associated with atherosclerosis and end-organ damage. It is a stronger predictor of cardiovascular events and all-cause mortality than peripheral SBP. In particular, for children with congenital heart disease, a higher central SBP might impose a greater threat of cardiac damage. The aim of the study was to analyse and compare central SBP in children with congenital heart disease and in healthy counterparts. Patients and methods Central SBP was measured using an oscillometric method in 417 children (38.9% girls, 13.0 ± 3.2 years) with various congenital heart diseases between July 2014 and February 2017. The test results were compared with a recent healthy reference cohort of 1466 children (49.5% girls, 12.9 ± 2.5 years). Results After correction for several covariates in a general linear model, central SBP of children with congenital heart disease was significantly increased (congenital heart disease: 102.1 ± 10.2 vs. healthy reference cohort: 100.4 ± 8.6, p congenital heart disease subgroups revealed higher central SBP in children with left heart obstructions (mean difference: 3.6 mmHg, p congenital heart disease have significantly higher central SBP compared with healthy peers, predisposing them to premature heart failure. Screening and long-term observations of central SBP in children with congenital heart disease seems warranted in order to evaluate the need for treatment.

  1. Oxygen microclusters in Czochralski-grown Si probed by positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Wei Long; Tanigawa, Shoichiro [Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science; Kawano, Takao; Ikari, Atsushi; Kawakami, Kazuto; Itoh, Hisayoshi

    1994-08-01

    Trapping of positrons by oxygen microclusters in Czochralski-grown Si was studied. Lifetime spectra of positrons were measured for Si specimens annealed in the temperature range between 450degC and 1000degC. Positrons were found to be trapped by oxygen microclusters, and the trapping rate of positrons into such defects increased with increasing annealing temperature. In order to investigate the clustering behaviors of oxygen atoms in more derail, vacancy-oxygen complexes, V{sub n}O{sub m} (n,m=1,2, {center_dot}{center_dot}{center_dot}), were introduced by 3MeV electron irradiation. The concentration of monovacancy-oxygen complexes VO{sub m}(m=2,3, {center_dot}{center_dot}{center_dot}) increased with increasing annealing temperature. These facts were attributed that the oxygen microclusters, O{sub m}, were introduced by annealing above 700degC. (author).

  2. Will open ocean oxygen stress intensify under climate change?

    Science.gov (United States)

    Gnanadesikan, A.; Dunne, J. P.; John, J.

    2011-07-01

    Global warming is expected to reduce oxygen solubility and vertical exchange in the ocean, changes which would be expected to result in an increase in the volume of hypoxic waters. A simulation made with a full earth system model with dynamical atmosphere, ocean, sea ice and biogeochemical cycling shows that this holds true if the condition for hypoxia is set relatively high. However, the volume of the most hypoxic waters does not increase under global warming, as these waters actually become more oxygenated. We show that the rise in oxygen is associated with a drop in ventilation time. A term-by-term analysis within the least oxygenated waters shows an increased supply of oxygen due to lateral diffusion. compensating an increase in remineralization within these highly hypoxic waters. This lateral diffusive flux is the result of an increase of ventilation along the Chilean coast, as a drying of the region under global warming opens up a region of wintertime convection in our model.

  3. Extracorporeal Membrane Oxygenation for Complicated Scrub Typhus

    Directory of Open Access Journals (Sweden)

    Eun Sun Kim

    Full Text Available Scrub typhus is a mite-borne infectious disease caused by Orientia tsutsugamushi . Although early diagnosis and appropriate antibiotic therapy improve the prognosis for the majority of patients, life-threatening complications are not uncommon. Here, we present a case of successful veno-veno-type extracorporeal membrane oxygenation for scrub typhus-induced complications, including acute respiratory distress syndrome, myocarditis and multi-organ dysfunction. To our knowledge, this is the first case report of successful extracorporeal membrane oxygenation in complicated scrub typhus in Korea.

  4. The unresolved issue of oxygen therapy in lung fibrosis: Some clues from a Spanish cohort

    Directory of Open Access Journals (Sweden)

    Irene Martin-Robles

    2014-01-01

    Full Text Available Indication of oxygen therapy in fibrotic interstitial lung diseases is not standardized and its specific requirements are not well defined. The objective of this study was to evaluate ambulatory oxygen therapy features in lung fibrotic patients. Clinical and exploratory data, including 6-minute walking test and pulmonary hypertension, from one hundred and seven patients with fibrotic interstitial lung disease that received ambulatory oxygen treatment were studied. In up to 40% of cases the prescription of oxygen therapy was made after performing a 6-minute walking test. Patients who required ambulatory oxygen only during exercise presented a mild to moderate reduction of the predicted % FVC (62.1 ± 19 and DLCO (49 ± 14.4 while patients who had respiratory failure at rest (mean PaO2 51.9 ± 6.7 presented a moderate reduction of %FVC (56.8 ± 15.6 but a severe decrease of %DLCO (31.67 ± 12. Pulmonary hypertension (PH was evaluated in 47.7% of patients and occurred in 60.8% of them. In conclusion, there is no pulmonary functional predictor of oxyhaemoglobin desaturation during exercise. PH is frequently associated with interstitial lung diseases, mainly when respiratory failure at rest appears. The heterogeneity of the patients and limitation of retrospective studies could be the cause of the tributes for potential benefits of oxygen treatment in interstitial lung diseases.

  5. Cigarette smoking impairs nitric oxide-mediated cerebral blood flow increase: Implications for Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Noboru Toda

    2016-08-01

    Full Text Available Cerebral blood flow is mainly regulated by nitrergic (parasympathetic, postganglionic nerves and nitric oxide (NO liberated from endothelial cells in response to shear stress and stretch of vasculature, whereas sympathetic vasoconstrictor control is quite weak. On the other hand, peripheral vascular resistance and blood flow are mainly controlled by adrenergic vasoconstrictor nerves; endothelium-derived NO and nitrergic nerves play some roles as vasodilator factors. Cigarette smoking impairs NO synthesis in cerebral vascular endothelial cells and nitrergic nerves leading to interference with cerebral blood flow and glucose metabolism in the brain. Smoking-induced cerebral hypoperfusion is induced by impairment of synthesis and actions of NO via endothelial nitric oxide synthase (eNOS/neuronal NOS (nNOS inhibition and by increased production of oxygen radicals, resulting in decreased actions of NO on vascular smooth muscle. Nicotine acutely and chronically impairs the action of endothelial NO and also inhibits nitrergic nerve function in chronic use. Impaired cerebral blood supply promotes the synthesis of amyloid β that accelerates blood flow decrease. This vicious cycle is thought to be one of the important factors involving in Alzheimer's disease (AD. Quitting smoking is undoubtedly one of the important ways to prevent and delay the genesis or slow the progress of impaired cognitive function and AD.

  6. Exogenous and endogenous angiotensin-II decrease renal cortical oxygen tension in conscious rats by limiting renal blood flow.

    Science.gov (United States)

    Emans, Tonja W; Janssen, Ben J; Pinkham, Maximilian I; Ow, Connie P C; Evans, Roger G; Joles, Jaap A; Malpas, Simon C; Krediet, C T Paul; Koeners, Maarten P

    2016-11-01

    Our understanding of the mechanisms underlying the role of hypoxia in the initiation and progression of renal disease remains rudimentary. We have developed a method that allows wireless measurement of renal tissue oxygen tension in unrestrained rats. This method provides stable and continuous measurements of cortical tissue oxygen tension (PO2) for more than 2 weeks and can reproducibly detect acute changes in cortical oxygenation. Exogenous angiotensin-II reduced renal cortical tissue PO2 more than equi-pressor doses of phenylephrine, probably because it reduced renal oxygen delivery more than did phenylephrine. Activation of the endogenous renin-angiotensin system in transgenic Cyp1a1Ren2 rats reduced cortical tissue PO2; in this model renal hypoxia precedes the development of structural pathology and can be reversed acutely by an angiotensin-II receptor type 1 antagonist. Angiotensin-II promotes renal hypoxia, which may in turn contribute to its pathological effects during development of chronic kidney disease. We hypothesised that both exogenous and endogenous angiotensin-II (AngII) can decrease the partial pressure of oxygen (PO2) in the renal cortex of unrestrained rats, which might in turn contribute to the progression of chronic kidney disease. Rats were instrumented with telemeters equipped with a carbon paste electrode for continuous measurement of renal cortical tissue PO2. The method reproducibly detected acute changes in cortical oxygenation induced by systemic hyperoxia and hypoxia. In conscious rats, renal cortical PO2 was dose-dependently reduced by intravenous AngII. Reductions in PO2 were significantly greater than those induced by equi-pressor doses of phenylephrine. In anaesthetised rats, renal oxygen consumption was not affected, and filtration fraction was increased only in the AngII infused animals. Oxygen delivery decreased by 50% after infusion of AngII and renal blood flow (RBF) fell by 3.3 ml min -1 . Equi-pressor infusion of

  7. Hyperbaric oxygen treatment for radiation proctitis

    International Nuclear Information System (INIS)

    Woo, Tony Choon Seng; Joseph, David; Oxer, Harry

    1997-01-01

    Purpose: Our objective was to assess, retrospectively, the efficacy of hyperbaric oxygen treatment in radiation proctitis in all patients who have completed treatment for this disease at the Fremantle Hyperbaric Oxygen Unit. This unit is the only one of its kind in Western Australia. Methods and Materials: Patients were assessed by a review of hospital records, blood bank records, and clinic review (if this was convenient), and all patients responded to a telephone survey. Patients were questioned regarding radiation proctitis symptoms and the degree to which each had improved. Results: Most patients had previously been treated with radiotherapy for prostate carcinoma. Patients with proctitis mainly suffered from bleeding, diarrhoea, incontinence, and pain. In more than half of these patients, symptoms partially or completely resolved after hyperbaric oxygen treatment. Conclusion: Radiation-induced proctitis is a difficult clinical problem to treat and will probably become more significant with the rising incidence of diagnosis of prostate cancer. Hyperbaric Oxygen should be considered in the treatment of radiation-induced proctitis. Further prospective trials with strict protocol guidelines are warranted

  8. A Low-Pressure Oxygen Storage System for Oxygen Supply in Low-Resource Settings.

    Science.gov (United States)

    Rassool, Roger P; Sobott, Bryn A; Peake, David J; Mutetire, Bagayana S; Moschovis, Peter P; Black, Jim Fp

    2017-12-01

    Widespread access to medical oxygen would reduce global pneumonia mortality. Oxygen concentrators are one proposed solution, but they have limitations, in particular vulnerability to electricity fluctuations and failure during blackouts. The low-pressure oxygen storage system addresses these limitations in low-resource settings. This study reports testing of the system in Melbourne, Australia, and nonclinical field testing in Mbarara, Uganda. The system included a power-conditioning unit, a standard oxygen concentrator, and an oxygen store. In Melbourne, pressure and flows were monitored during cycles of filling/emptying, with forced voltage fluctuations. The bladders were tested by increasing pressure until they ruptured. In Mbarara, the system was tested by accelerated cycles of filling/emptying and then run on grid power for 30 d. The low-pressure oxygen storage system performed well, including sustaining a pressure approximately twice the standard working pressure before rupture of the outer bag. Flow of 1.2 L/min was continuously maintained to a simulated patient during 30 d on grid power, despite power failures totaling 2.9% of the total time, with durations of 1-176 min (mean 36.2, median 18.5). The low-pressure oxygen storage system was robust and durable, with accelerated testing equivalent to at least 2 y of operation revealing no visible signs of imminent failure. Despite power cuts, the system continuously provided oxygen, equivalent to the treatment of one child, for 30 d under typical power conditions for sub-Saharan Africa. The low-pressure oxygen storage system is ready for clinical field trials. Copyright © 2017 by Daedalus Enterprises.

  9. [Value of the isometric exercise test in objectively evaluating the effectiveness of hyperbaric oxygenation in ischemic heart disease].

    Science.gov (United States)

    Efuni, S N; Kudriashov, V E; Rodionov, V V; Beletskiĭ, Iu V; Telegin, Iu N

    1984-05-01

    The isometric test was conducted prior to and after a hyperbaric oxygenation (HBO) session in 31 coronary heart disease (CHD) patients. The results were compared with the findings provided by the examination of 138 coronary patients and 23 normal subjects receiving no HBO treatment. It was shown that the isometric test makes it possible to objectively assess the HBO effect in CHD patients. The results of the test reflect reduction in the severity of angina pectoris or cardiac failure following hyperbarotherpy. The results obtained justify the recommendation of the isometric test for the individual evaluation of the hyperbaric treatment in CHD.

  10. Natural disasters and nontuberculous mycobacteria: a recipe for increased disease?

    Science.gov (United States)

    Honda, Jennifer R; Bernhard, Jon N; Chan, Edward D

    2015-02-01

    Infectious diseases acquired by survivors of large-scale natural disasters complicate the recovery process. During events such as tsunamis, hurricanes, earthquakes, and tornados and well into the recovery period, victims often are exposed to water-soil mixtures that have relocated with indigenous microbes. Because nontuberculous mycobacteria (NTM) are ubiquitous in water and soil, there is potential for increased exposure to these organisms during natural disasters. In this hypothesis-driven commentary, we discuss the rise in NTM lung disease and natural disasters and examine the geographic overlap of NTM infections and disaster frequencies in the United States. Moreover, we show an increased number of positive NTM cultures from Louisiana residents in the years following three of the relatively recent epic hurricanes and posit that such natural disasters may help to drive the increased number of NTM infections. Finally, we advocate for increased environmental studies and surveillance of NTM infections before and after natural disasters.

  11. Oxygen status during haemodialysis. The Cord-Group

    DEFF Research Database (Denmark)

    Nielsen, A L; Jensen, H Æ; Hegbrant, J

    1995-01-01

    Hypoxia during haemodialysis, mainly acetate, has been reported several times. In our study we have monitored oxygen status during 258 bicarbonate haemodialyses. A significant drop below 80 mmHg in mean oxygen tension occurred. Mean oxygen saturation reflected this drop but did not reach levels...... below 90%. The mean oxygen concentration was on the whole critical low, though slightly increasing during each haemodialysis session due to ultrafiltration. It is concluded that both hypoxia and hypoxaemia do occur during bicarbonate haemodialysis. To a group of patients generally having limited cardiac...... reserves, a poor oxygen status is a potentially serious complication to haemodialysis. Monitoring oxygen status is thus advisable....

  12. Increased intracellular Th1 cytokines in scid mice with inflammatory bowel disease

    DEFF Research Database (Denmark)

    Bregenholt, S; Claesson, Mogens Helweg

    1998-01-01

    Severe combined immunodeficient (scid) mice engrafted with small pieces of full thickness gut wall from immunocompetent syngenic donors develop a chronic and lethal colitis. Lymphocytes from the lamina propria of engrafted mice were analyzed for phorbol ester/ionomycin-induced cytokine production...... by intracellular staining. A 4-5-fold increase in the fraction of IFN-gamma-producing CD4+ lamina propria T cells was found in moderately and severely diseased mice when compared to healthy congenic C.B-17 control mice. The number of IL-2-producing T cells was increased by approximately 2-fold when comparing mice...... suffering from severe disease to healthy control mice. The fraction of TNF-alpha positive CD4+ T cells was increased by a factor of two in both moderately and severely diseased mice. When analyzing Th2 cytokines, it was found that the levels of IL-4-producing CD4+ T cells was not altered in diseased animals...

  13. Combined impact of water column oxygen and temperature on internal oxygen status and growth of Zostera marina seedlings and adult shoots

    DEFF Research Database (Denmark)

    Raun, Ane-Marie Løvendahl; Borum, Jens

    2013-01-01

    Eelgrass (Zostera marina L.) occasionally experiences severe die-offs during warm summer periods with variable water column oxygen partial pressures (pO). Eelgrass is known to be very intolerant to tissue anoxia with reduced growth and increasing mortality after ≤12h anoxia in the dark...... at temperatures of ≥25°C. In the present study we experimentally examine the impact of combined water column oxygen and temperature on oxygen dynamics in leaf meristems of seedlings and adult shoots to better understand how stressful environmental conditions affect eelgrass oxygen dynamics and subsequent growth...... and mortality. There was a strong interaction between water column oxygen and temperature on meristem pO implying that eelgrass is rather resistant to unfavorable oxygen conditions in winter but becomes increasingly vulnerable in summer, especially at high temperatures. At 25°C meristems became anoxic...

  14. Kinetics of oxygen species in an electrically driven singlet oxygen generator

    Energy Technology Data Exchange (ETDEWEB)

    Azyazov, V.N., E-mail: azyazov@fian.smr.ru [Samara State Aerospace University, 443086 (Russian Federation); Lebedev Physical Institute of RAS, Samara 443011 (Russian Federation); Torbin, A.P.; Pershin, A.A. [Samara State Aerospace University, 443086 (Russian Federation); Lebedev Physical Institute of RAS, Samara 443011 (Russian Federation); Mikheyev, P.A., E-mail: mikheyev@fian.smr.ru [Samara State Aerospace University, 443086 (Russian Federation); Lebedev Physical Institute of RAS, Samara 443011 (Russian Federation); Heaven, M.C., E-mail: mheaven@emory.edu [Emory University, Atlanta, GA 30322 (United States)

    2015-12-16

    Highlights: • Vibrational excitation of O{sub 3} increases the rate constant for O{sub 3} + O{sub 2}(a) → 2O{sub 2}(X) + O. • Vibrationally excited O{sub 3} is produced by the O + O{sub 2}(X) + M → O{sub 3} + M reaction. • Ozone concentrations are impacted by the reactions of vibrationally excited O{sub 3}. • Relevant to ozone concentrations in oxygen discharges and the upper atmosphere. - Abstract: The kinetics of oxygen species in the gaseous medium of a discharge singlet oxygen generator has been revisited. Vibrationally excited ozone O{sub 3}(υ) formed in O + O{sub 2} recombination is thought to be a significant agent in the deactivation of singlet oxygen O{sub 2}(a{sup 1}Δ), oxygen atom removal and ozone formation. It is shown that the process O{sub 3}(υ ⩾ 2) + O{sub 2}(a{sup 1}Δ) → 2O{sub 2} + O is the main O{sub 2}(a{sup 1}Δ) deactivation channel in the post-discharge zone. If no measures are taken to decrease the oxygen atom concentration, the contribution of this process to the overall O{sub 2}(a{sup 1}Δ) removal is significant, even in the discharge zone. A simplified model for the kinetics of vibrationally excited ozone is proposed. Calculations based on this model yield results that are in good agreement with the experimental data.

  15. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    Science.gov (United States)

    Lopaev, D. V.; Malykhin, E. M.; Zyryanov, S. M.

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature TV was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O(3P), O2, O2(1Δg) and O3 molecules in different vibrational states. The agreement of O3 and O(3P) density profiles and TV calculated in the model with observed ones was reached by varying the single model parameter—ozone production probability (\\gamma_{O_{3}}) on the quartz tube surface on the assumption that O3 production occurs mainly in the surface recombination of physisorbed O(3P) and O2. The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse \\gamma_{O_{3}} data obtained in the kinetic model. A good agreement between the experimental data and the data of both models—the kinetic 1D model and the phenomenological surface model—was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up the

  16. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    International Nuclear Information System (INIS)

    Lopaev, D V; Malykhin, E M; Zyryanov, S M

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O 3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature T V was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O 3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O( 3 P), O 2 , O 2 ( 1 Δ g ) and O 3 molecules in different vibrational states. The agreement of O 3 and O( 3 P) density profiles and T V calculated in the model with observed ones was reached by varying the single model parameter-ozone production probability (γ O 3 ) on the quartz tube surface on the assumption that O 3 production occurs mainly in the surface recombination of physisorbed O( 3 P) and O 2 . The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse γ O 3 data obtained in the kinetic model. A good agreement between the experimental data and the data of both models-the kinetic 1D model and the phenomenological surface model-was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O 3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up

  17. Singlet oxygen quenching by oxygen in tetraphenyl-porphyrin solutions

    International Nuclear Information System (INIS)

    Dedic, Roman; Korinek, Miloslav; Molnar, Alexander; Svoboda, Antonin; Hala, Jan

    2006-01-01

    Time-resolved measurement of singlet oxygen infrared phosphorescence is a powerful tool for determination of quantum yields and kinetics of its photosensitization. This technique was employed to investigate in detail the previously observed effect of singlet oxygen quenching by oxygen. The question whether the singlet oxygen is quenched by oxygen in ground or in excited state was addressed by study of two complementary dependencies of singlet oxygen lifetimes: on dissolved oxygen concentration and on excitation intensity. Oxygen concentration dependence study of meso-tetra(4-sulphonato)phenylporphyrin (TPPS 4 ) phosphorescence kinetics showed linearity of the dependence of TPPS 4 triplet state rate-constant. Corresponding bimolecular quenching constant of (1.5±0.1)x10 9 l/mol s was obtained. On the other hand, rate constants of singlet oxygen depopulation exhibit nonlinear dependence on oxygen concentration. Comparison of zero oxygen concentration-extrapolated value of singlet oxygen lifetime of (6.5±0.4) μs to (3.7±0.1) μs observed under air-saturated conditions indicates importance of the effect of quenching of singlet oxygen by oxygen. Upward-sloping dependencies of singlet oxygen depopulation rate-constant on excitation intensity evidence that singlet oxygen is predominantly quenched by oxygen in excited singlet state

  18. Ocean Ridges and Oxygen

    Science.gov (United States)

    Langmuir, C. H.

    2014-12-01

    The history of oxygen and the fluxes and feedbacks that lead to its evolution through time remain poorly constrained. It is not clear whether oxygen has had discrete steady state levels at different times in Earth's history, or whether oxygen evolution is more progressive, with trigger points that lead to discrete changes in markers such as mass independent sulfur isotopes. Whatever this history may have been, ocean ridges play an important and poorly recognized part in the overall mass balance of oxidants and reductants that contribute to electron mass balance and the oxygen budget. One example is the current steady state O2 in the atmosphere. The carbon isotope data suggest that the fraction of carbon has increased in the Phanerozoic, and CO2 outgassing followed by organic matter burial should continually supply more O2 to the surface reservoirs. Why is O2 not then increasing? A traditional answer to this question would relate to variations in the fraction of burial of organic matter, but this fraction appears to have been relatively high throughout the Phanerozoic. Furthermore, subduction of carbon in the 1/5 organic/carbonate proportions would contribute further to an increasingly oxidized surface. What is needed is a flux of oxidized material out of the system. One solution would be a modern oxidized flux to the mantle. The current outgassing flux of CO2 is ~3.4*1012 moles per year. If 20% of that becomes stored organic carbon, that is a flux of .68*1012 moles per year of reduced carbon. The current flux of oxidized iron in subducting ocean crust is ~2*1012 moles per year of O2 equivalents, based on the Fe3+/Fe2+ ratios in old ocean crust compared to fresh basalts at the ridge axis. This flux more than accounts for the incremental oxidizing power produced by modern life. It also suggests a possible feedback through oxygenation of the ocean. A reduced deep ocean would inhibit oxidation of ocean crust, in which case there would be no subduction flux of oxidized

  19. Influence of oxygen concentration on ethylene removal using dielectric barrier discharge

    Science.gov (United States)

    Takahashi, Katsuyuki; Motodate, Takuma; Takaki, Koichi; Koide, Shoji

    2018-01-01

    Ethylene gas is decomposed using a dielectric barrier discharge plasma reactor for long-period preservation of fruits and vegetables. The oxygen concentration in ambient gas is varied from 2 to 20% to simulate the fruit and vegetable transport container. The experimental results show that the efficiency of ethylene gas decomposition increases with decreasing oxygen concentration. The reactions of ethylene molecules with ozone are analyzed by Fourier transform infrared spectrometry. The analysis results show that the oxidization process by ozone is later than that by oxygen atoms. The amount of oxygen atoms that contribute to ethylene removal increases with decreasing oxygen concentration because the reaction between oxygen radicals and oxygen molecules is suppressed at low oxygen concentrations. Ozone is completely removed and the energy efficiency of C2H4 removal is increased using manganese dioxide as a catalyst.

  20. The increased risk for autoimmune diseases in patients with eating disorders.

    Directory of Open Access Journals (Sweden)

    Anu Raevuori

    Full Text Available Research suggests autoimmune processes to be involved in psychiatric disorders. We aimed to address the prevalence and incidence of autoimmune diseases in a large Finnish patient cohort with anorexia nervosa, bulimia nervosa, and binge eating disorder.Patients (N = 2342 treated at the Eating Disorder Unit of Helsinki University Central Hospital between 1995 and 2010 were compared with general population controls (N = 9368 matched for age, sex, and place of residence. Data of 30 autoimmune diseases from the Hospital Discharge Register from 1969 to 2010 were analyzed using conditional and Poisson regression models.Of patients, 8.9% vs. 5.4% of control individuals had been diagnosed with one or more autoimmune disease (OR 1.7, 95% CI 1.5-2.0, P<0.001. The increase in endocrinological diseases (OR 2.4, 95% CI 1.8-3.2, P<0.001 was explained by type 1 diabetes, whereas Crohn's disease contributed most to the risk of gastroenterological diseases (OR 1.8, 95% CI 1.4-2.5, P<0.001. Higher prevalence of autoimmune diseases among patients with eating disorders was not exclusively due to endocrinological and gastroenterological diseases; when the two categories were excluded, the increase in prevalence was seen in the patients both before the onset of the eating disorder treatment (OR 1.5, 95% CI 1.1-2.1, P = 0.02 and at the end of the follow-up (OR 1.4, 95% CI 1.1-1.8, P = 0.01.We observed an association between eating disorders and several autoimmune diseases with different genetic backgrounds. Our findings support the link between immune-mediated mechanisms and development of eating disorders. Future studies are needed to further explore the risk of autoimmune diseases and immunological mechanisms in individuals with eating disorders and their family members.

  1. The increased risk for autoimmune diseases in patients with eating disorders.

    Science.gov (United States)

    Raevuori, Anu; Haukka, Jari; Vaarala, Outi; Suvisaari, Jaana M; Gissler, Mika; Grainger, Marjut; Linna, Milla S; Suokas, Jaana T

    2014-01-01

    Research suggests autoimmune processes to be involved in psychiatric disorders. We aimed to address the prevalence and incidence of autoimmune diseases in a large Finnish patient cohort with anorexia nervosa, bulimia nervosa, and binge eating disorder. Patients (N = 2342) treated at the Eating Disorder Unit of Helsinki University Central Hospital between 1995 and 2010 were compared with general population controls (N = 9368) matched for age, sex, and place of residence. Data of 30 autoimmune diseases from the Hospital Discharge Register from 1969 to 2010 were analyzed using conditional and Poisson regression models. Of patients, 8.9% vs. 5.4% of control individuals had been diagnosed with one or more autoimmune disease (OR 1.7, 95% CI 1.5-2.0, P<0.001). The increase in endocrinological diseases (OR 2.4, 95% CI 1.8-3.2, P<0.001) was explained by type 1 diabetes, whereas Crohn's disease contributed most to the risk of gastroenterological diseases (OR 1.8, 95% CI 1.4-2.5, P<0.001). Higher prevalence of autoimmune diseases among patients with eating disorders was not exclusively due to endocrinological and gastroenterological diseases; when the two categories were excluded, the increase in prevalence was seen in the patients both before the onset of the eating disorder treatment (OR 1.5, 95% CI 1.1-2.1, P = 0.02) and at the end of the follow-up (OR 1.4, 95% CI 1.1-1.8, P = 0.01). We observed an association between eating disorders and several autoimmune diseases with different genetic backgrounds. Our findings support the link between immune-mediated mechanisms and development of eating disorders. Future studies are needed to further explore the risk of autoimmune diseases and immunological mechanisms in individuals with eating disorders and their family members.

  2. Cold stress increases reactive oxygen species formation via TRPA1 activation in A549 cells.

    Science.gov (United States)

    Sun, Wenwu; Wang, Zhonghua; Cao, Jianping; Cui, Haiyang; Ma, Zhuang

    2016-03-01

    Reactive oxygen species (ROS) are responsible for lung damage during inhalation of cold air. However, the mechanism of the ROS production induced by cold stress in the lung is still unclear. In this work, we measured the changes of ROS and the cytosolic Ca(2+) concentration ([Ca(2+)]c) in A549 cell. We observed that cold stress (from 20 to 5 °C) exposure of A549 cell resulted in an increase of ROS and [Ca(2+)]c, which was completely attenuated by removing Ca(2+) from medium. Further experiments showed that cold-sensing transient receptor potential subfamily member 1 (TRPA1) agonist (allyl isothiocyanate, AITC) increased the production of ROS and the level of [Ca(2+)]c in A549 cell. Moreover, HC-030031, a TRPA1 selective antagonist, significantly inhibited the enhanced ROS and [Ca(2+)]c induced by AITC or cold stimulation, respectively. Taken together, these data demonstrated that TRPA1 activation played an important role in the enhanced production of ROS induced by cold stress in A549 cell.

  3. Increase in cerebral oxygenation during advanced life support in out-of-hospital patients is associated with return of spontaneous circulation.

    Science.gov (United States)

    Genbrugge, Cornelia; Meex, Ingrid; Boer, Willem; Jans, Frank; Heylen, René; Ferdinande, Bert; Dens, Jo; De Deyne, Cathy

    2015-03-24

    By maintaining sufficient cerebral blood flow and oxygenation, the goal of cardiopulmonary resuscitation (CPR) is to preserve the pre-arrest neurological state. To date, cerebral monitoring abilities during CPR have been limited. Therefore, we investigated the time-course of cerebral oxygen saturation values (rSO₂) during advanced life support in out-of-hospital cardiac arrest. Our primary aim was to compare rSO₂ values during advanced life support from patients with return of spontaneous circulation (ROSC) to patients who did not achieve ROSC. We performed an observational study to measure rSO₂ using Equanox (Nonin, Plymouth, MI) from the start of advanced life support in the pre-hospital setting. rSO₂ of 49 consecutive out-of-hospital cardiac arrest patients were analyzed. The total increase from initial rSO₂ value until two minutes before ROSC or end of advanced life support efforts was significantly larger in the group with ROSC 16% (9 to 36) compared to the patients without ROSC 10% (4 to 15) (P = 0.02). Mean rSO₂ from the start of measurement until two minutes before ROSC or until termination of advanced life support was higher in patients with ROSC than in those without, namely 39% ± 7 and 31% ± 4 (P = 0.05) respectively. During pre-hospital advanced life support, higher increases in rSO₂ are observed in patients attaining ROSC, even before ROSC was clinically determined. Our findings suggest that rSO₂ could be used in the future to guide patient tailored treatment during cardiac arrest and could therefore be a surrogate marker of the systemic oxygenation state of the patient.

  4. OXYGEN UPTAKE KINETICS IN SPORT, EXERCISE AND MEDICINE

    Directory of Open Access Journals (Sweden)

    David C. Poole

    2005-03-01

    Full Text Available The objective of the book is to discuss the principal determinants of oxygen uptake dynamics which is essential to developing exercise performance and improving quality of life for patients, especially those with cardio-respiratory diseases. A broad review of the current knowledge about this relatively less studied field is provided by this book. Incidentally, it updates the reader about how a person can use his/her aerobic energy system more effectively in order to fatigue gradually and be able to endure more physical activity. It also discusses the effects of exercise training in speeding up oxygen uptake kinetics, and the effects of ageing and a selection of conditions in slowing oxygen dynamics and declining exercise capacity.

  5. The neuroprotective effect of hyperbaric oxygen treatment on laser-induced retinal damage in rats

    Science.gov (United States)

    Vishnevskia-Dai, Victoria; Belokopytov, Mark; Dubinsky, Galina; Nachum, Gal; Avni, Isaac; Belkin, Michael; Rosner, Mordechai

    2005-04-01

    Retinal damage induced by mechanical trauma, ischemia or laser photocoagulation increases considerably by secondary degeneration processes. The spread of damage may be ameliorated by neuroprotection that is aimed at reducing the extent of the secondary degeneration and promote healing processes. Hyperbaric oxygen (HBO) treatment consists of inspiration of oxygen at higher than one absolute atmospheric pressure. Improved neural function was observed in patients with acute brain trauma or ischemia treated with HBO. This study was designed to evaluate the neuroprotective effect of hyperbaric oxygen (HBO) on laser induced retinal damage in a rat model. Standard argon laser lesions were created in 25 pigmented rats divided into three groups: Ten rats were treated immediately after the irradiation with HBO three times during the first 24 hr followed by 12 consecutive daily treatments. Five rats received a shorter treatment regimen of 10 consecutive HBO treatments. The control group (10 rats) underwent the laser damage with no additional treatment. The retinal lesions were evaluated 20 days after the injury. All outcome measures were improved by the longer HBO treatment (Ptreatment was less effective, showing an increase only in nuclei density at the central area of lesion (Pretinal damage in a rat model. In the range of HBO exposures studied, longer exposure provides more neuroprotection. These results encourage further evaluation of the potential therapeutic use of hyperbaric oxygen in diseases and injuries of the retina.

  6. Oxygen regulation of nitrate uptake in denitrifying Pseudomonas aeruginosa.

    OpenAIRE

    Hernandez, D; Rowe, J J

    1987-01-01

    Oxygen had an immediate and reversible inhibitory effect on nitrate respiration by denitrifying cultures of Pseudomonas aeruginosa. Inhibition of nitrate utilization by oxygen appeared to be at the level of nitrate uptake, since nitrate reduction to nitrite in cell extracts was not affected by oxygen. The degree of oxygen inhibition was dependent on the concentration of oxygen, and increasing nitrate concentrations could not overcome the inhibition. The inhibitory effect of oxygen was maximal...

  7. Normal villous architecture with increased intraepithelial lymphocytes: a duodenal manifestation of Crohn disease.

    Science.gov (United States)

    Patterson, Emily R; Shmidt, Eugenia; Oxentenko, Amy S; Enders, Felicity T; Smyrk, Thomas C

    2015-03-01

    To assess a possible association between inflammatory bowel disease (IBD) and the histologic finding in duodenal biopsy specimens of increased intraepithelial lymphocytes (IELs) with normal villous architecture. We identified all patients with duodenal biopsy specimens obtained between 2000 and 2010 showing increased IELs and normal architecture. Among the 74 such patients who also had IBD, we characterized the clinical features of IBD and reviewed all available upper gastrointestinal biopsy specimens. Fifty-eight patients had Crohn disease, 13 had ulcerative colitis, and three had IBD, type unclassified. No duodenal sample with increased IELs had other histologic features of IBD. Among gastric biopsy specimens from 34 patients with Crohn disease, nearly half (16) had focal gastritis. We propose that Crohn disease be included in the differential diagnosis for increased IELs with normal villous architecture in duodenal biopsy specimens, particularly when gastric biopsy specimens show focal gastritis. Copyright© by the American Society for Clinical Pathology.

  8. Near-infrared spectroscopy for monitoring muscle oxygenation

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Piantadosi, C A

    2000-01-01

    Near-infrared spectroscopy (NIRS) is a non-invasive method for monitoring oxygen availability and utilization by the tissues. In intact skeletal muscle, NIRS allows semi-quantitative measurements of haemoglobin plus myoglobin oxygenation (tissue O2 stores) and the haemoglobin volume. Specialized...... algorithms allow assessment of the oxidation-reduction (redox) state of the copper moiety (CuA) of mitochondrial cytochrome c oxidase and, with the use of specific tracers, accurate assessment of regional blood flow. NIRS has demonstrated utility for monitoring changes in muscle oxygenation and blood flow...... during submaximal and maximal exercise and under pathophysiological conditions including cardiovascular disease and sepsis. During work, the extent to which skeletal muscles deoxygenate varies according to the type of muscle, type of exercise and blood flow response. In some instances, a strong...

  9. Increase in tracheal investment with beetle size supports hypothesis of oxygen limitation on insect gigantism.

    Science.gov (United States)

    Kaiser, Alexander; Klok, C Jaco; Socha, John J; Lee, Wah-Keat; Quinlan, Michael C; Harrison, Jon F

    2007-08-07

    Recent studies have suggested that Paleozoic hyperoxia enabled animal gigantism, and the subsequent hypoxia drove a reduction in animal size. This evolutionary hypothesis depends on the argument that gas exchange in many invertebrates and skin-breathing vertebrates becomes compromised at large sizes because of distance effects on diffusion. In contrast to vertebrates, which use respiratory and circulatory systems in series, gas exchange in insects is almost exclusively determined by the tracheal system, providing a particularly suitable model to investigate possible limitations of oxygen delivery on size. In this study, we used synchrotron x-ray phase-contrast imaging to visualize the tracheal system and quantify its dimensions in four species of darkling beetles varying in mass by 3 orders of magnitude. We document that, in striking contrast to the pattern observed in vertebrates, larger insects devote a greater fraction of their body to the respiratory system, as tracheal volume scaled with mass1.29. The trend is greatest in the legs; the cross-sectional area of the trachea penetrating the leg orifice scaled with mass1.02, whereas the cross-sectional area of the leg orifice scaled with mass0.77. These trends suggest the space available for tracheae within the leg may ultimately limit the maximum size of extant beetles. Because the size of the tracheal system can be reduced when oxygen supply is increased, hyperoxia, as occurred during late Carboniferous and early Permian, may have facilitated the evolution of giant insects by allowing limbs to reach larger sizes before the tracheal system became limited by spatial constraints.

  10. Mannitol increases renal blood flow and maintains filtration fraction and oxygenation in postoperative acute kidney injury: a prospective interventional study.

    Science.gov (United States)

    Bragadottir, Gudrun; Redfors, Bengt; Ricksten, Sven-Erik

    2012-08-17

    Acute kidney injury (AKI), which is a major complication after cardiovascular surgery, is associated with significant morbidity and mortality. Diuretic agents are frequently used to improve urine output and to facilitate fluid management in these patients. Mannitol, an osmotic diuretic, is used in the perioperative setting in the belief that it exerts reno-protective properties. In a recent study on uncomplicated postcardiac-surgery patients with normal renal function, mannitol increased glomerular filtration rate (GFR), possibly by a deswelling effect on tubular cells. Furthermore, experimental studies have previously shown that renal ischemia causes an endothelial cell injury and dysfunction followed by endothelial cell edema. We studied the effects of mannitol on renal blood flow (RBF), glomerular filtration rate (GFR), renal oxygen consumption (RVO2), and extraction (RO2Ex) in early, ischemic AKI after cardiac surgery. Eleven patients with AKI were studied during propofol sedation and mechanical ventilation 2 to 6 days after complicated cardiac surgery. All patients had severe heart failure treated with one (100%) or two (73%) inotropic agents and intraaortic balloon pump (36%). Systemic hemodynamics were measured with a pulmonary artery catheter. RBF and renal filtration fraction (FF) were measured by the renal vein thermo-dilution technique and by renal extraction of chromium-51-ethylenediaminetetraacetic acid (51Cr-EDTA), respectively. GFR was calculated as the product of FF and renal plasma flow RBF × (1-hematocrit). RVO2 and RO2Ex were calculated from arterial and renal vein blood samples according to standard formulae. After control measurements, a bolus dose of mannitol, 225 mg/kg, was given, followed by an infusion at a rate of 75 mg/kg/h for two 30-minute periods. Mannitol did not affect cardiac index or cardiac filling pressures. Mannitol increased urine flow by 61% (P renal vascular resistance (P renal FF. Mannitol treatment of postoperative AKI

  11. Effect of dissolved oxygen on SCC of LP turbine steel

    International Nuclear Information System (INIS)

    Maeng, W. Y.; Lee, J. H.; Kim, W. C.

    2002-01-01

    Slow Strain Rate Tests (SSRT) were carried out to investigate the effect of dissolved oxygen on Stress Corrosion Cracking (SCC) susceptibility of 3.5NiCrMoV steels used in discs of Low-Pressure (LP) steam turbines in electric power generating plants. The influence of dissolved oxygen on cracking in water was studied; for this purpose, specimens were strained to fracture at 150 .deg. C in water environments with various amounts of dissolved oxygen. The maximum elongation of the turbine steel decreased with increasing dissolved oxygen. Dissolved oxygen significantly affected the SCC susceptibility of turbine steel in water. The increase of the SCC susceptibility of the turbine steel in a higher dissolved oxygen environment is due to the non protectiveness of the oxide layer of the turbine steel surface and the increase of corrosion current

  12. Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Langberg, H; Olesen, J

    2001-01-01

    , brain and connective tissue, and more recently it has been used in the clinical setting to assess circulatory and metabolic abnormalities. Quantitative measures of blood flow are also possible using NIRS and a light-absorbing tracer, which can be applied to evaluate circulatory responses to exercise......Near infrared spectroscopy (NIRS) is becoming a widely used research instrument to measure tissue oxygen (O2) status non-invasively. Continuous-wave spectrometers are the most commonly used devices, which provide semi-quantitative changes in oxygenated and deoxygenated hemoglobin in small blood...... vessels (arterioles, capillaries and venules). Refinement of NIRS hardware and the algorithms used to deconvolute the light absorption signal have improved the resolution and validity of cytochrome oxidase measurements. NIRS has been applied to measure oxygenation in a variety of tissues including muscle...

  13. Cell physiology regulation by hypoxia inducible factor-1: Targeting oxygen-related nanomachineries of hypoxic cells.

    Science.gov (United States)

    Eskandani, Morteza; Vandghanooni, Somayeh; Barar, Jaleh; Nazemiyeh, Hossein; Omidi, Yadollah

    2017-06-01

    Any dysfunctionality in maintaining the oxygen homeostasis by mammalian cells may elicit hypoxia/anoxia, which results in inescapable oxidative stress and possible subsequent detrimental impacts on certain cells/tissues with high demands to oxygen molecules. The ischemic damage in turn can trigger initiation of a number of diseases including organs ischemia, metabolic disorders, inflammatory diseases, different types of malignancies, and alteration in wound healing process. Thus, full comprehension of molecular mechanism(s) and cellular physiology of the oxygen homeostasis is the cornerstone of the mammalian cells metabolism, energetic pathways and health and disease conditions. An imbalance in oxygen content within the cellular microenvironment activates a cascade of molecular events that are often compensated, otherwise pathologic condition occurs through a complexed network of biomolecules. Hypoxia inducible factor-1 (HIF-1) plays a key transcriptional role in the adaptation of cell physiology in relation with the oxygen content within a cell. In this current study, we provide a comprehensive review on the molecular mechanisms of oxygen sensing and homeostasis and the impacts of HIF-1 in hypoxic/anoxic conditions. Moreover, different molecular and biochemical responses of the cells to the surrounding environment are discussed in details. Finally, modern technological approaches for targeting the hypoxia related proteins are articulated. Copyright © 2017. Published by Elsevier B.V.

  14. Formation and Migration of Oxygen Vacancies in SrCoO3 and their effect on Oxygen Evolution Reactions

    KAUST Repository

    Tahini, Hassan A.; Tan, Xin; Schwingenschlö gl, Udo; Smith, Sean C.

    2016-01-01

    Perovskite SrCoO3 is a potentially useful material for promoting the electrocatalytic oxygen evolution reaction, with high activities predicted theoretically and observed experimentally for closely related doped perovskite materials. However, complete stoichiometric oxidation is very difficult to realize experimentally – in almost all cases there are significant fractions of oxygen vacancies present. Here, using first principles calculations we study oxygen vacancies in perovskite SrCoO3 from thermodynamic, electronic and kinetic points of view. We find that an oxygen vacancy donates two electrons to neighboring Co sites in the form of localized charge. The formation energy of a single vacancy is very low and estimated to be 1.26 eV in the dilute limit. We find that a vacancy is quite mobile with a migration energy of ~0.5 eV. Moreover, we predict that oxygen vacancies exhibit a tendency towards clustering which is in accordance with the material’s ability to form a variety of oxygen-deficient structures. These vacancies have a profound effect on the material’s ability to facilitate OER, increasing the overpotential from ~0.3 V for the perfect material to ~0.7 for defective surfaces. A moderate compressive biaxial strain (2%) is predicted here to increase the surface oxygen vacancy formation energy by ca. 30%, thus reducing the concentration of surface vacancies and thereby preserving the OER activity of the material.

  15. Formation and Migration of Oxygen Vacancies in SrCoO3 and their effect on Oxygen Evolution Reactions

    KAUST Repository

    Tahini, Hassan A.

    2016-07-18

    Perovskite SrCoO3 is a potentially useful material for promoting the electrocatalytic oxygen evolution reaction, with high activities predicted theoretically and observed experimentally for closely related doped perovskite materials. However, complete stoichiometric oxidation is very difficult to realize experimentally – in almost all cases there are significant fractions of oxygen vacancies present. Here, using first principles calculations we study oxygen vacancies in perovskite SrCoO3 from thermodynamic, electronic and kinetic points of view. We find that an oxygen vacancy donates two electrons to neighboring Co sites in the form of localized charge. The formation energy of a single vacancy is very low and estimated to be 1.26 eV in the dilute limit. We find that a vacancy is quite mobile with a migration energy of ~0.5 eV. Moreover, we predict that oxygen vacancies exhibit a tendency towards clustering which is in accordance with the material’s ability to form a variety of oxygen-deficient structures. These vacancies have a profound effect on the material’s ability to facilitate OER, increasing the overpotential from ~0.3 V for the perfect material to ~0.7 for defective surfaces. A moderate compressive biaxial strain (2%) is predicted here to increase the surface oxygen vacancy formation energy by ca. 30%, thus reducing the concentration of surface vacancies and thereby preserving the OER activity of the material.

  16. Increased Ventricular Premature Contraction Frequency During REM Sleep in Patients with Coronary Artery Disease and Obstructive Sleep Apnea

    Directory of Open Access Journals (Sweden)

    Mari A. Watanabe

    2008-11-01

    Full Text Available Background Patients with obstructive sleep apnea are reported to have a peak of sudden cardiac death at night, in contrast to patients without apnea whose peak is in the morning. We hypothesized that ventricular premature contraction (VPC frequency would correlate with measures of apnea and sympathetic activity.Methods Electrocardiograms from a sleep study of 125 patients with coronary artery disease were evaluated. Patients were categorized by apnea-hypopnea index (AHI into Moderate (AHI 15 apnea groups. Sleep stages studied were Wake, S1, S2, S34, and rapid eye movement (REM. Parameters of a potent autonomically-based risk predictor for sudden cardiac death called heart rate turbulence were calculated.Results There were 74 Moderate and 51 Severe obstructive sleep apnea patients. VPC frequency was affected significantly by sleep stage (Wake, S2 and REM, F=5.8, p<.005 and by AHI (F=8.7, p<.005. In Severe apnea patients, VPC frequency was higher in REM than in Wake (p=.011. In contrast, patients with Moderate apnea had fewer VPCs and exhibited no sleep stage dependence (p=.19. Oxygen desaturation duration per apnea episode correlated positively with AHI (r2=.71, p<.0001, and was longer in REM than in non-REM (p<.0001. The heart rate turbulence parameter TS correlated negatively with oxygen desaturation duration in REM (r2=.06, p=.014.Conclusions Higher VPC frequency coupled with higher sympathetic activity caused by longer apnea episodes in REM sleep may be one reason for increased nocturnal death in apneic patients.

  17. The partial pressure of oxygen affects biomarkers of oxidative stress in cultured rainbow trout (Oncorhynchus mykiss) hepatocytes.

    Science.gov (United States)

    Finne, E F; Olsvik, P A; Berntssen, M H G; Hylland, K; Tollefsen, K E

    2008-09-01

    Oxidative stress, the imbalance between production of reactive oxygen species and the cellular detoxification of these reactive compounds, is believed to be involved in the pathology of various diseases. Several biomarkers for oxidative stress have been proposed to serve as tools in toxicological and ecotoxicological research. Not only may exposure to various pro-oxidants create conditions of cellular oxidative stress, but hyperoxic conditions may also increase the production of reactive oxygen species. The objective of the current study was to determine the extent to which differences in oxygen partial pressure would affect biomarkers of oxidative stress in a primary culture of hepatocytes from rainbow trout (Oncorhynchus mykiss). Membrane integrity, metabolic activity, levels of total and oxidized glutathione (tGSH/GSSG) was determined, as well as mRNA expression levels of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GSSG-R), gamma-glutamyl-cystein synthetase (GCS) and thioredoxin (TRX). The results show that different biomarkers of oxidative stress are affected when the cell culture is exposed to atmospheric oxygen, and that changes such as increased GSSG content and induction of GSSG-R and GSH-Px can be reduced by culturing the cells under lower oxygen tension. Oxygen tension may thus influence results of in vitro based cell research and is particularly important when assessing parameters in the antioxidant defence system. Further research is needed to establish the magnitude of this effect in different cellular systems.

  18. Improved arterial blood oxygenation following intravenous infusion of cold supersaturated dissolved oxygen solution.

    Science.gov (United States)

    Grady, Daniel J; Gentile, Michael A; Riggs, John H; Cheifetz, Ira M

    2014-01-01

    One of the primary goals of critical care medicine is to support adequate gas exchange without iatrogenic sequelae. An emerging method of delivering supplemental oxygen is intravenously rather than via the traditional inhalation route. The objective of this study was to evaluate the gas-exchange effects of infusing cold intravenous (IV) fluids containing very high partial pressures of dissolved oxygen (>760 mm Hg) in a porcine model. Juvenile swines were anesthetized and mechanically ventilated. Each animal received an infusion of cold (13 °C) Ringer's lactate solution (30 mL/kg/hour), which had been supersaturated with dissolved oxygen gas (39.7 mg/L dissolved oxygen, 992 mm Hg, 30.5 mL/L). Arterial blood gases and physiologic measurements were repeated at 15-minute intervals during a 60-minute IV infusion of the supersaturated dissolved oxygen solution. Each animal served as its own control. Five swines (12.9 ± 0.9 kg) were studied. Following the 60-minute infusion, there were significant increases in PaO2 and SaO2 (P < 0.05) and a significant decrease in PaCO2 (P < 0.05), with a corresponding normalization in arterial blood pH. Additionally, there was a significant decrease in core body temperature (P < 0.05) when compared to the baseline preinfusion state. A cold, supersaturated dissolved oxygen solution may be intravenously administered to improve arterial blood oxygenation and ventilation parameters and induce a mild therapeutic hypothermia in a porcine model.

  19. Impurities of oxygen in silicon

    International Nuclear Information System (INIS)

    Gomes, V.M.S.

    1985-01-01

    The electronic structure of oxygen complex defects in silicon, using molecular cluster model with saturation by watson sphere into the formalism of Xα multiple scattering method is studied. A systematic study of the simulation of perfect silicon crystal and an analysis of the increasing of atom number in the clusters are done to choose the suitable cluster for the calculations. The divacancy in three charge states (Si:V 2 + , Si:V 2 0 , Si:V 2 - ), of the oxygen pair (Si:O 2 ) and the oxygen-vacancy pair (Si:O.V) neighbours in the silicon lattice, is studied. Distortions for the symmetry were included in the Si:V 2 + and Si:O 2 systems. The behavior of defect levels related to the cluster size of Si:V 2 0 and Si:O 2 systems, the insulated oxygen impurity of silicon in interstitial position (Si:O i ), and the complexes involving four oxygen atoms are analysed. (M.C.K.) [pt

  20. Pilot study of a new device to titrate oxygen flow in hypoxic patients on long-term oxygen therapy.

    Science.gov (United States)

    Cirio, Serena; Nava, Stefano

    2011-04-01

    The O(2) Flow Regulator (Dima, Bologna, Italy) is a new automated oxygen regulator that titrates the oxygen flow based on a pulse-oximetry signal to maintain a target S(pO(2)). We tested the device's safety and efficacy. We enrolled 18 subjects with chronic lung disease, exercise-induced desaturation, and on long-term oxygen therapy, in a randomized crossover study with 2 constant-work-load 15-min cycling exercise tests, starting with the patient's previously prescribed usual oxygen flow. In one test the oxygen flow was titrated manually by the respiratory therapist, and in the other test the oxygen flow was titrated by the O(2) Flow Regulator, to maintain an S(pO(2)) of 94%. We measured S(pO(2)) throughout each test, the time spent by the respiratory therapist to set the device or to manually regulate the oxygen flow, and the total number of respiratory-therapist titration interventions during the trial. There were no differences in symptoms or heart rate between the exercise tests. Compared to the respiratory-therapist-controlled tests, during the O(2) Flow Regulator tests S(pO(2)) was significantly higher (95 ± 2% vs 93 ± 3%, P = .04), significantly less time was spent below the target S(pO(2)) (171 ± 187 s vs 340 ± 220 s, P less respiratory therapist time (5.6 ± 3.7 min vs 2.0 ± 0.1 min, P = .005). The O(2) Flow Regulator may be a safe and effective alternative to manual oxygen titration during exercise in hypoxic patients. It provided stable S(pO(2)) and avoided desaturations in our subjects.

  1. Physiological closed-loop control in intelligent oxygen therapy: A review.

    Science.gov (United States)

    Sanchez-Morillo, Daniel; Olaby, Osama; Fernandez-Granero, Miguel Angel; Leon-Jimenez, Antonio

    2017-07-01

    Oxygen therapy has become a standard care for the treatment of patients with chronic obstructive pulmonary disease and other hypoxemic chronic lung diseases. In current systems, manually continuous adjustment of O 2 flow rate is a time-consuming task, often unsuccessful, that requires experienced staff. The primary aim of this systematic review is to collate and report on the principles, algorithms and accuracy of autonomous physiological close-loop controlled oxygen devices as well to present recommendations for future research and studies in this area. A literature search was performed on medical database MEDLINE, engineering database IEEE-Xplore and wide-raging scientific databases Scopus and Web of Science. A narrative synthesis of the results was carried out. A summary of the findings of this review suggests that when compared to the conventional manual practice, the closed-loop controllers maintain higher saturation levels, spend less time below the target saturation, and save oxygen resources. Nonetheless, despite of their potential, autonomous oxygen therapy devices are scarce in real clinical applications. Robustness of control algorithms, fail-safe mechanisms, limited reliability of sensors, usability issues and the need for standardized evaluating methods of assessing risks can be among the reasons for this lack of matureness and need to be addressed before the wide spreading of a new generation of automatic oxygen devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. HYPERBARIC OXYGENATION AND AEROBIC PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Irvine D. Prather

    2004-03-01

    Full Text Available The continuing desire to improve performance, particularly at the national and international levels, has led to the use of ergogenic aids. Ergogenic aids are defined as 'a procedure or agent that provides the athlete with a competitive edge beyond that obtained via normal training methods'. Random drug testing has been implemented in an effort to minimize an athlete's ability to gain an unfair advantage. However, other means of improving performance have been tried. Blood doping has been used to enhance endurance performance by improving oxygen delivery to working muscles. As oxygen is carried in combination with the hemoglobin, it seems logical that increasing the number of red blood cells (RBC's in the body would increase the oxygen carrying capacity to the tissues and result in improved performance. The first experiments of removing and then reinfusing blood showed a significant improvement in performance time

  3. Increased ratio between anaerobic and aerobic metabolism in lymphocytes from hyperthyroid patients.

    Science.gov (United States)

    Valdemarsson, S; Monti, M

    1994-03-01

    While an increased oxygen consumption is accepted as one consequence of hyperthyroidism, only few data are available on the role of anaerobic processes for the increased metabolic activity in this disease. In this study we evaluated the relative importance of anaerobic and aerobic metabolism for the metabolic activity in lymphocytes from patients before and after treatment for hyperthyroidism. Total lymphocyte heat production rate (P), reflecting total cell metabolic activity, was determined in a plasma lymphocyte suspension using direct microcalorimetry. The contribution from aerobic metabolism (O2-P) was calculated from the product of the lymphocyte oxygen consumption rate and the enthalpy change for glucose combustion, and the anaerobic contribution as the difference between P and O2-P. The total lymphocyte heat production rate P was 3.37 +/- 0.25 (SEM) pW/cell (N = 11) before and 2.50 +/- 0.11 pW/cell (N = 10) after treatment for hyperthyroidism (p hyperthyroid state and to 73.7 +/- 3.2% after treatment (p metabolic activity demonstrated in lymphocytes from hyperthyroid patients cannot be explained by an increased oxygen-dependent consumption.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Oxygen Transport Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay

    2008-08-30

    small polaron conduction mechanism. Scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) were used to develop strategies to detect and characterize vacancy creation, dopant segregations and defect association in the oxygen conducting membrane material. The pO{sub 2} and temperature dependence of the conductivity, non-stoichiometry and thermal-expansion behavior of compositions with increasing complexity of substitution on the perovskite A and B sites were studied. Studies with the perovskite structure show anomalous behavior at low oxygen partial pressures (<10{sup -5} atm). The anomalies are due to non-equilibrium effects and can be avoided by using very strict criteria for the attainment of equilibrium. The slowness of the oxygen equilibration kinetics arises from two different mechanisms. In the first, a two phase region occurs between an oxygen vacancy ordered phase such as brownmillerite SrFeO{sub 2.5} and perovskite SrFeO{sub 3-x}. The slow kinetics is associated with crossing the two phase region. The width of the miscibility gap decreases with increasing temperature and consequently the effect is less pronounced at higher temperature. The preferred kinetic pathway to reduction of perovskite ferrites when the vacancy concentration corresponds to the formation of significant concentrations of Fe{sup 2+} is via the formation of a Ruddlesden-Popper (RP) phases as clearly observed in the case of La{sub 0.5}Sr{sub 0.5}FeO{sub 3-x} where LaSrFeO{sub 4} is found together with Fe. In more complex compositions, such as LSFTO, iron or iron rich phases are observed locally with no evidence for the presence of discrete RP phase. Fracture strength of tubular perovskite membranes was determined in air and in reducing atmospheric conditions. The strength of the membrane decreased with temperature and severity of reducing conditions although the strength distribution (Weibull parameter, m) was relatively unaltered. Surface and volume

  5. Correction of Pulmonary Oxygenizing Dysfunction in the Early Activation of Cardiosurgical Patients

    Directory of Open Access Journals (Sweden)

    I. A. Kozlov

    2009-01-01

    Full Text Available Objective: to justify a comprehensive approach to preventing and correcting pulmonary oxygenizing dysfunction requiring prolonged artificial ventilation in patients operated on under extracorporeal circulation for coronary heart disease. Subjects and methods. One hundred and twenty-three patients aged 55±0.6 years were examined. The study excluded patients with a complicated course of operations (perioperative myocardial infarction, acute cardiovascular insufficiency, hemorrhage, and long extracorporeal circulation. Stimulating spirometry was initiated 2 days before surgery. An alveolar opening maneuver was performed using a continuous dynamic thoracopulmonary compliance monitoring. The parameters of lung oxygenizing function and biomechanics were analyzed. Results. In 78% of the patients, preoperative inspiratory lung capacity was 5—30% lower than the age-related normal values. After extracorporeal circulation, pulmonary oxygenizing dysfunction was diagnosed in 40.9% of cases; at the same time PaO2/FiO2 was associated with an intrapulmonary shunt fraction (Qs/St (r=-0.53; p=0.002 and Qs/Qt was related to static thoracopulmonary compliance (Cst (r=-0.39; p=0.03. Preoperative stimulating spirometry provided a considerable increase in intraoperative PaO2/FiO2 values (p<0.05; improved Cst and decreased Qs/Qt. After extracorporeal circulation, the incidence of pulmonary oxygenizing dysfunction was decreased by more than twice (p<0.05. Patients with relative arterial hypoxemia showed a noticeable relationship to the magnitudes of a reduction in Cst and a rise in Qs/Qt (r=0.72; p=0.008, which served as the basis for applying the alveolar opening maneuver. This type of lung support corrected arterial hypoxemia in 67% of cases. Conclusion. In car-diosurgical patients with coronary heart disease, effective prophylaxis and correction of relative arterial hypoxemia caused by the interrelated impairments of pulmonary biomechanical properties and

  6. Transcutaneous oxygen tension in imminent foot gangrene

    DEFF Research Database (Denmark)

    Tønnesen, K H

    1978-01-01

    Transcutaneous oxygen tension at 44 degree C and maximal isotope clearance (90m Tc-pretechnetate + histramine) just proximal to the 1st toe and systolic toe blood pressure (strain gauge) were studied on a tilt table in patients with various degrees of obstructive arteriosclerotic disease. In legs...

  7. Spontaneous calcium waves in Bergman glia increase with age and hypoxia and may reduce tissue oxygen

    OpenAIRE

    Mathiesen, Claus; Brazhe, Alexey; Thomsen, Kirsten; Lauritzen, Martin

    2012-01-01

    Glial calcium (Ca2+) waves constitute a means to spread signals between glial cells and to neighboring neurons and blood vessels. These waves occur spontaneously in Bergmann glia (BG) of the mouse cerebellar cortex in vivo. Here, we tested three hypotheses: (1) aging and reduced blood oxygen saturation alters wave activity; (2) glial Ca2+ waves change cerebral oxygen metabolism; and (3) neuronal and glial wave activity is correlated. We used two-photon microscopy in the cerebellar cortexes of...

  8. Extracorporeal membrane oxygenation: experience in an adult medical ICU.

    Science.gov (United States)

    Hermans, G; Meersseman, W; Wilmer, A; Meyns, B; Bobbaers, H

    2007-06-01

    Extracorporeal membrane oxygenation (ECMO) is a technology that can provide extracorporeal gas exchange to patients with severe pulmonary or cardiac dysfunction. We report on our clinical experience with ECMO in critically ill patients. We performed a retrospective analysis of 23 patients treated with ECMO in a medical intensive care unit in a tertiary referral academic centre. 13 patients were considered immunocompetent and 10 were immunocompromised when extracorporeal membrane oxygenation was started. 16 patients presented with acute respiratory distress syndrome (ARDS), 2 patients had intractable cardiac failure, and 5 patients had combined respiratory and cardiac failure. In 16 patients, a veno-venous bypass was constructed; in 7 patients, the initial bypass was venoarterial. 11 patients survived. In 2 patients technical complications were fatal. Our data indicate that patients with community-acquired pneumonia and no underlying disease will benefit most from this technique. However, long-term survival is possible in immunocompromised patients. Venoarterial bypass can carry a higher risk for technical complications. Increasing experience apparently also reduces the risk of technical complications.

  9. Quantification of photocatalytic oxygenation of human blood.

    Science.gov (United States)

    Subrahmanyam, Aryasomayajula; Thangaraj, Paul R; Kanuru, Chandrasekhar; Jayakumar, Albert; Gopal, Jayashree

    2014-04-01

    Photocatalytic oxygenation of human blood is an emerging concept based on the principle of photocatalytic splitting of water into oxygen and hydrogen. This communication reports: (i) a design of a photocatalytic cell (PC) that separates the blood from UV (incident) radiation source, (ii) a pH, temperature and flow controlled circuit designed for quantifying the oxygenation of human blood by photocatalysis and (iii) measuring the current efficacy of ITO/TiO2 nano thin films in oxygenating human blood in a dynamic circuit in real time. The average increase in oxygen saturation was around 5% above baseline compared to control (p<0.0005). We believe this is one of the first attempts to quantify photocatalytic oxygenation of human blood under controlled conditions. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. Intramyocardial oxygen transport by quantitative diffuse reflectance spectroscopy in calves

    Science.gov (United States)

    Lindbergh, Tobias; Larsson, Marcus; Szabó, Zoltán; Casimir-Ahn, Henrik; Strömberg, Tomas

    2010-03-01

    Intramyocardial oxygen transport was assessed during open-chest surgery in calves by diffuse reflectance spectroscopy using a small intramuscular fiber-optic probe. The sum of hemo- and myoglobin tissue fraction and oxygen saturation, the tissue fraction and oxidation of cytochrome aa3, and the tissue fraction of methemoglobin were estimated using a calibrated empirical light transport model. Increasing the oxygen content in the inhaled gas, 21%-50%-100%, in five calves (group A) gave an increasing oxygen saturation of 19+/-4%, 24+/-5%, and 28+/-8% (panimals increased with LVAD pump speed (p<0.001, ANOVA) and with oxygen content in inhaled gas (p<0.001, ANOVA). The cytochrome aa3 oxidation level was above 96% in both group A and group B calves, including the two cases involving cardiac arrest. In conclusion, the estimated tissue fractions and oxygenation/oxidation levels of the myocardial chromophores during respiratory and hemodynamic provocations were in agreement with previously presented results, demonstrating the potential of the method.

  11. Accounting for oxygen in the renal cortex: a computational study of factors that predispose the cortex to hypoxia.

    Science.gov (United States)

    Lee, Chang-Joon; Gardiner, Bruce S; Ngo, Jennifer P; Kar, Saptarshi; Evans, Roger G; Smith, David W

    2017-08-01

    We develop a pseudo-three-dimensional model of oxygen transport for the renal cortex of the rat, incorporating both the axial and radial geometry of the preglomerular circulation and quantitative information regarding the surface areas and transport from the vasculature and renal corpuscles. The computational model was validated by simulating four sets of published experimental studies of renal oxygenation in rats. Under the control conditions, the predicted cortical tissue oxygen tension ([Formula: see text]) or microvascular oxygen tension (µPo 2 ) were within ±1 SE of the mean value observed experimentally. The predicted [Formula: see text] or µPo 2 in response to ischemia-reperfusion injury, acute hemodilution, blockade of nitric oxide synthase, or uncoupling mitochondrial respiration, were within ±2 SE observed experimentally. We performed a sensitivity analysis of the key model parameters to assess their individual or combined impact on the predicted [Formula: see text] and µPo 2 The model parameters analyzed were as follows: 1 ) the major determinants of renal oxygen delivery ([Formula: see text]) (arterial blood Po 2 , hemoglobin concentration, and renal blood flow); 2 ) the major determinants of renal oxygen consumption (V̇o 2 ) [glomerular filtration rate (GFR) and the efficiency of oxygen utilization for sodium reabsorption (β)]; and 3) peritubular capillary surface area (PCSA). Reductions in PCSA by 50% were found to profoundly increase the sensitivity of [Formula: see text] and µPo 2 to the major the determinants of [Formula: see text] and V̇o 2 The increasing likelihood of hypoxia with decreasing PCSA provides a potential explanation for the increased risk of acute kidney injury in some experimental animals and for patients with chronic kidney disease. Copyright © 2017 the American Physiological Society.

  12. Oxidative stress in sickle cell disease; pathophysiology and potential implications for disease management.

    Science.gov (United States)

    Nur, Erfan; Biemond, Bart J; Otten, Hans-Martin; Brandjes, Dees P; Schnog, John-John B

    2011-06-01

    Sickle cell disease (SCD) is a hemoglobinopathy characterized by hemolytic anemia, increased susceptibility to infections and vaso-occlusion leading to a reduced quality of life and life expectancy. Oxidative stress is an important feature of SCD and plays a significant role in the pathophysiology of hemolysis, vaso-occlusion and ensuing organ damage in sickle cell patients. Reactive oxygen species (ROS) and the (end-)products of their oxidative reactions are potential markers of disease severity and could be targets for antioxidant therapies. This review will summarize the role of ROS in SCD and their potential implication for SCD management. Copyright © 2011 Wiley-Liss, Inc.

  13. Overexpression of a citrus NDR1 ortholog increases disease resistance in Arabidopsis

    Science.gov (United States)

    Emerging devastating diseases, such as Huanglongbing (HLB) and citrus canker, have caused tremendous losses to the citrus industry worldwide. Genetic engineering is a powerful approach that could allow us to increase citrus resistance against these diseases. The key to the success of this approach r...

  14. Advantages and Disadvantages of Hyperbaric Oxygen Treatment in Mice with Obesity Hyperlipidemia and Steatohepatitis

    Directory of Open Access Journals (Sweden)

    Koichi Tsuneyama

    2011-01-01

    Full Text Available The effect of hyperbaric oxygen treatment (HBOT was examined using MSG mice, which are an animal model of obesity, hyperlipidemia, diabetes, and nonalcoholic fatty liver disease. Nineteen MSG male mice were divided into HBOT treated and control groups at 12 weeks of ages. The HBOT group was treated with hyperbaric oxygen from 12 to 14 weeks (first phase and then from 16 to 18 weeks (second phase. Interestingly, the body weight of the HBOT group was significantly lower (P<0.01 than that of the control group. In contrast, the serum lipid level did not show significant changes between the two groups. As for the effects of increasing oxidative stress, the liver histology of the HBOT group showed severer cellular damage and aberrant TNF-α expression. HBOT has the advantage of improving obesity in patients with metabolic syndrome, but the fault of causing organ damage by increasing oxidative stress.

  15. Measurement of forearm oxygen consumption

    DEFF Research Database (Denmark)

    Astrup, A; Simonsen, L; Bülow, J

    1988-01-01

    The classical forearm technique widely used for studies of skeletal muscle metabolism requires arterial cannulation. To avoid arterial puncture it is becoming more common to arterialize blood from a contralateral hand vein by local heating. This modification and the classical method have produced...... blood flow and decreases skeletal muscle blood flow. This facilitates mixing of superficial blood with deep venous blood. Contralateral heating increased deep venous oxygen saturation and abolished the pronounced glucose-induced increase in oxygen consumption observed in the control experiments after...... contradictory results regarding the contribution of skeletal muscle to glucose-induced thermogenesis. The effect on forearm circulation and the metabolism of heating the contralateral hand was examined before and after an oral glucose load. The results suggest that contralateral heating increases subcutaneous...

  16. Sediment and turbidity associated with offshore dredging increase coral disease prevalence on nearby reefs.

    Science.gov (United States)

    Pollock, F Joseph; Lamb, Joleah B; Field, Stuart N; Heron, Scott F; Schaffelke, Britta; Shedrawi, George; Bourne, David G; Willis, Bette L

    2014-01-01

    In recent decades, coral reef ecosystems have declined to the extent that reefs are now threatened globally. While many water quality parameters have been proposed to contribute to reef declines, little evidence exists conclusively linking specific water quality parameters with increased disease prevalence in situ. Here we report evidence from in situ coral health surveys confirming that chronic exposure to dredging-associated sediment plumes significantly increase the prevalence of white syndromes, a devastating group of globally important coral diseases. Coral health surveys were conducted along a dredging-associated sediment plume gradient to assess the relationship between sedimentation, turbidity and coral health. Reefs exposed to the highest number of days under the sediment plume (296 to 347 days) had two-fold higher levels of disease, largely driven by a 2.5-fold increase in white syndromes, and a six-fold increase in other signs of compromised coral health relative to reefs with little or no plume exposure (0 to 9 days). Multivariate modeling and ordination incorporating sediment exposure level, coral community composition and cover, predation and multiple thermal stress indices provided further confirmation that sediment plume exposure level was the main driver of elevated disease and other compromised coral health indicators. This study provides the first evidence linking dredging-associated sedimentation and turbidity with elevated coral disease prevalence in situ. Our results may help to explain observed increases in global coral disease prevalence in recent decades and suggest that minimizing sedimentation and turbidity associated with coastal development will provide an important management tool for controlling coral disease epizootics.

  17. Comparison of the OxyMask and Venturi mask in the delivery of supplemental oxygen: Pilot study in oxygen-dependent patients

    Science.gov (United States)

    Beecroft, Jaime M; Hanly, Patrick J

    2006-01-01

    BACKGROUND: The OxyMask (Southmedic Inc, Canada) is a new face mask for oxygen delivery that uses a small ‘diffuser’ to concentrate and direct oxygen toward the mouth and nose. The authors hypothesized that this unique design would enable the OxyMask to deliver oxygen more efficiently than a Venturi mask (Hudson RCI, USA) in patients with chronic hypoxemia. METHODS: Oxygen-dependent patients with chronic, stable respiratory disease were recruited to compare the OxyMask and Venturi mask in a randomized, single-blind, cross-over design. Baseline blood oxygen saturation (SaO2) was established breathing room air, followed in a random order by supplemental oxygen through the OxyMask or Venturi mask. Oxygen delivery was titrated to maintain SaO2 4% to 5% and 8% to 9% above baseline for two separate 30 min periods of stable breathing. Oxygen flow rate, partial pressure of inspired and expired oxygen (PO2) and carbon dioxide (PCO2), minute ventilation, heart rate, nasal and oral breathing, SaO2 and transcutaneous PCO2 were collected continuously. The study was repeated following alterations to the OxyMask design, which improved clearance of carbon dioxide. RESULTS: Thirteen patients, aged 28 to 79 years, were studied initially using the original OxyMask. Oxygen flow rate was lower, inspired PO2 was higher and expired PO2 was lower while using the OxyMask. Minute ventilation and inspired and expired PCO2 were significantly higher while using the OxyMask, whereas transcutaneous PCO2, heart rate and the ratio of nasal to oral breathing did not change significantly throughout the study. Following modification of the OxyMask, 13 additional patients, aged 18 to 79 years, were studied using the same protocol. The modified OxyMask provided a higher inspired PO2 at a lower flow rate, without evidence of carbon dioxide retention. CONCLUSIONS: Oxygen is delivered safely and more efficiently by the OxyMask than by the Venturi mask in stable oxygen-dependent patients. PMID:16896425

  18. Cognitive Function in a Traumatic Brain Injury Hyperbaric Oxygen Randomized Trial

    Science.gov (United States)

    2015-08-07

    oxygen at 2.4 atm abs. Eggum and Hunter [39] experimented with canine mesenchymal stem cells under various levels of pres- sure, oxygen, glucose...and conditioned medium. The culture system showed no cytotoxicity and was able to demonstrate that the proliferation and metabolism of mesenchymal...neurodegenerative diseases and peripheral neuropathies. He concludes that while the direct mechanisms by which transection, mechanical strain, ischemia

  19. Heterozygote loss of ACE2 is sufficient to increase the susceptibility to heart disease.

    Science.gov (United States)

    Wang, Wang; Patel, Vaibhav B; Parajuli, Nirmal; Fan, Dong; Basu, Ratnadeep; Wang, Zuocheng; Ramprasath, Tharmarajan; Kassiri, Zamaneh; Penninger, Josef M; Oudit, Gavin Y

    2014-08-01

    Angiotensin-converting enzyme 2 (ACE2) metabolizes Ang II into Ang 1-7 thereby negatively regulating the renin-angiotensin system. However, heart disease in humans and in animal models is associated with only a partial loss of ACE2. ACE2 is an X-linked gene; and as such, we tested the clinical relevance of a partial loss of ACE2 by using female ACE2(+/+) (wildtype) and ACE2(+/-) (heterozygote) mice. Pressure overload in ACE2(+/-) mice resulted in greater LV dilation and worsening systolic and diastolic dysfunction. These changes were associated with increased myocardial fibrosis, hypertrophy, and upregulation of pathological gene expression. In response to Ang II infusion, there was increased NADPH oxidase activity and myocardial fibrosis resulting in the worsening of Ang II-induced diastolic dysfunction with a preserved systolic function. Ang II-mediated cellular effects in cultured adult ACE2(+/-) cardiomyocytes and cardiofibroblasts were exacerbated. Ang II-mediated pathological signaling worsened in ACE2(+/-) hearts characterized by an increase in the phosphorylation of ERK1/2 and JNK1/2 and STAT-3 pathways. The ACE2(+/-) mice showed an exacerbated pressor response with increased vascular fibrosis and stiffness. Vascular superoxide and nitrotyrosine levels were increased in ACE2(+/-) vessels consistent with increased vascular oxidative stress. These changes occurred with increased renal fibrosis and superoxide production. Partial heterozygote loss of ACE2 is sufficient to increase the susceptibility to heart disease secondary to pressure overload and Ang II infusion. Heart disease in humans with idiopathic dilated cardiomyopathy is associated with a partial loss of ACE2. Heterozygote female ACE2 mutant mice showed enhanced susceptibility to pressure overload-induced heart disease. Heterozygote female ACE2 mutant mice showed enhanced susceptibility to Ang II-induced heart and vascular diseases. Partial loss of ACE2 is sufficient to enhance the susceptibility to

  20. Evaluation of Renal Blood Flow and Oxygenation in CKD Using Magnetic Resonance Imaging.

    Science.gov (United States)

    Khatir, Dinah S; Pedersen, Michael; Jespersen, Bente; Buus, Niels H

    2015-09-01

    Animal studies suggest that progression of chronic kidney disease (CKD) is related to renal hypoxia. With renal blood supply determining oxygen delivery and sodium absorption being the main contributor to oxygen consumption, we describe the relationship between renal oxygenation, renal artery blood flow, and sodium absorption in patients with CKD and healthy controls. Cross-sectional study. 62 stable patients with CKD stages 3 to 4 (mean age, 61±13 [SD] years) and 24 age- and sex-matched controls. CKD versus control status. Renal artery blood flow, tissue oxygenation (relative changes in deoxyhemoglobin concentration of the renal medulla [MR2*] and cortex [CR2*]), and sodium absorption. Renal artery blood flow was determined by phase-contrast magnetic resonance imaging (MRI); MR2* and CR2* were determined by blood oxygen level-dependent MRI. Ultrafiltered and reabsorbed sodium were determined from measured glomerular filtration rate (mGFR) and 24-hour urine collections. mGFR in patients was 37% that of controls (36±15 vs 97±23 mL/min/1.73 m(2); P renal artery blood flow was 72% that of controls (319 vs 443 mL/min; P renal artery blood flow or sodium absorption. Increasing arterial blood oxygen tension by breathing 100% oxygen had very small effects on CR2*, but reduced MR2* in both groups. Only renal artery blood flow was determined and thus regional perfusion could not be related to CR2* or MR2*. In CKD, reductions of mGFR and reabsorbed sodium are more than double that of renal artery blood flow, whereas cortical and medullary oxygenation are within the range of healthy persons. Reduction in glomerular filtration fraction may prevent renal hypoxia in CKD. Copyright © 2015 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  1. Increased Intracranial Pressure in a Boy with Gorham-Stout Disease

    Directory of Open Access Journals (Sweden)

    Manisha K. Patel

    2016-04-01

    Full Text Available Gorham-Stout disease (GSD, also known as vanishing bone disease, is a rare disorder, which most commonly presents in children and young adults and is characterized by an excessive proliferation of lymphangiomatous tissue within the bones. This lymphangiomatous proliferation often affects the cranium and, due to the proximate location to the dura surrounding cerebrospinal fluid (CSF spaces, can result in CSF leaks manifesting as intracranial hypotension with clinical symptoms to include orthostatic headache, nausea, and vertigo. We present the case of a boy with GSD and a known history of migraine headaches who presented with persistent headaches due to increased intracranial pressure. Although migraine had initially been suspected, he was eventually diagnosed with intracranial hypertension after developing ophthalmoplegia and papilledema. We describe the first known instance of successful medical treatment of increased intracranial pressure in a patient with GSD.

  2. Increased intracranial volume in Parkinson's disease

    DEFF Research Database (Denmark)

    Krabbe, Katja; Karlsborg, Merete; Hansen, Andreas

    2005-01-01

    Parkinson's disease (PD) and multiple system atrophy (MSA) are neurodegenerative diseases that can be difficult to diagnose and distinguish from each other. STUDY AIMS AND METHODS: Patients with PD and MSA and controls were studied with magnetic resonance imaging (MRI) using tissue segmentation a...... and outlining of regions in order to identify regional volume changes that might be useful in the diagnosis of the two diseases....

  3. Increased cardiac output and maximal oxygen uptake in response to ten sessions of high intensity interval training.

    Science.gov (United States)

    Astorino, Todd A; Edmunds, Ross M; Clark, Amy; King, Leesa; Gallant, Rachael M; Namm, Samantha; Fischer, Anthony; Wood, Kimi A

    2018-01-01

    Increases in maximal oxygen uptake (VO2max) are widely reported in response to completion of high intensity interval training (HIIT), yet the mechanism explaining this result is poorly understood. This study examined changes in VO2max and cardiac output (CO) in response to 10 sessions of low-volume HIIT. Participants included 30 active men and women (mean age and VO2max=22.9±5.4 years and 39.6±5.6 mL/kg/min) who performed HIIT and 30 men and women (age and VO2max=25.7±4.5 years and 40.7±5.2 mL/kg/min) who served as non-exercising controls (CON). High intensity interval training consisted of 6-10 s bouts of cycling per session at 90-110 percent peak power output (PPO) interspersed with 75 s recovery. Before and after training, progressive cycling to exhaustion was completed during which CO, stroke volume (SV), and heart rate (HR) were estimated using thoracic impedance. To confirm VO2max attainment, a verification test was completed after progressive cycling at a work rate equal to 110%PPO. Data demonstrated significant improvements in VO2max (2.71±0.63 L/min to 2.86±0.63 L/min, Psessions of HIIT is due to improvements in oxygen delivery.

  4. Elevated global cerebral blood flow, oxygen extraction fraction and unchanged metabolic rate of oxygen in young adults with end-stage renal disease: an MRI study

    International Nuclear Information System (INIS)

    Zheng, Gang; Lou, Yaxian; Pan, Zhiying; Liu, Ya; Wen, Jiqiu; Li, Xue; Zhang, Zhe; Lu, Hanzhang; Liu, Wei; Liu, Hui; Chen, Huijuan; Kong, Xiang; Luo, Song; Jiang, Xiaolu; Zhang, Zongjun; Zhang, Long Jiang; Lu, Guang Ming

    2016-01-01

    To noninvasively assess global cerebral blood flow (CBF), oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO 2 ) in young adults with end-stage renal disease (ESRD). Thirty-six patients and 38 healthy volunteers were included and took part in MR examinations, blood and neuropsychological tests. CBF and OEF were measured by phase-contrast and T2-relaxation-under-spin-tagging MRI techniques, respectively. CMRO 2 was computed from CBF, OEF and hematocrit according to Fick's principle. Correlations were performed between MR measurements, blood biochemistry measurements and neuropsychological test scores. Compared with controls, ESRD patients had elevated CBF (72.9 ± 12.5 vs. 63.8 ± 8.5 ml min -1 100 g -1 , P < 0.001), elevated OEF (47.2 ± 10.2 vs. 35.8 ± 5.4 %, P < 0.001), but unaffected CMRO 2 (199.5 ± 36.4 vs. 193.8 ± 28.6 μmol O 2 min -1 100 g -1 , P = 0.879). Hematocrit negatively correlated with CBF (r = -0.640, P < 0.001) and OEF (r = -0.701, P < 0.001), but not with CMRO 2 . Altered neuropsychological test scores of ESRD patients were associated with OEF and CBF, but not with CMRO 2 . There were weak relationships between eGFR and hematocrit (r = 0.308, P = 0.068) or CBF (r = 0.318, P = 0.059). Our findings suggested that anaemic young adults with ESRD may afford higher CBF and OEF to maintain a normal CMRO 2 . Despite this compensatory process, however, cognitive function was still impaired and its severity was correlated with their CBF and OEF abnormality. (orig.)

  5. Genetically increased antioxidative protection and decreased chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Juul, Klaus; Tybjærg-Hansen, Anne; Marklund, Stefan

    2006-01-01

    RATIONALE: Increased oxidative stress is involved in chronic obstructive pulmonary disease (COPD); however, plasma and bronchial lining fluid contains the antioxidant extracellular superoxide dismutase. Approximately 2% of white individuals carry the R213G polymorphism in the gene encoding extrac...

  6. An in silico analysis of oxygen uptake of a mild COPD patient during rest and exercise using a portable oxygen concentrator

    Directory of Open Access Journals (Sweden)

    Katz I

    2016-09-01

    Full Text Available Ira Katz,1,2 Marine Pichelin,1 Spyridon Montesantos,1 Min-Yeong Kang,3 Bernard Sapoval,3,4 Kaixian Zhu,5 Charles-Philippe Thevenin,5 Robert McCoy,6 Andrew R Martin,7 Georges Caillibotte1 1Medical R&D, Air Liquide Santé International, Centre de Recherche Paris-Saclay, Les Loges-en-Josas, France; 2Department of Mechanical Engineering, Lafayette College, Easton, PA, USA; 3Physique de la Matière Condensée, CNRS, Ecole Polytechnique, Palaiseau, 4Centre de Mathématiques et de leurs Applications, CNRS, UniverSud, Cachan, 5Centre Explor!, Air Liquide Healthcare, Gentilly, France; 6Valley Inspired Products, Inc, Apple Valley, MN, USA; 7Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada Abstract: Oxygen treatment based on intermittent-flow devices with pulse delivery modes available from portable oxygen concentrators (POCs depends on the characteristics of the delivered pulse such as volume, pulse width (the time of the pulse to be delivered, and pulse delay (the time for the pulse to be initiated from the start of inhalation as well as a patient’s breathing characteristics, disease state, and respiratory morphology. This article presents a physiological-based analysis of the performance, in terms of blood oxygenation, of a commercial POC at different settings using an in silico model of a COPD patient at rest and during exercise. The analysis encompasses experimental measurements of pulse volume, width, and time delay of the POC at three different settings and two breathing rates related to rest and exercise. These experimental data of device performance are inputs to a physiological-based model of oxygen uptake that takes into account the real dynamic nature of gas exchange to illustrate how device- and patient-specific factors can affect patient oxygenation. This type of physiological analysis that considers the true effectiveness of oxygen transfer to the blood, as opposed to delivery to the nose (or mouth, can be

  7. Oxygen toxicity

    Directory of Open Access Journals (Sweden)

    C. A. van der Westhuizen

    1990-07-01

    Full Text Available Oxygen has been discovered about 200 years ago. Since then the vital physiological involvement of oxygen in various biologi­cal processes, mainly energy production, has been established. However, in the body molecular oxygen can be converted to toxic oxygen metabolites such as superoxide anion, hydrogen peroxide, the hydroxyl radical and singlet oxygen. These toxic metabolites are produced mainly in the mitochondria, plasma membranes and endoplasmic reticulum.

  8. Does football cause an increase in degenerative disease of the lumbar spine?

    Science.gov (United States)

    Gerbino, Peter G; d'Hemecourt, Pierre A

    2002-02-01

    Degenerative disease of the lumbar spine is exceedingly common. Whether any specific activity increases the likelihood of developing degenerative disc disease (DDD) or facet degeneration (FD) has enormous implications. Within the field of occupational medicine there are specific activities, occupations, and morphologic characteristics that have been related to low back pain. Several specific risk factors have been conclusively linked to low back pain, and in particular DDD and FD. Within the sport of American football, there has long been the feeling that many athletes have or will develop low back pain, DDD, and FD. Proving that certain risk factors present in football will predictably lead to an increase in LBP, DDD, and FD is more difficult. At this time, it can be said that football players, in general, increase their risk of developing low back pain, DDD, and FD as their years of involvement with their sport increase. Because specific spine injuries like fracture, disc herniation, and spondylolysis are more frequent in football players, the resulting DDD and FD are greater than that of the general population. The weightlifting and violent hyperextension that are part of American football are independent risk factors for degenerative spine disease.

  9. Oxygen enhances phosphine toxicity for postharvest pest control.

    Science.gov (United States)

    Liu, Yong-Biao

    2011-10-01

    Phosphine fumigations under superatmospheric oxygen levels (oxygenated phosphine fumigations) were significantly more effective than the fumigations under the normal 20.9% atmospheric oxygen level against western flower thrips [Frankliniella occidentalis (Pergande)] adults and larvae, leafminer Liriomyza langei Frick pupae, grape mealybug [Pseudococcus maritimus (Ehrhorn)] eggs, and Indianmeal moth [Plodia interpunctella (Hübner)] eggs and pupae. In 5-h fumigations with 1,000 ppm phosphine at 5 degrees C, mortalities of western flower thrips increased significantly from 79.5 to 97.7% when oxygen was increased from 20.9 to 40% and reached 99.3% under 80% O2. Survivorships of leafminer pupae decreased significantly from 71.2% under 20.9% O2 to 16.2% under 40% O2 and reached 1.1% under 80% O2 in 24-h fumigations with 500 ppm phosphine at 5 degrees C. Complete control of leafminer pupae was achieved in 24-h fumigations with 1,000 ppm phosphine at 5 degrees C under 60% O2 or higher. Survivorships of grape mealybug eggs also decreased significantly in 48-h fumigations with 1,000 ppm phosphine at 2 degrees C under 60% O2 compared with the fumigations under 20.9% O2. Indian meal moth egg survivorships decreased significantly from 17.4 to 0.5% in responses to an oxygen level increase from 20.9 to 40% in 48-h fumigations with 1,000 ppm phosphine at 10 degrees C and reached 0.2% in fumigations under 80% O2. When the oxygen level was reduced from 20.9 to 15 and 10% in fumigations, survivorships of Indianmeal moth eggs increased significantly from 17.4 to 32.9 and 39.9%, respectively. Increased O2 levels also resulted in significantly lower survival rates of Indianmeal moth pupae in response to 24-h fumigations with 500 and 1,000 ppm phosphine at 10 degrees C and a complete control was achieved in the 1,000 ppm phosphine fumigations under 60% O2. Oxygenated phosphine fumigations have marked potential to improve insecticidal efficacy. Advantages and limitations of oxygenated

  10. The effects of oxygen on process rates and gene expression of anammox and denitrification in the Eastern South Pacific oxygen minimum zone

    DEFF Research Database (Denmark)

    Dalsgaard, Tage; Stewart, Frank; De Brabandere, Loreto

    Oxygen concentrations were consistently below our detection limit of 90 nM for a distance of > 2000 km in the oxygen minimum zone (OMZ) along the coasts of Chile and Peru. In most cases, anammox and denitrification were only detected when in situ oxygen concentrations were below detection...... differently to oxygen. When normalized to a housekeeping gene (rpoB), the expression of 4 out of 9 N-cycle-genes changed with increasing oxygen concentration: The expression of ammonium monooxygenase (amoC) was stimulated, whereas expression of nitrite reductase (nirS), nitric oxide reductase (nor...

  11. Chronic Pancreatitis Correlates With Increased Risk of Cerebrovascular Disease

    Science.gov (United States)

    Wong, Tuck-Siu; Liao, Kuan-Fu; Lin, Chi-Ming; Lin, Cheng-Li; Chen, Wen-Chi; Lai, Shih-Wei

    2016-01-01

    associated with increased hazard of subsequent cerebrovascular disease. PMID:27082563

  12. Increase of tumor oxygen tension and potentiation of radiation effects using pentoxifylline, vinpocetine and ticlopidine hydrochloride

    International Nuclear Information System (INIS)

    Amano, Morikazu; Monzen, Hajime; Suzuki, Takatoshi; Hasegawa, Takeo

    2004-01-01

    The effects of pentoxifylline (PTX), vinpocetine (VPT) and ticlopidine hydrochloride (TCD), each drug commonly used for vascular disorders in humans, on the pO 2 in SCC-7 (squamous cell carcinoma) tumors of C3H/HeJ mice on the radioresponse of SCC-7 tumors were investigated. When the SCC-7 implanted in the leg of C3H/HeJ mice grew about 100 mm 3 , the effects of PTX, VPT and TCD on the increase oxygen tension in the tumor was determined with polarography. The mice were injected intraperitoneally (ip) with 5 ml/kg PTX, 5 ml/kg VPT, or 10 ml/kg TCD, the tumor pO 2 increased slowly, peaked about 20-50 min postinjection, and returned to its original level in 60-80 min. When the C3H/HeJ mice bearing SCC-7 tumors in the legs were injected ip with 5 ml/kg PTX, 5 ml/kg VPT or 10 ml/kg TCD and tumors were X-irradiated 30 min later, the radiation induced growth delay of the tumor was greater than that caused by X-irradiation alone. The results in the present study, PTX, VPT and TCD increase the tumor pO 2 in rodent tumors strongly suggest that each drug may be useful for increasing the radiosensitivity of human tumor. (author)

  13. ET-1 increases reactive oxygen species following hypoxia and high-salt diet in the mouse glomerulus.

    Science.gov (United States)

    Heimlich, J B; Speed, J S; Bloom, C J; O'Connor, P M; Pollock, J S; Pollock, D M

    2015-03-01

    This study was designed to determine whether ET-1 derived from endothelial cells contributes to oxidative stress in the glomerulus of mice subjected to a high-salt diet and/or hypoxia. C57BL6/J control mice or vascular endothelial cell ET-1 knockout (VEET KO) mice were subjected to 3-h exposure to hypoxia (8% O₂) and/or 2 weeks of high-salt diet (4% NaCl) prior to metabolic cage assessment of renal function and isolation of glomeruli for the determination of reactive oxygen species (ROS). In control mice, hypoxia significantly increased urinary protein excretion during the initial 24 h, but only in animals on a high-salt diet. Hypoxia increased glomerular ET-1 mRNA expression in control, but not in vascular endothelial cell ET-1 knockout (VEET KO) mice. Under normoxic conditions, mice on a high-salt diet had approx. 150% higher glomerular ET-1 mRNA expression compared with a normal-salt diet (P ET-1 (osmotic pumps) significantly increased the levels of glomerular ROS that were prevented by ETA antagonist treatment. These data suggest that both hypoxia and a high-salt diet increase glomerular ROS production via endothelial-derived ET-1-ETA receptor activation and provide a potential mechanism for ET-1-induced nephropathy. © 2014 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  14. The influence of systemic hemodynamics and oxygen transport on cerebral oxygen saturation in neonates after the Norwood procedure.

    Science.gov (United States)

    Li, Jia; Zhang, Gencheng; Holtby, Helen; Guerguerian, Anne-Marie; Cai, Sally; Humpl, Tilman; Caldarone, Christopher A; Redington, Andrew N; Van Arsdell, Glen S

    2008-01-01

    Ischemic brain injury is an important morbidity in neonates after the Norwood procedure. Its relationship to systemic hemodynamic oxygen transport is poorly understood. Sixteen neonates undergoing the Norwood procedure were studied. Continuous cerebral oxygen saturation was measured by near-infrared spectroscopy. Continuous oxygen consumption was measured by respiratory mass spectrometry. Pulmonary and systemic blood flow, systemic vascular resistance, oxygen delivery, and oxygen extraction ratio were derived with measurements of arterial, and superior vena cava and pulmonary venous gases and pressures at 2- to 4-hour intervals during the first 72 hours in the intensive care unit. Mean cerebral oxygen saturation was 66% +/- 12% before the operation, reduced to 51% +/- 13% on arrival in the intensive care unit, and remained low during the first 8 hours; it increased to 56% +/- 9% at 72 hours, still significantly lower than the preoperative level (P blood flow and oxygen delivery (P blood flow (P = .001) and hemoglobin (P = .02) and negatively correlated with systemic vascular resistance (P = .003). It was not correlated with oxygen consumption (P > .05). Cerebral oxygen saturation decreased significantly in neonates during the early postoperative period after the Norwood procedure and was significantly influenced by systemic hemodynamic and metabolic events. As such, hemodynamic interventions to modify systemic oxygen transport may provide further opportunities to reduce the risk of cerebral ischemia and improve neurodevelopmental outcomes.

  15. Reactive oxygen species mediate TNFR1 increase after TRPV1 activation in mouse DRG neurons

    Directory of Open Access Journals (Sweden)

    Westlund Karin N

    2009-06-01

    Full Text Available Abstract Background Transient receptor potential vanilloid subtype 1 (TRPV1 is activated by low pH/protons and is well known to be involved in hyperalgesia during inflammation. Tumor necrosis factor α (TNF-α, a proinflammatory cytokine, is involved in nociceptive responses causing hyperalgesia through TNF receptor type 1 (TNFR1 activation. Reactive oxygen species (ROS production is also prominently increased in inflamed tissue. The present study investigated TNFR1 receptors in primary cultured mouse dorsal root ganglion (DRG neurons after TRPV1 activation and the involvement of ROS. C57BL/6 mice, both TRPV1 knockout and wild type, were used for immunofluorescent and live cell imaging. The L4 and L5 DRGs were dissected bilaterally and cultured overnight. TRPV1 was stimulated with capsaicin or its potent analog, resiniferatoxin. ROS production was measured with live cell imaging and TNFR1 was detected with immunofluorescence in DRG primary cultures. The TRPV1 knockout mice, TRPV1 antagonist, capsazepine, and ROS scavenger, N-tert-Butyl-α-phenylnitrone (PBN, were employed to explore the functional relationship among TRPV1, ROS and TNFR1 in these studies. Results The results demonstrate that TRPV1 activation increases TNFR1 receptors and ROS generation in primary cultures of mouse DRG neurons. Activated increases in TNFR1 receptors and ROS production are absent in TRPV1 deficient mice. The PBN blocks increases in TNFR1 and ROS production induced by capsaicin/resiniferatoxin. Conclusion TRPV1 activation increases TNFR1 in cultured mouse DRG neurons through a ROS signaling pathway, a novel sensitization mechanism in DRG neurons.

  16. Increased burden of cardiovascular disease in carriers of APOL1 genetic variants.

    Science.gov (United States)

    Ito, Kaoru; Bick, Alexander G; Flannick, Jason; Friedman, David J; Genovese, Giulio; Parfenov, Michael G; Depalma, Steven R; Gupta, Namrata; Gabriel, Stacey B; Taylor, Herman A; Fox, Ervin R; Newton-Cheh, Christopher; Kathiresan, Sekar; Hirschhorn, Joel N; Altshuler, David M; Pollak, Martin R; Wilson, James G; Seidman, J G; Seidman, Christine

    2014-02-28

    Two distinct alleles in the gene encoding apolipoprotein L1 (APOL1), a major component of high-density lipoprotein, confer protection against Trypanosoma brucei rhodesiense infection and also increase risk for chronic kidney disease. Approximately 14% of Americans with African ancestry carry 2 APOL1 risk alleles, accounting for the high chronic kidney disease burden in this population. We tested whether APOL1 risk alleles significantly increase risk for atherosclerotic cardiovascular disease (CVD) in African Americans. We sequenced APOL1 in 1959 randomly selected African American participants in the Jackson Heart Study (JHS) and evaluated associations between APOL1 genotypes and renal and cardiovascular phenotypes. Previously identified association between APOL1 genotypes and chronic kidney disease was confirmed (P=2.4×10(-6)). Among JHS participants with 2 APOL1 risk alleles, we observed increased risk for CVD (50/763 events among participants without versus 37/280 events among participants with 2 risk alleles; odds ratio, 2.17; P=9.4×10(-4)). We replicated this novel association of APOL1 genotype with CVD in Women's Health Initiative (WHI) participants (66/292 events among participants without versus 37/101 events among participants with 2 risk alleles; odds ratio, 1.98; P=8.37×10(-3); JHS and WHI combined, P=8.5×10(-5); odds ratio, 2.12). The increased risk for CVD conferred by APOL1 alleles was robust to correction for both traditional CVD risk factors and chronic kidney disease. APOL1 variants contribute to atherosclerotic CVD risk, indicating a genetic component to cardiovascular health disparities in individuals of African ancestry. The considerable population of African Americans with 2 APOL1 risk alleles may benefit from intensive interventions to reduce CVD.

  17. The effects of capillary transit time heterogeneity (CTH on the cerebral uptake of glucose and glucose analogs:Application to FDG and comparison to oxygen uptake.

    Directory of Open Access Journals (Sweden)

    Hugo Angleys

    2016-10-01

    Full Text Available Glucose is the brain’s principal source of ATP, but the extent to which cerebral glucose consumption (CMRglc is coupled with its oxygen consumption (CMRO2 remains unclear. Measurements of the brain’s oxygen-glucose index OGI=CMRO2/CMRglc suggest that its oxygen uptake largely suffices for oxidative phosphorylation. Nevertheless, during functional activation and in some disease states, brain tissue seemingly produces lactate although cerebral blood flow (CBF delivers sufficient oxygen, so-called aerobic glycolysis. OGI measurements, in turn, are method-dependent in that estimates based on glucose analog uptake depend on the so-called lumped constant (LC to arrive at CMRglc. Capillary transit time heterogeneity (CTH, which is believed to change during functional activation and some disease states, affects the extraction efficacy of oxygen from blood. We developed a three-compartment model of glucose extraction to examine whether CTH also affects glucose extraction into brain tissue. We then combined this model with our previous model of oxygen extraction to examine whether differential glucose and oxygen extraction might favor nonoxidative glucose metabolism under certain conditions. Our model predicts that glucose uptake is largely unaffected by changes in its plasma concentration, while changes in CBF and CTH affect glucose and oxygen uptake to different extents. Accordingly, functional hyperemia facilitates glucose uptake more than oxygen uptake, favoring aerobic glycolysis during enhanced energy demands. Applying our model to glucose analogs, we observe that LC depends on physiological state, with a risk of overestimating relative increases in CMRglc during functional activation by as much as 50%.

  18. Kazinol Q from Broussonetia kazinoki Enhances Cell Death Induced by Cu(ll through Increased Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Hsue-Yin Hsu

    2011-04-01

    Full Text Available The ability of the flavan kazinol Q (KQ to induce DNA breakage in the presence of Cu(II was examined by agarose gel electrophoresis using supercoiled plasmid DNA. In KQ-mediated DNA breakage reaction, the involvement of reactive oxygen species (ROS, H2O2 and O2 - was established by the inhibition of DNA breakage by catalase and revealed DNA breakage by superoxide dismutase (SOD. The cell viability of gastric carcinoma SCM-1 cells treated with various concentrations of KQ was significantly decreased by cotreatment with Cu(II. Treatment of SCM-1 cells with 300 μM Cu(II enhanced the necrosis induced by 100 μM KQ. Treatment of SCM-1 cells with 100 mM KQ in the presence of 300 mM Cu(II increased the generation of H2O2. Taken together, the above finding suggested that KQ cotreatment with Cu(II produced increased amounts of H2O2, thus enhancing subsequent cell death due to necrosis.

  19. Oxygen consumption by hydrazine in long sample lines

    International Nuclear Information System (INIS)

    Chi, Lisheng; Turner, Carl-W.

    2012-09-01

    In nuclear power plants secondary side system dissolved oxygen concentration is a strictly controlled chemistry parameter intended to minimize corrosion and fouling of steam cycle components. Low dissolved oxygen concentration is maintained by a combination of mechanical de-aeration and chemical reaction. The dissolved oxygen concentration in feedwater is monitored by sampling systems to ensure it remains within station specification during operation. The sample lines in a nuclear power plant's sampling system can be from 5 to nearly 200 meters in length, resulting in sample residence times between the take-off point to the analyzer from a few seconds to several minutes, depending on the flow rate and the length of the sample line. For many chemical parameters the residence time is of no concern. For measurements of dissolved oxygen and hydrazine in the secondary coolant, however, for residence times longer than one minute, it is uncertain whether the sample is representative of conditions in the secondary coolant, especially for samples taken from locations where the temperature is well over 100 deg. C. To address this concern, a series of tests were conducted under both warm-up and power operation conditions, respectively, to investigate the effect of temperature, residence time, sample line length, surface area, hydrazine-to-oxygen ratio, and the concentrations of dissolved oxygen and hydrazine on the consumption of oxygen by hydrazine. The test results revealed that dissolved oxygen measurements in CANDU plants are underestimated to various degrees, depending on the sampling system operating conditions. Two distinct types of behaviours are observed for the oxygen removal rate: 1) the percentage removal of dissolved oxygen is invariant with time during the tests, and increases with increasing residence time in the test section, when the reaction between hydrazine and oxygen is better described by a homogenous reaction mechanism, and 2) the percentage oxygen

  20. Challenging the dogma of mitochondrial reactive oxygen species overproduction in diabetic kidney disease.

    Science.gov (United States)

    Coughlan, Melinda T; Sharma, Kumar

    2016-08-01

    The paradigm that high glucose drives overproduction of superoxide from mitochondria as a unifying theory to explain end organ damage in diabetes complications has been tightly held for more than a decade. With the recent development of techniques and probes to measure the production of distinct reactive oxygen species (ROS) in vivo, this widely held dogma is now being challenged with the emerging view that specific ROS moieties are essential for the function of specific intracellular signaling pathways and represent normal mitochondrial function. This review will provide a balanced overview of the dual nature of ROS, detailing current evidence for ROS overproduction in diabetic kidney disease, with a focus on cell types and sources of ROS. The technical aspects of measurement of mitochondrial ROS, both in isolated mitochondria and emerging in vivo methods will be discussed. The counterargument, that mitochondrial ROS production is reduced in diabetic complications, is consistent with a growing recognition that stimulation of mitochondrial biogenesis and oxidative phosphorylation activity reduces inflammation and fibrosis. It is clear that there is an urgent need to fully characterize ROS production paying particular attention to spatiotemporal aspects and to factor in the relevance of ROS in the regulation of cellular signaling in the pathogenesis of diabetic kidney disease. With improved tools and real-time imaging capacity, a greater understanding of the complex role of ROS will be able to guide novel therapeutic regimens. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  1. Redox Imbalance and Viral Infections in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Dolores Limongi

    2016-01-01

    Full Text Available Reactive oxygen species (ROS are essential molecules for many physiological functions and act as second messengers in a large variety of tissues. An imbalance in the production and elimination of ROS is associated with human diseases including neurodegenerative disorders. In the last years the notion that neurodegenerative diseases are accompanied by chronic viral infections, which may result in an increase of neurodegenerative diseases progression, emerged. It is known in literature that enhanced viral infection risk, observed during neurodegeneration, is partly due to the increase of ROS accumulation in brain cells. However, the molecular mechanisms of viral infection, occurring during the progression of neurodegeneration, remain unclear. In this review, we discuss the recent knowledge regarding the role of influenza, herpes simplex virus type-1, and retroviruses infection in ROS/RNS-mediated Parkinson’s disease (PD, Alzheimer’s disease (AD, and amyotrophic lateral sclerosis (ALS.

  2. Absence of PO2 change in fetal brain despite PO2 increase in placenta in response to maternal oxygen challenge.

    Science.gov (United States)

    Huen, I; Morris, D M; Wright, C; Sibley, C P; Naish, J H; Johnstone, E D

    2014-12-01

    Magnetic resonance imaging allows the noninvasive observation of PO2 changes between air breathing and oxygen breathing through quantification of the magnetic longitudinal relaxation time T1. Changes in PO2 are proportional to changes in the longitudinal relaxation rate ΔR1 (where ΔR1=1/T1oxygen-1/T1air). Knowledge of this response could inform clinical interventions using maternal oxygen administration antenatally to treat fetal growth restriction. We present in vivo measurements of the response of the fetal-placental unit to maternal hyperoxia. Prospective cohort. Large tertiary maternity hospital. Nine women undergoing low-risk pregnancy (21-33 weeks of gestation) and five nonpregnant adults. During imaging the air supply to mothers was changed from medical air (21% oxygen) to medical oxygen (100% oxygen) and T1 was monitored over time in both the placenta and fetal brain using a periodically repeated magnetic resonance imaging sequence. To demonstrate that the method could detect a brain response, brain responses from five normal adult volunteers were measured using a similar imaging protocol. Changes in T1 following oxygen challenge. No significant ΔR1 (P=0.42, paired t-test) was observed in fetal brains. A significant placental ΔR1 (P=0.0002, paired t-test) of 0.02±0.01/s (mean±SD) was simultaneously observed in the same participants. In the brains of the nonpregnant adults, a significant ΔR1 (P=0.01, paired t-test) of 0.005±0.002/s was observed. Short-term maternal oxygen administration does not improve fetal brain oxygenation, in contrast to the response observed in the adult brain. © 2014 Royal College of Obstetricians and Gynaecologists.

  3. Tailoring properties of reduced graphene oxide by oxygen plasma treatment

    Science.gov (United States)

    Kondratowicz, Izabela; Nadolska, Małgorzata; Şahin, Samet; Łapiński, Marcin; Prześniak-Welenc, Marta; Sawczak, Mirosław; Yu, Eileen H.; Sadowski, Wojciech; Żelechowska, Kamila

    2018-05-01

    We report an easily controllable, eco-friendly method for tailoring the properties of reduced graphene oxide (rGO) by means of oxygen plasma. The effect of oxygen plasma treatment time (1, 5 and 10 min) on the surface properties of rGO was evaluated. Physicochemical characterization using microscopic, spectroscopic and thermal techniques was performed. The results revealed that different oxygen-containing groups (e.g. carboxyl, hydroxyl) were introduced on the rGO surface enhancing its wettability. Furthermore, upon longer treatment time, other functionalities were created (e.g. quinones, lactones). Moreover, external surface of rGO was partially etched resulting in an increase of the material surface area and porosity. Finally, the oxygen plasma-treated rGO electrodes with bilirubin oxidase were tested for oxygen reduction reaction. The study showed that rGO treated for 10 min exhibited twofold higher current density than untreated rGO. The oxygen plasma treatment may improve the enzyme adsorption on rGO electrodes by introduction of oxygen moieties and increasing the porosity.

  4. Cerebral oxygenation and energy metabolism in bacterial meningitis

    DEFF Research Database (Denmark)

    Larsen, Lykke

    Introduction: In a recent retrospective study of patients with severe bacterial meningitis we demonstrated that cerebral oxidative metabolism was affected in approximately 50% of the cases. An increase of lactate/pyruvate (LP) ratio above the upper normal limit, defined according to according...... bacterial meningitis; secondly to examine whether it is correct to separate the diagnosis of cerebral ischemia from mitochondrial dysfunction based exclusively on the biochemical pattern obtained during intracerebral microdialysis. Method: A prospective clinical study including patients with severe...... community acquired bacterial meningitis admitted to the Department of Infectious Diseases, Odense University Hospital, during the period January 2014 to June 2016. We relate data from measurements of brain tissue oxygen tension (PbtO2) to simultaneously recorded data reflecting cerebral cytoplasmic redox...

  5. Oxygen Isotopes in Chondritic Interplanetary Dust: Parent-Bodies and Nebular Oxygen Reservoirs

    International Nuclear Information System (INIS)

    Aleon, J; McKeegan, K D; Leshin, L

    2006-01-01

    Planetary objects have preserved various amounts of oxygen issued from isotopically different oxygen reservoirs reflecting their origin and physico-chemical history. An 16 O-rich component is preserved in refractory inclusions (CAIs) whereas meteorites matrices are enriched in an 16 O-poor component. The origin of these components is still unclear. The most recent models are based on isotope selective photodissociation of CO in a 16 O-rich nebula/presolr cloud resulting in a 16 O-poor gas in the outer part of the nebula. However because most meteorite components are thought to be formed in the inner 3AU of the solar nebula, the precise isotopic composition of outer solar system components is yet unknown. In that respect, the oxygen isotopic composition of cometary dust is a key to understand the origin of the solar system. The Stardust mission will bring back to the Earth dust samples from comet Wild2, a short period comet from the Jupiter family. A precise determination of the oxygen isotope composition of Wild2 dust grains is essential to decipher the oxygen reservoirs of the outer solar system. However, Stardust samples may be extremely fragmented upon impact in the collector. In addition, interplanetary dust particles (IDPs) collected in the stratosphere are likely to contain comet samples. Therefore, they started to investigate the oxygen isotopic composition of a suite of chondritic interplanetary dust particles that includes IDPs of potential cometary origin using a refined procedure to increase the lateral resolution for the analysis of Stardust grains or IDP subcomponents down to ∼ 3 (micro)m. High precision data for 4 IDPs were previously reported, here they have measured 6 additional IDPs

  6. Increased Nitroxidative Stress Promotes Mitochondrial Dysfunction in Alcoholic and Nonalcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Byoung-Joon Song

    2013-01-01

    Full Text Available Increased nitroxidative stress causes mitochondrial dysfunctions through oxidative modifications of mitochondrial DNA, lipids, and proteins. Persistent mitochondrial dysfunction sensitizes the target cells/organs to other pathological risk factors and thus ultimately contributes to the development of more severe disease states in alcoholic and nonalcoholic fatty liver disease. The incidences of nonalcoholic fatty liver disease continuously increase due to high prevalence of metabolic syndrome including hyperlipidemia, hypercholesterolemia, obesity, insulin resistance, and diabetes. Many mitochondrial proteins including the enzymes involved in fat oxidation and energy supply could be oxidatively modified (including S-nitrosylation/nitration under increased nitroxidative stress and thus inactivated, leading to increased fat accumulation and ATP depletion. To demonstrate the underlying mechanism(s of mitochondrial dysfunction, we employed a redox proteomics approach using biotin-N-maleimide (biotin-NM as a sensitive biotin-switch probe to identify oxidized Cys residues of mitochondrial proteins in the experimental models of alcoholic and acute liver disease. The aims of this paper are to briefly describe the mechanisms, functional consequences, and detection methods of mitochondrial dysfunction. We also describe advantages and limitations of the Cys-targeted redox proteomics method with alternative approaches. Finally, we discuss various applications of this method in studying oxidatively modified mitochondrial proteins in extrahepatic tissues or different subcellular organelles and translational research.

  7. Arterial and venous oxygen partial pressure and utilization factor η, resp., and 133Xe muscle clearance after UV irradiation of skin or blood of healthy persons and patients with occlusive arterial disease and psoriasis, resp

    International Nuclear Information System (INIS)

    Scherf, H.P.; Strangfeld, D.; Meffert, H.; Glatzel, E.; Siewert, H.; Soennichsen, N.; Correns, H.J.

    1988-01-01

    In three teams of test persons series of UV irradiations of the skin (λ max 365 nm) and of the blood (λ max 254 nm) were performed, and moreover pseudoirradiations of the blood as placebo and infrared irradiations of the skin were carried out. UV irradiations of the blood increased the factor η (O 2 utilization) in all test persons. In healthy persons and patients with psoriasis UV irradiations of the skin involved a homogeneous, but less distinct effect, this was, however, not the case in patients with vascular diseases. According to the results of the 133 Xe muscle clearance the improved utilization of oxygen does not result from increased peripheral blood supply. (author)

  8. Isoprostanes and Neuroprostanes as Biomarkers of Oxidative Stress in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Elżbieta Miller

    2014-01-01

    Full Text Available Accumulating data shows that oxidative stress plays a crucial role in neurodegenerative disorders. The literature data indicate that in vivo or postmortem cerebrospinal fluid and brain tissue levels of F2-isoprostanes (F2-IsoPs especially F4-neuroprotanes (F4-NPs are significantly increased in some neurodegenerative diseases: multiple sclerosis, Alzheimer's disease, Huntington's disease, and Creutzfeldt-Jakob disease. Central nervous system is the most metabolically active organ of the body characterized by high requirement for oxygen and relatively low antioxidative activity, what makes neurons and glia highly susceptible to destruction by reactive oxygen/nitrogen species and neurodegeneration. The discovery of F2-IsoPs and F4-NPs as markers of lipid peroxidation caused by the free radicals has opened up new areas of investigation regarding the role of oxidative stress in the pathogenesis of human neurodegenerative diseases. This review focuses on the relationship between F2-IsoPs and F4-NPs as biomarkers of oxidative stress and neurodegenerative diseases. We summarize the knowledge of these novel biomarkers of oxidative stress and the advantages of monitoring their formation to better define the involvement of oxidative stress in neurological diseases.

  9. Major events in Neogene oxygen isotopic records

    International Nuclear Information System (INIS)

    Kennett, J.P.; Hodell, D.A.

    1986-01-01

    Changes in oxygen isotopic ratios of foraminiferal calcite during the cainozoic have been one of the primary tools for investigating the history of Arctic and Antarctic glaciation, although interpretations of the oxygen isotopic record differ markedly. The ambiguity in interpretation results mainly from the partitioning of temperature from ice volume effects in delta 18 O changes. Oxygen isotopic records for the Cainozoic show an increase in delta 18 O values towards the present, reflecting gradual cooling and increased glaciation of the Earth's climate since the late Cretaceous. A variety of core material from the South Atlantic and South-west Pacific oceans are investigated. This composite data represents one of the most complete available with which to evaluate the evolution of glaciation during the Neogene. Expansion of ice shelves in Antarctica undoubtedly accompanied the increased glaciation of the northern hemisphere, since eustatic sea-level lowering would positively reinforce ice growth on Antarctica

  10. Maternal obesity increases the risk of metabolic disease and impacts renal health in offspring

    Science.gov (United States)

    Glastras, Sarah J.; Chen, Hui; Pollock, Carol A.; Saad, Sonia

    2018-01-01

    Obesity, together with insulin resistance, promotes multiple metabolic abnormalities and is strongly associated with an increased risk of chronic disease including type 2 diabetes (T2D), hypertension, cardiovascular disease, non-alcoholic fatty liver disease (NAFLD) and chronic kidney disease (CKD). The incidence of obesity continues to rise in astronomical proportions throughout the world and affects all the different stages of the lifespan. Importantly, the proportion of women of reproductive age who are overweight or obese is increasing at an alarming rate and has potential ramifications for offspring health and disease risk. Evidence suggests a strong link between the intrauterine environment and disease programming. The current review will describe the importance of the intrauterine environment in the development of metabolic disease, including kidney disease. It will detail the known mechanisms of fetal programming, including the role of epigenetic modulation. The evidence for the role of maternal obesity in the developmental programming of CKD is derived mostly from our rodent models which will be described. The clinical implication of such findings will also be discussed. PMID:29483369

  11. Influence of substrate composition on vitro oxygen consumption of ...

    African Journals Online (AJOL)

    The endogenous oxygen consumption of lung, liver and spleen slices is only slightly increased by glucose in an SRP medium compared with its effect on heart and kidney slices. Individual substrates which induced a highly significant increase in oxygen uptake of lung tissue were succinate, acetate, pyruvate and glucose, ...

  12. Antioxidant capacity and oxygen radical diseases in the preterm newborn.

    Science.gov (United States)

    Rogers, S; Witz, G; Anwar, M; Hiatt, M; Hegyi, T

    2000-06-01

    Bronchopulmonary dysplasia, intraventricular hemorrhage, necrotizing enterocolitis, and retinopathy of prematurity may be different manifestations of oxygen radical diseases of prematurity (ORDP). To test the hypothesis that the antioxidant capacity of cord blood serum will predict risk of ORDP. An inception cohort of premature neonates was followed up from birth until discharge or death to determine if outcome was related to cord blood serum antioxidant capacity, as determined by a manual assay measuring the relative inhibition of oxidation of 2,2'-azino-di-(3-ethylbenzthiazoline)-6 sulfonic acid (ABTS). Possible correlations between antioxidant capacity and various perinatal factors were also tested. Level 3 newborn intensive care unit. All inborn very low-birth-weight neonates from whom cord blood was available and for whom maternal consent was obtained were included. Newborns who died in the first week of life or who had major congenital malformations were excluded. A convenience sample of newborns weighing more than 1500 g was used to perfect assay and explore confounders. Significant ORDP was defined as the presence of intraventricular hemorrhage greater than grade 2, retinopathy of prematurity greater than stage 1, bronchopulmonary dysplasia at the postconceptional age of 36 weeks, or necrotizing enterocolitis with the hypothesis that neonates with ORDP will have lower antioxidant capacity in cord blood serum. Serum antioxidant capacity at birth correlated with gestational age for the entire sample of 41 neonates and for the 26 neonates born before 32 weeks' gestation. After correction for gestational age, cord serum antioxidant capacity did not correlate with maternal smoking, preeclampsia, chorioamnionitis, cord pH Apgar scores, or any of the ORDP studied. Cord serum antioxidant capacity correlates with gestational age but does not predict ORDP risk.

  13. Oxygen and oxidative stress in the perinatal period

    Directory of Open Access Journals (Sweden)

    Isabel Torres-Cuevas

    2017-08-01

    Full Text Available Fetal life evolves in a hypoxic environment. Changes in the oxygen content in utero caused by conditions such as pre-eclampsia or type I diabetes or by oxygen supplementation to the mother lead to increased free radical production and correlate with perinatal outcomes.In the fetal-to-neonatal transition asphyxia is characterized by intermittent periods of hypoxia ischemia that may evolve to hypoxic ischemic encephalopathy associated with neurocognitive, motor, and neurosensorial impairment. Free radicals generated upon reoxygenation may notably increase brain damage. Hence, clinical trials have shown that the use of 100% oxygen given with positive pressure in the airways of the newborn infant during resuscitation causes more oxidative stress than using air, and increases mortality.Preterm infants are endowed with an immature lung and antioxidant system. Clinical stabilization of preterm infants after birth frequently requires positive pressure ventilation with a gas admixture that contains oxygen to achieve a normal heart rate and arterial oxygen saturation. In randomized controlled trials the use high oxygen concentrations (90% to 100% has caused more oxidative stress and clinical complications that the use of lower oxygen concentrations (30–60%. A correlation between the amount of oxygen received during resuscitation and the level of biomarkers of oxidative stress and clinical outcomes was established. Thus, based on clinical outcomes and analytical results of oxidative stress biomarkers relevant changes were introduced in the resuscitation policies. However, it should be underscored that analysis of oxidative stress biomarkers in biofluids has only been used in experimental and clinical research but not in clinical routine. The complexity of the technical procedures, lack of automation, and cost of these determinations have hindered the routine use of biomarkers in the clinical setting. Overcoming these technical and economical difficulties

  14. Magnetic nanoparticles: reactive oxygen species generation and potential therapeutic applications

    Science.gov (United States)

    Mai, Trang; Hilt, J. Zach

    2017-07-01

    Magnetic nanoparticles have been demonstrated to produce reactive oxygen species (ROS), which play a major role in various cellular pathways, via Fenton and Haber-Weiss reaction. ROS act as a double-edged sword inside the body. At normal conditions, the generation of ROS is in balance with their elimination by scavenger systems, and they can promote cell proliferation as well as differentiation. However, at an increased level, they can cause damages to protein, lead to cellular apoptosis, and contribute to many diseases including cancer. Many recent studies proposed a variety of strategies to either suppress toxicity of ROS generation or exploit the elevated ROS levels for cancer therapy.

  15. Brain Energy and Oxygen Metabolism: Emerging Role in Normal Function and Disease

    Directory of Open Access Journals (Sweden)

    Michelle E. Watts

    2018-06-01

    Full Text Available Dynamic metabolic changes occurring in neurons are critically important in directing brain plasticity and cognitive function. In other tissue types, disruptions to metabolism and the resultant changes in cellular oxidative state, such as increased reactive oxygen species (ROS or induction of hypoxia, are associated with cellular stress. In the brain however, where drastic metabolic shifts occur to support physiological processes, subsequent changes to cellular oxidative state and induction of transcriptional sensors of oxidative stress likely play a significant role in regulating physiological neuronal function. Understanding the role of metabolism and metabolically-regulated genes in neuronal function will be critical in elucidating how cognitive functions are disrupted in pathological conditions where neuronal metabolism is affected. Here, we discuss known mechanisms regulating neuronal metabolism as well as the role of hypoxia and oxidative stress during normal and disrupted neuronal function. We also summarize recent studies implicating a role for metabolism in regulating neuronal plasticity as an emerging neuroscience paradigm.

  16. Closed Loop Control of Oxygen Delivery and Oxygen Generation

    Science.gov (United States)

    2017-08-01

    were used for this study and were connected via a USB cable to allow communication. The ventilator was modified to allow closed loop control of oxygen...connected via a USB cable to allow communication. The ventilator was modified to allow closed loop control of oxygen based on the oxygen saturation...2017-4119, 28 Aug 2017. oximetry (SpO2) and intermittent arterial blood sampling for arterial oxygen tension (partial pressure of oxygen [PaO2]) and

  17. Increase in the efficiency of electric melting of pellets in an arc furnace with allowance for the energy effect of afterburning of carbon oxide in slag using fuel-oxygen burners

    Science.gov (United States)

    Stepanov, V. A.; Krakht, L. N.; Merker, E. E.; Sazonov, A. V.; Chermenev, E. A.

    2015-12-01

    The problems of increasing the efficiency of electric steelmaking using fuel-oxygen burners to supply oxygen for the afterburning of effluent gases in an arc furnace are considered. The application of a new energy-saving regime based on a proposed technology of electric melting is shown to intensify the processes of slag formation, heating, and metal decarburization.

  18. Oxygen isotope exchange on palladium catalysts

    International Nuclear Information System (INIS)

    Kravchuk, L.S.; Beschetvertnaya, T.I.; Novorodskij, V.G.; Novikova, M.G.; Zaretskij, M.V.; Valieva, S.V.

    1983-01-01

    Oxygen heteromolecular isotope exchange on unreduced palladium catalysts, distingushing by metal content is studied. Content of 18 O in gaseous phase is eoual to 46%. Calculations of heteroexchange rates are conducted with decrease of the 18 O in the gaseous phase over solid sample. Method of oxygen thermodesorption has been used to establish that palladium, deposited on γ-Al 2 O 3 during exchange process is in oxidized state; in this case strength of Pd-O bond is determined by content dispersity) of the metal. It is shown that significant increase of exchange rate on the samples with Pd >> 0.5 mass.% content can be induced as by side decomposition reaction of its oxide and corresponding dilution of gaseous mixture by ''light'' oxygen so by possibility of exchange with oxygen of PdO phase

  19. Long working hours may increase risk of coronary heart disease.

    Science.gov (United States)

    Kang, Mo-Yeol; Cho, Soo-Hun; Yoo, Min-Sang; Kim, Taeshik; Hong, Yun-Chul

    2014-11-01

    To evaluate the association between long working hours and risk of coronary heart disease (CHD) estimated by Framingham risk score (FRS) in Korean adults. This study evaluated adult participants in Korean National Health and Nutrition Examination Survey IV (2007-2009). After inclusion and exclusion criteria were applied, the final sample size for this study model was 8,350. Subjects were asked about working hours and health status. Participants also completed physical examinations and biochemical measurement necessary for estimation of FRS. Multiple logistic regression was conducted to investigate the association between working hours and 10-year risk for CHD estimated by FRS. Compared to those who work 31-40 hr, significantly higher 10-year risk was estimated among subjects working longer hours. As working hours increased, odds ratio (OR) for upper 10 percent of estimated 10-year risk for CHD was increased up to 1.94. Long working hours are significantly related to risk of coronary heart disease. © 2014 Wiley Periodicals, Inc.

  20. Increased carboxyhemoglobin in adult falciparum malaria is associated with disease severity and mortality.

    Science.gov (United States)

    Yeo, Tsin W; Lampah, Daniel A; Kenangalem, Enny; Tjitra, Emiliana; Price, Ric N; Anstey, Nicholas M

    2013-09-01

    Heme oxygenase 1 expression is increased in pediatric patients with malaria. The carboxyhemoglobin level (a measure of heme oxygenase 1 activity) has not been assessed in adult patients with malaria. Results of pulse co-oximetry revealed that the mean carboxyhemoglobin level was elevated in 29 Indonesian adults with severe falciparum malaria (10%; 95% confidence interval [CI], 8%-13%) and in 20 with severe sepsis (8%; 95% CI, 5%-12%), compared with the mean levels in 32 patients with moderately severe malaria (7%; 95% CI, 5%-8%) and 36 controls (3.6%; 95% CI, 3%-5%; P carboxyhemoglobin level was associated with an increased odds of death among patients with severe malaria (odds ratio, 1.2 per percentage point increase; 95% CI, 1.02-1.5). While also associated with severity and fatality, methemoglobin was only modestly increased in patients with severe malaria. Increased carboxyhemoglobin levels during severe malaria and sepsis may exacerbate organ dysfunction by reducing oxygen carriage and cautions against the use of adjunctive CO therapy, which was proposed on the basis of mouse models.

  1. High-Energy-Density Metal-Oxygen Batteries: Lithium-Oxygen Batteries vs Sodium-Oxygen Batteries.

    Science.gov (United States)

    Song, Kyeongse; Agyeman, Daniel Adjei; Park, Mihui; Yang, Junghoon; Kang, Yong-Mook

    2017-12-01

    The development of next-generation energy-storage devices with high power, high energy density, and safety is critical for the success of large-scale energy-storage systems (ESSs), such as electric vehicles. Rechargeable sodium-oxygen (Na-O 2 ) batteries offer a new and promising opportunity for low-cost, high-energy-density, and relatively efficient electrochemical systems. Although the specific energy density of the Na-O 2 battery is lower than that of the lithium-oxygen (Li-O 2 ) battery, the abundance and low cost of sodium resources offer major advantages for its practical application in the near future. However, little has so far been reported regarding the cell chemistry, to explain the rate-limiting parameters and the corresponding low round-trip efficiency and cycle degradation. Consequently, an elucidation of the reaction mechanism is needed for both lithium-oxygen and sodium-oxygen cells. An in-depth understanding of the differences and similarities between Li-O 2 and Na-O 2 battery systems, in terms of thermodynamics and a structural viewpoint, will be meaningful to promote the development of advanced metal-oxygen batteries. State-of-the-art battery design principles for high-energy-density lithium-oxygen and sodium-oxygen batteries are thus reviewed in depth here. Major drawbacks, reaction mechanisms, and recent strategies to improve performance are also summarized. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. [Burden of smoking-related disease and potential impact of cigarette price increase in Peru].

    Science.gov (United States)

    Bardach, Ariel E; Caporale, Joaquín E; Alcaraz, Andrea; Augustovski, Federico; Huayanay-Falconí, Leandro; Loza-Munarriz, Cesar; Hernández-Vásquez, Akram; Pichon-Riviere, Andrés

    2016-01-01

    . To calculate the burden of smoking-related disease and evaluate the potential economic and health impact of tax-induced cigarette price increase in Peru. A microsimulation model was used to estimate smoking-attributable impact on mortality, quality of life, and costs associated with heart and cerebrovascular disease, chronic obstructive pulmonary disease, pneumonia, lung cancer, and another nine cancers. Three scenarios, involving increased taxes, were evaluated. . A yearly total of 16,719 deaths, 6,926 cancer diagnoses, 7,936 strokes, and 7,548 hospital admissions due to cardiovascular disease can be attributed to smoking in Peru. Similarly, 396,069 years of life are lost each year from premature death and disability, and the cost of treating smoking-attributable health issues rises to 2,500 million soles (PEN 2015). Currently, taxes on tobacco cover only 9.1% of this expense. If cigarette prices were to increase by 50% over the next 10 years, 13,391 deaths, 6,210 cardiovascular events, and 5,361 new cancers could be prevented, representing an economic benefit of 3,145 million (PEN) in savings in health costs and increases in tax revenues. . Smoking-attributable burden of disease and costs to the health system are very high in Peru. Higher cigarette taxes could have substantial health and economic benefits for the country.

  3. Non-linear increase of respiratory diseases and their costs under severe air pollution.

    Science.gov (United States)

    Shen, Ying; Wu, Yiyun; Chen, Guangdi; Van Grinsven, Hans J M; Wang, Xiaofeng; Gu, Baojing; Lou, Xiaoming

    2017-05-01

    China is experiencing severe and persistent air pollution, with concentrations of fine particulate matters (PM 2.5 ) reaching unprecedentedly high levels in many cities. Quantifying the detrimental effects on health and their costs derived from high PM 2.5 levels is crucial because of the unsolved challenges to mitigate air pollution in the following decades. Using the daily monitoring data on PM 2.5 concentrations and clinic visits, we found a non-linear increase of respiratory diseases, but not for other diseases (e.g., digestive diseases) under severe air pollution. We found an increase of respiratory diseases by 1% for each 10 μg m -3 increase in PM 2.5 when the annual average daily PM 2.5 concentration was less than 50 μg m -3 ; while this ratio was doubled (around 2%) with the daily PM 2.5 concentration larger than 50 μg m -3 . Under severe air pollution (PM 2.5 concentration >150 μg m -3 ), the respiratory diseases increased by over 50% compared to that in clean days. Children are more sensitive to the severe air pollution. The increase of clinic visits, especially for adults, was observed mainly in bigger (>500 beds) hospitals. Re-allocating medical resources (e.g., doctors) from big hospitals to community hospitals can benefit the respiratory patients due to air pollution. The total medical cost of clinic visits of respiratory diseases derived from PM 2.5 pollution was estimated at 17.2-57.0 billion Yuan in 2014 in China, accounting for 0.5-1.6% of national total health expenditure. Because these medical costs only represent a small part of total health cost derived from air pollution, the reduction of associated health costs would be an important co-benefit of implementation of air pollution preventive strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Thermophysical properties and oxygen transport in (Thx,Pu1-x)O2.

    Science.gov (United States)

    Galvin, C O T; Cooper, M W D; Rushton, M J D; Grimes, R W

    2016-10-31

    Using Molecular Dynamics, this paper investigates the thermophysical properties and oxygen transport of (Th x ,Pu 1-x )O 2 (0 ≤ x ≤ 1) between 300-3500 K. In particular, the superionic transition is investigated and viewed via the thermal dependence of lattice parameter, linear thermal expansion coefficient, enthalpy and specific heat at constant pressure. Oxygen diffusivity and activation enthalpy are also investigated. Below the superionic temperature an increase of oxygen diffusivity for certain compositions of (Th x ,Pu 1-x )O 2 compared to the pure end members is predicted. Oxygen defect formation enthalpies are also examined, as they underpin the superionic transition temperature and the increase in oxygen diffusivity. The increase in oxygen diffusivity for (Th x ,Pu 1-x )O 2 is explained in terms of lower oxygen defect formation enthalpies for (Th x ,Pu 1-x )O 2 than PuO 2 and ThO 2 , while links are drawn between the superionic transition temperature and oxygen Frenkel disorder.

  5. Global increases in allergic respiratory disease: the possible role of diesel exhaust particles.

    Science.gov (United States)

    Peterson, B; Saxon, A

    1996-10-01

    Reading this article will enable the readers to recognize and evaluate i e potential relationship between allergic respiratory disease and polyaromatic hydrocarbons as air pollutants from industrial and automotive fuel sources. In this article we review the long-term trends in the prevalence of allergic airway diseases (rhinitis and asthma). We then examine the epidemiologic and other research data relating to the role that hydrocarbon fuel emissions may have had on allergic respiratory disease. Published literature on the relationship between specific air pollutants and trends in allergic respiratory disease were reviewed. Reports of research on pollutant effects on allergic antibody (IgE) were also studied. In both cases, the Melvyl-Medline database since 1975 was used for literature searches. Older references were identified from the bibliographies of relevant articles and books and with the help of the rare books collection at UCLA's Louis M. Darling Biomedical library. Examination of the historical record indicates that allergic rhinitis and allergic asthma have significantly increased in prevalence over the past two centuries. Although the reasons for this increase are not fully elucidated, epidemiologic data suggest that certain pollutants such as those produced from the burning of fossil fuels may have played an important role in the prevalence changes. Also important are studies showing that diesel exhaust, a prototypical fossil fuel, is able to enhance in vitro and in vivo IgE production. Increased levels of the compounds resulting from fossil fuel combustion may be partly responsible for the increased prevalence of allergic respiratory disease. If the nature of these compounds and the mechanisms by which they exacerbate allergic disease can be identified, steps can be taken to reduce the production or the impact of these allergy producing compounds.

  6. High-spatial-resolution mapping of the oxygen concentration in cortical tissue (Conference Presentation)

    Science.gov (United States)

    Jaswal, Rajeshwer S.; Yaseen, Mohammad A.; Fu, Buyin; Boas, David A.; Sakadžic, Sava

    2016-03-01

    Due to a lack of imaging tools for high-resolution imaging of cortical tissue oxygenation, the detailed maps of the oxygen partial pressure (PO2) around arterioles, venules, and capillaries remain largely unknown. Therefore, we have limited knowledge about the mechanisms that secure sufficient oxygen delivery in microvascular domains during brain activation, and provide some metabolic reserve capacity in diseases that affect either microvascular networks or the regulation of cerebral blood flow (CBF). To address this challenge, we applied a Two-Photon PO2 Microscopy to map PO2 at different depths in mice cortices. Measurements were performed through the cranial window in the anesthetized healthy mice as well as in the mouse models of microvascular dysfunctions. In addition, microvascular morphology was recorded by the two-photon microscopy at the end of each experiment and subsequently segmented. Co-registration of the PO2 measurements and exact microvascular morphology enabled quantification of the tissue PO2 dependence on distance from the arterioles, capillaries, and venules at various depths. Our measurements reveal significant spatial heterogeneity of the cortical tissue PO2 distribution that is dominated by the high oxygenation in periarteriolar spaces. In cases of impaired oxygen delivery due to microvascular dysfunction, significant reduction in tissue oxygenation away from the arterioles was observed. These tissue domains may be the initial sites of cortical injury that can further exacerbate the progression of the disease.

  7. Cerebral oxygenation decreases during exercise in humans with beta-adrenergic blockade

    DEFF Research Database (Denmark)

    Seifert, T.; Rasmussen, P.; Secher, Niels H.

    2009-01-01

    AIM: Beta-blockers reduce exercise capacity by attenuated increase in cardiac output, but it remains unknown whether performance also relates to attenuated cerebral oxygenation. METHODS: Acting as their own controls, eight healthy subjects performed a continuous incremental cycle test to exhaustion...... attenuated the increase in cardiac output of consequence for cerebral perfusion and oxygenation. We suggest that a decrease in cerebral oxygenation limits exercise capacity Udgivelsesdato: 2009/7...... with or without administration of the non-selective beta-blocker propranolol. Changes in cerebral blood flow velocity were measured with transcranial Doppler ultrasound and those in cerebral oxygenation were evaluated using near-infrared spectroscopy and the calculated cerebral mitochondrial oxygen tension...

  8. The influence of a hyperbaric environment and increased oxygen partial pressure on the corrosion of dental alloys.

    Science.gov (United States)

    Mehl, Christian; Heblich, Frank; Lenz, Rudolf; Ludwig, Klaus; Kern, Matthias

    2011-09-01

    The purpose of this in-vitro study was to determine whether there is a correlation between a hyperbaric environment or increased oxygen partial pressure and the corrosion of dental alloys used for dental restorations in divers. Samples of three commercially available dental alloys (palladium-based, reduced-gold-content and high-gold-content) were tested in the DIN EN ISO 1562 static immersion test and the amount of dissolved ions measured by atomic absorption spectrometry. The specimens were exposed to one of the following three conditions: normobaric and normoxic conditions (PO2 21 kPa); 608 kPa (6 bar, PO2 127 kPa) pressurised air in a pressure chamber or 506 kPa (5 bar, PO2 304 kPa) pressurised nitrox in a pressure chamber. None of the exposures suggested a correlation between increased ion solubility as a measure of corrosion and increased ambient pressure of the three alloys. The reduced-gold-content alloy released zinc ions at twice the weekly recommended dose. When the palladium-based alloy was exposed to a hyperbaric or hyperbaric/hyperoxic environment, ion solubility increased only slightly for gallium and silver. Within the limited sample size of the current study it can be concluded that hyperbaric and/or hyperoxic conditions do not seem to be a risk for increased corrosion for any of the three tested alloys.

  9. Nitric Oxide And Oxygen: Actions And Interactions In Health And Disease

    Directory of Open Access Journals (Sweden)

    Professor Sir Salvador Moncada

    2015-08-01

    It is likely that the interactions between oxygen and NO, either at the mitochondria or in the cell in general, play a role in the initiation and development of neoplastic transformation and spreading. The ways in which these interactions operate remain unclear and are likely to vary from cancer to cancer.

  10. Reactive oxygen species: role in the development of cancer and various chronic conditions

    Directory of Open Access Journals (Sweden)

    Waris Gulam

    2006-05-01

    Full Text Available Abstract Oxygen derived species such as superoxide radical, hydrogen peroxide, singlet oxygen and hydroxyl radical are well known to be cytotoxic and have been implicated in the etiology of a wide array of human diseases, including cancer. Various carcinogens may also partly exert their effect by generating reactive oxygen species (ROS during their metabolism. Oxidative damage to cellular DNA can lead to mutations and may, therefore, play an important role in the initiation and progression of multistage carcinogenesis. The changes in DNA such as base modification, rearrangement of DNA sequence, miscoding of DNA lesion, gene duplication and the activation of oncogenes may be involved in the initiation of various cancers. Elevated levels of ROS and down regulation of ROS scavengers and antioxidant enzymes are associated with various human diseases including various cancers. ROS are also implicated in diabtes and neurodegenerative diseases. ROS influences central cellular processes such as proliferation a, apoptosis, senescence which are implicated in the development of cancer. Understanding the role of ROS as key mediators in signaling cascades may provide various opportunities for pharmacological intervention.

  11. Influence of obstructive sleep apnea on fatty liver disease: role of chronic intermittent hypoxia.

    Science.gov (United States)

    Türkay, Cansel; Ozol, Duygu; Kasapoğlu, Benan; Kirbas, Ismail; Yıldırım, Zeki; Yiğitoğlu, Ramazan

    2012-02-01

    Currently the common pathogenetic mechanisms in nonalcoholic fatty liver disease (NAFLD) and obstructive sleep apnea (OSA) are gaining increased attention. The aim of this study is to find out the influence of chronic intermittent hypoxemia and OSA related parameters to the severity of NAFLD. We examined the liver functions tests and ultrasonographic data of liver as well as markers of OSA severity (apnea-hypopnea index [AHI], oxygen desaturation index, minimum oxygen saturation, percentage of time spent with S(pO(2)) hypoxia during sleep. The prevalence of NAFLD was higher in patients with severe OSA, suggesting a role for nocturnal hypoxemia in the pathogenesis of fatty liver disease.

  12. Elevated global cerebral blood flow, oxygen extraction fraction and unchanged metabolic rate of oxygen in young adults with end-stage renal disease: an MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Gang; Lou, Yaxian; Pan, Zhiying; Liu, Ya [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China); Nanjing University of Aeronautics and Astronautics, College of Aivil Aviation, Nanjing, Jiangsu (China); Wen, Jiqiu; Li, Xue; Zhang, Zhe [Medical School of Nanjing University, National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing, Jiangsu (China); Lu, Hanzhang [University of Texas Southwestern Medical Center, Advanced Imaging Research Center, Dallas, TX (United States); Liu, Wei [Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, Guangdong (China); Liu, Hui [Siemens MR NEA Collaboration, Siemens Ltd., Shanghai (China); Chen, Huijuan; Kong, Xiang; Luo, Song; Jiang, Xiaolu; Zhang, Zongjun; Zhang, Long Jiang; Lu, Guang Ming [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China)

    2016-06-15

    To noninvasively assess global cerebral blood flow (CBF), oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO{sub 2}) in young adults with end-stage renal disease (ESRD). Thirty-six patients and 38 healthy volunteers were included and took part in MR examinations, blood and neuropsychological tests. CBF and OEF were measured by phase-contrast and T2-relaxation-under-spin-tagging MRI techniques, respectively. CMRO{sub 2} was computed from CBF, OEF and hematocrit according to Fick's principle. Correlations were performed between MR measurements, blood biochemistry measurements and neuropsychological test scores. Compared with controls, ESRD patients had elevated CBF (72.9 ± 12.5 vs. 63.8 ± 8.5 ml min{sup -1} 100 g{sup -1}, P < 0.001), elevated OEF (47.2 ± 10.2 vs. 35.8 ± 5.4 %, P < 0.001), but unaffected CMRO{sub 2} (199.5 ± 36.4 vs. 193.8 ± 28.6 μmol O{sub 2} min{sup -1} 100 g{sup -1}, P = 0.879). Hematocrit negatively correlated with CBF (r = -0.640, P < 0.001) and OEF (r = -0.701, P < 0.001), but not with CMRO{sub 2}. Altered neuropsychological test scores of ESRD patients were associated with OEF and CBF, but not with CMRO{sub 2}. There were weak relationships between eGFR and hematocrit (r = 0.308, P = 0.068) or CBF (r = 0.318, P = 0.059). Our findings suggested that anaemic young adults with ESRD may afford higher CBF and OEF to maintain a normal CMRO{sub 2}. Despite this compensatory process, however, cognitive function was still impaired and its severity was correlated with their CBF and OEF abnormality. (orig.)

  13. Plasma viscosity increase with progression of peripheral arterial atherosclerotic disease.

    Science.gov (United States)

    Poredos, P; Zizek, B

    1996-03-01

    Increased blood and plasma viscosity has been described in patients with coronary and peripheral arterial disease. However, the relation of viscosity to the extent of arterial wall deterioration--the most important determinant of clinical manifestation and prognosis of the disease--is not well known. Therefore, the authors studied plasma viscosity as one of the major determinants of blood viscosity in patients with different stages of arterial disease of lower limbs (according to Fontaine) and its relation to the presence of some risk factors of atherosclerosis. The study encompassed four groups of subjects: 19 healthy volunteers (group A), 18 patients with intermittent claudication up to 200 m (stage II; group B), 15 patients with critical ischemia of lower limbs (stage III and IV; group C), and 16 patients with recanalization procedures on peripheral arteries. Venous blood samples were collected from an antecubital vein without stasis for the determination of plasma viscosity (with a rotational capillary microviscometer, PAAR), fibrinogen, total cholesterol, alpha-2-macroglobulin, and glucose concentrations. In patients with recanalization procedure local plasma viscosity was also determined from blood samples taken from a vein on the dorsum of the foot. Plasma viscosity was most significantly elevated in the patients with critical ischemia (1.78 mPa.sec) and was significantly higher than in the claudicants (1.68 mPa.sec), and the claudicants also had significantly higher viscosity than the controls (1.58 mPa.sec). In patients in whom a recanalization procedure was performed, no differences in systemic and local plasma viscosity were detected, neither before nor after recanalization of the diseased artery. In all groups plasma viscosity was correlated with fibrinogen concentration (r=0.70, P < 0.01) and total cholesterol concentration (r=0.24, P < 0.05), but in group C (critical ischemia) plasma viscosity was most closely linked to the concentration of alpha-2

  14. The impact of including spatially longitudinal heterogeneities of vessel oxygen content and vascular fraction in 3D tumor oxygenation models on predicted radiation sensitivity.

    Science.gov (United States)

    Lagerlöf, Jakob H; Kindblom, Jon; Bernhardt, Peter

    2014-04-01

    from 0% to 97%, and a maximal D99 increment of 57%. Only minor differences were observed between different vessel architectures, i.e., CVF vs VVF. In the smallest tumor with a low necrotic fraction, the D99 strictly decreased with increasing blood velocity. Increasing blood velocity also decreased the necrotic fraction in all tumor sizes. VF had the most profound influence on both the necrotic fraction and on D99. Our present analysis of necrotic formation and the impact of tumor oxygenation on D99 demonstrated the importance of including longitudinal variations in vessel oxygen content in tumor models. For small tumors, radiosensitivity was particularly dependent on VF and slightly dependent on the blood velocity and vessel arrangement. These dependences decreased with increasing tumor size, because the necrotic fraction also increased, thereby decreasing the number of viable tumor cells that required sterilization. The authors anticipate that the present model will be useful for estimating tumor oxygenation and radiation response in future detailed studies. © 2014 American Association of Physicists in Medicine.

  15. Effect of oxygen enrichment in air on acid gas combustion under Claus conditions

    KAUST Repository

    Ibrahim, Salisu

    2013-09-01

    Results are presented to examine the combustion of acid gas (H2S and CO2) in hydrogen-fueled flames using a mixture of oxygen and nitrogen under Claus conditions (Φ = 3). Specifically the effect of oxygen enrichment in the above flames is examined. The compositions of acid gas examined are100% H2S and 50% H2S/50% CO2 with different percentages of oxygen enrichment (0%, 19.3% and 69.3%) in the oxygen/nitrogen mixtures. The results revealed that combustion of acid gas formed SO2 wherein the mole fraction of SO2 increased to an asymptotic value at all the oxygen concentrations examined. In addition, increase in oxygen enrichment of the air resulted in increased amounts of SO2 rather than the formation of more desirable elemental sulfur. In case of 50% H2S/50% CO2 acid gas, carbon monoxide mole fraction increased with oxygen enrichment which is an indicator to the availability of additional amounts of oxygen into the reaction pool. This gas mixture resulted in the formation of other sulfurous–carbonaceous compounds (COS and CS2) due to the presence of carbon monoxide. The results showed that the rate of COS formation increased with oxygen enrichment due to the availability of higher amounts of CO while that of CS2 reduced. The global reactions responsible for this observed phenomenon are presented.

  16. Celiac disease prevalence is not increased in patients with functional dyspepsia.

    Science.gov (United States)

    Lasa, Juan; Spallone, Liliana; Gandara, Silvina; Chaar, Elsa; Berman, Saul; Zagalsky, David

    2017-01-01

    - Previous evidence trying to assess the risk of celiac disease among dyspeptic patients has been inconclusive, showing in some cases notorious discrepancies. - To determine the prevalence of celiac disease in patients with dyspepsia compared to healthy controls without dyspepsia. - Adult patients under evaluation for dyspepsia were invited to participate. These patients were offered an upper gastrointestinal endoscopy with duodenal biopsies. On the other hand, asymptomatic adult volunteers who performed a preventive visit to their primary care physician were invited to participate and agreed to undertake an upper gastrointestinal endoscopy with duodenal biopsies as well. Those patients with histologic signs of villous atrophy were furtherly evaluated and serological tests were performed in order to determine celiac disease diagnosis. Celiac disease prevalence was compared between groups. - Overall, 320 patients with dyspepsia and 320 healthy controls were recruited. There were no significant differences in terms of gender or age between groups. Celiac disease diagnosis was made in 1.25% (4/320) of patients in the dyspepsia group versus 0.62% (2/320) in the control group. - Patients with dyspepsia who underwent routine duodenal biopsies did not show an increased risk for celiac disease when compared to healthy individuals.

  17. Molecular basis for increased risk for late-onset Alzheimer disease due to the naturally occurring L28P mutation in apolipoprotein E4.

    Science.gov (United States)

    Argyri, Letta; Dafnis, Ioannis; Theodossiou, Theodossis A; Gantz, Donald; Stratikos, Efstratios; Chroni, Angeliki

    2014-05-02

    The apolipoprotein (apo) E4 isoform has consistently emerged as a susceptibility factor for late-onset Alzheimer disease (AD), although the exact mechanism is not clear. A rare apoE4 mutant, apoE4[L28P] Pittsburgh, burdens carriers with an added risk for late-onset AD and may be a useful tool for gaining insights into the role of apoE4 in disease pathogenesis. Toward this end, we evaluated the effect of the L28P mutation on the structural and functional properties of apoE4. ApoE4[L28P] was found to have significantly perturbed thermodynamic properties, to have reduced helical content, and to expose a larger portion of the hydrophobic surface to the solvent. Furthermore, this mutant is thermodynamically destabilized and more prone to proteolysis. When interacting with lipids, apoE4[L28P] formed populations of lipoprotein particles with structural defects. The structural perturbations brought about by the mutation were accompanied by aberrant functions associated with the pathogenesis of AD. Specifically, apoE4[L28P] promoted the cellular uptake of extracellular amyloid β peptide 42 (Aβ42) by human neuroblastoma SK-N-SH cells as well as by primary mouse neuronal cells and led to increased formation of intracellular reactive oxygen species that persisted for at least 24 h. Furthermore, lipoprotein particles containing apoE4[L28P] induced intracellular reactive oxygen species formation and reduced SK-N-SH cell viability. Overall, our findings suggest that the L28P mutation leads to significant structural and conformational perturbations in apoE4 and can induce functional defects associated with neuronal Aβ42 accumulation and oxidative stress. We propose that these structural and functional changes underlie the observed added risk for AD development in carriers of apoE4[L28P].

  18. Increased Mycoplasma hyopneumoniae Disease Prevalence in Domestic Hybrids Among Free-Living Wild Boar.

    Science.gov (United States)

    Goedbloed, Daniel J; van Hooft, Pim; Lutz, Walburga; Megens, Hendrik-Jan; van Wieren, Sip E; Ydenberg, Ron C; Prins, Herbert H T

    2015-12-01

    Wildlife immune genes are subject to natural selection exerted by pathogens. In contrast, domestic immune genes are largely protected from pathogen selection by veterinary care. Introgression of domestic alleles into the wild could lead to increased disease susceptibility, but observations are scarce due to low introgression rates, low disease prevalence and reduced survival of domestic hybrids. Here we report the first observation of a deleterious effect of domestic introgression on disease prevalence in a free-living large mammal. A fraction of 462 randomly sampled free-living European wild boar (Sus scrofa) was genetically identified as recent wild boar-domestic pig hybrids based on 351 SNP data. Analysis of antibody prevalence against the bacterial pathogen Mycoplasma hyopneumoniae (Mhyo) showed an increased Mhyo prevalence in wild-domestic hybrids. We argue that the most likely mechanism explaining the observed association between domestic hybrid status and Mhyo antibody prevalence would be introgression of deleterious domestic alleles. We hypothesise that large-scale use of antibiotics in the swine breeding sector may have played a role in shaping the relatively deleterious properties of domestic swine immune genes and that domestic introgression may also lead to increased wildlife disease susceptibility in the case of other species.

  19. The increasing financial impact of chronic kidney disease in australia.

    Science.gov (United States)

    Tucker, Patrick S; Kingsley, Michael I; Morton, R Hugh; Scanlan, Aaron T; Dalbo, Vincent J

    2014-01-01

    The aim of this investigation was to determine and compare current and projected expenditure associated with chronic kidney disease (CKD), renal replacement therapy (RRT), and cardiovascular disease (CVD) in Australia. Data published by Australia and New Zealand Dialysis and Transplant Registry, Australian Institute of Health and Welfare, and World Bank were used to compare CKD-, RRT-, and CVD-related expenditure and prevalence rates. Prevalence and expenditure predictions were made using a linear regression model. Direct statistical comparisons of rates of annual increase utilised indicator variables in combined regressions. Statistical significance was set at P Australia's healthcare system, compared to CVD. Research focusing on novel preventative/therapeutic interventions is warranted.

  20. A brief clinical case of monitoring of oxygenator performance and patient-machine interdependency during prolonged veno-venous extracorporeal membrane oxygenation.

    Science.gov (United States)

    Belliato, Mirko; Degani, Antonella; Buffa, Antonino; Sciutti, Fabio; Pagani, Michele; Pellegrini, Carlo; Iotti, Giorgio Antonio

    2017-10-01

    Monitoring veno-venous extracorporeal membrane oxygenation (vvECMO) during 76 days of continuous support in a 42-years old patient with end-stage pulmonary disease, listed for double-lung transplantation. Applying a new monitor (Landing ® , Eurosets, Medolla, Italy) and describing how measured and calculated parameters can be used to understand the variable interdependency between artificial membrane lung (ML) and patient native lung (NL). During vvECMO, in order to understand how the respiratory function is shared between ML and NL, ideally we should obtain data about oxygen transfer and CO 2 removal, both by ML and NL. Measurements for NL can be made on the mechanical ventilator. Measurements for ML are typically made from gas analysis on blood samples drawn from the ECMO system before and after the oxygenator, and therefore are non-continuous. Differently, the Landing monitor provides a continuous measurement of the oxygen transfer from the ML, combined with hemoglobin level, saturation of drained blood and saturation of reinfused blood. Moreover, the Landing monitor provides hemodynamics data about circulation through the ECMO system, with blood flow, pre-oxygenator pressure and post-oxygenator pressure. Of note, measurements include the drain negative pressure, whose monitoring may be particularly useful to prevent hemolysis. Real-time monitoring of vvECMO provides data helpful to understand the complex picture of a patient with severely damaged lungs on one side and an artificial lung on the other side. Data from vvECMO monitoring may help to adapt the settings of both mechanical ventilator and vvECMO. Data about oxygen transfer by the oxygenator are important to evaluate the performance of the device and may help to avoid unnecessary replacements, thus reducing risks and costs.

  1. Preliminary Clinical Study On Ms Treatment With Hyperbaric Oxygenation

    Directory of Open Access Journals (Sweden)

    Ulewicz Kazimierz

    2015-06-01

    Full Text Available The authors conducted the preliminary clinical investigation on 16 multiple sclerosis (Sclerosis multiplex patients of median disease duration 9.33 years and symptoms evaluated on Kurtzke’s scale. The patients underwent between 25 and 30 hyperbaric oxygen exposures at a pressure of 2 ata in intervals spread over a few days. The patients were qualified and classified to the treatment symptomatologically according to Fisher but the obtained results were evaluated according to the standardised Disability Status Scale by Kurtzke. During the investigations the authors carried out additional quantitative immunoglobulin and complement activity determination, lymphocyte T and B determinations as well as the usually applied clinical and laboratory investigations. Evident clinical improvement was observed in 14 patients, but in the case of one patient a deterioration was observed after 15 hyperbaric expositions (resulting in the hyperbaric oxygen treatment being stopped, whilst in another case no curative effect could be observed. By utilising the 50% haemolysis method, within the examined immunological parameters the authors observed an increase of complement fractions and its activity, white lymphocytes T and B examined qualitatively did not maintain the characteristic shift. The authors are still discussing the obtained results.

  2. The Role of Oxygen Tension in Penile Erection and Its Relationship to Erectile Dysfunction

    Directory of Open Access Journals (Sweden)

    Jong-Kwan Park

    2004-01-01

    Full Text Available The corpus cavernosum of the penis is one of the few vascular beds in which there is a change in oxygen tension with function (blood PO2 25-40mm Hg in the flaccid state, and 90-100mm Hg in the erect state. This change in oxygen tension exposes the components of the corpus cavernosum to a variety of cytokines, humoral, vasoactive, and growth factors which may affect the structure and function of the endothelial cells, smooth muscle cells, neurons and extracellular matrix. Among these cell types, endothelial cells are the first line of defense to blood-borne stress and can affect the underlying smooth muscle via paracrine mechanisms. Impotence is defined as the inability to obtain or sustain an erection sufficient for vaginal penetration and can result from a variety of pathological conditions, vascular disease, endocrine disease, neurological disease, and psychogenic disorders. The penis is a vascular organ and as such is susceptible to the effects of vascular diseases. This review will discuss the basic etiology of erection and vasculogenic erectile dysfunction and explore the role oxygen tension in regulating various cellular and humoral factors as well as trabecular structure and function.

  3. Hazy increased density in diffuse lung disease

    International Nuclear Information System (INIS)

    Klein, J.S.; Webb, W.R.; Gamsu, G.; Warnock, M.; Park, C.K.

    1989-01-01

    In order to determine the significance of ground glass density on high-resolution CT scans of patients with idiopathic pulmonary fibrosis and other lung disorders, the authors have reviewed 200 high-resolution CT studies and found 50 cases demonstrating areas of hazy increased lung density. Disease entities most often associated with this finding included DIP, UIP, alveolar proteinosis, sarcoidosis, and bronchiolitis obliterans/ organizing pneumonia. Pathologic examination revealed either cellular or fluid material lining terminal air spaces, often associated with alveolar wall infiltration and an absence of fibrosis. Gallium scans and bronchoalveolar lavage in some cases showed active inflammation Follow-up high-resolution CT studies in 10 patients showed either change or resolution of the hazy densities, confirming the presence of a reversible parenchymal lesion

  4. Photo-excitation of carotenoids causes cytotoxicity via singlet oxygen production

    International Nuclear Information System (INIS)

    Yoshii, Hiroshi; Yoshii, Yukie; Asai, Tatsuya; Furukawa, Takako; Takaichi, Shinichi; Fujibayashi, Yasuhisa

    2012-01-01

    Highlights: ► Some photo-excited carotenoids have photosensitizing ability. ► They are able to produce ROS. ► Photo-excited fucoxanthin can produce singlet oxygen through energy transfer. -- Abstract: Carotenoids, natural pigments widely distributed in algae and plants, have a conjugated double bond system. Their excitation energies are correlated with conjugation length. We hypothesized that carotenoids whose energy states are above the singlet excited state of oxygen (singlet oxygen) would possess photosensitizing properties. Here, we demonstrated that human skin melanoma (A375) cells are damaged through the photo-excitation of several carotenoids (neoxanthin, fucoxanthin and siphonaxanthin). In contrast, photo-excitation of carotenoids that possess energy states below that of singlet oxygen, such as β-carotene, lutein, loroxanthin and violaxanthin, did not enhance cell death. Production of reactive oxygen species (ROS) by photo-excited fucoxanthin or neoxanthin was confirmed using a reporter assay for ROS production with HeLa Hyper cells, which express a fluorescent indicator protein for intracellular ROS. Fucoxanthin and neoxanthin also showed high cellular penetration and retention. Electron spin resonance spectra using 2,2,6,6-tetramethil-4-piperidone as a singlet oxygen trapping agent demonstrated that singlet oxygen was produced via energy transfer from photo-excited fucoxanthin to oxygen molecules. These results suggest that carotenoids such as fucoxanthin, which are capable of singlet oxygen production through photo-excitation and show good penetration and retention in target cells, are useful as photosensitizers in photodynamic therapy for skin disease.

  5. Relationship between arterial partial oxygen pressure after resuscitation from cardiac arrest and mortality in children.

    Science.gov (United States)

    Ferguson, Lee P; Durward, Andrew; Tibby, Shane M

    2012-07-17

    Observational studies in adults have shown a worse outcome associated with hyperoxia after resuscitation from cardiac arrest. Extrapolating from adult data, current pediatric resuscitation guidelines recommend avoiding hyperoxia. We investigated the relationship between arterial partial oxygen pressure and survival in patients admitted to the pediatric intensive care unit (PICU) after cardiac arrest. We conducted a retrospective cohort study using the Pediatric Intensive Care Audit Network (PICANet) database between 2003 and 2010 (n=122,521). Patients aged oxygen status and outcome was modeled with logistic regression, with nonlinearities explored via multivariable fractional polynomials. Covariates included age, sex, ethnicity, congenital heart disease, out-of-hospital arrest, year, Pediatric Index of Mortality-2 (PIM2) mortality risk, and organ supportive therapies. Of 1875 patients, 735 (39%) died in PICU. Based on the first arterial gas, 207 patients (11%) had hyperoxia (Pa(O)(2) ≥300 mm Hg) and 448 (24%) had hypoxia (Pa(O)(2) <60 mm Hg). We found a significant nonlinear relationship between Pa(O)(2) and PICU mortality. After covariate adjustment, risk of death increased sharply with increasing hypoxia (odds ratio, 1.92; 95% confidence interval, 1.80-2.21 at Pa(O)(2) of 23 mm Hg). There was also an association with increasing hyperoxia, although not as dramatic as that for hypoxia (odds ratio, 1.25; 95% confidence interval, 1.17-1.37 at 600 mm Hg). We observed an increasing mortality risk with advancing age, which was more pronounced in the presence of congenital heart disease. Both severe hypoxia and, to a lesser extent, hyperoxia are associated with an increased risk of death after PICU admission after cardiac arrest.

  6. Could a secular increase in organic burial explain the rise of oxygen? Insights from a geological carbon cycle model constrained by the carbon isotope record

    Science.gov (United States)

    Krissansen-Totton, J.; Kipp, M.; Catling, D. C.

    2017-12-01

    The stable isotopes of carbon in marine sedimentary rock provide a window into the evolution of the Earth system. Conventionally, a relatively constant carbon isotope ratio in marine sedimentary rocks has been interpreted as implying constant organic carbon burial relative to total carbon burial. Because organic carbon burial corresponds to net oxygen production from photosynthesis, it follows that secular changes in the oxygen source flux cannot explain the dramatic rise of oxygen over Earth history. Instead, secular declines in oxygen sink fluxes are often invoked as causes for the rise of oxygen. However, constant fractional organic burial is difficult to reconcile with tentative evidence for low phosphate concentrations in the Archean ocean, which would imply lower marine productivity and—all else being equal—less organic carbon burial than today. The conventional interpretation of the carbon isotope record rests on the untested assumption that the isotopic ratio of carbon inputs into the ocean reflect mantle isotopic values throughout Earth history. In practice, differing rates of carbonate and organic weathering will allow for changes in isotopic inputs, as suggested by [1] and [2]. However, these inputs can not vary freely because large changes in isotopic inputs would induce secular trends in carbon reservoirs, which are not observed in the isotope record. We apply a geological carbon cycle model to all Earth history, tracking carbon isotopes in crustal, mantle, and ocean reservoirs. Our model is constrained by the carbon isotope record such that we can determine the extent to which large changes in organic burial are permitted. We find both constant organic burial and 3-5 fold increases in organic burial since 4.0 Ga can be reconciled with the carbon isotope record. Changes in the oxygen source flux thus need to be reconsidered as a possible contributor to Earth's oxygenation. [1] L. A. Derry, Organic carbon cycling and the lithosphere, in Treatise on

  7. The relation between oxygen saturation level and retionopathy of prematurity

    Directory of Open Access Journals (Sweden)

    Mohammad Gharavi Fard

    2016-03-01

    Full Text Available Introduction: Oxygen therapy used for preterm infant disease might be associated with oxygen toxicity or oxidative stress. The exact oxygen concentration to control and maintain the arterial oxygen saturation balance is not certainly clear. We aimed to compare the efficacy of higher or lower oxygen saturations on the development of severe retinopathy of prematurity which is a major cause of blindness in preterm neonates. Methods: PubMed was searched for obtaining the relevant articles. A total of seven articles were included after studying the titles, abstracts, and the full text of retrieved articles at initial search. Inclusion criteria were all the English language human clinical randomized controlled trials with no time limitation, which studied the efficacy of low versus high oxygen saturation measured by pulse oximetry in preterm infants.Result: It can be suggested that lower limits of oxygen saturations have higher efficacy at postmesetural age of ≤28 weeks in preterm neonates. This relation has been demonstrated in five large clinical trials including three Boost trials, COT, and Support.Discussion: Applying higher concentrations of oxygen supplementations at mesentural age ≥32 weeks reduced the development of retinopathy of prematurity. Lower concentrations of oxygen saturation decreased the incidence and the development of retinopathy of prematurity in preterm neonates while applied soon after the birth.Conclusions: Targeting levels of oxygen saturation in the low or high range should be performed cautiously with attention to the postmesentural age in preterm infants at the time of starting the procedures.

  8. Reactive oxygen species, health and longevity

    Directory of Open Access Journals (Sweden)

    Vittorio Emanuele Bianchi

    2016-09-01

    Full Text Available Reactive oxygen species (ROS are considered responsible of ageing in animal and humans. Mitochondria are both source and target of ROS. Various strategies to reduce ROS production have been considered to extend lifespan. Caloric restriction, exercise, and antioxidants are thought to be able to protect cells from structural and functional damage. However, there is evidence that ROS production has a detrimental effect on health, but at physiological levels are necessary to stimulate longevity. They play an important effect on secondary signal transduction stimulating innate immunology and mitochondriogenesis. During exercise at moderate intensity, skeletal muscles generate ROS that are necessary for the remodelling of the muscular cells. Physical inactivity determines excessive ROS production and muscle atrophy. Caloric restriction (CR can reduce ROS generation and improve longevity while antioxidant supplementation has shown a negative effect on longevity reducing the muscle adaptation to exercise and increasing mortality risk in patients with chronic diseases. The role of ROS in chronic diseases in also influenced by sex steroids that decrease in aging. The physiology of longevity is the result of integrated biological mechanisms that influence mitochondrial function and activity. The main objective of this review is to evaluate the effects of ROS on mitochondriogenesis and lifespan extension.

  9. [The oxygen consumption of ostrich embryos during incubation].

    Science.gov (United States)

    Reiner, G; Dzapo, V

    1995-02-01

    This work deals with the oxygen consumption of ostrich chicks during incubation. Brood eggs were incubated in a hermetic isolated acrylic-glass cylinder. Reduction of oxygen content in the air surrounding the egg was measured using an oxygen-sensitive electrode. A sigmoid curve could be drawn during incubation, with the steepest phase being around day 26. Maximum oxygen consumption was reached on day 36. It was slightly decreased until day 39, when the embryo switches to lung circulation, followed again by an increase until hatching. Average oxygen consumptions for the whole brood interval were calculated to 63.6 liters. Oxygen volumes consumed on day 36 result in a demand about to 240 liters of fresh air per egg and day. Oxygen consumption of the embryos on day 36 was significantly positive correlated with their vitality. Numb or less vital embryos could be clearly differentiated from others. The higher a chick's oxygen consumption, the earlier and shorter its hatching. Possible applications of the method in regard to the evaluation of incubation parameters or chicken constitution are discussed.

  10. Myocardial Blood Volume Is Associated with Myocardial Oxygen Consumption: An Experimental Study with CMR in a Canine Model

    Science.gov (United States)

    McCommis, Kyle S.; Zhang, Haosen; Goldstein, Thomas A.; Misselwitz, Bernd; Abendschein, Dana R.; Gropler, Robert J.; Zheng, Jie

    2009-01-01

    OBJECTIVES To evaluate the feasibility of cardiovascular MR (CMR) to determine regional myocardial perfusion and O2 metabolism, and assess the role of myocardial blood volume (MBV) on oxygen supply. BACKGROUND Coronary artery disease presents as an imbalance of myocardial oxygen supply and demand. We have developed relevant CMR methods to determine the relationship of myocardial blood flow (MBF) and MBV to oxygen consumption (MVO2) during pharmacologic hyperemia. METHODS Twenty-one mongrel dogs were studied with varying stenosis severities imposed on the proximal left anterior descending (LAD) coronary artery. MBF and MBV were determined by CMR first-pass perfusion, while the oxygen extraction fraction (OEF) and MVO2 were determined by the myocardial Blood-Oxygen-Level-Dependent (BOLD) effect and Fick’s law, respectively. MR imaging was performed at rest, and during either dipyridamole-induced vasodilation or dobutamine-induced hyperemia. Regional differences in myocardial perfusion and oxygenation were then evaluated. RESULTS Dipyridamole and dobutamine both led to 145–200% increases in MBF and 50–80% increases in MBV in normal perfused myocardium. As expected, MVO2 increased more significantly with dobutamine (~175%) than dipyridamole (~40%). Coronary stenosis resulted in an attenuation of MBF, MBV, and MVO2 in both the LAD-subtended stenosis region and the left circumflex subtended remote region. Liner regression analysis showed that MBV reserve appears to be more correlated with MVO2 reserve during dobutamine stress than MBF reserve, particularly in the stenotic regions. Conversely, MBF reserve appears to be more correlated with MVO2 reserve during dipyridamole, although neither of these differences was significant. CONCLUSIONS Noninvasive evaluation of both myocardial perfusion and oxygenation by CMR facilitates direct monitoring of regional myocardial ischemia and provides a valuable tool for better understanding microvascular pathophysiology. These

  11. Mitochondria and Reactive Oxygen Species: Physiology and Pathophysiology

    Directory of Open Access Journals (Sweden)

    Subhashini Bolisetty

    2013-03-01

    Full Text Available The air that we breathe contains nearly 21% oxygen, most of which is utilized by mitochondria during respiration. While we cannot live without it, it was perceived as a bane to aerobic organisms due to the generation of reactive oxygen and nitrogen metabolites by mitochondria and other cellular compartments. However, this dogma was challenged when these species were demonstrated to modulate cellular responses through altering signaling pathways. In fact, since this discovery of a dichotomous role of reactive species in immune function and signal transduction, research in this field grew at an exponential pace and the pursuit for mechanisms involved began. Due to a significant number of review articles present on the reactive species mediated cell death, we have focused on emerging novel pathways such as autophagy, signaling and maintenance of the mitochondrial network. Despite its role in several processes, increased reactive species generation has been associated with the origin and pathogenesis of a plethora of diseases. While it is tempting to speculate that anti-oxidant therapy would protect against these disorders, growing evidence suggests that this may not be true. This further supports our belief that these reactive species play a fundamental role in maintenance of cellular and tissue homeostasis.

  12. Extracorporeal membrane oxygenation (ECMO as salvage treatment for pulmonary Echinococcus granulosus infection with acute cyst rupture

    Directory of Open Access Journals (Sweden)

    Sören L. Becker

    2017-11-01

    Full Text Available Extracorporeal membrane oxygenation (ECMO has been used successfully for the treatment of patients with respiratory failure due to severe infections. Although rare, parasites can also cause severe pulmonary disease. Tapeworms of the genus Echinococcus give rise to the development of cystic structures in the liver, lungs, and other organs. Acute cyst rupture leads to potentially life-threatening infection, and affected patients may deteriorate rapidly. The case of a young woman from Bulgaria who was admitted to hospital with severe dyspnoea, progressive chest pain, and haemoptysis is described. Computed tomography of the chest was pathognomonic for cystic echinococcosis with acute cyst rupture. Following deterioration on mechanical ventilation, she was cannulated for veno-venous ECMO. The patient’s condition improved considerably, and she was weaned successfully from ECMO and mechanical ventilation. Following lobectomy of the affected left lower lobe, the patient was discharged home in good condition. This appears to be the first report of the successful use of ECMO as salvage treatment for a severe manifestation of a helminthic disease. Due to recent migration to Western Europe, the number of patients presenting with respiratory failure due to pulmonary echinococcosis with cyst rupture is likely to increase. Keywords: Extracorporeal membrane oxygenation (ECMO, Infection, Echinococcosis, Echinococcus granulosus, Hydatid disease, Infection

  13. Hydrogen gas alleviates oxygen toxicity by reducing hydroxyl radical levels in PC12 cells.

    Directory of Open Access Journals (Sweden)

    Junchao Yu

    Full Text Available Hyperbaric oxygen (HBO therapy through breathing oxygen at the pressure of above 1 atmosphere absolute (ATA is useful for varieties of clinical conditions, especially hypoxic-ischemic diseases. Because of generation of reactive oxygen species (ROS, breathing oxygen gas at high pressures can cause oxygen toxicity in the central nervous system, leading to multiple neurological dysfunction, which limits the use of HBO therapy. Studies have shown that Hydrogen gas (H2 can diminish oxidative stress and effectively reduce active ROS associated with diseases. However, the effect of H2 on ROS generated from HBO therapy remains unclear. In this study, we investigated the effect of H2 on ROS during HBO therapy using PC12 cells. PC12 cells cultured in medium were exposed to oxygen gas or mixed oxygen gas and H2 at 1 ATA or 5 ATA. Cells viability and oxidation products and ROS were determined. The data showed that H2 promoted the cell viability and inhibited the damage in the cell and mitochondria membrane, reduced the levels of lipid peroxidation and DNA oxidation, and selectively decreased the levels of •OH but not disturbing the levels of O2•-, H2O2, or NO• in PC12 cells during HBO therapy. These results indicated that H2 effectively reduced •OH, protected cells against oxygen toxicity resulting from HBO therapy, and had no effect on other ROS. Our data supported that H2 could be potentially used as an antioxidant during HBO therapy.

  14. The measurement of oxygen in vivo using EPR techniques

    International Nuclear Information System (INIS)

    Swartz, Harold M.; Clarkson, Robert B.

    1998-01-01

    The measurement of pO 2 in vivo using EPR has some features which have already led to very useful applications and this approach is likely to have increasingly wide and effective use. It is based on the effect of oxygen on EPR spectra which provides a sensitive and accurate means to measure pO 2 quantitatively. The development of oxygen-sensitive paramagnetic materials which are very stable, combined with instrumental developments, has been crucial to the in vivo applications of this technique. The physical basis and biological applications of in vivo EPR oximetry are reviewed, with particular emphasis on the use of EPR spectroscopy at 1 GHz using particulate paramagnetic materials for the repetitive and non-invasive measurement of pO 2 in tissues. In vivo EPR has already produced some very useful results which have contributed significantly to solving important biological problems. The characteristics of EPR oximetry which appear to be especially useful are often complementary to existing techniques for measuring oxygen in tissues. These characteristics include the capability of making repeated measurements from the same site, high sensitivity to low levels of oxygen, and non-invasive options. The existing techniques are especially useful for studies in small animals, where the depth of measurements is not an overriding issue. In larger animals and potentially in human subjects, non-invasive techniques seem to be immediately applicable to study phenomena very near the surface (within 10 mm) while invasive techniques have some very promising uses. The clinical uses of EPR oximetry which seem especially promising and likely to be undertaken in the near future are long-term monitoring of the status and response to treatment of peripheral vascular disease and optimizing cancer therapy by enabling it to be modified on the basis of the pO 2 measured in the tumour. (author)

  15. [An increase in allergic diseases in childhood--current hypotheses and possible prevention].

    Science.gov (United States)

    Kurz, Herbert; Riedler, Jose

    2003-01-01

    During the last few decades there has ben a significant rise in the prevalence of allergic diseases such as asthma, hay fever and atopic dermatitis. Epidemiological studies strongly suggest that this increase is real and not due to changes in diagnostic labelling. It has become increasingly clear that a complex interplay between genetic and environmental factors account for this phenomenon. Genetically predisposed individuals are at an increased susceptibility to develop asthma or other allergic diseases when exposed to certain environmental or lifestyle factors. Particularly passive smoking has been shown to increase the risk for asthma in many studies and for atopy at least in some studies. This association is less clear for the exposure to sulfur dioxide, particulate matter, diesel exhaust and ozone. Lifestyle factors like socioeconomic status, sib-ship size, early childhood infections, dietary habits, growing up in antroposophic families or on a farm are more and more realised to be of great relevance for the development of allergic conditions. At the moment, there is a lot of uncertainty about which recommendations should be given for primary prevention. Recent studies have challenged the old paradigma that avoidance of early allergen contact could prevent the development of allergic disease. However, there is consensus that avoidance of smoking during pregnancy and avoidance of passive smoking during childhood should be recommended for primary prevention of asthma.

  16. Study on carbon-fixing,oxygen-releasing,temperature-reducing and humidity-increasing effects of evergreen plants in south highway

    Directory of Open Access Journals (Sweden)

    LIU Minmin

    2014-04-01

    Full Text Available Li-6400 portable photosynthesis system,was used to test the diurnal variations of photosynthetic rate and stomatal conductance of evergreen plants in Southern Highway,and to calculate their ability of absorbing carbon dioxide and releasing oxygen and to calculate the transpiring water volume and absorbing heat quantity of plants.Results showed that Euonymus fortunei Hand-Mazz,Hedera helix.Aucuba eriobotryaefolia had better carbon-fixing and oxygen-releasing effects,while Photinia serrulata,Trachycarpus fortunei,Radix Ophiopogonis had worse carbon-fixing and oxygen-releasing effects.Radix Ophiopogonis,Photinia glabra,Euonymus fortunei Hand.-Mazz had higher cooling and humidification ability,while Photinia serrulata,Trachycarpus fortunei did not act as well as them.Euonymus fortunei Hand.-Mazz and Hedera helix had higher leaf chlorophyll in per unit mass,values are 12.91、10.34、9.93 mg·g-1.Radix Ophiopogonis、Cinnamomum camphora(Linn. Presl and Trachycarpus fortunei had lower leaf chlorophyll in per unit mass,value is 3.55、2.67、2.06 mg·g-1.Releasing oxygen,fixing carbon,net assimilation and chlorophyll content has good correlation(P<0.05.

  17. Increasing European Support for Neglected Infectious Disease Research

    Directory of Open Access Journals (Sweden)

    Ole F. Olesen

    Full Text Available Neglected infectious diseases (NIDs are a persistent cause of death and disability in low-income countries. Currently available drugs and vaccines are often ineffective, costly or associated with severe side-effects. Although the scale of research on NIDs does not reflect their disease burden, there are encouraging signs that NIDs have begun to attract more political and public attention, which have translated into greater awareness and increased investments in NID research by both public and private donors. Using publicly available data, we analysed funding for NID research in the European Union's (EU's 7th Framework Programme for Research and Technological Development (FP7, which ran from 2007 to 2013. During FP7, the EU provided €169 million for 65 NID research projects, and thereby placed itself among the top global funders of NID research. Average annual FP7 investment in NID research exceeded €24 million, triple that committed by the EU before the launch of FP7. FP7 NID projects involved research teams from 331 different institutions in 72 countries on six continents, underlining the increasingly global nature of European research activities. NID research has remained a priority in the current EU Framework Programme for research and innovation, Horizon 2020, launched in 2014. This has most notably been reflected in the second programme of the European & Developing Countries Clinical Trials Partnership (EDCTP, which provides unprecedented opportunities to advance the clinical development of new medical interventions against NIDs. Europe is thus better positioned than ever before to play a major role in the global fight against NIDs.

  18. Oxygen and oxidative stress in the perinatal period.

    Science.gov (United States)

    Torres-Cuevas, Isabel; Parra-Llorca, Anna; Sánchez-Illana, Angel; Nuñez-Ramiro, Antonio; Kuligowski, Julia; Cháfer-Pericás, Consuelo; Cernada, María; Escobar, Justo; Vento, Máximo

    2017-08-01

    Fetal life evolves in a hypoxic environment. Changes in the oxygen content in utero caused by conditions such as pre-eclampsia or type I diabetes or by oxygen supplementation to the mother lead to increased free radical production and correlate with perinatal outcomes. In the fetal-to-neonatal transition asphyxia is characterized by intermittent periods of hypoxia ischemia that may evolve to hypoxic ischemic encephalopathy associated with neurocognitive, motor, and neurosensorial impairment. Free radicals generated upon reoxygenation may notably increase brain damage. Hence, clinical trials have shown that the use of 100% oxygen given with positive pressure in the airways of the newborn infant during resuscitation causes more oxidative stress than using air, and increases mortality. Preterm infants are endowed with an immature lung and antioxidant system. Clinical stabilization of preterm infants after birth frequently requires positive pressure ventilation with a gas admixture that contains oxygen to achieve a normal heart rate and arterial oxygen saturation. In randomized controlled trials the use high oxygen concentrations (90% to 100%) has caused more oxidative stress and clinical complications that the use of lower oxygen concentrations (30-60%). A correlation between the amount of oxygen received during resuscitation and the level of biomarkers of oxidative stress and clinical outcomes was established. Thus, based on clinical outcomes and analytical results of oxidative stress biomarkers relevant changes were introduced in the resuscitation policies. However, it should be underscored that analysis of oxidative stress biomarkers in biofluids has only been used in experimental and clinical research but not in clinical routine. The complexity of the technical procedures, lack of automation, and cost of these determinations have hindered the routine use of biomarkers in the clinical setting. Overcoming these technical and economical difficulties constitutes a

  19. Effect of Electroacupuncture on Transcutaneous Oxygen Partial Pressure During Hyperbaric Oxygen Therapy in Healthy Individuals.

    Science.gov (United States)

    Qu, Lan; Ye, Yong; Li, Chunfeng; Gao, Guangkai

    2015-01-01

    The goal of hyperbaric oxygen therapy (HBOT) is to increase the oxygen (O₂) supply to the body significantly. Because of the toxic side effects and complications of hyperbaric oxygen (HBO₂), the environmental pressure and treatment time must be restricted. The research team hypothesized that other therapies administered during HBOT could safely improve the value of the arterial oxygen partial pressure (PaO₂) during HBOT and improve its therapeutic effect. The study intended to investigate whether electroacupuncture (EA) while receiving HBOT had a greater effect for healthy individuals than HBOT or EA alone or EA combined with normobaric pure oxygen (pure O₂). The research team designed a randomized, controlled trial. The study was performed in the Department of Hyperbaric Medicine at the No. 401 Hospital of the People's Liberation Army in Qingdao, China. A total of 81 volunteers were recruited. After thorough physical examination and laboratory testing, 21 volunteers were excluded from the study. Participants included 60 healthy volunteers. Participants were randomly assigned to 1 of 4 groups of 15 participants each: (1) an HBOT group, (2) an EA group, (3) an EA During HBOT group, and (4) an EA Combined With Pure O₂group. Because at the current technology level a blood gas analyzer cannot test PaO₂during HBOT, transcutaneous oxygen partial pressure (PtcO₂) of the participants was tested instead. Before, during, and after EA, variations in PtcO₂were monitored in each group. For the EA During HBOT group, (1) the increase in PtcO₂during EA was significantly greater than that observed for the other 3 groups (P > .05). The EA During HBOT method provided improvements in the efficacy, safety, and tolerability of HBOT, and the study's results partially demonstrated the accuracy of the research team's hypothesis that EA therapy applied during HBOT could safely improve the value of PtcO₂(PaO₂) during HBOT and produce a greater therapeutic effect.

  20. Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability.

    Science.gov (United States)

    Salmon, Andrew H J; Satchell, Simon C

    2012-03-01

    Appreciation of the glomerular microcirculation as a specialized microcirculatory bed, rather than as an entirely separate entity, affords important insights into both glomerular and systemic microvascular pathophysiology. In this review we compare regulation of permeability in systemic and glomerular microcirculations, focusing particularly on the role of the endothelial glycocalyx, and consider the implications for disease processes. The luminal surface of vascular endothelium throughout the body is covered with endothelial glycocalyx, comprising surface-anchored proteoglycans, supplemented with adsorbed soluble proteoglycans, glycosaminoglycans and plasma constituents. In both continuous and fenestrated microvessels, this endothelial glycocalyx provides resistance to the transcapillary escape of water and macromolecules, acting as an integral component of the multilayered barrier provided by the walls of these microvessels (ie acting in concert with clefts or fenestrae across endothelial cell layers, basement membranes and pericytes). Dysfunction of any of these capillary wall components, including the endothelial glycocalyx, can disrupt normal microvascular permeability. Because of its ubiquitous nature, damage to the endothelial glycocalyx alters the permeability of multiple capillary beds: in the glomerulus this is clinically apparent as albuminuria. Generalized damage to the endothelial glycocalyx can therefore manifest as both albuminuria and increased systemic microvascular permeability. This triad of altered endothelial glycocalyx, albuminuria and increased systemic microvascular permeability occurs in a number of important diseases, such as diabetes, with accumulating evidence for a similar phenomenon in ischaemia-reperfusion injury and infectious disease. The detection of albuminuria therefore has implications for the function of the microcirculation as a whole. The importance of the endothelial glycocalyx for other aspects of vascular function

  1. The Evolving Role of Selenium in the Treatment of Graves' Disease and Ophthalmopathy

    OpenAIRE

    Duntas, Leonidas H.

    2012-01-01

    Graves' disease (GD) and ophthalmopathy (GO) are organ-specific autoimmune-inflammatory disorders characterized by a complex pathogenesis. The inflammatory process is dominated by an imbalance of the antioxidant-oxidant mechanism, increased production of radical oxygen species (ROS), and cytokines which sustain the autoimmune process and perpetuate the disease. Recently, selenium, which is a powerful antioxidant, has been successfully applied in patients with mild GO, slowing the progression ...

  2. Joint absorption of lithium and oxygen on the tungsten (100) face

    International Nuclear Information System (INIS)

    Gupalo, M.S.; Smereka, T.P.; Babkin, G.V.; Palyukh, B.M.

    1981-01-01

    The paper deals with studying the effect of oxygen on emission-adsorption properties of metal-film Li-W system. Data on work of phi yield and adsorption heat q of lithium on tungsten face (100), preliminarily coated with different quantity of oxygen, are obtained. The method of contact potential difference was used. Strong decrease of yield work with the increase of oxygen coatings, as well as essential growth of initial adsorption heat are observed. Temperature dependence of phi is not practically observed. The data obtained point out, that oxygen presence on the surface causes increase of dipole momentum of lithium adatoms, which results in bond energy growth and reduction phi minimal value of lithium in the presence of oxygen phi=2 eV, q=2.2 eV is obtained at optimal compositions of oxygen-lithium layers on W (100) [ru

  3. Free radical injury in skin cultured fibroblasts from Alzheimer's disease patients.

    Science.gov (United States)

    Tesco, G; Latorraca, S; Piersanti, P; Sorbi, S; Piacentini, S; Amaducci, L

    1992-12-26

    Oxygen radical production is postulated to be a major cause of cell damage in aging. We have studied the response to toxic oxygen metabolites of fibroblast cell lines derived from skin biopsies of patients with familial and sporadic Alzheimer's disease compared with those derived from normal controls. Fibroblasts were damaged by the generation of oxygen metabolites during the enzymatic oxidation of acetaldehyde by 50 mU of xanthine-oxidase. To quantify cell damage we measured lactate dehydrogenase activity in the culture medium and cell viability in fibroblast cultures from four normal subjects, five FAD, and four AD patients after 2 hours of Xo incubation. We found a significant increase of LDH activity in FAD vs. controls and also in AD vs. controls, suggesting that AD cells are more susceptible to oxygen radical damage than are normal controls.

  4. Celiac disease prevalence is not increased in patients with functional dyspepsia

    Directory of Open Access Journals (Sweden)

    Juan LASA

    Full Text Available ABSTRACT BACKGROUND Previous evidence trying to assess the risk of celiac disease among dyspeptic patients has been inconclusive, showing in some cases notorious discrepancies. OBJECTIVE To determine the prevalence of celiac disease in patients with dyspepsia compared to healthy controls without dyspepsia. METHODS Adult patients under evaluation for dyspepsia were invited to participate. These patients were offered an upper gastrointestinal endoscopy with duodenal biopsies. On the other hand, asymptomatic adult volunteers who performed a preventive visit to their primary care physician were invited to participate and agreed to undertake an upper gastrointestinal endoscopy with duodenal biopsies as well. Those patients with histologic signs of villous atrophy were furtherly evaluated and serological tests were performed in order to determine celiac disease diagnosis. Celiac disease prevalence was compared between groups. RESULTS Overall, 320 patients with dyspepsia and 320 healthy controls were recruited. There were no significant differences in terms of gender or age between groups. Celiac disease diagnosis was made in 1.25% (4/320 of patients in the dyspepsia group versus 0.62% (2/320 in the control group. CONCLUSION Patients with dyspepsia who underwent routine duodenal biopsies did not show an increased risk for celiac disease when compared to healthy individuals.

  5. Central Hemodynamics and Oxygen Transport in Various Activation of Patients Operated On Under Extracorporeal Circulation

    Directory of Open Access Journals (Sweden)

    Ye. V. Dzybinskaya

    2009-01-01

    Full Text Available Objective: to study central hemodynamics, the determinants of myocardial oxygen balance, and the parameters of oxygen transport in various activation of patients after surgery under extracorporeal circulation. Subjects and methods. Thirty-four patients aged 57.8±2.5 years who had coronary heart disease were divided into 2 groups: 1 those with late activation (artificial ventilation time 157±9 min and 2 those with immediate activation (artificial ventilation time 33±6 min. Group 2 patients were, if required, given fentanyl, midazolam, or myorelaxants. Results. During activation, there were no intergroup differences in the mean levels of the major parameters of cardiac pump function, in the determinants of coronary blood flow (coronary perfusion gradients and myocardial oxygen demand (the product of heart rate by systolic blood pressure, and in the parameters of oxygen transport, including arterial lactatemia. After tracheal extubation, the left ventricular pump coefficient was increased considerably (up to 3.8±0.2 and 4.4±0.2 gm/mm Hg/m2 in Groups 1 and 2, respectively; p<0.05 with minimum inotropic support (dopamine and/or dobutamine being used at 2.7±0.3 and 2.4±0.3 mg/kg/min, respectively. In both groups, there were no close correlations between the indices of oxygen delivery and consumption at all stages of the study, which was indicative of no transport-dependent oxygen uptake. Conclusion. When the early activation protocol was followed up, the maximum acceleration of early activation, including that using specific antagonists of anesthetics, has no negative impact on central hemodynamics, the determinants of myocardial oxygen balance and transport in patients operated on under extracorporeal circulation. Key words: early activation, surgery under extracorporeal circulation, tracheal extubation in the operating-room, central hemodynamics, oxygen transport.

  6. Hyperbaric oxygen therapy. Promoting healing in difficult cases

    International Nuclear Information System (INIS)

    Cohn, G.H.

    1986-01-01

    Inhalation of pressurized 100% oxygen is a helpful adjunctive treatment for certain patients, because the increased oxygen carried by the blood to the tissue enhances new growth of microcirculation and, thus, healing. Patients with tissue breakdown after radiation therapy, refractory osteomyelitis, gas gangrene, soft-tissue infection with necrosis from mixed aerobic and anaerobic organisms, crush injuries resulting in acute ischemia, and compromised skin grafts or non-healing wounds are likely to benefit from hyperbaric oxygen therapy

  7. Effects of Hyperoxia on Oxygen-Related Inflammation with a Focus on Obesity

    Directory of Open Access Journals (Sweden)

    Pedro González-Muniesa

    2016-01-01

    Full Text Available Several studies have shown a pathological oxygenation (hypoxia/hyperoxia on the adipose tissue in obese subjects. Additionally, the excess of body weight is often accompanied by a state of chronic low-degree inflammation. The inflammation phenomenon is a complex biological response mounted by tissues to combat injurious stimuli in order to maintain cell homeostasis. Furthermore, it is believed that the abnormal oxygen partial pressure occurring in adipose tissue is involved in triggering inflammatory processes. In this context, oxygen is used in modern medicine as a treatment for several diseases with inflammatory components. Thus, hyperbaric oxygenation has demonstrated beneficial effects, apart from improving local tissue oxygenation, on promoting angiogenesis, wound healing, providing neuroprotection, facilitating glucose uptake, appetite, and others. Nevertheless, an excessive hyperoxia exposure can lead to deleterious effects such as oxidative stress, pulmonary edema, and maybe inflammation. Interestingly, some of these favorable outcomes occur under high and low oxygen concentrations. Hereby, we review a potential therapeutic approach to the management of obesity as well as the oxygen-related inflammation accompanying expanded adipose tissue, based on elevated oxygen concentrations. To conclude, we highlight at the end of this review some areas that need further clarification.

  8. Increasing Prevalence of Atrial Fibrillation and Permanent Atrial Arrhythmias in Congenital Heart Disease.

    Science.gov (United States)

    Labombarda, Fabien; Hamilton, Robert; Shohoudi, Azadeh; Aboulhosn, Jamil; Broberg, Craig S; Chaix, Marie A; Cohen, Scott; Cook, Stephen; Dore, Annie; Fernandes, Susan M; Fournier, Anne; Kay, Joseph; Macle, Laurent; Mondésert, Blandine; Mongeon, François-Pierre; Opotowsky, Alexander R; Proietti, Anna; Rivard, Lena; Ting, Jennifer; Thibault, Bernard; Zaidi, Ali; Khairy, Paul

    2017-08-15

    Atrial arrhythmias are the most common complication encountered in the growing and aging population with congenital heart disease. This study sought to assess the types and patterns of atrial arrhythmias, associated factors, and age-related trends. A multicenter cohort study enrolled 482 patients with congenital heart disease and atrial arrhythmias, age 32.0 ± 18.0 years, 45.2% female, from 12 North American centers. Qualifying arrhythmias were classified by a blinded adjudicating committee. The most common presenting arrhythmia was intra-atrial re-entrant tachycardia (IART) (61.6%), followed by atrial fibrillation (28.8%), and focal atrial tachycardia (9.5%). The proportion of arrhythmias due to IART increased with congenital heart disease complexity from 47.2% to 62.1% to 67.0% in patients with simple, moderate, and complex defects, respectively (p = 0.0013). Atrial fibrillation increased with age to surpass IART as the most common arrhythmia in those ≥50 years of age (51.2% vs. 44.2%; p congenital heart disease, with a predominantly paroxysmal pattern. However, atrial fibrillation increases in prevalence and atrial arrhythmias progressively become permanent as the population ages. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  9. Oxygen effect and intracellular oxygen content (adaptation hypothesis)

    Energy Technology Data Exchange (ETDEWEB)

    Yarmonenko, S P; Ehpshtejn, I M [Akademiya Meditsinskikh Nauk SSSR, Moscow. Onkologicheskij Tsentr

    1977-01-01

    Experimental data indicating that a radiomodifying action of hypoxia is dependent on the ''prehistory'' of the irradiated object are considered. This dependence manifests itself in a decreased protective action of acute hypoxia on the hypoxia-adapted objects. To explain this a hypothesis is proposed connecting a degree of cell radiosensitivity modification, determined by the oxygen effect, with the intracellular oxygen content. The latter, in accord with current ideas, is regulated by variations in the diffusion resistance to oxygen shown by the cytoplasmic membranes depending on the energy level of the cell and the degree of its oxygenation.

  10. Oxygen effect and intracellular oxygen content (adaptation hypothesis)

    International Nuclear Information System (INIS)

    Yarmonenko, S.P.; Ehpshtejn, I.M.

    1977-01-01

    Experimental data indicating that a radiomodifying action of hypoxia is dependent on the ''prehistory'' of the irradiated object are considered. This dependence manifests itself in a decreased protective action of acute hypoxia on the hypoxia-adapted objects. To explain this a hypothesis is proposed connecting a degree of cell radiosensitivity modification, determined by the oxygen effect, with the intracellular oxygen content. The latter, in accord with current ideas, is regulated by variations in the diffusion resistance to oxygen shown by the cytoplasmic membranes depending on the energy level of the cell and the degree of its oxygenation

  11. Oxygen in the critically ill: friend or foe?

    Science.gov (United States)

    Damiani, Elisa; Donati, Abele; Girardis, Massimo

    2018-04-01

    To examine the potential harmful effects of hyperoxia and summarize the results of most recent clinical studies evaluating oxygen therapy in critically ill patients. Excessive oxygen supplementation may have detrimental pulmonary and systemic effects because of enhanced oxidative stress and inflammation. Hyperoxia-induced lung injury includes altered surfactant protein composition, reduced mucociliary clearance and histological damage, resulting in atelectasis, reduced lung compliance and increased risk of infections. Hyperoxemia causes vasoconstriction, reduction in coronary blood flow and cardiac output and may alter microvascular perfusion. Observational studies showed a close relationship between hyperoxemia and increased mortality in several subsets of critically ill patients. In absence of hypoxemia, the routine use of oxygen therapy in patients with myocardial infarction, stroke, traumatic brain injury, cardiac arrest and sepsis, showed no benefit but rather it seems to be harmful. In patients admitted to intensive care unit, a conservative oxygen therapy aimed to maintain arterial oxygenation within physiological range has been proved to be well tolerated and may improve outcome. Liberal O2 use and unnecessary hyperoxia may be detrimental in critically ill patients. The current evidence supports the use of a conservative strategy in O2 therapy to avoid patient exposure to unnecessary hyperoxemia.

  12. Toe blood pressure and leg muscle oxygenation with body posture.

    Science.gov (United States)

    Rosales-Velderrain, Armando; Cardno, Michael; Mateus, Jaime; Kumar, Ravindra; Schlabs, Thomas; Hargens, Alan R

    2011-05-01

    In 1980 Katkov and Chestukhin measured blood pressures and oxygenation invasively at various body tilt angles at different locations on the body, including the foot. To our knowledge, such measurements have not been performed noninvasively. Therefore, the purpose of this study was to measure toe blood pressure (TBP) and lower limb muscle oxygenation noninvasively at various body tilt angles, and to assess the use of a Finometer for noninvasive TBP measurements. Our noninvasive results are compared with those performed by Katkov and Chestukhin. We hypothesized that: 1) the Finometer provides a noninvasive measurement of TBP at different tilt angles; and 2) muscle oxygenation is highest with 0 and -6 degrees, and decreases with increased head-up tilt (HUT). There were 10 subjects who were exposed to different body tilt angles (-6, 0, 10, 30, 70, and 90 degrees). At each angle we measured TBP noninvasively with a Finometer and muscle tissue oxygenation by near infrared spectroscopy. We found a strong correlation between TBP using the Finometer and TBP predicted by adding the hydrostatic component due to body tilt to the standard arm blood pressure measurement. At 10, 30, 70, and 90 degrees both TBP and tissue oxygenation were significantly different from the 0 degree (supine) level. Oxygenation decreased and TBP increased with higher HUT angles. No differences were observed in TBP or oxygenation between -6 and 0 degree. The Finometer accurately measures TBP noninvasively with body tilt. Also, muscle oxygenation is highest at small HUT angles and decreases with increased HUT.

  13. Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water.

    Science.gov (United States)

    Mass, Tali; Genin, Amatzia; Shavit, Uri; Grinstein, Mor; Tchernov, Dan

    2010-02-09

    Worldwide, many marine coastal habitats are facing rapid deterioration due in part to human-driven changes in habitat characteristics, including changes in flow patterns, a factor known to greatly affect primary production in corals, algae, and seagrasses. The effect of flow traditionally is attributed to enhanced influx of nutrients and dissolved inorganic carbon (DIC) across the benthic boundary layer from the water to the organism however, here we report that the organism's photosynthetic response to changes in the flow is nearly instantaneous, and that neither nutrients nor DIC limits this rapid response. Using microelectrodes, dual-pulse amplitude-modulated fluorometry, particle image velocimetry, and real time mass-spectrometry with the common scleractinian coral Favia veroni, the alga Gracilaria cornea, and the seagrass Halophila stipulacea, we show that this augmented photosynthesis is due to flow-driven enhancement of oxygen efflux from the organism to the water, which increases the affinity of the RuBisCO to CO(2). No augmentation of photosynthesis was found in the absence of flow or when flow occurred, but the ambient concentration of oxygen was artificially elevated. We suggest that water motion should be considered a fundamental factor, equivalent to light and nutrients, in determining photosynthesis rates in marine benthic autotrophs.

  14. The epigenetic landscape related to reactive oxygen species formation in the cardiovascular system.

    Science.gov (United States)

    Kietzmann, Thomas; Petry, Andreas; Shvetsova, Antonina; Gerhold, Joachim M; Görlach, Agnes

    2017-06-01

    Cardiovascular diseases are among the leading causes of death worldwide. Reactive oxygen species (ROS) can act as damaging molecules but also represent central hubs in cellular signalling networks. Increasing evidence indicates that ROS play an important role in the pathogenesis of cardiovascular diseases, although the underlying mechanisms and consequences of pathophysiologically elevated ROS in the cardiovascular system are still not completely resolved. More recently, alterations of the epigenetic landscape, which can affect DNA methylation, post-translational histone modifications, ATP-dependent alterations to chromatin and non-coding RNA transcripts, have been considered to be of increasing importance in the pathogenesis of cardiovascular diseases. While it has long been accepted that epigenetic changes are imprinted during development or even inherited and are not changed after reaching the lineage-specific expression profile, it becomes more and more clear that epigenetic modifications are highly dynamic. Thus, they might provide an important link between the actions of ROS and cardiovascular diseases. This review will provide an overview of the role of ROS in modulating the epigenetic landscape in the context of the cardiovascular system. This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc. © 2017 The British Pharmacological Society.

  15. Serum apolipoprotein e level is not increased in Alzheimer's disease : The Rotterdam study

    NARCIS (Netherlands)

    Slooter, A.J.C.; Knijff, P. de; Hofman, A.; Cruts, M.; Breteler, M.M.B.; Broeckhoven, C. van; Havekes, L.M.; Duijn, C.M. van

    1998-01-01

    The APOE*4 allele of the apolipoprotein E gene (APOE) is an important risk factor for Alzheimer's disease. It has been suggested that levels of apolipoprotein E (apoE) in plasma are increased in Alzheimer's disease. In this population-based study, we found that serum apoE levels were lower in

  16. Report on ISS Oxygen Production, Resupply, and Partial Pressure Management

    Science.gov (United States)

    Schaezler, Ryan; Ghariani, Ahmed; Leonard, Daniel; Lehman, Daniel

    2011-01-01

    The majority of oxygen used on International Space Station (ISS) is for metabolic support and denitrogenation procedures prior to Extra-Vehicular Activities. Oxygen is supplied by various visiting vehicles such as the Progress and Shuttle in addition to oxygen production capability on both the United States On-Orbit Segment (USOS) and Russian Segment (RS). To maintain a habitable atmosphere the oxygen partial pressure is controlled between upper and lower bounds. The full range of the allowable oxygen partial pressure along with the increased ISS cabin volume is utilized as a buffer allowing days to pass between oxygen production or direct addition of oxygen to the atmosphere from reserves. This paper summarizes amount of oxygen supplied and produced from all of the sources and describes past experience of managing oxygen partial pressure along with the range of management options available to the ISS.

  17. Theory and development of fluorescence-based optochemical oxygen sensors: oxygen optodes.

    Science.gov (United States)

    Opitz, N; Lübbers, D W

    1987-01-01

    As the preceding considerations concerning the physical and technical features of oxygen optodes have demonstrated, fluorescence-based optochemical oxygen sensors possess certain advantages and peculiarities compared to conventionally applied electrochemical sensors such as polarographic oxygen electrodes. First, in contrast to oxygen electrodes, oxygen measurements with oxygen optodes do not suffer from distortions caused by the reference electrodes. In addition, because of the polarographic process, platinum electrodes continuously consume oxygen, which falsifies the results, especially when small sample volumes or long-term measurements, or both, are involved, whereas the sensor layer of oxygen optodes must only be equilibrated. Moreover, the surface of the platinum wire has to be catalytically clean in order to obtain a plateau of the polarogram and, consequently, to achieve a low rest current at zero PO2. Unfortunately, the demand for catalytically clean platinum surfaces turns out to be rather critical, since surface contamination occurs even with membranized electrodes, resulting in the well-known phenomenon of "electrode poisoning." The question of the specificity of oxygen electrodes also must be considered. In this context, CO2 and halothane may interfere with oxygen measurements, whereas fluorescence quenching is unaffected by CO2 and halothane affects the measurements only slightly, depending on the special indicator used. Furthermore, because of the flow dependence, oxygen measurements with the oxygen electrode show a distinct "stirring effect" caused by the turbulence in front of the electrode, which disturbs the diffusion field. Because of the completely different physical principle of fluorescence optical sensors, such influences are not observed with oxygen optodes. In addition, isolation and shielding of electrical circuits found in electrodes are not necessary for optodes. Furthermore, the sensitivity of oxygen optodes can be tuned to the desired

  18. Continuous distending pressure effects on variables contributing to oxygenation in healthy and ARDS model pigs during HFOV

    Science.gov (United States)

    Laviola, Marianna; Hajny, Ondrej; Roubik, Karel

    2014-10-01

    High frequency oscillatory ventilation (HFOV) is an alternative mode of mechanical ventilation. HFOV has been shown to provide adequate ventilation and oxygenation in acute respiratory distress syndrome (ARDS) patients and may represent an effective lung-protective ventilation in patients where conventional ventilation is failing. The aim of this study is to evaluate effects of continuous distending pressure (CDP) on variables that contribute to the oxygenation in healthy and ARDS lung model pigs. Methods. In order to simulate a lung disease, lung injury was induced by lavage with normal saline with detergent in three pigs. HFOV ventilation was applied before and after the lung lavage. CDP was stepwise increased by 2 cmH2O, until the maximum CDP (before the lung lavage 32 cmH2O and after the lung lavage 42 cmH2O) and then it was stepwise decreased by 2 cmH2O to the initial value. In this paper we analyzed the following parameters acquired during our experiments: partial pressure of oxygen in arterial blood (PaO2), cardiac output (CO) and mixed venous blood oxygen saturation (SvO2). In order to find how both PaO2 and CO affected SvO2 during the increase of CDP before and after lavage, a nonlinear regression fitting of the response in SvO2 on the predictors (PaO2 and CO) was implemented. Results. Before the lavage, with increasing of CDP, PaO2 remained constant, CO strongly decreased and SvO2 slightly decreased. After the lavage, with increasing of CDP, PaO2 strongly increased, CO decreased and SvO2 increased. So, development of SvO2 followed the PaO2 and CO trends. Changes in PaO2 and CO occur at decisive CDP step and it was much higher after the lung lavage compared to the healthy lungs. The implemented nonlinear model gives a good goodness of fitting in all three pigs. The values of PaO2 and CO estimated coefficients changed at the same decisive step of CDP identified by the trends. Also the algorithm identified a CDP step much higher after the lung lavage

  19. Thermophysical properties and oxygen transport in (Thx,Pu1−x)O2

    Science.gov (United States)

    Galvin, C. O. T.; Cooper, M. W. D.; Rushton, M. J. D.; Grimes, R. W.

    2016-01-01

    Using Molecular Dynamics, this paper investigates the thermophysical properties and oxygen transport of (Thx,Pu1−x)O2 (0 ≤ x ≤ 1) between 300–3500 K. In particular, the superionic transition is investigated and viewed via the thermal dependence of lattice parameter, linear thermal expansion coefficient, enthalpy and specific heat at constant pressure. Oxygen diffusivity and activation enthalpy are also investigated. Below the superionic temperature an increase of oxygen diffusivity for certain compositions of (Thx,Pu1−x)O2 compared to the pure end members is predicted. Oxygen defect formation enthalpies are also examined, as they underpin the superionic transition temperature and the increase in oxygen diffusivity. The increase in oxygen diffusivity for (Thx,Pu1−x)O2 is explained in terms of lower oxygen defect formation enthalpies for (Thx,Pu1−x)O2 than PuO2 and ThO2, while links are drawn between the superionic transition temperature and oxygen Frenkel disorder. PMID:27796314

  20. Bulk manufacture of concentrated oxygen gas-filled microparticles for intravenous oxygen delivery.

    Science.gov (United States)

    Kheir, John N; Polizzotti, Brian D; Thomson, Lindsay M; O'Connell, Daniel W; Black, Katherine J; Lee, Robert W; Wilking, James N; Graham, Adam C; Bell, David C; McGowan, Francis X

    2013-08-01

    Self-assembling, concentrated, lipid-based oxygen microparticles (LOMs) have been developed to administer oxygen gas when injected intravenously, preventing organ injury and death from systemic hypoxemia in animal models. Distinct from blood substitutes, LOMs are a one-way oxygen carrier designed to rescue patients who experience life-threatening hypoxemia, as caused by airway obstruction or severe lung injury. Here, we describe methods to manufacture large quantities of LOMs using an in-line, recycling, high-shear homogenizer, which can create up to 4 liters of microparticle emulsion in 10 minutes, with particles containing a median diameter of 0.93 microns and 60 volume% of gas phase. Using this process, we screen 30 combinations of commonly used excipients for their ability to form stable LOMs. LOMs composed of DSPC and cholesterol in a 1:1 molar ratio are stable for a 100 day observation period, and the number of particles exceeding 10 microns in diameter does not increase over time. When mixed with blood in vitro, LOMs fully oxygenate blood within 3.95 seconds of contact, and do not cause hemolysis or complement activation. LOMs can be manufactured in bulk by high shear homogenization, and appear to have a stability and size profile which merit further testing. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Pallidol, a resveratrol dimer from red wine, is a selective singlet oxygen quencher

    International Nuclear Information System (INIS)

    He Shan; Jiang Liyan; Wu Bin; Pan Yuanjiang; Sun Cuirong

    2009-01-01

    Pallidol is a naturally occurring resveratrol dimer from red wine with antioxidant and antifungal activities. In this report, with the use of the EPR spin-trapping technique, the scavenging and quenching effects of pallidol on reactive oxygen species (ROS) were investigated. The results demonstrated that pallidol showed strong quenching effects on singlet oxygen at very low concentrations, but it was ineffective to scavenge hydroxyl radicals or superoxide anions. Further kinetic study revealed that the reaction of pallidol with singlet oxygen had an extremely high rate constant (k a = 1.71 x 10 10 ). Therefore, pallidol is a potent and selective singlet oxygen quencher in aqueous systems. It may be used in singlet oxygen-mediated diseases as a pharmacological agent, which may contribute to the health beneficial effects of red wine.

  2. A new dawn for androgens: Novel lessons from 11-oxygenated C19 steroids.

    Science.gov (United States)

    Pretorius, Elzette; Arlt, Wiebke; Storbeck, Karl-Heinz

    2017-02-05

    The abundant adrenal C19 steroid 11β-hydroxyandrostenedione (11OHA4) has been written off as a dead-end product of adrenal steroidogenesis. However, recent evidence has demonstrated that 11OHA4 is the precursor to the potent androgenic 11-oxygenated steroids, 11-ketotestosterone and 11-ketodihydrotestosterone, that bind and activate the human androgen receptor similarly to testosterone and DHT. The significance of this discovery becomes apparent when considering androgen dependent diseases such as castration resistant prostate cancer and diseases associated with androgen excess, e.g. congenital adrenal hyperplasia and polycystic ovary syndrome. In this review we describe the production and metabolism of 11-oxygenated steroids. We subsequently discuss their androgenic activity and highlight the putative role of these androgens in disease states. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Oxygen Therapy

    Science.gov (United States)

    ... their breathing to dangerously low levels. Will I need oxygen when I sleep? Usually if you use supplemental oxygen during the ... your health care provider tells you you only need to use oxygen for exercise or sleep. Even if you feel “fine” off of your ...

  4. Placental Gas Exchange and the Oxygen Supply to the Fetus

    DEFF Research Database (Denmark)

    Carter, Anthony M

    2015-01-01

    The oxygen supply of the fetus depends on the blood oxygen content and flow rate in the uterine and umbilical arteries and the diffusing capacity of the placenta. Oxygen consumption by the placenta is a significant factor and a potential limitation on availability to the fetus. The relevance...... anaerobic conditions and even the fetus is adapted to a low oxygen environment. Nevertheless, there is a reserve capacity, and during acute hypoxia the fetus can counter a 50% reduction in oxygen delivery by increasing fractional extraction. During sustained hypoxia, on the other hand, fetal growth...

  5. PTP1B controls non-mitochondrial oxygen consumption by regulating RNF213 to promote tumour survival during hypoxia.

    Science.gov (United States)

    Banh, Robert S; Iorio, Caterina; Marcotte, Richard; Xu, Yang; Cojocari, Dan; Rahman, Anas Abdel; Pawling, Judy; Zhang, Wei; Sinha, Ankit; Rose, Christopher M; Isasa, Marta; Zhang, Shuang; Wu, Ronald; Virtanen, Carl; Hitomi, Toshiaki; Habu, Toshiyuki; Sidhu, Sachdev S; Koizumi, Akio; Wilkins, Sarah E; Kislinger, Thomas; Gygi, Steven P; Schofield, Christopher J; Dennis, James W; Wouters, Bradly G; Neel, Benjamin G

    2016-07-01

    Tumours exist in a hypoxic microenvironment and must limit excessive oxygen consumption. Hypoxia-inducible factor (HIF) controls mitochondrial oxygen consumption, but how/if tumours regulate non-mitochondrial oxygen consumption (NMOC) is unknown. Protein-tyrosine phosphatase-1B (PTP1B) is required for Her2/Neu-driven breast cancer (BC) in mice, although the underlying mechanism and human relevance remain unclear. We found that PTP1B-deficient HER2(+) xenografts have increased hypoxia, necrosis and impaired growth. In vitro, PTP1B deficiency sensitizes HER2(+) BC lines to hypoxia by increasing NMOC by α-KG-dependent dioxygenases (α-KGDDs). The moyamoya disease gene product RNF213, an E3 ligase, is negatively regulated by PTP1B in HER2(+) BC cells. RNF213 knockdown reverses the effects of PTP1B deficiency on α-KGDDs, NMOC and hypoxia-induced death of HER2(+) BC cells, and partially restores tumorigenicity. We conclude that PTP1B acts via RNF213 to suppress α-KGDD activity and NMOC. This PTP1B/RNF213/α-KGDD pathway is critical for survival of HER2(+) BC, and possibly other malignancies, in the hypoxic tumour microenvironment.

  6. Direct tissue oxygen monitoring by in vivo photoacoustic lifetime imaging (PALI)

    Science.gov (United States)

    Shao, Qi; Morgounova, Ekaterina; Ashkenazi, Shai

    2014-03-01

    Tissue oxygen plays a critical role in maintaining tissue viability and in various diseases, including response to therapy. Images of oxygen distribution provide the history of tissue hypoxia and evidence of oxygen availability in the circulatory system. Currently available methods of direct measuring or imaging tissue oxygen all have significant limitations. Previously, we have reported a non-invasive in vivo imaging modality based on photoacoustic lifetime. The technique maps the excited triplet state of oxygen-sensitive dye, thus reflects the spatial and temporal distribution of tissue oxygen. We have applied PALI on tumor hypoxia in small animals, and the hypoxic region imaged by PALI is consistent with the site of the tumor imaged by ultrasound. Here, we present two studies of applying PALI to monitor changes of tissue oxygen by modulations. The first study involves an acute ischemia model using a thin thread tied around the hind limb of a normal mouse to reduce the blood flow. PALI images were acquired before, during, and after the restriction. The drop of muscle pO2 and recovery from hypoxia due to reperfusion were observed by PALI tracking the same region. The second study modulates tissue oxygen by controlling the percentage of oxygen the mouse inhales. We demonstrate that PALI is able to reflect the change of oxygen level with respect to both hyperbaric and hypobaric conditions. We expect this technique to be very attractive for a range of clinical applications in which tissue oxygen mapping would improve therapy decision making and treatment planning.

  7. INCREASED TISSUE TRANSGLUTAMINASE LEVELS ARE ASSOCIATED WITH INCREASED EPILEPTIFORM ACTIVITY IN ELECTROENCEPHALOGRAPHY AMONG PATIENTS WITH CELIAC DISEASE

    Directory of Open Access Journals (Sweden)

    Sedat IŞIKAY

    2015-12-01

    Full Text Available Background - Celiac disease is an autoimmune systemic disorder in genetically predisposed individuals precipitated by gluten ingestion. Objective - In this study, we aimed to determine asymptomatic spike-and-wave findings on electroencephalography in children with celiac disease. Methods - A total of 175 children with the diagnosis of celiac disease (study group and 99 age- and sex-matched healthy children as controls (control group were included in the study. In order to determine the effects of gluten free diet on laboratory and electroencephalography findings, the celiac group is further subdivided into two as newly-diagnosed and formerly-diagnosed patients. Medical histories of all children and laboratory findings were all recorded and neurologic statuses were evaluated. All patients underwent a sleep and awake electroencephalography. Results - Among 175 celiac disease patients included in the study, 43 were newly diagnosed while 132 were formerly-diagnosed patients. In electroencephalography evaluation of patients the epileptiform activity was determined in 4 (9.3% of newly diagnosed and in 2 (1.5% of formerly diagnosed patients; on the other hand the epileptiform activity was present in only 1 (1.0% of control cases. There was a statistically significant difference between groups in regards to the presence of epileptiform activity in electroencephalography. Pearson correlation analysis revealed that epileptiform activity in both sleep and awake electroencephalography were positively correlated with tissue transglutaminase levels (P=0.014 and P=0.019, respectively. Conclusion - We have determined an increased epileptiform activity frequency among newly-diagnosed celiac disease patients compared with formerly-diagnosed celiac disease patients and control cases. Moreover the tissue transglutaminase levels were also correlated with the presence of epileptiform activity in electroencephalography. Among newly diagnosed celiac disease patients

  8. A method for volumetric retinal tissue oxygen tension imaging.

    Science.gov (United States)

    Felder, Anthony E; Wanek, Justin; Teng, Pang-Yu; Blair, Norman P; Shahidi, Mahnaz

    2018-01-01

    Inadequate retinal oxygenation occurs in many vision-threatening retinal diseases, including diabetic retinopathy, retinal vascular occlusions, and age-related macular degeneration. Therefore, techniques that assess retinal oxygenation are necessary to understand retinal physiology in health and disease. The purpose of the current study is to report a method for the three-dimensional (3D) imaging of retinal tissue oxygen tension (tPO 2 ) in rats. Imaging was performed in Long Evans pigmented rats under systemic normoxia (N = 6) or hypoxia (N = 3). A vertical laser line was horizontally scanned on the retina and a series of optical section phase-delayed phosphorescence images were acquired. From these images, phosphorescence volumes at each phase delay were constructed and a 3D retinal tPO 2 volume was generated. Retinal tPO 2 volumes were quantitatively analyzed by generating retinal depth profiles of mean tPO 2 (M tPO2 ) and the spatial variation of tPO 2 (SV tPO2 ). The effects of systemic condition (normoxia/hypoxia) and retinal depth on M tPO2 and SV tPO2 were determined by mixed linear model. Each 3D retinal tPO 2 volume was approximately 500 × 750 × 200 μm (horizontal × vertical × depth) and consisted of 45 en face tPO 2 images through the retinal depth. M tPO2 at the chorioretinal interface was significantly correlated with systemic arterial oxygen tension (P = 0.007; N = 9). There were significant effects of both systemic condition and retinal depth on M tPO2 and SV tPO2 , such that both were lower under hypoxia than normoxia and higher in the outer retina than inner retina (P < 0.001). For the first time, 3D imaging of retinal tPO 2 was demonstrated, with potential future application for assessment of physiological alterations in animal models of retinal diseases.

  9. Inflammatory bowel disease increases the risk of Parkinson's disease

    DEFF Research Database (Denmark)

    Villumsen, Marie; Aznar, Susana; Pakkenberg, Bente

    2018-01-01

    OBJECTIVE: Intestinal inflammation has been suggested to play a role in development of Parkinson's disease (PD) and multiple system atrophy (MSA). To test the hypothesis that IBD is associated with risk of PD and MSA, we performed a nationwide population-based cohort study. DESIGN: The cohort...... patients with UC (HR=1.35; 95% CI 1.20 to 1.52) and not significantly different among patients with Crohn's disease (HR=1.12; 95% CI 0.89 to 1.40). CONCLUSIONS: This nationwide, unselected, cohort study shows a significant association between IBD and later occurrence of PD, which is consistent with recent...

  10. Promoting effect of oxygen for hydrogenation of butadiene over Ni/sub 2/P catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Nozaki, F.; Kitoh, T.; Sodesawa, T.

    1980-04-01

    When 0-10 mm Hg of oxygen were added to the reaction of 75 mm Hg butadiene and 225 mm Hg hydrogen over dinickel phosphide in a closed circulation system at 40/sup 0/C, increasing amounts of oxygen caused increasing lengths of induction periods followed by hydrogenation at reaction rates which had a maximum at 3 mm Hg oxygen. This maximum rate was about six times higher than the rate without oxygen addition. Adsorption, temperature-programed desorption, IR spectroscopy, and the product distribution of butadiene deuteration showed that two types of oxygen adsorbed on the dinickel phosphide catalyst; molecular oxygen on nickel, which desorbed on evacuation below 50/sup 0/C and which could be displaced by butadiene, was responsible for the induction period; molecular oxygen on phosphorus atoms, which promoted hydrogen adsorption, was responsible for the increased hydrogenation rate.

  11. The Role of Oxidative Stress on the Pathogenesis of Graves' Disease

    Directory of Open Access Journals (Sweden)

    Miloš Žarković

    2012-01-01

    Full Text Available Graves' disease is a most common cause of hyperthyroidism. It is an autoimmune disease, and autoimmune process induces an inflammatory reaction, and reactive oxygen species (ROSs are among its products. When balance between oxidants and antioxidants is disturbed, in favour of the oxidants it is termed “oxidative stress” (OS. Increased OS characterizes Graves' disease. It seems that the level of OS is increased in subjects with Graves' ophthalmopathy compared to the other subjects with Graves' disease. Among the other factors, OS is involved in proliferation of orbital fibroblasts. Polymorphism of the 8-oxoG DNA N-glycosylase 1 (hOGG1 involved in repair of the oxidative damaged DNA increases in the risk for developing Grave's disease. Treatment with glucocorticoids reduces levels of OS markers. A recent large clinical trial evaluated effect of selenium on mild Graves' ophthalmopathy. Selenium treatment was associated with an improved quality of life and less eye involvement and slowed the progression of Graves' orbitopathy, compared to placebo.

  12. Effects of acetazolamide on cerebral blood flow and brain tissue oxygenation

    DEFF Research Database (Denmark)

    Lassen, N A; Friberg, L; Kastrup, J

    1987-01-01

    Oral administration of 1 g of acetazolamide to 8 normal subjects studied at sea level and in normoxia caused an acute increase in cerebral blood flow (CBF). During the subsequent prolonged oral treatment with 1 g of acetazolamide daily, CBF returned to normal within 2 days. The alveolar CO2 tension...... decreased gradually to 70% of the control value, indicating hyperventilation. At sea level hyperventilation will not increase brain oxygenation significantly in normal man, as the arterial oxygen content only increases minimally, while CBF is unchanged. At high altitude the beneficial effects...... of acetazolamide on the symptoms of acute mountain sickness may well be due to an improved oxygen supply to the brain, as hyperventilation will, at the low ambient PO2, cause a significant increase of the arterial oxygen content, while CBF presumably is unaffected by the drug. During hypoxia at high altitude...

  13. Integration of oxygen signaling at the consensus HRE.

    Science.gov (United States)

    Wenger, Roland H; Stiehl, Daniel P; Camenisch, Gieri

    2005-10-18

    The hypoxia-inducible factor 1 (HIF-1) was initially identified as a transcription factor that regulated erythropoietin gene expression in response to a decrease in oxygen availability in kidney tissue. Subsequently, a family of oxygen-dependent protein hydroxylases was found to regulate the abundance and activity of three oxygen-sensitive HIFalpha subunits, which, as part of the HIF heterodimer, regulated the transcription of at least 70 different effector genes. In addition to responding to a decrease in tissue oxygenation, HIF is proactively induced, even under normoxic conditions, in response to stimuli that lead to cell growth, ultimately leading to higher oxygen consumption. The growing cell thus profits from an anticipatory increase in HIF-dependent target gene expression. Growth stimuli-activated signaling pathways that influence the abundance and activity of HIFs include pathways in which kinases are activated and pathways in which reactive oxygen species are liberated. These pathways signal to the HIF protein hydroxylases, as well as to HIF itself, by means of covalent or redox modifications and protein-protein interactions. The final point of integration of all of these pathways is the hypoxia-response element (HRE) of effector genes. Here, we provide comprehensive compilations of the known growth stimuli that promote increases in HIF abundance, of protein-protein interactions involving HIF, and of the known HIF effector genes. The consensus HRE derived from a comparison of the HREs of these HIF effectors will be useful for identification of novel HIF target genes, design of oxygen-regulated gene therapy, and prediction of effects of future drugs targeting the HIF system.

  14. Periodontal disease and bacterial vaginosis increase the risk for adverse pregnancy outcome.

    OpenAIRE

    Oittinen, Juha; Kurki, Tapio; Kekki, Minnamaija; Kuusisto, Minna; Pussinen, Pirkko; Vilkuna-Rautiainen, Tiina; Nieminen, Anja; Asikainen, Sirkka; Paavonen, Jorma

    2005-01-01

    OBJECTIVES: To determine whether periodontal disease or bacterial vaginosis (BV) diagnosed before pregnancy increase the risk for adverse pregnancy outcome. METHODS: We enrolled a total of 252 women who had discontinued contraception in order to become pregnant. The first 130 pregnant women were included in the analyses. RESULTS: Multivariate analysis showed a strong association between periodontal disease and adverse pregnancy outcome (OR 5.5, 95% confidence interval 1.4-21.2; p = 0.014), an...

  15. Protein Kinase B (Akt) Promotes Pathological Angiogenesis in Murine Model of Oxygen-Induced Retinopathy

    International Nuclear Information System (INIS)

    Wang, Peng; Tian, Xiao-Feng; Rong, Jun-Bo; Liu, Dan; Yi, Guo-Guo; Tan, Qian

    2011-01-01

    Akt, or protein kinase B, is an important signaling molecule that modulates many cellular processes such as cell growth, survival, and metabolism. However, the vivo roles and effectors of Akt in retinal angiogenesis are not explicitly clear. We therefore detected the expression of Akt using Western blotting or RT-PCR technologies in an animal model of oxygen-induced retinopathy, and investigated the effects of recombinant Akt on inhibiting vessels loss and Akt inhibitor on suppressing experimental retinal neovascularization in this model. We showed that in the hyperoxic phase of oxygen-induced retinopathy, the expression of Akt was greatly suppressed. In the hypoxic phase, the expression of Akt was increased dramatically. No significant differences were found in normoxic groups. Compared with control groups, administration of the recombinant Akt in the first phase of retinopathy markedly reduced capillary-free areas, while the administration of the Akt inhibitor in the second phase of retinopathy significantly decreased retinal neovascularization but capillary-free areas. These results indicate that Akt play a critical role in the pathological process (vessels loss and neovascularization) of mouse model of oxygen-induced retinopathy, which may provide a valubale therapeutic tool for ischemic-induced retinal diseases

  16. Supplementary oxygen and risk of childhood lymphatic leukaemia.

    Science.gov (United States)

    Naumburg, E; Bellocco, R; Cnattingius, S; Jonzon, A; Ekbom, A

    2002-01-01

    Childhood leukaemia has been linked to several factors, such as asphyxia and birthweight, which in turn are related to newborn resuscitation. Based on the findings from a previous study a population-based case-control study was performed to investigate the association between childhood leukaemia and exposure to supplementary oxygen and other birth-related factors. Children born in Sweden and diagnosed with lymphatic leukaemia between 1973 and 1989 (578 cases) were individually matched by gender and date of birth to a randomly selected control. Children with Down's syndrome were excluded. Exposure data were blindly gathered from antenatal, obstetric and other standardized medical records. Odds ratios (OR) and 95% confidence intervals (95% CI) were calculated by conditional logistic regression. Resuscitation with 100% oxygen with a facemask and bag immediately postpartum was significantly associated with an increased risk of childhood lymphatic leukaemia (OR = 2.57, 95% Cl 1.21-6.82). The oxygen-related risk further increased if the manual ventilation lasted for 3 min or more (OR = 3.54, 95% CI 1.16-10.80). Low Apgar scores at 1 and 5 min were associated with a non-significantly increased risk of lymphatic leukaemia. There were no associations between lymphatic leukaemia and supplementary oxygen later in the neonatal period or other birth-related factors. Resuscitation with 100% oxygen immediately postpartum is associated with childhood lymphatic leukaemia, but further studies are warranted to confirm the findings.

  17. Effect of oxygen partial pressure on production of animal virus (VSV)

    OpenAIRE

    Lim, Hyun S.; Chang, Kern H.; Kim, Jung H.

    1999-01-01

    The effect of oxygen partial pressure on viral replication was investigated with Vero/VSV system. At 10% oxygen partial pressure in spinner culture, VSV titer was significantly increased 130 fold compared to that obtained at 21%. A similar result was obtained for viral production in 1liter bioreactor. This implies that oxygen partial pressure during viral production has to be low. In low oxygen partial pressure, malondialdehyde concentration was decreased about 5 fold. Thus, low oxygen partia...

  18. Influence of oxygen impurity atoms on defect clusters and radiation hardening in neutron-irradiated vanadium

    International Nuclear Information System (INIS)

    Bajaj, R.; Wechsler, M.S.

    1975-01-01

    Single crystal TEM samples and polycrystalline tensile samples of vanadium containing 60-640 wt ppm oxygen were irradiated at about 100 0 C to about 1.3 x 10 19 neutrons/cm 2 (E greater than 1 MeV) and post-irradiation annealed up to 800 0 C. The defect cluster density increased and the average size decreased with increasing oxygen concentration. Higher oxygen concentrations caused the radiation hardening and radiation-anneal hardening to increase. The observations are consistent with the nucleation of defect clusters by small oxygen or oxygen-point defect complexes and the trapping of oxygen at defect clusters upon post-irradiation annealing

  19. A microfluidic cell culture array with various oxygen tensions.

    Science.gov (United States)

    Peng, Chien-Chung; Liao, Wei-Hao; Chen, Ying-Hua; Wu, Chueh-Yu; Tung, Yi-Chung

    2013-08-21

    Oxygen tension plays an important role in regulating various cellular functions in both normal physiology and disease states. Therefore, drug testing using conventional in vitro cell models under normoxia often possesses limited prediction capability. A traditional method of setting an oxygen tension in a liquid medium is by saturating it with a gas mixture at the desired level of oxygen, which requires bulky gas cylinders, sophisticated control, and tedious interconnections. Moreover, only a single oxygen tension can be tested at the same time. In this paper, we develop a microfluidic cell culture array platform capable of performing cell culture and drug testing under various oxygen tensions simultaneously. The device is fabricated using an elastomeric material, polydimethylsiloxane (PDMS) and the well-developed multi-layer soft lithography (MSL) technique. The prototype device has 4 × 4 wells, arranged in the same dimensions as a conventional 96-well plate, for cell culture. The oxygen tensions are controlled by spatially confined oxygen scavenging chemical reactions underneath the wells using microfluidics. The platform takes advantage of microfluidic phenomena while exhibiting the combinatorial diversities achieved by microarrays. Importantly, the platform is compatible with existing cell incubators and high-throughput instruments (liquid handling systems and plate readers) for cost-effective setup and straightforward operation. Utilizing the developed platform, we successfully perform drug testing using an anti-cancer drug, triapazamine (TPZ), on adenocarcinomic human alveolar basal epithelial cell line (A549) under three oxygen tensions ranging from 1.4% to normoxia. The developed platform is promising to provide a more meaningful in vitro cell model for various biomedical applications while maintaining desired high throughput capabilities.

  20. Daytime napping and increased risk of incident respiratory diseases: symptom, marker, or risk factor?

    Science.gov (United States)

    Leng, Yue; Wainwright, Nick W J; Cappuccio, Francesco P; Surtees, Paul G; Hayat, Shabina; Luben, Robert; Brayne, Carol; Khaw, Kay-Tee

    2016-07-01

    We have identified a strong association between daytime napping and increased mortality risk from respiratory diseases, but little is known about the relationship between daytime napping and respiratory morbidity. Data were drawn from the European Prospective Investigation into Cancer and Nutrition-Norfolk cohort. Participants reported napping habits during 1998-2000 and were followed up for respiratory disease hospital admissions until March 2009. Cox proportional hazards regression was used to examine the association between daytime napping and respiratory disease incidence risk. The study sample included 10,978 men and women with a mean age of 61.9 years, and a total of 946 incident respiratory disease cases were recorded. After adjustment for age, sex, social class, education, marital status, employment status, nightshift work, body mass index, physical activity, smoking, alcohol intake, self-reported general health, hypnotic drug use, habitual sleep duration, and preexisting health conditions, daytime napping was associated with an increase in the overall respiratory disease incidence risk (hazard ratio (HR) = 1.32, 95% confidence interval (CI) 1.15, 1.52 for napping respiratory diseases, especially for the risk of chronic lower respiratory diseases (HR = 1.52, 95% CI: 1.18, 1.96 for napping respiratory disease incidence risk. Further studies are required to confirm these findings and help understand potential mechanisms. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  1. Oxygen defects in Fe-substituted Tl-system superconductors

    Institute of Scientific and Technical Information of China (English)

    李阳; 曹国辉; 王耘波; 马庆珠; 熊小涛; 陈宁; 马如璋; 郭应焕; 许祝安; 王劲松; 张小俊; 焦正宽; 彭获田; 周思海

    1996-01-01

    For Fe-doped T1-1223 phase,the excess oxygen defects induced by Fe dopants are studied by means of Hall coefficient,thermogravimetric measurements,Mossbauer spectroscopy,and the model calculation of the effective bond valence.The extra oxygen defects have effects on carrier density and microstructure of the superconductors.In the light doping level of Fe (x=0-0.05),the superconducting transition and carrier density have significant corresponding relation--the zero resistance temperature Tco and carrier densities decrease linearly with Fe dopants increasing.The thermogravimetric measurements show that the Fe3+ ions’ substituting for Cu2+ ions can bring the extra oxygen into the lattice to form extra oxygen defects.The calculation of the effective bond valence shows that the decrease of carrier density originates the strongly localized binding of the extra oxygen defects.The distortion of Cu-O layer induced by the extra oxygen defects decreases the superconductive transition temperature.The microstructure

  2. The impact of the Danish Oxygen Register on adherence to guidelines for long-term oxygen therapy in COPD patients

    DEFF Research Database (Denmark)

    Ringbæk, Thomas Jørgen; Lange, Peter

    2006-01-01

    OBJECTIVES: To evaluate the impact of The Danish Oxygen Register on COPD patients' treatment modalities, survival, and adherence to guidelines for long-term oxygen therapy (LTOT). DESIGN: The Danish Oxygen Register. SUBJECTS: 8487 COPD patients who received LTOT in the study period from November 1...... with the possibility of re-evaluation of the criteria for LTOT and adjustment for oxygen flow, with no change during the study period (P=0.43). In a representative subsample, 77.1% had smoking habits or measurement of CO-level registered in 1995 compared to 79.6% in year 2000 (P=0.65), and 25.1% vs. 21.2% (P=0.......34) were considered current smokers. The median survival increased from 1.07 to 1.40 years (P=0.032). CONCLUSIONS: Adherence to guidelines for LTOT has improved concerning administration of oxygen, but has remained poor concerning follow-up of the patients and smoking cessation. Survival of COPD patients...

  3. Autumn Weather and Winter Increase in Cerebrovascular Disease Mortality

    LENUS (Irish Health Repository)

    McDonagh, R

    2016-11-01

    Mortality from cerebrovascular disease increases in winter but the cause is unclear. Ireland’s oceanic climate means that it infrequently experiences extremes of weather. We examined how weather patterns relate to stroke mortality in Ireland. Seasonal data for Sunshine (% of average), Rainfall (% of average) and Temperature (degrees Celsius above average) were collected for autumn (September-November) and winter (December-February) using official Irish Meteorological Office data. National cerebrovascular mortality data was obtained from Quarterly Vital Statistics. Excess winter deaths were calculated by subtracting (nadir) 3rd quarter mortality data from subsequent 1st quarter data. Data for 12 years were analysed, 2002-2014. Mean winter mortality excess was 24.7%. Winter mortality correlated with temperature (r=.60, p=0.04). Rise in winter mortality correlated strongly with the weather in the preceding autumn (Rainfall: r=-0.19 p=0.53, Temperature: r=-0.60, p=0.03, Sunshine, r=0.58, p=0.04). Winter cerebrovascular disease mortality appears higher following cool, sunny autum

  4. Theoretical analysis and experimental study of oxygen transfer under regular and non-breaking waves

    Institute of Scientific and Technical Information of China (English)

    尹则高; 梁丙臣; 王乐

    2013-01-01

    The dissolved oxygen concentration is an important index of water quality, and the atmosphere is one of the important sources of the dissolved oxygen. In this paper, the mass conservation law and the dimensional analysis method are employed to study the oxygen transfer under regular and non-breaking waves, and a unified oxygen transfer coefficient equation is obtained with consi-deration of the effect of kinetic energy and wave period. An oxygen transfer experiment for the intermediate depth water wave is per-formed to measure the wave parameters and the dissolved oxygen concentration. The experimental data and the least squares method are used to determine the constant in the oxygen transfer coefficient equation. The experimental data and the previous reported data are also used to further validate the oxygen transfer coefficient, and the agreement is satisfactory. The unified equation shows that the oxygen transfer coefficient increases with the increase of a parameter coupled with the wave height and the wave length, but it de-creases with the increase of the wave period, which has a much greater influence on the oxygen transfer coefficient than the coupled parameter.

  5. Thermodynamics of oxygen in solid solution in vanadium and niobium--vanadium alloys

    International Nuclear Information System (INIS)

    Steckel, G.L.

    1977-01-01

    A thermodynamic study was made of the vanadium-oxygen and niobium-vanadium-oxygen systems utilizing the solid state galvanic cell technique. Investigations were made with a ThO 2 /Y 2 O 3 electrolyte over the temperature ranges 700 to 1200 0 C (973 to 1473 K) for the binary system and 650 to 1150 0 C (923 to 1423 K) for the ternary system. The activity of oxygen in vanadium obeys Henry's law for the temperatures of this investigation for concentrations up to 3.2 at. percent oxygen. For higher concentrations the activity coefficient shows positive deviations from Henry's law. The terminal solubility of oxygen in vanadium was determined. The activity of oxygen in Nb--V alloys obeys Henry's law for the temperatures of this study for oxygen concentrations less than approximately 2 at. percent. For certain Nb/V ratios Henry's law is obeyed for concentrations as high as 6.5 at. percent oxygen. First order entropy and enthalpy interaction coefficients have been determined to describe the effect on the oxygen activity of niobium additions to vanadium-rich alloys with dilute oxygen concentrations. Niobium causes relatively small decreases in the oxygen activity of V-rich alloys and increases the oxygen solubility limit. Vanadium additions to Nb-rich alloys also increases the oxygen solubility and causes substantial decreases in the dilute solution oxygen activities. The change in the thermodynamic properties when molecular oxygen dissolves in vanadium and niobium--vanadium alloys and the equilibrium oxygen pressure over the binary and ternary systems were also determined

  6. The Effects of Walking or Walking-with-Poles Training on Tissue Oxygenation in Patients with Peripheral Arterial Disease

    Directory of Open Access Journals (Sweden)

    Eileen G. Collins

    2012-01-01

    Full Text Available This randomized trial proposed to determine if there were differences in calf muscle StO2 parameters in patients before and after 12 weeks of a traditional walking or walking-with-poles exercise program. Data were collected on 85 patients who were randomized to a traditional walking program ( or walking-with-poles program ( of exercise training. Patients walked for 3 times weekly for 12 weeks. Seventy-one patients completed both the baseline and the 12-week follow-up progressive treadmill tests ( traditional walking and walking-with-poles. Using the near-infrared spectroscopy measures, StO2 was measured prior to, during, and after exercise. At baseline, calf muscle oxygenation decreased from % prior to the treadmill test to % at peak exercise. The time elapsed prior to reaching nadir StO2 values increased more in the traditional walking group when compared to the walking-with-poles group. Likewise, absolute walking time increased more in the traditional walking group than in the walking-with-poles group. Tissue oxygenation decline during treadmill testing was less for patients assigned to a 12-week traditional walking program when compared to those assigned to a 12-week walking-with-poles program. In conclusion, the 12-week traditional walking program was superior to walking-with-poles in improving tissue deoxygenation in patients with PAD.

  7. Temperature effects on hemocyanin oxygen binding in an antarctic cephalopod.

    Science.gov (United States)

    Zielinski, S; Sartoris, F J; Pörtner, H O

    2001-02-01

    The functional relevance of oxygen transport by hemocyanin of the Antarctic octopod Megaleledone senoi and of the eurythermal cuttlefish Sepia officinalis was analyzed by continuous and simultaneous recordings of changes in pH and hemocyanin oxygen saturation in whole blood at various temperatures. These data were compared to literature data on other temperate and cold-water cephalopods (octopods and giant squid). In S. officinalis, the oxygen affinity of hemocyanin changed at deltaP50/degrees C = 0.12 kPa (pH 7.4) with increasing temperatures; this is similar to observations in temperate octopods. In M. senoi, thermal sensitivity was much smaller (delta log P50/delta pH) increased with increasing temperature in both the cuttlefish and the Antarctic octopod. At low PO2 (1.0 kPa) and pH (7.2), the presence of a large venous oxygen reserve (43% saturation) insensitive to pH reflects reduced pH sensitivity and high oxygen affinity in M. senoi hemocyanin at 0 degrees C. In S. officinalis, this reserve was 19% at pH 7.4, 20 degrees C, and 1.7 kPa O2, a level still higher than in squid. These findings suggest that the lower metabolic rate of octopods and cuttlefish compared to squid is reflected in less pH-dependent oxygen transport. Results of the hemocyanin analysis for the Antarctic octopod were similar to those reported for Vampyroteuthis--an extremely high oxygen affinity supporting a very low metabolic rate. In contrast to findings in cold-adapted giant squid, the minimized thermal sensitivity of oxygen transport in Antarctic octopods will reduce metabolic scope and thereby contribute to their stenothermality.

  8. Are macroinvertebrates in high altitude streams affected by oxygen deficiency?

    DEFF Research Database (Denmark)

    Jacobsen, Dean; Rostgaard, S.; Vásconez, J. J.

    2003-01-01

    1. The solubility of oxygen in water increases with decreasing temperature. This has led to a general perception of cold, high mountain streams as more oxygen rich than warmer lowland streams, and that macroinvertebrates inhabiting high altitude streams have had no need to adapt to critical oxygen...... conditions. However, this fails to take into account that oxygen solubility declines with decreasing atmospheric pressure, which may be of importance at high altitudes. 2. Based on samples of macroinvertebrate benthos and in situ measurements of respiratory oxygen demand of macroinvertebrates in small...... the mean weight-specific respiratory rate of macroinvertebrates declined by only 50%, from 400 to 3800 m. We suggest that this disproportionately large gap between availability and demand of oxygen at high altitudes may imply a potential oxygen deficiency for the fauna, and we discuss how oxygen deficiency...

  9. Biogeochemical Modeling of the Second Rise of Oxygen

    Science.gov (United States)

    Smith, M. L.; Catling, D.; Claire, M.; Zahnle, K.

    2014-03-01

    The rise of atmospheric oxygen set the tempo for the evolution of complex life on Earth. Oxygen levels are thought to have increased in two broad steps: one step occurred in the Archean ~ 2.45 Ga (the Great Oxidation Event or GOE), and another step occured in the Neoproterozoic ~750-580 Ma (the Neoprotoerozoic Oxygenation Event or NOE). During the NOE, oxygen levels increased from ~1-10% of the present atmospheric level (PAL) (Holland, 2006), to ~15% PAL in the late Neoproterozoic, to ~100% PAL later in the Phanerozoic. Complex life requires O2, so this transition allowed complex life to evolve. We seek to understand what caused the NOE. To explore causes for the NOE, we build upon the biogeochemical model of Claire et al. (2006), which calculates the redox evolution of the atmosphere, ocean, biosphere, and crust in the Archean through to the early Proterozoic. In this model, the balance between oxygenconsuming and oyxgen-producing fluxes evolves over time such that at ~2.4 Ga, the rapidly acting sources of oxygen outweigh the rapidly-acting sinks. Or, in other words, at ~2.4 Ga, the flux of oxygen from organic carbon burial exceeds the sinks of oxygen from reaction with reduced volcanic and metamoprphic gases. The model is able to drive oxygen levels to 1-10% PAL in the Proterozoic; however, the evolving redox fluxes in the model cannot explain how oxygen levels pushed above 1-10% in the late Proterozoic. The authors suggest that perhaps another buffer, such as sulfur, is needed to describe Proterozoic and Phanerozoic redox evolution. Geologic proxies show that in the Proterozoic, up to 10% of the deep ocean may have been sulfidic. With this ocean chemistry, the global sulfur cycle would have worked differently than it does today. Because the sulfur and oxygen cycles interact, the oxygen concentration could have permanently changed due to an evolving sulfur cycle (in combination with evolving redox fluxes associated with other parts of the oxygen cycle and carbon

  10. Inadequate cerebral oxygen delivery and central fatigue during strenuous exercise

    DEFF Research Database (Denmark)

    Nybo, Lars; Rasmussen, Peter

    2007-01-01

    Under resting conditions, the brain is protected against hypoxia because cerebral blood flow increases when the arterial oxygen tension becomes low. However, during strenuous exercise, hyperventilation lowers the arterial carbon dioxide tension and blunts the increase in cerebral blood flow, which...... can lead to an inadequate oxygen delivery to the brain and contribute to the development of fatigue....

  11. A model study of warming-induced phosphorus-oxygen feedbacks in open-ocean oxygen minimum zones on millennial timescales

    Science.gov (United States)

    Niemeyer, Daniela; Kemena, Tronje P.; Meissner, Katrin J.; Oschlies, Andreas

    2017-05-01

    Observations indicate an expansion of oxygen minimum zones (OMZs) over the past 50 years, likely related to ongoing deoxygenation caused by reduced oxygen solubility, changes in stratification and circulation, and a potential acceleration of organic matter turnover in a warming climate. The overall area of ocean sediments that are in direct contact with low-oxygen bottom waters also increases with expanding OMZs. This leads to a release of phosphorus from ocean sediments. If anthropogenic carbon dioxide emissions continue unabated, higher temperatures will cause enhanced weathering on land, which, in turn, will increase the phosphorus and alkalinity fluxes into the ocean and therefore raise the ocean's phosphorus inventory even further. A higher availability of phosphorus enhances biological production, remineralisation and oxygen consumption, and might therefore lead to further expansions of OMZs, representing a positive feedback. A negative feedback arises from the enhanced productivity-induced drawdown of carbon and also increased uptake of CO2 due to weathering-induced alkalinity input. This feedback leads to a decrease in atmospheric CO2 and weathering rates. Here, we quantify these two competing feedbacks on millennial timescales for a high CO2 emission scenario. Using the University of Victoria (UVic) Earth System Climate Model of intermediate complexity, our model results suggest that the positive benthic phosphorus release feedback has only a minor impact on the size of OMZs in the next 1000 years. The increase in the marine phosphorus inventory under assumed business-as-usual global warming conditions originates, on millennial timescales, almost exclusively (> 80 %) from the input via terrestrial weathering and causes a 4- to 5-fold expansion of the suboxic water volume in the model.

  12. A model study of warming-induced phosphorus–oxygen feedbacks in open-ocean oxygen minimum zones on millennial timescales

    Directory of Open Access Journals (Sweden)

    D. Niemeyer

    2017-05-01

    Full Text Available Observations indicate an expansion of oxygen minimum zones (OMZs over the past 50 years, likely related to ongoing deoxygenation caused by reduced oxygen solubility, changes in stratification and circulation, and a potential acceleration of organic matter turnover in a warming climate. The overall area of ocean sediments that are in direct contact with low-oxygen bottom waters also increases with expanding OMZs. This leads to a release of phosphorus from ocean sediments. If anthropogenic carbon dioxide emissions continue unabated, higher temperatures will cause enhanced weathering on land, which, in turn, will increase the phosphorus and alkalinity fluxes into the ocean and therefore raise the ocean's phosphorus inventory even further. A higher availability of phosphorus enhances biological production, remineralisation and oxygen consumption, and might therefore lead to further expansions of OMZs, representing a positive feedback. A negative feedback arises from the enhanced productivity-induced drawdown of carbon and also increased uptake of CO2 due to weathering-induced alkalinity input. This feedback leads to a decrease in atmospheric CO2 and weathering rates. Here, we quantify these two competing feedbacks on millennial timescales for a high CO2 emission scenario. Using the University of Victoria (UVic Earth System Climate Model of intermediate complexity, our model results suggest that the positive benthic phosphorus release feedback has only a minor impact on the size of OMZs in the next 1000 years. The increase in the marine phosphorus inventory under assumed business-as-usual global warming conditions originates, on millennial timescales, almost exclusively (> 80 % from the input via terrestrial weathering and causes a 4- to 5-fold expansion of the suboxic water volume in the model.

  13. Periodontal Disease and Bacterial Vaginosis Increase the Risk for Adverse Pregnancy Outcome

    OpenAIRE

    Oittinen, Juha; Kurki, Tapio; Kekki, Minnamaija; Kuusisto, Minna; Pussinen, Pirkko; Vilkuna-Rautiainen, Tiina; Nieminen, Anja; Asikainen, Sirkka; Paavonen, Jorma

    2005-01-01

    Objectives. To determine whether periodontal disease or bacterial vaginosis (BV) diagnosed before pregnancy increase the risk for adverse pregnancy outcome.Methods. We enrolled a total of 252 women who had discontinued contraception in order to become pregnant. The first 130 pregnant women were included in the analyses.Results. Multivariate analysis showed a strong association between periodontal disease and adverse pregnancy outcome (OR 5.5, 95% confidence interval 1.4–21.2; p = 0.014), and ...

  14. Effect of oxygen treatment on heart rate after abdominal surgery

    DEFF Research Database (Denmark)

    Rosenberg-Adamsen, S; Lie, C; Bernhard, A

    1999-01-01

    BACKGROUND: Cardiac complications are common during the postoperative period and may be associated with hypoxemia and tachycardia. Preliminary studies in high-risk patients after operation have shown a possible beneficial effect of oxygen therapy on arterial oxygen saturation and heart rate....... METHODS: The authors studied the effect of oxygen therapy on arterial oxygen saturation and heart rate in 100 consecutive unselected patients randomly and double blindly allocated to receive air or oxygen therapy between the first and fourth day after major abdominal surgery. RESULTS: The median arterial...... oxygen saturation rate increased significantly from 96% to 99% (P heart rate decreased significantly from 85 beats/min to 81 beats/min (P heart rate occurred...

  15. Effects of salmeterol on sleeping oxygen saturation in chronic obstructive pulmonary disease.

    LENUS (Irish Health Repository)

    Ryan, Silke

    2012-02-01

    BACKGROUND: Sleep is associated with important adverse effects in patients with chronic obstructive pulmonary disease (COPD), such as disturbed sleep quality and gas exchange, including hypoxemia and hypercapnia. The effects of inhaled long-acting beta(2)-agonist therapy (LABA) on these disturbances are unclear. OBJECTIVES: The aim of the study was to assess the effect of inhaled salmeterol on nocturnal sleeping arterial oxygen saturation (SaO(2)) and sleep quality. METHODS: In a randomized, double-blind, placebo-controlled, crossover study of moderate\\/severe stable COPD patients, we compared the effects of 4 weeks of treatment with salmeterol 50 microg b.d. and matching placebo on sleeping SaO(2) and sleep quality. Overnight polysomnography (PSG) was performed at baseline, and after 4 and 8 weeks in addition to detailed pulmonary function testing. Of 15 patients included, 12 completed the trial (median age 69 years, forced expiratory volume in 1 s, FEV(1): 39%). RESULTS: Both mean SaO(2) [salmeterol vs. placebo: 92.9% (91.2, 94.7) vs. 91.0% (88.9, 94.8); p = 0.016] and the percentage of sleep spent below 90% of SaO(2) [1.8% (0.0, 10.8) vs. 25.6% (0.5, 53.5); p = 0.005] improved significantly with salmeterol. Sleep quality was similar with both salmeterol and placebo on PSG. Static lung volumes, particularly trapped gas volume, tended to improve with salmeterol. CONCLUSION: We conclude that inhaled LABA therapy improves sleeping SaO(2) without significant change in sleep quality.

  16. Oxygen depletion of bismuth molybdates

    Energy Technology Data Exchange (ETDEWEB)

    Yong, L.K.; Howe, R.F.; Keulks, G.W.; Hall, W.K.

    1978-05-01

    Pure ..cap alpha..-phase bismuth molybdate (Bi/sub 2/Mo/sub 3/O/sub 12/), which is known to be weakly active for selective oxidation, and pure ..gamma..-phase bismuth molybdate (Bi/sub 2/MoO/sub 6/), which has good activity, were subjected to oxidation-reduction cycles with known amounts of hydrogen and oxygen, at 300/sup 0/-570/sup 0/C and with evacuation steps between treatments. The volume of oxygen consumed during reoxidation was equal to half the hydrogen consumed during the reduction on the ..cap alpha..-phase, which indicated that no hydrogen was retained during reduction. For the ..gamma..-phase, the oxygen consumption was greater than half of the hydrogen consumption and it increased with extent of reduction. The excess oxygen was apparently consumed by filling anion vacancies formed during outgassing subsequent to the reduction step. ESR spectroscopy and temperature-programed oxidation-reduction indicated that lattice oxide ions which bridge between bismuth and molybdenum layers of the koechlinite structure become more labile when the catalyst is in a partially reduced state, and that this effect is greater in the ..gamma..- than the ..cap alpha..-phase. Table and 15 references.

  17. The influence of oxygenotherapy on the hypercapnia in patients with chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Lazić Zorica

    2008-01-01

    Full Text Available Background/Aim. Oxygen therapy is a necessary therapeutic method in treatment of severe chronic respiratory failure (CRF, especially in phases of acute worsening. Risks which are to be taken into consideration during this therapy are: unpredictable increase of carbon dioxide in blood, carbonarcosis, respiratory acidosis and coma. The aim of this study was to show the influence of oxygen therapy on changes of arterial blood carbon dioxide partial pressure. Methods. The study included 93 patients in 104 admittances to the hospital due to acute exacerbation of CFR. The majority of the patients (89.4% had chronic obstructive pulmonary disease (COPD, while other causes of respiratory failure were less common. The effect of oxygenation was controlled through measurement of PaO2 and PaCO2 in arterial blood samples. To analyze the influence of oxygen therapy on levels of carbon dioxide, greatest values of change of PaO2 and PaCO2 values from these measurements, including corresponding PaO2 values from the same blood analysis were taken. Results. The obtained results show that oxygen therapy led to the increase of PaO2 but also to the increase of PaCO2. The average increase of PaO2 for the whole group of patients was 2.42 kPa, and the average increase of PaCO2 was 1.69 kPa. There was no correlation between the initial values of PaO2 and PaCO2 and changes of PaCO2 during the oxygen therapy. Also, no correlation between the produced increase in PaO2 and change in PaCO2 during this therapy was found. Conclusion. Controlled oxygen therapy in patients with severe respiratory failure greatly reduces the risk of unwanted increase of PaCO2, but does not exclude it completely. The initial values of PaO2 and PaCO2 are not reliable parameters which could predict the response to oxygen therapy.

  18. Increased disease calls for a cost-benefits review of marine reserves.

    Directory of Open Access Journals (Sweden)

    Emma C Wootton

    Full Text Available Marine reserves (or No-Take Zones are implemented to protect species and habitats, with the aim of restoring a balanced ecosystem. Although the benefits of marine reserves are commonly monitored, there is a lack of insight into the potential detriments of such highly protected waters. High population densities attained within reserves may induce negative impacts such as unfavourable trophic cascades and disease outbreaks. Hence, we investigated the health of lobster populations in the UK's Marine Conservation Zone (MCZ at Lundy Island. Comparisons were made between the fished, Refuge Zone (RZ and the un-fished, No-Take Zone (NTZ; marine reserve. We show ostensibly positive effects such as increased lobster abundance and size within the NTZ; however, we also demonstrate apparent negative effects such as increased injury and shell disease. Our findings suggest that robust cost-benefit analyses of marine reserves could improve marine reserve efficacy and subsequent management strategies.

  19. Optimizing oxygenation and intubation conditions during awake fibre-optic intubation using a high-flow nasal oxygen-delivery system.

    Science.gov (United States)

    Badiger, S; John, M; Fearnley, R A; Ahmad, I

    2015-10-01

    Awake fibre-optic intubation is a widely practised technique for anticipated difficult airway management. Despite the administration of supplemental oxygen during the procedure, patients are still at risk of hypoxia because of the effects of sedation, local anaesthesia, procedural complications, and the presence of co-morbidities. Traditionally used oxygen-delivery devices are low flow, and most do not have a sufficient reservoir or allow adequate fresh gas flow to meet the patient's peak inspiratory flow rate, nor provide an adequate fractional inspired oxygen concentration to prevent desaturation should complications arise. A prospective observational study was conducted using a high-flow humidified transnasal oxygen-delivery system during awake fibre-optic intubation in 50 patients with anticipated difficult airways. There were no episodes of desaturation or hypercapnia using the high-flow system, and in all patients the oxygen saturation improved above baseline values, despite one instance of apnoea resulting from over-sedation. All patients reported a comfortable experience using the device. The high-flow nasal oxygen-delivery system improves oxygenation saturation, decreases the risk of desaturation during the procedure, and potentially, optimizes conditions for awake fibre-optic intubation. The soft nasal cannulae uniquely allow continuous oxygenation and simultaneous passage of the fibrescope and tracheal tube. The safety of the procedure may be increased, because any obstruction, hypoventilation, or periods of apnoea that may arise may be tolerated for longer, allowing more time to achieve ventilation in an optimally oxygenated patient. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. TECHNIQUES OF EVALUATION OF HEMOGLOBIN OXYGEN SATURATION IN CLINICAL OPHTHALMOLOGY

    Directory of Open Access Journals (Sweden)

    S. Yu. Petrov

    2016-01-01

    Full Text Available Oxygen content in body fluids and tissues is an important indicator of life support functions. A number of ocular pathologies, e.g. glaucoma, are of presumable vascular origin which means altered blood supply and oxygen circulation. Most oxygen is transported in the blood in the association with hemoglobin. When passing through the capillaries, hemoglobin releases oxygen, converting from oxygenated form to deoxygenated form. This process is accompanied by the changes in spectral characteristics of hemoglobin which result in different colors of arterial and venous blood. Photometric technique for the measurement of oxygen saturation in blood is based on the differences in light absorption by different forms of hemoglobin. The measurement of saturation is called oximetry. Pulse oximetry with assessment of tissue oxygenation is the most commonly used method in medicine. The degree of hemoglobin oxygen saturation in the eye blood vessels is the most accessible for noninvasive studies during ophthalmoscopy and informative. Numerous studies showed the importance of this parameter for the diagnosis of retinopathy of various genesis, metabolic status analysis in hyperglycemia, diagnosis and control of treatment of glaucoma and other diseases involving alterations in eye blood supply. The specific method for evaluation of oxygen concentration is the measurement of pressure of oxygen dissolved in the blood, i.e. partial pressure of oxygen. In ophthalmological practice, this parameter is measured in anterior chamber fluid evaluating oxygen level for several ophthalmopathies including different forms of glaucoma, for instillations of hypotensive eye drops as well as in vitreous body near to the optic disc under various levels of intraocular pressure. Currently, monitoring of oxygen saturation in retinal blood vessels, i.e. retinal oximetry, is well developed. This technique is based on the assessment of light absorption by blood depending on

  1. Metabolic changers in oxygen transport in patients with diabetes mellitus type 2. Possibilities for correction

    Directory of Open Access Journals (Sweden)

    I Z Bondarenko

    2009-06-01

    Full Text Available Diabetes mellitus type 2 (DM2 - is an independent predictor of development of heart failure (HF. Spiroergometry - is a method for studying blood gas exchange parameters, commonly used for specification of HF. The purpose: 1. To study features of gas exchange at patients with DM2 without cardiovascular diseases in comparison with healthy control. 2. To estimate efficiency of metoprolol for correction of metabolic disturbances in patients with DM2. Materials and methods: 12 patients with DM2, aged 48,4±8, without history of cardiovascular diseases and 15 control subjects, aged 43,6±8 underwent cardio-pulmonary exercise test on treadmill, according to Bruce protocol. Exercise energy, VO2 peak, MET, VE max, VCO2 production were observed. Results: Patients with DM2 had a reduced exercise duration (p<0,001, lower peak oxygen consumption (p<0,001, VCO2 production and MET (p<0,005, than controls, representing the same state of hypoxia as in patients with ischemic heart disease (IHD of functional class 2. The introduction of metoprolol to patients with DM2 significantly increased exercise duration time and VCO2 production (p<0,005. Conclusions: 1. VO2 consumption in patients with DM2 is decreased to the same levels as in persons without DM2, who have IHD and HF. 2. Changes in oxygen-transport in persons with DM2 may serve as a marker of negative influence of the disease on cardiovascular system status. 3. Metoprolol improves parameters of cardio-respiratory system in patients with DM2.

  2. The development of efficient two-photon singlet oxygen sensitizers

    DEFF Research Database (Denmark)

    Nielsen, Christian Benedikt

    The development of efficient two-photon singlet oxygen sensitizers is addressed focusing on organic synthesis. Photophysical measurements were carried out on new lipophilic molecules, where two-photon absorption cross sections and singlet oxygen quantumyields were measured. Design principles...... for making efficient two-photon singlet oxygen sensitizers were then constructed from these results. Charge-transfer in the excited state of the prepared molecules was shown to play a pivotal role in the generationof singlet oxygen. This was established through studies of substituent effects on both...... the singlet oxygen yield and the two-photon absorption cross section, whe