WorldWideScience

Sample records for disease connecting innate

  1. Radiotherapy in patients with connective tissue diseases.

    Science.gov (United States)

    Giaj-Levra, Niccolò; Sciascia, Savino; Fiorentino, Alba; Fersino, Sergio; Mazzola, Rosario; Ricchetti, Francesco; Roccatello, Dario; Alongi, Filippo

    2016-03-01

    The decision to offer radiotherapy in patients with connective tissue diseases continues to be challenging. Radiotherapy might trigger the onset of connective tissue diseases by increasing the expression of self-antigens, diminishing regulatory T-cell activity, and activating effectors of innate immunity (dendritic cells) through Toll-like receptor-dependent mechanisms, all of which could potentially lead to breaks of immune tolerance. This potential risk has raised some debate among radiation oncologists about whether patients with connective tissue diseases can tolerate radiation as well as people without connective tissue diseases. Because the number of patients with cancer and connective tissue diseases needing radiotherapy will probably increase due to improvements in medical treatment and longer life expectancy, the issue of interactions between radiotherapy and connective tissue diseases needs to be clearer. In this Review, we discuss available data and evidence for patients with connective tissue diseases treated with radiotherapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Innate collateral segments are predominantly present in the subendocardium without preferential connectivity within the left ventricular wall

    Science.gov (United States)

    van Horssen, Pepijn; Siebes, Maria; Spaan, Jos A E; Hoefer, Imo E; van den Wijngaard, Jeroen P H M

    2014-01-01

    Functional collateral vessels often stem from outward remodelling of pre-existing connections between perfusion territories. Knowledge of the distribution and morphology of innate collateral connections may help in identifying myocardial areas with protection against risk for ischaemia. The coronary network of six healthy canine hearts was investigated with an imaging cryomicrotome. Innate collateral connections ranged from 286 to 1015 μm in diameter. Left ventricular collateral density (number per gram of tissue) was about five in the subendocardium vs. 2.5 in the mid-myocardium (P collateral connections were oriented parallel to the long axis of the heart. For the major coronary arteries, five times more intracoronary than intercoronary connections were found, while their median diameter and interquartile range were not significantly different, at 96.1 (16.9) vs. 94.7 (18.9) μm. Collateral vessels connecting crowns from sister branches from a stem are denoted intercrown connections and those within crowns intracrown connections. The number of intercrown connections was related to the mean tissue weight of the crowns (y = 0.73x − 0.33, r2 = 0.85, P collateral diameter and length were independent of the tissue volumes bridged. We conclude that connectivity and morphology of the innate collateral network are distributed with no preference for intra-or intercrown connections, independent of stem diameter, including epicardial arteries. This renders all sites of the myocardium equally protected in case of coronary artery disease. The orientation of subendocardial collateral vessels indicates the longitudinal direction of subendocardial collateral flow. PMID:24366260

  3. Innate collateral segments are predominantly present in the subendocardium without preferential connectivity within the left ventricular wall.

    Science.gov (United States)

    van Horssen, Pepijn; Siebes, Maria; Spaan, Jos A E; Hoefer, Imo E; van den Wijngaard, Jeroen P H M

    2014-03-01

    Functional collateral vessels often stem from outward remodelling of pre-existing connections between perfusion territories. Knowledge of the distribution and morphology of innate collateral connections may help in identifying myocardial areas with protection against risk for ischaemia. The coronary network of six healthy canine hearts was investigated with an imaging cryomicrotome. Innate collateral connections ranged from 286 to 1015 μm in diameter. Left ventricular collateral density (number per gram of tissue) was about five in the subendocardium vs. 2.5 in the mid-myocardium (P collateral connections were oriented parallel to the long axis of the heart. For the major coronary arteries, five times more intracoronary than intercoronary connections were found, while their median diameter and interquartile range were not significantly different, at 96.1 (16.9) vs. 94.7 (18.9) μm. Collateral vessels connecting crowns from sister branches from a stem are denoted intercrown connections and those within crowns intracrown connections. The number of intercrown connections was related to the mean tissue weight of the crowns (y = 0.73x - 0.33, r2 = 0.85, P collateral diameter and length were independent of the tissue volumes bridged. We conclude that connectivity and morphology of the innate collateral network are distributed with no preference for intra- or intercrown connections, independent of stem diameter, including epicardial arteries. This renders all sites of the myocardium equally protected in case of coronary artery disease. The orientation of subendocardial collateral vessels indicates the longitudinal direction of subendocardial collateral flow.

  4. Innate lymphoid cells in autoimmunity and chronic inflammatory diseases.

    Science.gov (United States)

    Xiong, Tingting; Turner, Jan-Eric

    2018-03-22

    Abnormal activation of the innate immune system is a common feature of autoimmune and chronic inflammatory diseases. Since their identification as a separate family of leukocytes, innate lymphoid cells (ILCs) have emerged as important effector cells of the innate immune system. Alterations in ILC function and subtype distribution have been observed in a variety of immune-mediated diseases in humans and evidence from experimental models suggests a subtype specific role of ILCs in the pathophysiology of autoimmune inflammation. In this review, we discuss recent advances in the understanding of ILC biology in autoimmune and chronic inflammatory disorders, including multiple sclerosis, inflammatory bowel diseases, psoriasis, and rheumatic diseases, with a special focus on the potential of ILCs as therapeutic targets for the development of novel treatment strategies in humans.

  5. The innate immune signaling in cancer and cardiometabolic diseases: Friends or foes?

    Science.gov (United States)

    Wang, Weijun; Zhang, Yaxing; Yang, Ling; Li, Hongliang

    2017-02-28

    The innate immune system is responsible for sensing pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs) by several types of germline-encoded pattern-recognition receptors (PRRs). It has the capacity to help the human body maintain homeostasis under normal conditions. However, in pathological conditions, PAMPs or DAMPs trigger aberrant innate immune and inflammatory responses and thus negatively or positively influence the progression of cancer and cardiometabolic diseases. Interestingly, we found that some elements of innate immune signaling are involved in these diseases partially via immune-independent manners, indicating a deeper understanding of the function of innate immune signaling in these diseases is urgent. In this review, we summarize the primary innate immune signaling pathways and their association with cancer and cardiometabolic diseases, with the aim of providing effective therapies for these diseases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Innate collateral segments are predominantly present in the subendocardium without preferential connectivity within the left ventricular wall

    NARCIS (Netherlands)

    van Horssen, Pepijn; Siebes, Maria; Spaan, Jos A. E.; Hoefer, Imo E.; van den Wijngaard, Jeroen P. H. M.

    2014-01-01

    Functional collateral vessels often stem from outward remodelling of pre-existing connections between perfusion territories. Knowledge of the distribution and morphology of innate collateral connections may help in identifying myocardial areas with protection against risk for ischaemia. The coronary

  7. Innate lymphoid cells in inflammatory bowel diseases

    NARCIS (Netherlands)

    Peters, C. P.; Mjösberg, J. M.; Bernink, J. H.; Spits, H.

    2016-01-01

    It is generally believed that inflammatory bowel diseases (IBD) are caused by an aberrant immune response to environmental triggers in genetically susceptible individuals. The exact contribution of the adaptive and innate immune system has not been elucidated. However, recent advances in treatments

  8. Innate Lymphoid Cells: A Promising New Regulator in Fibrotic Diseases.

    Science.gov (United States)

    Zhang, Yi; Tang, Jun; Tian, Zhiqiang; van Velkinburgh, Jennifer C; Song, Jianxun; Wu, Yuzhang; Ni, Bing

    2016-09-02

    Fibrosis is a consequence of chronic inflammation and the persistent accumulation of extracellular matrix, for which the cycle of tissue injury and repair becomes a predominant feature. Both the innate and adaptive immune systems play key roles in the progress of fibrosis. The recently identified subsets of innate lymphoid cells (ILCs), which are mainly localize to epithelial surfaces, have been characterized as regulators of chronic inflammation and tissue remodeling, representing a functional bridge between the innate and adaptive immunity. Moreover, recent research has implicated ILCs as potential contributing factors to several kinds of fibrosis diseases, such as hepatic fibrosis and pulmonary fibrosis. Here, we will summarize and discuss the key roles of ILCs and their related factors in fibrotic diseases and their potential for translation to the clinic.

  9. Mast Cells and Innate Lymphoid Cells: Underappreciated Players in CNS Autoimmune Demyelinating Disease.

    Science.gov (United States)

    Brown, Melissa A; Weinberg, Rebecca B

    2018-01-01

    Multiple sclerosis (MS) and its mouse model, experimental autoimmune encephalomyelitis, are autoimmune CNS inflammatory diseases. As a result of a breakdown in the relatively impermeable blood-brain barrier (BBB) in affected individuals, myelin-specific CD4 + and CD8 + T cells gain entry into the immune privileged CNS and initiate myelin, oligodendrocyte, and nerve axon destruction. However, despite the absolute requirement for T cells, there is increasing evidence that innate immune cells also play critical amplifying roles in disease pathogenesis. By modulating the character and magnitude of the myelin-reactive T cell response and regulating BBB integrity, innate cells affect both disease initiation and progression. Two classes of innate cells, mast cells and innate lymphoid cells (ILCs), have been best studied in models of allergic and gastrointestinal inflammatory diseases. Yet, there is emerging evidence that these cell types also exert a profound influence in CNS inflammatory disease. Both cell types are residents within the meninges and can be activated early in disease to express a wide variety of disease-modifying cytokines and chemokines. In this review, we discuss how mast cells and ILCs can have either disease-promoting or -protecting effects on MS and other CNS inflammatory diseases and how sex hormones may influence this outcome. These observations suggest that targeting these cells and their unique mediators can be exploited therapeutically.

  10. Aspergillus-Associated Airway Disease, Inflammation, and the Innate Immune Response

    Science.gov (United States)

    Chotirmall, Sanjay H.; Al-Alawi, Mazen; Logan, P. Mark; Greene, Catherine M.; McElvaney, Noel G.

    2013-01-01

    Aspergillus moulds exist ubiquitously as spores that are inhaled in large numbers daily. Whilst most are removed by anatomical barriers, disease may occur in certain circumstances. Depending on the underlying state of the human immune system, clinical consequences can ensue ranging from an excessive immune response during allergic bronchopulmonary aspergillosis to the formation of an aspergilloma in the immunocompetent state. The severest infections occur in those who are immunocompromised where invasive pulmonary aspergillosis results in high mortality rates. The diagnosis of Aspergillus-associated pulmonary disease is based on clinical, radiological, and immunological testing. An understanding of the innate and inflammatory consequences of exposure to Aspergillus species is critical in accounting for disease manifestations and preventing sequelae. The major components of the innate immune system involved in recognition and removal of the fungus include phagocytosis, antimicrobial peptide production, and recognition by pattern recognition receptors. The cytokine response is also critical facilitating cell-to-cell communication and promoting the initiation, maintenance, and resolution of the host response. In the following review, we discuss the above areas with a focus on the innate and inflammatory response to airway Aspergillus exposure and how these responses may be modulated for therapeutic benefit. PMID:23971044

  11. Innate lymphoid cells in tissue homeostasis and diseases.

    Science.gov (United States)

    Ignacio, Aline; Breda, Cristiane Naffah Souza; Camara, Niels Olsen Saraiva

    2017-08-18

    Innate lymphoid cells (ILCs) are the most recently discovered family of innate immune cells. They are a part of the innate immune system, but develop from the lymphoid lineage. They lack pattern-recognition receptors and rearranged receptors, and therefore cannot directly mediate antigen specific responses. The progenitors specifically associated with the ILCs lineage have been uncovered, enabling the distinction between ILCs and natural killer cells. Based on the requirement of specific transcription factors and their patterns of cytokine production, ILCs are categorized into three subsets (ILC1, ILC2 and ILC3). First observed in mucosal surfaces, these cell populations interact with hematopoietic and non-hematopoietic cells throughout the body during homeostasis and diseases, promoting immunity, commensal microbiota tolerance, tissue repair and inflammation. Over the last 8 years, ILCs came into the spotlight as an essential cell type able to integrate diverse host immune responses. Recently, it became known that ILC subsets play a key role in immune responses at barrier surfaces, interacting with the microbiota, nutrients and metabolites. Since the liver receives the venous blood directly from the intestinal vein, the intestine and liver are essential to maintain tolerance and can rapidly respond to infections or tissue damage. Therefore, in this review, we discuss recent findings regarding ILC functions in homeostasis and disease, with a focus on the intestine and liver.

  12. DMPD: Peptidoglycan signaling in innate immunity and inflammatory disease. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15802263 Peptidoglycan signaling in innate immunity and inflammatory disease. McDon...ald C, Inohara N, Nunez G. J Biol Chem. 2005 May 27;280(21):20177-80. Epub 2005 Mar 31. (.png) (.svg) (.html) (.csml) Show Peptidog...lycan signaling in innate immunity and inflammatory disease. PubmedID 15802263 Title Peptidog

  13. Aspergillus-Associated Airway Disease, Inflammation, and the Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Sanjay H. Chotirmall

    2013-01-01

    Full Text Available Aspergillus moulds exist ubiquitously as spores that are inhaled in large numbers daily. Whilst most are removed by anatomical barriers, disease may occur in certain circumstances. Depending on the underlying state of the human immune system, clinical consequences can ensue ranging from an excessive immune response during allergic bronchopulmonary aspergillosis to the formation of an aspergilloma in the immunocompetent state. The severest infections occur in those who are immunocompromised where invasive pulmonary aspergillosis results in high mortality rates. The diagnosis of Aspergillus-associated pulmonary disease is based on clinical, radiological, and immunological testing. An understanding of the innate and inflammatory consequences of exposure to Aspergillus species is critical in accounting for disease manifestations and preventing sequelae. The major components of the innate immune system involved in recognition and removal of the fungus include phagocytosis, antimicrobial peptide production, and recognition by pattern recognition receptors. The cytokine response is also critical facilitating cell-to-cell communication and promoting the initiation, maintenance, and resolution of the host response. In the following review, we discuss the above areas with a focus on the innate and inflammatory response to airway Aspergillus exposure and how these responses may be modulated for therapeutic benefit.

  14. Role of Type 2 Innate Lymphoid Cells in Allergic Diseases.

    Science.gov (United States)

    Cosmi, Lorenzo; Liotta, Francesco; Maggi, Laura; Annunziato, Francesco

    2017-09-11

    The adaptive immune response orchestrated by type 2 T helper (Th2) lymphocytes, strictly cooperates with the innate response of group 2 innate lymphoid cells (ILC2), in the protection from helminths infection, as well as in the pathogenesis of allergic disease. The aim of this review is to explore the pathogenic role of ILC2 in different type 2-mediated disorders. Recent studies have shown that epithelial cell-derived cytokines and their responding cells, ILC2, play a pathogenic role in bronchial asthma, chronic rhinosinusitis, and atopic dermatitis. The growing evidences of the contribution of ILC2 in the induction and maintenance of allergic inflammation in such disease suggest the possibility to target them in therapy. Biological therapies blocking ILC2 activation or neutralizing their effector cytokines are currently under evaluation to be used in patients with type 2-dominated diseases.

  15. Kidney and innate immunity.

    Science.gov (United States)

    Wang, Ying-Hui; Zhang, Yu-Gen

    2017-03-01

    Innate immune system is an important modulator of the inflammatory response during infection and tissue injury/repair. The kidney as a vital organ with high energy demand plays a key role in regulating the disease related metabolic process. Increasing research interest has focused on the immune pathogenesis of many kidney diseases. However, innate immune cells such as dendritic cells, macrophages, NK cells and a few innate lymphocytes, as well as the complement system are essential for renal immune homeostasis and ensure a coordinated balance between tissue injury and regeneration. The innate immune response provides the first line of host defense initiated by several classes of pattern recognition receptors (PRRs), such as membrane-bound Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), together with inflammasomes responsible for early innate immune response. Although the innate immune system is well studied, the research on the detailed relationship between innate immunity and kidney is still very limited. In this review, we will focus on the innate immune sensing system in renal immune homeostasis, as well as the corresponding pathogenesis of many kidney diseases. The pivotal roles of innate immunity in renal injury and regeneration with special emphasis on kidney disease related immunoregulatory mechanism are also discussed. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  16. The Role of Innate Lymphoid Cells in Immune-Mediated Liver Diseases

    Science.gov (United States)

    Liu, Meifang; Zhang, Cai

    2017-01-01

    Innate lymphoid cells (ILCs) are a recently identified group of innate immune cells lacking antigen-specific receptors that can mediate immune responses and regulate tissue homeostasis and inflammation. ILCs comprise group 1 ILCs, group 2 ILCs, and group 3 ILCs. These ILCs usually localize at mucosal surfaces and combat pathogens by the rapid release of certain cytokines. However, the uncontrolled activation of ILCs can also lead to damaging inflammation, especially in the gut, lung, and skin. Although the physiological and pathogenic roles of ILCs in liver diseases have been attracting increasing attention recently, there has been no systematic review regarding the roles of ILCs in immune-mediated liver diseases. Here, we review the relationships between the ILC subsets and their functions in immune-mediated liver diseases, and discuss their therapeutic potential based on current knowledge about the functional roles of these cells in liver diseases. PMID:28659927

  17. Verneuil's disease, innate immunity and vitamin D: a pilot study.

    Science.gov (United States)

    Guillet, A; Brocard, A; Bach Ngohou, K; Graveline, N; Leloup, A-G; Ali, D; Nguyen, J-M; Loirat, M-J; Chevalier, C; Khammari, A; Dreno, B

    2015-07-01

    Verneuil's disease is a chronic inflammatory skin disease of the follicles in apocrine glands rich area of the skin (axillary, inguinal, anogenital) and is associated with a deficient skin innate immunity. It is characterized by the occurrence of nodules, abscesses, fistulas, scars. Recently, vitamin D has been shown to stimulate skin innate immunity. The primary objective of the study was to assess whether Verneuil's disease was associated with vitamin D deficiency. The secondary objective was to determine whether vitamin D supplementation could improve inflammatory lesions. First, 25(OH) vitamin D3 serum levels in patients with Verneuil's disease followed at Nantes University Hospital were compared to those of healthy donors from the French Blood Bank. Then, a pilot study was conducted in 14 patients supplemented with vitamin D according to their vitamin D level at baseline at months 3 and 6. The endpoints at 6 months were decreased by at least 20% in the number of nodules and in the frequency of flare-ups. Twenty-two patients (100%) had vitamin D deficiency (level vitamin D deficiency (91%) of whom 14% were severely deficient. In 14 patients, the supplementation significantly decreased the number of nodules at 6 months (P = 0.01133), and the endpoints were achieved in 79% of these patients. A correlation between the therapeutic success and the importance of the increase in vitamin D level after supplementation was observed (P = 0.01099). Our study shows that Verneuil's disease is associated with a major vitamin D deficiency, correlated with the disease severity. It suggests that vitamin D could significantly improve the inflammatory nodules, probably by stimulating the skin innate immunity. A larger randomized study is needed to confirm these findings. © 2014 European Academy of Dermatology and Venereology.

  18. Undifferentiated Connective Tissue Disease

    Science.gov (United States)

    ... Home Conditions Undifferentiated Connective Tissue Disease (UCTD) Undifferentiated Connective Tissue Disease (UCTD) Make an Appointment Find a Doctor ... by Barbara Goldstein, MD (February 01, 2016) Undifferentiated connective tissue disease (UCTD) is a systemic autoimmune disease. This ...

  19. Emerging roles of innate lymphoid cells in inflammatory diseases: Clinical implications.

    Science.gov (United States)

    Kortekaas Krohn, I; Shikhagaie, M M; Golebski, K; Bernink, J H; Breynaert, C; Creyns, B; Diamant, Z; Fokkens, W J; Gevaert, P; Hellings, P; Hendriks, R W; Klimek, L; Mjösberg, J; Morita, H; Ogg, G S; O'Mahony, L; Schwarze, J; Seys, S F; Shamji, M H; Bal, S M

    2018-04-01

    Innate lymphoid cells (ILC) represent a group of lymphocytes that lack specific antigen receptors and are relatively rare as compared to adaptive lymphocytes. ILCs play important roles in allergic and nonallergic inflammatory diseases due to their location at barrier surfaces within the airways, gut, and skin, and they respond to cytokines produced by activated cells in their local environment. Innate lymphoid cells contribute to the immune response by the release of cytokines and other mediators, forming a link between innate and adaptive immunity. In recent years, these cells have been extensively characterized and their role in animal models of disease has been investigated. Data to translate the relevance of ILCs in human pathology, and the potential role of ILCs in diagnosis, as biomarkers and/or as future treatment targets are also emerging. This review, produced by a task force of the Immunology Section of the European Academy of Allergy and Clinical Immunology (EAACI), encompassing clinicians and researchers, highlights the role of ILCs in human allergic and nonallergic diseases in the airways, gastrointestinal tract, and skin, with a focus on new insights into clinical implications, therapeutic options, and future research opportunities. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  20. Mixed Connective Tissue Disease

    Science.gov (United States)

    Mixed connective tissue disease Overview Mixed connective tissue disease has signs and symptoms of a combination of disorders — primarily lupus, scleroderma and polymyositis. For this reason, mixed connective tissue disease ...

  1. ID’ing Innate and Innate-like Lymphoid Cells

    Science.gov (United States)

    Verykokakis, Mihalis; Zook, Erin C.; Kee, Barbara L.

    2014-01-01

    Summary The immune system can be divided into innate and adaptive components that differ in their rate and mode of cellular activation, with innate immune cells being the first responders to invading pathogens. Recent advances in the identification and characterization of innate lymphoid cells have revealed reiterative developmental programs that result in cells with effector fates that parallel those of adaptive lymphoid cells and are tailored to effectively eliminate a broad spectrum of pathogenic challenges. However, activation of these cells can also be associated with pathologies such as autoimmune disease. One major distinction between innate and adaptive immune system cells is the constitutive expression of ID proteins in the former and inducible expression in the latter. ID proteins function as antagonists of the E protein transcription factors that play critical roles in lymphoid specification as well as B and T-lymphocyte development. In this review, we examine the transcriptional mechanisms controlling the development of innate lymphocytes, including natural killer cells and the recently identified innate lymphoid cells (ILC1, ILC2, and ILC3), and innate-like lymphocytes, including natural killer T cells, with an emphasis on the known requirements for the ID proteins. PMID:25123285

  2. The Emerging Role of TLR and Innate Immunity in Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Rolf Spirig

    2012-01-01

    Full Text Available Cardiovascular disease is a complex disorder involving multiple pathophysiological processes, several of which involve activation of toll-like receptors (TLRs of the innate immune system. As sentinels of innate immunity TLRs are nonclonally germline-encoded molecular pattern recognition receptors that recognize exogenous as well as tissue-derived molecular dangers signals promoting inflammation. In addition to their expression in immune cells, TLRs are found in other tissues and cell types including cardiomyocytes, endothelial and vascular smooth muscle cells. TLRs are differentially regulated in various cell types by several cardiovascular risk factors such as hypercholesterolemia, hyperlipidemia, and hyperglycemia and may represent a key mechanism linking chronic inflammation, cardiovascular disease progression, and activation of the immune system. Modulation of TLR signaling by specific TLR agonists or antagonists, alone or in combination, may be a useful therapeutic approach to treat various cardiovascular inflammatory conditions such as atherosclerosis, peripheral arterial disease, secondary microvascular complications of diabetes, autoimmune disease, and ischemia reperfusion injury. In this paper we discuss recent developments and current evidence for the role of TLR in cardiovascular disease as well as the therapeutic potential of various compounds on inhibition of TLR-mediated inflammatory responses.

  3. Adaptation in the innate immune system and heterologous innate immunity.

    Science.gov (United States)

    Martin, Stefan F

    2014-11-01

    The innate immune system recognizes deviation from homeostasis caused by infectious or non-infectious assaults. The threshold for its activation seems to be established by a calibration process that includes sensing of microbial molecular patterns from commensal bacteria and of endogenous signals. It is becoming increasingly clear that adaptive features, a hallmark of the adaptive immune system, can also be identified in the innate immune system. Such adaptations can result in the manifestation of a primed state of immune and tissue cells with a decreased activation threshold. This keeps the system poised to react quickly. Moreover, the fact that the innate immune system recognizes a wide variety of danger signals via pattern recognition receptors that often activate the same signaling pathways allows for heterologous innate immune stimulation. This implies that, for example, the innate immune response to an infection can be modified by co-infections or other innate stimuli. This "design feature" of the innate immune system has many implications for our understanding of individual susceptibility to diseases or responsiveness to therapies and vaccinations. In this article, adaptive features of the innate immune system as well as heterologous innate immunity and their implications are discussed.

  4. ID'ing innate and innate-like lymphoid cells.

    Science.gov (United States)

    Verykokakis, Mihalis; Zook, Erin C; Kee, Barbara L

    2014-09-01

    The immune system can be divided into innate and adaptive components that differ in their rate and mode of cellular activation, with innate immune cells being the first responders to invading pathogens. Recent advances in the identification and characterization of innate lymphoid cells have revealed reiterative developmental programs that result in cells with effector fates that parallel those of adaptive lymphoid cells and are tailored to effectively eliminate a broad spectrum of pathogenic challenges. However, activation of these cells can also be associated with pathologies such as autoimmune disease. One major distinction between innate and adaptive immune system cells is the constitutive expression of ID proteins in the former and inducible expression in the latter. ID proteins function as antagonists of the E protein transcription factors that play critical roles in lymphoid specification as well as B- and T-lymphocyte development. In this review, we examine the transcriptional mechanisms controlling the development of innate lymphocytes, including natural killer cells and the recently identified innate lymphoid cells (ILC1, ILC2, and ILC3), and innate-like lymphocytes, including natural killer T cells, with an emphasis on the known requirements for the ID proteins. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Type two innate lymphoid cells; the Janus cells in health and disease

    Science.gov (United States)

    Maazi, Hadi; Akbari, Omid

    2017-01-01

    Summary Innate lymphoid cells are functionally diverse subsets of immune cells including the conventional natural killer cells, lymphoid tissue inducers, type 1, 2 and 3 with significant roles in immunity and pathogenesis of inflammatory diseases. Type 2 innate lymphoid cells (ILC2s) resemble type 2 helper (Th2) cells in cytokine production and contribute to anti-helminth immunity, maintaining mucosal tissue integrity and adipose tissue browning. ILC2s play important roles in the pathogenesis of allergic diseases and asthma. Studying the pathways of activation and regulation of ILC2s are currently a priority for giving a better understanding of pathogenesis of diseases with immunological roots. Recently, our laboratory and others have shown several pathways of regulation of ILC2s by costimulatory molecules such as ICOS, regulatory T cells and by compounds such as nicotine. In this review, we summarize the current understanding of the mechanisms of activation and regulation of ILC2s and the role of these cells in health and disease. PMID:28658553

  6. Type two innate lymphoid cells: the Janus cells in health and disease.

    Science.gov (United States)

    Maazi, Hadi; Akbari, Omid

    2017-07-01

    Innate lymphoid cells are functionally diverse subsets of immune cells including the conventional natural killer cells, lymphoid tissue inducers, type 1, 2, and 3 with significant roles in immunity and pathogenesis of inflammatory diseases. Type 2 innate lymphoid cells (ILC2s) resemble type 2 helper (Th2) cells in cytokine production and contribute to anti-helminth immunity, maintaining mucosal tissue integrity, and adipose tissue browning. ILC2s play important roles in the pathogenesis of allergic diseases and asthma. Studying the pathways of activation and regulation of ILC2s are currently a priority for giving a better understanding of pathogenesis of diseases with immunological roots. Recently, our laboratory and others have shown several pathways of regulation of ILC2s by co-stimulatory molecules such as ICOS, regulatory T cells and by compounds such as nicotine. In this review, we summarize the current understanding of the mechanisms of activation and regulation of ILC2s and the role of these cells in health and disease. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Innate immune receptor Toll-like receptor 4 signalling in neuropsychiatric diseases.

    Science.gov (United States)

    García Bueno, B; Caso, J R; Madrigal, J L M; Leza, J C

    2016-05-01

    The innate immunity is a stereotyped first line of defense against pathogens and unspecified damage signals. One of main actors of innate immunity are the Toll-like receptors (TLRs), and one of the better characterized members of this family is TLR-4, that it is mainly activated by Gram-negative bacteria lipopolysaccharide. In brain, TLR-4 organizes innate immune responses against infections or cellular damage, but also possesses other physiological functions. In the last years, some evidences suggest a role of TLR-4 in stress and stress-related neuropsychiatric diseases. Peripheral and brain TLR-4 activation triggers sickness behavior, and its expression is a risk factor of depression. Some elements of the TLR-4 signaling pathway are up-regulated in peripheral samples and brain post-mortem tissue from depressed and suicidal patients. The "leaky gut" hypothesis of neuropsychiatric diseases is based on the existence of an increase of the intestinal permeability which results in bacterial translocation able to activate TLR-4. Enhanced peripheral TLR-4 expression/activity has been described in subjects diagnosed with schizophrenia, bipolar disorder and in autistic children. A role for TLR-4 in drugs abuse has been also proposed. The therapeutic potential of pharmacological/genetic modulation of TLRs signaling pathways in neuropsychiatry is promising, but a great preclinical/clinical scientific effort is still needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Innate ideas in Islamic philosophy

    Directory of Open Access Journals (Sweden)

    Halilović Tehran

    2017-01-01

    Full Text Available The human soul is the subject of debates in numerous scientific disciplines. Philosophical considerations encompass a special dimension of the human soul that is related to ontological truths. Among different philosophical questions raised regarding the human soul, the issue of innate ideas particularly stands out. Well-known points of disagreement between Plato and Aristotle regarding this question are usually focused on whether a person possesses knowledge and thoughts from their creation, i.e. birth, or they acquire them through time and experience. With the appearance of Cartesian scepticism and following the solutions Descartes offered for the problem of certain knowledge, the issue of innate ideas has remained the focal question for many prominent philosophers. In the Islamic philosophy, the rational explanation of the nature of innate ideas originates from the more comprehensive theory of the human soul and it states that a person, according to their nature, possesses already existent cognitive abilities they were born with. Innate cognitive abilities discussed in the Islamic philosophy do not refer just to theoretical, but to practical knowledge, as well. Therefore, the analysis of innate ideas in the works of Muslim philosophers is connected to a larger number of scientific disciplines than when it comes to most Western philosophers. The difference between the practical and theoretic intellect will serve as a cognitive basis for defining another aspect of innate ideas. The products of a practical intellect, the human will and his actions, are personal and particular and, therefore, can be connected to the everyday life of a person. Owing to the general presence of the practical intellect in all life spheres, the influence of innate ideas, which are determined in a human being, is recognizable in all most detailed moments of their life.

  9. Innate lymphoid cells contribute to allergic airway disease exacerbation by obesity.

    Science.gov (United States)

    Everaere, Laetitia; Ait-Yahia, Saliha; Molendi-Coste, Olivier; Vorng, Han; Quemener, Sandrine; LeVu, Pauline; Fleury, Sebastien; Bouchaert, Emmanuel; Fan, Ying; Duez, Catherine; de Nadai, Patricia; Staels, Bart; Dombrowicz, David; Tsicopoulos, Anne

    2016-11-01

    Epidemiologic and clinical observations identify obesity as an important risk factor for asthma exacerbation, but the underlying mechanisms remain poorly understood. Type 2 innate lymphoid cells (ILC2s) and type 3 innate lymphoid cells (ILC3s) have been implicated, respectively, in asthma and adipose tissue homeostasis and in obesity-associated airway hyperresponsiveness (AHR). We sought to determine the potential involvement of innate lymphoid cells (ILCs) in allergic airway disease exacerbation caused by high-fat diet (HFD)-induced obesity. Obesity was induced by means of HFD feeding, and allergic airway inflammation was subsequently induced by means of intranasal administration of house dust mite (HDM) extract. AHR, lung and visceral adipose tissue inflammation, humoral response, cytokines, and innate and adaptive lymphoid populations were analyzed in the presence or absence of ILCs. HFD feeding exacerbated allergic airway disease features, including humoral response, airway and tissue eosinophilia, AHR, and T H 2 and T H 17 pulmonary profiles. Notably, nonsensitized obese mice already exhibited increased lung ILC counts and tissue eosinophil infiltration compared with values in lean mice in the absence of AHR. The numbers of total and cytokine-expressing lung ILC2s and ILC3s further increased in HDM-challenged obese mice compared with those in HDM-challenged lean mice, and this was accompanied by high IL-33 and IL-1β levels and decreased ILC markers in visceral adipose tissue. Furthermore, depletion of ILCs with an anti-CD90 antibody, followed by T-cell reconstitution, led to a profound decrease in allergic airway inflammatory features in obese mice, including T H 2 and T H 17 infiltration. These results indicate that HFD-induced obesity might exacerbate allergic airway inflammation through mechanisms involving ILC2s and ILC3s. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  10. Human innate lymphoid cells.

    Science.gov (United States)

    Mjösberg, Jenny; Spits, Hergen

    2016-11-01

    Innate lymphoid cells (ILCs) are increasingly acknowledged as important mediators of immune homeostasis and pathology. ILCs act as early orchestrators of immunity, responding to epithelium-derived signals by expressing an array of cytokines and cell-surface receptors, which shape subsequent immune responses. As such, ILCs make up interesting therapeutic targets for several diseases. In patients with allergy and asthma, group 2 innate lymphoid cells produce high amounts of IL-5 and IL-13, thereby contributing to type 2-mediated inflammation. Group 3 innate lymphoid cells are implicated in intestinal homeostasis and psoriasis pathology through abundant IL-22 production, whereas group 1 innate lymphoid cells are accumulated in chronic inflammation of the gut (inflammatory bowel disease) and lung (chronic obstructive pulmonary disease), where they contribute to IFN-γ-mediated inflammation. Although the ontogeny of mouse ILCs is slowly unraveling, the development of human ILCs is far from understood. In addition, the growing complexity of the human ILC family in terms of previously unrecognized functional heterogeneity and plasticity has generated confusion within the field. Here we provide an updated view on the function and plasticity of human ILCs in tissue homeostasis and disease. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  11. Dry Eye Disease and Microbial Keratitis: Is There a Connection?

    Science.gov (United States)

    Narayanan, Srihari; Redfern, Rachel L.; Miller, William L.; Nichols, Kelly K.; McDermott, Alison M.

    2013-01-01

    Dry eye is a common ocular surface disease of multifactorial etiology characterized by elevated tear osmolality and inflammation leading to a disrupted ocular surface. The latter is a risk factor for ocular surface infection, yet overt infection is not commonly seen clinically in the typical dry eye patient. This suggests that important innate mechanisms operate to protect the dry eye from invading pathogens. This article reviews the current literature on epidemiology of ocular surface infection in dry eye patients and laboratory-based studies on innate immune mechanisms operating at the ocular surface and their alterations in human dry eye and animal models. The review highlights current understanding of innate immunity in dry eye and identifies gaps in our knowledge to help direct future studies to further unravel the complexities of dry eye disease and its sequelae. PMID:23583043

  12. Ambiguous roles of innate lymphoid cells in chronic development of liver diseases.

    Science.gov (United States)

    Shen, Yue; Li, Jing; Wang, Si-Qi; Jiang, Wei

    2018-05-14

    Innate lymphoid cells (ILCs) are defined as a distinct arm of innate immunity. According to their profile of secreted cytokines and lineage-specific transcriptional factors, ILCs can be categorized into the following three groups: group 1 ILCs (including natural killer (NK) cells and ILC1s) are dependent on T-bet and can produce interferon-γ; group 2 ILCs (ILC2s) are dependent on GATA3 and can produce type 2 cytokines, including interleukin (IL)-5 and IL-13; and, group 3 ILCs (including lymphoid tissue-like cells and ILC3s) are dependent on RORγt and can produce IL-22 and IL-17. Collaborative with adaptive immunity, ILCs are highly reactive innate effectors that promptly orchestrate immunity, inflammation and tissue repair. Dysregulation of ILCs might result in inflammatory disorders. Evidence regarding the function of intrahepatic ILCs is emerging from longitudinal studies of inflammatory liver diseases wherein they exert both physiological and pathological functions, including immune homeostasis, defenses and surveillance. Their overall effect on the liver depends on the balance of their proinflammatory and antiinflammatory populations, specific microenvironment and stages of immune responses. Here, we review the current data about ILCs in chronic liver disease progression, to reveal their roles in different stages as well as to discuss their therapeutic potency as intervention targets.

  13. Innate lymphoid cells are pivotal actors in allergic, inflammatory and autoimmune diseases.

    Science.gov (United States)

    Sanati, Golshid; Aryan, Zahra; Barbadi, Mehri; Rezaei, Nima

    2015-01-01

    Innate lymphoid cells (ILCs) are lymphoid cells that do not express V(D)J-rearranged receptors and play a role in the innate immune system. ILCs are categorized into three groups with respect to their function in the immune system. ILC1 induces production of IFN-γ via T-box expressed on T cells, ILC2 promotes production of type 2 cytokines via GATA-binding protein-3 and ILC3 promotes IL-17 and IL-22 production via retinoic acid receptor-related orphan receptor-γt. ILCs can maintain homeostasis in epithelial surfaces by responding to locally produced cytokines or direct recognition of danger patterns. Altered epithelial barrier function seems to be a key point in inappropriate activation of ILCs to promote inflammatory and allergic responses. ILCs play an essential role in initiation and maintenance of defense against infections as well as immune-mediated diseases. In this paper, we discuss the role of ILCs in inflammatory, allergic and autoimmune diseases.

  14. Role of the peripheral innate immune system in the development of Alzheimer's disease.

    Science.gov (United States)

    Le Page, Aurélie; Dupuis, Gilles; Frost, Eric H; Larbi, Anis; Pawelec, Graham; Witkowski, Jacek M; Fulop, Tamas

    2017-12-21

    Alzheimer's disease is one of the most devastating neurodegenerative diseases. The exact cause of the disease is still not known although many scientists believe in the beta amyloid hypothesis which states that the accumulation of the amyloid peptide beta (Aβ) in brain is the initial cause which consequently leads to pathological neuroinflammation. However, it was recently shown that Aβ may have an important role in defending the brain against infections. Thus, the balance between positive and negative impact of Aβ may determine disease progression. Microglia in the brain are innate immune cells, and brain-initiated inflammatory responses reflected in the periphery suggests that Alzheimer's disease is to some extent also a systemic inflammatory disease. Greater permeability of the blood brain barrier facilitates the transport of peripheral immune cells to the brain and vice versa so that a vicious circle originating on the periphery may contribute to the development of overt clinical AD. Persistent inflammatory challenges by pathogens in the periphery, increasing with age, may also contribute to the central propagation of the pathological changes seen clinically. Therefore, the activation status of peripheral innate immune cells may represent an early biomarker of the upcoming impact on the brain. The modulation of these cells may thus become a useful mechanism for modifying disease progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Cardiovascular disease in haemodialysis: role of the intravascular innate immune system.

    Science.gov (United States)

    Ekdahl, Kristina N; Soveri, Inga; Hilborn, Jöns; Fellström, Bengt; Nilsson, Bo

    2017-05-01

    Haemodialysis is a life-saving renal replacement modality for end-stage renal disease, but this therapy also represents a major challenge to the intravascular innate immune system, which is comprised of the complement, contact and coagulation systems. Chronic inflammation is strongly associated with cardiovascular disease (CVD) in patients on haemodialysis. Biomaterial-induced contact activation of proteins within the plasma cascade systems occurs during haemodialysis and initially leads to local generation of inflammatory mediators on the biomaterial surface. The inflammation is spread by soluble activation products and mediators that are generated during haemodialysis and transported in the extracorporeal circuit back into the patient together with activated leukocytes and platelets. The combined effect is activation of the endothelium of the cardiovascular system, which loses its anti-thrombotic and anti-inflammatory properties, leading to atherogenesis and arteriosclerosis. This concept suggests that maximum suppression of the intravascular innate immune system is needed to minimize the risk of CVD in patients on haemodialysis. A potential approach to achieve this goal is to treat patients with broad-specificity systemic drugs that target more than one of the intravascular cascade systems. Alternatively, 'stealth' biomaterials that cause minimal cascade system activation could be used in haemodialysis circuits.

  16. Innate immune responses against foot-and-mouth disease virus: current understanding and future directions.

    Science.gov (United States)

    Summerfield, Artur; Guzylack-Piriou, Laurence; Harwood, Lisa; McCullough, Kenneth C

    2009-03-15

    Foot-and-mouth disease (FMD) represents one of the most economically important diseases of farm animals. The basis for the threat caused by this virus is the high speed of replication, short incubation time, high contagiousness, and high mutation rate resulting in constant antigenic changes. Thus, although protective immune responses against FMD virus (FMDV) can be efficacious, the rapidity of virus replication and spread can outpace immune defence development and overrun the immune system. FMDV can also evade innate immune responses through its ability to shut down cellular protein synthesis, including IFN type I, in susceptible epithelial cells. This is important for virus evolution, as FMDV is quite sensitive to the action of IFN. Despite this, innate immune responses are probably induced in vivo, although detailed studies on this subject are lacking. Accordingly, this interaction of FMDV with cells of the innate immune system is of particular interest. Dendritic cells (DC) can be infected by FMDV and support viral RNA replication, and viral protein synthesis but the latter is inefficient or abortive, leading most often to incomplete replication and progeny virus release. As a result DC can be activated, and particularly in the case of plasmacytoid DC (pDC), this is manifest in terms of IFN-alpha release. Our current state of knowledge on innate immune responses induced by FMDV is still only at a relatively early stage of understanding. As we progress, the investigations in this area will help to improve the design of current vaccines and the development of novel control strategies against FMD.

  17. Innate Immunity and Saliva in Candida albicans–mediated Oral Diseases

    Science.gov (United States)

    Salvatori, O.; Puri, S.; Tati, S.; Edgerton, M.

    2016-01-01

    The oral cavity is a unique niche where Candida albicans infections occur in immunocompetent as well as immunosuppressed individuals. Here we critically review the significance of human innate immune response in preventing oral candidiasis. One important line of defense against oropharyngeal candidiasis is the oral microbiota that prevents infection by competing for space and nutrients as well as by secreting antagonistic molecules and triggering local inflammatory responses. C. albicans is able to induce mucosal defenses through activation of immune cells and production of cytokines. Also, saliva contains various proteins that affect C. albicans growth positively by promoting mucosal adherence and negatively through immune exclusion and direct fungicidal activity. We further discuss the role of saliva in unifying host innate immune defenses against C. albicans as a communicating medium and how C. albicans overgrowth in the oral cavity may be a result of aberrations ranging from microbial dysbiosis and salivary dysfunction to epithelial damage. Last we underscore select oral diseases in which C. albicans is a contributory microorganism in immune-competent individuals. PMID:26747422

  18. Innate lymphoid cells and asthma.

    Science.gov (United States)

    Yu, Sanhong; Kim, Hye Young; Chang, Ya-Jen; DeKruyff, Rosemarie H; Umetsu, Dale T

    2014-04-01

    Asthma is a complex and heterogeneous disease with several phenotypes, including an allergic asthma phenotype characterized by TH2 cytokine production and associated with allergen sensitization and adaptive immunity. Asthma also includes nonallergic asthma phenotypes, such as asthma associated with exposure to air pollution, infection, or obesity, that require innate rather than adaptive immunity. These innate pathways that lead to asthma involve macrophages, neutrophils, natural killer T cells, and innate lymphoid cells, newly described cell types that produce a variety of cytokines, including IL-5 and IL-13. We review the recent data regarding innate lymphoid cells and their role in asthma. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  19. Pathological and therapeutic roles of innate lymphoid cells in diverse diseases.

    Science.gov (United States)

    Kim, Jisu; Kim, Geon; Min, Hyeyoung

    2017-11-01

    Innate lymphoid cells (ILCs) are a recently defined type of innate-immunity cells that belong to the lymphoid lineage and have lymphoid morphology but do not express an antigen-specific B cell or T-cell receptor. ILCs regulate immune functions prior to the formation of adaptive immunity and exert effector functions through a cytokine release. ILCs have been classified into three groups according to the transcription factors that regulate their development and function and the effector cytokines they produce. Of note, ILCs resemble T helper (Th) cells, such as Th1, Th2, and Th17 cells, and show a similar dependence on transcription factors and distinct cytokine production. Despite their short history in immunology, ILCs have received much attention, and numerous studies have revealed biological functions of ILCs including host defense against pathogens, inflammation, tissue repair, and metabolic homeostasis. Here, we describe recent findings about the roles of ILCs in the pathogenesis of various diseases and potential therapeutic targets.

  20. Innate immune signalling at the intestinal epithelium in homeostasis and disease

    Science.gov (United States)

    Pott, Johanna; Hornef, Mathias

    2012-01-01

    The intestinal epithelium—which constitutes the interface between the enteric microbiota and host tissues—actively contributes to the maintenance of mucosal homeostasis and defends against pathogenic microbes. The recognition of conserved microbial products by cytosolic or transmembrane pattern recognition receptors in epithelial cells initiates signal transduction and influences effector cell function. However, the signalling pathways, effector molecules and regulatory mechanisms involved are not yet fully understood, and the functional outcome is poorly defined. This review analyses the complex and dynamic role of intestinal epithelial innate immune recognition and signalling, on the basis of results in intestinal epithelial cell-specific transgene or gene-deficient animals. This approach identifies specific epithelial cell functions within the diverse cellular composition of the mucosal tissue, in the presence of the complex and dynamic gut microbiota. These insights have thus provided a more comprehensive understanding of the role of the intestinal epithelium in innate immunity during homeostasis and disease. PMID:22801555

  1. Cerebral Innate Immunity in Drosophila Melanogaster

    Directory of Open Access Journals (Sweden)

    Brian P. Leung

    2015-03-01

    Full Text Available Modeling innate immunity in Drosophila melanogaster has a rich history that includes ground-breaking discoveries in pathogen detection and signaling. These studies revealed the evolutionary conservation of innate immune pathways and mechanisms of pathogen detection, resulting in an explosion of findings in the innate immunity field. In D. melanogaster, studies have focused primarily on responses driven by the larval fat body and hemocytes, analogs to vertebrate liver and macrophages, respectively. Aside from pathogen detection, many recent mammalian studies associate innate immune pathways with development and disease pathogenesis. Importantly, these studies stress that the innate immune response is integral to maintain central nervous system (CNS health. Microglia, which are the vertebrate CNS mononuclear phagocytes, drive vertebrate cerebral innate immunity. The invertebrate CNS contains microglial-like cells-ensheathing glia and reticular glia-that could be used to answer basic questions regarding the evolutionarily conserved innate immune processes in CNS development and health. A deeper understanding of the relationship between D. melanogaster phagocytic microglial-like cells and vertebrate microglia will be key to answering basic and translational questions related to cerebral innate immunity.

  2. [Pulmonary involvement in connective tissue disease].

    Science.gov (United States)

    Bartosiewicz, Małgorzata

    2016-01-01

    The connective tissue diseases are a variable group of autoimmune mediated disorders characterized by multiorgan damage. Pulmonary complications are common, usually occur after the onset of joint symptoms, but can also be initially presenting complaint. The respiratory system may be involved in all its component: airways, vessels, parenchyma, pleura and respiratory muscles. Lung involvement is an increasing cause of morbidity and mortality in the connective tissue diseases. Clinical course is highly variable - can range from mild to rapidly progressive, some processes are reversible, while others are irreversible. Thus, the identification of reversible disease , and separately progressive disease, are important clinical issues. The frequency, clinical presentation, prognosis and responce to therapy are different, depending on the pattern of involvement as well as on specyfic diagnostic method used to identify it. High- resolution computed tompography plays an important role in identifying patients with respiratory involvement. Pulmonary function tests are a sensitive tool detecting interstitial lung disease. In this article, pulmonary lung involvement accompanying most frequently apperaing connective tissue diseases - rheumatoid arthritis, systemic sclerosis, lupus erythematosus, polymyositis/dermatomyositis, Sjögrens syndrome and mixed connective tissue disaese are reviewed.

  3. Transcriptional Innate Immune Response of the Developing Chicken Embryo to Newcastle Disease Virus Infection

    Directory of Open Access Journals (Sweden)

    Megan A. Schilling

    2018-02-01

    Full Text Available Traditional approaches to assess the immune response of chickens to infection are through animal trials, which are expensive, require enhanced biosecurity, compromise welfare, and are frequently influenced by confounding variables. Since the chicken embryo becomes immunocompetent prior to hatch, we here characterized the transcriptional response of selected innate immune genes to Newcastle disease virus (NDV infection in chicken embryos at days 10, 14, and 18 of embryonic development. The results suggest that the innate immune response 72 h after challenge of 18-day chicken embryo is both consistent and robust. The expression of CCL5, Mx1, and TLR3 in lung tissues of NDV challenged chicken embryos from the outbred Kuroiler and Tanzanian local ecotype lines showed that their expression was several orders of magnitude higher in the Kuroiler than in the local ecotypes. Next, the expression patterns of three additional innate-immunity related genes, IL-8, IRF-1, and STAT1, were examined in the highly congenic Fayoumi (M5.1 and M15.2 and Leghorn (Ghs6 and Ghs13 sublines that differ only at the microchromosome bearing the major histocompatibility locus. The results show that the Ghs13 Leghorn subline had a consistently higher expression of all genes except IL-8 and expression seemed to be subline-dependent rather than breed-dependent, suggesting that the innate immune response of chicken embryos to NDV infection may be genetically controlled by the MHC-locus. Taken together, the results suggest that the chicken embryo may represent a promising model to studying the patterns and sources of variation of the avian innate immune response to infection with NDV and related pathogens.

  4. Transcriptional Innate Immune Response of the Developing Chicken Embryo to Newcastle Disease Virus Infection

    Science.gov (United States)

    Schilling, Megan A.; Katani, Robab; Memari, Sahar; Cavanaugh, Meredith; Buza, Joram; Radzio-Basu, Jessica; Mpenda, Fulgence N.; Deist, Melissa S.; Lamont, Susan J.; Kapur, Vivek

    2018-01-01

    Traditional approaches to assess the immune response of chickens to infection are through animal trials, which are expensive, require enhanced biosecurity, compromise welfare, and are frequently influenced by confounding variables. Since the chicken embryo becomes immunocompetent prior to hatch, we here characterized the transcriptional response of selected innate immune genes to Newcastle disease virus (NDV) infection in chicken embryos at days 10, 14, and 18 of embryonic development. The results suggest that the innate immune response 72 h after challenge of 18-day chicken embryo is both consistent and robust. The expression of CCL5, Mx1, and TLR3 in lung tissues of NDV challenged chicken embryos from the outbred Kuroiler and Tanzanian local ecotype lines showed that their expression was several orders of magnitude higher in the Kuroiler than in the local ecotypes. Next, the expression patterns of three additional innate-immunity related genes, IL-8, IRF-1, and STAT1, were examined in the highly congenic Fayoumi (M5.1 and M15.2) and Leghorn (Ghs6 and Ghs13) sublines that differ only at the microchromosome bearing the major histocompatibility locus. The results show that the Ghs13 Leghorn subline had a consistently higher expression of all genes except IL-8 and expression seemed to be subline-dependent rather than breed-dependent, suggesting that the innate immune response of chicken embryos to NDV infection may be genetically controlled by the MHC-locus. Taken together, the results suggest that the chicken embryo may represent a promising model to studying the patterns and sources of variation of the avian innate immune response to infection with NDV and related pathogens. PMID:29535762

  5. [Function and modulation of type Ⅱ innate lymphoid cells and their role in chronic upper airway inflammatory diseases].

    Science.gov (United States)

    Liu, Y; Liu, Z

    2017-02-07

    Type Ⅱ innate lymphoid cells (ILC2) is a family of innate immune lymphocytes, which provide effective immune responses to cytokines. ILC2 are regulated by the nuclear transcription factor ROR alpha and GATA3, secreting cytokines IL-5 and IL-13, etc. Animal models have shown that ILC2 are involved in allergic diseases, such as asthma and atopic dermatitis, and also play a very important role in the metabolic balance. In addition, recent reports suggest that ILC2 not only play a role in the initial stages of the disease, but also can lead to chronic pathological changes in the disease, such as fibrosis, and may have an effect on acquired immunity. This paper mainly focus in the role and regulation of ILC2 cells, and review the research status of ILC2 in the field of chronic upper airway inflammatory diseases including allergic rhinitis and chronic rhinosinusitis.

  6. Alcohol, aging, and innate immunity.

    Science.gov (United States)

    Boule, Lisbeth A; Kovacs, Elizabeth J

    2017-07-01

    The global population is aging: in 2010, 8% of the population was older than 65 y, and that is expected to double to 16% by 2050. With advanced age comes a heightened prevalence of chronic diseases. Moreover, elderly humans fair worse after acute diseases, namely infection, leading to higher rates of infection-mediated mortality. Advanced age alters many aspects of both the innate and adaptive immune systems, leading to impaired responses to primary infection and poor development of immunologic memory. An often overlooked, yet increasingly common, behavior in older individuals is alcohol consumption. In fact, it has been estimated that >40% of older adults consume alcohol, and evidence reveals that >10% of this group is drinking more than the recommended limit by the National Institute on Alcohol Abuse and Alcoholism. Alcohol consumption, at any level, alters host immune responses, including changes in the number, phenotype, and function of innate and adaptive immune cells. Thus, understanding the effect of alcohol ingestion on the immune system of older individuals, who are already less capable of combating infection, merits further study. However, there is currently almost nothing known about how drinking alters innate immunity in older subjects, despite innate immune cells being critical for host defense, resolution of inflammation, and maintenance of immune homeostasis. Here, we review the effects of aging and alcohol consumption on innate immune cells independently and highlight the few studies that have examined the effects of alcohol ingestion in aged individuals. © Society for Leukocyte Biology.

  7. Antimicrobial peptides in innate immune responses

    DEFF Research Database (Denmark)

    Sorensen, O.E.; Borregaard, N.; Cole, A.M.

    2008-01-01

    Antimicrobial peptides (AMPs) are ancient effector molecules in the innate immune response of eukaryotes. These peptides are important for the antimicrobial efficacy of phagocytes and for the innate immune response mounted by epithelia of humans and other mammals. AMPs are generated either by de...... novo synthesis or by proteolytic cleavage from antimicrobially inactive proproteins. Studies of human diseases and animal studies have given important clues to the in vivo role of AMPs. It is now evident that dysregulation of the generation of AMPs in innate immune responses plays a role in certain...

  8. Innate immunity in the pathogenesis of psoriasis.

    LENUS (Irish Health Repository)

    Sweeney, Cheryl M

    2011-12-01

    Psoriasis is a common, immune-mediated inflammatory skin disorder. T helper(h)1 and Th17 lymphocytes contribute to the pathogenesis of psoriasis through the release of inflammatory cytokines that promote further recruitment of immune cells, keratinocyte proliferation and sustained inflammation. The innate immune system is the first line of defence against infection and plays a crucial role in the initiation of the adaptive immune response. The presence of innate immune cells and their products in psoriatic skin plaques suggests a role for innate immunity in this disease. In addition, the innate immune system can direct the development of pathogenic Th cells in psoriasis. In this article, we will summarise the role of the innate immune system in psoriasis with particular emphasis on the role of cytokines, signalling pathways and cells of the innate immune system.

  9. Connective tissue diseases, multimorbidity and the ageing lung.

    Science.gov (United States)

    Spagnolo, Paolo; Cordier, Jean-François; Cottin, Vincent

    2016-05-01

    Connective tissue diseases encompass a wide range of heterogeneous disorders characterised by immune-mediated chronic inflammation often leading to tissue damage, collagen deposition and possible loss of function of the target organ. Lung involvement is a common complication of connective tissue diseases. Depending on the underlying disease, various thoracic compartments can be involved but interstitial lung disease is a major contributor to morbidity and mortality. Interstitial lung disease, pulmonary hypertension or both are found most commonly in systemic sclerosis. In the elderly, the prevalence of connective tissue diseases continues to rise due to both longer life expectancy and more effective and better-tolerated treatments. In the geriatric population, connective tissue diseases are almost invariably accompanied by age-related comorbidities, and disease- and treatment-related complications, which contribute to the significant morbidity and mortality associated with these conditions, and complicate treatment decision-making. Connective tissue diseases in the elderly represent a growing concern for healthcare providers and an increasing burden of global health resources worldwide. A better understanding of the mechanisms involved in the regulation of the immune functions in the elderly and evidence-based guidelines specifically designed for this patient population are instrumental to improving the management of connective tissue diseases in elderly patients. Copyright ©ERS 2016.

  10. Esophageal involvement and interstitial lung disease in mixed connective tissue disease.

    Science.gov (United States)

    Fagundes, M N; Caleiro, M T C; Navarro-Rodriguez, T; Baldi, B G; Kavakama, J; Salge, J M; Kairalla, R; Carvalho, C R R

    2009-06-01

    Mixed connective tissue disease is a systemic inflammatory disorder that results in both pulmonary and esophageal manifestations. We sought to evaluate the relationship between esophageal dysfunction and interstitial lung disease in patients with mixed connective tissue disease. We correlated the pulmonary function data and the high-resolution computed tomography findings of interstitial lung disease with the results of esophageal evaluation in manometry, 24-hour intraesophageal pH measurements, and the presence of esophageal dilatation on computed tomography scan. Fifty consecutive patients with mixed connective tissue disease, according to Kasukawa's classification criteria, were included in this prospective study. High-resolution computed tomography parenchymal abnormalities were present in 39 of 50 patients. Esophageal dilatation, gastroesophageal reflux, and esophageal motor impairment were also very prevalent (28 of 50, 18 of 36, and 30 of 36, respectively). The presence of interstitial lung disease on computed tomography was significantly higher among patients with esophageal dilatation (92% vs. 45%; pmotor dysfunction (90% vs. 35%; pesophageal and pulmonary involvement, our series revealed a strong association between esophageal motor dysfunction and interstitial lung disease in patients with mixed connective tissue disease.

  11. Arthropod Innate Immune Systems and Vector-Borne Diseases.

    Science.gov (United States)

    Baxter, Richard H G; Contet, Alicia; Krueger, Kathryn

    2017-02-21

    Arthropods, especially ticks and mosquitoes, are the vectors for a number of parasitic and viral human diseases, including malaria, sleeping sickness, Dengue, and Zika, yet arthropods show tremendous individual variation in their capacity to transmit disease. A key factor in this capacity is the group of genetically encoded immune factors that counteract infection by the pathogen. Arthropod-specific pattern recognition receptors and protease cascades detect and respond to infection. Proteins such as antimicrobial peptides, thioester-containing proteins, and transglutaminases effect responses such as lysis, phagocytosis, melanization, and agglutination. Effector responses are initiated by damage signals such as reactive oxygen species signaling from epithelial cells and recognized by cell surface receptors on hemocytes. Antiviral immunity is primarily mediated by siRNA pathways but coupled with interferon-like signaling, antimicrobial peptides, and thioester-containing proteins. Molecular mechanisms of immunity are closely linked to related traits of longevity and fertility, and arthropods have the capacity for innate immunological memory. Advances in understanding vector immunity can be leveraged to develop novel control strategies for reducing the rate of transmission of both ancient and emerging threats to global health.

  12. Alternatives to conventional vaccines--mediators of innate immunity.

    Science.gov (United States)

    Eisen, D P; Liley, H G; Minchinton, R M

    2004-01-01

    Vaccines have been described as "weapons of mass protection". The eradication of many diseases is testament to their utility and effectiveness. Nevertheless, many vaccine preventable diseases remain prevalent because of political and economic barriers. Additionally, the effects of immaturity and old age, therapies that incapacitate the adaptive immune system and the multitude of strategies evolved by pathogens to evade immediate or sustained recognition by the mammalian immune system are barriers to the effectiveness of existing vaccines or development of new vaccines. In the front line of defence against the pervasiness of infection are the elements of the innate immune system. Innate immunity is under studied and poorly appreciated. However, in the first days after entry of a pathogen into the body, our entire protective response is dependant upon the various elements of our innate immune repertoire. In spite of its place as our initial defence against infection, attention is only now turning to strategies which enhance or supplement innate immunity. This review examines the need for and potential of innate immune therapies.

  13. Pregnancy and autoimmune connective tissue diseases

    Science.gov (United States)

    Marder, Wendy; Littlejohn, Emily A

    2016-01-01

    The autoimmune connective tissue diseases predominantly affect women and often occur during the reproductive years. Thus, specialized issues in pregnancy planning and management are commonly encountered in this patient population. This chapter provides a current overview of pregnancy as a risk factor for onset of autoimmune disease, considerations related to the course of pregnancy in several autoimmune connective tissue diseases, and disease management and medication issues before and during pregnancy and the postpartum period. A major theme that has emerged across these inflammatory diseases is that active maternal disease during pregnancy is associated with adverse pregnancy outcomes, and that maternal and fetal health can be optimized when conception is planned during times of inactive disease and through maintaining treatment regimens compatible with pregnancy. PMID:27421217

  14. Drosophila as a Model for Human Diseases-Focus on Innate Immunity in Barrier Epithelia.

    Science.gov (United States)

    Bergman, P; Seyedoleslami Esfahani, S; Engström, Y

    2017-01-01

    Epithelial immunity protects the host from harmful microbial invaders but also controls the beneficial microbiota on epithelial surfaces. When this delicate balance between pathogen and symbiont is disturbed, clinical disease often occurs, such as in inflammatory bowel disease, cystic fibrosis, or atopic dermatitis, which all can be in part linked to impairment of barrier epithelia. Many innate immune receptors, signaling pathways, and effector molecules are evolutionarily conserved between human and Drosophila. This review describes the current knowledge on Drosophila as a model for human diseases, with a special focus on innate immune-related disorders of the gut, lung, and skin. The discovery of antimicrobial peptides, the crucial role of Toll and Toll-like receptors, and the evolutionary conservation of signaling to the immune systems of both human and Drosophila are described in a historical perspective. Similarities and differences between human and Drosophila are discussed; current knowledge on receptors, signaling pathways, and effectors are reviewed, including antimicrobial peptides, reactive oxygen species, as well as autophagy. We also give examples of human diseases for which Drosophila appears to be a useful model. In addition, the limitations of the Drosophila model are mentioned. Finally, we propose areas for future research, which include using the Drosophila model for drug screening, as a validation tool for novel genetic mutations in humans and for exploratory research of microbiota-host interactions, with relevance for infection, wound healing, and cancer. © 2017 Elsevier Inc. All rights reserved.

  15. Innate Immune Responses in Leprosy

    Science.gov (United States)

    Pinheiro, Roberta Olmo; Schmitz, Veronica; Silva, Bruno Jorge de Andrade; Dias, André Alves; de Souza, Beatriz Junqueira; de Mattos Barbosa, Mayara Garcia; de Almeida Esquenazi, Danuza; Pessolani, Maria Cristina Vidal; Sarno, Euzenir Nunes

    2018-01-01

    Leprosy is an infectious disease that may present different clinical forms depending on host immune response to Mycobacterium leprae. Several studies have clarified the role of various T cell populations in leprosy; however, recent evidences suggest that local innate immune mechanisms are key determinants in driving the disease to its different clinical manifestations. Leprosy is an ideal model to study the immunoregulatory role of innate immune molecules and its interaction with nervous system, which can affect homeostasis and contribute to the development of inflammatory episodes during the course of the disease. Macrophages, dendritic cells, neutrophils, and keratinocytes are the major cell populations studied and the comprehension of the complex networking created by cytokine release, lipid and iron metabolism, as well as antimicrobial effector pathways might provide data that will help in the development of new strategies for leprosy management. PMID:29643852

  16. Regulation of intestinal homeostasis by innate immune cells.

    Science.gov (United States)

    Kayama, Hisako; Nishimura, Junichi; Takeda, Kiyoshi

    2013-12-01

    The intestinal immune system has an ability to distinguish between the microbiota and pathogenic bacteria, and then activate pro-inflammatory pathways against pathogens for host defense while remaining unresponsive to the microbiota and dietary antigens. In the intestine, abnormal activation of innate immunity causes development of several inflammatory disorders such as inflammatory bowel diseases (IBD). Thus, activity of innate immunity is finely regulated in the intestine. To date, multiple innate immune cells have been shown to maintain gut homeostasis by preventing inadequate adaptive immune responses in the murine intestine. Additionally, several innate immune subsets, which promote Th1 and Th17 responses and are implicated in the pathogenesis of IBD, have recently been identified in the human intestinal mucosa. The demonstration of both murine and human intestinal innate immune subsets contributing to regulation of adaptive immunity emphasizes the conserved innate immune functions across species and might promote development of the intestinal innate immunity-based clinical therapy.

  17. Tweaking Innate Immunity: The Promise of Innate Immunologicals as Anti-Infectives

    Directory of Open Access Journals (Sweden)

    Kenneth L Rosenthal

    2006-01-01

    Full Text Available New and exciting insights into the importance of the innate immune system are revolutionizing our understanding of immune defense against infections, pathogenesis, and the treatment and prevention of infectious diseases. The innate immune system uses multiple families of germline-encoded pattern recognition receptors (PRRs to detect infection and trigger a variety of antimicrobial defense mechanisms. PRRs are evolutionarily highly conserved and serve to detect infection by recognizing pathogen-associated molecular patterns that are unique to microorganisms and essential for their survival. Toll-like receptors (TLRs are transmembrane signalling receptors that activate gene expression programs that result in the production of proinflammatory cytokines and chemokines, type I interferons and antimicrobial factors. Furthermore, TLR activation facilitates and guides activation of adaptive immune responses through the activation of dendritic cells. TLRs are localized on the cell surface and in endosomal/lysosomal compartments, where they detect bacterial and viral infections. In contrast, nucleotide-binding oligomerization domain proteins and RNA helicases are located in the cell cytoplasm, where they serve as intracellular PRRs to detect cytoplasmic infections, particularly viruses. Due to their ability to enhance innate immune responses, novel strategies to use ligands, synthetic agonists or antagonists of PRRs (also known as 'innate immunologicals' can be used as stand-alone agents to provide immediate protection or treatment against bacterial, viral or parasitic infections. Furthermore, the newly appreciated importance of innate immunity in initiating and shaping adaptive immune responses is contributing to our understanding of vaccine adjuvants and promises to lead to improved next-generation vaccines.

  18. Sphingolipids and plant defense/disease: the "death" connection and beyond

    Directory of Open Access Journals (Sweden)

    Robert eBerkey

    2012-04-01

    Full Text Available Sphingolipids comprise a major class of structural materials and lipid signaling molecules in all eukaryotic cells. Over the past two decades, there has been a phenomenal growth in the study of sphingolipids (i.e. sphingobiology at an average rate of >1000 research articles per year. Sphingolipid studies in plants, though accounting for only a small fraction (~6% of the total number of publications, have also enjoyed proportionally rapid growth in the past decade. Concomitant with the growth of sphingobiology, there has also been tremendous progress in our understanding of the molecular mechanisms of plant innate immunity. In this review, we (i cross examine and analyze the major findings that establish and strengthen the intimate connections between sphingolipid metabolism and plant programmed cell death (PCD associated with plant defense or disease; (ii highlight and compare key bioactive sphingolipids involved in the regulation of plant PCD and possibly defense; (iii discuss the potential role of sphingolipids in polarized membrane/protein trafficking and formation of lipid rafts as subdomains of cell membranes in relation to plant defense; and (iv where possible, attempt to identify potential parallels for immunity-related mechanisms involving sphingolipids across kingdoms.

  19. Histopathology of lung disease in the connective tissue diseases.

    Science.gov (United States)

    Vivero, Marina; Padera, Robert F

    2015-05-01

    The pathologic correlates of interstitial lung disease (ILD) secondary to connective tissue disease (CTD) comprise a diverse group of histologic patterns. Lung biopsies in patients with CTD-associated ILD tend to demonstrate simultaneous involvement of multiple anatomic compartments of the lung. Certain histologic patterns tend to predominate in each defined CTD, and it is possible in many cases to confirm connective tissue-associated lung disease and guide patient management using surgical lung biopsy. This article will cover the pulmonary pathologies seen in rheumatoid arthritis, systemic sclerosis, myositis, systemic lupus erythematosus, Sjögren syndrome, and mixed CTD. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Hypoxia, innate immunity and infection in the lung.

    LENUS (Irish Health Repository)

    Schaible, Bettina

    2012-02-01

    The mucosal surface of the lung is the key interface between the external atmosphere and the bloodstream. Normally, this well oxygenated tissue is maintained in state of sterility by a number of innate immune processes. These include a physical and dynamic mucus barrier, the production of microbiocidal peptides and the expression of specific pattern recognition receptors on alveolar epithelial cells and resident macrophages and dendritic cells which recognise microbial structures and initiate innate immune responses which promote the clearance of potentially infectious agents. In a range of diseases, the mucosal surface of the lung experiences decreased oxygen tension leading to localised areas of prominent hypoxia which can impact upon innate immune and subsequent infectious and inflammatory processes. Under these conditions, the lung is generally more susceptible to infection and subsequent inflammation. In the current review, we will discuss recent data pertaining to the role of hypoxia in regulating both host and pathogen in the lung during pulmonary disease and how this contributes to innate immunity, infection and inflammation.

  1. Innate-Type and Acquired-Type Allergy Regulated by IL-33

    Directory of Open Access Journals (Sweden)

    Tomohiro Yoshimoto

    2014-01-01

    Full Text Available We propose two types of allergic response: IgE-dependent and IgE-independent, and designate these as 'acquired-type allergy' and 'innate-type allergy', respectively. IL-33 stimulates both innate (basophils, mast cells, or group 2 innate lymphoid cells and acquired (Th2 cells allergy-related cells to induce and/or augment Th2 cytokine production, which leads to eosinophilic inflammation in vivo. Thus, IL-33 is an essential regulator for both 'innate-type allergy' and 'acquired-type allergy', and might be an attractive therapeutic target for allergic diseases.

  2. Spitting Image: Tick Saliva Assists the Causative Agent of Lyme Disease in Evading Host Skin's Innate Immune Response

    NARCIS (Netherlands)

    Hovius, Joppe W. R.

    2009-01-01

    Lyme disease is caused by the spirochete Borrelia burgdorferi and is transmitted through ticks. Inhibition of host skin's innate immune response might be instrumental to both tick feeding and B. burgdorferi transmission. The article by Marchal et al. describes how tick saliva suppresses B.

  3. Innate lymphoid cells and the MHC.

    Science.gov (United States)

    Robinette, M L; Colonna, M

    2016-01-01

    Innate lymphoid cells (ILCs) are a new class of immune cells that include natural killer (NK) cells and appear to be the innate counterparts to CD4(+) helper T cells and CD8(+) cytotoxic T cells based on developmental and functional similarities. Like T cells, both NK cells and other ILCs also show connections to the major histocompatibility complex (MHC). In human and mouse, NK cells recognize and respond to classical and nonclassical MHC I molecules as well as structural homologues, whereas mouse ILCs have recently been shown to express MHC II. We describe the history of MHC I recognition by NK cells and discuss emerging roles for MHC II expression by ILC subsets, making comparisons between both mouse and human when possible. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Boosting innate immunity to sustainably control diseases in crops.

    Science.gov (United States)

    Nicaise, Valerie

    2017-10-01

    Viruses cause epidemics in all major crops, threatening global food security. The development of efficient and durable resistance able to withstand viral attacks represents a major challenge for agronomy, and relies greatly on the understanding of the molecular dialogue between viral pathogens and their hosts. Research over the last decades provided substantial advances in the field of plant-virus interactions. Remarkably, the advent of studies of plant innate immunity has recently offered new strategies exploitable in the field. This review summarizes the recent breakthroughs that define the mechanisms underlying antiviral innate immunity in plants, and emphasizes the importance of integrating that knowledge into crop improvement actions, particularly by exploiting the insights related to immune receptors. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Innate immunity orchestrates adipose tissue homeostasis.

    Science.gov (United States)

    Lin, Yi-Wei; Wei, Li-Na

    2017-06-23

    Obesity is strongly associated with multiple diseases including insulin resistance, type 2 diabetes, cardiovascular diseases, fatty liver disease, neurodegenerative diseases and cancers, etc. Adipose tissue (AT), mainly brown AT (BAT) and white AT (WAT), is an important metabolic and endocrine organ that maintains whole-body homeostasis. BAT contributes to non-shivering thermogenesis in a cold environment; WAT stores energy and produces adipokines that fine-tune metabolic and inflammatory responses. Obesity is often characterized by over-expansion and inflammation of WAT where inflammatory cells/mediators are abundant, especially pro-inflammatory (M1) macrophages, resulting in chronic low-grade inflammation and leading to insulin resistance and metabolic complications. Macrophages constitute the major component of innate immunity and can be activated as a M1 or M2 (anti-inflammatory) phenotype in response to environmental stimuli. Polarized M1 macrophage causes AT inflammation, whereas polarized M2 macrophage promotes WAT remodeling into the BAT phenotype, also known as WAT browning/beiging, which enhances insulin sensitivity and metabolic health. This review will discuss the regulation of AT homeostasis in relation to innate immunity.

  6. Hyper-connectivity of functional networks for brain disease diagnosis.

    Science.gov (United States)

    Jie, Biao; Wee, Chong-Yaw; Shen, Dinggang; Zhang, Daoqiang

    2016-08-01

    Exploring structural and functional interactions among various brain regions enables better understanding of pathological underpinnings of neurological disorders. Brain connectivity network, as a simplified representation of those structural and functional interactions, has been widely used for diagnosis and classification of neurodegenerative diseases, especially for Alzheimer's disease (AD) and its early stage - mild cognitive impairment (MCI). However, the conventional functional connectivity network is usually constructed based on the pairwise correlation among different brain regions and thus ignores their higher-order relationships. Such loss of high-order information could be important for disease diagnosis, since neurologically a brain region predominantly interacts with more than one other brain regions. Accordingly, in this paper, we propose a novel framework for estimating the hyper-connectivity network of brain functions and then use this hyper-network for brain disease diagnosis. Here, the functional connectivity hyper-network denotes a network where each of its edges representing the interactions among multiple brain regions (i.e., an edge can connect with more than two brain regions), which can be naturally represented by a hyper-graph. Specifically, we first construct connectivity hyper-networks from the resting-state fMRI (R-fMRI) time series by using sparse representation. Then, we extract three sets of brain-region specific features from the connectivity hyper-networks, and further exploit a manifold regularized multi-task feature selection method to jointly select the most discriminative features. Finally, we use multi-kernel support vector machine (SVM) for classification. The experimental results on both MCI dataset and attention deficit hyperactivity disorder (ADHD) dataset demonstrate that, compared with the conventional connectivity network-based methods, the proposed method can not only improve the classification performance, but also help

  7. Innate immune reconstitution with suppression of HIV-1.

    Science.gov (United States)

    Scully, Eileen P; Lockhart, Ainsley; Garcia-Beltran, Wilfredo; Palmer, Christine D; Musante, Chelsey; Rosenberg, Eric; Allen, Todd M; Chang, J Judy; Bosch, Ronald J; Altfeld, Marcus

    2016-03-17

    Progressive HIV-1 infection leads to both profound immune suppression and pathologic inflammation in the majority of infected individuals. While adaptive immune dysfunction, as evidenced by CD4 + T cell depletion and exhaustion, has been extensively studied, less is known about the functional capacity of innate immune cell populations in the context of HIV-1 infection. Given the broad susceptibility to opportunistic infections and the dysregulated inflammation observed in progressive disease, we hypothesized that there would be significant changes in the innate cellular responses. Using a cohort of patients with multiple samplings before and after antiretroviral therapy (ART) initiation, we demonstrated increased responses to innate immune stimuli following viral suppression, as measured by the production of inflammatory cytokines. Plasma viral load itself had the strongest association with this change in innate functional capacity. We further identified epigenetic modifications in the TNFA promoter locus in monocytes that are associated with viremia, suggesting a molecular mechanism for the observed changes in innate immune function following initiation of ART. These data indicate that suppression of HIV-1 viremia is associated with changes in innate cellular function that may in part determine the restoration of protective immune responses.

  8. Teórie vrodenosti a ich vzťah k vede (Innateness Theories and their Relation to Science

    Directory of Open Access Journals (Sweden)

    Katarína Hrnčiarová

    2013-03-01

    Full Text Available The aim of my contribution will be to describe how the contemporary philosophy of mind and philosophy of language are connected with the knowledge of modern science while meeting the problem of innateness. However strong their relation is, we can still call these approaches philosophical, not scientific in essence. The relation between philosophy and science of those problems is not only the issue of contemporary philosophy, but it has been developing since Modern times when the innateness theories were connected to the contemporary physics and optics. Nowadays, this relation is transferred to relation with other sciences, such as neurobiology. The contemporary philosophy is inconceivable without the cooperation with science regarding the problem of innateness.

  9. Postnatal Innate Immune Development: From Birth to Adulthood

    Directory of Open Access Journals (Sweden)

    Anastasia Georgountzou

    2017-08-01

    Full Text Available It is well established that adaptive immune responses are deficient in early life, contributing to increased mortality and morbidity. The developmental trajectories of different components of innate immunity are only recently being explored. Individual molecules, cells, or pathways of innate recognition and signaling, within different compartments/anatomical sites, demonstrate variable maturation patterns. Despite some discrepancies among published data, valuable information is emerging, showing that the developmental pattern of cytokine responses during early life is age and toll-like receptor specific, and may be modified by genetic and environmental factors. Interestingly, specific environmental exposures have been linked both to innate function modifications and the occurrence of chronic inflammatory disorders, such as respiratory allergies. As these conditions are on the rise, our knowledge on innate immune development and its modulating factors needs to be expanded. Improved understanding of the sequence of events associated with disease onset and persistence will lead toward meaningful interventions. This review describes the state-of-the-art on normal postnatal innate immune ontogeny and highlights research areas that are currently explored or should be further addressed.

  10. Infectious Agents as Stimuli of Trained Innate Immunity

    Directory of Open Access Journals (Sweden)

    Paulina Rusek

    2018-02-01

    Full Text Available The discoveries made over the past few years have modified the current immunological paradigm. It turns out that innate immunity cells can mount some kind of immunological memory, similar to that observed in the acquired immunity and corresponding to the defense mechanisms of lower organisms, which increases their resistance to reinfection. This phenomenon is termed trained innate immunity. It is based on epigenetic changes in innate immune cells (monocytes/macrophages, NK cells after their stimulation with various infectious or non-infectious agents. Many infectious stimuli, including bacterial or fungal cells and their components (LPS, β-glucan, chitin as well as viruses or even parasites are considered potent inducers of innate immune memory. Epigenetic cell reprogramming occurring at the heart of the phenomenon may provide a useful basis for designing novel prophylactic and therapeutic strategies to prevent and protect against multiple diseases. In this article, we present the current state of art on trained innate immunity occurring as a result of infectious agent induction. Additionally, we discuss the mechanisms of cell reprogramming and the implications for immune response stimulation/manipulation.

  11. Pruritus in Autoimmune Connective Tissue Diseases.

    Science.gov (United States)

    Smith, Gideon P; Argobi, Yahya

    2018-07-01

    Pruritus in autoimmune connective tissue diseases is a common symptom that can be severe and affect the quality of life of patients. It can be related to disease activity and severity or occur independent of the disease. Appropriate therapy to control the itch depends on the etiology, and it is therefore essential to first work-up these patients for the underlying trigger. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Host Genetics: Fine-Tuning Innate Signaling

    OpenAIRE

    Fellay, Jacques; Goldstein, David B.

    2007-01-01

    A polymorphism modulating innate immunity signal transduction has recently been shown to influence human susceptibility to many different infections, providing one more indication of the potential of host genetics to reveal physiological pathways and mechanisms that influence resistance to infectious diseases.

  13. Role of innate lymphoid cells in obesity and metabolic disease

    Science.gov (United States)

    Saetang, Jirakrit; Sangkhathat, Surasak

    2018-01-01

    The immune system has previously been demonstrated to be associated with the pathophysiological development of metabolic abnormalities. However, the mechanisms linking immunity to metabolic disease remain to be fully elucidated. It has previously been suggested that innate lymphoid cells (ILCs) may be involved in the progression of numerous types of metabolic diseases as these cells act as suppressors and promoters for obesity and associated conditions, and are particularly involved in adipose tissue inflammation, which is a major feature of metabolic imbalance. Group 2 ILCs (ILC2s) have been revealed as anti-obese immune regulators by secreting anti-inflammatory cytokines and promoting the polarization of M2 macrophages, whereas group 1 ILCs (ILC1s), including natural killer cells, may promote adipose tissue inflammation via production of interferon-γ, which in turn polarizes macrophages toward the M1 type. The majority of studies to date have demonstrated the pathological association between ILCs and obesity in the context of adipose tissue inflammation, whereas the roles of ILCs in other organs which participate in obesity development have not been fully characterized. Therefore, identifying the roles of all types of ILCs as central components mediating obesity-associated inflammation, is of primary concern, and may lead to the discovery of novel preventative and therapeutic interventions. PMID:29138853

  14. Network topology and functional connectivity disturbances precede the onset of Huntington's disease.

    Science.gov (United States)

    Harrington, Deborah L; Rubinov, Mikail; Durgerian, Sally; Mourany, Lyla; Reece, Christine; Koenig, Katherine; Bullmore, Ed; Long, Jeffrey D; Paulsen, Jane S; Rao, Stephen M

    2015-08-01

    Cognitive, motor and psychiatric changes in prodromal Huntington's disease have nurtured the emergent need for early interventions. Preventive clinical trials for Huntington's disease, however, are limited by a shortage of suitable measures that could serve as surrogate outcomes. Measures of intrinsic functional connectivity from resting-state functional magnetic resonance imaging are of keen interest. Yet recent studies suggest circumscribed abnormalities in resting-state functional magnetic resonance imaging connectivity in prodromal Huntington's disease, despite the spectrum of behavioural changes preceding a manifest diagnosis. The present study used two complementary analytical approaches to examine whole-brain resting-state functional magnetic resonance imaging connectivity in prodromal Huntington's disease. Network topology was studied using graph theory and simple functional connectivity amongst brain regions was explored using the network-based statistic. Participants consisted of gene-negative controls (n = 16) and prodromal Huntington's disease individuals (n = 48) with various stages of disease progression to examine the influence of disease burden on intrinsic connectivity. Graph theory analyses showed that global network interconnectivity approximated a random network topology as proximity to diagnosis neared and this was associated with decreased connectivity amongst highly-connected rich-club network hubs, which integrate processing from diverse brain regions. However, functional segregation within the global network (average clustering) was preserved. Functional segregation was also largely maintained at the local level, except for the notable decrease in the diversity of anterior insula intermodular-interconnections (participation coefficient), irrespective of disease burden. In contrast, network-based statistic analyses revealed patterns of weakened frontostriatal connections and strengthened frontal-posterior connections that evolved as disease

  15. The Innate Immune System in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Allal Boutajangout

    2013-01-01

    Full Text Available Alzheimer’s disease (AD is the leading cause for dementia in the world. It is characterized by two biochemically distinct types of protein aggregates: amyloid β (Aβ peptide in the forms of parenchymal amyloid plaques and congophilic amyloid angiopathy (CAA and aggregated tau protein in the form of intraneuronal neurofibrillary tangles (NFT. Several risk factors have been discovered that are associated with AD. The most well-known genetic risk factor for late-onset AD is apolipoprotein E4 (ApoE4 (Potter and Wisniewski (2012, and Verghese et al. (2011. Recently, it has been reported by two groups independently that a rare functional variant (R47H of TREM2 is associated with the late-onset risk of AD. TREM2 is expressed on myeloid cells including microglia, macrophages, and dendritic cells, as well as osteoclasts. Microglia are a major part of the innate immune system in the CNS and are also involved in stimulating adaptive immunity. Microglia express several Toll-like receptors (TLRs and are the resident macrophages of the central nervous system (CNS. In this review, we will focus on the recent advances regarding the role of TREM2, as well as the effects of TLRs 4 and 9 on AD.

  16. Facts and controversies in mixed connective tissue disease.

    Science.gov (United States)

    Martínez-Barrio, Julia; Valor, Lara; López-Longo, F Javier

    2018-01-12

    Mixed connective tissue disease (MCTD) is a systemic autoimmune rheumatic disease (SARD) characterised by the combination of clinical manifestations of systemic lupus erythematosus (SLE), cutaneous systemic sclerosis (SSc) and polymyositis-dermatomyositis, in the presence of elevated titers of anti-U1-RNP antibodies. Main symptoms of the disease are polyarthritis, hand oedema, Raynaud's phenomenon, sclerodactyly, myositis and oesophageal hypomobility. Although widely discussed, most authors today accept MCTD as an independent entity. Others, however, suggest that these patients may belong to subgroups or early stages of certain definite connective diseases, such as SLE or SSc, or are, in fact, SARD overlap syndromes. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  17. Oral manifestations of connective tissue disease and novel therapeutic approaches.

    Science.gov (United States)

    Heath, Kenisha R; Rogers, Roy S; Fazel, Nasim

    2015-10-16

    Connective tissue diseases such as systemic lupus erythematosus (SLE), systemic sclerosis (SSc), and Sjögren syndrome (SS) have presented many difficulties both in their diagnosis and treatment. Known causes for this difficulty include uncertainty of disease etiology, the multitude of clinical presentations, the unpredictable disease course, and the variable cell types, soluble mediators, and tissue factors that are believed to play a role in the pathogenesis of connective tissue diseases. The characteristic oral findings seen with these specific connective tissue diseases may assist with more swift diagnostic capability. Additionally, the recent use of biologics may redefine the success rate in the treatment and management of the disease. In this review we describe the oral manifestations associated with SLE, SSc, and SS and review the novel biologic drugs used to treat these conditions.

  18. New perspectives on rare connective tissue calcifying diseases.

    Science.gov (United States)

    Rashdan, Nabil A; Rutsch, Frank; Kempf, Hervé; Váradi, András; Lefthériotis, Georges; MacRae, Vicky E

    2016-06-01

    Connective tissue calcifying diseases (CTCs) are characterized by abnormal calcium deposition in connective tissues. CTCs are caused by multiple factors including chronic diseases (Type II diabetes mellitus, chronic kidney disease), the use of pharmaceuticals (e.g. warfarin, glucocorticoids) and inherited rare genetic diseases such as pseudoxanthoma elasticum (PXE), generalized arterial calcification in infancy (GACI) and Keutel syndrome (KTLS). This review explores our current knowledge of these rare inherited CTCs, and highlights the most promising avenues for pharmaceutical intervention. Advancing our understanding of rare inherited forms of CTC is not only essential for the development of therapeutic strategies for patients suffering from these diseases, but also fundamental to delineating the mechanisms underpinning acquired chronic forms of CTC. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Innate Immune Cytokines, Fibroblast Phenotypes, and Regulation of Extracellular Matrix in Lung.

    Science.gov (United States)

    Richards, Carl D

    2017-02-01

    Chronic inflammation can be caused by adaptive immune responses in autoimmune and allergic conditions, driven by a T lymphocyte subset balance (TH1, TH2, Th17, Th22, and/or Treg) and skewed cellular profiles in an antigen-specific manner. However, several chronic inflammatory diseases have no clearly defined adaptive immune mechanisms that drive chronicity. These conditions include those that affect the lung such as nonatopic asthma or idiopathic pulmonary fibrosis comprising significant health problems. The remodeling of extracellular matrix (ECM) causes organ dysfunction, and it is largely generated by fibroblasts as the major cell controlling net ECM. As such, these are potential targets of treatment approaches in the context of ECM pathology. Fibroblast phenotypes contribute to ECM and inflammatory cell accumulation, and they are integrated into chronic disease mechanisms including cancer. Evidence suggests that innate cytokine responses may be critical in nonallergic/nonautoimmune disease, and they enable environmental agent exposure mechanisms that are independent of adaptive immunity. Innate immune cytokines derived from macrophage subsets (M1/M2) and innate lymphoid cell (ILC) subsets can directly regulate fibroblast function. We also suggest that STAT3-activating gp130 cytokines can sensitize fibroblasts to the innate cytokine milieu to drive phenotypes and exacerbate existing adaptive responses. Here, we review evidence exploring innate cytokine regulation of fibroblast behavior.

  20. Radiological approach to systemic connective tissue diseases

    Energy Technology Data Exchange (ETDEWEB)

    Wiesmann, W; Schneider, M

    1988-07-01

    Systemic lupus erythematosus (SLE) and progressive systemic sclerosis (PSS) represent the most frequent manifestations of systemic connective tissue diseases (collagen diseases). Radiological examinations are employed to estimate the extension and degree of the pathological process. In addition, progression of the disease can be verified. In both of the above collagen diseases, specific radiological findings can be observed that permit them to be differentiated from other entities. An algorithm for the adequate radiological work-up of collagen diseases is presented.

  1. Connective Tissue Degeneration: Mechanisms of Palmar Fascia Degeneration (Dupuytren's Disease)

    NARCIS (Netherlands)

    Karkampouna, S.; Kreulen, M.; Obdeijn, M. C.; Kloen, P.; Dorjée, A. L.; Rivellese, F.; Chojnowski, A.; Clark, I.; Kruithof-de Julio, Marianna

    2016-01-01

    Dupuytren's disease is a connective tissue disorder of the hand causing excessive palmar fascial fibrosis with associated finger contracture and disability. The aetiology of the disease is heterogeneous, with both genetic and environmental components. The connective tissue is abnormally infiltrated

  2. Radiological approach to systemic connective tissue diseases

    International Nuclear Information System (INIS)

    Wiesmann, W.; Schneider, M.

    1988-01-01

    Systemic lupus erythematosus (SLE) and progressive systemic sclerosis (PSS) represent the most frequent manifestations of systemic connective tissue diseases (collagen diseases). Radiological examinations are employed to estimate the extension and degree of the pathological process. In addition, progression of the disease can be verified. In both of the above collagen diseases, specific radiological findings can be observed that permit them to be differentiated from other entities. An algorithm for the adequate radiological work-up of collagen diseases is presented. (orig.) [de

  3. Association study of functional genetic variants of innate immunity related genes in celiac disease

    Directory of Open Access Journals (Sweden)

    Martín J

    2005-08-01

    Full Text Available Abstract Background Recent evidence suggest that the innate immune system is implicated in the early events of celiac disease (CD pathogenesis. In this work for the first time we have assessed the relevance of different proinflammatory mediators typically related to innate immunity in CD predisposition. Methods We performed a familial study in which 105 celiac families characterized by the presence of an affected child with CD were genotyped for functional polymorphisms located at regulatory regions of IL-1α, IL-1β, IL-1RN, IL-18, RANTES and MCP-1 genes. Familial data was analysed with a transmission disequilibrium test (TDT that revealed no statistically significant differences in the transmission pattern of the different genetic markers considered. Results The TDT analysis for IL-1α, IL-1β, IL-1RN, IL-18, and MCP-1 genes genetic variants did not reveal biased transmission to the affected offspring. Only a borderline association of RANTES promoter genetic variants with CD predisposition was observed. Conclusion Our results suggest that the analysed polymorphisms of IL-1α, IL-1β, IL-1RN, IL-18, RANTES and MCP-1 genes do not seem to play a major role in CD genetic predisposition in our population.

  4. Connected speech as a marker of disease progression in autopsy-proven Alzheimer’s disease

    Science.gov (United States)

    Ahmed, Samrah; Haigh, Anne-Marie F.; de Jager, Celeste A.

    2013-01-01

    Although an insidious history of episodic memory difficulty is a typical presenting symptom of Alzheimer’s disease, detailed neuropsychological profiling frequently demonstrates deficits in other cognitive domains, including language. Previous studies from our group have shown that language changes may be reflected in connected speech production in the earliest stages of typical Alzheimer’s disease. The aim of the present study was to identify features of connected speech that could be used to examine longitudinal profiles of impairment in Alzheimer’s disease. Samples of connected speech were obtained from 15 former participants in a longitudinal cohort study of ageing and dementia, in whom Alzheimer’s disease was diagnosed during life and confirmed at post-mortem. All patients met clinical and neuropsychological criteria for mild cognitive impairment between 6 and 18 months before converting to a status of probable Alzheimer’s disease. In a subset of these patients neuropsychological data were available, both at the point of conversion to Alzheimer’s disease, and after disease severity had progressed from the mild to moderate stage. Connected speech samples from these patients were examined at later disease stages. Spoken language samples were obtained using the Cookie Theft picture description task. Samples were analysed using measures of syntactic complexity, lexical content, speech production, fluency and semantic content. Individual case analysis revealed that subtle changes in language were evident during the prodromal stages of Alzheimer’s disease, with two-thirds of patients with mild cognitive impairment showing significant but heterogeneous changes in connected speech. However, impairments at the mild cognitive impairment stage did not necessarily entail deficits at mild or moderate stages of disease, suggesting non-language influences on some aspects of performance. Subsequent examination of these measures revealed significant linear trends

  5. Innate lymphoid cells in the initiation, regulation and resolution of inflammation

    Science.gov (United States)

    Sonnenberg, Gregory F.; Artis, David

    2016-01-01

    A previously unappreciated cell type of the innate immune system, termed innate lymphoid cells (ILCs), has been characterized in mice and humans, and found to profoundly influence the induction, regulation and resolution of inflammation. ILCs play an important role in these processes in murine models of infection, inflammatory disease and tissue repair. Further, disease association studies in defined patient populations have identified significant alterations in ILC responses, suggesting a potential role for these cell populations in human health and disease. In this review, we discuss the emerging family of ILCs, the role of ILCs in inflammation, and how current or novel therapeutic strategies could be employed to selectively modulate ILC responses and limit chronic inflammatory diseases in patients. PMID:26121198

  6. The quantitative basis of the Arabidopsis innate immune system to endemic pathogens depends on pathogen genetics

    DEFF Research Database (Denmark)

    Corwin, Jason A; Copeland, Daniel; Feusier, Julie

    2016-01-01

    The most established model of the eukaryotic innate immune system is derived from examples of large effect monogenic quantitative resistance to pathogens. However, many host-pathogen interactions involve many genes of small to medium effect and exhibit quantitative resistance. We used the Arabido......The most established model of the eukaryotic innate immune system is derived from examples of large effect monogenic quantitative resistance to pathogens. However, many host-pathogen interactions involve many genes of small to medium effect and exhibit quantitative resistance. We used....... cinerea, we identified a total of 2,982 genes associated with quantitative resistance using lesion area and 3,354 genes associated with camalexin production as measures of the interaction. Most genes were associated with resistance to a specific Botrytis isolate, which demonstrates the influence...... genes associated with quantitative resistance. Using publically available co-expression data, we condensed the quantitative resistance associated genes into co-expressed gene networks. GO analysis of these networks implicated several biological processes commonly connected to disease resistance...

  7. Interstitial lung disease associated with connective tissue diseases

    International Nuclear Information System (INIS)

    Medina, Yimy F; Restrepo, Jose Felix; Iglesias, Antonio; Ojeda, Paulina; Matiz, Carlos

    2007-01-01

    An interstitial lung disease (ILD) belongs to a group of diffuse parenchyma lung diseases it should be differentiated from other pathologies among those are idiopathic and ILD associated to connective tissue diseases (CTD) New concepts have been developed in the last years and they have been classified in seven defined subgroups. It has been described the association of each one of these subgroups with CTD. Natural history and other aspects of its treatment is not known completely .For complete diagnose it is required clinical, image and histopathologic approaches. The biopsy lung plays an essential role. It is important to promote and to stimulate the subclasification of each subgroup with the purpose of knowing their natural history directing the treatment and to improve their outcome

  8. Dysregulation of Innate Lymphoid Cells in Common Variable Immunodeficiency.

    Science.gov (United States)

    Maglione, Paul J; Cols, Montserrat; Cunningham-Rundles, Charlotte

    2017-10-05

    Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immune deficiency. With widespread use of immunoglobulin replacement therapy, non-infectious complications, such as autoimmunity, chronic intestinal inflammation, and lung disease, have replaced infections as the major cause of morbidity and mortality in this immune deficiency. The pathogenic mechanisms that underlie the development of these complications in CVID are not known; however, there have been numerous associated laboratory findings. Among the most intriguing of these associations is elevation of interferon signature genes in CVID patients with inflammatory/autoimmune complications, as a similar gene expression profile is found in systemic lupus erythematosus and other chronic inflammatory diseases. Linked with this heightened interferon signature in CVID is an expansion of circulating IFN-γ-producing innate lymphoid cells. Innate lymphoid cells are key regulators of both protective and pathogenic immune responses that have been extensively studied in recent years. Further exploration of innate lymphoid cell biology in CVID may uncover key mechanisms underlying the development of inflammatory complications in these patients and may inspire much needed novel therapeutic approaches.

  9. Serum levels of innate immunity cytokines are elevated in dogs with metaphyseal osteopathy (hypertrophic osteodytrophy) during active disease and remission.

    Science.gov (United States)

    Safra, Noa; Hitchens, Peta L; Maverakis, Emanual; Mitra, Anupam; Korff, Courtney; Johnson, Eric; Kol, Amir; Bannasch, Michael J; Pedersen, Niels C; Bannasch, Danika L

    2016-10-15

    Metaphyseal osteopathy (MO) (hypertrophic osteodystrophy) is a developmental disorder of unexplained etiology affecting dogs during rapid growth. Affected dogs experience relapsing episodes of lytic/sclerotic metaphyseal lesions and systemic inflammation. MO is rare in the general dog population; however, some breeds (Weimaraner, Great Dane and Irish Setter) have a much higher incidence, supporting a hereditary etiology. Autoinflammatory childhood disorders of parallel presentation such as chronic recurrent multifocal osteomyelitis (CRMO), and deficiency of interleukin-1 receptor antagonist (DIRA), involve impaired innate immunity pathways and aberrant cytokine production. Given the similarities between these diseases, we hypothesize that MO is an autoinflammatory disease mediated by cytokines involved in innate immunity. To characterize immune dysregulation in MO dogs we measured serum levels of inflammatory markers in 26 MO and 102 control dogs. MO dogs had significantly higher levels (pg/ml) of serum Interleukin-1beta (IL-1β), IL-18, IL-6, Granulocyte-macrophage colony stimulating factor (GM-CSF), C-X-C motif chemokine 10 (CXCL10), tumor necrosis factor (TNF), and IL-10. Notably, recovered MO dogs were not different from dogs during active MO disease, providing a suggestive mechanism for disease predisposition. This is the first documentation of elevated immune markers in MO dogs, uncovering an immune profile similar to comparable autoinflammatory disorders in children. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. An innately dangerous balancing act: intestinal homeostasis, inflammation, and colitis-associated cancer

    Science.gov (United States)

    2010-01-01

    Inflammatory bowel disease (IBD) is characterized by dysregulated immune responses to the intestinal microbiota, and by chronic intestinal inflammation. Several recent studies demonstrate the importance of innate microbial recognition by immune and nonimmune cells in the gut. Paradoxically, either diminished or exacerbated innate immune signaling may trigger the breakdown of intestinal homeostasis, leading to IBD and colitis-associated cancer (CAC). This dichotomy may reflect divergent functional roles for immune sensing in intestinal epithelial cells and leukocytes, which may vary with distinct disease mechanisms. PMID:20679404

  11. Secular trends of pregnancies in women with inflammatory connective tissue disease.

    Science.gov (United States)

    Wallenius, Marianne; Salvesen, Kjell Å; Daltveit, Anne K; Skomsvoll, Johan F

    2015-11-01

    This study examined secular trends in reproductive outcome in women with inflammatory connective tissue disease compared with reference deliveries from the general population. Historical cohort study based on data registered in the Medical Birth Register of Norway from 1967 to 2009. The study included singleton births in women recorded with connective tissue disease (n = 851) and reference deliveries from the general population (n = 2 437 110). Births were stratified in four periods, 1967-1979, 1980-1989, 1990-1999 and 2000-2009. Associations between connective tissue disease and maternal and perinatal outcomes by decade were assessed in logistic regression analyses and adjusted for maternal age at delivery and parity. In the 1970s, around 2.7 deliveries/year were registered for women with connective tissue disease (0.004% of all deliveries). This increased to 42 deliveries/year (0.07% of all deliveries) after 2000. Adjusted odds ratios (aOR) for cesarean section were 5.0 (95% CI 2.1-11.9) in the first and 1.8 (95% CI 1.4-2.3) in the last period. For preterm delivery the aOR decreased from 4.9 (95% CI 2.1-11.4) to 3.1 (95% CI 2.3-4.2) and the aOR for birthweight connective tissue disease. Adverse pregnancy outcomes were more common among women with connective tissue disease but risks have decreased over time. © 2015 Nordic Federation of Societies of Obstetrics and Gynecology.

  12. A key requirement for CD300f in innate immune responses of eosinophils in colitis.

    Science.gov (United States)

    Moshkovits, I; Reichman, H; Karo-Atar, D; Rozenberg, P; Zigmond, E; Haberman, Y; Ben Baruch-Morgenstern, N; Lampinen, M; Carlson, M; Itan, M; Denson, L A; Varol, C; Munitz, A

    2017-01-01

    Eosinophils are traditionally studied in the context of type 2 immune responses. However, recent studies highlight key innate immune functions for eosinophils especially in colonic inflammation. Surprisingly, molecular pathways regulating innate immune activities of eosinophil are largely unknown. We have recently shown that the CD300f is highly expressed by colonic eosinophils. Nonetheless, the role of CD300f in governing innate immune eosinophil activities is ill-defined. RNA sequencing of 162 pediatric Crohn's disease patients revealed upregulation of multiple Cd300 family members, which correlated with the presence of severe ulcerations and inflammation. Increased expression of CD300 family receptors was also observed in active ulcerative colitis (UC) and in mice following induction of experimental colitis. Specifically, the expression of CD300f was dynamically regulated in monocytes and eosinophils. Dextran sodium sulfate (DSS)-treated Cd300f -/- mice exhibit attenuated disease activity and histopathology in comparison with DSS-treated wild type (WT). Decreased disease activity in Cd300f -/- mice was accompanied with reduced inflammatory cell infiltration and nearly abolished production of pro-inflammatory cytokines. Monocyte depletion and chimeric bone marrow transfer experiments revealed a cell-specific requirement for CD300f in innate immune activation of eosinophils. Collectively, we uncover a new pathway regulating innate immune activities of eosinophils, a finding with significant implications in eosinophil-associated gastrointestinal diseases.

  13. Functions of innate immune cells and commensal bacteria in gut homeostasis.

    Science.gov (United States)

    Kayama, Hisako; Takeda, Kiyoshi

    2016-02-01

    The intestinal immune system remains unresponsive to beneficial microbes and dietary antigens while activating pro-inflammatory responses against pathogens for host defence. In intestinal mucosa, abnormal activation of innate immunity, which directs adaptive immune responses, causes the onset and/or progression of inflammatory bowel diseases. Thus, innate immunity is finely regulated in the gut. Multiple innate immune cell subsets have been identified in both murine and human intestinal lamina propria. Some innate immune cells play a key role in the maintenance of gut homeostasis by preventing inappropriate adaptive immune responses while others are associated with the pathogenesis of intestinal inflammation through development of Th1 and Th17 cells. In addition, intestinal microbiota and their metabolites contribute to the regulation of innate/adaptive immune responses. Accordingly, perturbation of microbiota composition can trigger intestinal inflammation by driving inappropriate immune responses. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  14. Supplemental effects of biofloc powder on growth performance, innate immunity, and disease resistance of Pacific white shrimp Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Chorong Lee

    2017-07-01

    Full Text Available Abstract An 8-week feeding trial was conducted to study the effect of dietary supplementation of a biofloc powder on growth performance and non-specific immune response of Litopenaeus vannamei. Seven experimental diets were prepared with supplementation of graded levels of dried biofloc powder by 0, 0.5, 1.0, 2.0, 4.0, 6.0, and 8.0% (designated as Con, BF0.5, BF1, BF2, BF4, BF6, and BF8, respectively. Triplicate groups of shrimp (1.01 ± 0.01 g were hand-fed with one of the diets four times a day. At the end of the feeding trial, significantly (P ˂ 0.05 higher growth performance and feed utilization were obtained in BF4 groups compared to those fed the Con diet. The innate immunity of shrimp was improved by the dietary supplementation of biofloc. Dietary inclusion of biofloc at the level of 4.0% significantly increased disease resistance of shrimp against Vibrio harveyi. The results indicate that biofloc might be used as a dietary supplement for growth performance, innate immunity and disease resistance of Pacific white shrimp.

  15. Chloroquine cardiotoxicity mimicking connective tissue disease heart involvement.

    Science.gov (United States)

    Vereckei, András; Fazakas, Adám; Baló, Timea; Fekete, Béla; Molnár, Mária Judit; Karádi, István

    2013-04-01

    The authors report a case of rare chloroquine cardiotoxicity mimicking connective tissue disease heart involvement in a 56-year-old woman with mixed connective tissue disease (MCTD) manifested suddenly as third degree A-V block with QT(c) interval prolongation and short torsade de pointes runs ultimately degenerating into ventricular fibrillation. Immunological tests suggested an MCTD flare, implying that cardiac arrest had resulted from myocardial involvement by MCTD. However, QT(c) prolongation is not a characteristic of cardiomyopathy caused by connective tissue disease, unless anti-Ro/SSA positivity is present, but that was not the case. Therefore, looking for another cause of QT(c) prolongation the possibility of chloroquine cardiotoxicity emerged, which the patient had been receiving for almost two years in supramaximal doses. Biopsy of the deltoid muscle was performed, because in chloroquine toxicity, specific lesions are present both in the skeletal muscle and in the myocardium, and electron microscopy revealed the accumulation of cytoplasmic curvilinear bodies, which are specific to antimalarial-induced myocyte damage and are absent in all other muscle diseases, except neuronal ceroid lipofuscinosis. Thus, the diagnosis of chloroquine cardiotoxicity was established. It might be advisable to supplement the periodic ophthalmological examination, which is currently the only recommendation for patients on long-term chloroquine therapy, with ECG screening.

  16. Innate Immune Evasion Mediated by Flaviviridae Non-Structural Proteins.

    Science.gov (United States)

    Chen, Shun; Wu, Zhen; Wang, Mingshu; Cheng, Anchun

    2017-10-07

    Flaviviridae-caused diseases are a critical, emerging public health problem worldwide. Flaviviridae infections usually cause severe, acute or chronic diseases, such as liver damage and liver cancer resulting from a hepatitis C virus (HCV) infection and high fever and shock caused by yellow fever. Many researchers worldwide are investigating the mechanisms by which Flaviviridae cause severe diseases. Flaviviridae can interfere with the host's innate immunity to achieve their purpose of proliferation. For instance, dengue virus (DENV) NS2A, NS2B3, NS4A, NS4B and NS5; HCV NS2, NS3, NS3/4A, NS4B and NS5A; and West Nile virus (WNV) NS1 and NS4B proteins are involved in immune evasion. This review discusses the interplay between viral non-structural Flaviviridae proteins and relevant host proteins, which leads to the suppression of the host's innate antiviral immunity.

  17. Innate Immunity against Leishmania Infections

    Science.gov (United States)

    Gurung, Prajwal; Kanneganti, Thirumala-Devi

    2015-01-01

    Leishmaniasis is a major health problem that affects more than 300 million people throughout the world. The morbidity associated with the disease causes serious economic burden in Leishmania endemic regions. Despite the morbidity and economic burden associated with Leishmaniasis, this disease rarely gets noticed and is still categorized under neglected tropical diseases. The lack of research combined with the ability of Leishmania to evade immune recognition has rendered our efforts to design therapeutic treatments or vaccines challenging. Herein, we review the literature on Leishmania from innate immune perspective and discuss potential problems as well as solutions and future directions that could aid in identifying novel therapeutic targets to eliminate this parasite. PMID:26249747

  18. Macrophage and Innate Lymphoid Cell Interplay in the Genesis of Fibrosis

    Science.gov (United States)

    Hams, Emily; Bermingham, Rachel; Fallon, Padraic G.

    2015-01-01

    Fibrosis is a characteristic pathological feature of an array of chronic diseases, where development of fibrosis in tissue can lead to marked alterations in the architecture of the affected organs. As a result of this process of sustained attrition to organs, many diseases that involve fibrosis are often progressive conditions and have a poor long-term prognosis. Inflammation is often a prelude to fibrosis, with innate and adaptive immunity involved in both the initiation and regulation of the fibrotic process. In this review, we will focus on the emerging roles of the newly described innate lymphoid cells (ILCs) in the generation of fibrotic disease with an examination of the potential interplay between ILC and macrophages and the adaptive immune system. PMID:26635811

  19. Codevelopment of Microbiota and Innate Immunity and the Risk for Group B Streptococcal Disease

    Directory of Open Access Journals (Sweden)

    Julia Kolter

    2017-11-01

    Full Text Available The pathogenesis of neonatal late-onset sepsis (LOD, which manifests between the third day and the third month of life, remains poorly understood. Group B Streptococcus (GBS is the most important cause of LOD in infants without underlying diseases or prematurity and the third most frequent cause of meningitis in the Western world. On the other hand, GBS is a common intestinal colonizer in infants. Accordingly, despite its adaption to the human lower gastrointestinal tract, GBS has retained its potential virulence and its transition from a commensal to a dangerous pathogen is unpredictable in the individual. Several cellular innate immune mechanisms, in particular Toll-like receptors, the inflammasome and the cGAS pathway, are engaged by GBS effectors like nucleic acids. These are likely to impact on the GBS-specific host resistance. Given the long evolution of streptococci as a normal constituent of the human microbiota, the emergence of GBS as the dominant neonatal sepsis cause just about 50 years ago is remarkable. It appears that intensive usage of tetracycline starting in the 1940s has been a selection advantage for the currently dominant GBS clones with superior adhesive and invasive properties. The historical replacement of Group A by Group B streptococci as a leading neonatal pathogen and the higher frequency of other β-hemolytic streptococci in areas with low GBS prevalence suggests the existence of a confined streptococcal niche, where locally competing streptococcal species are subject to environmental and immunological selection pressure. Thus, it seems pivotal to resolve neonatal innate immunity at mucous surfaces and its impact on microbiome composition and quality, i.e., genetic heterogeneity and metabolism, at the microanatomical level. Then, designer pro- and prebiotics, such as attenuated strains of GBS, and oligonucleotide priming of mucosal immunity may unfold their potential and facilitate adaptation of potentially

  20. Codevelopment of Microbiota and Innate Immunity and the Risk for Group B Streptococcal Disease.

    Science.gov (United States)

    Kolter, Julia; Henneke, Philipp

    2017-01-01

    The pathogenesis of neonatal late-onset sepsis (LOD), which manifests between the third day and the third month of life, remains poorly understood. Group B Streptococcus (GBS) is the most important cause of LOD in infants without underlying diseases or prematurity and the third most frequent cause of meningitis in the Western world. On the other hand, GBS is a common intestinal colonizer in infants. Accordingly, despite its adaption to the human lower gastrointestinal tract, GBS has retained its potential virulence and its transition from a commensal to a dangerous pathogen is unpredictable in the individual. Several cellular innate immune mechanisms, in particular Toll-like receptors, the inflammasome and the cGAS pathway, are engaged by GBS effectors like nucleic acids. These are likely to impact on the GBS-specific host resistance. Given the long evolution of streptococci as a normal constituent of the human microbiota, the emergence of GBS as the dominant neonatal sepsis cause just about 50 years ago is remarkable. It appears that intensive usage of tetracycline starting in the 1940s has been a selection advantage for the currently dominant GBS clones with superior adhesive and invasive properties. The historical replacement of Group A by Group B streptococci as a leading neonatal pathogen and the higher frequency of other β-hemolytic streptococci in areas with low GBS prevalence suggests the existence of a confined streptococcal niche, where locally competing streptococcal species are subject to environmental and immunological selection pressure. Thus, it seems pivotal to resolve neonatal innate immunity at mucous surfaces and its impact on microbiome composition and quality, i.e., genetic heterogeneity and metabolism, at the microanatomical level. Then, designer pro- and prebiotics, such as attenuated strains of GBS, and oligonucleotide priming of mucosal immunity may unfold their potential and facilitate adaptation of potentially hazardous streptococci as

  1. Skin innate immune system

    Directory of Open Access Journals (Sweden)

    Berna Aksoy

    2013-06-01

    Full Text Available All multicellular organisms protect themselves from external universe and microorganisms by innate immune sytem that is constitutively present. Skin innate immune system has several different components composed of epithelial barriers, humoral factors and cellular part. In this review information about skin innate immune system and its components are presented to the reader. Innate immunity, which wasn’t adequately interested in previously, is proven to provide a powerfull early protection system, control many infections before the acquired immunity starts and directs acquired immunity to develop optimally

  2. Innate lymphoid cells: the new kids on the block.

    Science.gov (United States)

    Withers, David R; Mackley, Emma C; Jones, Nick D

    2015-08-01

    The purpose of this article is to review recent advances in our understanding of innate lymphoid cell function and to speculate on how these cells may become activated and influence the immune response to allogeneic tissues and cells following transplantation. Innate lymphoid cells encompass several novel cell types whose wide-ranging roles in the immune system are only now being uncovered. Through cytokine production, cross-talk with both haematopoietic and nonhaematopoietic populations and antigen presentation to T cells, these cells have been shown to be key regulators in maintaining tissue integrity, as well as initiating and then sustaining immune responses. It is now clear that innate lymphoid cells markedly contribute to immune responses and tissue repair in a number of disease contexts. Although experimental and clinical data on the behaviour of these cells following transplantation are scant, it is highly likely that innate lymphoid cells will perform similar functions in the alloimmune response following transplantation and therefore may be potential therapeutic targets for manipulation to prevent allograft rejection.

  3. Innate lymphoid cells in autoimmunity: emerging regulators in rheumatic diseases

    NARCIS (Netherlands)

    Shikhagaie, Medya M.; Germar, Kristine; Bal, Suzanne M.; Ros, Xavier Romero; Spits, Hergen

    2017-01-01

    Innate lymphoid cells (ILCs) are important in the regulation of barrier homeostasis. These cells do not express T cell receptors but share many functional similarities with T helper cells and cytotoxic CD8(+) T lymphocytes. ILCs are divided into three groups, namely group 1 ILCs, group 2 ILCs and

  4. Innate immunity and cellular senescence: The good and the bad in the developmental and aged brain.

    Science.gov (United States)

    Santoro, Antonietta; Spinelli, Chiara Carmela; Martucciello, Stefania; Nori, Stefania Lucia; Capunzo, Mario; Puca, Annibale Alessandro; Ciaglia, Elena

    2018-03-01

    Ongoing studies evidence cellular senescence in undifferentiated and specialized cells from tissues of all ages. Although it is believed that senescence plays a wider role in several stress responses in the mature age, its participation in certain physiological and pathological processes throughout life is coming to light. The "senescence machinery" has been observed in all brain cell populations, including components of innate immunity (e.g., microglia and astrocytes). As the beneficial versus detrimental implications of senescence is an open question, we aimed to analyze the contribution of immune responses in regulatory mechanisms governing its distinct functions in healthy (development, organogenesis, danger patrolling events) and diseased brain (glioma, neuroinflammation, neurodeneration), and the putative connection between cellular and molecular events governing the 2 states. Particularly this review offers new insights into the complex roles of senescence both as a chronological event as age advances, and as a molecular mechanism of brain homeostasis through the important contribution of innate immune responses and their crosstalk with neighboring cells in brain parenchyma. We also highlight the impact of the recently described glymphatic system and brain lymphatic vasculature in the interplay between peripheral and central immune surveillance and its potential implication during aging. This will open new ways to understand brain development, its deterioration during aging, and the occurrence of several oncological and neurodegenerative diseases. ©2018 Society for Leukocyte Biology.

  5. The LncRNA Connectivity Map: Using LncRNA Signatures to Connect Small Molecules, LncRNAs, and Diseases.

    Science.gov (United States)

    Yang, Haixiu; Shang, Desi; Xu, Yanjun; Zhang, Chunlong; Feng, Li; Sun, Zeguo; Shi, Xinrui; Zhang, Yunpeng; Han, Junwei; Su, Fei; Li, Chunquan; Li, Xia

    2017-07-27

    Well characterized the connections among diseases, long non-coding RNAs (lncRNAs) and drugs are important for elucidating the key roles of lncRNAs in biological mechanisms in various biological states. In this study, we constructed a database called LNCmap (LncRNA Connectivity Map), available at http://www.bio-bigdata.com/LNCmap/ , to establish the correlations among diseases, physiological processes, and the action of small molecule therapeutics by attempting to describe all biological states in terms of lncRNA signatures. By reannotating the microarray data from the Connectivity Map database, the LNCmap obtained 237 lncRNA signatures of 5916 instances corresponding to 1262 small molecular drugs. We provided a user-friendly interface for the convenient browsing, retrieval and download of the database, including detailed information and the associations of drugs and corresponding affected lncRNAs. Additionally, we developed two enrichment analysis methods for users to identify candidate drugs for a particular disease by inputting the corresponding lncRNA expression profiles or an associated lncRNA list and then comparing them to the lncRNA signatures in our database. Overall, LNCmap could significantly improve our understanding of the biological roles of lncRNAs and provide a unique resource to reveal the connections among drugs, lncRNAs and diseases.

  6. Immunopathophysiology of inflammatory bowel disease: how genetics link barrier dysfunction and innate immunity to inflammation.

    Science.gov (United States)

    Mehta, Minesh; Ahmed, Shifat; Dryden, Gerald

    2017-08-01

    Inflammatory bowel diseases (IBD) comprise a distinct set of clinical symptoms resulting from chronic or relapsing immune activation and corresponding inflammation within the gastrointestinal (GI) tract. Diverse genetic mutations, encoding important aspects of innate immunity and mucosal homeostasis, combine with environmental triggers to create inappropriate, sustained inflammatory responses. Recently, significant advances have been made in understanding the interplay of the intestinal epithelium, mucosal immune system, and commensal bacteria as a foundation of the pathogenesis of inflammatory bowel disease. Complex interactions between specialized intestinal epithelial cells and mucosal immune cells determine different outcomes based on the environmental input: the development of tolerance in the presence of commensal bacterial or the promotion of inflammation upon recognition of pathogenic organisms. This article reviews key genetic abnormalities involved in inflammatory and homeostatic pathways that enhance susceptibility to immune dysregulation and combine with environmental triggers to trigger the development of chronic intestinal inflammation and IBD.

  7. Functional connectivity in cortical regions in dementia with Lewy bodies and Alzheimer's disease.

    Science.gov (United States)

    Kenny, Eva R; Blamire, Andrew M; Firbank, Michael J; O'Brien, John T

    2012-02-01

    Using resting-state functional magnetic resonance imaging, spontaneous low-frequency fluctuations in the blood oxygenation level-dependent signal were measured to investigate connectivity between key brain regions hypothesized to be differentially affected in dementia with Lewy bodies compared with Alzheimer's disease and healthy controls. These included connections of the hippocampus, because of its role in learning, and parietal and occipital areas involved in memory, attention and visual processing. Connectivity was investigated in 47 subjects aged 60 years and over: 15 subjects with dementia with Lewy bodies, 16 subjects with Alzheimer's disease and 16 control subjects. Subjects were scanned using a 3 Tesla magnetic resonance imaging system. The mean blood oxygenation level-dependent signal time series was extracted from seed regions in the hippocampus, posterior cingulate cortex, precuneus and primary visual cortex and correlated with all other brain voxels to determine functional connectivity. Both subjects with dementia with Lewy bodies and Alzheimer's disease showed greater connectivity than control subjects. Compared with controls, the dementia with Lewy bodies group had greater connectivity between the right posterior cingulate cortex and other brain areas. In dementia with Lewy bodies, there were no significant differences in hippocampal connectivity compared with controls, but in Alzheimer's disease left hippocampal connectivity was greater compared with controls. There were no significant differences between groups for precuneus or primary visual cortex connectivity. No seed regions showed significantly less connectivity in subjects with dementia with Lewy bodies or Alzheimer's disease compared with controls. We found greater connectivity with the posterior cingulate in dementia with Lewy bodies and with the hippocampus in Alzheimer's disease. Consistent with the known relative preservation of memory in dementia with Lewy bodies compared with Alzheimer

  8. Addison's disease secondary to connective tissue diseases: a report of six cases.

    Science.gov (United States)

    Zhang, Zhuo-li; Wang, Yu; Zhou, Wei; Hao, Yan-jie

    2009-04-01

    Addison's disease is an autoimmune process. However, Addison's disease associated with connective tissue diseases (CTD) is only occasionally reported. Here, we report six cases of Addison's disease secondary to a variety of CTD, which include systemic lupus erythematosus, Takayasu arteritis, systemic sclerosis, ankylosing spondylitis (AS) and antiphospholipid antibody syndrome. The association of Addison's disease with Takayasu arteritis and AS is reported for the first time. We also found high prevalence of hypothyroidism as concomitant autoimmune disorder. Our case series highlight the autoimmune features of Addison's disease. Therefore, we suggest considering adrenal dysfunction in patients with CTD.

  9. Innate immune responses in central nervous system inflammation

    DEFF Research Database (Denmark)

    Finsen, Bente; Owens, Trevor

    2011-01-01

    In autoimmune diseases of the central nervous system (CNS), innate glial cell responses play a key role in determining the outcome of leukocyte infiltration. Access of leukocytes is controlled via complex interactions with glial components of the blood-brain barrier that include angiotensin II...

  10. Synthetic RNAs Mimicking Structural Domains in the Foot-and-Mouth Disease Virus Genome Elicit a Broad Innate Immune Response in Porcine Cells Triggered by RIG-I and TLR Activation.

    Science.gov (United States)

    Borrego, Belén; Rodríguez-Pulido, Miguel; Revilla, Concepción; Álvarez, Belén; Sobrino, Francisco; Domínguez, Javier; Sáiz, Margarita

    2015-07-17

    The innate immune system is the first line of defense against viral infections. Exploiting innate responses for antiviral, therapeutic and vaccine adjuvation strategies is being extensively explored. We have previously described, the ability of small in vitro RNA transcripts, mimicking the sequence and structure of different domains in the non-coding regions of the foot-and-mouth disease virus (FMDV) genome (ncRNAs), to trigger a potent and rapid innate immune response. These synthetic non-infectious molecules have proved to have a broad-range antiviral activity and to enhance the immunogenicity of an FMD inactivated vaccine in mice. Here, we have studied the involvement of pattern-recognition receptors (PRRs) in the ncRNA-induced innate response and analyzed the antiviral and cytokine profiles elicited in swine cultured cells, as well as peripheral blood mononuclear cells (PBMCs).

  11. Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans

    NARCIS (Netherlands)

    Kox, M.; Eijk, L.T.G.J. van; Zwaag, J.; Wildenberg, J. van den; Sweep, F.C.; Hoeven, J.G. van der; Pickkers, P.

    2014-01-01

    Excessive or persistent proinflammatory cytokine production plays a central role in autoimmune diseases. Acute activation of the sympathetic nervous system attenuates the innate immune response. However, both the autonomic nervous system and innate immune system are regarded as systems that cannot

  12. Breast implant rupture and connective tissue disease: a review of the literature

    DEFF Research Database (Denmark)

    Hölmich, Lisbet Rosenkrantz; Lipworth, Loren; McLaughlin, Joseph K

    2007-01-01

    Large-scale epidemiologic studies to date have not found any credible association between silicone breast implants and either well-defined connective tissue diseases or undefined or atypical connective tissue diseases. It has been hypothesized that implant rupture could prompt an immunologic reac...

  13. Emerging concepts and future challenges in innate lymphoid cell biology

    Science.gov (United States)

    Artis, David

    2016-01-01

    Innate lymphoid cells (ILCs) are innate immune cells that are ubiquitously distributed in lymphoid and nonlymphoid tissues and enriched at mucosal and barrier surfaces. Three major ILC subsets are recognized in mice and humans. Each of these subsets interacts with innate and adaptive immune cells and integrates cues from the epithelium, the microbiota, and pathogens to regulate inflammation, immunity, tissue repair, and metabolic homeostasis. Although intense study has elucidated many aspects of ILC development, phenotype, and function, numerous challenges remain in the field of ILC biology. In particular, recent work has highlighted key new questions regarding how these cells communicate with their environment and other cell types during health and disease. This review summarizes new findings in this rapidly developing field that showcase the critical role ILCs play in directing immune responses through their ability to interact with a variety of hematopoietic and nonhematopoietic cells. In addition, we define remaining challenges and emerging questions facing the field. Finally, this review discusses the potential application of basic studies of ILC biology to the development of new treatments for human patients with inflammatory and infectious diseases in which ILCs play a role. PMID:27811053

  14. Delicate regulation of the cGAS-MITA-mediated innate immune response.

    Science.gov (United States)

    Luo, Wei-Wei; Shu, Hong-Bing

    2018-02-19

    Although it has long been demonstrated that cytosolic DNA is a potent immune stimulant, it is only in recent years that the molecular mechanisms of DNA-stimulated innate immune responses have emerged. Studies have established critical roles for the DNA sensor cyclic GMP-AMP synthase (cGAS) and the adapter protein MITA/STING in the innate immune response to cytosolic DNA or DNA viruses. Although the regulation of cGAS-MITA/STING-mediated signaling remains to be fully investigated, understanding the processes involved may help to explain the mechanisms of innate immune signaling events and perhaps autoinflammatory diseases and to provide potential therapeutic targets for drug intervention. In this review, we summarize recent progress on the regulation of the cGAS-MITA/STING-mediated innate immune response to DNA viruses at the organelle-trafficking, post-translational and transcriptional levels.Cellular & Molecular Immunology advance online publication, 19 February 2018; doi:10.1038/cmi.2016.51.

  15. Wired for behavior: from development to function of innate limbic system circuitry

    Directory of Open Access Journals (Sweden)

    Katie eSokolowski

    2012-04-01

    Full Text Available The limbic system of the brain regulates a number of behaviors that are essential for the survival of all vertebrate species including humans. The limbic system predominantly controls appropriate responses to stimuli with social, emotional or motivational salience, which includes innate behaviors such as mating, aggression and defense. Activation of circuits regulating these innate behaviors begins in the periphery with sensory stimulation (primarily via the olfactory system in rodents, and is then processed in the brain by a set of delineated structures that primarily includes the amygdala and hypothalamus. While the basic neuroanatomy of these connections is well established, much remains unknown about how information is processed within innate circuits and how genetic hierarchies regulate development and function of these circuits. Utilizing innovative technologies including channel rhodopsin-based circuit manipulation and genetic manipulation in rodents, recent studies have begun to answer these central questions. In this article we review the current understanding of how limbic circuits regulate sexually dimorphism and how these circuits are established and shaped during pre- and post-natal development. We also discuss how understanding developmental processes of innate circuit formation may inform behavioral alterations observed in neurodevelopmental disorders, such as autism spectrum disorders, which are characterized by limbic system dysfunction.

  16. Vitamin D signaling in intestinal innate immunity and homeostasis.

    Science.gov (United States)

    Dimitrov, Vassil; White, John H

    2017-09-15

    The lumen of the gut hosts a plethora of microorganisms that participate in food assimilation, inactivation of harmful particles and in vitamin synthesis. On the other hand, enteric flora, a number of food antigens, and toxins are capable of triggering immune responses causing inflammation, which, when unresolved, may lead to chronic conditions such as inflammatory bowel disease (IBD). It is important, therefore, to contain the gut bacteria within the lumen, control microbial load and composition, as well as ensure adequate innate and adaptive immune responses to pathogenic threats. There is growing evidence that vitamin D signaling has impacts on all these aspects of intestinal physiology, contributing to healthy enteric homeostasis. VD was first discovered as the curative agent for nutritional rickets, and its classical actions are associated with calcium absorption and bone health. However, vitamin D exhibits a number of extra-skeletal effects, particularly in innate immunity. Notably, it stimulates production of pattern recognition receptors, anti-microbial peptides, and cytokines, which are at the forefront of innate immune responses. They play a role in sensing the microbiota, in preventing excessive bacterial overgrowth, and complement the actions of vitamin D signaling in enhancing intestinal barrier function. Vitamin D also favours tolerogenic rather than inflammogenic T cell differentiation and function. Compromised innate immune function and overactive adaptive immunity, as well as defective intestinal barrier function, have been associated with IBD. Importantly, observational and intervention studies support a beneficial role of vitamin D supplementation in patients with Crohn's disease, a form of IBD. This review summarizes the effects of vitamin D signaling on barrier integrity and innate and adaptive immunity in the gut, as well as on microbial load and composition. Collectively, studies to date reveal that vitamin D signaling has widespread effects

  17. Cyclophosphamide for connective tissue disease-associated interstitial lung disease.

    Science.gov (United States)

    Barnes, Hayley; Holland, Anne E; Westall, Glen P; Goh, Nicole Sl; Glaspole, Ian N

    2018-01-03

    Approximately one-third of individuals with interstitial lung disease (ILD) have associated connective tissue disease (CTD). The connective tissue disorders most commonly associated with ILD include scleroderma/systemic sclerosis (SSc), rheumatoid arthritis, polymyositis/dermatomyositis, and Sjögren's syndrome. Although many people with CTD-ILD do not develop progressive lung disease, a significant proportion do progress, leading to reduced physical function, decreased quality of life, and death. ILD is now the major cause of death amongst individuals with systemic sclerosis.Cyclophosphamide is a highly potent immunosuppressant that has demonstrated efficacy in inducing and maintaining remission in autoimmune and inflammatory illnesses. However this comes with potential toxicities, including nausea, haemorrhagic cystitis, bladder cancer, bone marrow suppression, increased risk of opportunistic infections, and haematological and solid organ malignancies.Decision-making in the treatment of individuals with CTD-ILD is difficult; the clinician needs to identify those who will develop progressive disease, and to weigh up the balance between a high level of need for therapy in a severely unwell patient population against the potential for adverse effects from highly toxic therapy, for which only relatively limited data on efficacy can be found. Similarly, it is not clear whether histological subtype, disease duration, or disease extent can be used to predict treatment responsiveness. To assess the efficacy and adverse effects of cyclophosphamide in the treatment of individuals with CTD-ILD. We performed searches on CENTRAL, MEDLINE, Embase, CINAHL, and Web of Science up to May 2017. We handsearched review articles, clinical trial registries, and reference lists of retrieved articles. We included randomised controlled parallel-group trials that compared cyclophosphamide in any form, used individually or concomitantly with other immunomodulating therapies, versus non

  18. S1P dependent inter organ trafficking of group 2 innate lymphoid cells suppots host defense

    Science.gov (United States)

    Innate lymphoid cells (ILCs) are considered to be the innate counterparts of adaptive T lymphocytes and play important roles in host defense, tissue repair, metabolic homeostasis, and inflammatory diseases. ILCs are generally thought of as tissue-resident cells, but whether ILCs strictly behave in a...

  19. The role of dendritic cell subsets and innate immunity in the pathogenesis of type 1 diabetes and other autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Jeffrey D. Price

    2015-06-01

    Full Text Available Dendritic cells (DCs are key antigen presenting cells that have an important role in autoimmune pathogenesis. DCs control both steady-state T cell tolerance and activation of pathogenic responses. The balance between these two outcomes depends on several factors, including genetic susceptibility, environmental signals that stimulate varied innate responses, and which DC subset is presenting antigen. Although the specific DC phenotype can diverge depending on the tissue location and context, there are 4 main subsets identified in both mouse and human: conventional cDC1 and cDC2, plasmacytoid DCs, and monocyte-derived DCs. In this review, we will discuss the role of these subsets in autoimmune pathogenesis and regulation, as well as the genetic and environmental signals that influence their function. Specific topics to be addressed include: impact of susceptibility loci on DC subsets, alterations in DC subset development, the role of infection- and host-derived innate inflammatory signals, and the role of the intestinal microbiota on DC phenotype. The effects of these various signals on disease progression and the relative effects of DC subset composition and maturation level of DCs will be examined. These areas will be explored using examples from several autoimmune diseases but will focus mainly on type 1 diabetes.

  20. Human innate lymphoid cells (ILCs) in filarial infections.

    Science.gov (United States)

    Bonne-Année, S; Nutman, T B

    2018-02-01

    Filarial infections are characteristically chronic and can cause debilitating diseases governed by parasite-induced innate and adaptive immune responses. Filarial parasites traverse or establish niches in the skin (migrating infective larvae), in nonmucosal tissues (adult parasite niche) and in the blood or skin (circulating microfilariae) where they intersect with the host immune response. While several studies have demonstrated that filarial parasites and their antigens can modulate myeloid cells (monocyte, macrophage and dendritic cell subsets), T- and B-lymphocytes and skin resident cell populations, the role of innate lymphoid cells during filarial infections has only recently emerged. Despite the identification and characterization of innate lymphoid cells (ILCs) in murine helminth infections, little is actually known about the role of human ILCs during parasitic infections. The focus of this review will be to highlight the composition of ILCs in the skin, lymphatics and blood; where the host-parasite interaction is well-defined and to examine the role of ILCs during filarial infections. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  1. Association between antinuclear antibody titers and connective tissue diseases in a Rheumatology Department.

    Science.gov (United States)

    Menor Almagro, Raúl; Rodríguez Gutiérrez, Juan Francisco; Martín-Martínez, María Auxiliadora; Rodríguez Valls, María José; Aranda Valera, Concepción; de la Iglesia Salgado, José Luís

    To determine the dilution titles at antinuclear antibodies (ANA) by indirect immunofluorescence observed in cell substrate HEp-2 and its association with the diagnosis of systemic connective tissue disease in ANA test requested by a Rheumatology Unit. Samples of patients attended for the first time in the rheumatology unit, without prior ANA test, between January 2010 and December 2012 were selected. The dilution titers, immunofluorescence patterns and antigen specificity were recorded. In January 2015 the diagnosis of the patients were evaluated and classified in systemic disease connective tissue (systemic lupus erythematosus, Sjögren's syndrome, systemic sclerosis, undifferentiated connective, antiphospholipid syndrome, mixed connective tissue and inflammatory myophaty) or not systemic disease connective tissue. A total of 1282 ANA tests requested by the Rheumatology Unit in subjects without previous study, 293 were positive, predominance of women (81.9%). Patients with systemic connective tissue disease were recorded 105, and 188 without systemic connective tissue disease. For 1/640 dilutions the positive predictive value in the connective was 73.3% compared to 26.6% of non-connective, and for values ≥1/1,280 85% versus 15% respectively. When performing the multivariate analysis we observed a positive association between 1/320 dilution OR 3.069 (95% CI: 1.237-7.614; P=.016), 1/640 OR 12.570 (95% CI: 3.659-43.187; P=.000) and ≥1/1,280 OR 42.136 (95% CI: 8.604-206.345; P=.000). These results show association titles dilution ≥1/320 in ANA's first test requested by a Rheumatology Unit with patients with systemic connective tissue disease. The VPP in these patients was higher than previous studies requested by other medical specialties. This may indicate the importance of application of the test in a targeted way. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.

  2. [Nailfold capillaroscopy in the evaluation of Raynaud's phenomenon and undifferentiated connective tissue disease].

    Science.gov (United States)

    Cortes, Sara; Clemente-Coelho, Paulo

    2008-01-01

    Microvascular abnormalities involved in the pathogenic mechanism of several connective tissue disorders can be detected by nailfold capillaroscopy. Evaluation of the interest of nailfold capillaroscopy results in patients with Raynaud s phenomenon or undifferentiated connective tissue disease and their correlation with diagnostic and therapeutical evolution. Selection of capillaroscopic and laboratory results of patients with the diagnosis of Raynaud s phenomenon (without defined connective tissue disease) or undifferentiated connective tissue disease. Evaluation of the present diagnosis and treatment comparing with the ones existed at the time of capillaroscopy performance. 80 patients were enrolled with an age of 51.4+/-14.3 years (mean+/-SD) 78 females (97.5%) with Raynaud s phenomenon and undifferentiated connective tissue disease 27 patients (33.8%); Raynaud s Phenomenon 46 patients (57.5%); undifferentiated connective tissue disease 7 patients (8.7%). The capillaroscopic results were normal 30 patients (37.5%); minor changes tortuosity enlargement 16 patients (20.0%) major changes 34 patients (42.5%) hemorrhages 25 patients (31.3%) megacapillaries 26 patients (32.5%) avascular areas 3 patients (3.8%). The introduction of new treatments after the capillaroscopy occurred in 32 patients (40.0%) and a new diagnosis was done in 39 patients (48.8%). Major changes in capillaroscopy correlated with the change of diagnosis and the introduction of a new treatment (pNailfold capillaroscopy performed in patients with isolated Raynaud s phenomenon or undifferentiated connective tissue disease has a role in the prognostic evaluation related to the possibility of an evolution of the diagnosis or to the need of the introduction of new treatments.

  3. Curating the innate immunity interactome.

    LENUS (Irish Health Repository)

    Lynn, David J

    2010-01-01

    The innate immune response is the first line of defence against invading pathogens and is regulated by complex signalling and transcriptional networks. Systems biology approaches promise to shed new light on the regulation of innate immunity through the analysis and modelling of these networks. A key initial step in this process is the contextual cataloguing of the components of this system and the molecular interactions that comprise these networks. InnateDB (http:\\/\\/www.innatedb.com) is a molecular interaction and pathway database developed to facilitate systems-level analyses of innate immunity.

  4. Opinion: Interactions of innate and adaptive lymphocytes

    Science.gov (United States)

    Gasteiger, Georg; Rudensky, Alexander Y.

    2015-01-01

    Innate lymphocytes, including natural killer (NK) cells and the recently discovered innate lymphoid cells (ILCs) have crucial roles during infection, tissue injury and inflammation. Innate signals regulate the activation and homeostasis of innate lymphocytes. Less well understood is the contribution of the adaptive immune system to the orchestration of innate lymphocyte responses. We review our current understanding of the interactions between adaptive and innate lymphocytes, and propose a model in which adaptive T cells function as antigen-specific sensors for the activation of innate lymphocytes to amplify and instruct local immune responses. We highlight the potential role of regulatory and helper T cells in these processes and discuss major questions in the emerging area of crosstalk between adaptive and innate lymphocytes. PMID:25132095

  5. Imaging of connective tissue diseases of the head and neck

    Science.gov (United States)

    2016-01-01

    We review the imaging appearance of connective tissue diseases of the head and neck. Bilateral sialadenitis and dacryoadenitis are seen in Sjögren’s syndrome; ankylosis of the temporo-mandibular joint with sclerosis of the crico-arytenoid joint are reported in rheumatoid arthritis and lupus panniculitis with atypical infection are reported in patients with systemic lupus erythematosus. Relapsing polychondritis shows subglottic stenosis, prominent ear and saddle nose; progressive systemic sclerosis shows osteolysis of the mandible, fibrosis of the masseter muscle with calcinosis of the subcutaneous tissue and dermatomyositis/polymyositis shows condylar erosions and autoimmune thyroiditis. Vascular thrombosis is reported in antiphospholipid antibodies syndrome; cervical lymphadenopathy is seen in adult-onset Still’s disease, and neuropathy with thyroiditis reported in mixed connective tissue disorder. Imaging is important to detect associated malignancy with connective tissue disorders. Correlation of the imaging findings with demographic data and clinical findings are important for the diagnosis of connective tissue disorders. PMID:26988082

  6. RNA-Seq of the Caribbean reef-building coral Orbicella faveolata (Scleractinia-Merulinidae under bleaching and disease stress expands models of coral innate immunity

    Directory of Open Access Journals (Sweden)

    David A. Anderson

    2016-02-01

    Full Text Available Climate change-driven coral disease outbreaks have led to widespread declines in coral populations. Early work on coral genomics established that corals have a complex innate immune system, and whole-transcriptome gene expression studies have revealed mechanisms by which the coral immune system responds to stress and disease. The present investigation expands bioinformatic data available to study coral molecular physiology through the assembly and annotation of a reference transcriptome of the Caribbean reef-building coral, Orbicella faveolata. Samples were collected during a warm water thermal anomaly, coral bleaching event and Caribbean yellow band disease outbreak in 2010 in Puerto Rico. Multiplex sequencing of RNA on the Illumina GAIIx platform and de novo transcriptome assembly by Trinity produced 70,745,177 raw short-sequence reads and 32,463 O. faveolata transcripts, respectively. The reference transcriptome was annotated with gene ontologies, mapped to KEGG pathways, and a predicted proteome of 20,488 sequences was generated. Protein families and signaling pathways that are essential in the regulation of innate immunity across Phyla were investigated in-depth. Results were used to develop models of evolutionarily conserved Wnt, Notch, Rig-like receptor, Nod-like receptor, and Dicer signaling. O. faveolata is a coral species that has been studied widely under climate-driven stress and disease, and the present investigation provides new data on the genes that putatively regulate its immune system.

  7. A Histopathological Study of Pulmonary Hypertension in Connective Tissue Disease

    Directory of Open Access Journals (Sweden)

    Nobuhito Sasaki

    2011-01-01

    Full Text Available Connective tissue diseases (CTD, such as systemic sclerosis (SSc, systemic lupus erythematosus (SLE, and mixed connective tissue disease (MCTD, develop pulmonary hypertension (PH. Generally all PH cases associated with any CTD are classified into the same PH group. However, histological examination shows both common and specific lesions for each disease. In patients with SLE, fibrosis is generally rare and mild. The findings of PH in SLE are similar to those in primary pulmonary hypertension. Many cases of SSc are accompanied by fibrosis. MCTD is rather close to SSc. Arterial and arteriolar lesions of MCTD are characterized by fibrous intimal thickening. In this review, we describe the pathological features of PH associated with each CTD.

  8. Distinct innate immune phagocyte responses to Aspergillus fumigatus conidia and hyphae in zebrafish larvae.

    Science.gov (United States)

    Knox, Benjamin P; Deng, Qing; Rood, Mary; Eickhoff, Jens C; Keller, Nancy P; Huttenlocher, Anna

    2014-10-01

    Aspergillus fumigatus is the most common filamentous fungal pathogen of immunocompromised hosts, resulting in invasive aspergillosis (IA) and high mortality rates. Innate immunity is known to be the predominant host defense against A. fumigatus; however, innate phagocyte responses to A. fumigatus in an intact host and their contributions to host survival remain unclear. Here, we describe a larval zebrafish A. fumigatus infection model amenable to real-time imaging of host-fungal interactions in live animals. Following infection with A. fumigatus, innate phagocyte populations exhibit clear preferences for different fungal morphologies: macrophages rapidly phagocytose conidia and form aggregates around hyphae, while the neutrophil response is dependent upon the presence of hyphae. Depletion of macrophages rendered host larvae susceptible to invasive disease. Moreover, a zebrafish model of human leukocyte adhesion deficiency with impaired neutrophil function also resulted in invasive disease and impaired host survival. In contrast, macrophage-deficient but not neutrophil-deficient larvae exhibited attenuated disease following challenge with a less virulent (ΔlaeA) strain of A. fumigatus, which has defects in secondary metabolite production. Taking these results together, we have established a new vertebrate model for studying innate immune responses to A. fumigatus that reveals distinct roles for neutrophils and macrophages in mediating host defense against IA. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. Discriminative analysis of Parkinson's disease based on whole-brain functional connectivity.

    Directory of Open Access Journals (Sweden)

    Yongbin Chen

    Full Text Available Recently, there has been an increasing emphasis on applications of pattern recognition and neuroimaging techniques in the effective and accurate diagnosis of psychiatric or neurological disorders. In the present study, we investigated the whole-brain resting-state functional connectivity patterns of Parkinson's disease (PD, which are expected to provide additional information for the clinical diagnosis and treatment of this disease. First, we computed the functional connectivity between each pair of 116 regions of interest derived from a prior atlas. The most discriminative features based on Kendall tau correlation coefficient were then selected. A support vector machine classifier was employed to classify 21 PD patients with 26 demographically matched healthy controls. This method achieved a classification accuracy of 93.62% using leave-one-out cross-validation, with a sensitivity of 90.47% and a specificity of 96.15%. The majority of the most discriminative functional connections were located within or across the default mode, cingulo-opercular and frontal-parietal networks and the cerebellum. These disease-related resting-state network alterations might play important roles in the pathophysiology of this disease. Our results suggest that analyses of whole-brain resting-state functional connectivity patterns have the potential to improve the clinical diagnosis and treatment evaluation of PD.

  10. Declining functional connectivity and changing hub locations in Alzheimer's disease: an EEG study

    NARCIS (Netherlands)

    Engels, M.M.A.; Stam, C.J.; van der Flier, W.M.; Scheltens, P.; de Waal, H.; van Straaten, E.C.W.

    2015-01-01

    Background: EEG studies have shown that patients with Alzheimer's disease (AD) have weaker functional connectivity than controls, especially in higher frequency bands. Furthermore, active regions seem more prone to AD pathology. How functional connectivity is affected in AD subgroups of disease

  11. Approaching archetypes: reconsidering innateness.

    Science.gov (United States)

    Goodwyn, Erik

    2010-09-01

    The question of innateness has hounded Jungian psychology since Jung originally postulated the archetype as an a priori structure within the psyche. During his life and after his death he was continually accused of Lamarckianism and criticized for his theory that the archetypes existed as prior structures. More recently, with the advent of genetic research and the human genome project, the idea that psychological structures can be innate has come under even harsher criticism even within Jungian thought. There appears to be a growing consensus that Jung's idea of innate psychological structures was misguided, and that perhaps the archetype-as-such should be abandoned for more developmental and 'emergent' theories of the psyche. The purpose of this essay is to question this conclusion, and introduce some literature on psychological innateness that appears relevant to this discussion. © 2010, The Society of Analytical Psychology.

  12. Amygdala EphB2 Signaling Regulates Glutamatergic Neuron Maturation and Innate Fear.

    Science.gov (United States)

    Zhu, Xiao-Na; Liu, Xian-Dong; Zhuang, Hanyi; Henkemeyer, Mark; Yang, Jing-Yu; Xu, Nan-Jie

    2016-09-28

    The amygdala serves as emotional center to mediate innate fear behaviors that are reflected through neuronal responses to environmental aversive cues. However, the molecular mechanism underlying the initial neuron responses is poorly understood. In this study, we monitored the innate defensive responses to aversive stimuli of either elevated plus maze or predator odor in juvenile mice and found that glutamatergic neurons were activated in amygdala. Loss of EphB2, a receptor tyrosine kinase expressed in amygdala neurons, suppressed the reactions and led to defects in spine morphogenesis and fear behaviors. We further found a coupling of spinogenesis with these threat cues induced neuron activation in developing amygdala that was controlled by EphB2. A constitutively active form of EphB2 was sufficient to rescue the behavioral and morphological defects caused by ablation of ephrin-B3, a brain-enriched ligand to EphB2. These data suggest that kinase-dependent EphB2 intracellular signaling plays a major role for innate fear responses during the critical developing period, in which spinogenesis in amygdala glutamatergic neurons was involved. Generation of innate fear responses to threat as an evolutionally conserved brain feature relies on development of functional neural circuit in amygdala, but the molecular mechanism remains largely unknown. We here identify that EphB2 receptor tyrosine kinase, which is specifically expressed in glutamatergic neurons, is required for the innate fear responses in the neonatal brain. We further reveal that EphB2 mediates coordination of spinogenesis and neuron activation in amygdala during the critical period for the innate fear. EphB2 catalytic activity plays a major role for the behavior upon EphB-ephrin-B3 binding and transnucleus neuronal connections. Our work thus indicates an essential synaptic molecular signaling within amygdala that controls synapse development and helps bring about innate fear emotions in the postnatal

  13. Interaction of Streptococcus agalactiae and cellular innate immunity in colonization and disease

    Directory of Open Access Journals (Sweden)

    Sybille eLandwehr-Kenzel

    2014-10-01

    Full Text Available Streptococcus agalactiae (Group B streptococcus, GBS is highly adapted to humans, where it is a normal constituent of the intestinal and vaginal flora. Yet, GBS has highly invasive potential and causes excessive inflammation, sepsis and death at the beginning of life, in the elderly and in diabetic patients. Thus GBS is a model pathobiont that thrives in the healthy host, but has not lost its potential virulence during coevolution with mankind. It remains incompletely understood how the innate immune system contains GBS in the natural niches, the intestinal and genital tracts, and which molecular events underlie breakdown of mucocutaneous resistance. Newborn infants between days seven and 90 of life are at risk of a particularly striking sepsis manifestation (late onset disease, LOD, where the transition from colonization to invasion and dissemination, and thus from health to severe sepsis is typically fulminant and not predictable. The great majority of late-onset sepsis cases is caused by one clone, GBS ST-17, which expresses HvgA as a signature virulence factor and adhesin. In mice, HvgA promotes the crossing of both the mucosal and the blood brain barrier. Expression levels of HvgA and other GBS virulence factors, such as pili and toxins, are regulated by the upstream two-component control system CovR/S. This in turn is modulated by acidic epithelial pH, high glucose levels and during the passage through the mouse intestine. After invasion, GBS has the ability to subvert innate immunity by mechanisms like GAPDH-dependent induction of IL-10 and β-protein binding to the inhibitory phagocyte receptors sialic acid binding immunoglobulin-like lectin 5 and 14. On the host side, sensing of GBS nucleic acids and lipopeptides by both Toll-like receptors (TLRs and the inflammasome appears to be critical for host resistance against GBS. Yet, comprehensive models on the interplay between GBS and human immune cells at the colonizing site are just

  14. Left frontal hub connectivity delays cognitive impairment in autosomal-dominant and sporadic Alzheimer’s disease

    Science.gov (United States)

    Franzmeier, Nicolai; Düzel, Emrah; Jessen, Frank; Buerger, Katharina; Levin, Johannes; Duering, Marco; Dichgans, Martin; Haass, Christian; Suárez-Calvet, Marc; Fagan, Anne M; Paumier, Katrina; Benzinger, Tammie; Masters, Colin L; Morris, John C; Perneczky, Robert; Janowitz, Daniel; Catak, Cihan; Wolfsgruber, Steffen; Wagner, Michael; Teipel, Stefan; Kilimann, Ingo; Ramirez, Alfredo; Rossor, Martin; Jucker, Mathias; Chhatwal, Jasmeer; Spottke, Annika; Boecker, Henning; Brosseron, Frederic; Falkai, Peter; Fliessbach, Klaus; Heneka, Michael T; Laske, Christoph; Nestor, Peter; Peters, Oliver; Fuentes, Manuel; Menne, Felix; Priller, Josef; Spruth, Eike J; Franke, Christiana; Schneider, Anja; Kofler, Barbara; Westerteicher, Christine; Speck, Oliver; Wiltfang, Jens; Bartels, Claudia; Araque Caballero, Miguel Ángel; Metzger, Coraline; Bittner, Daniel; Weiner, Michael; Lee, Jae-Hong; Salloway, Stephen; Danek, Adrian; Goate, Alison; Schofield, Peter R; Bateman, Randall J; Ewers, Michael

    2018-01-01

    Abstract Patients with Alzheimer’s disease vary in their ability to sustain cognitive abilities in the presence of brain pathology. A major open question is which brain mechanisms may support higher reserve capacity, i.e. relatively high cognitive performance at a given level of Alzheimer’s pathology. Higher functional MRI-assessed functional connectivity of a hub in the left frontal cortex is a core candidate brain mechanism underlying reserve as it is associated with education (i.e. a protective factor often associated with higher reserve) and attenuated cognitive impairment in prodromal Alzheimer’s disease. However, no study has yet assessed whether such hub connectivity of the left frontal cortex supports reserve throughout the evolution of pathological brain changes in Alzheimer’s disease, including the presymptomatic stage when cognitive decline is subtle. To address this research gap, we obtained cross-sectional resting state functional MRI in 74 participants with autosomal dominant Alzheimer’s disease, 55 controls from the Dominantly Inherited Alzheimer’s Network and 75 amyloid-positive elderly participants, as well as 41 amyloid-negative cognitively normal elderly subjects from the German Center of Neurodegenerative Diseases multicentre study on biomarkers in sporadic Alzheimer’s disease. For each participant, global left frontal cortex connectivity was computed as the average resting state functional connectivity between the left frontal cortex (seed) and each voxel in the grey matter. As a marker of disease stage, we applied estimated years from symptom onset in autosomal dominantly inherited Alzheimer’s disease and cerebrospinal fluid tau levels in sporadic Alzheimer’s disease cases. In both autosomal dominant and sporadic Alzheimer’s disease patients, higher levels of left frontal cortex connectivity were correlated with greater education. For autosomal dominant Alzheimer’s disease, a significant left frontal cortex connectivity

  15. Magnetic resonance imaging of functional connectivity in Parkinson disease in the resting brain

    International Nuclear Information System (INIS)

    Liu Xian; Liu Bo; Luo Xiaodong; Li Ningna; Chen Zhiguang; Chen Jun

    2009-01-01

    Objective: To investigate functional connectivity changes in Parkinson disease in the resting brain using functional magnetic resonance imaging. Methods: Nine patients with Parkinson disease and eight age-matched healthy volunteers were entered into the study. The bilateral globus pallidus were chosen as seed points, the functional MR data acquired in the resting state were processed to investigate functional connectivity in PD patients and the results were compared with those of the controls. Results: In age-matched healthy controls, there are regions which had functional connectivity with bilateral globus pallidus, including bilateral temporal poles, bilateral hippocampus, bilateral thalami, posterior cingulate cortex, right middle occipital gyms and right superior parietal gyms. In PD patients, brain regions including bilateral cerebellum, left hippocampus, bilateral superior temporal gyri, left inferior frontal gyrus, left middle frontal gyrus, left precentral gyrus, left inferior parietal gyrus and left superior parietal gyrus, had functional connectivity with bilateral globus pallidus. Compared to healthy controls, increased functional connectivity in bilateral cerebellum, bilateral temporal lobes, left frontal lobe and left parietal lobe, and decreased functional connectivity in bilateral thalami were observed in PD patients. Conclusion: Abnormal changes of brain functional connectivity exists in Parkinson's disease in the resting state. (authors)

  16. Type 2 Innate Lymphoid Cells: Friends or Foes—Role in Airway Allergic Inflammation and Asthma

    Science.gov (United States)

    Pishdadian, Abbas; Varasteh, Abdol-Reza; Sankian, Mojtaba

    2012-01-01

    Innate-like lymphocytes (ILLs) and innate lymphoid cells (ILCs) are two newly characterized families of lymphocytes with limited and no rearranged antigen receptors, respectively. These soldiers provide a first line of defense against foreign insults by triggering a prompt innate immune response and bridging the gap of innate and adaptive immunity. Type 2 innate lymphoid cells (ILCs2) are newly identified members of the ILC family that play a key role in type 2 immune responses by prompt production of type 2 cytokines (especially IL-5 and IL-13) in response to antigen-induced IL-25/33 and by recruiting type 2 “immune franchise.” Regarding the two different roles of type 2 cytokines, helminth expulsion and type 2-related diseases, here we review the latest advances in ILC2 biology and examine the pivotal role of resident ILCs2 in allergen-specific airway inflammation and asthma. PMID:23209480

  17. Human innate lymphoid cells

    NARCIS (Netherlands)

    Hazenberg, Mette D.; Spits, Hergen

    2014-01-01

    Innate lymphoid cells (ILCs) are lymphoid cells that do not express rearranged receptors and have important effector and regulatory functions in innate immunity and tissue remodeling. ILCs are categorized into 3 groups based on their distinct patterns of cytokine production and the requirement of

  18. Selective reactivation of human herpesvirus 6 in patients with autoimmune connective tissue diseases.

    Science.gov (United States)

    Broccolo, Francesco; Drago, Francesco; Cassina, Giulia; Fava, Andrea; Fusetti, Lisa; Matteoli, Barbara; Ceccherini-Nelli, Luca; Sabbadini, Maria Grazia; Lusso, Paolo; Parodi, Aurora; Malnati, Mauro S

    2013-11-01

    Viral infections have been associated with autoimmune connective tissue diseases. To evaluate whether active infection by Epstein-Barr virus (EBV), cytomegalovirus (CMV), human herpesvirus (HHV)-6, -7, -8, as well as parvovirus B19 (B19V) occur in patients with autoimmune connective tissue diseases, viral DNA loads were assessed in paired samples of serum and peripheral blood mononuclear cells (PBMCs) of 115 patients affected by different disorders, including systemic sclerosis, systemic, and discoid lupus erythematosus, rheumatoid arthritis, and dermatomyositis. Two additional groups, patients affected by inflammatory diseases (n=51) and healthy subjects (n=58) were studied as controls. The titers of anti-HHV-6 and anti-EBV antibodies were also evaluated. Cell-free HHV-6 serum viremia was detected in a significantly higher proportion of connective tissue diseases patients compared to controls (Preactivation and the active disease state was found only for lupus erythematosus (P=0.021). By contrast, the rate of cell-free EBV viremia was similar in patients and controls groups. Cell-free CMV, HHV-8, and B19V viremia was not detected in any subject. Anti-HHV-6 and anti-EBV early antigen IgG titers were both significantly higher in autoimmune diseases patients as compared to healthy controls, although they were not associated with the presence of viremia. EBV, HHV-6, -7 prevalence and viral load in PBMCs of patients with connective tissue diseases and controls were similar. These data suggest that HHV-6 may act as a pathogenic factor predisposing patients to the development of autoimmune connective tissue diseases or, conversely, that these disorders may predispose patients to HHV-6 reactivation. © 2013 Wiley Periodicals, Inc.

  19. Microglia and Beyond: Innate Immune Cells As Regulators of Brain Development and Behavioral Function

    Directory of Open Access Journals (Sweden)

    Kathryn M. Lenz

    2018-04-01

    Full Text Available Innate immune cells play a well-documented role in the etiology and disease course of many brain-based conditions, including multiple sclerosis, Alzheimer’s disease, traumatic brain and spinal cord injury, and brain cancers. In contrast, it is only recently becoming clear that innate immune cells, primarily brain resident macrophages called microglia, are also key regulators of brain development. This review summarizes the current state of knowledge regarding microglia in brain development, with particular emphasis on how microglia during development are distinct from microglia later in life. We also summarize the effects of early life perturbations on microglia function in the developing brain, the role that biological sex plays in microglia function, and the potential role that microglia may play in developmental brain disorders. Finally, given how new the field of developmental neuroimmunology is, we highlight what has yet to be learned about how innate immune cells shape the development of brain and behavior.

  20. Microglia and Beyond: Innate Immune Cells As Regulators of Brain Development and Behavioral Function.

    Science.gov (United States)

    Lenz, Kathryn M; Nelson, Lars H

    2018-01-01

    Innate immune cells play a well-documented role in the etiology and disease course of many brain-based conditions, including multiple sclerosis, Alzheimer's disease, traumatic brain and spinal cord injury, and brain cancers. In contrast, it is only recently becoming clear that innate immune cells, primarily brain resident macrophages called microglia, are also key regulators of brain development. This review summarizes the current state of knowledge regarding microglia in brain development, with particular emphasis on how microglia during development are distinct from microglia later in life. We also summarize the effects of early life perturbations on microglia function in the developing brain, the role that biological sex plays in microglia function, and the potential role that microglia may play in developmental brain disorders. Finally, given how new the field of developmental neuroimmunology is, we highlight what has yet to be learned about how innate immune cells shape the development of brain and behavior.

  1. Group 3 innate lymphoid cells accumulate and exhibit disease-induced activation in the meninges in EAE.

    Science.gov (United States)

    Hatfield, Julianne K; Brown, Melissa A

    2015-10-01

    Innate lymphoid cells are immune cells that reside in tissues that interface with the external environment and contribute to the first line defense against pathogens. However, they also have roles in promoting chronic inflammation. Here we demonstrate that group 3 ILCs, (ILC3s - CD45+Lin-IL-7Rα+RORγt+), are normal residents of the meninges and exhibit disease-induced accumulation and activation in EAE. In addition to production of the pro-inflammatory cytokines IL-17 and GM-CSF, ILC3s constitutively express CD30L and OX40L, molecules required for memory T cell survival. We show that disease-induced trafficking of transferred wild type T cells to the meninges is impaired in ILC3-deficient Rorc-/- mice. Furthermore, lymphoid tissue inducer cells, a c-kit+ ILC3 subset that promotes ectopic lymphoid follicle development, a hallmark of many autoimmune diseases, are reduced in the meninges of EAE-resistant c-kit mutant Kit(W/Wv) mice. We propose that ILC3s sustain neuroinflammation by supporting T cell survival and reactivation in the meninges. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Disease Definition for Schizophrenia by Functional Connectivity Using Radiomics Strategy.

    Science.gov (United States)

    Cui, Long-Biao; Liu, Lin; Wang, Hua-Ning; Wang, Liu-Xian; Guo, Fan; Xi, Yi-Bin; Liu, Ting-Ting; Li, Chen; Tian, Ping; Liu, Kang; Wu, Wen-Jun; Chen, Yi-Huan; Qin, Wei; Yin, Hong

    2018-02-17

    Specific biomarker reflecting neurobiological substrates of schizophrenia (SZ) is required for its diagnosis and treatment selection of SZ. Evidence from neuroimaging has implicated disrupted functional connectivity in the pathophysiology. We aimed to develop and validate a method of disease definition for SZ by resting-state functional connectivity using radiomics strategy. This study included 2 data sets collected with different scanners. A total of 108 first-episode SZ patients and 121 healthy controls (HCs) participated in the current study, among which 80% patients and HCs (n = 183) and 20% (n = 46) were selected for training and testing in intra-data set validation and 1 of the 2 data sets was selected for training and the other for testing in inter-data set validation, respectively. Functional connectivity was calculated for both groups, features were selected by Least Absolute Shrinkage and Selection Operator (LASSO) method, and the clinical utility of its features and the generalizability of effects across samples were assessed using machine learning by training and validating multivariate classifiers in the independent samples. We found that the accuracy of intra-data set training was 87.09% for diagnosing SZ patients by applying functional connectivity features, with a validation in the independent replication data set (accuracy = 82.61%). The inter-data set validation further confirmed the disease definition by functional connectivity features (accuracy = 83.15% for training and 80.07% for testing). Our findings demonstrate a valid radiomics approach by functional connectivity to diagnose SZ, which is helpful to facilitate objective SZ individualized diagnosis using quantitative and specific functional connectivity biomarker.

  3. Hepatitis C, innate immunity and alcohol: friends or foes?

    Science.gov (United States)

    Osna, Natalia A; Ganesan, Murali; Kharbanda, Kusum K

    2015-02-05

    Hepatitis C and alcohol are the most widespread causes of liver disease worldwide. Approximately 80% of patients with a history of hepatitis C and alcohol abuse develop chronic liver injury. Alcohol consumption in hepatitis C virus (HCV)-infected patients exacerbates liver disease leading to rapid progression of fibrosis, cirrhosis and even hepatocellular carcinoma. Hepatocytes are the main sites of HCV-infection and ethanol metabolism, both of which generate oxidative stress. Oxidative stress levels affect HCV replication and innate immunity, resulting in a greater susceptibility for HCV-infection and virus spread in the alcoholic patients. In this review paper, we analyze the effects of ethanol metabolism and other factors on HCV replication. In addition, we illustrate the mechanisms of how HCV hijacks innate immunity and how ethanol exposure regulates this process. We also clarify the effects of HCV and ethanol metabolism on interferon signaling-a crucial point for activation of anti-viral genes to protect cells from virus-and the role that HCV- and ethanol-induced impairments play in adaptive immunity which is necessary for recognition of virally-infected hepatocytes. In conclusion, ethanol exposure potentiates the suppressive effects of HCV on innate immunity, which activates viral spread in the liver and finally, leads to impairments in adaptive immunity. The dysregulation of immune response results in impaired elimination of HCV-infected cells, viral persistence, progressive liver damage and establishment of chronic infection that worsens the outcomes of chronic hepatitis C in alcoholic patients.

  4. Hepatitis C, Innate Immunity and Alcohol: Friends or Foes?

    Directory of Open Access Journals (Sweden)

    Natalia A. Osna

    2015-02-01

    Full Text Available Hepatitis C and alcohol are the most widespread causes of liver disease worldwide. Approximately 80% of patients with a history of hepatitis C and alcohol abuse develop chronic liver injury. Alcohol consumption in hepatitis C virus (HCV-infected patients exacerbates liver disease leading to rapid progression of fibrosis, cirrhosis and even hepatocellular carcinoma. Hepatocytes are the main sites of HCV-infection and ethanol metabolism, both of which generate oxidative stress. Oxidative stress levels affect HCV replication and innate immunity, resulting in a greater susceptibility for HCV-infection and virus spread in the alcoholic patients. In this review paper, we analyze the effects of ethanol metabolism and other factors on HCV replication. In addition, we illustrate the mechanisms of how HCV hijacks innate immunity and how ethanol exposure regulates this process. We also clarify the effects of HCV and ethanol metabolism on interferon signaling—a crucial point for activation of anti-viral genes to protect cells from virus—and the role that HCV- and ethanol-induced impairments play in adaptive immunity which is necessary for recognition of virally-infected hepatocytes. In conclusion, ethanol exposure potentiates the suppressive effects of HCV on innate immunity, which activates viral spread in the liver and finally, leads to impairments in adaptive immunity. The dysregulation of immune response results in impaired elimination of HCV-infected cells, viral persistence, progressive liver damage and establishment of chronic infection that worsens the outcomes of chronic hepatitis C in alcoholic patients.

  5. Habenula and interpeduncular nucleus differentially modulate predator odor-induced innate fear behavior in rats.

    Science.gov (United States)

    Vincenz, Daniel; Wernecke, Kerstin E A; Fendt, Markus; Goldschmidt, Jürgen

    2017-08-14

    Fear is an important behavioral system helping humans and animals to survive potentially dangerous situations. Fear can be innate or learned. Whereas the neural circuits underlying learned fear are already well investigated, the knowledge about the circuits mediating innate fear is still limited. We here used a novel, unbiased approach to image in vivo the spatial patterns of neural activity in odor-induced innate fear behavior in rats. We intravenously injected awake unrestrained rats with a 99m-technetium labeled blood flow tracer (99mTc-HMPAO) during ongoing exposure to fox urine or water as control, and mapped the brain distribution of the trapped tracer using single-photon emission computed tomography (SPECT). Upon fox urine exposure blood flow increased in a number of brain regions previously associated with odor-induced innate fear such as the amygdala, ventromedial hypothalamus and dorsolateral periaqueductal grey, but, unexpectedly, decreased at higher significance levels in the interpeduncular nucleus (IPN). Significant flow changes were found in regions monosynaptically connected to the IPN. Flow decreased in the dorsal tegmentum and entorhinal cortex. Flow increased in the habenula (Hb) and correlated with odor effects on behavioral defensive strategy. Hb lesions reduced avoidance of but increased approach to the fox urine while IPN lesions only reduced avoidance behavior without approach behavior. Our study identifies a new component, the IPN, of the neural circuit mediating odor-induced innate fear behavior in mammals and suggests that the evolutionarily conserved Hb-IPN system, which has recently been implicated in cued fear, also forms an integral part of the innate fear circuitry. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Guards at the gate: physiological and pathological roles of tissue-resident innate lymphoid cells in the lung.

    Science.gov (United States)

    Cheng, Hang; Jin, Chengyan; Wu, Jing; Zhu, Shan; Liu, Yong-Jun; Chen, Jingtao

    2017-12-01

    The lung is an important open organ and the primary site of respiration. Many life-threatening diseases develop in the lung, e.g., pneumonia, asthma, chronic obstructive pulmonary diseases (COPDs), pulmonary fibrosis, and lung cancer. In the lung, innate immunity serves as the frontline in both anti-irritant response and anti-tumor defense and is also critical for mucosal homeostasis; thus, it plays an important role in containing these pulmonary diseases. Innate lymphoid cells (ILCs), characterized by their strict tissue residence and distinct function in the mucosa, are attracting increased attention in innate immunity. Upon sensing the danger signals from damaged epithelium, ILCs activate, proliferate, and release numerous cytokines with specific local functions; they also participate in mucosal immune-surveillance, immune-regulation, and homeostasis. However, when their functions become uncontrolled, ILCs can enhance pathological states and induce diseases. In this review, we discuss the physiological and pathological functions of ILC subsets 1 to 3 in the lung, and how the pathogenic environment affects the function and plasticity of ILCs.

  7. Innate lymphoid cells: the role in respiratory infections and lung tissue damage.

    Science.gov (United States)

    Głobińska, Anna; Kowalski, Marek L

    2017-10-01

    Innate lymphoid cells (ILCs) represent a diverse family of cells of the innate immune system, which play an important role in regulation of tissue homeostasis, immunity and inflammation. Emerging evidence has highlighted the importance of ILCs in both protective immunity to respiratory infections and their pathological roles in the lungs. Therefore, the aim of this review is to summarize the current knowledge, interpret and integrate it into broader perspective, enabling greater insight into the role of ILCs in respiratory diseases. Areas covered: In this review we highlighted the role of ILCs in the lungs, citing the most recent studies in this area. PubMed searches (2004- July 2017) were conducted using the term 'innate lymphoid cells respiratory viral infections' in combination with other relevant terms including various respiratory viruses. Expert commentary: Since studies of ILCs have opened new areas of investigation, understanding the role of ILCs in respiratory infections may help to clarify the mechanisms underlying viral-induced exacerbations of lung diseases, providing the basis for novel therapeutic strategies. Potential therapeutic targets have already been identified. So far, the most promising strategy is cytokine-targeting, although further clinical trials are needed to verify its effectiveness.

  8. l-Dopa responsiveness is associated with distinctive connectivity patterns in advanced Parkinson's disease.

    Science.gov (United States)

    Akram, Harith; Wu, Chengyuan; Hyam, Jonathan; Foltynie, Thomas; Limousin, Patricia; De Vita, Enrico; Yousry, Tarek; Jahanshahi, Marjan; Hariz, Marwan; Behrens, Timothy; Ashburner, John; Zrinzo, Ludvic

    2017-06-01

    Neuronal loss and dopamine depletion alter motor signal processing between cortical motor areas, basal ganglia, and the thalamus, resulting in the motor manifestations of Parkinson's disease. Dopamine replacement therapy can reverse these manifestations with varying degrees of improvement. To evaluate functional connectivity in patients with advanced Parkinson's disease and changes in functional connectivity in relation to the degree of response to l-dopa, 19 patients with advanced Parkinson's disease underwent resting-state functional magnetic resonance imaging in the on-medication state. Scans were obtained on a 3-Tesla scanner in 3 × 3 × 2.5 mm 3 voxels. Seed-based bivariate regression analyses were carried out with atlas-defined basal ganglia regions as seeds, to explore relationships between functional connectivity and improvement in the motor section of the UPDRS-III following an l-dopa challenge. False discovery rate-corrected P was set at basal ganglia resting-state functional connectivity patterns associated with different degrees of l-dopa responsiveness in patients with advanced Parkinson's disease. l-Dopa exerts a graduated influence on remapping connectivity in distinct motor control networks, potentially explaining some of the variance in treatment response. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  9. Salt, chloride, bleach, and innate host defense

    Science.gov (United States)

    Wang, Guoshun; Nauseef, William M.

    2015-01-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. PMID:26048979

  10. Salt, chloride, bleach, and innate host defense.

    Science.gov (United States)

    Wang, Guoshun; Nauseef, William M

    2015-08-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. © Society for Leukocyte Biology.

  11. IgG4-related disease and its pathogenesis—cross-talk between innate and acquired immunity

    Science.gov (United States)

    Nakajima, Akio; Nakamura, Takuji; Kawanami, Takafumi; Tanaka, Masao; Dong, Lingli; Kawano, Mitsuhiro

    2014-01-01

    IgG4-related disease (IgG4-RD) is a novel clinical entity proposed in Japan in the 21th century and is attracting strong attention over the world. The characteristic manifestations of IgG4-RD are increased serum IgG4 concentration and tumefaction by IgG4+ plasma cells. Although the clinical manifestations in various organs have been established, the pathogenesis of IgG4-RD is still unknown. Recently, many reports of aberrant acquired immunity such as Th2-diminated immune responses have been published. However, many questions still remain, including questions about the pathogenesis of IgG4-RD and the roles of IgG4. In this review, we discuss the pathogenesis of IgG4-RD by focusing on the cross-talk between innate and acquired immunity. PMID:25024397

  12. Innate lymphoid cells at the interface between obesity and asthma.

    Science.gov (United States)

    Everaere, Laetitia; Ait Yahia, Saliha; Bouté, Mélodie; Audousset, Camille; Chenivesse, Cécile; Tsicopoulos, Anne

    2018-01-01

    Obesity and asthma prevalence has dramatically and concomitantly increased over the last 25 years, and many epidemiological studies have highlighted obesity as an important risk factor for asthma. Although many studies have been performed, the underlying mechanisms remain poorly understood. Innate mechanisms have been involved in both diseases, in particular through the recently described innate lymphoid cells (ILCs). ILCs are subdivided into three groups that are defined by their cytokine production and by their master transcription factor expression, in sharp correlation with their T helper counterparts. However, unlike T helper cells, ILCs do not express antigen-specific receptors, but respond to damage-induced signals. ILCs have been found in target tissues of both diseases, and data have implicated these cells in the pathogenesis of both diseases. In particular group 2 ILCs (ILC2) are activated in both the adipose and lung tissues under the effect of interleukin-33 and interleukin-25 expression. However, counter-intuitively to the well-known association between obesity and asthma, ILC2 are beneficial for obesity but deleterious for asthma. This review will examine the roles of ILCs in each disease and recent data highlighting ILCs as a putative link between obesity and asthma. © 2017 John Wiley & Sons Ltd.

  13. Cross Talk Between Brain Innate Immunity and Serotonin Signaling Underlies Depressive-Like Behavior Induced by Alzheimer's Amyloid-β Oligomers in Mice.

    Science.gov (United States)

    Ledo, Jose Henrique; Azevedo, Estefania P; Beckman, Danielle; Ribeiro, Felipe C; Santos, Luis E; Razolli, Daniela S; Kincheski, Grasielle C; Melo, Helen M; Bellio, Maria; Teixeira, Antonio L; Velloso, Licio A; Foguel, Debora; De Felice, Fernanda G; Ferreira, Sergio T

    2016-11-30

    Considerable clinical and epidemiological evidence links Alzheimer's disease (AD) and depression. However, the molecular mechanisms underlying this connection are largely unknown. We reported recently that soluble Aβ oligomers (AβOs), toxins that accumulate in AD brains and are thought to instigate synapse damage and memory loss, induce depressive-like behavior in mice. Here, we report that the mechanism underlying this action involves AβO-induced microglial activation, aberrant TNF-α signaling, and decreased brain serotonin levels. Inactivation or ablation of microglia blocked the increase in brain TNF-α and abolished depressive-like behavior induced by AβOs. Significantly, we identified serotonin as a negative regulator of microglial activation. Finally, AβOs failed to induce depressive-like behavior in Toll-like receptor 4-deficient mice and in mice harboring a nonfunctional TLR4 variant in myeloid cells. Results establish that AβOs trigger depressive-like behavior via a double impact on brain serotonin levels and microglial activation, unveiling a cross talk between brain innate immunity and serotonergic signaling as a key player in mood alterations in AD. Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia in the world. Brain accumulation of amyloid-β oligomers (AβOs) is a major feature in the pathogenesis of AD. Although clinical and epidemiological data suggest a strong connection between AD and depression, the underlying mechanisms linking these two disorders remain largely unknown. Here, we report that aberrant activation of the brain innate immunity and decreased serotonergic tonus in the brain are key players in AβO-induced depressive-like behavior in mice. Our findings may open up new possibilities for the development of effective therapeutics for AD and depression aimed at modulating microglial function. Copyright © 2016 the authors 0270-6474/16/3612106-11$15.00/0.

  14. Early interferon-γ production in human lymphocyte subsets in response to nontyphoidal Salmonella demonstrates inherent capacity in innate cells.

    Directory of Open Access Journals (Sweden)

    Tonney S Nyirenda

    2010-10-01

    Full Text Available Nontyphoidal Salmonellae frequently cause life-threatening bacteremia in sub-Saharan Africa. Young children and HIV-infected adults are particularly susceptible. High case-fatality rates and increasing antibiotic resistance require new approaches to the management of this disease. Impaired cellular immunity caused by defects in the T helper 1 pathway lead to intracellular disease with Salmonella that can be countered by IFNγ administration. This report identifies the lymphocyte subsets that produce IFNγ early in Salmonella infection.Intracellular cytokine staining was used to identify IFNγ production in blood lymphocyte subsets of ten healthy adults with antibodies to Salmonella (as evidence of immunity to Salmonella, in response to stimulation with live and heat-killed preparations of the D23580 invasive African isolate of Salmonella Typhimurium. The absolute number of IFNγ-producing cells in innate, innate-like and adaptive lymphocyte subpopulations was determined.Early IFNγ production was found in the innate/innate-like lymphocyte subsets: γδ-T cells, NK cells and NK-like T cells. Significantly higher percentages of such cells produced IFNγ compared to adaptive αβ-T cells (Student's t test, P<0.001 and ≤0.02 for each innate subset compared, respectively, with CD4(+- and CD8(+-T cells. The absolute numbers of IFNγ-producing cells showed similar differences. The proportion of IFNγ-producing γδ-T cells, but not other lymphocytes, was significantly higher when stimulated with live compared with heat-killed bacteria (P<0.0001.Our findings indicate an inherent capacity of innate/innate-like lymphocyte subsets to produce IFNγ early in the response to Salmonella infection. This may serve to control intracellular infection and reduce the threat of extracellular spread of disease with bacteremia which becomes life-threatening in the absence of protective antibody. These innate cells may also help mitigate against the effect on IFN

  15. Divergent Roles of Interferon-γ and Innate Lymphoid Cells in Innate and Adaptive Immune Cell-Mediated Intestinal Inflammation.

    Science.gov (United States)

    Brasseit, Jennifer; Kwong Chung, Cheong K C; Noti, Mario; Zysset, Daniel; Hoheisel-Dickgreber, Nina; Genitsch, Vera; Corazza, Nadia; Mueller, Christoph

    2018-01-01

    Aberrant interferon gamma (IFNγ) expression is associated with the pathogenesis of numerous autoimmune- and inflammatory disorders, including inflammatory bowel diseases (IBD). However, the requirement of IFNγ for the pathogenesis of chronic intestinal inflammation remains controversial. The aim of this study was thus to investigate the role of IFNγ in experimental mouse models of innate and adaptive immune cell-mediated intestinal inflammation using genetically and microbiota-stabilized hosts. While we find that IFNγ drives acute intestinal inflammation in the anti-CD40 colitis model in an innate lymphoid cell (ILC)-dependent manner, IFNγ secreted by both transferred CD4 T cells and/or cells of the lymphopenic Rag1 -/- recipient mice was dispensable for CD4 T cell-mediated colitis. In the absence of IFNγ, intestinal inflammation in CD4 T cell recipient mice was associated with enhanced IL17 responses; consequently, targeting IL17 signaling in IFNγ-deficient mice reduced T cell-mediated colitis. Intriguingly, in contrast to the anti-CD40 model of colitis, depletion of ILC in the Rag1 -/- recipients of colitogenic CD4 T cells did not prevent induction of colonic inflammation. Together, our findings demonstrate that IFNγ represents an essential, or a redundant, pro-inflammatory cytokine for the induction of intestinal inflammation, depending on the experimental mouse model used and on the nature of the critical disease inducing immune cell populations involved.

  16. Xenobiotic Receptor-Mediated Regulation of Intestinal Barrier Function and Innate Immunity

    Directory of Open Access Journals (Sweden)

    Harmit S. Ranhotra

    2016-07-01

    Full Text Available The molecular basis for the regulation of the intestinal barrier is a very fertile research area. A growing body of knowledge supports the targeting of various components of intestinal barrier function as means to treat a variety of diseases, including the inflammatory bowel diseases. Herein, we will summarize the current state of knowledge of key xenobiotic receptor regulators of barrier function, highlighting recent advances, such that the field and its future are succinctly reviewed. We posit that these receptors confer an additional dimension of host-microbe interaction in the gut, by sensing and responding to metabolites released from the symbiotic microbiota, in innate immunity and also in host drug metabolism. The scientific evidence for involvement of the receptors and its molecular basis for the control of barrier function and innate immunity regulation would serve as a rationale towards development of non-toxic probes and ligands as drugs.

  17. Innate immunity in vertebrates: an overview.

    Science.gov (United States)

    Riera Romo, Mario; Pérez-Martínez, Dayana; Castillo Ferrer, Camila

    2016-06-01

    Innate immunity is a semi-specific and widely distributed form of immunity, which represents the first line of defence against pathogens. This type of immunity is critical to maintain homeostasis and prevent microbe invasion, eliminating a great variety of pathogens and contributing with the activation of the adaptive immune response. The components of innate immunity include physical and chemical barriers, humoral and cell-mediated components, which are present in all jawed vertebrates. The understanding of innate defence mechanisms in non-mammalian vertebrates is the key to comprehend the general picture of vertebrate innate immunity and its evolutionary history. This is also essential for the identification of new molecules with applications in immunopharmacology and immunotherapy. In this review, we describe and discuss the main elements of vertebrate innate immunity, presenting core findings in this field and identifying areas that need further investigation. © 2016 John Wiley & Sons Ltd.

  18. Innate immunity and the sensing of infection, damage and danger in the female genital tract.

    Science.gov (United States)

    Sheldon, Iain Martin; Owens, Siân-Eleri; Turner, Matthew Lloyd

    2017-02-01

    Tissue homeostasis in the female genital tract is challenged by infection, damage, and even physiological events during reproductive cycles. We propose that the evolutionarily ancient system of innate immunity is sufficient to sense and respond to danger in the non-pregnant female genital tract. Innate immunity produces a rapidly inducible, non-specific response when cells sense danger. Here we provide a primer on innate immunity and discuss what is known about how danger signals are sensed in the endometrium and ovary, the impact of inflammatory responses on reproduction, and how endocrinology and innate immunity are integrated. Endometrial epithelial and stromal cells, and ovarian granulosa cells express pattern recognition receptors, similar to cells of the innate immune system. These pattern recognition receptors, such as the Toll-like receptors, bind pathogen-associated or damage-associated molecular patterns. Activation of pattern recognition receptors leads to inflammation, recruitment of immune cells from the peripheral circulation, and phagocytosis. Although the inflammatory response helps maintain or restore endometrial health, there may also be negative consequences for fertility, including perturbation of oocyte competence. The intensity of the inflammatory response reflects the balance between the level of danger and the systems that regulate innate immunity, including the endocrine environment. Understanding innate immunity is important because disease and inappropriate inflammatory responses in the endometrium or ovary cause infertility. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Leishmania infantum and Leishmania braziliensis: differences and similarities to evade the innate immune system

    Directory of Open Access Journals (Sweden)

    Sarah Athayde Couto Falcão

    2016-08-01

    Full Text Available Visceral Leishmaniasis is a severe form of the disease, caused by Leishmania infantum in the New World. Patients present an anergic immune response that favors parasite establishment and spreading through tissues like bone marrow and liver. On the other hand, Leishmania braziliensis causes localized cutaneous lesions, which can be self healing in some individuals. Interactions between host and parasite are essential to understand disease pathogenesis and progression. In this context, dendritic cells (DCs act as essential bridges that connect innate and adaptive immune responses. In this way, the aim of this study was to compare the effects of these two Leishmania species, in some aspects of human dendritic cells biology to better understanding of the evasion mechanisms of Leishmania from host innate immune response. To do so, DCs were obtained from monocytes from whole peripheral blood’s healthy volunteers donors and infected with L. infantum or L. braziliensis for 24 hours. We observed similar rates of infection (around 40% as well as parasite burden for both Leishmania species. Concerning surface molecules, we observed that both parasites induced CD86 expression when DCs were infected for 24h. On the other hand, we detected a lower surface expression of CD209 in the presence of both L. braziliensis and L. infantum, but only the last one promoted the survival of dendritic cells after 24 hours. Therefore, DCs infected by both Leishmania species showed a higher expression of CD86 and a decrease of CD209 expression, suggesting that both enter DCs through CD209 molecule. However, only L. infantum had the ability to inhibit DC apoptotic death, as an evasion mechanism that enables its spreading to organs like bone marrow and liver. Lastly, L. braziliensis was more silent parasite, once it did not inhibit DC apoptosis in our in vitro model.

  20. Autoimmune connective tissue diseases and vaccination

    Directory of Open Access Journals (Sweden)

    Ewa Więsik-Szewczyk

    2015-12-01

    Full Text Available The idea that infectious agents can induce autoimmune diseases in genetically susceptible subjects has been a matter of discussion for years. Moreover, increased incidence of autoimmune diseases and introduction of prophylactic vaccinations from early childhood suggest that these two trends are linked. In the medical literature and even non-professional media, case reports or events temporally related to vaccination are reported. It raises the issue of vaccination safety. In everyday practice medical professionals, physicians, rheumatologists and other specialists will be asked their opinion of vaccination safety. The decision should be made according to evidence-based medicine and the current state of knowledge. The purpose of this paper is to discuss a potential mechanism which links infections, vaccinations and autoimmunity. We present an overview of published case reports, especially of systemic connective tissue diseases temporally related to vaccination and results from case-nested studies. As yet, no conclusive evidence supports a causal relationship between vaccination and autoimmune diseases. It has to be determined whether the performed studies are sufficiently Epsteinasensitive to detect the link. The debate is ongoing, and new data may be required to explain the pathogenesis of autoimmunity. We would like to underscore the need for prophylactic vaccination in patients with autoimmune rheumatic diseases and to break down the myth that the vaccines are contraindicated in this target group.

  1. Experimental Chagas disease in Balb/c mice previously vaccinated with T. rangeli. II. The innate immune response shows immunological memory: reality or fiction?

    Science.gov (United States)

    Basso, B; Marini, V

    2015-03-01

    Trypanosoma cruzi is a real challenge to the host's immune system, because it requires strong humoral and cellular immune response to remove circulating trypomastigote forms, and to prevent the replication of amastigote forms in tissues, involving many regulator and effector components. This protozoan is responsible for Chagas disease, a major public health problem in Latinamerica. We have developed a model of vaccination with Trypanosoma rangeli, a parasite closely related to T. cruzi, but nonpathogenic to humans, which reduces the infectiousness in three different species of animals, mice, dogs and guinea pigs, against challenge with T. cruzi. In a previous work, we demonstrated that mice vaccinated with T. rangeli showed important soluble mediators that stimulate phagocytic activity versus only infected groups. The aim of this work was to study the innate immune response in mice vaccinated or not with T. rangeli. Different population cells and some soluble mediators (cytokines) in peritoneal fluid and plasma in mice vaccinated-infected and only infected with T. cruzi were studied. In the first hours of challenge vaccinated mice showed an increase of macrophages, NK, granulocytes, and regulation of IL6, IFNγ, TNFα and IL10, with an increase of IL12, with respect to only infected mice. Furthermore an increase was observed of Li T, Li B responsible for adaptative response. Finally the findings showed that the innate immune response plays an important role in vaccinated mice for the early elimination of the parasites, complementary with the adaptative immune response, suggesting that vaccination with T. rangeli modulates the innate response, which develops some kind of immunological memory, recognizing shared antigens with T. cruzi. These results could contribute to the knowledge of new mechanisms which would have an important role in the immune response to Chagas disease. Copyright © 2014 Elsevier GmbH. All rights reserved.

  2. Functional Differences between Human NKp44(-) and NKp44(+) RORC(+) Innate Lymphoid Cells.

    Science.gov (United States)

    Hoorweg, Kerim; Peters, Charlotte P; Cornelissen, Ferry; Aparicio-Domingo, Patricia; Papazian, Natalie; Kazemier, Geert; Mjösberg, Jenny M; Spits, Hergen; Cupedo, Tom

    2012-01-01

    Human RORC(+) lymphoid tissue inducer cells are part of a rapidly expanding family of innate lymphoid cells (ILC) that participate in innate and adaptive immune responses as well as in lymphoid tissue (re) modeling. The assessment of a potential role for innate lymphocyte-derived cytokines in human homeostasis and disease is hampered by a poor characterization of RORC(+) innate cell subsets and a lack of knowledge on the distribution of these cells in adults. Here we show that functionally distinct subsets of human RORC(+) innate lymphoid cells are enriched for secretion of IL-17a or IL-22. Both subsets have an activated phenotype and can be distinguished based on the presence or absence of the natural cytotoxicity receptor NKp44. NKp44(+) IL-22 producing cells are present in tonsils while NKp44(-) IL-17a producing cells are present in fetal developing lymph nodes. Development of human intestinal NKp44(+) ILC is a programmed event that is independent of bacterial colonization and these cells colonize the fetal intestine during the first trimester. In the adult intestine, NKp44(+) ILC are the main ILC subset producing IL-22. NKp44(-) ILC remain present throughout adulthood in peripheral non-inflamed lymph nodes as resting, non-cytokine producing cells. However, upon stimulation lymph node ILC can swiftly initiate cytokine transcription suggesting that secondary human lymphoid organs may function as a reservoir for innate lymphoid cells capable of participating in inflammatory responses.

  3. Spontaneous and X-ray induced chromosomal aberrations in selected connective tissue diseases

    International Nuclear Information System (INIS)

    Burkhardt, W.C.; Jackson, J.F.; Songcharoen, S.; Meydrech, E.F.

    1980-01-01

    Chromosome studies were performed on peripheral blood lymphocytes of 28 patients with connective tissue disease (6 with progressive systemic sclerosis, 6 with systemic lupus erythematosus, 6 with anti-nuclear antibody positive rheumatoid arthritis, 6 with anti-nuclear antibody negative rheumatoid arthritis, and 4 with mixed connective tissue disease) and on 17 controls to determine the frequency of spontaneous as well as X-ray (75 rads) induced aberrations. The mean spontaneous chromosomal aberration frequency for the 28 patients (9.1%) was significantly (P=0.038) greater than that of controls (6.4%). When patients were categorized into specific clinically designated connective tissue disease subdivisions for comparison with the controls, only X-irradiated cells from the progressive systemic sclerosis group displayed significantly elevated levels of total chromosomal aberrations over those of the control group. The X-irradiated lymphocytes from these patients had an average of 23.6% aberrations per patient, while those of the control group showed an average of 14.9% per patient (P<0.05). (author)

  4. Spontaneous and X-ray induced chromosomal aberrations in selected connective tissue diseases

    Energy Technology Data Exchange (ETDEWEB)

    Burkhardt, W C; Jackson, J F; Songcharoen, S; Meydrech, E F [Mississippi Univ., Jackson (USA). Medical Center

    1980-01-01

    Chromosome studies were performed on peripheral blood lymphocytes of 28 patients with connective tissue disease (6 with progressive systemic sclerosis, 6 with systemic lupus erythematosus, 6 with anti-nuclear antibody positive rheumatoid arthritis, 6 with anti-nuclear antibody negative rheumatoid arthritis, and 4 with mixed connective tissue disease) and on 17 controls to determine the frequency of spontaneous as well as X-ray (75 rads) induced aberrations. The mean spontaneous chromosomal aberration frequency for the 28 patients (9.1%) was significantly (P=0.038) greater than that of controls (6.4%). When patients were categorized into specific clinically designated connective tissue disease subdivisions for comparison with the controls, only X-irradiated cells from the progressive systemic sclerosis group displayed significantly elevated levels of total chromosomal aberrations over those of the control group. The X-irradiated lymphocytes from these patients had an average of 23.6% aberrations per patient, while those of the control group showed an average of 14.9% per patient (P<0.05).

  5. Evaluation of traditional plant extracts for innate immune mechanisms and disease resistance against fish bacterial Aeromonas hydrophila and Pseudomonas sp.

    Science.gov (United States)

    Hardi, E. H.; Saptiani, G.; Kusuma, I. W.; Suwinarti, W.; Nugroho, R. A.

    2018-03-01

    The purposes of this study were to evaluate effect of ethanol herbal extracts of Boesenbergia pandurata, Solanum ferox and Zingimber zerumbet on Tilapia (Oreochromis nilaticus) innate immune mechanisms and disease resistance against Aeromonas hydrophila and Pseudomonas sp. Fish were intramuscularly injected with 0.1 mL/fish (1010 CFU mL-1) of each bacterium on the day 6th of post treatment using extract by several methods (injection, oral administration and immersion). The doses of extract were 600 ppm of B. pandurata, 900 ppm S. ferox and 200 ppm of Z. zerumbet. The percentage mortality, Relative Percent Survival (RPS) and innate immune response were assessed on weeks 1, 2, 3 and 4. All the methods were effective to enhance the immune parameters after 2 weeks application and the RPS of treatment reached more than 90 %. The results showed that the injection method of extracts was the most effective method to control A. hydrophila and Pseudomonas sp. The result indicated that all the doses of extracts could be significantly influence the immune response and protect the health status of tilapia against A. hydrophila and Pseudomonas sp. infections.

  6. The innate immune response during urinary tract infection and pyelonephritis.

    Science.gov (United States)

    Spencer, John David; Schwaderer, Andrew L; Becknell, Brian; Watson, Joshua; Hains, David S

    2014-07-01

    Despite its proximity to the fecal flora, the urinary tract is considered sterile. The precise mechanisms by which the urinary tract maintains sterility are not well understood. Host immune responses are critically important in the antimicrobial defense of the urinary tract. During recent years, considerable advances have been made in our understanding of the mechanisms underlying immune homeostasis of the kidney and urinary tract. Dysfunctions in these immune mechanisms may result in acute disease, tissue destruction and overwhelming infection. The objective of this review is to provide an overview of the innate immune response in the urinary tract in response to microbial assault. In doing so, we focus on the role of antimicrobial peptides-a ubiquitous component of the innate immune response.

  7. Mechanisms of innate immune evasion in re-emerging RNA viruses.

    Science.gov (United States)

    Ma, Daphne Y; Suthar, Mehul S

    2015-06-01

    Recent outbreaks of Ebola, West Nile, Chikungunya, Middle Eastern Respiratory and other emerging/re-emerging RNA viruses continue to highlight the need to further understand the virus-host interactions that govern disease severity and infection outcome. As part of the early host antiviral defense, the innate immune system mediates pathogen recognition and initiation of potent antiviral programs that serve to limit virus replication, limit virus spread and activate adaptive immune responses. Concordantly, viral pathogens have evolved several strategies to counteract pathogen recognition and cell-intrinsic antiviral responses. In this review, we highlight the major mechanisms of innate immune evasion by emerging and re-emerging RNA viruses, focusing on pathogens that pose significant risk to public health. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Innate lymphoid cells and the skin

    OpenAIRE

    Salimi, Maryam; Ogg, Graham

    2014-01-01

    Innate lymphoid cells are an emerging family of effector cells that contribute to lymphoid organogenesis, metabolism, tissue remodelling and protection against infections. They maintain homeostatic immunity at barrier surfaces such as lung, skin and gut (Nature 464:1367?1371, 2010, Nat Rev Immunol 13: 145?149, 2013). Several human and mouse studies suggest a role for innate lymphoid cells in inflammatory skin conditions including atopic eczema and psoriasis. Here we review the innate lymphoid...

  9. Vasculitis associated with connective tissue diseases.

    Science.gov (United States)

    Cozzani, E; Gasparini, G; Papini, M; Burlando, M; Drago, F; Parodi, A

    2015-04-01

    Vasculitis in connective tissue disease (CTD) is quite rare, it is reported in approximately 10% of patients with CTD; systemic lupus erythematosus (SLE) shows the highest association rate. Vessels of any size may be involved, but mainly small vessels vasculitis is reported. At present the classification of these vasculitis is unsatisfactory. According to the 2012 revised International Chapel Hill Consensus Conference, vasculitides secondary to CTD are a well identified entity and are classified under the category of "vasculitis associated with systemic disease". However only lupus vasculitis and rheumatoid vasculitis are explicitly listed, while the remaining are generically included under the heading "others". Petechiae, purpura, gangrene and ulcers are the most frequent cutaneous manifestations that should investigated in order to rule out potentially dangerous systemic involvement, especially if cryoglobulinemic or necrotizing vasculitis are suspected. This review will focus on the cutaneous involvement in CTD associated vasculitis.

  10. The Quantitative Basis of the Arabidopsis Innate Immune System to Endemic Pathogens Depends on Pathogen Genetics.

    Directory of Open Access Journals (Sweden)

    Jason A Corwin

    2016-02-01

    Full Text Available The most established model of the eukaryotic innate immune system is derived from examples of large effect monogenic quantitative resistance to pathogens. However, many host-pathogen interactions involve many genes of small to medium effect and exhibit quantitative resistance. We used the Arabidopsis-Botrytis pathosystem to explore the quantitative genetic architecture underlying host innate immune system in a population of Arabidopsis thaliana. By infecting a diverse panel of Arabidopsis accessions with four phenotypically and genotypically distinct isolates of the fungal necrotroph B. cinerea, we identified a total of 2,982 genes associated with quantitative resistance using lesion area and 3,354 genes associated with camalexin production as measures of the interaction. Most genes were associated with resistance to a specific Botrytis isolate, which demonstrates the influence of pathogen genetic variation in analyzing host quantitative resistance. While known resistance genes, such as receptor-like kinases (RLKs and nucleotide-binding site leucine-rich repeat proteins (NLRs, were found to be enriched among associated genes, they only account for a small fraction of the total genes associated with quantitative resistance. Using publically available co-expression data, we condensed the quantitative resistance associated genes into co-expressed gene networks. GO analysis of these networks implicated several biological processes commonly connected to disease resistance, including defense hormone signaling and ROS production, as well as novel processes, such as leaf development. Validation of single gene T-DNA knockouts in a Col-0 background demonstrate a high success rate (60% when accounting for differences in environmental and Botrytis genetic variation. This study shows that the genetic architecture underlying host innate immune system is extremely complex and is likely able to sense and respond to differential virulence among pathogen

  11. Evaluation of an automated connective tissue disease screening assay in Korean patients with systemic rheumatic diseases.

    Science.gov (United States)

    Jeong, Seri; Yang, Heeyoung; Hwang, Hyunyong

    2017-01-01

    This study aimed to evaluate the diagnostic utilities of the automated connective tissues disease screening assay, CTD screen, in patients with systemic rheumatic diseases. A total of 1093 serum samples were assayed using CTD screen and indirect immunofluorescent (IIF) methods. Among them, 162 were diagnosed with systemic rheumatic disease, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and mixed connective tissue disease (MCT). The remaining 931 with non-systemic rheumatic disease were assigned to the control group. The median ratios of CTD screen tests were significantly higher in the systemic rheumatic disease group than in the control group. The positive likelihood ratios of the CTD screen were higher than those of IIF in patients with total rheumatic diseases (4.1 vs. 1.6), including SLE (24.3 vs. 10.7). The areas under the receiver operating characteristic curves (ROC-AUCs) of the CTD screen for discriminating total rheumatic diseases, RA, SLE, and MCT from controls were 0.68, 0.56, 0.92 and 0.80, respectively. The ROC-AUCs of the combinations with IIF were significantly higher in patients with total rheumatic diseases (0.72) and MCT (0.85) than in those of the CTD screen alone. Multivariate analysis indicated that both the CTD screen and IIF were independent variables for predicting systemic rheumatic disease. CTD screen alone and in combination with IIF were a valuable diagnostic tool for predicting systemic rheumatic diseases, particularly for SLE.

  12. Evaluation of an automated connective tissue disease screening assay in Korean patients with systemic rheumatic diseases.

    Directory of Open Access Journals (Sweden)

    Seri Jeong

    Full Text Available This study aimed to evaluate the diagnostic utilities of the automated connective tissues disease screening assay, CTD screen, in patients with systemic rheumatic diseases. A total of 1093 serum samples were assayed using CTD screen and indirect immunofluorescent (IIF methods. Among them, 162 were diagnosed with systemic rheumatic disease, including rheumatoid arthritis (RA, systemic lupus erythematosus (SLE, and mixed connective tissue disease (MCT. The remaining 931 with non-systemic rheumatic disease were assigned to the control group. The median ratios of CTD screen tests were significantly higher in the systemic rheumatic disease group than in the control group. The positive likelihood ratios of the CTD screen were higher than those of IIF in patients with total rheumatic diseases (4.1 vs. 1.6, including SLE (24.3 vs. 10.7. The areas under the receiver operating characteristic curves (ROC-AUCs of the CTD screen for discriminating total rheumatic diseases, RA, SLE, and MCT from controls were 0.68, 0.56, 0.92 and 0.80, respectively. The ROC-AUCs of the combinations with IIF were significantly higher in patients with total rheumatic diseases (0.72 and MCT (0.85 than in those of the CTD screen alone. Multivariate analysis indicated that both the CTD screen and IIF were independent variables for predicting systemic rheumatic disease. CTD screen alone and in combination with IIF were a valuable diagnostic tool for predicting systemic rheumatic diseases, particularly for SLE.

  13. Aberrant functional connectivity within the basal ganglia of patients with Parkinson's disease.

    Science.gov (United States)

    Rolinski, Michal; Griffanti, Ludovica; Szewczyk-Krolikowski, Konrad; Menke, Ricarda A L; Wilcock, Gordon K; Filippini, Nicola; Zamboni, Giovanna; Hu, Michele T M; Mackay, Clare E

    2015-01-01

    Resting state functional MRI (rs-fMRI) has been previously shown to be a promising tool for the assessment of early Parkinson's disease (PD). In order to assess whether changes within the basal ganglia network (BGN) are disease specific or relate to neurodegeneration generally, BGN connectivity was assessed in 32 patients with early PD, 19 healthy controls and 31 patients with Alzheimer's disease (AD). Voxel-wise comparisons demonstrated decreased connectivity within the basal ganglia of patients with PD, when compared to patients with AD and healthy controls. No significant changes within the BGN were seen in AD, when compared to healthy controls. Moreover, measures of functional connectivity extracted from regions within the basal ganglia were significantly lower in the PD group. Consistent with previous radiotracer studies, the greatest change when compared to the healthy control group was seen in the posterior putamen of PD subjects. When combined into a single component score, this method differentiated PD from AD and healthy control subjects, with a diagnostic accuracy of 81%. Rs-fMRI can be used to demonstrate the aberrant functional connectivity within the basal ganglia of patients with early PD. These changes are likely to be representative of patho-physiological basal ganglia dysfunction and are not associated with generalised neurodegeneration seen in AD. Further studies are necessary to ascertain whether this method is sensitive enough to detect basal ganglia dysfunction in prodromal PD, and its utility as a potential diagnostic biomarker for premotor and early motoric disease.

  14. Addiction, adolescence, and innate immune gene induction

    Directory of Open Access Journals (Sweden)

    Fulton T Crews

    2011-04-01

    Full Text Available Repeated drug use/abuse amplifies psychopathology, progressively reducing frontal lobe behavioral control and cognitive flexibility while simultaneously increasing limbic temporal lobe negative emotionality. The period of adolescence is a neurodevelopmental stage characterized by poor behavioral control as well as strong limbic reward and thrill seeking. Repeated drug abuse and/or stress during this stage increase the risk of addiction and elevate activator innate immune signaling in the brain. Nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-κB is a key glial transcription factor that regulates proinflammatory chemokines, cytokines, oxidases, proteases, and other innate immune genes. Induction of innate brain immune gene expression (e.g., NF-κB facilitates negative affect, depression-like behaviors, and inhibits hippocampal neurogenesis. In addition, innate immune gene induction alters cortical neurotransmission consistent with loss of behavioral control. Studies with anti-oxidant, anti-inflammatory, and anti-depressant drugs as well as opiate antagonists link persistent innate immune gene expression to key behavioral components of addiction, e.g. negative affect-anxiety and loss of frontal cortical behavioral control. This review suggests that persistent and progressive changes in innate immune gene expression contribute to the development of addiction. Innate immune genes may represent a novel new target for addiction therapy.

  15. Silicone breast implants and connective tissue disease

    DEFF Research Database (Denmark)

    Lipworth, Loren; Holmich, Lisbet R; McLaughlin, Joseph K

    2011-01-01

    The association of silicone breast implants with connective tissue diseases (CTDs), including systemic sclerosis, systemic lupus erythematosus, rheumatoid arthritis, and fibromyalgia, as well as a hypothesized new "atypical" disease, which does not meet established diagnostic criteria for any known...... CTD, has been extensively studied. We have reviewed the epidemiologic literature regarding an association between cosmetic breast implants and CTDs, with particular emphasis on results drawn from the most recent investigations, many of which are large cohort studies with long-term follow-up, as well...... as on those studies that address some of the misinformation and historically widespread claims regarding an association between breast implants and CTDs. These claims have been unequivocally refuted by the remarkably consistent evidence from published studies, as well as numerous independent meta...

  16. Cannabinoids and Innate Immunity: Taking a Toll on Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Eric J. Downer

    2011-01-01

    Full Text Available The biologically active components of cannabis have therapeutic potential in neuroinflammatory disorders due to their anti-inflammatory propensity. Cannabinoids influence immune function in both the peripheral and the central nervous system (CNS, and the components of the cannabinoid system, the cannabinoid receptors and their endogenous ligands (endocannabinoids, have been detected on immune cells as well as in brain glia. Neuroinflammation is the complex innate immune response of neural tissue to control infection and eliminate pathogens, and Toll-like receptors (TLRs, a major family of pattern recognition receptors (PRRs that mediate innate immunity, have emerged as players in the neuroinflammatory processes underpinning various CNS diseases. This review will highlight evidence that cannabinoids interact with the immune system by impacting TLR-mediated signaling events, which may provide cues for devising novel therapeutic approaches for cannabinoid ligands.

  17. Development and clinical course of diseases accompanied by connective tissue dysplasia in children of puberty age

    Directory of Open Access Journals (Sweden)

    Elizarova S.Yu.

    2011-03-01

    Full Text Available The risk of development and clinical course of somatic diseases have been analyzed in the research work. 111 adolescents suffering from connective tissue dysplasia have been under the study. It has been stated that the frequency of somatic diseases among adolescents with connective tissue dysplasia is higher than this frequency among adolescents without such disease. Phenotypic signs of connective tissue dysplasia have been revealed. They are responsible for the development of bronchial asthma and severe stomach ulcer

  18. Oxidative stress, innate immunity, and age-related macular degeneration

    Science.gov (United States)

    Shaw, Peter X.; Stiles, Travis; Douglas, Christopher; Ho, Daisy; Fan, Wei; Du, Hongjun; Xiao, Xu

    2016-01-01

    Age-related macular degeneration (AMD) is a leading cause of vision loss affecting tens of millions of elderly worldwide. Early AMD is characterized by the appearance of soft drusen, as well as pigmentary changes in the retinal pigment epithelium (RPE). These soft, confluent drusen can progress into two forms of advanced AMD: geographic atrophy (GA, or dry AMD) or choroidal neovascularization (CNV, or wet AMD). Both forms of AMD result in a similar clinical progression in terms of loss of central vision. The exact mechanism for developing early AMD, as well as triggers responsible for progressing to advanced stage of disease, is still largely unknown. However, significant evidence exists demonstrating a complex interplay of genetic and environmental factors as causes of AMD progression. Multiple genes and/or single nucleotide polymorphisms (SNPs) have been found associated with AMD, including various genes involved in the complement pathway, lipid metabolism and extracellular matrix (ECM) remodeling. Of the known genetic contributors to disease risk, the CFH Y402H and HTRA1/ARMS polymorphisms contribute to more than 50% of the genetic risk for AMD. Environmentally, oxidative stress plays a critical role in many aging diseases including cardiovascular disease, cancer, Alzheimer’s disease and AMD. Due to the exposure to sunlight and high oxygen concentration, the oxidative stress burden is higher in the eye than other tissues, which can be further complicated by additional oxidative stressors such as smoking. Increasingly, evidence is accumulating suggesting that functional abnormalities of the innate immune system incurred via high risk genotypes may be contributing to the pathogenesis of AMD by altering the inflammatory homeostasis in the eye, specifically in the handling of oxidation products. As the eye in non-pathological instances maintains a low level of inflammation despite the presence of a relative abundance of potentially inflammatory molecules, we have

  19. Interactions between Innate Lymphoid Cells and Cells of the Innate and Adaptive Immune System.

    Science.gov (United States)

    Symowski, Cornelia; Voehringer, David

    2017-01-01

    Type 2 innate lymphoid cells (ILC2s) are a major source of cytokines, which are also produced by Th2 cells and several cell types of the innate immune system. Work over the past few years indicates that ILC2s play a central role in regulating type 2 immune responses against allergens and helminths. ILC2s can interact with a variety of cells types of the innate and adaptive immune system by cell-cell contacts or by communication via soluble factors. In this review, we provide an overview about recent advances in our understanding how ILC2s orchestrate type 2 immune responses with focus on direct interactions between ILC2s and other cells of the immune system.

  20. Innate immune responses to gut microbiota differ between oceanic and freshwater threespine stickleback populations

    Directory of Open Access Journals (Sweden)

    Kathryn Milligan-Myhre

    2016-02-01

    Full Text Available Animal hosts must co-exist with beneficial microbes while simultaneously being able to mount rapid, non-specific, innate immune responses to pathogenic microbes. How this balance is achieved is not fully understood, and disruption of this relationship can lead to disease. Excessive inflammatory responses to resident microbes are characteristic of certain gastrointestinal pathologies such as inflammatory bowel disease (IBD. The immune dysregulation of IBD has complex genetic underpinnings that cannot be fully recapitulated with single-gene-knockout models. A deeper understanding of the genetic regulation of innate immune responses to resident microbes requires the ability to measure immune responses in the presence and absence of the microbiota using vertebrate models with complex genetic variation. Here, we describe a new gnotobiotic vertebrate model to explore the natural genetic variation that contributes to differences in innate immune responses to microbiota. Threespine stickleback, Gasterosteus aculeatus, has been used to study the developmental genetics of complex traits during the repeated evolution from ancestral oceanic to derived freshwater forms. We established methods to rear germ-free stickleback larvae and gnotobiotic animals monoassociated with single bacterial isolates. We characterized the innate immune response of these fish to resident gut microbes by quantifying the neutrophil cells in conventionally reared monoassociated or germ-free stickleback from both oceanic and freshwater populations grown in a common intermediate salinity environment. We found that oceanic and freshwater fish in the wild and in the laboratory share many intestinal microbial community members. However, oceanic fish mount a strong immune response to residential microbiota, whereas freshwater fish frequently do not. A strong innate immune response was uniformly observed across oceanic families, but this response varied among families of freshwater fish

  1. Interleukin-21 receptor signalling is important for innate immune protection against HSV-2 infections.

    Directory of Open Access Journals (Sweden)

    Sine K Kratholm

    Full Text Available Interleukin (IL -21 is produced by Natural Killer T (NKT cells and CD4(+ T cells and is produced in response to virus infections, where IL-21 has been shown to be essential in adaptive immune responses. Cells from the innate immune system such as Natural Killer (NK cells and macrophages are also important in immune protection against virus. These cells express the IL-21 receptor (IL-21R and respond to IL-21 with increased cytotoxicity and cytokine production. Currently, however it is not known whether IL-21 plays a significant role in innate immune responses to virus infections. The purpose of this study was to investigate the role of IL-21 and IL-21R in the innate immune response to a virus infection. We used C57BL/6 wild type (WT and IL-21R knock out (KO mice in a murine vaginal Herpes Simplex Virus type 2 (HSV-2 infection model to show that IL-21 - IL-21R signalling is indeed important in innate immune responses against HSV-2. We found that the IL-21R was expressed in the vaginal epithelium in uninfected (u.i WT mice, and expression increased early after HSV-2 infection. IL-21R KO mice exhibited increased vaginal viral titers on day 2 and 3 post infection (p.i. and subsequently developed significantly higher disease scores and a lower survival rate compared to WT mice. In addition, WT mice infected with HSV-2 receiving intra-vaginal pre-treatment with murine recombinant IL-21 (mIL-21 had decreased vaginal viral titers on day 2 p.i., significantly lower disease scores, and a higher survival rate compared to infected untreated WT controls. Collectively our data demonstrate the novel finding that the IL-21R plays a critical role in regulating innate immune responses against HSV-2 infection.

  2. Innate Immunity Evasion by Enteroviruses: Insights into Virus-Host Interaction

    Directory of Open Access Journals (Sweden)

    Xiaobo Lei

    2016-01-01

    Full Text Available Enterovirus genus includes multiple important human pathogens, such as poliovirus, coxsackievirus, enterovirus (EV A71, EV-D68 and rhinovirus. Infection with EVs can cause numerous clinical conditions including poliomyelitis, meningitis and encephalitis, hand-foot-and-mouth disease, acute flaccid paralysis, diarrhea, myocarditis and respiratory illness. EVs, which are positive-sense single-stranded RNA viruses, trigger activation of the host antiviral innate immune responses through pathogen recognition receptors such as retinoic acid-inducible gene (RIG-I-likeand Toll-like receptors. In turn, EVs have developed sophisticated strategies to evade host antiviral responses. In this review, we discuss the interplay between the host innate immune responses and EV infection, with a primary focus on host immune detection and protection against EV infection and viral strategies to evade these antiviral immune responses.

  3. Aberrant functional connectivity within the basal ganglia of patients with Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Michal Rolinski

    2015-01-01

    Full Text Available Resting state functional MRI (rs-fMRI has been previously shown to be a promising tool for the assessment of early Parkinson's disease (PD. In order to assess whether changes within the basal ganglia network (BGN are disease specific or relate to neurodegeneration generally, BGN connectivity was assessed in 32 patients with early PD, 19 healthy controls and 31 patients with Alzheimer's disease (AD. Voxel-wise comparisons demonstrated decreased connectivity within the basal ganglia of patients with PD, when compared to patients with AD and healthy controls. No significant changes within the BGN were seen in AD, when compared to healthy controls. Moreover, measures of functional connectivity extracted from regions within the basal ganglia were significantly lower in the PD group. Consistent with previous radiotracer studies, the greatest change when compared to the healthy control group was seen in the posterior putamen of PD subjects. When combined into a single component score, this method differentiated PD from AD and healthy control subjects, with a diagnostic accuracy of 81%. Rs-fMRI can be used to demonstrate the aberrant functional connectivity within the basal ganglia of patients with early PD. These changes are likely to be representative of patho-physiological basal ganglia dysfunction and are not associated with generalised neurodegeneration seen in AD. Further studies are necessary to ascertain whether this method is sensitive enough to detect basal ganglia dysfunction in prodromal PD, and its utility as a potential diagnostic biomarker for premotor and early motoric disease.

  4. IL-33-responsive innate lymphoid cells are an important source of IL-13 in chronic rhinosinusitis with nasal polyps.

    Science.gov (United States)

    Shaw, Joanne L; Fakhri, Samer; Citardi, Martin J; Porter, Paul C; Corry, David B; Kheradmand, Farrah; Liu, Yong-Jun; Luong, Amber

    2013-08-15

    Chronic rhinosinusitis (CRS) without nasal polyps (CRSsNP) and CRS with nasal polyps (CRSwNP) are associated with Th1 and Th2 cytokine polarization, respectively; however, the pathophysiology of CRS remains unclear. The importance of innate lymphoid cells in Th2-mediated inflammatory disease has not been clearly defined. The objective of this study was to investigate the role of the epithelial cell-derived cytokine IL-33 and IL-33-responsive innate lymphoid cells in the pathophysiology of CRS. Relative gene expression was evaluated using quantitative real-time polymerase chain reaction. Innate lymphoid cells in inflamed ethmoid sinus mucosa from patients with CRSsNP and CRSwNP were characterized using flow cytometry. Cytokine production from lymphoid cells isolated from inflamed mucosa of patients with CRS was examined using ELISA and intracellular cytokine staining. Elevated expression of ST2, the ligand-binding chain of the IL-33 receptor, was observed in inflamed sinonasal mucosa from CRSwNP compared with CRSsNP and healthy control subjects. An increased percentage of innate lymphoid cells was observed in inflamed sinonasal mucosa from CRSwNP compared with CRSsNP. ST2(+) innate lymphoid cells are a consistent source of IL-13 in response to IL-33 stimulation. Significant induction of IL-33 was observed in epithelial cells derived from patients with CRSwNP compared with patients with CRSsNP in response to stimulation with Aspergillus fumigatus extract. These data suggest a role for sinonasal epithelial cell-derived IL-33 and an IL-33-responsive innate lymphoid cell population in the pathophysiology of CRSwNP demonstrating the functional importance of innate lymphoid cells in Th2-mediated inflammatory disease.

  5. The role of lipopolysaccharide and peptidoglycan, two glycosylated bacterial microbe-associated molecular patterns (MAMPs), in plant innate immunity

    DEFF Research Database (Denmark)

    Erbs, Gitte; Newman, Mari-Anne

    2012-01-01

    innate immune system through the action of pattern recognition receptors (PRRs). A greater insight into the mechanisms of MAMP recognition and the description of PRRs for different microbial glycoconjugates will have considerable impact on the improvement of plant health and disease resistance. Here...... to as ‘innate immunity’. Innate immunity is the first line of defence against invading microorganisms in vertebrates and the only line of defence in invertebrates and plants. Bacterial glycoconjugates, such as lipopolysaccharides (LPSs) from the outer membrane of Gram-negative bacteria and peptidoglycan (PGN......) from the cell walls of both Gram-positive and Gram-negative bacteria, have been found to act as elicitors of plant innate immunity. These conserved, indispensable, microbe-specific molecules are also referred to as ‘microbe-associated molecular patterns’ (MAMPs). MAMPs are recognized by the plant...

  6. Human CD40 ligand-expressing type 3 innate lymphoid cells induce IL-10-producing immature transitional regulatory B cells.

    Science.gov (United States)

    Komlósi, Zsolt I; Kovács, Nóra; van de Veen, Willem; Kirsch, Anna Isabella; Fahrner, Heinz Benedikt; Wawrzyniak, Marcin; Rebane, Ana; Stanic, Barbara; Palomares, Oscar; Rückert, Beate; Menz, Günter; Akdis, Mübeccel; Losonczy, György; Akdis, Cezmi A

    2017-09-20

    Type 3 innate lymphoid cells (ILC3s) are involved in maintenance of mucosal homeostasis; however, their role in immunoregulation has been unknown. Immature transitional regulatory B (itBreg) cells are innate-like B cells with immunosuppressive properties, and the in vivo mechanisms by which they are induced have not been fully clarified. We aimed to investigate the ILC3-B-cell interaction that probably takes place in human tonsils. ILC3s were isolated from peripheral blood and palatine tonsils, expanded, and cocultured with naive B cells. Tonsillar ILC3s and regulatory B cells were visualized with immunofluorescence histology. ILC3 frequencies were measured in tonsil tissue of allergic and nonallergic patients and in peripheral blood of allergic asthmatic patients and healthy control subjects. A mutually beneficial relationship was revealed between ILC3s and B cells: ILC3s induced IL-15 production in B cells through B cell-activating factor receptor, whereas IL-15, a potent growth factor for ILC3s, induced CD40 ligand (CD40L) expression on circulating and tonsillar ILC3s. IL-15-activated CD40L + ILC3s helped B-cell survival, proliferation, and differentiation of IL-10-secreting, PD-L1-expressing functional itBreg cells in a CD40L- and B cell-activating factor receptor-dependent manner. ILC3s and regulatory B cells were in close connection with each other in palatine tonsils. ILC3 frequency was reduced in tonsil tissue of allergic patients and in peripheral blood of allergic asthmatic patients. Human CD40L + ILC3s provide innate B-cell help and are involved in an innate immunoregulatory mechanism through induction of itBreg cell differentiation, which takes place in palatine tonsils in vivo. This mechanism, which can contribute to maintenance of immune tolerance, becomes insufficient in allergic diseases. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  7. Diagnosis of Protein Losing Enteropathy in connective Tissue Diseases with 99mTc-human Serum Albumin(Hsa)

    International Nuclear Information System (INIS)

    Won, Kyoung Sook; Oh, Yeong Seok; Bang, Shin Ho; Park, Won

    1993-01-01

    Anterior abdominal scintigraphy after intravenous injection of 99m Tc-human serum albumin ( 99m Tc-HSA 20 mCi) was done in 16 patients with connective tissue diseases and 15 healthy control patients. Patients with proteinuria or hepatopathy were excluded. 1) 7(44%) patients among 16 connective tissue disease patients without the apparent evidence of external protein loss showed abnormal intestinal accumulation of albumin. 6 patients with positive albumin scintigraphy showed hypoalbuminaemia. 2) There was no false positive scintigraphic finding in control group. 3) The serum albumin level in connective tissue disease patients (3.1 ± 0.6 g/dl, n=16) was lower than control patients(3.9 ± 0.3 g/dl, n=15) (p 99m Tc-HSA scan(2.8 ± 0.6 g/dl, n=7) than the connective tissue disease patients with negative scan(3.3 ± 0.3 g/dl, n=9) (p 99m Tc-HSA scan also must be validated by more extended study and comparison with the quantitative study such as stool α -1 antitrypsin measurement. There must be a reevaluation of PLE in various diseases especially in connective tissue diseases with easy, fast, economical, and noninvasive method.

  8. GENETIC SUSCEPTIBILITY TO RESPIRATORY SYNCYTIAL VIRUS BRONCHIOLITIS IN PRETERM CHILDREN IS ASSOCIATED WITH AIRWAY REMODELING GENES AND INNATE IMMUNE GENES

    NARCIS (Netherlands)

    Siezen, Christine L. E.; Bont, Louis; Hodemaekers, Hennie M.; Ermers, Marieke J.; Doornbos, Gerda; van't Slot, Ruben; Wijmenga, Ciska; van Hottwelingen, Hans C.; Kimpen, Jan L. L.; Kimman, Tjeerd G.; Hoebee, Barbara; Janssen, Riny

    Prematurity is a risk factor for severe respiratory syncytial virus bronchiolitis. We show that genetic factors in innate immune genes (IFNA13, IFNAR2, STAT2. IL27, NFKBIA, C3, IL1RN, TLR5), in innate and adaptive immunity (IFNG), and in airway remodeling genes (ADAM33 and TGFBR1), affect disease

  9. Scleroderma renal crisis in a case of mixed connective tissue disease

    Directory of Open Access Journals (Sweden)

    Mukul Vij

    2014-01-01

    Full Text Available Mixed connective tissue disease (MCTD is an overlap syndrome first defined in 1972 by Sharp et al. In this original study, the portrait emerged of a connective tissue disorder sharing features of systemic lupus erythematosus, systemic sclerosis (scleroderma and polymyositis. Scleroderma renal crisis (SRC is an extremely infrequent but serious complication that can occur in MCTD. The histologic picture of SRC is that of a thrombotic micro-angiopathic process. Renal biopsy plays an important role in confirming the clinical diagnosis, excluding overlapping/superimposed diseases that might lead to acute renal failure in MCTD patients, helping to predict the clinical outcome and optimizing patient management. We herewith report a rare case of SRC in a patient with MCTD and review the relevant literature.

  10. Scleroderma renal crisis in a case of mixed connective tissue disease.

    Science.gov (United States)

    Vij, Mukul; Agrawal, Vinita; Jain, Manoj

    2014-07-01

    Mixed connective tissue disease (MCTD) is an overlap syndrome first defined in 1972 by Sharp et al. In this original study, the portrait emerged of a connective tissue disorder sharing features of systemic lupus erythematosus, systemic sclerosis (scleroderma) and polymyositis. Scleroderma renal crisis (SRC) is an extremely infrequent but serious complication that can occur in MCTD. The histologic picture of SRC is that of a thrombotic micro-angiopathic process. Renal biopsy plays an important role in confirming the clinical diagnosis, excluding overlapping/superimposed diseases that might lead to acute renal failure in MCTD patients, helping to predict the clinical outcome and optimizing patient management. We herewith report a rare case of SRC in a patient with MCTD and review the relevant literature.

  11. DMPD: Innate immunity minireview series: making biochemical sense of nucleic acidsensors that trigger antiviral innate immunity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17395579 Innate immunity minireview series: making biochemical sense of nucleic aci...007 Mar 29. (.png) (.svg) (.html) (.csml) Show Innate immunity minireview series: making biochemical sense o...itle Innate immunity minireview series: making biochemical sense of nucleic acidsensors that trigger antivir

  12. Sex and disease-related alterations of anterior insula functional connectivity in chronic abdominal pain.

    Science.gov (United States)

    Hong, Jui-Yang; Kilpatrick, Lisa A; Labus, Jennifer S; Gupta, Arpana; Katibian, David; Ashe-McNalley, Cody; Stains, Jean; Heendeniya, Nuwanthi; Smith, Suzanne R; Tillisch, Kirsten; Naliboff, Bruce; Mayer, Emeran A

    2014-10-22

    Resting-state functional magnetic resonance imaging has been used to investigate intrinsic brain connectivity in healthy subjects and patients with chronic pain. Sex-related differences in the frequency power distribution within the human insula (INS), a brain region involved in the integration of interoceptive, affective, and cognitive influences, have been reported. Here we aimed to test sex and disease-related alterations in the intrinsic functional connectivity of the dorsal anterior INS. The anterior INS is engaged during goal-directed tasks and modulates the default mode and executive control networks. By comparing functional connectivity of the dorsal anterior INS in age-matched female and male healthy subjects and patients with irritable bowel syndrome (IBS), a common chronic abdominal pain condition, we show evidence for sex and disease-related alterations in the functional connectivity of this region: (1) male patients compared with female patients had increased positive connectivity of the dorsal anterior INS bilaterally with the medial prefrontal cortex (PFC) and dorsal posterior INS; (2) female patients compared with male patients had greater negative connectivity of the left dorsal anterior INS with the left precuneus; (3) disease-related differences in the connectivity between the bilateral dorsal anterior INS and the dorsal medial PFC were observed in female subjects; and (4) clinical characteristics were significantly correlated to the insular connectivity with the dorsal medial PFC in male IBS subjects and with the precuneus in female IBS subjects. These findings are consistent with the INS playing an important role in modulating the intrinsic functional connectivity of major networks in the resting brain and show that this role is influenced by sex and diagnosis. Copyright © 2014 the authors 0270-6474/14/3414252-08$15.00/0.

  13. Fish innate immunity against intestinal helminths.

    Science.gov (United States)

    Dezfuli, B S; Bosi, G; DePasquale, J A; Manera, M; Giari, L

    2016-03-01

    Most individual fish in farmed and wild populations are infected with parasites. Upon dissection of fish, helminths from gut are often easily visible. Enteric helminths include several species of digeneans, cestodes, acanthocephalans and nematodes. Some insights into biology, morphology and histopathological effects of the main fish enteric helminths taxa will be described here. The immune system of fish, as that of other vertebrates, can be subdivided into specific and aspecific types, which in vivo act in concert with each other and indeed are interdependent in many ways. Beyond the small number of well-described models that exist, research focusing on innate immunity in fish against parasitic infections is lacking. Enteric helminths frequently cause inflammation of the digestive tract, resulting in a series of chemical and morphological changes in the affected tissues and inducing leukocyte migration to the site of infection. This review provides an overview on the aspecific defence mechanisms of fish intestine against helminths. Emphasis will be placed on the immune cellular response involving mast cells, neutrophils, macrophages, rodlet cells and mucous cells against enteric helminths. Given the relative importance of innate immunity in fish, and the magnitude of economic loss in aquaculture as a consequence of disease, this area deserves considerable attention and support. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The innate immune response of equine bronchial epithelial cells is altered by training.

    Science.gov (United States)

    Frellstedt, Linda; Gosset, Philippe; Kervoaze, Gwenola; Hans, Aymeric; Desmet, Christophe; Pirottin, Dimitri; Bureau, Fabrice; Lekeux, Pierre; Art, Tatiana

    2015-01-17

    Respiratory diseases, including inflammatory airway disease (IAD), viral and bacterial infections, are common problems in exercising horses. The airway epithelium constitutes a major physical barrier against airborne infections and plays an essential role in the lung innate immune response mainly through toll-like receptor (TLR) activation. The aim of this study was to develop a model for the culture of equine bronchial epithelial cells (EBEC) in vitro and to explore EBEC innate immune responses in trained horses. Bronchial epithelial biopsies were taken from 6 adult horses during lower airway endoscopy. EBEC were grown in vitro by an explant method. The innate immune response of EBEC was evaluated in vitro by treatment with TLR ligands. TLR3 is the most strongly expressed TLR at the mRNA level in EBEC and stimulation of EBEC with Poly(I:C), an analog of viral dsRNA, triggers a strong secretion of IFN-β, TNF-α, IL-6 and CXCL8. We further evaluated the EBEC innate immune response in horses that underwent a 4-month-training program. While training had no effect on TLR mRNA expression in EBEC as well as in bronchial biopsies, it increased the production of IFN-β after stimulation with a TLR3 ligand and decreased the secretion of TNF-α and IL-6 after stimulation with a TLR2 and TLR3 ligand. These findings may be implicated in the increased risk for viral and bacterial infections observed in sport horses. Altogether, we report a successful model for the culture of EBEC that can be applied to the investigation of pathophysiologic conditions in longitudinal studies.

  15. Intranetwork and internetwork connectivity in patients with Alzheimer disease and the association with cerebrospinal fluid biomarker levels.

    Science.gov (United States)

    Weiler, Marina; de Campos, Brunno Machado; Teixeira, Camila Vieira de Ligo; Casseb, Raphael Fernandes; Carletti-Cassani, Ana Flávia Mac Knight; Vicentini, Jéssica Elias; Magalhães, Thamires Naela Cardoso; Talib, Leda Leme; Forlenza, Orestes Vicente; Balthazar, Marcio Luiz Figueredo

    2017-11-01

    In the last decade, many studies have reported abnormal connectivity within the default mode network (DMN) in patients with Alzheimer disease. Few studies, however, have investigated other networks and their association with pathophysiological proteins obtained from cerebrospinal fluid (CSF). We performed 3 T imaging in patients with mild Alzheimer disease, patients with amnestic mild cognitive impairment (aMCI) and healthy controls, and we collected CSF samples from the patients with aMCI and mild Alzheimer disease. We analyzed 57 regions from 8 networks. Additionally, we performed correlation tests to investigate possible associations between the networks' functional connectivity and the protein levels obtained from the CSF of patients with aMCI and Alzheimer disease. Our sample included 41 patients with Alzheimer disease, 35 with aMCI and 48 controls. We found that the main connectivity abnormalities in those with Alzheimer disease occurred between the DMN and task-positive networks: these patients presented not only a decreased anticorrelation between some regions, but also an inversion of the correlation signal (positive correlation instead of anticorrelation). Those with aMCI did not present statistically different connectivity from patients with Alzheimer disease or controls. Abnormal levels of CSF proteins were associated with functional disconnectivity between several regions in both the aMCI and mild Alzheimer disease groups, extending well beyond the DMN or temporal areas. The presented data are cross-sectional in nature, and our findings are dependent on the choice of seed regions used. We found that the main functional connectivity abnormalities occur between the DMN and task-positive networks and that the pathological levels of CSF biomarkers correlate with functional connectivity disruption in patients with Alzheimer disease.

  16. Frequency-Dependent Altered Functional Connections of Default Mode Network in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Youjun Li

    2017-08-01

    Full Text Available Alzheimer’s disease (AD is a neurodegenerative disorder associated with the progressive dysfunction of cognitive ability. Previous research has indicated that the default mode network (DMN is closely related to cognition and is impaired in Alzheimer’s disease. Because recent studies have shown that different frequency bands represent specific physiological functions, DMN functional connectivity studies of the different frequency bands based on resting state fMRI (RS-fMRI data may provide new insight into AD pathophysiology. In this study, we explored the functional connectivity based on well-defined DMN regions of interest (ROIs from the five frequency bands: slow-5 (0.01–0.027 Hz, slow-4 (0.027–0.073 Hz, slow-3 (0.073–0.198 Hz, slow-2 (0.198–0.25 Hzs and standard low-frequency oscillations (LFO (0.01–0.08 Hz. We found that the altered functional connectivity patterns are mainly in the frequency band of slow-5 and slow-4 and that the decreased connections are long distance, but some relatively short connections are increased. In addition, the altered functional connections of the DMN in AD are frequency dependent and differ between the slow-5 and slow-4 bands. Mini-Mental State Examination scores were significantly correlated with the altered functional connectivity patterns in the slow-5 and slow-4 bands. These results indicate that frequency-dependent functional connectivity changes might provide potential biomarkers for AD pathophysiology.

  17. Effect of dietary gluten on dendritic cells and innate immune subsets in BALB/c and NOD mice

    DEFF Research Database (Denmark)

    Larsen, Jesper; Weile, Christian; Antvorskov, Julie Christine

    2015-01-01

    containing diet. We studied, by flow cytometry and reverse transcription-quantitative polymerase chain reaction (qRT-PCR), if dietary gluten induces changes in the activation of DCs and distribution of selected innate cells in lymphoid, pancreatic and intestinal tissues in BALB/c and NOD mice. We found......-free (GF) diet. The direct in vivo effect of gluten on innate cells, and particularly dendritic cells (DC) is not sufficiently clarified. Therefore, we wished to investigate the innate cell populations of spontaneous diabetic NOD mice and healthy BALB/c mice kept on a GF or a standard (STD) gluten......The innate immune system is known to play an important role in oral tolerance to dietary antigens. This is important in development of celiac disease (CD) but may also be important in type 1 diabetes (T1D), and could potentially explain the reduced incidence of T1D in mice receiving a gluten...

  18. The Innate Lymphoid Cell Precursor.

    Science.gov (United States)

    Ishizuka, Isabel E; Constantinides, Michael G; Gudjonson, Herman; Bendelac, Albert

    2016-05-20

    The discovery of tissue-resident innate lymphoid cell populations effecting different forms of type 1, 2, and 3 immunity; tissue repair; and immune regulation has transformed our understanding of mucosal immunity and allergy. The emerging complexity of these populations along with compounding issues of redundancy and plasticity raise intriguing questions about their precise lineage relationship. Here we review advances in mapping the emergence of these lineages from early lymphoid precursors. We discuss the identification of a common innate lymphoid cell precursor characterized by transient expression of the transcription factor PLZF, and the lineage relationships of innate lymphoid cells with conventional natural killer cells and lymphoid tissue inducer cells. We also review the rapidly growing understanding of the network of transcription factors that direct the development of these lineages.

  19. Using Tractography to Distinguish SWEDD from Parkinson’s Disease Patients Based on Connectivity

    Directory of Open Access Journals (Sweden)

    Mansu Kim

    2016-01-01

    Full Text Available Background. It is critical to distinguish between Parkinson’s disease (PD and scans without evidence of dopaminergic deficit (SWEDD, because the two groups are different and require different therapeutic approaches. Objective. The aim of this study was to distinguish SWEDD patients from PD patients using connectivity information derived from diffusion tensor imaging tractography. Methods. Diffusion magnetic resonance images of SWEDD (n=37 and PD (n=40 were obtained from a research database. Tractography, the process of obtaining neural fiber information, was performed using custom software. Group-wise differences between PD and SWEDD patients were quantified using the number of connected fibers between two regions, and correlation analyses were performed based on clinical scores. A support vector machine classifier (SVM was applied to distinguish PD and SWEDD based on group-wise differences. Results. Four connections showed significant group-wise differences and correlated with the Unified Parkinson’s Disease Rating Scale sponsored by the Movement Disorder Society. The SVM classifier attained 77.92% accuracy in distinguishing between SWEDD and PD using these identified connections. Conclusions. The connections and regions identified represent candidates for future research investigations.

  20. Vitamin D and autoimmune diseases

    Directory of Open Access Journals (Sweden)

    E. A. Potrokhova

    2017-01-01

    Full Text Available The review discusses the effect of vitamin D on the tolerogenic modulation of an immune response, its relationship to cells of the monocyte-macrophage series, including dendritic cells, monocytes, and macrophages, in the context of the impact of the expression of anti-inflammatory proinflammatory cytokines in some autoimmune diseases (rheumatoid arthritis, systemic scleroderma, multiple sclerosis, type 1 diabetes mellitus, systemic lupus erythematosus, and Crohn`s disease. It discusses the role of vitamin D in the development of innate and adaptive immunity. Despite some conflicting evidence, the immune regulatory function of vitamin D is generally directed toward inhibition of the components of innate and acquired immunity, which are responsible for the induction of autoimmune reactions; in this connection there are a growing number of publications devoted to the issues of vitamin D supplementation in patients with autoimmune diseases, the preventive effect of vitamin D intake on the risk of an abnormality and that of therapeutic doses of the vitamin on its course. The maintenance of the threshold value for serum 25(OHD3 at least 30 ng/ml, which is achieved by the intake of about 2000 IU of vitamin D, is shown to be required for its immune regulatory function. The data given raise the question as to whether it is necessity to revise the Russian recommended daily dietary allowances for vitamin D through its infant food fortification.

  1. Apolipoprotein E-specific innate immune response in astrocytes from targeted replacement mice

    Directory of Open Access Journals (Sweden)

    Montine Thomas J

    2006-04-01

    Full Text Available Abstract Background Inheritance of the three different alleles of the human apolipoprotein (apo E gene (APOE are associated with varying risk or clinical outcome from a variety of neurologic diseases. ApoE isoform-specific modulation of several pathogenic processes, in addition to amyloid β metabolism in Alzheimer's disease, have been proposed: one of these is innate immune response by glia. Previously we have shown that primary microglia cultures from targeted replacement (TR APOE mice have apoE isoform-dependent innate immune activation and paracrine damage to neurons that is greatest with TR by the ε4 allele (TR APOE4 and that derives from p38 mitogen-activated protein kinase (p38MAPK activity. Methods Primary cultures of TR APOE2, TR APOE3 and TR APOE4 astrocytes were stimulated with lipopolysaccharide (LPS. ApoE secretion, cytokine production, and nuclear factor-kappa B (NF-κB subunit activity were measured and compared. Results Here we showed that activation of primary astrocytes from TR APOE mice with LPS led to TR APOE-dependent differences in cytokine secretion that were greatest in TR APOE2 and that were associated with differences in NF-κB subunit activity. Conclusion Our results suggest that LPS activation of innate immune response in TR APOE glia results in opposing outcomes from microglia and astrocytes as a result of TR APOE-dependent activation of p38MAPK or NF-κB signaling in these two cell types.

  2. The oral-systemic disease connection: a retrospective study.

    Science.gov (United States)

    Joseph, Bobby K; Kullman, Leif; Sharma, Prem N

    2016-11-01

    The study aimed at determining the association between oral disease and systemic health based on panoramic radiographs and general health of patients treated at Kuwait University Dental Center. The objective was to determine whether individuals exhibiting good oral health have lower propensity to systemic diseases. A total of 1000 adult patients treated at Kuwait University Dental Center were randomly selected from the patient's records. The general health of patients was assessed from the medical history of each patient recorded during their visit to the clinic. The number of reported diseases and serious symptoms were used to develop a medical index. The oral health of these patients was assessed from panoramic radiographs to create an oral index by evaluating such parameters as caries, periodontitis, periapical lesions, pericoronitis, and tooth loss. In a total of 887 patients, 43.8 % had an oral index between 3 and 8, of which significantly higher (62.1 %) patients were with medical conditions compared to those without (33.2 %; p relationship when the diagnosis of oral disease was based primarily on radiographic findings. Future research needs to include prospective clinical and interventional studies. The significance of the oral-systemic disease connection highlights the importance of preventing and treating oral disease which have profound medical implications on general health.

  3. Multimodal Imaging of Brain Connectivity Using the MIBCA Toolbox: Preliminary Application to Alzheimer's Disease

    Science.gov (United States)

    Ribeiro, André Santos; Lacerda, Luís Miguel; Silva, Nuno André da; Ferreira, Hugo Alexandre

    2015-06-01

    The Multimodal Imaging Brain Connectivity Analysis (MIBCA) toolbox is a fully automated all-in-one connectivity analysis toolbox that offers both pre-processing, connectivity, and graph theory analysis of multimodal images such as anatomical, diffusion, and functional MRI, and PET. In this work, the MIBCA functionalities were used to study Alzheimer's Disease (AD) in a multimodal MR/PET approach. Materials and Methods: Data from 12 healthy controls, and 36 patients with EMCI, LMCI and AD (12 patients for each group) were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu), including T1-weighted (T1-w), Diffusion Tensor Imaging (DTI) data, and 18F-AV-45 (florbetapir) dynamic PET data from 40-60 min post injection (4x5 min). Both MR and PET data were automatically pre-processed for all subjects using MIBCA. T1-w data was parcellated into cortical and subcortical regions-of-interest (ROIs), and the corresponding thicknesses and volumes were calculated. DTI data was used to compute structural connectivity matrices based on fibers connecting pairs of ROIs. Lastly, dynamic PET images were summed, and the relative Standard Uptake Values calculated for each ROI. Results: An overall higher uptake of 18F-AV-45, consistent with an increased deposition of beta-amyloid, was observed for the AD group. Additionally, patients showed significant cortical atrophy (thickness and volume) especially in the entorhinal cortex and temporal areas, and a significant increase in Mean Diffusivity (MD) in the hippocampus, amygdala and temporal areas. Furthermore, patients showed a reduction of fiber connectivity with the progression of the disease, especially for intra-hemispherical connections. Conclusion: This work shows the potential of the MIBCA toolbox for the study of AD, as findings were shown to be in agreement with the literature. Here, only structural changes and beta-amyloid accumulation were considered. Yet, MIBCA is further able to

  4. Mining tissue specificity, gene connectivity and disease association to reveal a set of genes that modify the action of disease causing genes

    Directory of Open Access Journals (Sweden)

    Reverter Antonio

    2008-09-01

    Full Text Available Abstract Background The tissue specificity of gene expression has been linked to a number of significant outcomes including level of expression, and differential rates of polymorphism, evolution and disease association. Recent studies have also shown the importance of exploring differential gene connectivity and sequence conservation in the identification of disease-associated genes. However, no study relates gene interactions with tissue specificity and disease association. Methods We adopted an a priori approach making as few assumptions as possible to analyse the interplay among gene-gene interactions with tissue specificity and its subsequent likelihood of association with disease. We mined three large datasets comprising expression data drawn from massively parallel signature sequencing across 32 tissues, describing a set of 55,606 true positive interactions for 7,197 genes, and microarray expression results generated during the profiling of systemic inflammation, from which 126,543 interactions among 7,090 genes were reported. Results Amongst the myriad of complex relationships identified between expression, disease, connectivity and tissue specificity, some interesting patterns emerged. These include elevated rates of expression and network connectivity in housekeeping and disease-associated tissue-specific genes. We found that disease-associated genes are more likely to show tissue specific expression and most frequently interact with other disease genes. Using the thresholds defined in these observations, we develop a guilt-by-association algorithm and discover a group of 112 non-disease annotated genes that predominantly interact with disease-associated genes, impacting on disease outcomes. Conclusion We conclude that parameters such as tissue specificity and network connectivity can be used in combination to identify a group of genes, not previously confirmed as disease causing, that are involved in interactions with disease causing

  5. HSP: bystander antigen in atopic diseases?

    Directory of Open Access Journals (Sweden)

    Joost A Aalberse

    2012-05-01

    Full Text Available Over the last years insight in the complex interactions between innate and adaptive immunity in the regulation of an inflammatory response has increased enormously. This has revived the interest in stress proteins; proteins that are expressed during cell stress. As these proteins can attract and trigger an immunological response they can act as important mediators in this interaction. In this respect, of special interest are proteins that may act as modulators of both innate and adaptive immunity. Heat shock proteins (HSPs are stress proteins that have these, and more, characteristics. More than two decades of studies on HSPs has revealed that they are part of intrinsic, natural mechanisms that steer inflammation. This has provoked comprehensive explorations of the role of HSPs in various human inflammatory diseases.Most studies have focused on classical autoimmune diseases. This has led to the development of clinical studies with HSPs that have shown promise in Phase II/III clinical trials. Remarkably, only very little is yet known of the role of HSPs in atopic diseases. In allergic disease a number of studies have investigated the possibility that allergen-specific regulatory T cell (Treg function is defective in individuals with allergic diseases. This raises the question whether methods can be identified to improve the Treg repertoire. Studies from other inflammatory diseases have suggested HSPs may have such a beneficial effect on the T cell repertoire. Based on the immune mechanisms of atopic diseases, in this review we will argue that, as in other human inflammatory conditions, understanding immunity to HSPs is likely also relevant for atopic diseases. Specifically, we will discuss why certain HSPs such as HSP60 connect the immune response to environmental antigens with regulation of the inflammatory response.Thus they provide a molecular link that may eventually even help to better understand the immune pathological basis of the hygiene

  6. Corruption of innate immunity by bacterial proteases.

    Science.gov (United States)

    Potempa, Jan; Pike, Robert N

    2009-01-01

    The innate immune system of the human body has developed numerous mechanisms to control endogenous and exogenous bacteria and thus prevent infections by these microorganisms. These mechanisms range from physical barriers such as the skin or mucosal epithelium to a sophisticated array of molecules and cells that function to suppress or prevent bacterial infection. Many bacteria express a variety of proteases, ranging from non-specific and powerful enzymes that degrade many proteins involved in innate immunity to proteases that are extremely precise and specific in their mode of action. Here we have assembled a comprehensive picture of how bacterial proteases affect the host's innate immune system to gain advantage and cause infection. This picture is far from being complete since the numbers of mechanisms utilized are as astonishing as they are diverse, ranging from degradation of molecules vital to innate immune mechanisms to subversion of the mechanisms to allow the bacterium to hide from the system or take advantage of it. It is vital that such mechanisms are elucidated to allow strategies to be developed to aid the innate immune system in controlling bacterial infections.

  7. Involvement of Innate Immunity in the Development of Inflammatory and Autoimmune Diseases

    Czech Academy of Sciences Publication Activity Database

    Tlaskalová, Helena; Tučková, Ludmila; Štěpánková, Renata; Hudcovic, Tomáš; Palová-Jelínková, Lenka; Kozáková, Hana; Rossmann, Pavel; Sánchez, Daniel; Cinová, Jana; Hrnčíř, Tomáš; Kverka, Miloslav; Frolová, Lenka; Uhlig, H.; Powrie, F.; Bland, P.

    2005-01-01

    Roč. 1051, - (2005), s. 787-798 ISSN 0077-8923 R&D Projects: GA AV ČR IAA5020205; GA AV ČR KJB5020407; GA ČR GA310/05/2245; GA ČR GD310/03/H147; GA ČR GP310/04/P242; GA AV ČR IBS5020203; GA MZd NR8356 Institutional research plan: CEZ:AV0Z50200510 Keywords : innate immunity * mucosal immunity * mucosal barrier Subject RIV: EE - Microbiology, Virology Impact factor: 1.971, year: 2005

  8. SECONDARY PULMONARY ARTERIAL HYPERTENSION IN SYSTEMIC DISEASES OF CONNECTIVE TISSUE

    Directory of Open Access Journals (Sweden)

    N. A. Shostak

    2016-01-01

    Full Text Available Modern definition of pulmonary arterial hypertension (PAH as well as data on prevalence and incidence of secondary PAH in systemic disease of connective tissue is presented,  including data of USA, France and Scotland registers. The main chains of pathogenesis, classification approaches, clinical features and diagnostics are described. 

  9. SECONDARY PULMONARY ARTERIAL HYPERTENSION IN SYSTEMIC DISEASES OF CONNECTIVE TISSUE

    Directory of Open Access Journals (Sweden)

    N. A. Shostak

    2009-01-01

    Full Text Available Modern definition of pulmonary arterial hypertension (PAH as well as data on prevalence and incidence of secondary PAH in systemic disease of connective tissue is presented,  including data of USA, France and Scotland registers. The main chains of pathogenesis, classification approaches, clinical features and diagnostics are described. 

  10. A Longitudinal Study on Resting State Functional Connectivity in Behavioral Variant Frontotemporal Dementia and Alzheimer's Disease.

    Science.gov (United States)

    Hafkemeijer, Anne; Möller, Christiane; Dopper, Elise G P; Jiskoot, Lize C; van den Berg-Huysmans, Annette A; van Swieten, John C; van der Flier, Wiesje M; Vrenken, Hugo; Pijnenburg, Yolande A L; Barkhof, Frederik; Scheltens, Philip; van der Grond, Jeroen; Rombouts, Serge A R B

    2017-01-01

    Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) are the most common types of early-onset dementia. We applied longitudinal resting state functional magnetic resonance imaging (fMRI) to delineate functional brain connections relevant for disease progression and diagnostic accuracy. We used two-center resting state fMRI data of 20 AD patients (65.1±8.0 years), 12 bvFTD patients (64.7±5.4 years), and 22 control subjects (63.8±5.0 years) at baseline and 1.8-year follow-up. We used whole-network and voxel-based network-to-region analyses to study group differences in functional connectivity at baseline and follow-up, and longitudinal changes in connectivity within and between groups. At baseline, connectivity between paracingulate gyrus and executive control network, between cuneal cortex and medial visual network, and between paracingulate gyrus and salience network was higher in AD compared with controls. These differences were also present after 1.8 years. At follow-up, connectivity between angular gyrus and right frontoparietal network, and between paracingulate gyrus and default mode network was lower in bvFTD compared with controls, and lower compared with AD between anterior cingulate gyrus and executive control network, and between lateral occipital cortex and medial visual network. Over time, connectivity decreased in AD between precuneus and right frontoparietal network and in bvFTD between inferior frontal gyrus and left frontoparietal network. Longitudinal changes in connectivity between supramarginal gyrus and right frontoparietal network differ between both patient groups and controls. We found disease-specific brain regions with longitudinal connectivity changes. This suggests the potential of longitudinal resting state fMRI to delineate regions relevant for disease progression and for diagnostic accuracy, although no group differences in longitudinal changes in the direct comparison of AD and bvFTD were found.

  11. Innate immune response development in nestling tree swallows

    Science.gov (United States)

    Stambaugh, T.; Houdek, B.J.; Lombardo, M.P.; Thorpe, P.A.; Caldwell, Hahn D.

    2011-01-01

    We tracked the development of innate immunity in nestling Tree Swallows (Tachycineta bicolor) and compared it to that of adults using blood drawn from nestlings during days 6, 12, and 18 of the ???20-day nestling period and from adults. Innate immunity was characterized using an in vitro assay of the ability of whole blood to kill Escherichia coli. The ability of whole blood to kill E. coli increased as nestlings matured. Neither this component of innate immunity nor right wing chord length on day18 were as developed as in adults indicating that development of the innate immune system and growth both continued after fledging. Narrow sense heritability analyses suggest that females with strong immune responses produced nestlings with strong immune responses. These data suggest nestling Tree Swallows allocated sufficient energy to support rapid growth to enable fledging by day 18, but that further development of innate immunity occurred post-fledging. ?? 2011 by the Wilson Ornithological Society.

  12. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis.

    Science.gov (United States)

    Klose, Christoph S N; Artis, David

    2016-06-21

    Research over the last 7 years has led to the formal identification of innate lymphoid cells (ILCs), increased the understanding of their tissue distribution and has established essential functions of ILCs in diverse physiological processes. These include resistance to pathogens, the regulation of autoimmune inflammation, tissue remodeling, cancer and metabolic homeostasis. Notably, many ILC functions appear to be regulated by mechanisms distinct from those of other innate and adaptive immune cells. In this Review, we focus on how group 2 ILC (ILC2) and group 3 ILC (ILC3) responses are regulated and how these cells interact with other immune and non-immune cells to mediate their functions. We highlight experimental evidence from mouse models and patient-based studies that have elucidated the effects of ILCs on the maintenance of tissue homeostasis and the consequences for health and disease.

  13. Skin cancer risk in autoimmune connective tissue diseases.

    Science.gov (United States)

    Kostaki, D; Antonini, A; Peris, K; Fargnoli, M C

    2014-10-01

    Cutaneous malignancies have been significantly associated with autoimmune connective tissue diseases (ACTDs). This review focuses on the current state of knowledge on skin cancer risk in the most prevalent ACTDs in dermatology including lupus erythematosus, scleroderma, dermatomyositis and Sjögren syndrome. Potential pathogenetic mechanisms for the association between ACTDs and malignancy involve disease-related impairment of immune system, sustained cutaneous inflammation, drug-associated immune suppression and increased susceptibility to acquired viral infections. An additional causal role might be played by environmental factors such as UV exposure and smoking. The occurrence of skin cancer can have a profound impact on the already compromised quality of life of ACTD patients. Therefore, effective screening and monitoring strategies are essential for ACTD patients as early detection and prompt therapeutic intervention can reduce morbidity and mortality in these patients.

  14. Ebola Virus Glycoprotein Induces an Innate Immune Response In vivo via TLR4

    Directory of Open Access Journals (Sweden)

    Chih-Yun Lai

    2017-08-01

    Full Text Available Ebola virus (EBOV, a member of the Filoviridae family, causes the most severe form of viral hemorrhagic fever. Although no FDA licensed vaccine or treatment against Ebola virus disease (EVD is currently available, Ebola virus glycoprotein (GP is the major antigen used in all candidate Ebola vaccines. Recent reports of protection as quickly as within 6 days of administration of the rVSV-based vaccine expressing EBOV GP before robust humoral responses were generated suggests that the innate immune responses elicited early after vaccination may contribute to the protection. However, the innate immune responses induced by EBOV GP in the absence of viral vectors or adjuvants have not been fully characterized in vivo. Our recent studies demonstrated that immunization with highly purified recombinant GP in the absence of adjuvants induced a robust IgG response and partial protection against EBOV infection suggesting that GP alone can induce protective immunity. In this study we investigated the early immune response to purified EBOV GP alone in vitro and in vivo. We show that GP was efficiently internalized by antigen presenting cells and subsequently induced production of key inflammatory cytokines. In vivo, immunization of mice with EBOV GP triggered the production of key Th1 and Th2 innate immune cytokines and chemokines, which directly governed the recruitment of CD11b+ macrophages and CD11c+ dendritic cells to the draining lymph nodes (DLNs. Pre-treatment of mice with a TLR4 antagonist inhibited GP-induced cytokine production and recruitment of immune cells to the DLN. EBOV GP also upregulated the expression of costimulatory molecules in bone marrow derived macrophages suggesting its ability to enhance APC stimulatory capacity, which is critical for the induction of effective antigen-specific adaptive immunity. Collectively, these results provide the first in vivo evidence that early innate immune responses to EBOV GP are mediated via the TLR4

  15. Undifferentiated connective tissue disease and interstitial lung disease: Trying to define patterns.

    Science.gov (United States)

    Alberti, María Laura; Paulin, Francisco; Toledo, Heidegger Mateos; Fernández, Martín Eduardo; Caro, Fabián Matías; Rojas-Serrano, Jorge; Mejía, Mayra Edith

    To identify clinical or immunological features in patients with undifferentiated connective tissue disease (UCTD) associated interstitial lung disease (ILD), in order to group them and recognize different functional and high resolution computed tomography (HRCT) behavior. Retrospective cohort study. Patients meeting Kinder criteria for UCTD were included. We defined the following predictive variables: 'highly specific' connective tissue disease (CTD) manifestations (Raynaud's phenomenon, dry eyes or arthritis), high antinuclear antibody (ANA) titer (above 1: 320), and 'specific' ANA staining patterns (centromere, cytoplasmic and nucleolar patterns). We evaluated the following outcomes: change in the percentage of the predicted forced vital capacity (FVC%) during the follow-up period, and HRCT pattern. Sixty-six patients were included. Twenty-nine (43.94%) showed at least one 'highly specific' CTD manifestation, 16 (28.57%) had a 'specific' ANA staining pattern and 29 (43.94%) high ANA titer. Patients with 'highly specific' CTD manifestations were younger (mean [SD] 52 years [14.58] vs 62.08 years [9.46], P<.001), were more likely men (10.34% vs 48.65%, P<.001) and showed a smaller decline of the FVC% (median [interquartile range] 1% [-1 to 10] vs -6% [-16 to -4], P<.006). In the multivariate analysis, the presence of highly specific manifestations was associated with improvement in the FVC% (B coefficient of 13.25 [95% confidence interval, 2.41 to 24.09]). No association was observed in relation to the HRCT pattern. The presence of 'highly specific' CTD manifestations was associated with female sex, younger age and better functional behavior. These findings highlight the impact of the clinical features in the outcome of patients with UCTD ILD. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.

  16. Early brain connectivity alterations and cognitive impairment in a rat model of Alzheimer's disease.

    Science.gov (United States)

    Muñoz-Moreno, Emma; Tudela, Raúl; López-Gil, Xavier; Soria, Guadalupe

    2018-02-07

    Animal models of Alzheimer's disease (AD) are essential to understanding the disease progression and to development of early biomarkers. Because AD has been described as a disconnection syndrome, magnetic resonance imaging (MRI)-based connectomics provides a highly translational approach to characterizing the disruption in connectivity associated with the disease. In this study, a transgenic rat model of AD (TgF344-AD) was analyzed to describe both cognitive performance and brain connectivity at an early stage (5 months of age) before a significant concentration of β-amyloid plaques is present. Cognitive abilities were assessed by a delayed nonmatch-to-sample (DNMS) task preceded by a training phase where the animals learned the task. The number of training sessions required to achieve a learning criterion was recorded and evaluated. After DNMS, MRI acquisition was performed, including diffusion-weighted MRI and resting-state functional MRI, which were processed to obtain the structural and functional connectomes, respectively. Global and regional graph metrics were computed to evaluate network organization in both transgenic and control rats. The results pointed to a delay in learning the working memory-related task in the AD rats, which also completed a lower number of trials in the DNMS task. Regarding connectivity properties, less efficient organization of the structural brain networks of the transgenic rats with respect to controls was observed. Specific regional differences in connectivity were identified in both structural and functional networks. In addition, a strong correlation was observed between cognitive performance and brain networks, including whole-brain structural connectivity as well as functional and structural network metrics of regions related to memory and reward processes. In this study, connectivity and neurocognitive impairments were identified in TgF344-AD rats at a very early stage of the disease when most of the pathological hallmarks

  17. Intrinsic functional defects of type 2 innate lymphoid cells impair innate allergic inflammation in promyelocytic leukemia zinc finger (PLZF)-deficient mice.

    Science.gov (United States)

    Verhoef, Philip A; Constantinides, Michael G; McDonald, Benjamin D; Urban, Joseph F; Sperling, Anne I; Bendelac, Albert

    2016-02-01

    The transcription factor promyelocytic leukemia zinc finger (PLZF) is transiently expressed during development of type 2 innate lymphoid cells (ILC2s) but is not present at the mature stage. We hypothesized that PLZF-deficient ILC2s have functional defects in the innate allergic response and represent a tool for studying innate immunity in a mouse with a functional adaptive immune response. We determined the consequences of PLZF deficiency on ILC2 function in response to innate and adaptive immune stimuli by using PLZF(-/-) mice and mixed wild-type:PLZF(-/-) bone marrow chimeras. PLZF(-/-) mice, wild-type littermates, or mixed bone marrow chimeras were treated with the protease allergen papain or the cytokines IL-25 and IL-33 or infected with the helminth Nippostrongylus brasiliensis to induce innate type 2 allergic responses. Mice were sensitized with intraperitoneal ovalbumin-alum, followed by intranasal challenge with ovalbumin alone, to induce adaptive TH2 responses. Lungs were analyzed for immune cell subsets, and alveolar lavage fluid was analyzed for ILC2-derived cytokines. In addition, ILC2s were stimulated ex vivo for their capacity to release type 2 cytokines. PLZF-deficient lung ILC2s exhibit a cell-intrinsic defect in the secretion of IL-5 and IL-13 in response to innate stimuli, resulting in defective recruitment of eosinophils and goblet cell hyperplasia. In contrast, the adaptive allergic inflammatory response to ovalbumin and alum was unimpaired. PLZF expression at the innate lymphoid cell precursor stage has a long-range effect on the functional properties of mature ILC2s and highlights the importance of these cells for innate allergic responses in otherwise immunocompetent mice. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  18. Estimating the incidence of connective tissue diseases and vasculitides in a defined population in Northern Savo area in 2010.

    Science.gov (United States)

    Elfving, P; Marjoniemi, O; Niinisalo, H; Kononoff, A; Arstila, L; Savolainen, E; Rutanen, J; Kaipiainen-Seppänen, O

    2016-07-01

    Objective of the study was to evaluate the annual incidence and distribution of autoimmune connective tissue diseases and vasculitides during 2010. All units practicing rheumatology in the Northern Savo area, Finland, participated in the study by collecting data on newly diagnosed adult patients with autoimmune connective tissue disease or vasculitis over 1-year period. Seventy-two cases with autoimmune connective tissue disease were identified. The annual incidence rates were as follows: systemic lupus erythematosus 3.4/100,000 (95 % CI 1.4-7.0), idiopathic inflammatory myopathies 1.9 (0.5-5.0), systemic sclerosis 4.4 (2.0-8.3), mixed connective tissue disease 1.0 (0.1-3.5), Sjögren's syndrome 10.7 (6.7-16.1) and undifferentiated connective tissue disease 13.6 (9.0-19.6). The annual incidence rates among vasculitis category were as follows: antineutrophil cytoplasmic antibody-associated vasculitis 1.5/100,000 (95 % CI 0.3-4.3), central nervous system vasculitis 0.5 (0-2.7) and Henoch-Schönlein purpura 1.5 (0.3-4.3). The annual incidence of giant cell arteritis in the age group of 50 years or older was 7.5/100,000 (95 % CI 3.2-14.8). The longest delay from symptom onset to diagnosis occurred in systemic sclerosis. The incidences of autoimmune connective tissue diseases and vasculitides were comparable with those in published literature. The present study showed female predominance in all connective tissue diseases, excluding idiopathic inflammatory muscle diseases and mean age at onset of disease around 50 years of age. Despite improved diagnostic tools, diagnostic delay is long especially among patients with systemic sclerosis.

  19. FLOW-BASED NETWORK MEASURES OF BRAIN CONNECTIVITY IN ALZHEIMER'S DISEASE.

    Science.gov (United States)

    Prasad, Gautam; Joshi, Shantanu H; Nir, Talia M; Toga, Arthur W; Thompson, Paul M

    2013-01-01

    We present a new flow-based method for modeling brain structural connectivity. The method uses a modified maximum-flow algorithm that is robust to noise in the diffusion data and guided by biologically viable pathways and structure of the brain. A flow network is first created using a lattice graph by connecting all lattice points (voxel centers) to all their neighbors by edges. Edge weights are based on the orientation distribution function (ODF) value in the direction of the edge. The maximum-flow is computed based on this flow graph using the flow or the capacity between each region of interest (ROI) pair by following the connected tractography fibers projected onto the flow graph edges. Network measures such as global efficiency, transitivity, path length, mean degree, density, modularity, small world, and assortativity are computed from the flow connectivity matrix. We applied our method to diffusion-weighted images (DWIs) from 110 subjects (28 normal elderly, 56 with early and 11 with late mild cognitive impairment, and 15 with AD) and segmented co-registered anatomical MRIs into cortical regions. Experimental results showed better performance compared to the standard fiber-counting methods when distinguishing Alzheimer's disease from normal aging.

  20. Age-associated changes in monocyte and innate immune activation markers occur more rapidly in HIV infected women.

    Directory of Open Access Journals (Sweden)

    Genevieve E Martin

    Full Text Available Aging is associated with immune dysfunction and the related development of conditions with an inflammatory pathogenesis. Some of these immune changes are also observed in HIV infection, but the interaction between immune changes with aging and HIV infection are unknown. Whilst sex differences in innate immunity are recognized, little research into innate immune aging has been performed on women.This cross-sectional study of HIV positive and negative women used whole blood flow cytometric analysis to characterize monocyte and CD8(+ T cell subsets. Plasma markers of innate immune activation were measured using standard ELISA-based assays.HIV positive women exhibited elevated plasma levels of the innate immune activation markers CXCL10 (p<0.001, soluble CD163 (sCD163, p = 0.001, sCD14 (p = 0.022, neopterin (p = 0.029 and an increased proportion of CD16(+ monocytes (p = 0.009 compared to uninfected controls. Levels of the innate immune aging biomarkers sCD163 and the proportion of CD16(+ monocytes were equivalent to those observed in HIV negative women aged 14.5 and 10.6 years older, respectively. CXCL10 increased with age at an accelerated rate in HIV positive women (p = 0.002 suggesting a synergistic effect between HIV and aging on innate immune activation. Multivariable modeling indicated that age-related increases in innate immune biomarkers CXCL10 and sCD163 are independent of senescent changes in CD8(+ T lymphocytes.Quantifying the impact of HIV on immune aging reveals that HIV infection in women confers the equivalent of a 10-14 year increase in the levels of innate immune aging markers. These changes may contribute to the increased risk of inflammatory age-related diseases in HIV positive women.

  1. Age-associated changes in monocyte and innate immune activation markers occur more rapidly in HIV infected women.

    Science.gov (United States)

    Martin, Genevieve E; Gouillou, Maelenn; Hearps, Anna C; Angelovich, Thomas A; Cheng, Allen C; Lynch, Fiona; Cheng, Wan-Jung; Paukovics, Geza; Palmer, Clovis S; Novak, Richard M; Jaworowski, Anthony; Landay, Alan L; Crowe, Suzanne M

    2013-01-01

    Aging is associated with immune dysfunction and the related development of conditions with an inflammatory pathogenesis. Some of these immune changes are also observed in HIV infection, but the interaction between immune changes with aging and HIV infection are unknown. Whilst sex differences in innate immunity are recognized, little research into innate immune aging has been performed on women. This cross-sectional study of HIV positive and negative women used whole blood flow cytometric analysis to characterize monocyte and CD8(+) T cell subsets. Plasma markers of innate immune activation were measured using standard ELISA-based assays. HIV positive women exhibited elevated plasma levels of the innate immune activation markers CXCL10 (p<0.001), soluble CD163 (sCD163, p = 0.001), sCD14 (p = 0.022), neopterin (p = 0.029) and an increased proportion of CD16(+) monocytes (p = 0.009) compared to uninfected controls. Levels of the innate immune aging biomarkers sCD163 and the proportion of CD16(+) monocytes were equivalent to those observed in HIV negative women aged 14.5 and 10.6 years older, respectively. CXCL10 increased with age at an accelerated rate in HIV positive women (p = 0.002) suggesting a synergistic effect between HIV and aging on innate immune activation. Multivariable modeling indicated that age-related increases in innate immune biomarkers CXCL10 and sCD163 are independent of senescent changes in CD8(+) T lymphocytes. Quantifying the impact of HIV on immune aging reveals that HIV infection in women confers the equivalent of a 10-14 year increase in the levels of innate immune aging markers. These changes may contribute to the increased risk of inflammatory age-related diseases in HIV positive women.

  2. Dissecting the hypothalamic pathways that underlie innate behaviors.

    Science.gov (United States)

    Zha, Xi; Xu, Xiaohong

    2015-12-01

    Many complex behaviors that do not require learning are displayed and are termed innate. Although traditionally the subject matter of ethology, innate behaviors offer a unique entry point for neuroscientists to dissect the physiological mechanisms governing complex behaviors. Since the last century, converging evidence has implicated the hypothalamus as the central brain area that controls innate behaviors. Recent studies using cutting-edge tools have revealed that genetically-defined populations of neurons residing in distinct hypothalamic nuclei and their associated neural pathways regulate the initiation and maintenance of diverse behaviors including feeding, sleep, aggression, and parental care. Here, we review the newly-defined hypothalamic pathways that regulate each innate behavior. In addition, emerging general principles of the neural control of complex behaviors are discussed.

  3. Combined effects of dietary fructooligosaccharide and Bacillus licheniformis on innate immunity, antioxidant capability and disease resistance of triangular bream (Megalobrama terminalis).

    Science.gov (United States)

    Zhang, Chun-Nuan; Li, Xiang-Fei; Xu, Wei-Na; Jiang, Guang-Zhen; Lu, Kang-Le; Wang, Li-Na; Liu, Wen-Bin

    2013-11-01

    This study was conducted to investigate the effects of fructooligosaccharide (FOS) and Bacillus licheniformis (B. licheniformis) and their interaction on innate immunity, antioxidant capability and disease resistance of triangular bream Megalobrama terminalis (average initial weight 30.5 ± 0.5 g). Nine experimental diets were formulated to contain three FOS levels (0, 0.3% and 0.6%) and three B. licheniformis levels (0, 1 × 10(7), 5 × 10(7) CFU g(-1)) according to a 3 × 3 factorial design. At the end of the 8-week feeding trial, fish were challenged by Aeromonas hydrophila (A. hydrophila) and survival rate was recorded for the next 7 days. The results showed that leucocyte counts, alternative complement activity as well as total serum protein and globulin contents all increased significantly (P licheniformis levels increased from 0 to 1 × 10(7) CFU g(-1), while little difference (P > 0.05) was observed in these parameters in terms of dietary FOS levels. Both plasma alkaline phosphatase and phenoloxidase activities were significantly (P 0.05) by both FOS and B. licheniformis. Liver catalase, glutathione peroxidase as well as plasma SOD activities of fish fed 1 × 10(7) CFU g(-1)B. licheniformis were all significantly (P 0.05) by either FOS levels or B. licheniformis contents, whereas a significant (P licheniformis. The results of this study indicated that dietary FOS and B. licheniformis could significantly enhance the innate immunity and antioxidant capability of triangular bream, as well as improve its disease resistance. The best combination of these two prebiotics and/or probiotics was 0.3% FOS and 1 × 10(7) CFU g(-1)B. licheniformis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Linked Registries: Connecting Rare Diseases Patient Registries through a Semantic Web Layer.

    Science.gov (United States)

    Sernadela, Pedro; González-Castro, Lorena; Carta, Claudio; van der Horst, Eelke; Lopes, Pedro; Kaliyaperumal, Rajaram; Thompson, Mark; Thompson, Rachel; Queralt-Rosinach, Núria; Lopez, Estrella; Wood, Libby; Robertson, Agata; Lamanna, Claudia; Gilling, Mette; Orth, Michael; Merino-Martinez, Roxana; Posada, Manuel; Taruscio, Domenica; Lochmüller, Hanns; Robinson, Peter; Roos, Marco; Oliveira, José Luís

    2017-01-01

    Patient registries are an essential tool to increase current knowledge regarding rare diseases. Understanding these data is a vital step to improve patient treatments and to create the most adequate tools for personalized medicine. However, the growing number of disease-specific patient registries brings also new technical challenges. Usually, these systems are developed as closed data silos, with independent formats and models, lacking comprehensive mechanisms to enable data sharing. To tackle these challenges, we developed a Semantic Web based solution that allows connecting distributed and heterogeneous registries, enabling the federation of knowledge between multiple independent environments. This semantic layer creates a holistic view over a set of anonymised registries, supporting semantic data representation, integrated access, and querying. The implemented system gave us the opportunity to answer challenging questions across disperse rare disease patient registries. The interconnection between those registries using Semantic Web technologies benefits our final solution in a way that we can query single or multiple instances according to our needs. The outcome is a unique semantic layer, connecting miscellaneous registries and delivering a lightweight holistic perspective over the wealth of knowledge stemming from linked rare disease patient registries.

  5. Bipolar and panic disorders may be associated with hereditary defects in the innate immune system

    DEFF Research Database (Denmark)

    Foldager, Leslie; Köhler, Karl Ole; Steffensen, Rudi Nora

    2014-01-01

    Background: Mannan-binding lectin (MBL) and mannan-binding lectin-associated serine protease-2 (MASP-2) represent important arms of the innate immune system, and different deficiencies may result in infections or autoimmune diseases. Both bipolar and panic disorders are associated with increased...

  6. Accelerated evolution of innate immunity proteins in social insects: adaptive evolution or relaxed constraint?

    Science.gov (United States)

    Harpur, Brock A; Zayed, Amro

    2013-07-01

    The genomes of eusocial insects have a reduced complement of immune genes-an unusual finding considering that sociality provides ideal conditions for disease transmission. The following three hypotheses have been invoked to explain this finding: 1) social insects are attacked by fewer pathogens, 2) social insects have effective behavioral or 3) novel molecular mechanisms for combating pathogens. At the molecular level, these hypotheses predict that canonical innate immune pathways experience a relaxation of selective constraint. A recent study of several innate immune genes in ants and bees showed a pattern of accelerated amino acid evolution, which is consistent with either positive selection or a relaxation of constraint. We studied the population genetics of innate immune genes in the honey bee Apis mellifera by partially sequencing 13 genes from the bee's Toll pathway (∼10.5 kb) and 20 randomly chosen genes (∼16.5 kb) sequenced in 43 diploid workers. Relative to the random gene set, Toll pathway genes had significantly higher levels of amino acid replacement mutations segregating within A. mellifera and fixed between A. mellifera and A. cerana. However, levels of diversity and divergence at synonymous sites did not differ between the two gene sets. Although we detect strong signs of balancing selection on the pathogen recognition gene pgrp-sa, many of the genes in the Toll pathway show signatures of relaxed selective constraint. These results are consistent with the reduced complement of innate immune genes found in social insects and support the hypothesis that some aspect of eusociality renders canonical innate immunity superfluous.

  7. Effect of dietary gluten on dendritic cells and innate immune subsets in BALB/c and NOD mice.

    Directory of Open Access Journals (Sweden)

    Jesper Larsen

    Full Text Available The innate immune system is known to play an important role in oral tolerance to dietary antigens. This is important in development of celiac disease (CD but may also be important in type 1 diabetes (T1D, and could potentially explain the reduced incidence of T1D in mice receiving a gluten-free (GF diet. The direct in vivo effect of gluten on innate cells, and particularly dendritic cells (DC is not sufficiently clarified. Therefore, we wished to investigate the innate cell populations of spontaneous diabetic NOD mice and healthy BALB/c mice kept on a GF or a standard (STD gluten containing diet. We studied, by flow cytometry and reverse transcription-quantitative polymerase chain reaction (qRT-PCR, if dietary gluten induces changes in the activation of DCs and distribution of selected innate cells in lymphoid, pancreatic and intestinal tissues in BALB/c and NOD mice. We found that a GF diet increased the percentage of macrophages in BALB/c spleen and of CD11c+ DCs in BALB/c and NOD spleen. Strictly gluten-free (SGF diet increased the percentage of CD103+ DCs in BALB/c mice and decreased percentages of CD11b+ DCs in mesenteric and pancreatic lymph nodes in BALB/c mice. SGF diet in BALB/c mice also decreased DC expression of CD40, CCR7 and MHC-II in pancreatic lymph nodes. In conclusion, GF diet changes the composition of the innate immune system in BALB/c and NOD mice and increases expression of DC activation markers in NOD mice. These results contribute to the explanation of the low diabetes incidence in GF NOD mice. This mechanism may be important in development of type 1 diabetes, celiac disease and non-celiac gluten sensitivity.

  8. Stress Hyperglycemia, Insulin Treatment, and Innate Immune Cells

    Directory of Open Access Journals (Sweden)

    Fangming Xiu

    2014-01-01

    Full Text Available Hyperglycemia (HG and insulin resistance are the hallmarks of a profoundly altered metabolism in critical illness resulting from the release of cortisol, catecholamines, and cytokines, as well as glucagon and growth hormone. Recent studies have proposed a fundamental role of the immune system towards the development of insulin resistance in traumatic patients. A comprehensive review of published literatures on the effects of hyperglycemia and insulin on innate immunity in critical illness was conducted. This review explored the interaction between the innate immune system and trauma-induced hypermetabolism, while providing greater insight into unraveling the relationship between innate immune cells and hyperglycemia. Critical illness substantially disturbs glucose metabolism resulting in a state of hyperglycemia. Alterations in glucose and insulin regulation affect the immune function of cellular components comprising the innate immunity system. Innate immune system dysfunction via hyperglycemia is associated with a higher morbidity and mortality in critical illness. Along with others, we hypothesize that reduction in morbidity and mortality observed in patients receiving insulin treatment is partially due to its effect on the attenuation of the immune response. However, there still remains substantial controversy regarding moderate versus intensive insulin treatment. Future studies need to determine the integrated effects of HG and insulin on the regulation of innate immunity in order to provide more effective insulin treatment regimen for these patients.

  9. Mediastinal lymphadenopathy and pulmonary arterial hypertension in mixed connective tissue disease

    International Nuclear Information System (INIS)

    Guit, G.L.; Shaw, P.C.; Ehrlich, J.; Kroon, H.M.; Oudkerk, M.

    1985-01-01

    A case of mixed connective tissue disease (MCTD) is presented in which mediastinal lymphadenopathy was the most prominent radiological finding detected by plain chest radiographs and computed tomography. Pulmonary arterial hypertension, which is a rare and often fatal complication of MCTD, also developed in this patient

  10. Innate Lymphoid Cells in Intestinal Inflammation

    Science.gov (United States)

    Geremia, Alessandra; Arancibia-Cárcamo, Carolina V.

    2017-01-01

    Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the intestine that encompasses Crohn’s disease (CD) and ulcerative colitis. The cause of IBD is unknown, but the evidence suggests that an aberrant immune response toward the commensal bacterial flora is responsible for disease in genetically susceptible individuals. Results from animal models of colitis and human studies indicate a role for innate lymphoid cells (ILC) in the pathogenesis of chronic intestinal inflammation in IBD. ILC are a population of lymphocytes that are enriched at mucosal sites, where they play a protective role against pathogens including extracellular bacteria, helminthes, and viruses. ILC lack an antigen-specific receptor, but can respond to environmental stress signals contributing to the rapid orchestration of an early immune response. Several subsets of ILC reflecting functional characteristics of T helper subsets have been described. ILC1 express the transcription factor T-bet and are characterized by secretion of IFNγ, ILC2 are GATA3+ and secrete IL5 and IL13 and ILC3 depend on expression of RORγt and secrete IL17 and IL22. However, ILC retain a degree of plasticity depending on exposure to cytokines and environmental factors. IL23 responsive ILC have been implicated in the pathogenesis of colitis in several innate murine models through the production of IL17, IFNγ, and GM-CSF. We have previously identified IL23 responsive ILC in the human intestine and found that they accumulate in the inflamed colon and small bowel of patients with CD. Other studies have confirmed accumulation of ILC in CD with increased frequencies of IFNγ-secreting ILC1 in both the intestinal lamina propria and the epithelium. Moreover, IL23 driven IL22 producing ILC have been shown to drive bacteria-induced colitis-associated cancer in mice. Interestingly, our data show increased ILC accumulation in patients with IBD and primary sclerosing cholangitis, who carry an increased risk of

  11. Innate Lymphoid Cells in Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    Alessandra Geremia

    2017-10-01

    Full Text Available Inflammatory bowel disease (IBD is a chronic inflammatory disorder of the intestine that encompasses Crohn’s disease (CD and ulcerative colitis. The cause of IBD is unknown, but the evidence suggests that an aberrant immune response toward the commensal bacterial flora is responsible for disease in genetically susceptible individuals. Results from animal models of colitis and human studies indicate a role for innate lymphoid cells (ILC in the pathogenesis of chronic intestinal inflammation in IBD. ILC are a population of lymphocytes that are enriched at mucosal sites, where they play a protective role against pathogens including extracellular bacteria, helminthes, and viruses. ILC lack an antigen-specific receptor, but can respond to environmental stress signals contributing to the rapid orchestration of an early immune response. Several subsets of ILC reflecting functional characteristics of T helper subsets have been described. ILC1 express the transcription factor T-bet and are characterized by secretion of IFNγ, ILC2 are GATA3+ and secrete IL5 and IL13 and ILC3 depend on expression of RORγt and secrete IL17 and IL22. However, ILC retain a degree of plasticity depending on exposure to cytokines and environmental factors. IL23 responsive ILC have been implicated in the pathogenesis of colitis in several innate murine models through the production of IL17, IFNγ, and GM-CSF. We have previously identified IL23 responsive ILC in the human intestine and found that they accumulate in the inflamed colon and small bowel of patients with CD. Other studies have confirmed accumulation of ILC in CD with increased frequencies of IFNγ-secreting ILC1 in both the intestinal lamina propria and the epithelium. Moreover, IL23 driven IL22 producing ILC have been shown to drive bacteria-induced colitis-associated cancer in mice. Interestingly, our data show increased ILC accumulation in patients with IBD and primary sclerosing cholangitis, who carry an

  12. Mixed connective tissue disease associated with noted pulmonary CT findings

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Souji; Tsukada, Atsuko; Furuya, Tatsutaka

    1984-10-01

    CT was performed in a 56-year-old woman with mixed connective tissue disease (MCTD). Much more definitive pulmonary findings were obtained by CT than by the conventional chest x-ray examination and pulmonary function test. CT findings disclosed pulmonary lesions extremely similar to those in cases of progressive systemic sclerosis. Pulmonary CT was considered useful in examining pulmonary lesions for MCTD.

  13. Interleukin-7 receptor blockade suppresses adaptive and innate inflammatory responses in experimental colitis

    Directory of Open Access Journals (Sweden)

    Willis Cynthia R

    2012-10-01

    Full Text Available Abstract Background Interleukin-7 (IL-7 acts primarily on T cells to promote their differentiation, survival, and homeostasis. Under disease conditions, IL-7 mediates inflammation through several mechanisms and cell types. In humans, IL-7 and its receptor (IL-7R are increased in diseases characterized by inflammation such as atherosclerosis, rheumatoid arthritis, psoriasis, multiple sclerosis, and inflammatory bowel disease. In mice, overexpression of IL-7 results in chronic colitis, and T-cell adoptive transfer studies suggest that memory T cells expressing high amounts of IL-7R drive colitis and are maintained and expanded with IL-7. The studies presented here were undertaken to better understand the contribution of IL-7R in inflammatory bowel disease in which colitis was induced with a bacterial trigger rather than with adoptive transfer. Methods We examined the contribution of IL-7R on inflammation and disease development in two models of experimental colitis: Helicobacter bilis (Hb-induced colitis in immune-sufficient Mdr1a−/− mice and in T- and B-cell-deficient Rag2−/− mice. We used pharmacological blockade of IL-7R to understand the mechanisms involved in IL-7R-mediated inflammatory bowel disease by analyzing immune cell profiles, circulating and colon proteins, and colon gene expression. Results Treatment of mice with an anti-IL-7R antibody was effective in reducing colitis in Hb-infected Mdr1a−/− mice by reducing T-cell numbers as well as T-cell function. Down regulation of the innate immune response was also detected in Hb-infected Mdr1a−/− mice treated with an anti-IL-7R antibody. In Rag2−/− mice where colitis was triggered by Hb-infection, treatment with an anti-IL-7R antibody controlled innate inflammatory responses by reducing macrophage and dendritic cell numbers and their activity. Conclusions Results from our studies showed that inhibition of IL-7R successfully ameliorated inflammation and disease development

  14. Are innate immune signaling pathways in plants and animals conserved?

    Science.gov (United States)

    Ausubel, Frederick M

    2005-10-01

    Although adaptive immunity is unique to vertebrates, the innate immune response seems to have ancient origins. Common features of innate immunity in vertebrates, invertebrate animals and plants include defined receptors for microbe-associated molecules, conserved mitogen-associated protein kinase signaling cascades and the production of antimicrobial peptides. It is commonly reported that these similarities in innate immunity represent a process of divergent evolution from an ancient unicellular eukaryote that pre-dated the divergence of the plant and animal kingdoms. However, at present, data suggest that the seemingly analogous regulatory modules used in plant and animal innate immunity are a consequence of convergent evolution and reflect inherent constraints on how an innate immune system can be constructed.

  15. THE UVEITIS – PERIODONTAL DISEASE CONNECTION IN PREGNANCY: CONTROVERSY BETWEEN MYTH AND REALITY

    Directory of Open Access Journals (Sweden)

    Widyawati Sutedjo

    2012-01-01

    Full Text Available Background: Recently, It had been recognized that oral infection, especially periodontal disease are potential contributing factors to a variety of systemic diseases, such as cardiovascular and cerebrovascular diseases, pregnancy problem, diabetes mellitus type 2, etc. However, the adverse effect of periodontal disease toward uveitis still not clearly understood especially if happens during pregnancy. Interestingly, in Indonesia, there is still a myth that pregnant women should not get any dental treatment, therefore, it may deteriorate periodontal disease during pregnancy. Purpose: to explain the possible connection between periodontal disease and uveitis and increase the awareness of these problems during pregnancy that could be understood by doctor and laymen. Reviews: literatures revealed that dental infection can caused uveitis via metastatic spread of toxin and inflammatory mediators. Additionaly, more recent investigation reported that the neural system may also stimulated by oral infection. In the orofacial regions there's trigeminal nerve complex that also related to the orbital region, thus may also involved in the uveitis pathogenesis. The effects of periodonto pathogens toxins toward immunocompetent cell and nerves had also been reported by researcher. Moreover, pregnant women are more susceptible to periodontal disease, therefore maintaining oral hygiene and dental monitoring is a mandatory. Conclusion: in woman who susceptible to uveitis, periodontal disease may exacerbate the symptoms especially in pregnancy. Therefore simple explanation about connection of oral infection-systemic diseases especially in pregnancy should be widespread among Indonesian people.

  16. Innate immune function in placenta and cord blood of hepatitis C--seropositive mother-infant dyads.

    Science.gov (United States)

    Hurtado, Christine Waasdorp; Golden-Mason, Lucy; Brocato, Megan; Krull, Mona; Narkewicz, Michael R; Rosen, Hugo R

    2010-08-30

    Vertical transmission accounts for the majority of pediatric cases of hepatitis C viral (HCV) infection. In contrast to the adult population who develop persistent viremia in approximately 80% of cases following exposure, the rate of mother-to-child transmission (2-6%) is strikingly low. Protection from vertical transmission likely requires the coordination of multiple components of the immune system. Placenta and decidua provide a direct connection between mother and infant. We hypothesized that innate immune responses would differ across the three compartments (decidua, placenta and cord blood) and that hepatitis C exposure would modify innate immunity in these tissues. The study was comprised of HCV-infected and healthy control mother and infant pairs from whom cord blood, placenta and decidua were collected with isolation of mononuclear cells. Multiparameter flow cytometry was performed to assess the phenotype, intracellular cytokine production and cytotoxicity of the cells. In keeping with a model where the maternal-fetal interface provides antiviral protection, we found a gradient in proportional frequencies of NKT and gammadelta-T cells being higher in placenta than cord blood. Cytotoxicity of NK and NKT cells was enhanced in placenta and placental NKT cytotoxicity was further increased by HCV infection. HCV exposure had multiple effects on innate cells including a decrease in activation markers (CD69, TRAIL and NKp44) on NK cells and a decrease in plasmacytoid dendritic cells in both placenta and cord blood of exposed infants. In summary, the placenta represents an active innate immunological organ that provides antiviral protection against HCV transmission in the majority of cases; the increased incidence in preterm labor previously described in HCV-seropositive mothers may be related to enhanced cytotoxicity of NKT cells.

  17. Are you experienced? Understanding bladder innate immunity in the context of recurrent urinary tract infection

    Science.gov (United States)

    O’Brien, Valerie P.; Hannan, Thomas J.; Schaeffer, Anthony J.; Hultgren, Scott J.

    2015-01-01

    Purpose of review Recurrent urinary tract infection (rUTI) is a serious clinical problem, yet effective therapeutic options are limited, especially against multidrug-resistant uropathogens. In this review, we explore the development of a clinically relevant model of rUTI in previously infected mice and review recent developments in bladder innate immunity that may affect susceptibility to rUTI. Recent findings Chronic bladder inflammation during prolonged bacterial cystitis in mice causes bladder mucosal remodelling that sensitizes the host to rUTI. Although constitutive defenses help prevent bacterial colonization of the urinary bladder, once infection occurs, induced cytokine and myeloid cell responses predominate and the balance of immune cell defense and bladder immunopathology is critical for determining disease outcome, in both naïve and experienced mice. In particular, the maintenance of the epithelial barrier appears to be essential for preventing severe infection. Summary The innate immune response plays a key role in determining susceptibility to rUTI. Future studies should be directed towards understanding how the innate immune response changes as a result of bladder mucosal remodelling in previously infected mice, and validating these findings in human clinical specimens. New therapeutics targeting the immune response should selectively target the induced innate responses that cause bladder immunopathology, while leaving protective defenses intact. PMID:25517222

  18. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease.

    Science.gov (United States)

    Sims, Rebecca; van der Lee, Sven J; Naj, Adam C; Bellenguez, Céline; Badarinarayan, Nandini; Jakobsdottir, Johanna; Kunkle, Brian W; Boland, Anne; Raybould, Rachel; Bis, Joshua C; Martin, Eden R; Grenier-Boley, Benjamin; Heilmann-Heimbach, Stefanie; Chouraki, Vincent; Kuzma, Amanda B; Sleegers, Kristel; Vronskaya, Maria; Ruiz, Agustin; Graham, Robert R; Olaso, Robert; Hoffmann, Per; Grove, Megan L; Vardarajan, Badri N; Hiltunen, Mikko; Nöthen, Markus M; White, Charles C; Hamilton-Nelson, Kara L; Epelbaum, Jacques; Maier, Wolfgang; Choi, Seung-Hoan; Beecham, Gary W; Dulary, Cécile; Herms, Stefan; Smith, Albert V; Funk, Cory C; Derbois, Céline; Forstner, Andreas J; Ahmad, Shahzad; Li, Hongdong; Bacq, Delphine; Harold, Denise; Satizabal, Claudia L; Valladares, Otto; Squassina, Alessio; Thomas, Rhodri; Brody, Jennifer A; Qu, Liming; Sánchez-Juan, Pascual; Morgan, Taniesha; Wolters, Frank J; Zhao, Yi; Garcia, Florentino Sanchez; Denning, Nicola; Fornage, Myriam; Malamon, John; Naranjo, Maria Candida Deniz; Majounie, Elisa; Mosley, Thomas H; Dombroski, Beth; Wallon, David; Lupton, Michelle K; Dupuis, Josée; Whitehead, Patrice; Fratiglioni, Laura; Medway, Christopher; Jian, Xueqiu; Mukherjee, Shubhabrata; Keller, Lina; Brown, Kristelle; Lin, Honghuang; Cantwell, Laura B; Panza, Francesco; McGuinness, Bernadette; Moreno-Grau, Sonia; Burgess, Jeremy D; Solfrizzi, Vincenzo; Proitsi, Petra; Adams, Hieab H; Allen, Mariet; Seripa, Davide; Pastor, Pau; Cupples, L Adrienne; Price, Nathan D; Hannequin, Didier; Frank-García, Ana; Levy, Daniel; Chakrabarty, Paramita; Caffarra, Paolo; Giegling, Ina; Beiser, Alexa S; Giedraitis, Vilmantas; Hampel, Harald; Garcia, Melissa E; Wang, Xue; Lannfelt, Lars; Mecocci, Patrizia; Eiriksdottir, Gudny; Crane, Paul K; Pasquier, Florence; Boccardi, Virginia; Henández, Isabel; Barber, Robert C; Scherer, Martin; Tarraga, Lluis; Adams, Perrie M; Leber, Markus; Chen, Yuning; Albert, Marilyn S; Riedel-Heller, Steffi; Emilsson, Valur; Beekly, Duane; Braae, Anne; Schmidt, Reinhold; Blacker, Deborah; Masullo, Carlo; Schmidt, Helena; Doody, Rachelle S; Spalletta, Gianfranco; Longstreth, W T; Fairchild, Thomas J; Bossù, Paola; Lopez, Oscar L; Frosch, Matthew P; Sacchinelli, Eleonora; Ghetti, Bernardino; Yang, Qiong; Huebinger, Ryan M; Jessen, Frank; Li, Shuo; Kamboh, M Ilyas; Morris, John; Sotolongo-Grau, Oscar; Katz, Mindy J; Corcoran, Chris; Dunstan, Melanie; Braddel, Amy; Thomas, Charlene; Meggy, Alun; Marshall, Rachel; Gerrish, Amy; Chapman, Jade; Aguilar, Miquel; Taylor, Sarah; Hill, Matt; Fairén, Mònica Díez; Hodges, Angela; Vellas, Bruno; Soininen, Hilkka; Kloszewska, Iwona; Daniilidou, Makrina; Uphill, James; Patel, Yogen; Hughes, Joseph T; Lord, Jenny; Turton, James; Hartmann, Annette M; Cecchetti, Roberta; Fenoglio, Chiara; Serpente, Maria; Arcaro, Marina; Caltagirone, Carlo; Orfei, Maria Donata; Ciaramella, Antonio; Pichler, Sabrina; Mayhaus, Manuel; Gu, Wei; Lleó, Alberto; Fortea, Juan; Blesa, Rafael; Barber, Imelda S; Brookes, Keeley; Cupidi, Chiara; Maletta, Raffaele Giovanni; Carrell, David; Sorbi, Sandro; Moebus, Susanne; Urbano, Maria; Pilotto, Alberto; Kornhuber, Johannes; Bosco, Paolo; Todd, Stephen; Craig, David; Johnston, Janet; Gill, Michael; Lawlor, Brian; Lynch, Aoibhinn; Fox, Nick C; Hardy, John; Albin, Roger L; Apostolova, Liana G; Arnold, Steven E; Asthana, Sanjay; Atwood, Craig S; Baldwin, Clinton T; Barnes, Lisa L; Barral, Sandra; Beach, Thomas G; Becker, James T; Bigio, Eileen H; Bird, Thomas D; Boeve, Bradley F; Bowen, James D; Boxer, Adam; Burke, James R; Burns, Jeffrey M; Buxbaum, Joseph D; Cairns, Nigel J; Cao, Chuanhai; Carlson, Chris S; Carlsson, Cynthia M; Carney, Regina M; Carrasquillo, Minerva M; Carroll, Steven L; Diaz, Carolina Ceballos; Chui, Helena C; Clark, David G; Cribbs, David H; Crocco, Elizabeth A; DeCarli, Charles; Dick, Malcolm; Duara, Ranjan; Evans, Denis A; Faber, Kelley M; Fallon, Kenneth B; Fardo, David W; Farlow, Martin R; Ferris, Steven; Foroud, Tatiana M; Galasko, Douglas R; Gearing, Marla; Geschwind, Daniel H; Gilbert, John R; Graff-Radford, Neill R; Green, Robert C; Growdon, John H; Hamilton, Ronald L; Harrell, Lindy E; Honig, Lawrence S; Huentelman, Matthew J; Hulette, Christine M; Hyman, Bradley T; Jarvik, Gail P; Abner, Erin; Jin, Lee-Way; Jun, Gyungah; Karydas, Anna; Kaye, Jeffrey A; Kim, Ronald; Kowall, Neil W; Kramer, Joel H; LaFerla, Frank M; Lah, James J; Leverenz, James B; Levey, Allan I; Li, Ge; Lieberman, Andrew P; Lunetta, Kathryn L; Lyketsos, Constantine G; Marson, Daniel C; Martiniuk, Frank; Mash, Deborah C; Masliah, Eliezer; McCormick, Wayne C; McCurry, Susan M; McDavid, Andrew N; McKee, Ann C; Mesulam, Marsel; Miller, Bruce L; Miller, Carol A; Miller, Joshua W; Morris, John C; Murrell, Jill R; Myers, Amanda J; O'Bryant, Sid; Olichney, John M; Pankratz, Vernon S; Parisi, Joseph E; Paulson, Henry L; Perry, William; Peskind, Elaine; Pierce, Aimee; Poon, Wayne W; Potter, Huntington; Quinn, Joseph F; Raj, Ashok; Raskind, Murray; Reisberg, Barry; Reitz, Christiane; Ringman, John M; Roberson, Erik D; Rogaeva, Ekaterina; Rosen, Howard J; Rosenberg, Roger N; Sager, Mark A; Saykin, Andrew J; Schneider, Julie A; Schneider, Lon S; Seeley, William W; Smith, Amanda G; Sonnen, Joshua A; Spina, Salvatore; Stern, Robert A; Swerdlow, Russell H; Tanzi, Rudolph E; Thornton-Wells, Tricia A; Trojanowski, John Q; Troncoso, Juan C; Van Deerlin, Vivianna M; Van Eldik, Linda J; Vinters, Harry V; Vonsattel, Jean Paul; Weintraub, Sandra; Welsh-Bohmer, Kathleen A; Wilhelmsen, Kirk C; Williamson, Jennifer; Wingo, Thomas S; Woltjer, Randall L; Wright, Clinton B; Yu, Chang-En; Yu, Lei; Garzia, Fabienne; Golamaully, Feroze; Septier, Gislain; Engelborghs, Sebastien; Vandenberghe, Rik; De Deyn, Peter P; Fernadez, Carmen Muñoz; Benito, Yoland Aladro; Thonberg, Hakan; Forsell, Charlotte; Lilius, Lena; Kinhult-Stählbom, Anne; Kilander, Lena; Brundin, RoseMarie; Concari, Letizia; Helisalmi, Seppo; Koivisto, Anne Maria; Haapasalo, Annakaisa; Dermecourt, Vincent; Fievet, Nathalie; Hanon, Olivier; Dufouil, Carole; Brice, Alexis; Ritchie, Karen; Dubois, Bruno; Himali, Jayanadra J; Keene, C Dirk; Tschanz, JoAnn; Fitzpatrick, Annette L; Kukull, Walter A; Norton, Maria; Aspelund, Thor; Larson, Eric B; Munger, Ron; Rotter, Jerome I; Lipton, Richard B; Bullido, María J; Hofman, Albert; Montine, Thomas J; Coto, Eliecer; Boerwinkle, Eric; Petersen, Ronald C; Alvarez, Victoria; Rivadeneira, Fernando; Reiman, Eric M; Gallo, Maura; O'Donnell, Christopher J; Reisch, Joan S; Bruni, Amalia Cecilia; Royall, Donald R; Dichgans, Martin; Sano, Mary; Galimberti, Daniela; St George-Hyslop, Peter; Scarpini, Elio; Tsuang, Debby W; Mancuso, Michelangelo; Bonuccelli, Ubaldo; Winslow, Ashley R; Daniele, Antonio; Wu, Chuang-Kuo; Peters, Oliver; Nacmias, Benedetta; Riemenschneider, Matthias; Heun, Reinhard; Brayne, Carol; Rubinsztein, David C; Bras, Jose; Guerreiro, Rita; Al-Chalabi, Ammar; Shaw, Christopher E; Collinge, John; Mann, David; Tsolaki, Magda; Clarimón, Jordi; Sussams, Rebecca; Lovestone, Simon; O'Donovan, Michael C; Owen, Michael J; Behrens, Timothy W; Mead, Simon; Goate, Alison M; Uitterlinden, Andre G; Holmes, Clive; Cruchaga, Carlos; Ingelsson, Martin; Bennett, David A; Powell, John; Golde, Todd E; Graff, Caroline; De Jager, Philip L; Morgan, Kevin; Ertekin-Taner, Nilufer; Combarros, Onofre; Psaty, Bruce M; Passmore, Peter; Younkin, Steven G; Berr, Claudine; Gudnason, Vilmundur; Rujescu, Dan; Dickson, Dennis W; Dartigues, Jean-François; DeStefano, Anita L; Ortega-Cubero, Sara; Hakonarson, Hakon; Campion, Dominique; Boada, Merce; Kauwe, John Keoni; Farrer, Lindsay A; Van Broeckhoven, Christine; Ikram, M Arfan; Jones, Lesley; Haines, Jonathan L; Tzourio, Christophe; Launer, Lenore J; Escott-Price, Valentina; Mayeux, Richard; Deleuze, Jean-François; Amin, Najaf; Holmans, Peter A; Pericak-Vance, Margaret A; Amouyel, Philippe; van Duijn, Cornelia M; Ramirez, Alfredo; Wang, Li-San; Lambert, Jean-Charles; Seshadri, Sudha; Williams, Julie; Schellenberg, Gerard D

    2017-09-01

    We identified rare coding variants associated with Alzheimer's disease in a three-stage case-control study of 85,133 subjects. In stage 1, we genotyped 34,174 samples using a whole-exome microarray. In stage 2, we tested associated variants (P < 1 × 10 -4 ) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, we used an additional 14,997 samples to test the most significant stage 2 associations (P < 5 × 10 -8 ) using imputed genotypes. We observed three new genome-wide significant nonsynonymous variants associated with Alzheimer's disease: a protective variant in PLCG2 (rs72824905: p.Pro522Arg, P = 5.38 × 10 -10 , odds ratio (OR) = 0.68, minor allele frequency (MAF) cases = 0.0059, MAF controls = 0.0093), a risk variant in ABI3 (rs616338: p.Ser209Phe, P = 4.56 × 10 -10 , OR = 1.43, MAF cases = 0.011, MAF controls = 0.008), and a new genome-wide significant variant in TREM2 (rs143332484: p.Arg62His, P = 1.55 × 10 -14 , OR = 1.67, MAF cases = 0.0143, MAF controls = 0.0089), a known susceptibility gene for Alzheimer's disease. These protein-altering changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified risk genes in Alzheimer's disease. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to the development of Alzheimer's disease.

  19. Toxin-mediated effects on the innate mucosal defenses: implications for enteric vaccines

    DEFF Research Database (Denmark)

    Glenn, Gregory M; Francis, David H; Danielsen, E Michael

    2009-01-01

    mucosal barrier as a key step in enteric pathogen survival. We review key observations relevant to the roles of LT and cholera toxin in protective immunity and the effects of these toxins on innate mucosal defenses. We suggest either that toxin-mediated fluid secretion mechanically disrupts the mucus...... layer or that toxins interfere with innate mucosal defenses by other means. Such a breach gives pathogens access to the enterocyte, leading to binding and pathogenicity by enterotoxigenic E. coli (ETEC) and other organisms. Given the common exposure to LT(+) ETEC by humans visiting or residing...... unexpectedly broad protective effects against LT(+) ETEC and mixed infections when using a toxin-based enteric vaccine. If toxins truly exert barrier-disruptive effects as a key step in pathogenesis, then a return to classic toxin-based vaccine strategies for enteric disease is warranted and can be expected...

  20. Connecting Gender, Race, Class, and Immigration Status to Disease Management at the Workplace

    Science.gov (United States)

    Rosemberg, Marie-Anne S.; Tsai, Jenny Hsin-Chun

    2016-01-01

    Objective Chronic diseases are the leading causes of death in the United States. Chronic disease management occurs within all aspects of an individual's life, including the workplace. Though the social constructs of gender, race, class, and immigration status within the workplace have been considered, their connection to disease management among workers has been less explicitly explored. Using a sample of immigrant hotel housekeepers, we explored the connections between these four social constructs and hypertension management. Methods This qualitative research study was guided by critical ethnography methodology. Twenty-seven hotel room cleaners and four housemen were recruited (N = 31) and invited to discuss their experiences with hypertension and hypertension management within the context of their work environments. Results Being a woman worker within the hotel industry was perceived to negatively influence participants’ experience with hypertension and hypertension management. In contrast, being a woman played a protective role outside the workplace. Being an immigrant played both a positive and a negative role in hypertension and its management. Being black and from a low socioeconomic class had only adverse influences on participants’ experience with hypertension and its management. Conclusion Being a woman, black, lower class, and an immigrant simultaneously contribute to immigrant hotel housekeepers’ health and their ability to effectively manage their hypertension. The connection between these four constructs (gender, race, class, and immigration status) and disease management must be considered during care provision. Hotel employers and policy stakeholders need to consider those constructs and how they impact workers’ well-being. More studies are needed to identify what mitigates the associations between the intersectionality of these constructs and immigrant workers’ health and disease management within their work environment. PMID:27695659

  1. Connecting Gender, Race, Class, and Immigration Status to Disease Management at the Workplace.

    Science.gov (United States)

    Rosemberg, Marie-Anne S; Tsai, Jenny Hsin-Chun

    2014-01-01

    Chronic diseases are the leading causes of death in the United States. Chronic disease management occurs within all aspects of an individual's life, including the workplace. Though the social constructs of gender, race, class, and immigration status within the workplace have been considered, their connection to disease management among workers has been less explicitly explored. Using a sample of immigrant hotel housekeepers, we explored the connections between these four social constructs and hypertension management. This qualitative research study was guided by critical ethnography methodology. Twenty-seven hotel room cleaners and four housemen were recruited ( N = 31) and invited to discuss their experiences with hypertension and hypertension management within the context of their work environments. Being a woman worker within the hotel industry was perceived to negatively influence participants' experience with hypertension and hypertension management. In contrast, being a woman played a protective role outside the workplace. Being an immigrant played both a positive and a negative role in hypertension and its management. Being black and from a low socioeconomic class had only adverse influences on participants' experience with hypertension and its management. Being a woman, black, lower class, and an immigrant simultaneously contribute to immigrant hotel housekeepers' health and their ability to effectively manage their hypertension. The connection between these four constructs (gender, race, class, and immigration status) and disease management must be considered during care provision. Hotel employers and policy stakeholders need to consider those constructs and how they impact workers' well-being. More studies are needed to identify what mitigates the associations between the intersectionality of these constructs and immigrant workers' health and disease management within their work environment.

  2. [The role of the innate immune system in atopic dermatitis].

    Science.gov (United States)

    Volz, T; Kaesler, S; Skabytska, Y; Biedermann, T

    2015-02-01

    The mechanisms how the innate immune system detects microbes and mounts a rapid immune response have been more and more elucidated in the past years. Subsequently it has been shown that innate immunity also shapes adaptive immune responses and determines their quality that can be either inflammatory or tolerogenic. As atopic dermatitis is characterized by disturbances of innate and adaptive immune responses, colonization with pathogens and defects in skin barrier function, insight into mechanisms of innate immunity has helped to understand the vicious circle of ongoing skin inflammation seen in atopic dermatitis patients. Elucidating general mechanisms of the innate immune system and its functions in atopic dermatitis paves the way for developing new therapies. Especially the novel insights into the human microbiome and potential functional consequences make the innate immune system a very fundamental and promising target. As a result atopic dermatitis manifestations can be attenuated or even resolved. These currently developed strategies will be introduced in the current review.

  3. Type 2 innate lymphoid cells: at the cross-roads in allergic asthma.

    Science.gov (United States)

    van Rijt, Leonie; von Richthofen, Helen; van Ree, Ronald

    2016-07-01

    Allergic asthma is a chronic inflammatory disease of the lower airways that affects millions of people worldwide. Allergic asthma is a T helper 2 cell (Th2)-mediated disease, in which Th2 cytokines interleukin (IL)-4, IL-5, and IL-13 are closely associated with the symptoms. IL-4 is needed by B cells to switch toward an IgE response, IL-5 recruits and activates eosinophils while IL-13 increases mucus production. The identification of type 2 innate lymphoid cells (ILC2), which are able to rapidly produce large amounts of IL-5 and IL-13 in response to epithelial derived cytokines, implicated a new key player besides Th2 cells. ILCs constitute a family of innate lymphocytes distinct from T and B cells. ILC2s are located in various epithelial compartments in mice and human, including the lung. The recent finding of increased numbers of ILC2s in the airways of severe asthma patients prompts further research to clarify their immunological function. Murine studies have shown that ILC2s are an early innate source of IL-5 and IL-13 after allergen exposure, which induce airway eosinophilic infiltration, mucus hyperproduction, and airway hyperresponsiveness but not allergen-specific IgE production. ILC2s contribute to the initiation as well as to the maintenance of the adaptive type 2 immune response. Here, we review the recent progress on our understanding of the role of ILC2s in the immunopathology of allergic asthma, in particular by studies using murine models which have elucidated fundamental mechanisms by which ILC2s act.

  4. FEATURES OF CLINICAL COURSE OF GASTROESOPHAGEAL REFLUX DISEASE IN NEWLY RECRUITED WITH CONNECTIVE TISSUE UNDIFFERENTIATED DYSPLASIA SYNDROME

    Directory of Open Access Journals (Sweden)

    E.I. Kashkina

    2008-12-01

    Full Text Available The presence of connective tissue undifferentiated dysplasia syndrome against a background of psychological stress at newly recruited can promote the risk of gastroesophageal reflux disease occurrence. To the utmost, correlation between the gastroesophageal reflux disease and such manifestations of connective tissue undifferentiated dysplasia syndrome as asthenic constitution, chest deformation, Gothic palate and hypermobility of joints was found

  5. The clinical and pathological characteristics of nephropathies in connective tissue diseases in the Japan Renal Biopsy Registry (J-RBR).

    Science.gov (United States)

    Ichikawa, Kazunobu; Konta, Tsuneo; Sato, Hiroshi; Ueda, Yoshihiko; Yokoyama, Hitoshi

    2017-12-01

    In connective tissue diseases, a wide variety of glomerular, tubulointerstitial, and vascular lesions of the kidney are observed. Nonetheless, recent information is limited regarding renal lesions in connective tissue diseases, except in systemic lupus erythematosus (SLE). In this study, we used a nationwide database of biopsy-confirmed renal diseases in Japan (J-RBR) (UMIN000000618). In total, 20,523 registered patients underwent biopsy between 2007 and 2013; from 110 patients with connective tissue diseases except SLE, we extracted data regarding the clinico-pathological characteristics of the renal biopsy. Our analysis included patients with rheumatoid arthritis (RA) (n = 52), Sjögren's syndrome (SjS) (n = 35), scleroderma (n = 10), mixed connective tissue disease (MCTD; n = 5), anti-phospholipid syndrome (APS; n = 3), polymyositis/dermatomyositis (PM/DM; n = 1), Behçet's disease (n = 1) and others (n = 3). The clinico-pathological features differed greatly depending on the underlying disease. The major clinical diagnosis was nephrotic syndrome in RA; chronic nephritic syndrome with mild proteinuria and reduced renal function in SjS; rapidly progressive nephritic syndrome in scleroderma. The major pathological diagnosis was membranous nephropathy (MN) and amyloidosis in RA; tubulointerstitial nephritis in SjS; proliferative obliterative vasculopathy in scleroderma; MN in MCTD. In RA, most patients with nephrosis were treated using bucillamine, and showed membranous nephropathy. Using the J-RBR database, our study revealed that biopsy-confirmed cases of connective tissue diseases such as RA, SjS, scleroderma, and MCTD show various clinical and pathological characteristics, depending on the underlying diseases and the medication used.

  6. Advances in the genetically complex autoinflammatory diseases.

    Science.gov (United States)

    Ombrello, Michael J

    2015-07-01

    Monogenic diseases usually demonstrate Mendelian inheritance and are caused by highly penetrant genetic variants of a single gene. In contrast, genetically complex diseases arise from a combination of multiple genetic and environmental factors. The concept of autoinflammation originally emerged from the identification of individual, activating lesions of the innate immune system as the molecular basis of the hereditary periodic fever syndromes. In addition to these rare, monogenic forms of autoinflammation, genetically complex autoinflammatory diseases like the periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) syndrome, chronic recurrent multifocal osteomyelitis (CRMO), Behçet's disease, and systemic arthritis also fulfill the definition of autoinflammatory diseases-namely, the development of apparently unprovoked episodes of inflammation without identifiable exogenous triggers and in the absence of autoimmunity. Interestingly, investigations of these genetically complex autoinflammatory diseases have implicated both innate and adaptive immune abnormalities, blurring the line between autoinflammation and autoimmunity. This reinforces the paradigm of concerted innate and adaptive immune dysfunction leading to genetically complex autoinflammatory phenotypes.

  7. Innate scavenger receptor-A regulates adaptive T helper cell responses to pathogen infection

    Science.gov (United States)

    Xu, Zhipeng; Xu, Lei; Li, Wei; Jin, Xin; Song, Xian; Chen, Xiaojun; Zhu, Jifeng; Zhou, Sha; Li, Yong; Zhang, Weiwei; Dong, Xiaoxiao; Yang, Xiaowei; Liu, Feng; Bai, Hui; Chen, Qi; Su, Chuan

    2017-01-01

    The pattern recognition receptor (PRR) scavenger receptor class A (SR-A) has an important function in the pathogenesis of non-infectious diseases and in innate immune responses to pathogen infections. However, little is known about the role of SR-A in the host adaptive immune responses to pathogen infection. Here we show with mouse models of helminth Schistosoma japonicum infection and heat-inactivated Mycobacterium tuberculosis stimulation that SR-A is regulated by pathogens and suppresses IRF5 nuclear translocation by direct interaction. Reduced abundance of nuclear IRF5 shifts macrophage polarization from M1 towards M2, which subsequently switches T-helper responses from type 1 to type 2. Our study identifies a role for SR-A as an innate PRR in regulating adaptive immune responses. PMID:28695899

  8. Mixed connective tissue disease associated with noted pulmonary CT findings

    International Nuclear Information System (INIS)

    Yamazaki, Souji; Tsukada, Atsuko; Furuya, Tatsutaka

    1984-01-01

    CT was performed in a 56-year-old woman with mixed connective tissue disease (MCTD). Much more definitive pulmonary findings were obtained by CT than by the conventional chest x-ray examination and pulmonary function test. CT findings disclosed pulmonary lesions extremely similar to those in cases of progressive systemic sclerosis. Pulmonary CT was considered useful in examining pulmonary lesions for MCTD. (Namekawa, K.)

  9. Connective tissue diseases and noninvasive evaluation of atherosclerosis

    Directory of Open Access Journals (Sweden)

    Ardita G

    2014-06-01

    Full Text Available Giorgio Ardita, Giacomo Failla, Paolo Maria Finocchiaro, Francesco Mugno, Luigi Attanasio, Salvatore Timineri, Michelangelo Maria Di SalvoCardiovascular Department, Angiology Unit, Ferrarotto Hospital, Catania, ItalyAbstract: Connective tissue diseases (CTDs are associated with increased risk of cardiovascular disease due to accelerated atherosclerosis. In patients with autoimmune disorders, in addition to traditional risk factors, an immune-mediated inflammatory process of the vasculature seems to contribute to atherogenesis. Several pathogenetic mechanisms have been proposed, including chronic inflammation and immunologic abnormalities, both able to produce vascular damage. Macrovascular atherosclerosis can be noninvasively evaluated by ultrasound measurement of carotid or femoral plaque. Subclinical atherosclerosis can be evaluated by well-established noninvasive techniques which rely on ultrasound detection of carotid intima-media thickness. Flow-mediated vasodilatation and arterial stiffness are considered markers of endothelial dysfunction and subclinical atherosclerosis, respectively, and have been recently found to be impaired early in a wide spectrum of autoimmune diseases. Carotid intima-media thickness turns out to be a leading marker of subclinical atherosclerosis, and many studies recognize its role as a predictor of future vascular events, both in non-CTD individuals and in CTD patients. In rheumatic diseases, flow-mediated dilatation and arterial stiffness prove to be strongly correlated with inflammation, disease damage index, and with subclinical atherosclerosis, although their prognostic role has not yet been conclusively shown. Systemic lupus erythematosus, rheumatoid arthritis, and likely antiphospholipid syndrome are better associated with premature and accelerated atherosclerosis. Inconclusive results were reported in systemic sclerosis.Keywords: rheumatic disease, subclinical atherosclerosis, arterial stiffness

  10. Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans.

    Science.gov (United States)

    Kox, Matthijs; van Eijk, Lucas T; Zwaag, Jelle; van den Wildenberg, Joanne; Sweep, Fred C G J; van der Hoeven, Johannes G; Pickkers, Peter

    2014-05-20

    Excessive or persistent proinflammatory cytokine production plays a central role in autoimmune diseases. Acute activation of the sympathetic nervous system attenuates the innate immune response. However, both the autonomic nervous system and innate immune system are regarded as systems that cannot be voluntarily influenced. Herein, we evaluated the effects of a training program on the autonomic nervous system and innate immune response. Healthy volunteers were randomized to either the intervention (n = 12) or control group (n = 12). Subjects in the intervention group were trained for 10 d in meditation (third eye meditation), breathing techniques (i.a., cyclic hyperventilation followed by breath retention), and exposure to cold (i.a., immersions in ice cold water). The control group was not trained. Subsequently, all subjects underwent experimental endotoxemia (i.v. administration of 2 ng/kg Escherichia coli endotoxin). In the intervention group, practicing the learned techniques resulted in intermittent respiratory alkalosis and hypoxia resulting in profoundly increased plasma epinephrine levels. In the intervention group, plasma levels of the anti-inflammatory cytokine IL-10 increased more rapidly after endotoxin administration, correlated strongly with preceding epinephrine levels, and were higher. Levels of proinflammatory mediators TNF-α, IL-6, and IL-8 were lower in the intervention group and correlated negatively with IL-10 levels. Finally, flu-like symptoms were lower in the intervention group. In conclusion, we demonstrate that voluntary activation of the sympathetic nervous system results in epinephrine release and subsequent suppression of the innate immune response in humans in vivo. These results could have important implications for the treatment of conditions associated with excessive or persistent inflammation, such as autoimmune diseases.

  11. Tick Innate Immunity.

    Czech Academy of Sciences Publication Activity Database

    Kopáček, Petr; Hajdušek, Ondřej; Burešová, Veronika; Daffre, S.

    2010-01-01

    Roč. 708, - (2010), 137-162 ISSN 0065-2598 R&D Projects: GA ČR GAP506/10/2136; GA MŠk(CZ) LC06009 Institutional research plan: CEZ:AV0Z60220518 Keywords : tick * pathogen transmission * innate immunity Subject RIV: EC - Immunology Impact factor: 1.379, year: 2010

  12. The Phagocytic Function of Macrophage-Enforcing Innate Immunity and Tissue Homeostasis

    Directory of Open Access Journals (Sweden)

    Daisuke Hirayama

    2017-12-01

    Full Text Available Macrophages are effector cells of the innate immune system that phagocytose bacteria and secrete both pro-inflammatory and antimicrobial mediators. In addition, macrophages play an important role in eliminating diseased and damaged cells through their programmed cell death. Generally, macrophages ingest and degrade dead cells, debris, tumor cells, and foreign materials. They promote homeostasis by responding to internal and external changes within the body, not only as phagocytes, but also through trophic, regulatory, and repair functions. Recent studies demonstrated that macrophages differentiate from hematopoietic stem cell-derived monocytes and embryonic yolk sac macrophages. The latter mainly give rise to tissue macrophages. Macrophages exist in all vertebrate tissues and have dual functions in host protection and tissue injury, which are maintained at a fine balance. Tissue macrophages have heterogeneous phenotypes in different tissue environments. In this review, we focused on the phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis for a better understanding of the role of tissue macrophages in several pathological conditions.

  13. Toward immunogenetic studies of amphibian chytridiomycosis: Linking innate and acquired immunity

    Science.gov (United States)

    Richmond, J.Q.; Savage, Anna E.; Zamudio, Kelly R.; Rosenblum, E.B.

    2009-01-01

    Recent declines in amphibian diversity and abundance have contributed significantly to the global loss of biodiversity. The fungal disease chytridiomycosis is widely considered to be a primary cause of these declines, yet the critical question of why amphibian species differ in susceptibility remains unanswered. Considerable evidence links environmental conditions and interspecific variability of the innate immune system to differential infection responses, but other sources of individual, population, or species-typical variation may also be important. In this article we review the preliminary evidence supporting a role for acquired immune defenses against chytridiomycosis, and advocate for targeted investigation of genes controlling acquired responses, as well as those that functionally bridge the innate and acquired immune systems. Immunogenetic data promise to answer key questions about chytridiomycosis susceptibility and host-pathogen coevolution, and will draw much needed attention to the importance of considering evolutionary processes in amphibian conservation management and practice. ?? 2009 by American Institute of Biological Sciences.

  14. Immunogenicity of influenza H1N1 vaccination in mixed connective tissue disease: effect of disease and therapy

    Directory of Open Access Journals (Sweden)

    Renata Miossi

    2013-01-01

    Full Text Available OBJECTIVE: To assess the potential acute effects regarding the immunogenicity and safety of non-adjuvanted influenza A H1N1/2009 vaccine in patients with mixed connective tissue disease and healthy controls. METHODS: Sixty-nine mixed connective tissue disease patients that were confirmed by Kasukawa's classification criteria and 69 age- and gender-matched controls participated in the study; the participants were vaccinated with the non-adjuvanted influenza A/California/7/2009 (H1N1 virus-like strain. The percentages of seroprotec-tion, seroconversion, geometric mean titer and factor increase in the geometric mean titer were calculated. The patients were clinically evaluated, and blood samples were collected pre- and 21 days post-vaccination to evaluate C-reactive protein, muscle enzymes and autoantibodies. Anti-H1N1 titers were determined using an influenza hemagglutination inhibition assay. ClinicalTrials.gov: NCT01151644. RESULTS: Before vaccination, no difference was observed regarding the seroprotection rates (p = 1.0 and geometric mean titer (p = 0.83 between the patients and controls. After vaccination, seroprotection (75.4% vs. 71%, (p = 0.7, seroconversion (68.1% vs. 65.2%, (p = 1.00 and factor increase in the geometric mean titer (10.0 vs. 8.0, p = 0.40 were similar in the two groups. Further evaluation of seroconversion in patients with and without current or previous history of muscle disease (p = 0.20, skin ulcers (p = 0.48, lupus-like cutaneous disease (p = 0.74, secondary Sjogren syndrome (p = 0.78, scleroderma-pattern in the nailfold capillaroscopy (p = 1.0, lymphopenia #1000/mm³ on two or more occasions (p = 1.0, hypergammaglobulinemia $1.6 g/d (p = 0.60, pulmonary hypertension (p = 1.0 and pulmonary fibrosis (p = 0.80 revealed comparable rates. Seroconversion rates were also similar in patients with and without immunosuppressants. Disease parameters, such as C-reactive protein (p = 0.94, aldolase (p = 0.73, creatine

  15. Increased connectivity between sensorimotor and attentional areas in Parkinson's disease

    International Nuclear Information System (INIS)

    Onu, Mihaela; Badea, Liviu; Roceanu, Adina; Bajenaru, Ovidiu; Tivarus, Madalina

    2015-01-01

    Our study is using Independent Component Analysis (ICA) to evaluate functional connectivity changes in Parkinson's disease (PD) in an unbiased manner. Resting-state functional magnetic resonance imaging (rs-fMRI) data was collected for 27 PD patients and 16 healthy subjects. Differences for intra- and inter-network connectivity between healthy subjects and patients were investigated using FMRIB Software Library (FSL) tools (Melodic ICA, dual regression, FSLNets). Twenty-three ICA maps were identified as components of neuronal origin. For intra-network connectivity changes, eight components showed a significant connectivity increase in patients (p < 0.05); these were correlated with clinical scores and were largest for (sensori)motor networks. For inter-network connectivity changes, we found higher connectivity between the sensorimotor network and the spatial attention network (p = 0.0098) and lower connectivity between anterior and posterior default mode networks (DMN) (p = 0.024), anterior DMN and visual recognition networks (p = 0.026), as well as between visual attention and main dorsal attention networks (p = 0.03), for patients as compared to healthy subjects. The area under the Receiver Operating Characteristics (ROC) curve for the best predictor (partial correlation between sensorimotor and spatial attention networks) was 0.772. These functional alterations were not associated with any gray or white matter structural changes. Our results show higher connectivity between sensorimotor and spatial attention areas in patients that may be related to the reduced movement automaticity in PD. (orig.)

  16. Increased connectivity between sensorimotor and attentional areas in Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Onu, Mihaela [Medical Imaging Department, Clinical Hospital ' ' Prof. Dr. Th. Burghele' ' , Bucharest (Romania); Carol Davila University of Medicine and Pharmacy, Biophysics, Bucharest (Romania); Badea, Liviu [National Institute for Research and Development in Informatics, Artificial Intelligence and Bioinformatics Group, Bucharest (Romania); Roceanu, Adina; Bajenaru, Ovidiu [University of Bucharest Emergency Hospital, Neurology Department, Bucharest (Romania); Tivarus, Madalina [University of Rochester Medical Center, Department of Imaging Sciences and Rochester Center for Brain Imaging, Rochester, NY (United States)

    2015-09-15

    Our study is using Independent Component Analysis (ICA) to evaluate functional connectivity changes in Parkinson's disease (PD) in an unbiased manner. Resting-state functional magnetic resonance imaging (rs-fMRI) data was collected for 27 PD patients and 16 healthy subjects. Differences for intra- and inter-network connectivity between healthy subjects and patients were investigated using FMRIB Software Library (FSL) tools (Melodic ICA, dual regression, FSLNets). Twenty-three ICA maps were identified as components of neuronal origin. For intra-network connectivity changes, eight components showed a significant connectivity increase in patients (p < 0.05); these were correlated with clinical scores and were largest for (sensori)motor networks. For inter-network connectivity changes, we found higher connectivity between the sensorimotor network and the spatial attention network (p = 0.0098) and lower connectivity between anterior and posterior default mode networks (DMN) (p = 0.024), anterior DMN and visual recognition networks (p = 0.026), as well as between visual attention and main dorsal attention networks (p = 0.03), for patients as compared to healthy subjects. The area under the Receiver Operating Characteristics (ROC) curve for the best predictor (partial correlation between sensorimotor and spatial attention networks) was 0.772. These functional alterations were not associated with any gray or white matter structural changes. Our results show higher connectivity between sensorimotor and spatial attention areas in patients that may be related to the reduced movement automaticity in PD. (orig.)

  17. Biliary Innate Immunity: Function and Modulation

    Directory of Open Access Journals (Sweden)

    Kenichi Harada

    2010-01-01

    Full Text Available Biliary innate immunity is involved in the pathogenesis of cholangiopathies in patients with primary biliary cirrhosis (PBC and biliary atresia. Biliary epithelial cells possess an innate immune system consisting of the Toll-like receptor (TLR family and recognize pathogen-associated molecular patterns (PAMPs. Tolerance to bacterial PAMPs such as lipopolysaccharides is also important to maintain homeostasis in the biliary tree, but tolerance to double-stranded RNA (dsRNA is not found. In PBC, CD4-positive Th17 cells characterized by the secretion of IL-17 are implicated in the chronic inflammation of bile ducts and the presence of Th17 cells around bile ducts is causally associated with the biliary innate immune responses to PAMPs. Moreover, a negative regulator of intracellular TLR signaling, peroxisome proliferator-activated receptor-γ (PPARγ, is involved in the pathogenesis of cholangitis. Immunosuppression using PPARγ ligands may help to attenuate the bile duct damage in PBC patients. In biliary atresia characterized by a progressive, inflammatory, and sclerosing cholangiopathy, dsRNA viruses are speculated to be an etiological agent and to directly induce enhanced biliary apoptosis via the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL. Moreover, the epithelial-mesenchymal transition (EMT of biliary epithelial cells is also evoked by the biliary innate immune response to dsRNA.

  18. Early life innate immune signatures of persistent food allergy.

    Science.gov (United States)

    Neeland, Melanie R; Koplin, Jennifer J; Dang, Thanh D; Dharmage, Shyamali C; Tang, Mimi L; Prescott, Susan L; Saffery, Richard; Martino, David J; Allen, Katrina J

    2017-11-14

    Food allergy naturally resolves in a proportion of food-allergic children without intervention; however the underlying mechanisms governing the persistence or resolution of food allergy in childhood are not understood. This study aimed to define the innate immune profiles associated with egg allergy at age 1 year, determine the phenotypic changes that occur with the development of natural tolerance in childhood, and explore the relationship between early life innate immune function and serum vitamin D. This study used longitudinally collected PBMC samples from a population-based cohort of challenge-confirmed egg-allergic infants with either persistent or transient egg allergy outcomes in childhood to phenotype and quantify the functional innate immune response associated with clinical phenotypes of egg allergy. We show that infants with persistent egg allergy exhibit a unique innate immune signature, characterized by increased numbers of circulating monocytes and dendritic cells that produce more inflammatory cytokines both at baseline and following endotoxin exposure when compared with infants with transient egg allergy. Follow-up analysis revealed that this unique innate immune signature continues into childhood in those with persistent egg allergy and that increased serum vitamin D levels correlate with changes in innate immune profiles observed in children who developed natural tolerance to egg. Early life innate immune dysfunction may represent a key immunological driver and predictor of persistent food allergy in childhood. Serum vitamin D may play an immune-modulatory role in the development of natural tolerance. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  19. Atomoxetine Enhances Connectivity of Prefrontal Networks in Parkinson's Disease.

    Science.gov (United States)

    Borchert, Robin J; Rittman, Timothy; Passamonti, Luca; Ye, Zheng; Sami, Saber; Jones, Simon P; Nombela, Cristina; Vázquez Rodríguez, Patricia; Vatansever, Deniz; Rae, Charlotte L; Hughes, Laura E; Robbins, Trevor W; Rowe, James B

    2016-07-01

    Cognitive impairment is common in Parkinson's disease (PD), but often not improved by dopaminergic treatment. New treatment strategies targeting other neurotransmitter deficits are therefore of growing interest. Imaging the brain at rest ('task-free') provides the opportunity to examine the impact of a candidate drug on many of the brain networks that underpin cognition, while minimizing task-related performance confounds. We test this approach using atomoxetine, a selective noradrenaline reuptake inhibitor that modulates the prefrontal cortical activity and can facilitate some executive functions and response inhibition. Thirty-three patients with idiopathic PD underwent task-free fMRI. Patients were scanned twice in a double-blind, placebo-controlled crossover design, following either placebo or 40-mg oral atomoxetine. Seventy-six controls were scanned once without medication to provide normative data. Seed-based correlation analyses were used to measure changes in functional connectivity, with the right inferior frontal gyrus (IFG) a critical region for executive function. Patients on placebo had reduced connectivity relative to controls from right IFG to dorsal anterior cingulate cortex and to left IFG and dorsolateral prefrontal cortex. Atomoxetine increased connectivity from the right IFG to the dorsal anterior cingulate. In addition, the atomoxetine-induced change in connectivity from right IFG to dorsolateral prefrontal cortex was proportional to the change in verbal fluency, a simple index of executive function. The results support the hypothesis that atomoxetine may restore prefrontal networks related to executive functions. We suggest that task-free imaging can support translational pharmacological studies of new drug therapies and provide evidence for engagement of the relevant neurocognitive systems.

  20. Targeting innate immunity to downmodulate adaptive immunity and reverse type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Itoh A

    2017-05-01

    Full Text Available Arata Itoh, William M Ridgway Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, USA Abstract: Type 1 diabetes (T1D is characterized by specific destruction of pancreatic insulin-producing beta cells accompanied by evidence of beta-cell-directed autoimmunity such as autoreactive T cells and islet autoantibodies (IAAs. Currently, T1D cannot be prevented or reversed in humans. T1D is easy to prevent in the nonobese diabetic (NOD spontaneous mouse model but reversing new-onset T1D in mice is more difficult. Since the discovery of the T-cell receptor in the 1980s and the subsequent identification of autoreactive T cells directed toward beta-cell antigens (eg, insulin, glutamic acid decarboxylase, the dream of antigen-specific immunotherapy has dominated the field with its promise of specificity and limited side effects. While such approaches have worked in the NOD mouse, however, dozens of human trials have failed. Broader immunosuppressive approaches (originally cyclosporine, subsequently anti-CD3 antibody have shown partial successes (e.g., prolonged C peptide preservation but no major therapeutic efficacy or disease reversal. Human prevention trials have failed, despite the ease of such approaches in the NOD mouse. In the past 50 years, the incidence of T1D has increased dramatically, and one explanation is the “hygiene hypothesis”, which suggests that decreased exposure of the innate immune system to environmental immune stimulants (e.g., bacterial products such as Toll-like receptor (TLR 4-stimulating lipopolysaccharide [LPS] dramatically affects the adaptive immune system and increases subsequent autoimmunity. We have tested the role of innate immunity in autoimmune T1D by treating acute-onset T1D in NOD mice with anti-TLR4/MD-2 agonistic antibodies and have shown a high rate of disease reversal. The TLR4 antibodies do not directly stimulate T cells but induce tolerogenic

  1. Initiation of innate immune responses by surveillance of homeostasis perturbations.

    Science.gov (United States)

    Colaço, Henrique G; Moita, Luis F

    2016-07-01

    Pathogen recognition, signaling transduction pathways, and effector mechanisms are necessary steps of innate immune responses that play key roles in the early phase of defense and in the stimulation of the later specific response of adaptive immunity. Here, we argue that in addition to the direct recognition of conserved common structural and functional molecular signatures of microorganisms using pattern recognition receptors, hosts can mount an immune response following the sensing of disruption in homeostasis as proximal reporters for infections. Surveillance of disruption of core cellular activities leading to defense responses is a flexible strategy that requires few additional components and that can effectively detect relevant threats. It is likely to be evolutionarily very conserved and ancient because it is operational in organisms that lack pattern recognition triggered immunity. A homeostasis disruption model of immune response initiation and modulation has broad implications for pathophysiology and treatment of disease and might constitute an often overlooked but central component of a comprehensive conceptual framework for innate immunity. © 2016 Federation of European Biochemical Societies.

  2. Bruton's Tyrosine Kinase: An Emerging Key Player in Innate Immunity.

    Science.gov (United States)

    Weber, Alexander N R; Bittner, Zsofia; Liu, Xiao; Dang, Truong-Minh; Radsak, Markus Philipp; Brunner, Cornelia

    2017-01-01

    Bruton's tyrosine kinase (BTK) was initially discovered as a critical mediator of B cell receptor signaling in the development and functioning of adaptive immunity. Growing evidence also suggests multiple roles for BTK in mononuclear cells of the innate immune system, especially in dendritic cells and macrophages. For example, BTK has been shown to function in Toll-like receptor-mediated recognition of infectious agents, cellular maturation and recruitment processes, and Fc receptor signaling. Most recently, BTK was additionally identified as a direct regulator of a key innate inflammatory machinery, the NLRP3 inflammasome. BTK has thus attracted interest not only for gaining a more thorough basic understanding of the human innate immune system but also as a target to therapeutically modulate innate immunity. We here review the latest developments on the role of BTK in mononuclear innate immune cells in mouse versus man, with specific emphasis on the sensing of infectious agents and the induction of inflammation. Therapeutic implications for modulating innate immunity and critical open questions are also discussed.

  3. The participation of cortical amygdala in innate, odor-driven behavior

    Science.gov (United States)

    Root, Cory M.; Denny, Christine A.; Hen, René; Axel, Richard

    2014-01-01

    Innate behaviors are observed in naïve animals without prior learning or experience, suggesting that the neural circuits that mediate these behaviors are genetically determined and stereotyped. The neural circuits that convey olfactory information from the sense organ to the cortical and subcortical olfactory centers have been anatomically defined1-3 but the specific pathways responsible for innate responses to volatile odors have not been identified. We have devised genetic strategies that demonstrate that a stereotyped neural circuit that transmits information from the olfactory bulb to cortical amygdala is necessary for innate aversive and appetitive behaviors. Moreover, we have employed the promoter of the activity-dependent gene, arc, to express the photosensitive ion channel, channelrhodopsin, in neurons of the cortical amygdala activated by odors that elicit innate behaviors. Optical activation of these neurons leads to appropriate behaviors that recapitulate the responses to innate odors. These data indicate that the cortical amygdala plays a critical role in the generation of innate odor-driven behaviors but do not preclude the participation of cortical amygdala in learned olfactory behaviors. PMID:25383519

  4. Mixed Connective Tissue Disease and Papillary Thyroid Cancer: A Case Report.

    Science.gov (United States)

    Thongpooswan, Supat; Tushabe, Rachel; Song, Jeffrey; Kim, Paul; Abrudescu, Adriana

    2015-08-06

    Mixed connective tissue disease (MCTD) is a connective tissue disorder characterized by high titers of distinct antibodies: U1 ribonucleoprotein with clinical features seen in systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), dermatomyositis (DM), polymyositis, and scleroderma. The association of SLE and DM with various cancers of the thyroid has been reported in the literature. However, there have been no reports associating MCTD with thyroid cancer. We present a 58-year-old woman diagnosed with MCTD with co-morbid interstitial lung disease that has remained stable for 10 years, who developed papillary thyroid carcinoma (PTC) 10 years after initial diagnosis. We theorize that: 1) MCTD may have been a primary diagnosis complicated by PTC, or 2) MCTD may have been an initial presentation of paraneoplastic syndrome of silent PTC, because her symptoms of MCTD significantly improved after total thyroidectomy. To the best of our knowledge, this is the first case report to associate MCTD with PTC. It highlights the importance of maintaining a high index of suspicion for thyroid malignancy in MCTD patients.

  5. Regulation of intestinal homeostasis by innate and adaptive immunity.

    Science.gov (United States)

    Kayama, Hisako; Takeda, Kiyoshi

    2012-11-01

    The intestine is a unique tissue where an elaborate balance is maintained between tolerance and immune responses against a variety of environmental factors such as food and the microflora. In a healthy individual, the microflora stimulates innate and adaptive immune systems to maintain gut homeostasis. However, the interaction of environmental factors with particular genetic backgrounds can lead to dramatic changes in the composition of the microflora (i.e. dysbiosis). Many of the specific commensal-bacterial products and the signaling pathways they trigger have been characterized. The role of T(h)1, T(h)2 and T(h)17 cells in inflammatory bowel disease has been widely investigated, as has the contribution of epithelial cells and subsets of dendritic cells and macrophages. To date, multiple regulatory cells in adaptive immunity, such as regulatory T cells and regulatory B cells, have been shown to maintain gut homeostasis by preventing inappropriate innate and adaptive immune responses to commensal bacteria. Additionally, regulatory myeloid cells have recently been identified that prevent intestinal inflammation by inhibiting T-cell proliferation. An increasing body of evidence has shown that multiple regulatory mechanisms contribute to the maintenance of gut homeostasis.

  6. Innate lymphoid cells in atherosclerosis.

    Science.gov (United States)

    Engelbertsen, Daniel; Lichtman, Andrew H

    2017-12-05

    The family of innate lymphoid cells (ILCs) consisting of NK cells, lymphoid tissue inducer cells and the 'helper'-like ILC subsets ILC1, ILC2 and ILC3 have been shown to have important roles in protection against microbes, regulation of inflammatory diseases and involved in allergic reactions. ILC1s produce IFN-γ upon stimulation with IL-12 and IL-18, ILC2s produce IL-5 and IL-13 responding to IL-33 and IL-25 while ILC3s produce IL-17 and IL-22 after stimulation with IL-23 or IL-1. Although few studies have directly investigated the role for ILCs in atherosclerosis, several studies have investigated transcription factors and cytokines shared by ILCs and T helper cells. In this review we summarize our current understanding of the role of ILC in atherosclerosis and discuss future directions. Copyright © 2017. Published by Elsevier B.V.

  7. Viral degradasome hijacks mitochondria to suppress innate immunity

    Science.gov (United States)

    Goswami, Ramansu; Majumdar, Tanmay; Dhar, Jayeeta; Chattopadhyay, Saurabh; Bandyopadhyay, Sudip K; Verbovetskaya, Valentina; Sen, Ganes C; Barik, Sailen

    2013-01-01

    The balance between the innate immunity of the host and the ability of a pathogen to evade it strongly influences pathogenesis and virulence. The two nonstructural (NS) proteins, NS1 and NS2, of respiratory syncytial virus (RSV) are critically required for RSV virulence. Together, they strongly suppress the type I interferon (IFN)-mediated innate immunity of the host cells by degrading or inhibiting multiple cellular factors required for either IFN induction or response pathways, including RIG-I, IRF3, IRF7, TBK1 and STAT2. Here, we provide evidence for the existence of a large and heterogeneous degradative complex assembled by the NS proteins, which we named “NS-degradasome” (NSD). The NSD is roughly ∼300-750 kD in size, and its degradative activity was enhanced by the addition of purified mitochondria in vitro. Inside the cell, the majority of the NS proteins and the substrates of the NSD translocated to the mitochondria upon RSV infection. Genetic and pharmacological evidence shows that optimal suppression of innate immunity requires mitochondrial MAVS and mitochondrial motility. Together, we propose a novel paradigm in which the mitochondria, known to be important for the innate immune activation of the host, are also important for viral suppression of the innate immunity. PMID:23877405

  8. The Epitranscriptome and Innate Immunity.

    Directory of Open Access Journals (Sweden)

    Mary A O'Connell

    2015-12-01

    Full Text Available Our knowledge of the variety and abundances of RNA base modifications is rapidly increasing. Modified bases have critical roles in tRNAs, rRNAs, translation, splicing, RNA interference, and other RNA processes, and are now increasingly detected in all types of transcripts. Can new biological principles associated with this diversity of RNA modifications, particularly in mRNAs and long non-coding RNAs, be identified? This review will explore this question by focusing primarily on adenosine to inosine (A-to-I RNA editing by the adenine deaminase acting on RNA (ADAR enzymes that have been intensively studied for the past 20 years and have a wide range of effects. Over 100 million adenosine to inosine editing sites have been identified in the human transcriptome, mostly in embedded Alu sequences that form potentially innate immune-stimulating dsRNA hairpins in transcripts. Recent research has demonstrated that inosine in the epitranscriptome and ADAR1 protein establish innate immune tolerance for host dsRNA formed by endogenous sequences. Innate immune sensors that detect viral nucleic acids are among the readers of epitranscriptome RNA modifications, though this does preclude a wide range of other modification effects.

  9. Abnormal ventral tegmental area-anterior cingulate cortex connectivity in Parkinson's disease with depression.

    Science.gov (United States)

    Wei, Luqing; Hu, Xiao; Yuan, Yonggui; Liu, Weiguo; Chen, Hong

    2018-07-16

    Neuropathology suggests that Parkinson's disease (PD) with depression may involve a progressive degeneration of the nigrostriatal and mesocorticolimbic dopaminergic systems. Previous positron emission tomography (PET) and single-photon emission computed tomography (SPECT) studies have shown that dopamine changes in individual brain regions constituting the nigrostriatal and mesocorticolimbic circuits are associated with depression in PD. However, few studies have been conducted on the circuit-level alterations in this disease. The present study used resting-state fMRI and seed-based functional connectivity of putative dopaminergic midbrain regions (i.e., substantia nigra (SN) and ventral tegmental area (VTA)) to investigate the circuit-related abnormalities in PD with depression. The results showed that depressed PD (DPD) patients relative to healthy controls (HC) and non-depressed PD (NDPD) patients had increased functional connectivity between VTA and anterior cingulate cortex (ACC), demonstrating that dysfunctional mesocorticolimbic dopaminergic neurotransmission may be associated with depression in PD. Compared with HC, DPD and NDPD patients showed increased functional connectivity from SN to sensorimotor cortex, validating that alterations in the nigrostriatal circuitry could be responsible for cardinal motor features in PD. In addition, aberrant connectivity between VTA and ACC was correlated with the severity of depression in PD patients, further supporting that abnormal mesocorticolimbic system may account for depressive symptoms in PD. These results have provided potential circuit-level biomarkers of depression in PD, and suggested that resting state functional connectivity of midbrain dopaminergic nuclei may be useful for understanding the underlying pathology in PD with depression. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Altered Functional Connectivity of Insular Subregions in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Xingyun Liu

    2018-04-01

    Full Text Available Recent researches have demonstrated that the insula is the crucial hub of the human brain networks and most vulnerable region of Alzheimer’s disease (AD. However, little is known about the changes of functional connectivity of insular subregions in the AD patients. In this study, we collected resting-state functional magnetic resonance imaging (fMRI data including 32 AD patients and 38 healthy controls (HCs. By defining three subregions of insula, we mapped whole-brain resting-state functional connectivity (RSFC and identified several distinct RSFC patterns of the insular subregions: For positive connectivity, three cognitive-related RSFC patterns were identified within insula that suggest anterior-to-posterior functional subdivisions: (1 an dorsal anterior zone of the insula that exhibits RSFC with executive control network (ECN; (2 a ventral anterior zone of insula, exhibits functional connectivity with the salience network (SN; (3 a posterior zone along the insula exhibits functional connectivity with the sensorimotor network (SMN. In addition, we found significant negative connectivities between the each insular subregion and several special default mode network (DMN regions. Compared with controls, the AD patients demonstrated distinct disruption of positive RSFCs in the different network (ECN and SMN, suggesting the impairment of the functional integrity. There were no differences of the positive RSFCs in the SN between the two groups. On the other hand, several DMN regions showed increased negative RSFCs to the sub-region of insula in the AD patients, indicating compensatory plasticity. Furthermore, these abnormal insular subregions RSFCs are closely correlated with cognitive performances in the AD patients. Our findings suggested that different insular subregions presented distinct RSFC patterns with various functional networks, which are differently affected in the AD patients.

  11. Evaluation of muscular lesions in connective tissue diseases: thallium 201 muscular scans

    International Nuclear Information System (INIS)

    Guillet, G.; Guillet, J.; Sanciaume, C.; Maleville, J.; Geniaux, M.; Morin, P.

    1988-01-01

    We performed thallium 201 muscle scans to assess muscular involvement in 40 patients with different connective tissue diseases (7 with dermatomyositis, 7 with systemic lupus erythematosus, 12 with progressive systemic scleroderma, 2 with calcinosis, Raynaud's phenomenon, esophageal involvement, sclerodactyly, and telangiectasia (CREST) syndrome, 3 with monomelic scleroderma, 6 with morphea, and 3 with Raynaud's disease). Only 12 of these patients complained of fatigability and/or myalgia. Electromyography was performed and serum levels of muscle enzymes were measured in all patients. Comparison of thallium 201 exercise recording with the other tests revealed that scan sensitivity is greater than electromyographic and serum muscle enzymes levels. Thallium 201 scans showed abnormal findings in 32 patients and revealed subclinical lesions in 18 patients, while electromyography findings were abnormal in 25 of these 32 patients. Serum enzyme levels were raised in only 8 patients. Thallium 201 scanning proved to be a useful guide for modifying therapy when laboratory data were conflicting. It was useful to evaluate treatment efficacy. Because our data indicate a 100% positive predictive value, we believe that thallium 201 scanning should be advised for severe systemic connective tissue diseases with discordant test results

  12. Evaluation of muscular lesions in connective tissue diseases: thallium 201 muscular scans

    Energy Technology Data Exchange (ETDEWEB)

    Guillet, G.; Guillet, J.; Sanciaume, C.; Maleville, J.; Geniaux, M.; Morin, P.

    1988-04-01

    We performed thallium 201 muscle scans to assess muscular involvement in 40 patients with different connective tissue diseases (7 with dermatomyositis, 7 with systemic lupus erythematosus, 12 with progressive systemic scleroderma, 2 with calcinosis, Raynaud's phenomenon, esophageal involvement, sclerodactyly, and telangiectasia (CREST) syndrome, 3 with monomelic scleroderma, 6 with morphea, and 3 with Raynaud's disease). Only 12 of these patients complained of fatigability and/or myalgia. Electromyography was performed and serum levels of muscle enzymes were measured in all patients. Comparison of thallium 201 exercise recording with the other tests revealed that scan sensitivity is greater than electromyographic and serum muscle enzymes levels. Thallium 201 scans showed abnormal findings in 32 patients and revealed subclinical lesions in 18 patients, while electromyography findings were abnormal in 25 of these 32 patients. Serum enzyme levels were raised in only 8 patients. Thallium 201 scanning proved to be a useful guide for modifying therapy when laboratory data were conflicting. It was useful to evaluate treatment efficacy. Because our data indicate a 100% positive predictive value, we believe that thallium 201 scanning should be advised for severe systemic connective tissue diseases with discordant test results.

  13. Standardized analysis and sharing of genome-phenome data for neuromuscular and rare disease research through the RD-Connect platform

    OpenAIRE

    Thompson, Rachel; Beltran, Sergi; Papakonstantinou, Anastasios; Cañada, Andrés; Fernández, Jose Maria; Thompson, Mark; Kaliyaperumal, Rajaram; Lair, Séverine; Sernadela, Pedro; Girdea, Marta; Brudno, Michael; Blavier, André; Lochmüller, Hanns; Roos, Andreas; Straub, Volker

    2016-01-01

    Abstract: RD-Connect (rd-connect.eu) is an EU-funded project building an integrated platform to narrow the gaps in rare disease research, where patient populations, clinical expertise and research communities are small in number and highly fragmented. Guided by the needs of rare disease researchers and with neuromuscular and neurodegenerative researchers as its original collaborators, the RD-Connect platform securely integrates multiple types of omics data (genomics, proteomics and transcript...

  14. Interleukin-4 Receptor Alpha: From Innate to Adaptive Immunity in Murine Models of Cutaneous Leishmaniasis

    Directory of Open Access Journals (Sweden)

    Ramona Hurdayal

    2017-11-01

    Full Text Available The interleukin (IL-4 receptor alpha (IL-4Rα, ubiquitously expressed on both innate and adaptive immune cells, controls the signaling of archetypal type 2 immune regulators; IL-4 and IL-13, which elicit their signaling action by the type 1 IL-4Rα/gamma common and/or the type 2 IL-4Rα/IL-13Rα complexes. Global gene-deficient mouse models targeting IL-4, IL-13, or the IL-4Rα chain, followed by the development of conditional mice and generation of important cell-type-specific IL-4Rα-deficient mouse models, were indeed critical to gaining in-depth understanding of detrimental T helper (Th 2 mechanisms in type 1-controlled diseases. A primary example being cutaneous leishmaniasis, which is caused by the protozoan parasite Leishmania major, among others. The disease is characterized by localized self-healing cutaneous lesions and necrosis for which, currently, not a single vaccine has made it to a stage that can be considered effective. The spectrum of human leishmaniasis belongs to the top 10 infectious diseases according to the World Health Organization. As such, 350 million humans are at risk of infection and disease, with an incidence of 1.5–2 million new cases being reported annually. A major aim of our research is to identify correlates of host protection and evasion, which may aid in vaccine design and therapeutic interventions. In this review, we focus on the immune-regulatory role of the IL-4Rα chain from innate immune responses to the development of beneficial type 1 and detrimental type 2 adaptive immune responses during cutaneous Leishmania infection. We discuss the cell-specific requirements of the IL-4Rα chain on crucial innate immune cells during L. major infection, including, IL-4Rα-responsive skin keratinocytes, macrophages, and neutrophils, as well as dendritic cells (DCs. The latter, contributing to one of the paradigm shifts with respect to the role of IL-4 instructing DCs in vivo, to promote Th1 responses against L

  15. Role of innate T cells in anti-bacterial immunity

    Directory of Open Access Journals (Sweden)

    Yifang eGao

    2015-06-01

    Full Text Available Innate T cells are a heterogeneous group of αβ and γδ T cells that respond rapidly (<2 hours upon activation. These innate T cells also share a non MHC class I or II restriction requirement for antigen recognition. Three major populations within the innate T cell group are recognized, namely Invariant NKT cells (iNKT; Mucosal associated invariant T cells (MAIT and gamma delta T cells. These cells recognize foreign/self-lipid presented by non-classical MHC molecules, such as CD1d, MR1 and CD1a.They are activated during the early stages of bacterial infection and act as a bridge between the innate and adaptive immune systems. In this review we focus on the functional properties of these 3 innate T cell populations and how they are purposed for antimicrobial defense. Furthermore we address the mechanisms through which their effector functions are targeted for bacterial control and compare this in human and murine systems. Lastly we speculate on future roles of these cell types in therapeutic settings such as vaccination.

  16. Regulation of aeroallergen immunity by the innate immune system: laboratory evidence for a new paradigm.

    Science.gov (United States)

    Horner, Anthony A

    2010-01-01

    Over the last decade, it has become increasingly clear that innate responses to microbes are mediated largely by toll-like receptors (TLRs), which recognize a diverse family of molecules produced by viruses, bacteria and fungi. This article will present evidence that TLRs also play a dominant role in innate responses to non-infectious immunostimulatory materials present in house dust extracts (HDEs) and the living environments they represent. However, our investigations challenge the commonly held view that microbial products in ambient air protect against the allergic march by promoting protective Th1 biased responses to inspired aeroallergens. Instead, all HDEs studied to date have preferentially promoted the development of Th2 biased airway hypersensitivities when used as adjuvants for intranasal (i.n.) vaccination. In contrast, daily low dose i.n. HDE delivery was found to promote the development of aeroallergen tolerance. This article will review these experimental findings as evidence to propose a new paradigm by which airborne TLR ligands and other stimulants of innate immunity may influence aeroallergen specific immunity and the genesis of allergic respiratory diseases.

  17. Functional connectivity and information flow of the respiratory neural network in chronic obstructive pulmonary disease.

    Science.gov (United States)

    Yu, Lianchun; De Mazancourt, Marine; Hess, Agathe; Ashadi, Fakhrul R; Klein, Isabelle; Mal, Hervé; Courbage, Maurice; Mangin, Laurence

    2016-08-01

    Breathing involves a complex interplay between the brainstem automatic network and cortical voluntary command. How these brain regions communicate at rest or during inspiratory loading is unknown. This issue is crucial for several reasons: (i) increased respiratory loading is a major feature of several respiratory diseases, (ii) failure of the voluntary motor and cortical sensory processing drives is among the mechanisms that precede acute respiratory failure, (iii) several cerebral structures involved in responding to inspiratory loading participate in the perception of dyspnea, a distressing symptom in many disease. We studied functional connectivity and Granger causality of the respiratory network in controls and patients with chronic obstructive pulmonary disease (COPD), at rest and during inspiratory loading. Compared with those of controls, the motor cortex area of patients exhibited decreased connectivity with their contralateral counterparts and no connectivity with the brainstem. In the patients, the information flow was reversed at rest with the source of the network shifted from the medulla towards the motor cortex. During inspiratory loading, the system was overwhelmed and the motor cortex became the sink of the network. This major finding may help to understand why some patients with COPD are prone to acute respiratory failure. Network connectivity and causality were related to lung function and illness severity. We validated our connectivity and causality results with a mathematical model of neural network. Our findings suggest a new therapeutic strategy involving the modulation of brain activity to increase motor cortex functional connectivity and improve respiratory muscles performance in patients. Hum Brain Mapp 37:2736-2754, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  18. The Pathology of Orthopedic Implant Failure Is Mediated by Innate Immune System Cytokines

    Directory of Open Access Journals (Sweden)

    Stefan Landgraeber

    2014-01-01

    Full Text Available All of the over 1 million total joint replacements implanted in the US each year are expected to eventually fail after 15–25 years of use, due to slow progressive subtle inflammation at the bone implant interface. This inflammatory disease state is caused by implant debris acting, primarily, on innate immune cells, that is, macrophages. This slow progressive pathological bone loss or “aseptic loosening” is a potentially life-threatening condition due to the serious complications in older people (>75 yrs of total joint replacement revision surgery. In some people implant debris (particles and ions from metals can influence the adaptive immune system as well, giving rise to the concept of metal sensitivity. However, a consensus of studies agrees that the dominant form of this response is due to innate reactivity by macrophages to implant debris where both danger (DAMP and pathogen (PAMP signalling elicit cytokine-based inflammatory responses. This paper discusses implant debris induced release of the cytokines and chemokines due to activation of the innate (and the adaptive immune system and the subsequent formation of osteolysis. Different mechanisms of implant-debris reactivity related to the innate immune system are detailed, for example, danger signalling (e.g., IL-1β, IL-18, IL-33, etc., toll-like receptor activation (e.g., IL-6, TNF-α, etc., apoptosis (e.g., caspases 3–9, bone catabolism (e.g., TRAP5b, and hypoxia responses (Hif1-α. Cytokine-based clinical and basic science studies are in progress to provide diagnosis and therapeutic intervention strategies.

  19. The Pathology of Orthopedic Implant Failure Is Mediated by Innate Immune System Cytokines

    Science.gov (United States)

    Landgraeber, Stefan; Jäger, Marcus; Jacobs, Joshua J.; Hallab, Nadim James

    2014-01-01

    All of the over 1 million total joint replacements implanted in the US each year are expected to eventually fail after 15–25 years of use, due to slow progressive subtle inflammation at the bone implant interface. This inflammatory disease state is caused by implant debris acting, primarily, on innate immune cells, that is, macrophages. This slow progressive pathological bone loss or “aseptic loosening” is a potentially life-threatening condition due to the serious complications in older people (>75 yrs) of total joint replacement revision surgery. In some people implant debris (particles and ions from metals) can influence the adaptive immune system as well, giving rise to the concept of metal sensitivity. However, a consensus of studies agrees that the dominant form of this response is due to innate reactivity by macrophages to implant debris where both danger (DAMP) and pathogen (PAMP) signalling elicit cytokine-based inflammatory responses. This paper discusses implant debris induced release of the cytokines and chemokines due to activation of the innate (and the adaptive) immune system and the subsequent formation of osteolysis. Different mechanisms of implant-debris reactivity related to the innate immune system are detailed, for example, danger signalling (e.g., IL-1β, IL-18, IL-33, etc.), toll-like receptor activation (e.g., IL-6, TNF-α, etc.), apoptosis (e.g., caspases 3–9), bone catabolism (e.g., TRAP5b), and hypoxia responses (Hif1-α). Cytokine-based clinical and basic science studies are in progress to provide diagnosis and therapeutic intervention strategies. PMID:24891761

  20. Houttuynia cordata modulates oral innate immune mediators: potential role of herbal plant on oral health.

    Science.gov (United States)

    Satthakarn, S; Chung, W O; Promsong, A; Nittayananta, W

    2015-05-01

    Epithelial cells play an active role in oral innate immunity by producing various immune mediators. Houttuynia cordata Thunb (H. cordata), a herbal plant found in Asia, possesses many activities. However, its impacts on oral innate immunity have never been reported. The aim of this study was to determine the effects of H. cordata extract on the expression of innate immune mediators produced by oral epithelial cells. Primary gingival epithelial cells (GECs) were treated with various concentrations of the extract for 18 h. The gene expression of hBD2, SLPI, cytokines, and chemokines was measured using quantitative real-time RT-PCR. The secreted proteins in the culture supernatants were detected by ELISA or Luminex assay. Cytotoxicity of the extract was assessed using CellTiter-Blue Assay. H. cordata significantly induced the expression of hBD2, SLPI, IL-8, and CCL20 in a dose-dependent manner without cytotoxicity. The secreted hBD2 and SLPI proteins were modulated, and the levels of IL-2, IL-6, IL-8, and IFN-γ were significantly induced by the extract. Our data indicated that H. cordata can modulate oral innate immune mediators. These findings may lead to the development of new topical agents from H. cordata for the prevention and treatment of immune-mediated oral diseases. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. 75 FR 70162 - Presumptive Service Connection for Diseases Associated With Persian Gulf War Service: Functional...

    Science.gov (United States)

    2010-11-17

    ... Diseases Associated With Persian Gulf War Service: Functional Gastrointestinal Disorders AGENCY: Department... theater of operations during the Persian Gulf War. DATES: Comments must be received by VA on or before... Service Connection for Diseases Associated With Persian Gulf War Service: Functional Gastrointestinal...

  2. Adenovirus Vector-Derived VA-RNA-Mediated Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    Hiroyuki Mizuguchi

    2011-07-01

    Full Text Available The major limitation of the clinical use of replication-incompetent adenovirus (Ad vectors is the interference by innate immune responses, including induction of inflammatory cytokines and interferons (IFN, following in vivo application of Ad vectors. Ad vector-induced production of inflammatory cytokines and IFNs also results in severe organ damage and efficient induction of acquired immune responses against Ad proteins and transgene products. Ad vector-induced innate immune responses are triggered by the recognition of Ad components by pattern recognition receptors (PRRs. In order to reduce the side effects by Ad vector-induced innate immune responses and to develop safer Ad vectors, it is crucial to clarify which PRRs and which Ad components are involved in Ad vector-induced innate immune responses. Our group previously demonstrated that myeloid differentiating factor 88 (MyD88 and toll-like receptor 9 (TLR9 play crucial roles in the Ad vector-induced inflammatory cytokine production in mouse bone marrow-derived dendritic cells. Furthermore, our group recently found that virus associated-RNAs (VA-RNAs, which are about 160 nucleotide-long non-coding small RNAs encoded in the Ad genome, are involved in IFN production through the IFN-β promoter stimulator-1 (IPS-1-mediated signaling pathway following Ad vector transduction. The aim of this review is to highlight the Ad vector-induced innate immune responses following transduction, especially VA-RNA-mediated innate immune responses. Our findings on the mechanism of Ad vector-induced innate immune responses should make an important contribution to the development of safer Ad vectors, such as an Ad vector lacking expression of VA-RNAs.

  3. Midcingulate cortex: Structure, connections, homologies, functions and diseases.

    Science.gov (United States)

    Vogt, Brent A

    2016-07-01

    Midcingulate cortex (MCC) has risen in prominence as human imaging identifies unique structural and functional activity therein and this is the first review of its structure, connections, functions and disease vulnerabilities. The MCC has two divisions (anterior, aMCC and posterior, pMCC) that represent functional units and the cytoarchitecture, connections and neurocytology of each is shown with immunohistochemistry and receptor binding. The MCC is not a division of anterior cingulate cortex (ACC) and the "dorsal ACC" designation is a misnomer as it incorrectly implies that MCC is a division of ACC. Interpretation of findings among species and developing models of human diseases requires detailed comparative studies which is shown here for five species with flat maps and immunohistochemistry (human, monkey, rabbit, rat, mouse). The largest neurons in human cingulate cortex are in layer Vb of area 24 d in pMCC which project to the spinal cord. This area is part of the caudal cingulate premotor area which is involved in multisensory orientation of the head and body in space and neuron responses are tuned for the force and direction of movement. In contrast, the rostral cingulate premotor area in aMCC is involved in action-reinforcement associations and selection based on the amount of reward or aversive properties of a potential movement. The aMCC is activated by nociceptive information from the midline, mediodorsal and intralaminar thalamic nuclei which evoke fear and mediates nocifensive behaviors. This subregion also has high dopaminergic afferents and high dopamine-1 receptor binding and is engaged in reward processes. Opposing pain/avoidance and reward/approach functions are selected by assessment of potential outcomes and error detection according to feedback-mediated, decision making. Parietal afferents differentially terminate in MCC and provide for multisensory control in an eye- and head-centric manner. Finally, MCC vulnerability in human disease confirms

  4. VPS9a activates the Rab5 GTPase ARA7 to confer distinct pre- and postinvasive plant innate immunity

    DEFF Research Database (Denmark)

    Nielsen, Mads Eggert; Jürgens, Gerd; Thordal-Christensen, Hans

    2017-01-01

    Plant innate immunity can effectively prevent the proliferation of filamentous pathogens. Papilla formation at the site of attack is essential for preinvasive immunity; in postinvasive immunity, the encasement of pathogen structures inside host cells can hamper disease. Whereas papillae are highly...... (Blumeria graminis f. sp hordei) in Arabidopsis thaliana. Surprisingly, VPS9a acts in addition to two previously well-described innate immunity components and thus represents an additional step in the regulation of how plants resist pathogens. We found VPS9a to be important for delivering membrane material...

  5. Effects of engineered nanoparticles on the innate immune system.

    Science.gov (United States)

    Liu, Yuanchang; Hardie, Joseph; Zhang, Xianzhi; Rotello, Vincent M

    2017-12-01

    Engineered nanoparticles (NPs) have broad applications in industry and nanomedicine. When NPs enter the body, interactions with the immune system are unavoidable. The innate immune system, a non-specific first line of defense against potential threats to the host, immediately interacts with introduced NPs and generates complicated immune responses. Depending on their physicochemical properties, NPs can interact with cells and proteins to stimulate or suppress the innate immune response, and similarly activate or avoid the complement system. NPs size, shape, hydrophobicity and surface modification are the main factors that influence the interactions between NPs and the innate immune system. In this review, we will focus on recent reports about the relationship between the physicochemical properties of NPs and their innate immune response, and their applications in immunotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Algebraic connectivity of brain networks shows patterns of segregation leading to reduced network robustness in Alzheimer's disease

    Science.gov (United States)

    Daianu, Madelaine; Jahanshad, Neda; Nir, Talia M.; Leonardo, Cassandra D.; Jack, Clifford R.; Weiner, Michael W.; Bernstein, Matthew A.; Thompson, Paul M.

    2015-01-01

    Measures of network topology and connectivity aid the understanding of network breakdown as the brain degenerates in Alzheimer's disease (AD). We analyzed 3-Tesla diffusion-weighted images from 202 patients scanned by the Alzheimer's Disease Neuroimaging Initiative – 50 healthy controls, 72 with early- and 38 with late-stage mild cognitive impairment (eMCI/lMCI) and 42 with AD. Using whole-brain tractography, we reconstructed structural connectivity networks representing connections between pairs of cortical regions. We examined, for the first time in this context, the network's Laplacian matrix and its Fiedler value, describing the network's algebraic connectivity, and the Fiedler vector, used to partition a graph. We assessed algebraic connectivity and four additional supporting metrics, revealing a decrease in network robustness and increasing disarray among nodes as dementia progressed. Network components became more disconnected and segregated, and their modularity increased. These measures are sensitive to diagnostic group differences, and may help understand the complex changes in AD. PMID:26640830

  7. MicroRNA in innate immunity and autophagy during mycobacterial infection.

    Science.gov (United States)

    Kim, Jin Kyung; Kim, Tae Sung; Basu, Joyoti; Jo, Eun-Kyeong

    2017-01-01

    The fine-tuning of innate immune responses is an important aspect of host defenses against mycobacteria. MicroRNAs (miRNAs), small non-coding RNAs, play essential roles in regulating multiple biological pathways including innate host defenses against various infections. Accumulating evidence shows that many miRNAs regulate the complex interplay between mycobacterial survival strategies and host innate immune pathways. Recent studies have contributed to understanding the role of miRNAs, the levels of which can be modulated by mycobacterial infection, in tuning host autophagy to control bacterial survival and innate effector function. Despite considerable efforts devoted to miRNA profiling over the past decade, further work is needed to improve the selection of appropriate biomarkers for tuberculosis. Understanding the roles and mechanisms of miRNAs in regulating innate immune signaling and autophagy may provide insights into new therapeutic modalities for host-directed anti-mycobacterial therapies. Here, we present a comprehensive review of the recent literature regarding miRNA profiling in tuberculosis and the roles of miRNAs in modulating innate immune responses and autophagy defenses against mycobacterial infections. © 2016 John Wiley & Sons Ltd.

  8. Intrinsic brain connectivity predicts impulse control disorders in patients with Parkinson's disease.

    Science.gov (United States)

    Tessitore, Alessandro; De Micco, Rosa; Giordano, Alfonso; di Nardo, Federica; Caiazzo, Giuseppina; Siciliano, Mattia; De Stefano, Manuela; Russo, Antonio; Esposito, Fabrizio; Tedeschi, Gioacchino

    2017-12-01

    Impulse control disorders can be triggered by dopamine replacement therapies in patients with PD. Using resting-state functional MRI, we investigated the intrinsic brain network connectivity at baseline in a cohort of drug-naive PD patients who successively developed impulse control disorders over a 36-month follow-up period compared with patients who did not. Baseline 3-Tesla MRI images of 30 drug-naive PD patients and 20 matched healthy controls were analyzed. The impulse control disorders' presence and severity at follow-up were assessed by the Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease Rating Scale. Single-subject and group-level independent component analysis was used to investigate functional connectivity differences within the major resting-state networks. We also compared internetwork connectivity between patients. Finally, a multivariate Cox regression model was used to investigate baseline predictors of impulse control disorder development. At baseline, decreased connectivity in the default-mode and right central executive networks and increased connectivity in the salience network were detected in PD patients with impulse control disorders at follow-up compared with those without. Increased default-mode/central executive internetwork connectivity was significantly associated with impulse control disorders development (P impulse control disorders while on dopaminergic treatment. We hypothesize that these divergent cognitive and limbic network connectivity changes could represent a potential biomarker and an additional risk factor for the emergence of impulse control disorders. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  9. Repurposed transcriptomic data facilitate discovery of innate immunity toll-like receptor (TLR) Genes across Lophotrochozoa.

    Science.gov (United States)

    Halanych, Kenneth M; Kocot, Kevin M

    2014-10-01

    The growing volume of genomic data from across life represents opportunities for deriving valuable biological information from data that were initially collected for another purpose. Here, we use transcriptomes collected for phylogenomic studies to search for toll-like receptor (TLR) genes in poorly sampled lophotrochozoan clades (Annelida, Mollusca, Brachiopoda, Phoronida, and Entoprocta) and one ecdysozoan clade (Priapulida). TLR genes are involved in innate immunity across animals by recognizing potential microbial infection. They have an extracellular leucine-rich repeat (LRR) domain connected to a transmembrane domain and an intracellular toll/interleukin-1 receptor (TIR) domain. Consequently, these genes are important in initiating a signaling pathway to trigger defense. We found at least one TLR ortholog in all but two taxa examined, suggesting that a broad array of lophotrochozoans may have innate immune systems similar to those observed in vertebrates and arthropods. Comparison to the SMART database confirmed the presence of both the LRR and the TIR protein motifs characteristic of TLR genes. Because we looked at only one transcriptome per species, discovery of TLR genes was limited for most taxa. However, several TRL-like genes that vary in the number and placement of LRR domains were found in phoronids. Additionally, several contigs contained LRR domains but lacked TIR domains, suggesting they were not TLRs. Many of these LRR-containing contigs had other domains (e.g., immunoglobin) and are likely involved in innate immunity. © 2014 Marine Biological Laboratory.

  10. Early brain connectivity alterations and cognitive impairment in a rat model of Alzheimer's disease

    OpenAIRE

    Munoz-Moreno, Emma; Tudela, Raúl; López-Gil, Xavier; Soria, Guadalupe

    2018-01-01

    Background Animal models of Alzheimer’s disease (AD) are essential to understanding the disease progression and to development of early biomarkers. Because AD has been described as a disconnection syndrome, magnetic resonance imaging (MRI)-based connectomics provides a highly translational approach to characterizing the disruption in connectivity associated with the disease. In this study, a transgenic rat model of AD (TgF344-AD) was analyzed to describe both cognitive performance and brain c...

  11. Human innate lymphoid cells

    NARCIS (Netherlands)

    Mjösberg, Jenny; Spits, Hergen

    2016-01-01

    Innate lymphoid cells (ILCs) are increasingly acknowledged as important mediators of immune homeostasis and pathology. ILCs act as early orchestrators of immunity, responding to epithelium-derived signals by expressing an array of cytokines and cell-surface receptors, which shape subsequent immune

  12. Changes of intranetwork and internetwork functional connectivity in Alzheimer’s disease and mild cognitive impairment

    Science.gov (United States)

    Zhu, Haoze; Zhou, Peng; Alcauter, Sarael; Chen, Yuanyuan; Cao, Hongbao; Tian, Miao; Ming, Dong; Qi, Hongzhi; Wang, Xuemin; Zhao, Xin; He, Feng; Ni, Hongyan; Gao, Wei

    2016-08-01

    Objective. Alzheimer’s disease (AD) is a serious neurodegenerative disorder characterized by deficits of working memory, attention, language and many other cognitive functions. Although different stages of the disease are relatively well characterized by clinical criteria, stage-specific pathological changes in the brain remain relatively poorly understood, especially at the level of large-scale functional networks. In this study, we aimed to characterize the potential disruptions of large-scale functional brain networks based on a sample including amnestic mild cognition impairment (aMCI) and AD patients to help delineate the underlying stage-dependent AD pathology. Approach. We sought to identify the neural connectivity mechanisms of aMCI and AD through examination of both intranetwork and internetwork interactions among four of the brain’s key networks, namely dorsal attention network (DAN), default mode network (DMN), executive control network (ECN) and salience network (SAL). We analyzed functional connectivity based on resting-state functional magnetic resonance imaging (rs-fMRI) data from 25 Alzheimer’s disease patients, 20 aMCI patients and 35 elderly normal controls (NC). Main results. Intranetwork functional disruptions within the DAN and ECN were detected in both aMCI and AD patients. Disrupted intranetwork connectivity of DMN and anti-correlation between DAN and DMN were observed in AD patients. Moreover, aMCI-specific alterations in the internetwork functional connectivity of SAL were observed. Significance. Our results confirmed previous findings that AD pathology was related to dysconnectivity both within and between resting-state networks but revealed more spatial details. Moreover, the SAL network, reportedly flexibly coupling either with the DAN or DMN networks during different brain states, demonstrated interesting alterations specifically in the early stage of the disease.

  13. siRNA and innate immunity.

    Science.gov (United States)

    Robbins, Marjorie; Judge, Adam; MacLachlan, Ian

    2009-06-01

    Canonical small interfering RNA (siRNA) duplexes are potent activators of the mammalian innate immune system. The induction of innate immunity by siRNA is dependent on siRNA structure and sequence, method of delivery, and cell type. Synthetic siRNA in delivery vehicles that facilitate cellular uptake can induce high levels of inflammatory cytokines and interferons after systemic administration in mammals and in primary human blood cell cultures. This activation is predominantly mediated by immune cells, normally via a Toll-like receptor (TLR) pathway. The siRNA sequence dependency of these pathways varies with the type and location of the TLR involved. Alternatively nonimmune cell activation may also occur, typically resulting from siRNA interaction with cytoplasmic RNA sensors such as RIG1. As immune activation by siRNA-based drugs represents an undesirable side effect due to the considerable toxicities associated with excessive cytokine release in humans, understanding and abrogating this activity will be a critical component in the development of safe and effective therapeutics. This review describes the intracellular mechanisms of innate immune activation by siRNA, the design of appropriate sequences and chemical modification approaches, and suitable experimental methods for studying their effects, with a view toward reducing siRNA-mediated off-target effects.

  14. Wallerian degeneration: the innate-immune response to traumatic nerve injury

    Directory of Open Access Journals (Sweden)

    Rotshenker Shlomo

    2011-08-01

    Full Text Available Abstract Traumatic injury to peripheral nerves results in the loss of neural functions. Recovery by regeneration depends on the cellular and molecular events of Wallerian degeneration that injury induces distal to the lesion site, the domain through which severed axons regenerate back to their target tissues. Innate-immunity is central to Wallerian degeneration since innate-immune cells, functions and molecules that are produced by immune and non-immune cells are involved. The innate-immune response helps to turn the peripheral nerve tissue into an environment that supports regeneration by removing inhibitory myelin and by upregulating neurotrophic properties. The characteristics of an efficient innate-immune response are rapid onset and conclusion, and the orchestrated interplay between Schwann cells, fibroblasts, macrophages, endothelial cells, and molecules they produce. Wallerian degeneration serves as a prelude for successful repair when these requirements are met. In contrast, functional recovery is poor when injury fails to produce the efficient innate-immune response of Wallerian degeneration.

  15. Innate immune functions of microglia isolated from human glioma patients

    Directory of Open Access Journals (Sweden)

    Grimm Elizabeth

    2006-03-01

    Full Text Available Abstract Background Innate immunity is considered the first line of host defense and microglia presumably play a critical role in mediating potent innate immune responses to traumatic and infectious challenges in the human brain. Fundamental impairments of the adaptive immune system in glioma patients have been investigated; however, it is unknown whether microglia are capable of innate immunity and subsequent adaptive anti-tumor immune responses within the immunosuppressive tumor micro-environment of human glioma patients. We therefore undertook a novel characterization of the innate immune phenotype and function of freshly isolated human glioma-infiltrating microglia (GIM. Methods GIM were isolated by sequential Percoll purification from patient tumors immediately after surgical resection. Flow cytometry, phagocytosis and tumor cytotoxicity assays were used to analyze the phenotype and function of these cells. Results GIM expressed significant levels of Toll-like receptors (TLRs, however they do not secrete any of the cytokines (IL-1β, IL-6, TNF-α critical in developing effective innate immune responses. Similar to innate macrophage functions, GIM can mediate phagocytosis and non-MHC restricted cytotoxicity. However, they were statistically less able to mediate tumor cytotoxicity compared to microglia isolated from normal brain. In addition, the expression of Fas ligand (FasL was low to absent, indicating that apoptosis of the incoming lymphocyte population may not be a predominant mode of immunosuppression by microglia. Conclusion We show for the first time that despite the immunosuppressive environment of human gliomas, GIM are capable of innate immune responses such as phagocytosis, cytotoxicity and TLR expression but yet are not competent in secreting key cytokines. Further understanding of these innate immune functions could play a critical role in understanding and developing effective immunotherapies to malignant human gliomas.

  16. Innatism, Concept Formation, Concept Mastery and Formal Education

    Science.gov (United States)

    Winch, Christopher

    2015-01-01

    This article will consider the claim that the possession of concepts is innate rather than learned. Innatism about concept learning is explained through consideration of the work of Fodor and Chomsky. First, an account of concept formation is developed. Second the argument against the claim that concepts are learned through the construction of a…

  17. Targeting Interferon Regulatory Factor for Cardiometabolic Diseases: Opportunities and Challenges.

    Science.gov (United States)

    Zhang, Yaxing; Zhang, Xiao-Jing; Li, Hongliang

    2017-01-01

    The pathological activation of innate immune system may contribute to the development of cardiometabolic diseases. The interferon regulatory factor (IRF) family members, which are the major transcription factors in innate immune signaling, are implicated in cardiometabolic diseases. The aim of this review is to summary the current knowledge of the biological functions of IRFs in innate immune responses and immune cell development, and highlight our contemporary understanding of the functions and molecular mechanisms of IRFs in metabolic diseases, cardiovascular remodeling, and stroke. IRFs are the essential regulators of cardiometabolic diseases via immune-dependent and - independent manners. IRFs signaling is the promising target to manage the initiation and progression of cardiometabolic disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Task-rest modulation of basal ganglia connectivity in mild to moderate Parkinson's disease.

    Science.gov (United States)

    Müller-Oehring, Eva M; Sullivan, Edith V; Pfefferbaum, Adolf; Huang, Neng C; Poston, Kathleen L; Bronte-Stewart, Helen M; Schulte, Tilman

    2015-09-01

    Parkinson's disease (PD) is associated with abnormal synchronization in basal ganglia-thalamo-cortical loops. We tested whether early PD patients without demonstrable cognitive impairment exhibit abnormal modulation of functional connectivity at rest, while engaged in a task, or both. PD and healthy controls underwent two functional MRI scans: a resting-state scan and a Stroop Match-to-Sample task scan. Rest-task modulation of basal ganglia (BG) connectivity was tested using seed-to-voxel connectivity analysis with task and rest time series as conditions. Despite substantial overlap of BG-cortical connectivity patterns in both groups, connectivity differences between groups had clinical and behavioral correlates. During rest, stronger putamen-medial parietal and pallidum-occipital connectivity in PD than controls was associated with worse task performance and more severe PD symptoms suggesting that abnormalities in resting-state connectivity denote neural network dedifferentiation. During the executive task, PD patients showed weaker BG-cortical connectivity than controls, i.e., between caudate-supramarginal gyrus and pallidum-inferior prefrontal regions, that was related to more severe PD symptoms and worse task performance. Yet, task processing also evoked stronger striatal-cortical connectivity, specifically between caudate-prefrontal, caudate-precuneus, and putamen-motor/premotor regions in PD relative to controls, which was related to less severe PD symptoms and better performance on the Stroop task. Thus, stronger task-evoked striatal connectivity in PD demonstrated compensatory neural network enhancement to meet task demands and improve performance levels. fMRI-based network analysis revealed that despite resting-state BG network compromise in PD, BG connectivity to prefrontal, premotor, and precuneus regions can be adequately invoked during executive control demands enabling near normal task performance.

  19. Innate Immune Responses of Bat and Human Cells to Filoviruses: Commonalities and Distinctions.

    Science.gov (United States)

    Kuzmin, Ivan V; Schwarz, Toni M; Ilinykh, Philipp A; Jordan, Ingo; Ksiazek, Thomas G; Sachidanandam, Ravi; Basler, Christopher F; Bukreyev, Alexander

    2017-04-15

    Marburg (MARV) and Ebola (EBOV) viruses are zoonotic pathogens that cause severe hemorrhagic fever in humans. The natural reservoir of MARV is the Egyptian rousette bat ( Rousettus aegyptiacus ); that of EBOV is unknown but believed to be another bat species. The Egyptian rousette develops subclinical productive infection with MARV but is refractory to EBOV. Interaction of filoviruses with hosts is greatly affected by the viral interferon (IFN)-inhibiting domains (IID). Our study was aimed at characterization of innate immune responses to filoviruses and the role of filovirus IID in bat and human cells. The study demonstrated that EBOV and MARV replicate to similar levels in all tested cell lines, indicating that permissiveness for EBOV at cell and organism levels do not necessarily correlate. Filoviruses, particularly MARV, induced a potent innate immune response in rousette cells, which was generally stronger than that in human cells. Both EBOV VP35 and VP24 IID were found to suppress the innate immune response in rousette cells, but only VP35 IID appeared to promote virus replication. Along with IFN-α and IFN-β, IFN-γ was demonstrated to control filovirus infection in bat cells but not in human cells, suggesting host species specificity of the antiviral effect. The antiviral effects of bat IFNs appeared not to correlate with induction of IFN-stimulated genes 54 and 56, which were detected in human cells ectopically expressing bat IFN-α and IFN-β. As bat IFN-γ induced the type I IFN pathway, its antiviral effect is likely to be partially induced via cross talk. IMPORTANCE Bats serve as reservoirs for multiple emerging viruses, including filoviruses, henipaviruses, lyssaviruses, and zoonotic coronaviruses. Although there is no evidence for symptomatic disease caused by either Marburg or Ebola viruses in bats, spillover of these viruses into human populations causes deadly outbreaks. The reason for the lack of symptomatic disease in bats infected with

  20. Neutrophil and Alveolar Macrophage-Mediated Innate Immune Control of Legionella pneumophila Lung Infection via TNF and ROS.

    Directory of Open Access Journals (Sweden)

    Pascal Ziltener

    2016-04-01

    Full Text Available Legionella pneumophila is a facultative intracellular bacterium that lives in aquatic environments where it parasitizes amoeba. However, upon inhalation of contaminated aerosols it can infect and replicate in human alveolar macrophages, which can result in Legionnaires' disease, a severe form of pneumonia. Upon experimental airway infection of mice, L. pneumophila is rapidly controlled by innate immune mechanisms. Here we identified, on a cell-type specific level, the key innate effector functions responsible for rapid control of infection. In addition to the well-characterized NLRC4-NAIP5 flagellin recognition pathway, tumor necrosis factor (TNF and reactive oxygen species (ROS are also essential for effective innate immune control of L. pneumophila. While ROS are essential for the bactericidal activity of neutrophils, alveolar macrophages (AM rely on neutrophil and monocyte-derived TNF signaling via TNFR1 to restrict bacterial replication. This TNF-mediated antibacterial mechanism depends on the acidification of lysosomes and their fusion with L. pneumophila containing vacuoles (LCVs, as well as caspases with a minor contribution from cysteine-type cathepsins or calpains, and is independent of NLRC4, caspase-1, caspase-11 and NOX2. This study highlights the differential utilization of innate effector pathways to curtail intracellular bacterial replication in specific host cells upon L. pneumophila airway infection.

  1. Resting-state network disruption and APOE genotype in Alzheimer's disease: a lagged functional connectivity study.

    Directory of Open Access Journals (Sweden)

    Leonides Canuet

    Full Text Available BACKGROUND: The apolipoprotein E epsilon 4 (APOE-4 is associated with a genetic vulnerability to Alzheimer's disease (AD and with AD-related abnormalities in cortical rhythms. However, it is unclear whether APOE-4 is linked to a specific pattern of intrinsic functional disintegration of the brain after the development of the disease or during its different stages. This study aimed at identifying spatial patterns and effects of APOE genotype on resting-state oscillations and functional connectivity in patients with AD, using a physiological connectivity index called "lagged phase synchronization". METHODOLOGY/PRINCIPAL FINDINGS: Resting EEG was recorded during awake, eyes-closed state in 125 patients with AD and 60 elderly controls. Source current density and functional connectivity were determined using eLORETA. Patients with AD exhibited reduced parieto-occipital alpha oscillations compared with controls, and those carrying the APOE-4 allele had reduced alpha activity in the left inferior parietal and temporo-occipital cortex relative to noncarriers. There was a decreased alpha2 connectivity pattern in AD, involving the left temporal and bilateral parietal cortex. Several brain regions exhibited increased lagged phase synchronization in low frequencies, specifically in the theta band, across and within hemispheres, where temporal lobe connections were particularly compromised. Areas with abnormal theta connectivity correlated with cognitive scores. In patients with early AD, we found an APOE-4-related decrease in interhemispheric alpha connectivity in frontal and parieto-temporal regions. CONCLUSIONS/SIGNIFICANCE: In addition to regional cortical dysfunction, as indicated by abnormal alpha oscillations, there are patterns of functional network disruption affecting theta and alpha bands in AD that associate with the level of cognitive disturbance or with the APOE genotype. These functional patterns of nonlinear connectivity may potentially

  2. Improved diagnostic accuracy of Alzheimer's disease by combining regional cortical thickness and default mode network functional connectivity: Validated in the Alzheimer's disease neuroimaging initiative set

    International Nuclear Information System (INIS)

    Park, Ji Eun; Park, Bum Woo; Kim, Sang Joon; Kim, Ho Sung; Choi, Choong Gon; Jung, Seung Jung; Oh, Joo Young; Shim, Woo Hyun; Lee, Jae Hong; Roh, Jee Hoon

    2017-01-01

    To identify potential imaging biomarkers of Alzheimer's disease by combining brain cortical thickness (CThk) and functional connectivity and to validate this model's diagnostic accuracy in a validation set. Data from 98 subjects was retrospectively reviewed, including a study set (n = 63) and a validation set from the Alzheimer's Disease Neuroimaging Initiative (n = 35). From each subject, data for CThk and functional connectivity of the default mode network was extracted from structural T1-weighted and resting-state functional magnetic resonance imaging. Cortical regions with significant differences between patients and healthy controls in the correlation of CThk and functional connectivity were identified in the study set. The diagnostic accuracy of functional connectivity measures combined with CThk in the identified regions was evaluated against that in the medial temporal lobes using the validation set and application of a support vector machine. Group-wise differences in the correlation of CThk and default mode network functional connectivity were identified in the superior temporal (p < 0.001) and supramarginal gyrus (p = 0.007) of the left cerebral hemisphere. Default mode network functional connectivity combined with the CThk of those two regions were more accurate than that combined with the CThk of both medial temporal lobes (91.7% vs. 75%). Combining functional information with CThk of the superior temporal and supramarginal gyri in the left cerebral hemisphere improves diagnostic accuracy, making it a potential imaging biomarker for Alzheimer's disease

  3. MEG connectivity analysis in patients with Alzheimer's disease using cross mutual information and spectral coherence.

    Science.gov (United States)

    Alonso, Joan Francesc; Poza, Jesús; Mañanas, Miguel Angel; Romero, Sergio; Fernández, Alberto; Hornero, Roberto

    2011-01-01

    Alzheimer's disease (AD) is an irreversible brain disorder which represents the most common form of dementia in western countries. An early and accurate diagnosis of AD would enable to develop new strategies for managing the disease; however, nowadays there is no single test that can accurately predict the development of AD. In this sense, only a few studies have focused on the magnetoencephalographic (MEG) AD connectivity patterns. This study compares brain connectivity in terms of linear and nonlinear couplings by means of spectral coherence and cross mutual information function (CMIF), respectively. The variables defined from these functions provide statistically significant differences (p CMIF. The results suggest that AD is characterized by both decreases and increases of functional couplings in different frequency bands as well as by an increase in regularity, that is, more evident statistical deterministic relationships in AD patients' MEG connectivity. The significant differences obtained indicate that AD could disturb brain interactions causing abnormal brain connectivity and operation. Furthermore, the combination of coherence and CMIF features to perform a diagnostic test based on logistic regression improved the tests based on individual variables for its robustness.

  4. Decreased functional connectivity of the amygdala in Alzheimer's disease revealed by resting-state fMRI

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Hongxiang [Department of Radiology, Chinese PLA General Hospital, Beijing, 100853 (China); Liu, Yong, E-mail: yliu@nlpr.ia.ac.cn [Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 (China); National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 (China); Zhou, Bo; Zhang, Zengqiang [Department of Neurology, Institute of Geriatrics and Gerontology, Chinese PLA General Hospital, Beijing, 100853 (China); An, Ningyu [Department of Radiology, Chinese PLA General Hospital, Beijing, 100853 (China); Wang, Pan; Wang, Luning [Department of Neurology, Institute of Geriatrics and Gerontology, Chinese PLA General Hospital, Beijing, 100853 (China); Zhang, Xi, E-mail: zhangxi@301hospital.com.cn [Department of Neurology, Institute of Geriatrics and Gerontology, Chinese PLA General Hospital, Beijing, 100853 (China); Jiang, Tianzi [Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 (China); National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 (China); Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 (China); The Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 (Australia)

    2013-09-15

    Alzheimer's disease (AD), the most common cause of dementia, is thought to be a progressive neurodegenerative disease that is clinically characterised by a decline of memory and other cognitive functions. Mild cognitive impairment (MCI) is considered to be the prodromal stage of AD. However, the relationship between AD and MCI and the development process remains unclear. The amygdala is one of the most vulnerable structures in the early stages of AD. To our knowledge, this is the first report on the alteration of the functional connectivity of the amygdala in AD and MCI subjects. We hypothesised that the amygdala-cortical loop is impaired in AD and that these alterations relate to the disease severity. In our study, we used resting-state functional MRIs to investigate the altered amygdala connectivity patterns in 35 AD patients, 27 MCI patients and 27 age- and gender-matched normal controls (NC). Compared with the NC, the decreased functional connectivity found in the AD patients was mainly located between the amygdala and the regions that are included in the default mode, context conditioning and extinction networks. Importantly, the decreased functional connectivity between the amygdala and some of the identified regions was positively correlated with MMSE, which indicated that the cognitive function impairment is related to an altered functional connectivity pattern.

  5. Decreased functional connectivity of the amygdala in Alzheimer's disease revealed by resting-state fMRI

    International Nuclear Information System (INIS)

    Yao, Hongxiang; Liu, Yong; Zhou, Bo; Zhang, Zengqiang; An, Ningyu; Wang, Pan; Wang, Luning; Zhang, Xi; Jiang, Tianzi

    2013-01-01

    Alzheimer's disease (AD), the most common cause of dementia, is thought to be a progressive neurodegenerative disease that is clinically characterised by a decline of memory and other cognitive functions. Mild cognitive impairment (MCI) is considered to be the prodromal stage of AD. However, the relationship between AD and MCI and the development process remains unclear. The amygdala is one of the most vulnerable structures in the early stages of AD. To our knowledge, this is the first report on the alteration of the functional connectivity of the amygdala in AD and MCI subjects. We hypothesised that the amygdala-cortical loop is impaired in AD and that these alterations relate to the disease severity. In our study, we used resting-state functional MRIs to investigate the altered amygdala connectivity patterns in 35 AD patients, 27 MCI patients and 27 age- and gender-matched normal controls (NC). Compared with the NC, the decreased functional connectivity found in the AD patients was mainly located between the amygdala and the regions that are included in the default mode, context conditioning and extinction networks. Importantly, the decreased functional connectivity between the amygdala and some of the identified regions was positively correlated with MMSE, which indicated that the cognitive function impairment is related to an altered functional connectivity pattern

  6. The Role of TOX in the Development of Innate Lymphoid Cells.

    Science.gov (United States)

    Seehus, Corey R; Kaye, Jonathan

    2015-01-01

    TOX, an evolutionarily conserved member of the HMG-box family of proteins, is essential for the development of various cells of both the innate and adaptive immune system. TOX is required for the development of CD4(+) T lineage cells in the thymus, including natural killer T and T regulatory cells, as well as development of natural killer cells and fetal lymphoid tissue inducer cells, the latter required for lymph node organogenesis. Recently, we have identified a broader role for TOX in the innate immune system, demonstrating that this nuclear protein is required for generation of bone marrow progenitors that have potential to give rise to all innate lymphoid cells. Innate lymphoid cells, classified according to transcription factor expression and cytokine secretion profiles, derive from common lymphoid progenitors in the bone marrow and require Notch signals for their development. We discuss here the role of TOX in specifying CLP toward an innate lymphoid cell fate and hypothesize a possible role for TOX in regulating Notch gene targets during innate lymphoid cell development.

  7. The Role of TOX in the Development of Innate Lymphoid Cells

    Directory of Open Access Journals (Sweden)

    Corey R. Seehus

    2015-01-01

    Full Text Available TOX, an evolutionarily conserved member of the HMG-box family of proteins, is essential for the development of various cells of both the innate and adaptive immune system. TOX is required for the development of CD4+ T lineage cells in the thymus, including natural killer T and T regulatory cells, as well as development of natural killer cells and fetal lymphoid tissue inducer cells, the latter required for lymph node organogenesis. Recently, we have identified a broader role for TOX in the innate immune system, demonstrating that this nuclear protein is required for generation of bone marrow progenitors that have potential to give rise to all innate lymphoid cells. Innate lymphoid cells, classified according to transcription factor expression and cytokine secretion profiles, derive from common lymphoid progenitors in the bone marrow and require Notch signals for their development. We discuss here the role of TOX in specifying CLP toward an innate lymphoid cell fate and hypothesize a possible role for TOX in regulating Notch gene targets during innate lymphoid cell development.

  8. Bruton’s Tyrosine Kinase: An Emerging Key Player in Innate Immunity

    Directory of Open Access Journals (Sweden)

    Alexander N. R. Weber

    2017-11-01

    Full Text Available Bruton’s tyrosine kinase (BTK was initially discovered as a critical mediator of B cell receptor signaling in the development and functioning of adaptive immunity. Growing evidence also suggests multiple roles for BTK in mononuclear cells of the innate immune system, especially in dendritic cells and macrophages. For example, BTK has been shown to function in Toll-like receptor-mediated recognition of infectious agents, cellular maturation and recruitment processes, and Fc receptor signaling. Most recently, BTK was additionally identified as a direct regulator of a key innate inflammatory machinery, the NLRP3 inflammasome. BTK has thus attracted interest not only for gaining a more thorough basic understanding of the human innate immune system but also as a target to therapeutically modulate innate immunity. We here review the latest developments on the role of BTK in mononuclear innate immune cells in mouse versus man, with specific emphasis on the sensing of infectious agents and the induction of inflammation. Therapeutic implications for modulating innate immunity and critical open questions are also discussed.

  9. Innate immune response against an oomycete pathogen Aphanomyces invadans in common carp (Cyprinus carpio), a fish resistant to epizootic ulcerative syndrome.

    Science.gov (United States)

    Yadav, Manoj K; Pradhan, Pravata K; Sood, Neeraj; Chaudhary, Dharmendra K; Verma, Dev K; Chauhan, U K; Punia, Peyush; Jena, Joy K

    2016-03-01

    Infection with Aphanomyces invadans, also known as epizootic ulcerative syndrome, is a destructive disease of freshwater and brackishwater fishes. Although more than 130 species of fish have been confirmed to be susceptible to this disease, some of the commercially important fish species like common carp, milk fish and tilapia are reported to be resistant. Species that are naturally resistant to a particular disease, provide a potential model to study the mechanisms of resistance against that disease. In the present study, following experimental infection with A. invadans in common carp Cyprinus carpio, sequential changes in various innate immune parameters and histopathological alterations were monitored. Some of the studied innate immunity parameters viz. respiratory burst, alternative complement and total antiproteases activities of the infected common carp were higher compared to control fish, particularly at early stages of infection. On the other hand, some parameters such as myeloperoxidase, lysozyme and alpha-2 macroglobulin activities were not altered. Histopathological examination of the muscle at the site of injection revealed well developed granulomas at 12 days post infection, with subsequent regeneration of muscle fibers. From the results, it could be inferred that innate defense mechanisms of common carp are able to neutralize the virulence factors secreted by A. invadans, thereby, preventing its invasive spread and containing the infection. The results obtained here will help to better understand the mechanisms underlying resistance against A. invadans infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Salivary innate defense system in type 1 diabetes mellitus in children with mixed and permanent dentition.

    Science.gov (United States)

    Zalewska, Anna; Knaś, Małgorzata; Kuźmiuk, Anna; Waszkiewicz, Napoleon; Niczyporuk, Marek; Waszkiel, Danuta; Zwierz, Krzysztof

    2013-11-01

    It should be expected that type 1 diabetes mellitus may disturb innate and acquired immunity. There are no data on type 1 diabetes mellitus-related changes in the salivary flow and the protein output responsible for the innate immunity of saliva depending on the quality of dentition reflecting the age of child. The aim of this work was the evaluation of parameters responsible for the innate immunity of saliva in children and adolescents with type 1 diabetes mellitus. In diabetic children, adolescent and healthy volunteers, the salivary flow, the output and the concentration of the activity of peroxidase (colorimetry), lysozyme (radial immunodiffusion) and lactoferrin (ELISA) were determined. In children with mixed and permanent dentition, type 1 diabetes mellitus significantly decreases (as compared with the appropriate controls) the unstimulated salivary flow, the output, concentration of peroxidase and the output of the lysozyme and lactoferrin. In conclusion, it may be stated that type 1 diabetes mellitus causes functional changes in the salivary glands, resulting in a decrease of the salivary flow and weakening of the salivary innate defense system, thus creating a threat to the oral and general health of type 1 diabetes mellitus children. The results showed that the salivary glands of younger children, when compared to adolescents with type 1 diabetes mellitus, are more susceptible to the injurious effects of the disease.

  11. The Basic Immune Simulator: An agent-based model to study the interactions between innate and adaptive immunity

    Directory of Open Access Journals (Sweden)

    Orosz Charles G

    2007-09-01

    Full Text Available Abstract Background We introduce the Basic Immune Simulator (BIS, an agent-based model created to study the interactions between the cells of the innate and adaptive immune system. Innate immunity, the initial host response to a pathogen, generally precedes adaptive immunity, which generates immune memory for an antigen. The BIS simulates basic cell types, mediators and antibodies, and consists of three virtual spaces representing parenchymal tissue, secondary lymphoid tissue and the lymphatic/humoral circulation. The BIS includes a Graphical User Interface (GUI to facilitate its use as an educational and research tool. Results The BIS was used to qualitatively examine the innate and adaptive interactions of the immune response to a viral infection. Calibration was accomplished via a parameter sweep of initial agent population size, and comparison of simulation patterns to those reported in the basic science literature. The BIS demonstrated that the degree of the initial innate response was a crucial determinant for an appropriate adaptive response. Deficiency or excess in innate immunity resulted in excessive proliferation of adaptive immune cells. Deficiency in any of the immune system components increased the probability of failure to clear the simulated viral infection. Conclusion The behavior of the BIS matches both normal and pathological behavior patterns in a generic viral infection scenario. Thus, the BIS effectively translates mechanistic cellular and molecular knowledge regarding the innate and adaptive immune response and reproduces the immune system's complex behavioral patterns. The BIS can be used both as an educational tool to demonstrate the emergence of these patterns and as a research tool to systematically identify potential targets for more effective treatment strategies for diseases processes including hypersensitivity reactions (allergies, asthma, autoimmunity and cancer. We believe that the BIS can be a useful addition to

  12. Feliform carnivores have a distinguished constitutive innate immune response

    Directory of Open Access Journals (Sweden)

    Sonja K. Heinrich

    2016-05-01

    Full Text Available Determining the immunological phenotype of endangered and threatened populations is important to identify those vulnerable to novel pathogens. Among mammals, members of the order Carnivora are particularly threatened by diseases. We therefore examined the constitutive innate immune system, the first line of protection against invading microbes, of six free-ranging carnivore species; the black-backed jackal (Canis mesomelas, the brown hyena (Hyena brunnea, the caracal (Caracal caracal, the cheetah (Acinonyx jubatus, the leopard (Panthera pardus and the lion (Panthera leo using a bacterial killing assay. The differences in immune responses amongst the six species were independent of their foraging behaviour, body mass or social organisation but reflected their phylogenetic relatedness. The bacterial killing capacity of black-backed jackals, a member of the suborder Caniformia, followed the pattern established for a wide variety of vertebrates. In contrast, the five representatives of the suborder Feliformia demonstrated a killing capacity at least an order of magnitude higher than any species reported previously, with a particularly high capacity in caracals and cheetahs. Our results suggest that the immunocompetence of threatened felids such as the cheetah has been underestimated and its assessment ought to consider both innate and adaptive components of the immune system.

  13. Modulation of the innate immune responses in the striped ...

    African Journals Online (AJOL)

    Thus, most of the innate non-specific immune responses are inducible though they are constitutive of fish immune system exhibiting a basal level of activity even in the absence of pathogen challenge. Keywords: Aeromonas hydrophila, Experimental challenge, Innate immune response, Striped snakehead murrel ...

  14. Systems Pharmacology-Based Approach of Connecting Disease Genes in Genome-Wide Association Studies with Traditional Chinese Medicine.

    Science.gov (United States)

    Kim, Jihye; Yoo, Minjae; Shin, Jimin; Kim, Hyunmin; Kang, Jaewoo; Tan, Aik Choon

    2018-01-01

    Traditional Chinese medicine (TCM) originated in ancient China has been practiced over thousands of years for treating various symptoms and diseases. However, the molecular mechanisms of TCM in treating these diseases remain unknown. In this study, we employ a systems pharmacology-based approach for connecting GWAS diseases with TCM for potential drug repurposing and repositioning. We studied 102 TCM components and their target genes by analyzing microarray gene expression experiments. We constructed disease-gene networks from 2558 GWAS studies. We applied a systems pharmacology approach to prioritize disease-target genes. Using this bioinformatics approach, we analyzed 14,713 GWAS disease-TCM-target gene pairs and identified 115 disease-gene pairs with q value < 0.2. We validated several of these GWAS disease-TCM-target gene pairs with literature evidence, demonstrating that this computational approach could reveal novel indications for TCM. We also develop TCM-Disease web application to facilitate the traditional Chinese medicine drug repurposing efforts. Systems pharmacology is a promising approach for connecting GWAS diseases with TCM for potential drug repurposing and repositioning. The computational approaches described in this study could be easily expandable to other disease-gene network analysis.

  15. Structural analysis of an innate immunostimulant from broccoli, Brassica oleracea var. italica.

    Science.gov (United States)

    Urai, Makoto; Kataoka, Keiko; Nishida, Satoshi; Sekimizu, Kazuhisa

    2017-11-22

    Vegetables are eaten as part of a healthy diet throughout the world, and some are also applied topically as a traditional medicine. We evaluated the innate immunostimulating activities of hot water extracts of various vegetables using the silkworm muscle contraction assay system, and found that broccoli, Brassica oleracea var. italica, contains a strong innate immunostimulant. We purified the innate immunostimulant from broccoli, and characterized the chemical structure by chemical analyses and NMR spectroscopy. The innate immunostimulant comprised galacturonic acid, galactose, glucose, arabinose, and rhamnose, and had a pectic-like polysaccharide structure. To determine the structural motif involved in the innate immunostimulating activity, we modified the structure by chemical and enzymatic treatment, and found that the activity was attenuated by pectinase digestion. These findings suggest that a pectic-like polysaccharide purified from broccoli has innate immune-stimulating activity, for which the polygalacturonic acid structure is necessary.

  16. Morphological, clinical and radiological aspects in diagnostics of bronchopulmonary diseases and their complications in children with dysplasia of connective tissue

    Directory of Open Access Journals (Sweden)

    Palchik S.M.

    2016-06-01

    Full Text Available The article provides an overview of the literature devoted to study of radiological, morphological and clinical aspects of diagnostics of respiratory diseases and their complications in children with dysplasia of connective tissue nowadays. We made an analysis of the role of connective tissue disorders in pathogenesis of bronchopulmonary diseases. Theoretically was substantiated the importance of radiological methods in early diagnostics of this disease in children.

  17. Association of serum KL-6 levels with interstitial lung disease in patients with connective tissue disease: a cross-sectional study.

    Science.gov (United States)

    Oguz, Ekin Oktay; Kucuksahin, Orhan; Turgay, Murat; Yildizgoren, Mustafa Turgut; Ates, Askin; Demir, Nalan; Kumbasar, Ozlem Ozdemir; Kinikli, Gulay; Duzgun, Nursen

    2016-03-01

    It was aimed to evaluate KL-6 glycoprotein levels to determine if it may be a diagnostic marker for the connective tissue diseases (CTDs) predicting CTD-related interstitial lung diseases (ILDs) (CTD-ILD) development and to examine if there was a difference between patients and healthy controls. The study included 113 patients with CTD (45 CTD without lung involvement, 68 CTD-ILD) and 45 healthy control subjects. KL-6 glycoprotein levels were analyzed with ELISA in patients and the control group. The relationship between KL-6 glycoprotein levels and CTD-ILD was assessed. In the comparison of all the groups in the study, significantly higher levels of KL-6 were determined in the CTD-ILD group than in either the CTD without pulmonary involvement group or the healthy control group (p connective tissue diseases in the diagnostic groups (systemic lupus erythematosus, Sjögren's syndrome, rheumatoid arthritis, mixed connective tissue disease, scleroderma, polymyositis/ dermatomyositis). In the healthy control group, there was a statistically significant difference between KL-6 levels in smokers and non-smokers. Smokers had significantly higher serum KL-6 levels compared with non-smokers (p < 0.05). There was no statistically significant difference between smoking status (pack-year) and serum KL-6 levels. There was no statistically significant correlation between serum KL-6 levels and time since diagnosis of CTD and CTD-ILD. The level of KL-6 as a predictive factor could be used to identify the clinical development of ILD before it is detected on imaging modality. Further prospective clinical studies are needed to define whether levels of KL-6 might have prognostic value or might predict progressive ILD.

  18. No genetic tradeoffs between hygienic behaviour and individual innate immunity in the honey bee, Apis mellifera.

    Science.gov (United States)

    Harpur, Brock A; Chernyshova, Anna; Soltani, Arash; Tsvetkov, Nadejda; Mahjoorighasrodashti, Mohammad; Xu, Zhixing; Zayed, Amro

    2014-01-01

    Many animals have individual and social mechanisms for combating pathogens. Animals may exhibit short-term physiological tradeoffs between social and individual immunity because the latter is often energetically costly. Genetic tradeoffs between these two traits can also occur if mutations that enhance social immunity diminish individual immunity, or vice versa. Physiological tradeoffs between individual and social immunity have been previously documented in insects, but there has been no study of genetic tradeoffs involving these traits. There is strong evidence that some genes influence both innate immunity and behaviour in social insects--a prerequisite for genetic tradeoffs. Quantifying genetic tradeoffs is critical for understanding the evolution of immunity in social insects and for devising effective strategies for breeding disease-resistant pollinator populations. We conducted two experiments to test the hypothesis of a genetic tradeoff between social and individual immunity in the honey bee, Apis mellifera. First, we estimated the relative contribution of genetics to individual variation in innate immunity of honey bee workers, as only heritable traits can experience genetic tradeoffs. Second, we examined if worker bees with hygienic sisters have reduced individual innate immune response. We genotyped several hundred workers from two colonies and found that patriline genotype does not significantly influence the antimicrobial activity of a worker's hemolymph. Further, we did not find a negative correlation between hygienic behaviour and the average antimicrobial activity of a worker's hemolymph across 30 honey bee colonies. Taken together, our work indicates no genetic tradeoffs between hygienic behaviour and innate immunity in honey bees. Our work suggests that using artificial selection to increase hygienic behaviour of honey bee colonies is not expected to concurrently compromise individual innate immunity of worker bees.

  19. The S-Connect study: results from a randomized, controlled trial of Souvenaid in mild-to-moderate Alzheimer's disease

    NARCIS (Netherlands)

    Shah, R.C.; Kamphuis, P.J.; Leurgans, S.; Swinkels, S.H.; Sadowsky, C.H.; Bongers, A.; Rappaport, S.A.; Quinn, J.F.; Wieggers, R.L.; Scheltens, P.; Bennett, D.A.

    2013-01-01

    Introduction. Souvenaid® containing Fortasyn® Connect is a medical food designed to support synapse synthesis in persons with Alzheimer's disease (AD). Fortasyn Connect includes precursors (uridine monophosphate; choline; phospholipids; eicosapentaenoic acid; docosahexaenoic acid) and cofactors

  20. Fish Lymphocytes: An Evolutionary Equivalent of Mammalian Innate-Like Lymphocytes?

    Directory of Open Access Journals (Sweden)

    Giuseppe Scapigliati

    2018-05-01

    Full Text Available Lymphocytes are the responsible of adaptive responses, as they are classically described, but evidence shows that subpopulations of mammalian lymphocytes may behave as innate-like cells, engaging non-self rapidly and without antigen presentation. The innate-like lymphocytes of mammals have been mainly identified as γδT cells and B1-B cells, exert their activities principally in mucosal tissues, may be involved in human pathologies and their functions and tissue(s of origin are not fully understood. Due to similarities in the morphology and immunobiology of immune system between fish and mammals, and to the uniqueness of having free-living larval stages where the development can be precisely monitored and engineered, teleost fish are proposed as an experimental model to investigate human immunity. However, the homology between fish lymphocytes and mammalian innate-like lymphocytes is an issue poorly considered in comparative immunology. Increasing experimental evidence suggests that fish lymphocytes could have developmental, morphological, and functional features in common with innate-like lymphocytes of mammals. Despite such similarities, information on possible links between conventional fish lymphocytes and mammalian innate-like lymphocytes is missing. The aim of this review is to summarize and describe available findings about the similarities between fish lymphocytes and mammalian innate-like lymphocytes, supporting the hypothesis that mammalian γδT cells and B1-B cells could be evolutionarily related to fish lymphocytes.

  1. Functional Defects in Type 3 Innate Lymphoid Cells and Classical Monocytes in a Patient with Hyper-IgE Syndrome.

    Science.gov (United States)

    Chang, Yuna; Kang, Sung-Yoon; Kim, Jihyun; Kang, Hye-Ryun; Kim, Hye Young

    2017-10-01

    Hyper-IgE syndrome (HIES) is a very rare primary immune deficiency characterized by elevated serum IgE levels, recurrent bacterial infections, chronic dermatitis, and connective tissue abnormalities. Autosomal dominant (AD) HIES involves a mutation in signal transducer and activator of transcription 3 (STAT3) that leads to an impaired T H 17 response. STAT3 signaling is also involved in the function of RORγt + type 3 innate lymphoid cells (ILC3s) and RORγt + T H 17 cells. The aim of this study was to investigate the role of innate immune cells such as innate lymphoid cells (ILCs), granulocytes, and monocytes in a patient with HIES. Peripheral blood mononuclear cells (PBMCs) from a patient with HIES and three age-matched healthy controls were obtained for the analysis of the innate and adaptive immune cells. The frequencies of ILCs in PBMCs were lower in the patient with HIES than in the controls. Moreover, granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-17A produced by ILC3s in PBMCs were lower in the patient with HIES than the controls. Compared with the controls, classical monocytes (CD14 + CD16 low ), which have a high antimicrobial capability, were also lower in the patient with HIES, while non-classical monocytes (CD14 low CD16 + ) as well as intermediate monocytes (CD14 + CD16 intermediate ) were higher. Taken together, these results indicate that the impaired immune defense against pathogenic microbes in the patient with HIES might be partially explained by functional defects in ILC3s and inflammatory monocytes.

  2. Diversity, Function and Transcriptional Regulation of Gut Innate Lymphocytes

    Directory of Open Access Journals (Sweden)

    Lucille eRankin

    2013-03-01

    Full Text Available The innate immune system plays a critical early role in host defense against viruses, bacteria and tumour cells. Until recently, natural killer (NK cells and lymphoid tissue inducer (LTi cells were the primary members of the innate lymphocyte family: NK cells form the front-line interface between the external environment and the adaptive immune system, while LTi cells are essential for secondary lymphoid tissue formation. More recently, it has become apparent that the composition of this family is much more diverse than previously appreciated and newly recognized populations play distinct and essential functions in tissue protection. Despite the importance of these cells, the developmental relationships between different innate lymphocyte populations (ILCs remain unclear. Here we review recent advances in our understanding of the development of different innate immune cell subsets, the transcriptional programs that might be involved in driving fate decisions during development, and their relationship to NK cells.

  3. A molecular arms race between host innate antiviral response and emerging human coronaviruses.

    Science.gov (United States)

    Wong, Lok-Yin Roy; Lui, Pak-Yin; Jin, Dong-Yan

    2016-02-01

    Coronaviruses have been closely related with mankind for thousands of years. Community-acquired human coronaviruses have long been recognized to cause common cold. However, zoonotic coronaviruses are now becoming more a global concern with the discovery of highly pathogenic severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses causing severe respiratory diseases. Infections by these emerging human coronaviruses are characterized by less robust interferon production. Treatment of patients with recombinant interferon regimen promises beneficial outcomes, suggesting that compromised interferon expression might contribute at least partially to the severity of disease. The mechanisms by which coronaviruses evade host innate antiviral response are under intense investigations. This review focuses on the fierce arms race between host innate antiviral immunity and emerging human coronaviruses. Particularly, the host pathogen recognition receptors and the signal transduction pathways to mount an effective antiviral response against SARS and MERS coronavirus infection are discussed. On the other hand, the counter-measures evolved by SARS and MERS coronaviruses to circumvent host defense are also dissected. With a better understanding of the dynamic interaction between host and coronaviruses, it is hoped that insights on the pathogenesis of newly-identified highly pathogenic human coronaviruses and new strategies in antiviral development can be derived.

  4. Strategies to Improve Vaccine Efficacy against Tuberculosis by Targeting Innate Immunity

    Directory of Open Access Journals (Sweden)

    Ulrich E. Schaible

    2017-12-01

    Full Text Available The global tuberculosis epidemic is the most common cause of death after infectious disease worldwide. Increasing numbers of infections with multi- and extensively drug-resistant variants of the Mycobacterium tuberculosis complex, resistant even to newly discovered and last resort antibiotics, highlight the urgent need for an efficient vaccine. The protective efficacy to pulmonary tuberculosis in adults of the only currently available vaccine, M. bovis BCG, is unsatisfactory and geographically diverse. More importantly, recent clinical studies on new vaccine candidates did not prove to be better than BCG, yet. Here, we propose and discuss novel strategies to improve efficacy of existing anti-tuberculosis vaccines. Modulation of innate immune responses upon vaccination already provided promising results in animal models of tuberculosis. For instance, neutrophils have been shown to influence vaccine efficacy, both, positively and negatively, and stimulate specific antibody secretion. Modulating immune regulatory properties after vaccination such as induction of different types of innate immune cell death, myeloid-derived suppressor or regulatory T cells, production of anti-inflammatory cytokines such as IL-10 may have beneficial effects on protection efficacy. Incorporation of lipid antigens presented via CD1 molecules to T cells have been discussed as a way to enhance vaccine efficacy. Finally, concepts of dendritic cell-based immunotherapies or training the innate immune memory may be exploitable for future vaccination strategies against tuberculosis. In this review, we put a spotlight on host immune networks as potential targets to boost protection by old and new tuberculosis vaccines.

  5. Flexible modulation of network connectivity related to cognition in Alzheimer’s disease

    Science.gov (United States)

    McLaren, Donald G.; Sperling, Reisa A.; Atria, Alireza

    2014-01-01

    Functional neuroimaging tools, such as fMRI methods, may elucidate the neural correlates of clinical, behavioral, and cognitive performance. Most functional imaging studies focus on regional task-related activity or resting state connectivity rather than how changes in functional connectivity across conditions and tasks are related to cognitive and behavioral performance. To investigate the promise of characterizing context-dependent connectivity-behavior relationships, this study applies the method of generalized psychophysiological interactions (gPPI) to assess the patterns of associative-memory-related fMRI hippocampal functional connectivity in Alzheimer’s disease (AD) associated with performance on memory and other cognitively demanding neuropsychological tests and clinical measures. Twenty-four subjects with mild AD dementia (ages 54–82, nine females) participated in a face-name paired-associate encoding memory study. Generalized PPI analysis was used to estimate the connectivity between the hippocampus and the whole brain during encoding. The difference in hippocampal-whole brain connectivity between encoding novel and repeated face-name pairs was used in multiple-regression analyses as an independent predictor for 10 behavioral, neuropsychological and clinical tests. The analysis revealed connectivity-behavior relationships that were distributed, dynamically overlapping, and task-specific within and across intrinsic networks; hippocampal-whole brain connectivity-behavior relationships were not isolated to single networks, but spanned multiple brain networks. Importantly, these spatially distributed performance patterns were unique for each measure. In general, out-of-network behavioral associations with encoding novel greater than repeated face-name pairs hippocampal-connectivity were observed in the default-mode network, while correlations with encoding repeated greater than novel face-name pairs hippocampal-connectivity were observed in the executive

  6. Generalized connective tissue disease in Crtap-/- mouse.

    Directory of Open Access Journals (Sweden)

    Dustin Baldridge

    2010-05-01

    Full Text Available Mutations in CRTAP (coding for cartilage-associated protein, LEPRE1 (coding for prolyl 3-hydroxylase 1 [P3H1] or PPIB (coding for Cyclophilin B [CYPB] cause recessive forms of osteogenesis imperfecta and loss or decrease of type I collagen prolyl 3-hydroxylation. A comprehensive analysis of the phenotype of the Crtap-/- mice revealed multiple abnormalities of connective tissue, including in the lungs, kidneys, and skin, consistent with systemic dysregulation of collagen homeostasis within the extracellular matrix. Both Crtap-/- lung and kidney glomeruli showed increased cellular proliferation. Histologically, the lungs showed increased alveolar spacing, while the kidneys showed evidence of segmental glomerulosclerosis, with abnormal collagen deposition. The Crtap-/- skin had decreased mechanical integrity. In addition to the expected loss of proline 986 3-hydroxylation in alpha1(I and alpha1(II chains, there was also loss of 3Hyp at proline 986 in alpha2(V chains. In contrast, at two of the known 3Hyp sites in alpha1(IV chains from Crtap-/- kidneys there were normal levels of 3-hydroxylation. On a cellular level, loss of CRTAP in human OI fibroblasts led to a secondary loss of P3H1, and vice versa. These data suggest that both CRTAP and P3H1 are required to maintain a stable complex that 3-hydroxylates canonical proline sites within clade A (types I, II, and V collagen chains. Loss of this activity leads to a multi-systemic connective tissue disease that affects bone, cartilage, lung, kidney, and skin.

  7. Abiotic elicitors mediated elicitation of innate immunity in tomato: an ex vivo comparison

    OpenAIRE

    Chakraborty, Nilanjan; Ghosh, Sudeepa; Chandra, Swarnendu; Sengupta, Sarban; Acharya, Krishnendu

    2016-01-01

    Improvement of the host resistance by using hazard free chemical elicitors is emerging as an alternative approach in the field of plant disease management. In our present work, we have screened the efficacy and possible mechanism of abiogenic elicitors like Dipotassium hydrogen orthophosphate (K2HPO4), Oxalic acid?(OA), Isonicotinic acid (INA), Salicylic acid?(SA), Acetylsalicylate?(AS), Arachidonic acid (AA)?and Calcium chloride (CaCl2) to stimulate innate immune responses in Lycopersicum es...

  8. Alterations of Innate Immunity Reactants in Transition Dairy Cows before Clinical Signs of Lameness

    Science.gov (United States)

    Zhang, Guanshi; Hailemariam, Dagnachew; Dervishi, Elda; Deng, Qilan; Goldansaz, Seyed A.; Dunn, Suzanna M.; Ametaj, Burim N.

    2015-01-01

    Simple Summary Lameness is prevalent in dairy cows and early diagnosis and timely treatment of the disease can lower animal suffering, improve recovery rate, increase longevity, and minimize cow loss. However, there are no indications of disease until it appears clinically, and presently the only approach to deal with the sick cow is intensive treatment or culling. The results suggest that lameness affected serum concentrations of the several parameters related to innate immunity and carbohydrate metabolism that might be used to monitor health status of transition dairy cows in the near future. Abstract The objectives of this study were to evaluate metabolic and innate immunity alterations in the blood of transition dairy cows before, during, and after diagnosis of lameness during periparturient period. Blood samples were collected from the coccygeal vain once per week before morning feeding from 100 multiparous Holstein dairy cows during −8, −4, disease diagnosis, and +4 weeks (wks) relative to parturition. Six healthy cows (CON) and six cows that showed clinical signs of lameness were selected for intensive serum analyses. Concentrations of interleukin-1 (IL-1), interleukin-6 (IL-6), tumor necrosis factor (TNF), haptoglobin (Hp), serum amyloid A (SAA), lipopolysaccharide binding protein (LBP), lactate, non-esterified fatty acids (NEFA), and β-hydroxybutyrate (BHBA) were measured in serum by ELISA or colorimetric methods. Health status, DMI, rectal temperature, milk yield, and milk composition also were monitored for each cow during the whole experimental period. Results showed that cows affected by lameness had greater concentrations of lactate, IL-6, and SAA in the serum vs. CON cows. Concentrations of TNF tended to be greater in cows with lameness compared with CON. In addition, there was a health status (Hs) by time (week) interaction for IL-1, TNF, and Hp in lameness cows vs. CON ones. Enhanced serum concentrations of lactate, IL-6, and SAA at −8 and

  9. Resting state functional connectivity differences between behavioral variant frontotemporal dementia and Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Anne eHafkemeijer

    2015-09-01

    Full Text Available Alzheimer’s disease (AD and behavioral variant frontotemporal dementia (bvFTD are the most common types of early-onset dementia. Here, we apply resting state functional magnetic resonance imaging (fMRI to study functional brain connectivity differences between AD and bvFTD.We used resting state fMRI data of 31 AD patients, 25 bvFTD patients, and 29 controls. We studied functional connectivity throughout the entire brain, applying two different analysis techniques, studying network-to-region and region-to-region connectivity. A general linear model approach was used to study group differences, while controlling for physiological noise, age, gender, study center, and regional gray matter volume. Given gray matter differences, we observed decreased network-to-region connectivity in bvFTD between a lateral visual cortical network and lateral occipital and cuneal cortex, and b auditory system network and angular gyrus. In AD, we found decreased network-to-region connectivity between the dorsal visual stream network and lateral occipital and parietal opercular cortex. Region-to-region connectivity was decreased in bvFTD between superior temporal gyrus and cuneal, supracalcarine, intracalcarine cortex, and lingual gyrus. We showed that the pathophysiology of functional brain connectivity is different between AD and bvFTD. However, the group differences in functional connectivity are less abundant than has been shown in previous studies.

  10. Mechanisms and pathways of innate immune activation and regulation in health and cancer.

    Science.gov (United States)

    Cui, Jun; Chen, Yongjun; Wang, Helen Y; Wang, Rong-Fu

    2014-01-01

    Research on innate immune signaling and regulation has recently focused on pathogen recognition receptors (PRRs) and their signaling pathways. Members of PRRs sense diverse microbial invasions or danger signals, and initiate innate immune signaling pathways, leading to proinflammatory cytokines production, which, in turn, instructs adaptive immune response development. Despite the diverse functions employed by innate immune signaling to respond to a variety of different pathogens, the innate immune response must be tightly regulated. Otherwise, aberrant, uncontrolled immune responses will lead to harmful, or even fatal, consequences. Therefore, it is essential to better discern innate immune signaling and many regulators, controlling various signaling pathways, have been identified. In this review, we focus on the recent advances in our understanding of the activation and regulation of innate immune signaling in the host response to pathogens and cancer.

  11. Successful Object Encoding Induces Increased Directed Connectivity in Presymptomatic Early-Onset Alzheimer’s Disease

    Science.gov (United States)

    Ochoa, John Fredy; Alonso, Joan Francesc; Duque, Jon Edinson; Tobón, Carlos Andrés; Mañanas, Miguel Angel; Lopera, Francisco; Hernández, Alher Mauricio

    2016-01-01

    Background: Recent studies report increases in neural activity in brain regions critical to episodic memory at preclinical stages of Alzheimer’s disease (AD). Although electroencephalography (EEG) is widely used in AD studies, given its non-invasiveness and low cost, there is a need to translate the findings in other neuroimaging methods to EEG. Objective: To examine how the previous findings using functional magnetic resonance imaging (fMRI) at preclinical stage in presenilin-1 E280A mutation carriers could be assessed and extended, using EEG and a connectivity approach. Methods: EEG signals were acquired during resting and encoding in 30 normal cognitive young subjects, from an autosomal dominant early-onset AD kindred from Antioquia, Colombia. Regions of the brain previously reported as hyperactive were used for connectivity analysis. Results: Mutation carriers exhibited increasing connectivity at analyzed regions. Among them, the right precuneus exhibited the highest changes in connectivity. Conclusion: Increased connectivity in hyperactive cerebral regions is seen in individuals, genetically-determined to develop AD, at preclinical stage. The use of a connectivity approach and a widely available neuroimaging technique opens the possibility to increase the use of EEG in early detection of preclinical AD. PMID:27792014

  12. Experimental in vitro and in vivo systems for studying the innate immune response during dengue virus infections.

    Science.gov (United States)

    Kitab, Bouchra; Kohara, Michinori; Tsukiyama-Kohara, Kyoko

    2018-03-08

    Dengue is the most prevalent arboviral disease in humans and leads to significant morbidity and socioeconomic burden in tropical and subtropical areas. Dengue is caused by infection with any of the four closely related serotypes of dengue virus (DENV1-4) and usually manifests as a mild febrile illness, but may develop into fatal dengue hemorrhagic fever and shock syndrome. There are no specific antiviral therapies against dengue because understanding of DENV biology is limited. A tetravalent chimeric dengue vaccine, Dengvaxia, has finally been licensed for use, but its efficacy was significantly lower against DENV-2 infections and in dengue-naïve individuals. The identification of mechanisms underlying the interactions between DENV and immune responses will help to determine efficient therapeutic and preventive options. It has been well established how the innate immune system responds to DENV infection and how DENV overcomes innate antiviral defenses, however further progress in this field remains hampered by the absence of appropriate experimental dengue models. Herein, we review the available in vitro and in vivo approaches to study the innate immune responses to DENV.

  13. Lung involvement in systemic connective tissue diseases

    Directory of Open Access Journals (Sweden)

    Plavec Goran

    2008-01-01

    Full Text Available Background/Aim. Systemic connective tissue diseases (SCTD are chronic inflammatory autoimmune disorders of unknown cause that can involve different organs and systems. Their course and prognosis are different. All of them can, more or less, involve the respiratory system. The aim of this study was to find out the frequency of respiratory symptoms, lung function disorders, radiography and high-resolution computerized tomography (HRCT abnormalities, and their correlation with the duration of the disease and the applied treatment. Methods. In 47 non-randomized consecutive patients standard chest radiography, HRCT, and lung function tests were done. Results. Hypoxemia was present in nine of the patients with respiratory symptoms (20%. In all of them chest radiography was normal. In five of these patients lung fibrosis was established using HRCT. Half of all the patients with SCTD had symptoms of lung involvement. Lung function tests disorders of various degrees were found in 40% of the patients. The outcome and the degree of lung function disorders were neither in correlation with the duration of SCTD nor with therapy used (p > 0.05 Spearmans Ro. Conclusion. Pulmonary fibrosis occurs in about 10% of the patients with SCTD, and possibly not due to the applied treatment regimens. Hypoxemia could be a sing of existing pulmonary fibrosis in the absence of disorders on standard chest radiography.

  14. A comparison of disease susceptibility and innate immune response between diploid and triploid Atlantic salmon (Salmo salar) siblings following experimental infection with Neoparamoeba perurans, causative agent of amoebic gill disease.

    Science.gov (United States)

    Chalmers, Lynn; Taylor, John F; Roy, William; Preston, Andrew C; Migaud, Herve; Adams, Alexandra

    2017-08-01

    Few studies have focussed on the health and immunity of triploid Atlantic salmon and therefore much is still unknown about their response to commercially significant pathogens. This is important if triploid stocks are to be considered for full-scale commercial production. This study aimed to investigate and compare the response of triploid and diploid Atlantic salmon to an experimental challenge with Neoparamoeba perurans, causative agent of amoebic gill disease (AGD). This disease is economically significant for the aquaculture industry. The results indicated that ploidy had no significant effect on gross gill score or gill filaments affected, while infection and time had significant effects. Ploidy, infection and time did not affect complement or anti-protease activities. Ploidy had a significant effect on lysozyme activity at 21 days post-infection (while infection and time did not), although activity was within the ranges previously recorded for salmonids. Stock did not significantly affect any of the parameters measured. Based on the study results, it can be suggested that ploidy does not affect the manifestation or severity of AGD pathology or the serum innate immune response. Additionally, the serum immune response of diploid and triploid Atlantic salmon may not be significantly affected by amoebic gill disease.

  15. A zebrafish larval model reveals early tissue-specific innate immune responses to Mucor circinelloides.

    Science.gov (United States)

    Voelz, Kerstin; Gratacap, Remi L; Wheeler, Robert T

    2015-11-01

    Mucormycosis is an emerging fungal infection that is clinically difficult to manage, with increasing incidence and extremely high mortality rates. Individuals with diabetes, suppressed immunity or traumatic injury are at increased risk of developing disease. These individuals often present with defects in phagocytic effector cell function. Research using mammalian models and phagocytic effector cell lines has attempted to decipher the importance of the innate immune system in host defence against mucormycosis. However, these model systems have not been satisfactory for direct analysis of the interaction between innate immune effector cells and infectious sporangiospores in vivo. Here, we report the first real-time in vivo analysis of the early innate immune response to mucormycete infection using a whole-animal zebrafish larval model system. We identified differential host susceptibility, dependent on the site of infection (hindbrain ventricle and swim bladder), as well as differential functions of the two major phagocyte effector cell types in response to viable and non-viable spores. Larval susceptibility to mucormycete spore infection was increased upon immunosuppressant treatment. We showed for the first time that macrophages and neutrophils were readily recruited in vivo to the site of infection in an intact host and that spore phagocytosis can be observed in real-time in vivo. While exploring innate immune effector recruitment dynamics, we discovered the formation of phagocyte clusters in response to fungal spores that potentially play a role in fungal spore dissemination. Spores failed to activate pro-inflammatory gene expression by 6 h post-infection in both infection models. After 24 h, induction of a pro-inflammatory response was observed only in hindbrain ventricle infections. Only a weak pro-inflammatory response was initiated after spore injection into the swim bladder during the same time frame. In the future, the zebrafish larva as a live whole

  16. Complement drives glucosylceramide accumulation and tissue inflammation in Gaucher disease.

    Science.gov (United States)

    Pandey, Manoj K; Burrow, Thomas A; Rani, Reena; Martin, Lisa J; Witte, David; Setchell, Kenneth D; Mckay, Mary A; Magnusen, Albert F; Zhang, Wujuan; Liou, Benjamin; Köhl, Jörg; Grabowski, Gregory A

    2017-03-02

    Gaucher disease is caused by mutations in GBA1, which encodes the lysosomal enzyme glucocerebrosidase (GCase). GBA1 mutations drive extensive accumulation of glucosylceramide (GC) in multiple innate and adaptive immune cells in the spleen, liver, lung and bone marrow, often leading to chronic inflammation. The mechanisms that connect excess GC to tissue inflammation remain unknown. Here we show that activation of complement C5a and C5a receptor 1 (C5aR1) controls GC accumulation and the inflammatory response in experimental and clinical Gaucher disease. Marked local and systemic complement activation occurred in GCase-deficient mice or after pharmacological inhibition of GCase and was associated with GC storage, tissue inflammation and proinflammatory cytokine production. Whereas all GCase-inhibited mice died within 4-5 weeks, mice deficient in both GCase and C5aR1, and wild-type mice in which GCase and C5aR were pharmacologically inhibited, were protected from these adverse effects and consequently survived. In mice and humans, GCase deficiency was associated with strong formation of complement-activating GC-specific IgG autoantibodies, leading to complement activation and C5a generation. Subsequent C5aR1 activation controlled UDP-glucose ceramide glucosyltransferase production, thereby tipping the balance between GC formation and degradation. Thus, extensive GC storage induces complement-activating IgG autoantibodies that drive a pathway of C5a generation and C5aR1 activation that fuels a cycle of cellular GC accumulation, innate and adaptive immune cell recruitment and activation in Gaucher disease. As enzyme replacement and substrate reduction therapies are expensive and still associated with inflammation, increased risk of cancer and Parkinson disease, targeting C5aR1 may serve as a treatment option for patients with Gaucher disease and, possibly, other lysosomal storage diseases.

  17. Innate immunological function of TH2 cells in vivo

    Science.gov (United States)

    Th2 cells produce IL-13 when stimulated by papain or house dust mites (HDM) and induce eosinophilic inflammation. This innate response of cells of the adaptive immune system is dependent on IL-33-, not T cell receptor-, based stimulation. While type 2 innate lymphoid cells (ILC2s) are the dominant ...

  18. Recognition Strategies of Group 3 Innate Lymphoid Cells

    OpenAIRE

    Killig, Monica; Glatzer, Timor; Romagnani, Chiara

    2014-01-01

    During the early phase of an inflammatory response, innate cells can use different strategies to sense environmental danger. These include the direct interaction of specific activating receptors (actR) with pathogen-encoded/danger molecules or the engagement of cytokine receptors by pro-inflammatory mediators produced by antigen presenting cells (APC) in the course of the infection. These general recognition strategies, which have been extensively described for innate myeloid cells, are share...

  19. Quantitative nailfold capillaroscopy findings in a population with connective tissue disease and in normal healthy controls.

    Science.gov (United States)

    Kabasakal, Y; Elvins, D M; Ring, E F; McHugh, N J

    1996-01-01

    OBJECTIVE: To describe and quantify the morphological characteristics of nailfold capillaries that distinguish different forms of connective tissue disease from healthy controls. METHODS: A CCD video microscope with fibreoptic illumination and PC based image processing was used to visualise nailfold capillaries and to quantify findings in 23 patients with systemic sclerosis (SSc), 22 patients with systemic lupus erythematosus (SLE), 21 patients with undifferentiated connective tissue disease (UCTD), and 38 healthy controls. RESULTS: Capillary density was reduced in SSc (5.2 (SD 1.3) capillaries/mm) compared with other patient groups and controls. The average number of enlarged capillaries/finger was high in all disease groups (5.5-6.6) compared with controls (2). However, giant capillaries were most frequent in SSc (43%) and were not present in controls. Mild and moderate avascular areas were present in all groups (35%-68%), but severe avascularity was most frequent in SSc (44%) compared with other patients (18%-19%) and controls (0%). The greatest frequency of extensive haemorrhage was in SSc (35%). CONCLUSIONS: There is a range of abnormal capillary findings in patients with connective tissue disease and healthy controls. However, certain abnormalities such as a reduced number of capillaries, severe avascularity, giant capillaries, and haemorrhage are most commonly associated with SSc. Videomicroscopy with image processing offers many technical advantages that can be exploited in further studies of nailfold capillaries. Images PMID:8774177

  20. Innate Lymphoid Cells: a new paradigm in immunology

    Science.gov (United States)

    Eberl, Gérard; Colonna, Marco; Di Santo, James P.; McKenzie, Andrew N.J.

    2016-01-01

    Summary Innate lymphoid cells (ILCs) are a growing family of immune cells that mirror the phenotypes and functions of T cells. However, in contrast to T cells, ILCs do not express acquired antigen receptors or undergo clonal selection and expansion when stimulated. Instead, ILCs react promptly to signals from infected or injured tissues and produce an array of secreted proteins termed cytokines that direct the developing immune response into one that is adapted to the original insult. The complex crosstalk between microenvironment, ILCs and adaptive immunity remains to be fully deciphered. Only by understanding these complex regulatory networks can the power of ILCs be controlled or unleashed to regulate or enhance immune responses in disease prevention and therapy. PMID:25999512

  1. Task-Rest Modulation of Basal Ganglia Connectivity in Mild to Moderate Parkinson’s Disease

    Science.gov (United States)

    Müller-Oehring, Eva M.; Sullivan, Edith V.; Pfefferbaum, Adolf; Huang, Neng C.; Poston, Kathleen L.; Bronte-Stewart, Helen M.; Schulte, Tilman

    2014-01-01

    Parkinson’s disease (PD) is associated with abnormal synchronization in basal ganglia-thalamo-cortical loops. We tested whether early PD patients without demonstrable cognitive impairment exhibit abnormal modulation of functional connectivity at rest, while engaged in a task, or both. PD and healthy controls underwent two functional MRI scans: a resting-state scan and a Stroop Match-to-Sample task scan. Rest-task modulation of basal ganglia (BG) connectivity was tested using seed-to-voxel connectivity analysis with task and rest time series as conditions. Despite substantial overlap of BG–cortical connectivity patterns in both groups, connectivity differences between groups had clinical and behavioral correlates. During rest, stronger putamen–medial parietal and pallidum–occipital connectivity in PD than controls was associated with worse task performance and more severe PD symptoms suggesting that abnormalities in resting-state connectivity denote neural network dedifferentiation. During the executive task, PD patients showed weaker BG-cortical connectivity than controls, i.e., between caudate–supramarginal gyrus and pallidum–inferior prefrontal regions, that was related to more severe PD symptoms and worse task performance. Yet, task processing also evoked stronger striatal–cortical connectivity, specifically between caudate–prefrontal, caudate–precuneus, and putamen–motor/premotor regions in PD relative to controls, which was related to less severe PD symptoms and better performance on the Stroop task. Thus, stronger task-evoked striatal connectivity in PD demonstrated compensatory neural network enhancement to meet task demands and improve performance levels. fMRI-based network analysis revealed that despite resting-state BG network compromise in PD, BG connectivity to prefrontal, premotor, and precuneus regions can be adequately invoked during executive control demands enabling near normal task performance. PMID:25280970

  2. Effects of bleomycin and x irradiation on the frequency of chromosomal aberrations in selected connective tissue diseases

    International Nuclear Information System (INIS)

    Burkhardt, W.C. Jr.

    1978-01-01

    Whole blood lymphocytes from 28 patients with selected connective tissue disorders (6 progressive systemic sclerosis (PSS), 6 anti-nuclear antibody positive rheumatoid arthritis, 6 anti-nuclear antibody negative rheumatoid arthritis, 6 systemic lupus erythematosus, and 4 mixed connective tissue disease) and 17 controls matched for sex, age, and race were studied to determine the frequency of spontaneous as well as bleomycin and/or x-irradiation induced chromosomal aberrations. The effects of bleomycin on cultured lymphocytes were tested, but differential susceptibilities to this clastogen were not demonstrated among the disease groups and controls investigated. However, the combined effect of bleomycin and x irradiation were found to be additive in control lymphocytes, nearly additive in PSS, RA+, and SLE cultures, but reduced considerably from the expected additive value in Ra- cultures. This study indicated that peripheral blood lymphocytes from patients with connective tissue disease, as a whole, possess greater frequencies of spontaneous chromosomal aberrations than matched controls and that x rays can produce greater frequencies of chromosomal aberrations in whole blood lymphocytes of PSS patients than in suitably matched control individuals

  3. Aberrant Intrinsic Activity and Connectivity in Cognitively Normal Parkinson's Disease.

    Science.gov (United States)

    Harrington, Deborah L; Shen, Qian; Castillo, Gabriel N; Filoteo, J Vincent; Litvan, Irene; Takahashi, Colleen; French, Chelsea

    2017-01-01

    Disturbances in intrinsic activity during resting-state functional MRI (rsfMRI) are common in Parkinson's disease (PD), but have largely been studied in a priori defined subnetworks. The cognitive significance of abnormal intrinsic activity is also poorly understood, as are abnormalities that precede the onset of mild cognitive impairment. To address these limitations, we leveraged three different analytic approaches to identify disturbances in rsfMRI metrics in 31 cognitively normal PD patients (PD-CN) and 30 healthy adults. Subjects were screened for mild cognitive impairment using the Movement Disorders Society Task Force Level II criteria. Whole-brain data-driven analytic approaches first analyzed the amplitude of low-frequency intrinsic fluctuations (ALFF) and regional homogeneity (ReHo), a measure of local connectivity amongst functionally similar regions. We then examined if regional disturbances in these metrics altered functional connectivity with other brain regions. We also investigated if abnormal rsfMRI metrics in PD-CN were related to brain atrophy and executive, visual organization, and episodic memory functioning. The results revealed abnormally increased and decreased ALFF and ReHo in PD-CN patients within the default mode network (posterior cingulate, inferior parietal cortex, parahippocampus, entorhinal cortex), sensorimotor cortex (primary motor, pre/post-central gyrus), basal ganglia (putamen, caudate), and posterior cerebellar lobule VII, which mediates cognition. For default mode network regions, we also observed a compound profile of altered ALFF and ReHo. Most regional disturbances in ALFF and ReHo were associated with strengthened long-range interactions in PD-CN, notably with regions in different networks. Stronger long-range functional connectivity in PD-CN was also partly expanded to connections that were outside the networks of the control group. Abnormally increased activity and functional connectivity appeared to have a pathological

  4. No genetic tradeoffs between hygienic behaviour and individual innate immunity in the honey bee, Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Brock A Harpur

    Full Text Available Many animals have individual and social mechanisms for combating pathogens. Animals may exhibit short-term physiological tradeoffs between social and individual immunity because the latter is often energetically costly. Genetic tradeoffs between these two traits can also occur if mutations that enhance social immunity diminish individual immunity, or vice versa. Physiological tradeoffs between individual and social immunity have been previously documented in insects, but there has been no study of genetic tradeoffs involving these traits. There is strong evidence that some genes influence both innate immunity and behaviour in social insects--a prerequisite for genetic tradeoffs. Quantifying genetic tradeoffs is critical for understanding the evolution of immunity in social insects and for devising effective strategies for breeding disease-resistant pollinator populations. We conducted two experiments to test the hypothesis of a genetic tradeoff between social and individual immunity in the honey bee, Apis mellifera. First, we estimated the relative contribution of genetics to individual variation in innate immunity of honey bee workers, as only heritable traits can experience genetic tradeoffs. Second, we examined if worker bees with hygienic sisters have reduced individual innate immune response. We genotyped several hundred workers from two colonies and found that patriline genotype does not significantly influence the antimicrobial activity of a worker's hemolymph. Further, we did not find a negative correlation between hygienic behaviour and the average antimicrobial activity of a worker's hemolymph across 30 honey bee colonies. Taken together, our work indicates no genetic tradeoffs between hygienic behaviour and innate immunity in honey bees. Our work suggests that using artificial selection to increase hygienic behaviour of honey bee colonies is not expected to concurrently compromise individual innate immunity of worker bees.

  5. Recommendations for obstetric management and principles of cooperation between rheumatologists and obstetricians in systemic connective tissue disease patients

    Directory of Open Access Journals (Sweden)

    Justyna Teliga-Czajkowska

    2014-03-01

    Full Text Available Systemic connective tissue diseases, notably rheumatoid arthritis and systemic lupus erythematosus, frequently affect women of reproductive age. The significant impact of the diseases on the course of pregnancy is well established, and vice versa – the course of systemic connective tissue diseases may be affected by pregnancy. The risk of developing serious pregnancy complications and obstetric failures is markedly higher in the mentioned disease group. The foundation of obstetric success, i.e. giving birth to a healthy child and pregnancy having no effect on the course of a given autoimmune disease, is cooperation between rheumatologists and obstetricians so as to plan procreation at an optimal period and provide accurate pregnancy monitoring. The article delineates recommendations relating to contraception management, obstetric supervision and fetus wellbeing monitoring, from the point of view of the obstetrician.

  6. Impaired development of cortico-striatal synaptic connectivity in a cell culture model of Huntington's disease.

    Science.gov (United States)

    Buren, Caodu; Parsons, Matthew P; Smith-Dijak, Amy; Raymond, Lynn A

    2016-03-01

    Huntington's disease (HD) is a genetically inherited neurodegenerative disease caused by a mutation in the gene encoding the huntingtin protein. This mutation results in progressive cell death that is particularly striking in the striatum. Recent evidence indicates that early HD is initially a disease of the synapse, in which subtle alterations in synaptic neurotransmission, particularly at the cortico-striatal (C-S) synapse, can be detected well in advance of cell death. Here, we used a cell culture model in which striatal neurons are co-cultured with cortical neurons, and monitored the development of C-S connectivity up to 21days in vitro (DIV) in cells cultured from either the YAC128 mouse model of HD or the background strain, FVB/N (wild-type; WT) mice. Our data demonstrate that while C-S connectivity in WT co-cultures develops rapidly and continuously from DIV 7 to 21, YAC128 C-S connectivity shows no significant growth from DIV 14 onward. Morphological and electrophysiological data suggest that a combination of pre- and postsynaptic mechanisms contribute to this effect, including a reduction in both the postsynaptic dendritic arborization and the size and replenishment rate of the presynaptic readily releasable pool of excitatory vesicles. Moreover, a chimeric culture strategy confirmed that the most robust impairment in C-S connectivity was only observed when mutant huntingtin was expressed both pre- and postsynaptically. In all, our data demonstrate a progressive HD synaptic phenotype in this co-culture system that may be exploited as a platform for identifying promising therapeutic strategies to prevent early HD-associated synaptopathy. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Central Nervous System and Innate Immune Mechanisms for Inflammation- and Cancer-induced Anorexia

    OpenAIRE

    Ruud, Johan

    2012-01-01

    Anyone who has experienced influenza or a bacterial infection knows what it means to be ill. Apart from feeling feverish, experiencing aching joints and muscles, you lose the desire to eat. Anorexia, defined as loss of appetite or persistent satiety leading to reduced energy intake, is a hallmark of acute inflammatory disease. The anorexia is part of the acute phase response, triggered as the result of activation of the innate immune system with concomitant release of inflammatory mediators, ...

  8. Genetic adaptation of the antibacterial human innate immunity network.

    Science.gov (United States)

    Casals, Ferran; Sikora, Martin; Laayouni, Hafid; Montanucci, Ludovica; Muntasell, Aura; Lazarus, Ross; Calafell, Francesc; Awadalla, Philip; Netea, Mihai G; Bertranpetit, Jaume

    2011-07-11

    Pathogens have represented an important selective force during the adaptation of modern human populations to changing social and other environmental conditions. The evolution of the immune system has therefore been influenced by these pressures. Genomic scans have revealed that immune system is one of the functions enriched with genes under adaptive selection. Here, we describe how the innate immune system has responded to these challenges, through the analysis of resequencing data for 132 innate immunity genes in two human populations. Results are interpreted in the context of the functional and interaction networks defined by these genes. Nucleotide diversity is lower in the adaptors and modulators functional classes, and is negatively correlated with the centrality of the proteins within the interaction network. We also produced a list of candidate genes under positive or balancing selection in each population detected by neutrality tests and showed that some functional classes are preferential targets for selection. We found evidence that the role of each gene in the network conditions the capacity to evolve or their evolvability: genes at the core of the network are more constrained, while adaptation mostly occurred at particular positions at the network edges. Interestingly, the functional classes containing most of the genes with signatures of balancing selection are involved in autoinflammatory and autoimmune diseases, suggesting a counterbalance between the beneficial and deleterious effects of the immune response.

  9. Epigenomic Views of Innate Lymphoid Cells.

    Science.gov (United States)

    Sciumè, Giuseppe; Shih, Han-Yu; Mikami, Yohei; O'Shea, John J

    2017-01-01

    The discovery of innate lymphoid cells (ILCs) with selective production of cytokines typically attributed to subsets of T helper cells forces immunologists to reassess the mechanisms by which selective effector functions arise. The parallelism between ILCs and T cells extends beyond these two cell types and comprises other innate-like T lymphocytes. Beyond the recognition of specialized effector functionalities in diverse lymphocytes, features typical of T cells, such as plasticity and memory, are also relevant for innate lymphocytes. Herein, we review what we have learned in terms of the molecular mechanisms underlying these shared functions, focusing on insights provided by next generation sequencing technologies. We review data on the role of lineage-defining- and signal-dependent transcription factors (TFs). ILC regulomes emerge developmentally whereas the much of the open chromatin regions of T cells are generated acutely, in an activation-dependent manner. And yet, these regions of open chromatin in T cells and ILCs have remarkable overlaps, suggesting that though accessibility is acquired by distinct modes, the end result is that convergent signaling pathways may be involved. Although much is left to be learned, substantial progress has been made in understanding how TFs and epigenomic status contribute to ILC biology in terms of differentiation, specification, and plasticity.

  10. Innate lymphoid cells and their stromal microenvironments.

    Science.gov (United States)

    Kellermayer, Zoltán; Vojkovics, Dóra; Balogh, Péter

    2017-09-01

    In addition to the interaction between antigen presenting cells, T and B lymphocytes, recent studies have revealed important roles for a diverse set of auxiliary cells that profoundly influence the induction and regulation of immune responses against pathogens. Of these the stromal cells composed of various non-hematopoietic constituents are crucial for the creation and maintenance of specialized semi-static three-dimensional lymphoid tissue microenvironment, whereas the more recently described innate lymphoid cells are generated by the diversification of committed lymphoid precursor cells independently from clonally rearranged antigen receptor genes. Recent findings have revealed important contributions by innate lymphoid cells in inflammation and protection against pathogens in a tissue-specific manner. Importantly, lymphoid stromal cells also influence the onset of immune responses in tissue-specific fashion, raising the possibility of tissue-specific stromal - innate lymphoid cell collaboration. In this review we summarize the main features and interactions between these two cells types, with particular emphasis on ILC type 3 cells and their microenvironmental partners. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  11. Exploratory graphical models of functional and structural connectivity patterns for Alzheimer's Disease diagnosis

    Directory of Open Access Journals (Sweden)

    Andres eOrtiz

    2015-11-01

    Full Text Available Alzheimer’s Disease (AD is the most common neurodegenerative disease in elderly people. Itsdevelopment has been shown to be closely related to changes in the brain connectivity networkand in the brain activation patterns along with structural changes caused by the neurodegenerativeprocess.Methods to infer dependence between brain regions are usually derived from the analysis ofcovariance between activation levels in the different areas. However, these covariance-basedmethods are not able to estimate conditional independence between variables to factor out theinfluence of other regions. Conversely, models based on the inverse covariance, or precisionmatrix, such as Sparse Gaussian Graphical Models allow revealing conditional independencebetween regions by estimating the covariance between two variables given the rest as constant.This paper uses Sparse Inverse Covariance Estimation (SICE methods to learn undirectedgraphs in order to derive functional and structural connectivity patterns from Fludeoxyglucose(18F-FDG Position Emission Tomography (PET data and segmented Magnetic Resonanceimages (MRI, drawn from the ADNI database, for Control, MCI (Mild Cognitive ImpairmentSubjects and AD subjects. Sparse computation fits perfectly here as brain regions usually onlyinteract with a few other areas.The models clearly show different metabolic covariation patters between subject groups, revealingthe loss of strong connections in AD and MCI subjects when compared to Controls. Similarly,the variance between GM (Grey Matter densities of different regions reveals different structuralcovariation patterns between the different groups. Thus, the different connectivity patterns forcontrols and AD are used in this paper to select regions of interest in PET and GM images withdiscriminative power for early AD diagnosis. Finally, functional an structural models are combinedto leverage the classification accuracy.The results obtained in this work show the usefulness

  12. Uncomplicated Diverticular Disease: Innate and Adaptive Immunity in Human Gut Mucosa before and after Rifaximin

    Directory of Open Access Journals (Sweden)

    Rossella Cianci

    2014-01-01

    Full Text Available Background/Aim. Uncomplicated diverticular disease (UDD is a frequent condition in adults. The pathogenesis of symptoms remains unknown. Bacteria are able to interact with Toll-like receptors (TLRs and to induce inflammation through both innate immunity and T-cell recruitment. We investigated the pattern of TLRs 2 and 4 and the intestinal homing in patients with UDD before and after a course of Rifaximin. Methods. Forty consecutive patients with UDD and 20 healthy asymptomatic subjects were enrolled. Among UDD patients, 20 were assigned to a 2-month course of treatment with Rifaximin 1.2 g/day for 15 days/month and 20 received placebo. Blood sample and colonic biopsies were obtained from patients and controls. The samples were collected and analyzed at baseline and at the end of treatment. Flow cytometry was performed using monoclonal antibodies (CD3, CD4, CD8, CD103, TCR-gamma/delta, CD14, TLR2, and TLR4. Results. In UDD, TLR2 and TLR4 expression on immune cell subpopulations from blood and mucosa of the affected colon are altered as compared with controls. Rifaximin treatment induced significant modifications of altered conditions. Conclusions. Our data show the role of TLRs in the development of inflammation in UDD. TLRs distribution is altered in UDD and these alterations are reversed after antibiotic treatment. This trial is registered with ClinicalTrials.gov: NCT02068482.

  13. Probiotic Modulation of Innate Cell Pathogen Sensing and Signaling Events

    Directory of Open Access Journals (Sweden)

    Amy Llewellyn

    2017-10-01

    Full Text Available There is a growing body of evidence documenting probiotic bacteria to have a beneficial effect to the host through their ability to modulate the mucosal immune system. Many probiotic bacteria can be considered to act as either immune activators or immune suppressors, which have appreciable influence on homeostasis, inflammatory- and suppressive-immunopathology. What is becoming apparent is the ability of these probiotics to modulate innate immune responses via direct or indirect effects on the signaling pathways that drive these activatory or suppressive/tolerogenic mechanisms. This review will focus on the immunomodulatory role of probiotics on signaling pathways in innate immune cells: from positive to negative regulation associated with innate immune cells driving gut mucosal functionality. Research investigations have shown probiotics to modulate innate functionality in many ways including, receptor antagonism, receptor expression, binding to and expression of adaptor proteins, expression of negative regulatory signal molecules, induction of micro-RNAs, endotoxin tolerisation and finally, the secretion of immunomodulatory proteins, lipids and metabolites. The detailed understanding of the immunomodulatory signaling effects of probiotic strains will facilitate strain-specific selective manipulation of innate cell signal mechanisms in the modulation of mucosal adjuvanticity, immune deviation and tolerisation in both healthy subjects and patients with inflammatory and suppressive pathology.

  14. Convergence of the innate and adaptive immunity during human aging

    Directory of Open Access Journals (Sweden)

    Branca Isabel Pereira

    2016-11-01

    Full Text Available Aging is associated with profound changes in the human immune system, a phenomenon referred to as immunosenescence. This complex immune remodeling affects the adaptive immune system and the CD8+ T cell compartment in particular, leading to the accumulation of terminally differentiated T cells, which can rapidly exert their effector functions at the expenses of a limited proliferative potential. In this review we will discuss evidence suggesting that senescent αβCD8+ T cells acquire the hallmarks of innate-like T cells and use recently acquired NK cell receptors as an alternative mechanism to mediate rapid effector functions. These cells concomitantly lose expression of co-stimulatory receptors and exhibit decreased TCR signaling suggesting a functional shift away from antigen specific activation. The convergence of innate and adaptive features in senescent T cells challenges the classic division between innate and adaptive immune systems. Innate-like T cells are particularly important for stress and tumor surveillance and we propose a new role for these cells in aging, where the acquisition of innate-like functions may represent a beneficial adaptation to an increased burden of malignancy with age, although it may also pose a higher risk of autoimmune disorders.

  15. Probiotic Modulation of Innate Cell Pathogen Sensing and Signaling Events

    Science.gov (United States)

    Llewellyn, Amy; Foey, Andrew

    2017-01-01

    There is a growing body of evidence documenting probiotic bacteria to have a beneficial effect to the host through their ability to modulate the mucosal immune system. Many probiotic bacteria can be considered to act as either immune activators or immune suppressors, which have appreciable influence on homeostasis, inflammatory- and suppressive-immunopathology. What is becoming apparent is the ability of these probiotics to modulate innate immune responses via direct or indirect effects on the signaling pathways that drive these activatory or suppressive/tolerogenic mechanisms. This review will focus on the immunomodulatory role of probiotics on signaling pathways in innate immune cells: from positive to negative regulation associated with innate immune cells driving gut mucosal functionality. Research investigations have shown probiotics to modulate innate functionality in many ways including, receptor antagonism, receptor expression, binding to and expression of adaptor proteins, expression of negative regulatory signal molecules, induction of micro-RNAs, endotoxin tolerisation and finally, the secretion of immunomodulatory proteins, lipids and metabolites. The detailed understanding of the immunomodulatory signaling effects of probiotic strains will facilitate strain-specific selective manipulation of innate cell signal mechanisms in the modulation of mucosal adjuvanticity, immune deviation and tolerisation in both healthy subjects and patients with inflammatory and suppressive pathology. PMID:29065562

  16. Spatial Disassociation of Disrupted Functional Connectivity for the Default Mode Network in Patients with End-Stage Renal Disease.

    Directory of Open Access Journals (Sweden)

    Xiaofen Ma

    Full Text Available To investigate the aberrant functional connectivity of the default mode network (DMN in patients with end-stage renal disease (ESRD and their clinical relevance.Resting-state functional MRI data were collected from 31 patients with ESRD (24 men, 24-61 years and 31 age- and gender-matched healthy controls (HCs, 21 men, 26-61years. A whole-brain seed-based functional connectivity analysis of these collected R-fMRI data was performed by locating the seeds in the posterior cingulate cortex (PCC and ventromedial prefrontal cortex (vmPFC to investigate the functional connectivity of the posterior and anterior DMN over the whole brain, respectively.Compared to the HCs, the patients exhibited significantly decreased functional connectivity with the PCC in the left middle temporal gyrus, the right anterior cingulate gyrus, and the bilateral medial superior frontal gyrus. For the vmPFC seed, only the right thalamus showed significantly decreased functional connectivity in the patients with ESRD compared to HCs. Interestingly, functional connectivity between the PCC and right medial superior frontal gyrus exhibited a significantly positive correlation with the hemoglobin level in the patients.Our findings suggest a spatially specific disruption of functional connectivity in the DMN in patients with ESRD, thereby providing novel insights into our understanding of the neurophysiology mechanism that underlies the disease.

  17. Functional differences between human NKp44(-) and NKp44(+) RORC+ innate lymphoid cells

    NARCIS (Netherlands)

    Hoorweg, Kerim; Peters, Charlotte P.; Cornelissen, Ferry; Aparicio-Domingo, Patricia; Papazian, Natalie; Kazemier, Geert; Mjösberg, Jenny M.; Spits, Hergen; Cupedo, Tom

    2012-01-01

    Human RORC+ lymphoid tissue inducer cells are part of a rapidly expanding family of innate lymphoid cells (ILC) that participate in innate and adaptive immune responses as well as in lymphoid tissue (re) modeling. The assessment of a potential role for innate lymphocyte-derived cytokines in human

  18. Resting-State Functional Connectivity Predicts Cognitive Impairment Related to Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Qi Lin

    2018-04-01

    Full Text Available Resting-state functional connectivity (rs-FC is a promising neuromarker for cognitive decline in aging population, based on its ability to reveal functional differences associated with cognitive impairment across individuals, and because rs-fMRI may be less taxing for participants than task-based fMRI or neuropsychological tests. Here, we employ an approach that uses rs-FC to predict the Alzheimer's Disease Assessment Scale (11 items; ADAS11 scores, which measure overall cognitive functioning, in novel individuals. We applied this technique, connectome-based predictive modeling, to a heterogeneous sample of 59 subjects from the Alzheimer's Disease Neuroimaging Initiative, including normal aging, mild cognitive impairment, and AD subjects. First, we built linear regression models to predict ADAS11 scores from rs-FC measured with Pearson's r correlation. The positive network model tested with leave-one-out cross validation (LOOCV significantly predicted individual differences in cognitive function from rs-FC. In a second analysis, we considered other functional connectivity features, accordance and discordance, which disentangle the correlation and anticorrelation components of activity timecourses between brain areas. Using partial least square regression and LOOCV, we again built models to successfully predict ADAS11 scores in novel individuals. Our study provides promising evidence that rs-FC can reveal cognitive impairment in an aging population, although more development is needed for clinical application.

  19. A personal connection: Promoting positive attitudes towards teaching and learning.

    Science.gov (United States)

    Lujan, Heidi L; DiCarlo, Stephen E

    2017-09-01

    Students' attitudes towards teaching and learning must be addressed with the same seriousness and effort as we address content. Establishing a personal connection and addressing our students' basic psychological needs will produce positive attitudes towards teaching and learning and develop life-long learners. It will also promote constructive student-teacher relationships that have a profound influence on our students' approach towards school. To begin this process, consider the major tenets of the Self-Determination Theory. The Self-Determination Theory of human motivation focuses on our students' innate psychological needs and the degree to which an individual's behavior is self-motivated and self-determined. Faculty can satisfy the innate psychological needs by addressing our students' desire for relatedness, competence and autonomy. Relatedness refers to our students' need to feel connected to others, to be a member of a group, to have a sense of communion and to develop close relationships with others. Competence is believing our students can succeed , challenging them to do so and imparting that belief in them. Autonomy involves considering the perspectives of the student and providing relevant information and opportunities for student choice and initiating and regulating their own behaviors. Establishing a personal connection and addressing our students' basic psychological needs will improve our teaching, inspire and engage our students and promote positive attitudes towards teaching and learning while reducing competition and increasing compassion. These are important goals because unless students are inspired and motivated and have positive attitudes towards teaching and learning our efforts will fail to meet their full potential. Anat Sci Educ 10: 503-507. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  20. Organ system view of the hepatic innate immunity in HCV infection.

    Science.gov (United States)

    Bang, Bo-Ram; Elmasry, Sandra; Saito, Takeshi

    2016-12-01

    An orchestration of innate and adaptive immunity determines the infection outcome and whether the host achieves clearance or allows the pathogen to establish persistent infection. The robust activation of the innate immune response plays the most critical role in both limiting viral replication and halting the spread of the pathogen immediately after infection. The magnitude of innate immune activation is coupled with the efficient mounting of the adaptive immunity. Although immunity against HCV infection is known to be inadequate as most cases transitions to chronicity, approximately 25% of acute infection cases result in spontaneous clearance. The exact immune mechanisms that govern the infection outcome remain largely unknown; recent discoveries suggest that the innate immune system facilitates this event. Both infected hepatocytes and local innate immune cells trigger the front line defense program of the liver as well as the recruitment of diverse adaptive immune cells to the site of infection. Although hepatocyte is the target of HCV infection, nearly all cell types that exist in the liver are involved in the innate defense and contribute to the pathophysiology of hepatic inflammation. The main focus of this comprehensive review is to discuss the current knowledge on how each hepatic cell type contributes to the organ system level innate immunity against HCV infection as well as interplays with the viral evasion program. Furthermore, this review article also aims to synchronize the observations from both molecular biological studies and clinical studies with the ultimate goal of improving our understanding of HCV mediated hepatitis. J. Med. Virol. 88:2025-2037, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Interferon-Mediated Innate Immune Responses against Malaria Parasite Liver Stages

    Directory of Open Access Journals (Sweden)

    Jessica L. Miller

    2014-04-01

    Full Text Available Mosquito-transmitted malaria parasites infect hepatocytes and asymptomatically replicate as liver stages. Using RNA sequencing, we show that a rodent malaria liver-stage infection stimulates a robust innate immune response including type I interferon (IFN and IFNγ pathways. Liver-stage infection is suppressed by these infection-engendered innate responses. This suppression was abrogated in mice deficient in IFNγ, the type I IFN α/β receptor (IFNAR, and interferon regulatory factor 3. Natural killer and CD49b+CD3+ natural killer T (NKT cells increased in the liver after a primary infection, and CD1d-restricted NKT cells, which secrete IFNγ, were critical in reducing liver-stage burden of a secondary infection. Lack of IFNAR signaling abrogated the increase in NKT cell numbers in the liver, showing a link between type I IFN signaling, cell recruitment, and subsequent parasite elimination. Our findings demonstrate innate immune sensing of malaria parasite liver-stage infection and that the ensuing innate responses can eliminate the parasite.

  2. The 3 major types of innate and adaptive cell-mediated effector immunity.

    Science.gov (United States)

    Annunziato, Francesco; Romagnani, Chiara; Romagnani, Sergio

    2015-03-01

    The immune system has tailored its effector functions to optimally respond to distinct species of microbes. Based on emerging knowledge on the different effector T-cell and innate lymphoid cell (ILC) lineages, it is clear that the innate and adaptive immune systems converge into 3 major kinds of cell-mediated effector immunity, which we propose to categorize as type 1, type 2, and type 3. Type 1 immunity consists of T-bet(+) IFN-γ-producing group 1 ILCs (ILC1 and natural killer cells), CD8(+) cytotoxic T cells (TC1), and CD4(+) TH1 cells, which protect against intracellular microbes through activation of mononuclear phagocytes. Type 2 immunity consists of GATA-3(+) ILC2s, TC2 cells, and TH2 cells producing IL-4, IL-5, and IL-13, which induce mast cell, basophil, and eosinophil activation, as well as IgE antibody production, thus protecting against helminthes and venoms. Type 3 immunity is mediated by retinoic acid-related orphan receptor γt(+) ILC3s, TC17 cells, and TH17 cells producing IL-17, IL-22, or both, which activate mononuclear phagocytes but also recruit neutrophils and induce epithelial antimicrobial responses, thus protecting against extracellular bacteria and fungi. On the other hand, type 1 and 3 immunity mediate autoimmune diseases, whereas type 2 responses can cause allergic diseases. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  3. Roles of T Cells in the Pathogenesis of Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Dinglei Su

    2013-01-01

    Full Text Available γδ T cells are a minor population of T cells that express the TCR γδ chains, mainly distributed in the mucosal and epithelial tissue and accounting for less than 5% of the total T cells in the peripheral blood. By bridging innate and adaptive immunity, γδ T cells play important roles in the anti-infection, antitumor, and autoimmune responses. Previous research on γδ T cells was primarily concentrated on infectious diseases and tumors, whereas their functions in autoimmune diseases attracted much attention. In this paper, we summarized the various functions of γδ T cells in two prototypical autoimmune connective tissue diseases, that is, SLE and RA, elaborating on their antigen-presenting capacity, secretion of proinflammatory cytokines, immunomodulatory effects, and auxiliary function for B cells, which contribute to overproduction of proinflammatory cytokines and pathogenic autoantibodies, ultimately leading to the onset of these autoimmune diseases. Elucidation of the roles of γδ T cells in autoimmune diseases is not only conducive to in-depth understanding of the pathogenesis of these diseases, but also beneficial in providing theoretical support for the development of γδ T-cell-targeted therapy.

  4. The Pathology of Orthopedic Implant Failure Is Mediated by Innate Immune System Cytokines

    OpenAIRE

    Landgraeber, Stefan; Jäger, Marcus; Jacobs, Joshua J.; Hallab, Nadim James

    2014-01-01

    All of the over 1 million total joint replacements implanted in the US each year are expected to eventually fail after 15–25 years of use, due to slow progressive subtle inflammation at the bone implant interface. This inflammatory disease state is caused by implant debris acting, primarily, on innate immune cells, that is, macrophages. This slow progressive pathological bone loss or “aseptic loosening” is a potentially life-threatening condition due to the serious complications in older peop...

  5. What can the semantic properties of innate representations explain?

    OpenAIRE

    Jacob , Pierre

    1997-01-01

    Dretske has argued that, unlike the content of beliefs and desires (formed by learning), the contents of innate representations (depending directly on evolution by natural selection) cannot in principle play a role in the causal explanation of an individual's behavior. I examine this "asymmetry" and against it, I argue that the content of innate mental representations too can play a causal role in the explanation of behavior.

  6. A Cyfip2-Dependent Excitatory Interneuron Pathway Establishes the Innate Startle Threshold.

    Science.gov (United States)

    Marsden, Kurt C; Jain, Roshan A; Wolman, Marc A; Echeverry, Fabio A; Nelson, Jessica C; Hayer, Katharina E; Miltenberg, Ben; Pereda, Alberto E; Granato, Michael

    2018-04-17

    Sensory experiences dynamically modify whether animals respond to a given stimulus, but it is unclear how innate behavioral thresholds are established. Here, we identify molecular and circuit-level mechanisms underlying the innate threshold of the zebrafish startle response. From a forward genetic screen, we isolated five mutant lines with reduced innate startle thresholds. Using whole-genome sequencing, we identify the causative mutation for one line to be in the fragile X mental retardation protein (FMRP)-interacting protein cyfip2. We show that cyfip2 acts independently of FMRP and that reactivation of cyfip2 restores the baseline threshold after phenotype onset. Finally, we show that cyfip2 regulates the innate startle threshold by reducing neural activity in a small group of excitatory hindbrain interneurons. Thus, we identify a selective set of genes critical to establishing an innate behavioral threshold and uncover a circuit-level role for cyfip2 in this process. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Induction of innate immune gene expression following methyl methanesulfonate-induced DNA damage in sea urchins

    OpenAIRE

    Reinardy, H. C.; Chapman, J.; Bodnar, A. G.

    2016-01-01

    Sea urchins are noted for the absence of neoplastic disease and represent a novel model to investigate cellular and systemic cancer protection mechanisms. Following intracoelomic injection of the DNA alkylating agent methyl methanesulfonate, DNA damage was detected in sea urchin cells and tissues (coelomocytes, muscle, oesophagus, ampullae and gonad) by the alkaline unwinding, fast micromethod. Gene expression analyses of the coelomocytes indicated upregulation of innate immune markers, inclu...

  8. Dynamic expression of leukocyte innate immune genes in whole blood from horses with lipopolysaccharide-induced acute systemic inflammation

    DEFF Research Database (Denmark)

    Vinther, Anne Mette L.; Skovgaard, Kerstin; Heegaard, Peter M. H.

    2015-01-01

    Background: In horses, insights into the innate immune processes in acute systemic inflammation are limited even though these processes may be highly important for future diagnostic and therapeutic advances in high-mortality disease conditions as the systemic inflammatory response syndrome (SIRS......) and sepsis. Therefore, the aim of this study was to investigate the expression of 31 selected blood leukocyte immune genes in an equine model of acute systemic inflammation to identify significantly regulated genes and to describe their expression dynamics during a 24-h experimental period. Systemic...... expressions in blood leukocytes during equine acute LPS-induced systemic inflammation thoroughly characterized a highly regulated and dynamic innate immune response. These results provide new insights into the molecular mechanisms of equine systemic inflammation....

  9. Glycoconjugates as elicitors or suppressors of plant innate immunity

    DEFF Research Database (Denmark)

    Silipo, Alba; Erbs, Gitte; Shinya, Tomonori

    2010-01-01

    Innate immunity is the first line of defense against invading microorganisms in vertebrates and the only line of defense in invertebrates and plants. Bacterial glyco-conjugates, such as lipopolysaccharides (LPS) from the outer membrane of Gram-negative bacteria and peptidoglycan (PGN) from the cell...... walls of both Gram-positive and Gram-negative bacteria, and fungal and oomycete glycoconjugates such as oligosaccharides derived from the cell wall components ß-glucan, chitin and chitosan, have been found to act as elicitors of plant innate immunity. These conserved indispensable microbe......-specific molecules are also referred to as microbe-associated molecular patterns (MAMPs). Other glyco-conjugates such as bacterial extracellular polysaccharides (EPS) and cyclic glucan have been shown to suppress innate immune responses, thus conversely promoting pathogenesis. MAMPs are recognized by the plant...

  10. Connecting Gaucher and Parkinson Disease: Considerations for Clinical and Research Genetic Counseling Settings.

    Science.gov (United States)

    Cook, Lola; Schulze, Jeanine

    2017-12-01

    There are multiple autosomal recessive disorders in which carriers may be at risk for other diseases. This observation calls into question the previous understanding that carriers of autosomal recessive disorders escape clinical consequences. We also know that childhood genetic conditions may have adult disease counterparts (Zimran et al., The Israel Medical Association Journal: IMAJ, 16(11), 723-724, 2014). Individuals who have Gaucher disease and carriers of the disorder are at increased risk for a seemingly unrelated and complex neurological condition, Parkinson disease. Parkinson disease is, in part, caused by the same mutations in the GBA gene that lead to Gaucher disease, and the two conditions are thought to have shared pathophysiology. Briefly reviewed are how these two diseases historically became linked, where their paths cross, potential problems and considerations in disclosure of the link, and current guidelines and research in this area. Genetic counseling experience with a large Parkinson disease cohort is used as a starting point to question the state of clinical and nonclinical practice in disclosing this unusual connection We conclude that more research and discussion are needed to inform practice regarding the crossroads of Gaucher and Parkinson disease.

  11. A whole-brain computational modeling approach to explain the alterations in resting-state functional connectivity during progression of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Murat Demirtaş

    2017-01-01

    Full Text Available Alzheimer's disease (AD is the most common dementia with dramatic consequences. The research in structural and functional neuroimaging showed altered brain connectivity in AD. In this study, we investigated the whole-brain resting state functional connectivity (FC of the subjects with preclinical Alzheimer's disease (PAD, mild cognitive impairment due to AD (MCI and mild dementia due to Alzheimer's disease (AD, the impact of APOE4 carriership, as well as in relation to variations in core AD CSF biomarkers. The synchronization in the whole-brain was monotonously decreasing during the course of the disease progression. Furthermore, in AD patients we found widespread significant decreases in functional connectivity (FC strengths particularly in the brain regions with high global connectivity. We employed a whole-brain computational modeling approach to study the mechanisms underlying these alterations. To characterize the causal interactions between brain regions, we estimated the effective connectivity (EC in the model. We found that the significant EC differences in AD were primarily located in left temporal lobe. Then, we systematically manipulated the underlying dynamics of the model to investigate simulated changes in FC based on the healthy control subjects. Furthermore, we found distinct patterns involving CSF biomarkers of amyloid-beta (Aβ1−42 total tau (t-tau and phosphorylated tau (p-tau. CSF Aβ1−42 was associated to the contrast between healthy control subjects and clinical groups. Nevertheless, tau CSF biomarkers were associated to the variability in whole-brain synchronization and sensory integration regions. These associations were robust across clinical groups, unlike the associations that were found for CSF Aβ1−42. APOE4 carriership showed no significant correlations with the connectivity measures.

  12. Changes in anatomical and functional connectivity of Parkinson's disease patients according to cognitive status

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Boyu, E-mail: cbyzgyk@126.com; Fan, Guo Guang, E-mail: fanguog@sina.com; Liu, Hu, E-mail: liuhu1234567@126.com; Wang, Shanshan, E-mail: jelly_66@126.com

    2015-07-15

    Purpose: This study assesses the patterns of structural and functional connectivity damage in patients with Parkinson's disease dementia (PDD) compared with cognitively unimpaired Parkinson's disease patients (PD-Cu) and healthy controls (HC). Materials and methods: Resting state functional magnetic resonance imaging (rs-fMRI) and diffusion tensor magnetic resonance imaging (DTI) scans were obtained from 30 PD and 21 sex- and age-matched HC. The between-group difference in posterior cingulate (PCC) functional connectivity (FC) was performed to assess FC dysfunction. Atlas-based spatial statistics of DTI was applied to compare White matter (WM) fibers impairment between groups. Results: (1) Functional connectivity: (1) PD-Cu compared with HC showed a decreased PCC functional connectivity of the right medial temporal lobe (MTL). In addition, PCC-right MTL connectivity strength of PD was significantly correlated with Montreal Cognitive Assessment (MoCA) score. (2) PDD group shows a decreased FC of PCC-right parahippocampa compared with PD-Cu group; while show a widespread decreased PCC FC compared with HC group. (2) Anatomical connectivity: (1) Relative to PD-Cu, significant lower FA values were found in the left hippocampus in PDD. (2) PDD showed higher MD values in a widespread WM regions compared with PD-Cu and HC. (3) Positive correlation was observed between MoCA score and FA value of left inferior longitudinal and hippocampus, and bilateral superior longitudinal fasciculus in PD. Conclusions: Cognitive decline in PD is associated with FC damage of PCC-right MTL and microstructural damage of left hippocampus. Nevertheless, combining fMRI and DTI method may provide markers able to contribute to the prediction of PDD.

  13. Innate and intrinsic antiviral immunity in skin.

    Science.gov (United States)

    Kawamura, Tatsuyoshi; Ogawa, Youichi; Aoki, Rui; Shimada, Shinji

    2014-09-01

    As the body's most exposed interface with the environment, the skin is constantly challenged by potentially pathogenic microbes, including viruses. To sense the invading viruses, various types of cells resident in the skin express many different pattern-recognition receptors (PRRs) such as C-type lectin receptors (CLRs), Toll-like receptors (TLRs), nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) and cytosolic DNA sensors, that can detect the pathogen-associated molecular patterns (PAMPs) of the viruses. The detection of viral PAMPs initiates two major innate immune signaling cascades: the first involves the activation of the downstream transcription factors, such as interferon regulatory factors (IRFs), nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1), which cooperate to induce the transcription of type I interferons and pro-inflammatory cytokines. The second signaling pathway involves the caspase-1-mediated processing of IL-1β and IL-18 through the formation of an inflammasome complex. Cutaneous innate immunity including the production of the innate cytokines constitutes the first line of host defence that limits the virus dissemination from the skin, and also plays an important role in the activation of adaptive immune response, which represents the second line of defence. More recently, the third immunity "intrinsic immunity" has emerged, that provides an immediate and direct antiviral defense mediated by host intrinsic restriction factors. This review focuses on the recent advances regarding the antiviral immune systems, highlighting the innate and intrinsic immunity against the viral infections in the skin, and describes how viral components are recognized by cutaneous immune systems. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Function of endoplasmic reticulum calcium ATPase in innate immunity-mediated programmed cell death

    Science.gov (United States)

    Zhu, Xiaohong; Caplan, Jeffrey; Mamillapalli, Padmavathi; Czymmek, Kirk; Dinesh-Kumar, Savithramma P

    2010-01-01

    Programmed cell death (PCD) initiated at the pathogen-infected sites during the plant innate immune response is thought to prevent the development of disease. Here, we describe the identification and characterization of an ER-localized type IIB Ca2+-ATPase (NbCA1) that function as a regulator of PCD. Silencing of NbCA1 accelerates viral immune receptor N- and fungal-immune receptor Cf9-mediated PCD, as well as non-host pathogen Pseudomonas syringae pv. tomato DC3000 and the general elicitor cryptogein-induced cell death. The accelerated PCD rescues loss-of-resistance phenotype of Rar1, HSP90-silenced plants, but not SGT1-silenced plants. Using a genetically encoded calcium sensor, we show that downregulation of NbCA1 results in the modulation of intracellular calcium signalling in response to cryptogein elicitor. We further show that NbCAM1 and NbrbohB function as downstream calcium decoders in N-immune receptor-mediated PCD. Our results indicate that ER-Ca2+-ATPase is a component of the calcium efflux pathway that controls PCD during an innate immune response. PMID:20075858

  15. Knockdown of autophagy enhances innate immune response in hepatitis C virus infected hepatocytes

    Science.gov (United States)

    Shrivastava, Shubham; Raychoudhuri, Amit; Steele, Robert; Ray, Ranjit; Ray, Ratna B.

    2010-01-01

    The role of autophagy in disease pathogenesis following viral infection is beginning to be elucidated. We have previously reported that hepatitis C virus (HCV) infection in hepatocytes induces autophagy. However, the biological significance of HCV induced autophagy has not been clarified. Autophagy has recently been identified as a novel component of innate immune system against viral infection. In the present study, we have shown that knockdown of autophagy related protein Beclin1 or ATG7 in immortalized human hepatocytes (IHH) inhibited HCV growth. Beclin1 or ATG7 knockdown IHH when infected with HCV exhibited an increased expression of IFN-β, OAS-1, IFN-α and IFI27 mRNAs of the interferon signaling pathways as compared to infection of control IHH. Subsequent study demonstrated that HCV infection in autophagy impaired IHH displayed caspase activation, PARP cleavage and apoptotic cell death. Conclusion The disruption of autophagy machinery in HCV infected hepatocytes activated IFN signaling pathway, and induced apoptosis. Together, these results suggest that HCV induced autophagy impairs innate immune response. PMID:21274862

  16. DMPD: Innate immune responses during infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available va Correia J. Vaccine. 2004 Dec 6;22 Suppl 1:S25-30. (.png) (.svg) (.html) (.csml) Show Innate immune responses during infection. Pub...medID 15576198 Title Innate immune responses during infection. Authors Ulevitch RJ,

  17. Connecting the dots: could microbial translocation explain commonly reported symptoms in HIV disease?

    Science.gov (United States)

    Wilson, Natalie L; Vance, David E; Moneyham, Linda D; Raper, James L; Mugavero, Michael J; Heath, Sonya L; Kempf, Mirjam-Colette

    2014-01-01

    Microbial translocation within the context of HIV disease has been described as one of the contributing causes of inflammation and disease progression in HIV infection. HIV-associated symptoms have been related to inflammatory markers and sCD14, a surrogate marker for microbial translocation, suggesting a plausible link between microbial translocation and symptom burden in HIV disease. Similar pathophysiological responses and symptoms have been reported in inflammatory bowel disease. We provide a comprehensive review of microbial translocation, HIV-associated symptoms, and symptoms connected with inflammation. We identify studies showing a relationship among inflammatory markers, sCD14, and symptoms reported in HIV disease. A conceptual framework and rationale to investigate the link between microbial translocation and symptoms is presented. The impact of inflammation on symptoms supports recommendations to reduce inflammation as part of HIV symptom management. Research in reducing microbial translocation-induced inflammation is limited, but needed, to further promote positive health outcomes among HIV-infected patients. Published by Elsevier Inc.

  18. Induction of innate immune genes in brain create the neurobiology of addiction.

    Science.gov (United States)

    Crews, F T; Zou, Jian; Qin, Liya

    2011-06-01

    Addiction occurs through repeated abuse of drugs that progressively reduce behavioral control and cognitive flexibility while increasing limbic negative emotion. Recent discoveries indicate neuroimmune signaling underlies addiction and co-morbid depression. Low threshold microglia undergo progressive stages of innate immune activation involving astrocytes and neurons with repeated drug abuse, stress, and/or cell damage signals. Increased brain NF-κB transcription of proinflammatory chemokines, cytokines, oxidases, proteases, TLR and other genes create loops amplifying NF-κB transcription and innate immune target gene expression. Human post-mortem alcoholic brain has increased NF-κB and NF-κB target gene message, increased microglial markers and chemokine-MCP1. Polymorphisms of human NF-κB1 and other innate immune genes contribute to genetic risk for alcoholism. Animal transgenic and genetic studies link NF-κB innate immune gene expression to alcohol drinking. Human drug addicts show deficits in behavioral flexibility modeled pre-clinically using reversal learning. Binge alcohol, chronic cocaine, and lesions link addiction neurobiology to frontal cortex, neuroimmune signaling and loss of behavioral flexibility. Addiction also involves increasing limbic negative emotion and depression-like behavior that is reflected in hippocampal neurogenesis. Innate immune activation parallels loss of neurogenesis and increased depression-like behavior. Protection against loss of neurogenesis and negative affect by anti-oxidant, anti-inflammatory, anti-depressant, opiate antagonist and abstinence from ethanol dependence link limbic affect to changes in innate immune signaling. The hypothesis that innate immune gene induction underlies addiction and affective disorders creates new targets for therapy. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Neuromodulation of Innate Behaviors in Drosophila.

    Science.gov (United States)

    Kim, Susy M; Su, Chih-Ying; Wang, Jing W

    2017-07-25

    Animals are born with a rich repertoire of robust behaviors that are critical for their survival. However, innate behaviors are also highly adaptable to an animal's internal state and external environment. Neuromodulators, including biogenic amines, neuropeptides, and hormones, are released to signal changes in animals' circumstances and serve to reconfigure neural circuits. This circuit flexibility allows animals to modify their behavioral responses according to environmental cues, metabolic demands, and physiological states. Aided by powerful genetic tools, researchers have made remarkable progress in Drosophila melanogaster to address how a myriad of contextual information influences the input-output relationship of hardwired circuits that support a complex behavioral repertoire. Here we highlight recent advances in understanding neuromodulation of Drosophila innate behaviors, with a special focus on feeding, courtship, aggression, and postmating behaviors.

  20. Acute Modulation of Brain Connectivity in Parkinson Disease after Automatic Mechanical Peripheral Stimulation: A Pilot Study.

    Science.gov (United States)

    Quattrocchi, Carlo Cosimo; de Pandis, Maria Francesca; Piervincenzi, Claudia; Galli, Manuela; Melgari, Jean Marc; Salomone, Gaetano; Sale, Patrizio; Mallio, Carlo Augusto; Carducci, Filippo; Stocchi, Fabrizio

    2015-01-01

    The present study shows the results of a double-blind sham-controlled pilot trial to test whether measurable stimulus-specific functional connectivity changes exist after Automatic Mechanical Peripheral Stimulation (AMPS) in patients with idiopathic Parkinson Disease. Eleven patients (6 women and 5 men) with idiopathic Parkinson Disease underwent brain fMRI immediately before and after sham or effective AMPS. Resting state Functional Connectivity (RSFC) was assessed using the seed-ROI based analysis. Seed ROIs were positioned on basal ganglia, on primary sensory-motor cortices, on the supplementary motor areas and on the cerebellum. Individual differences for pre- and post-effective AMPS and pre- and post-sham condition were obtained and first entered in respective one-sample t-test analyses, to evaluate the mean effect of condition. Effective AMPS, but not sham stimulation, induced increase of RSFC of the sensory motor cortex, nucleus striatum and cerebellum. Secondly, individual differences for both conditions were entered into paired group t-test analysis to rule out sub-threshold effects of sham stimulation, which showed stronger connectivity of the striatum nucleus with the right lateral occipital cortex and the cuneal cortex (max Z score 3.12) and with the right anterior temporal lobe (max Z score 3.42) and of the cerebellum with the right lateral occipital cortex and the right cerebellar cortex (max Z score 3.79). Our results suggest that effective AMPS acutely increases RSFC of brain regions involved in visuo-spatial and sensory-motor integration. This study provides Class II evidence that automatic mechanical peripheral stimulation is effective in modulating brain functional connectivity of patients with Parkinson Disease at rest. Clinical Trials.gov NCT01815281.

  1. Functional connectivity modeling of consistent cortico-striatal degeneration in Huntington's disease

    Directory of Open Access Journals (Sweden)

    Imis Dogan

    2015-01-01

    Full Text Available Huntington's disease (HD is a progressive neurodegenerative disorder characterized by a complex neuropsychiatric phenotype. In a recent meta-analysis we identified core regions of consistent neurodegeneration in premanifest HD in the striatum and middle occipital gyrus (MOG. For early manifest HD convergent evidence of atrophy was most prominent in the striatum, motor cortex (M1 and inferior frontal junction (IFJ. The aim of the present study was to functionally characterize this topography of brain atrophy and to investigate differential connectivity patterns formed by consistent cortico-striatal atrophy regions in HD. Using areas of striatal and cortical atrophy at different disease stages as seeds, we performed task-free resting-state and task-based meta-analytic connectivity modeling (MACM. MACM utilizes the large data source of the BrainMap database and identifies significant areas of above-chance co-activation with the seed-region via the activation-likelihood-estimation approach. In order to delineate functional networks formed by cortical as well as striatal atrophy regions we computed the conjunction between the co-activation profiles of striatal and cortical seeds in the premanifest and manifest stages of HD, respectively. Functional characterization of the seeds was obtained using the behavioral meta-data of BrainMap. Cortico-striatal atrophy seeds of the premanifest stage of HD showed common co-activation with a rather cognitive network including the striatum, anterior insula, lateral prefrontal, premotor, supplementary motor and parietal regions. A similar but more pronounced co-activation pattern, additionally including the medial prefrontal cortex and thalamic nuclei was found with striatal and IFJ seeds at the manifest HD stage. The striatum and M1 were functionally connected mainly to premotor and sensorimotor areas, posterior insula, putamen and thalamus. Behavioral characterization of the seeds confirmed that experiments

  2. Connected health and integrated care: Toward new models for chronic disease management.

    Science.gov (United States)

    Chouvarda, Ioanna G; Goulis, Dimitrios G; Lambrinoudaki, Irene; Maglaveras, Nicos

    2015-09-01

    The increasingly aging population in Europe and worldwide brings up the need for the restructuring of healthcare. Technological advancements in electronic health can be a driving force for new health management models, especially in chronic care. In a patient-centered e-health management model, communication and coordination between patient, healthcare professionals in primary care and hospitals can be facilitated, and medical decisions can be made timely and easily communicated. Bringing the right information to the right person at the right time is what connected health aims at, and this may set the basis for the investigation and deployment of the integrated care models. In this framework, an overview of the main technological axes and challenges around connected health technologies in chronic disease management are presented and discussed. A central concept is personal health system for the patient/citizen and three main application areas are identified. The connected health ecosystem is making progress, already shows benefits in (a) new biosensors, (b) data management, (c) data analytics, integration and feedback. Examples are illustrated in each case, while open issues and challenges for further research and development are pinpointed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Two-stage decompositions for the analysis of functional connectivity for fMRI with application to Alzheimer’s disease risk

    OpenAIRE

    Caffo, Brian S.; Crainiceanu, Ciprian M.; Verduzco, Guillermo; Joel, Suresh; Mostofsky, Stewart H.; Bassett, Susan Spear; Pekar, James J.

    2010-01-01

    Functional connectivity is the study of correlations in measured neurophysiological signals. Altered functional connectivity has been shown to be associated with a variety of cognitive and memory impairments and dysfunction, including Alzheimer’s disease. In this manuscript we use a two-stage application of the singular value decomposition to obtain data driven population-level measures of functional connectivity in functional magnetic resonance imaging (fMRI). The method is computationally s...

  4. Unravelling the nature of non-specific effects of vaccines-A challenge for innate immunologists

    DEFF Research Database (Denmark)

    Jensen, Kristoffer Jarlov; Benn, Christine Stabell; van Crevel, Reinout

    2016-01-01

    ) of vaccines, including heterologous T-cell reactivity and innate immune memory or 'trained innate immunity', which involves epigenetic reprogramming of innate immune cells. Here, we review the epidemiological evidence for NSE as well as human, animal and in vitro immunological data that could explain...

  5. Genetic adaptation of the antibacterial human innate immunity network

    Directory of Open Access Journals (Sweden)

    Lazarus Ross

    2011-07-01

    Full Text Available Abstract Background Pathogens have represented an important selective force during the adaptation of modern human populations to changing social and other environmental conditions. The evolution of the immune system has therefore been influenced by these pressures. Genomic scans have revealed that immune system is one of the functions enriched with genes under adaptive selection. Results Here, we describe how the innate immune system has responded to these challenges, through the analysis of resequencing data for 132 innate immunity genes in two human populations. Results are interpreted in the context of the functional and interaction networks defined by these genes. Nucleotide diversity is lower in the adaptors and modulators functional classes, and is negatively correlated with the centrality of the proteins within the interaction network. We also produced a list of candidate genes under positive or balancing selection in each population detected by neutrality tests and showed that some functional classes are preferential targets for selection. Conclusions We found evidence that the role of each gene in the network conditions the capacity to evolve or their evolvability: genes at the core of the network are more constrained, while adaptation mostly occurred at particular positions at the network edges. Interestingly, the functional classes containing most of the genes with signatures of balancing selection are involved in autoinflammatory and autoimmune diseases, suggesting a counterbalance between the beneficial and deleterious effects of the immune response.

  6. The role of intracellular thyroid hormone metabolism in innate immune cells

    NARCIS (Netherlands)

    van der Spek, A.H.

    2018-01-01

    Innate immune cells have recently been identified as important thyroid hormone target cells. This thesis studies the role of intracellular thyroid hormone metabolism in the function of neutrophils and macrophages, two essential cell types of the innate immune system. Neutrophils, monocytes and

  7. Protective efficacy of Mucuna pruriens (L.) seed meal enriched diet on growth performance, innate immunity, and disease resistance in Oreochromis mossambicus against Aeromonas hydrophila.

    Science.gov (United States)

    Saiyad Musthafa, Mohamed; Asgari, Syed Mohideen; Kurian, Amitha; Elumalai, Preetham; Jawahar Ali, Abdul Rahman; Paray, Bilal Ahmad; Al-Sadoon, Mohammad K

    2018-04-01

    The impact of Mucuna pruriens (L.) seed meal diet on growth performance, innate immune response, and disease resistance in Oreochromis mossambicus against Aeromonas hydrophila is reported for the first time. Infected O. mossambicus was fed with 2 g kg -1 , 4 g kg -1 , and 6 g kg -1 of M. pruriens seed meal diets significantly increased initial body weight (IBW) and final body weight (FBW) over control, for a period of 4 weeks. At 4 g kg -1 and 6 g kg -1 the enriched diet significantly (P pruriens can be used as a feed additive to stimulate immunity for effective production of economically valuable freshwater fish, O. mossambicus. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Lung-dominant connective tissue disease among patients with interstitial lung disease: prevalence, functional stability, and common extrathoracic features

    Directory of Open Access Journals (Sweden)

    Daniel Antunes Silva Pereira

    2015-04-01

    Full Text Available OBJECTIVE: To describe the characteristics of a cohort of patients with lung-dominant connective tissue disease (LD-CTD. METHODS: This was a retrospective study of patients with interstitial lung disease (ILD, positive antinuclear antibody (ANA results (≥ 1/320, with or without specific autoantibodies, and at least one clinical feature suggestive of connective tissue disease (CTD. RESULTS: Of the 1,998 patients screened, 52 initially met the criteria for a diagnosis of LD-CTD: 37% were male; the mean age at diagnosis was 56 years; and the median follow-up period was 48 months. During follow-up, 8 patients met the criteria for a definitive diagnosis of a CTD. The remaining 44 patients comprised the LD-CTD group, in which the most prevalent extrathoracic features were arthralgia, gastroesophageal reflux disease, and Raynaud's phenomenon. The most prevalent autoantibodies in this group were ANA (89% and anti-SSA (anti-Ro, 27%. The mean baseline and final FVC was 69.5% and 74.0% of the predicted values, respectively (p > 0.05. Nonspecific interstitial pneumonia and usual interstitial pneumonia patterns were found in 45% and 9% of HRCT scans, respectively; 36% of the scans were unclassifiable. A similar prevalence was noted in histological samples. Diffuse esophageal dilatation was identified in 52% of HRCT scans. Nailfold capillaroscopy was performed in 22 patients; 17 showed a scleroderma pattern. CONCLUSIONS: In our LD-CTD group, there was predominance of females and the patients showed mild spirometric abnormalities at diagnosis, with differing underlying ILD patterns that were mostly unclassifiable on HRCT and by histology. We found functional stability on follow-up. Esophageal dilatation on HRCT and scleroderma pattern on nailfold capillaroscopy were frequent findings and might come to serve as diagnostic criteria.

  9. γ-Oryzanol-Rich Black Rice Bran Extract Enhances the Innate Immune Response.

    Science.gov (United States)

    Shin, Soon Young; Kim, Heon-Woong; Jang, Hwan-Hee; Hwang, Yu-Jin; Choe, Jeong-Sook; Lim, Yoongho; Kim, Jung-Bong; Lee, Young Han

    2017-09-01

    The innate immune response is an important host primary defense system against pathogens. γ-Oryzanol is one of the nutritionally important phytoceutical components in rice bran oil. The goal of this study was to investigate the effect of γ-oryzanol-rich extract from black rice bran (γORE) on the activation of the innate immune system. In this study, we show that γORE increased the expression of CD14 and Toll-like receptor 4 and enhanced the phagocytic activity of RAW264.7 macrophages. Furthermore, γORE and its active ingredient γ-oryzanol promoted the secretion of innate cytokines, interleukin-8, and CCL2, which facilitate phagocytosis by RAW264.7 cells. These findings suggest that γ-oryzanol in the γORE enhances innate immune responses.

  10. A searchable cross-platform gene expression database reveals connections between drug treatments and disease

    Directory of Open Access Journals (Sweden)

    Williams Gareth

    2012-01-01

    Full Text Available Abstract Background Transcriptional data covering multiple platforms and species is collected and processed into a searchable platform independent expression database (SPIED. SPIED consists of over 100,000 expression fold profiles defined independently of control/treatment assignment and mapped to non-redundant gene lists. The database is thus searchable with query profiles defined over genes alone. The motivation behind SPIED is that transcriptional profiles can be quantitatively compared and ranked and thus serve as effective surrogates for comparing the underlying biological states across multiple experiments. Results Drug perturbation, cancer and neurodegenerative disease derived transcriptional profiles are shown to be effective descriptors of the underlying biology as they return related drugs and pathologies from SPIED. In the case of Alzheimer's disease there is high transcriptional overlap with other neurodegenerative conditions and rodent models of neurodegeneration and nerve injury. Combining the query signature with correlating profiles allows for the definition of a tight neurodegeneration signature that successfully highlights many neuroprotective drugs in the Broad connectivity map. Conclusions Quantitative querying of expression data from across the totality of deposited experiments is an effective way of discovering connections between different biological systems and in particular that between drug action and biological disease state. Examples in cancer and neurodegenerative conditions validate the utility of SPIED.

  11. Purpura fulminans in a patient with mixed connective tissue disease.

    LENUS (Irish Health Repository)

    Murad, Aizuri A

    2013-01-01

    A 43-year-old lady was admitted to the intensive care unit with sepsis. She had a history of mixed connective tissue disease, Raynaud\\'s syndrome and hypothyroidism. 2 days later, she developed a purpuric rash on her face and extremities with a livedoid background. Few days later, her distal fingers and toes became gangrenous which then had to be amputated. Laboratory investigations showed that she was coagulopathic and had multiple organ dysfunctions. Antiphospholipid antibodies were negative; however, protein C and antithrombin III levels were low. A skin biopsy showed fibrinoid necrosis in the vessel wall with microthrombi and red-cell extravasation. A diagnosis of purpura fulminans was made.

  12. Mucosal innate immune cells regulate both gut homeostasis and intestinal inflammation.

    Science.gov (United States)

    Kurashima, Yosuke; Goto, Yoshiyuki; Kiyono, Hiroshi

    2013-12-01

    Continuous exposure of intestinal mucosal surfaces to diverse microorganisms and their metabolites reflects the biological necessity for a multifaceted, integrated epithelial and immune cell-mediated regulatory system. The development and function of the host cells responsible for the barrier function of the intestinal surface (e.g., M cells, Paneth cells, goblet cells, and columnar epithelial cells) are strictly regulated through both positive and negative stimulation by the luminal microbiota. Stimulation by damage-associated molecular patterns and commensal bacteria-derived microbe-associated molecular patterns provokes the assembly of inflammasomes, which are involved in maintaining the integrity of the intestinal epithelium. Mucosal immune cells located beneath the epithelium play critical roles in regulating both the mucosal barrier and the relative composition of the luminal microbiota. Innate lymphoid cells and mast cells, in particular, orchestrate the mucosal regulatory system to create a mutually beneficial environment for both the host and the microbiota. Disruption of mucosal homeostasis causes intestinal inflammation such as that seen in inflammatory bowel disease. Here, we review the recent research on the biological interplay among the luminal microbiota, epithelial cells, and mucosal innate immune cells in both healthy and pathological conditions. © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Brain disease, connectivity, plasticity and cognitive therapy: A neurological view of mental disorders.

    Science.gov (United States)

    Lubrini, G; Martín-Montes, A; Díez-Ascaso, O; Díez-Tejedor, E

    2018-04-01

    Our conception of the mind-brain relationship has evolved from the traditional idea of dualism to current evidence that mental functions result from brain activity. This paradigm shift, combined with recent advances in neuroimaging, has led to a novel definition of brain functioning in terms of structural and functional connectivity. The purpose of this literature review is to describe the relationship between connectivity, brain lesions, cerebral plasticity, and functional recovery. Assuming that brain function results from the organisation of the entire brain in networks, brain dysfunction would be a consequence of altered brain network connectivity. According to this approach, cognitive and behavioural impairment following brain damage result from disrupted functional organisation of brain networks. However, the dynamic and versatile nature of these circuits makes recovering brain function possible. Cerebral plasticity allows for functional reorganisation leading to recovery, whether spontaneous or resulting from cognitive therapy, after brain disease. Current knowledge of brain connectivity and cerebral plasticity provides new insights into normal brain functioning, the mechanisms of brain damage, and functional recovery, which in turn serve as the foundations of cognitive therapy. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Aberrant Intrinsic Activity and Connectivity in Cognitively Normal Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Deborah L. Harrington

    2017-06-01

    Full Text Available Disturbances in intrinsic activity during resting-state functional MRI (rsfMRI are common in Parkinson’s disease (PD, but have largely been studied in a priori defined subnetworks. The cognitive significance of abnormal intrinsic activity is also poorly understood, as are abnormalities that precede the onset of mild cognitive impairment. To address these limitations, we leveraged three different analytic approaches to identify disturbances in rsfMRI metrics in 31 cognitively normal PD patients (PD-CN and 30 healthy adults. Subjects were screened for mild cognitive impairment using the Movement Disorders Society Task Force Level II criteria. Whole-brain data-driven analytic approaches first analyzed the amplitude of low-frequency intrinsic fluctuations (ALFF and regional homogeneity (ReHo, a measure of local connectivity amongst functionally similar regions. We then examined if regional disturbances in these metrics altered functional connectivity with other brain regions. We also investigated if abnormal rsfMRI metrics in PD-CN were related to brain atrophy and executive, visual organization, and episodic memory functioning. The results revealed abnormally increased and decreased ALFF and ReHo in PD-CN patients within the default mode network (posterior cingulate, inferior parietal cortex, parahippocampus, entorhinal cortex, sensorimotor cortex (primary motor, pre/post-central gyrus, basal ganglia (putamen, caudate, and posterior cerebellar lobule VII, which mediates cognition. For default mode network regions, we also observed a compound profile of altered ALFF and ReHo. Most regional disturbances in ALFF and ReHo were associated with strengthened long-range interactions in PD-CN, notably with regions in different networks. Stronger long-range functional connectivity in PD-CN was also partly expanded to connections that were outside the networks of the control group. Abnormally increased activity and functional connectivity appeared to have a

  15. Complementary roles for lipid and protein allergens in triggering innate and adaptive immune systems.

    Science.gov (United States)

    Russano, A M; Agea, E; Casciari, C; de Benedictis, F M; Spinozzi, F

    2008-11-01

    Recent advances in allergy research mostly focussed on two major headings: improving protein allergen purification, which is aimed towards a better characterization of IgE- and T-cell reactive epitopes, and the potential new role for unconventional innate and regulatory T cells in controlling airway inflammation. These advancements could appear to be in conflict each other, as innate T cells have a poorly-defined antigen specificity that is often directed toward nonprotein substances, such as lipids. To reconcile these contrasting findings, the model of cypress pollinosis as paradigmatic for studying allergic diseases in adults is suggested. The biochemical characterization of major native protein allergens from undenatured pollen grain demonstrated that the most relevant substance with IgE-binding activity is a glycohydrolase enzyme, which easily denaturizes in stored grains. Moreover, lipids from the pollen membrane are implicated in early pollen grain capture and recognition by CD1(+) dendritic cells (DC) and CD1-restricted T lymphocytes. These T cells display Th0/Th2 functional activity and are also able to produce regulatory cytokines, such as IL-10 and TGF-beta. CD1(+) immature DCs expand in the respiratory mucosa of allergic subjects and are able to process both proteins and lipids. A final scenario may suggest that expansion and functional activation of CD1(+) DCs is a key step for mounting a Th0/Th2-deviated immune response, and that such innate response does not confer long-lasting protective immunity.

  16. Training modifies innate immune responses in blood monocytes and in pulmonary alveolar macrophages.

    Science.gov (United States)

    Frellstedt, Linda; Waldschmidt, Ingrid; Gosset, Philippe; Desmet, Christophe; Pirottin, Dimitri; Bureau, Fabrice; Farnir, Frédéric; Franck, Thierry; Dupuis-Tricaud, Marie-Capucine; Lekeux, Pierre; Art, Tatiana

    2014-07-01

    In humans, strenuous exercise causes increased susceptibility to respiratory infections associated with down-regulated expression of Toll-like receptors (TLRs) and costimulatory and antigen-presenting molecules. Lower airway diseases are also a common problem in sport and racing horses. Because innate immunity plays an essential role in lung defense mechanisms, we assessed the effect of acute exercise and training on innate immune responses in two different compartments. Blood monocytes and pulmonary alveolar macrophages (PAMs) were collected from horses in untrained, moderately trained, intensively trained, and deconditioned states before and after a strenuous exercise test. The cells were analyzed for TLR messenger ribonucleic acid (mRNA) expression by real-time PCR in vitro, and cytokine production after in vitro stimulation with TLR ligands was measured by ELISA. Our results showed that training, but not acute exercise, modified the innate immune responses in both compartments. The mRNA expression of TLR3 was down-regulated by training in both cell types, whereas the expression of TLR4 was up-regulated in monocytes. Monocytes treated with LPS and a synthetic diacylated lipoprotein showed increased cytokine secretion in trained and deconditioned subjects, indicating the activation of cells at the systemic level. The production of TNF-α and IFN-β in nonstimulated and stimulated PAMs was decreased in trained and deconditioned horses and might therefore explain the increased susceptibility to respiratory infections. Our study reports a dissociation between the systemic and the lung response to training that is probably implicated in the systemic inflammation and in the pulmonary susceptibility to infection.

  17. Solute Carrier NTCP Regulates Innate Antiviral Immune Responses Targeting Hepatitis C Virus Infection of Hepatocytes

    Directory of Open Access Journals (Sweden)

    Eloi R. Verrier

    2016-10-01

    Full Text Available Chronic hepatitis B, C, and D virus (HBV, HCV, and HDV infections are the leading causes of liver disease and cancer worldwide. Recently, the solute carrier and sodium taurocholate co-transporter NTCP has been identified as a receptor for HBV and HDV. Here, we uncover NTCP as a host factor regulating HCV infection. Using gain- and loss-of-function studies, we show that NTCP mediates HCV infection of hepatocytes and is relevant for cell-to-cell transmission. NTCP regulates HCV infection by augmenting the bile-acid-mediated repression of interferon-stimulated genes (ISGs, including IFITM3. In conclusion, our results uncover NTCP as a mediator of innate antiviral immune responses in the liver, and they establish a role for NTCP in the infection process of multiple viruses via distinct mechanisms. Collectively, our findings suggest a role for solute carriers in the regulation of innate antiviral responses, and they have potential implications for virus-host interactions and antiviral therapies.

  18. The role of innate lymphoid cells in healthy and inflamed skin

    DEFF Research Database (Denmark)

    Bonefeld, Charlotte M.; Geisler, Carsten

    2016-01-01

    system. During the last years, it has become clear that innate lymphoid cells play a role in homeostasis and inflammation of the skin in humans and mice. In this review, we will discuss the role of innate lymphoid cells in healthy and inflamed skin with special focus on their role in atopic dermatitis.......The skin constitutes the interface between the organism and the environment, and it protects the body from harmful substances in the environment via physical, chemical and immunological barriers. The immunological barrier of the skin comprises both cells from the innate and the adaptive immune...

  19. Innate lymphoid cells in normal and disease: An introductory overview.

    Science.gov (United States)

    Moretta, Lorenzo; Locatelli, Franco

    2016-11-01

    Innate lymphoid cells (ILC) represent a novel group of lymphocytes that, different from T and B-lymphocytes lack recombinant activating genes (RAG-1 or RAG-2) and thus do not express rearranged antigen-specific receptors. Members of this family, i.e. NK cells, have been known since long time, while the other ILCs have been discovered only in recent years, possibly because of their predominant localization in tissues, primarily in mucosal tissues, skin and mucosa-associated lymphoid organs. ILC have been grouped in three major subsets on the basis of their phenotypic and functional features as well as of their dependency on given transcription factors (TF). Briefly, ILC-1 are dependent on T-bet TF and produce interferon (IFN)-γ. Group 2 ILC (ILC2) express GATA-3 TF and produce IL-5, IL-4 and IL-13 (Type 2) cytokines while group 3 ILC (ILC3) express RORγt TF and produce IL-17 and IL-22. ILC provide early defenses against pathogens and intervene in the repair of damaged tissues. ILC activation is mediated by cytokines (specifically acting on different ILC groups) and/or by activating receptors that are, at least in part, the same that had been previously identified in NK cells [1]. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  20. Microarray expression analysis of genes involved in innate immune memory in peritoneal macrophages

    Directory of Open Access Journals (Sweden)

    Keisuke Yoshida

    2016-03-01

    Full Text Available Immunological memory has been believed to be a feature of the adaptive immune system for long period, but recent reports suggest that the innate immune system also exhibits memory-like reaction. Although evidence of innate immune memory is accumulating, no in vivo experimental data has clearly implicated a molecular mechanism, or even a cell-type, for this phenomenon. In this study of data deposited into Gene Expression Omnibus (GEO under GSE71111, we analyzed the expression profile of peritoneal macrophages isolated from mice pre-administrated with toll-like receptor (TLR ligands, mimicking pathogen infection. In these macrophages, increased expression of a group of innate immunity-related genes was sustained over a long period of time, and these genes overlapped with ATF7-regulated genes. We conclude that ATF7 plays an important role in innate immune memory in macrophages. Keywords: Macrophage, ATF7, Innate immune memory, Microarray

  1. Improved diagnostic accuracy of Alzheimer's disease by combining regional cortical thickness and default mode network functional connectivity: Validated in the Alzheimer's disease neuroimaging initiative set

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Eun; Park, Bum Woo; Kim, Sang Joon; Kim, Ho Sung; Choi, Choong Gon; Jung, Seung Jung; Oh, Joo Young; Shim, Woo Hyun [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Lee, Jae Hong; Roh, Jee Hoon [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2017-11-15

    To identify potential imaging biomarkers of Alzheimer's disease by combining brain cortical thickness (CThk) and functional connectivity and to validate this model's diagnostic accuracy in a validation set. Data from 98 subjects was retrospectively reviewed, including a study set (n = 63) and a validation set from the Alzheimer's Disease Neuroimaging Initiative (n = 35). From each subject, data for CThk and functional connectivity of the default mode network was extracted from structural T1-weighted and resting-state functional magnetic resonance imaging. Cortical regions with significant differences between patients and healthy controls in the correlation of CThk and functional connectivity were identified in the study set. The diagnostic accuracy of functional connectivity measures combined with CThk in the identified regions was evaluated against that in the medial temporal lobes using the validation set and application of a support vector machine. Group-wise differences in the correlation of CThk and default mode network functional connectivity were identified in the superior temporal (p < 0.001) and supramarginal gyrus (p = 0.007) of the left cerebral hemisphere. Default mode network functional connectivity combined with the CThk of those two regions were more accurate than that combined with the CThk of both medial temporal lobes (91.7% vs. 75%). Combining functional information with CThk of the superior temporal and supramarginal gyri in the left cerebral hemisphere improves diagnostic accuracy, making it a potential imaging biomarker for Alzheimer's disease.

  2. [Mixed connective tissue disease: prevalence and clinical characteristics in African black, study of 7 cases in Gabon and review of the literature].

    Science.gov (United States)

    Missounga, Landry; Ba, Josaphat Iba; Nseng Nseng Ondo, Ingrid Rosalie; Nziengui Madjinou, Maria Ines Carine; Malekou, Doris; Mouendou Mouloungui, Emeline Gracia; Nzengue, Emmanuel Ecke; Boguikouma, Jean Bruno; Kombila, Moussavou

    2017-01-01

    The literature reports that mixed connective tissue disease seems more frequent in the black population and among Asians. This study aims to determine the prevalence of mixed connective tissue disease (MCTD) among connective tissue disorders and all rheumatologic pathologies in a hospital population in Gabon as well as to describe the clinical features of this disease. We conducted a retrospective study by reviewing the medical records of patients treated for mixed connective tissue disease (Kasukawa criteria) and other entities of connective tissue disorders (ACR criteria) in the Division of Rheumatology at the University Hospital in Libreville between January 2010 and December 2015. For each case of MCTD the parameters studied were articular and extra-articular manifestations, anti-U1RNP antibodies levels, patient's evolution. Over a period of 6 years, data were collected by medical records of 7 patients out of 6050 patients and 67 cases of connective tissue disorders, reflecting a prevalence of 0.11% and 10.44% respectively. the 7 patients were women (100%), with an average age of 39.5 years. Articular manifestations included: polyarthritis, myalgias, chubby fingers and Raynaud's phenomenon in 87.5%, 87.5%, 28.6% and 14% respectively. The 7 patients had high anti-U1RNP antibodies levels, ranging between 5 and 35N (N≤ 7 IU). A case of death due to pulmonary arterial hypertension (PAH) was certified. This is the largest case series of MCTD reported in Black Africa. The disease seems to be rare among the black Africans; the reason could be genetic. The demographic and clinical aspects appear similar to those in Caucasians, Asians and Blacks except for a low frequency of Raynaud?s phenomenon among Blacks.

  3. Identification of innate immunodeficiencies by whole genome sequencing

    DEFF Research Database (Denmark)

    Mogensen, Trine; Christiansen, Mette; Veirum, Jens Erik

    2014-01-01

    encephalitis or other herpes simplex virus (HSV) disease manifestations. The goal is to identify host factors in innate immunity which may explain the hitherto unknown mechanism underlying differential susceptibility to HSV infections between individuals. Such knowledge may have clinical and therapeutical...... implications. Methods: As part of a pilot study we performed WES on 4 patients with herpes encephalitis or mucocutaneous manifestations of HSV infection. WES was performed with Illumina technology (Illumina HiSeq/MiSeq) and analyzed PolyPhen-2 (Polymorphism Phenotyping v2) PhyloP, and SIFT prediction software......, TBK1 and Unc93B) may contribute to the development of herpes encephalitis. Common to these genetic defects is that they lead to reduced antiviral interferon (IFN) responses. In this study whole exome sequencing (WES) was performed to identify mutations associated with susceptibility to herpes...

  4. Pulmonary MR imaging with ultra-short TEs: Utility for disease severity assessment of connective tissue disease patients

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Nishio, Mizuho; Koyama, Hisanobu; Takenaka, Daisuke; Takahashi, Masaya; Yoshikawa, Takeshi; Matsumoto, Sumiaki; Obara, Makoto; Cauteren, Marc van; Sugimura, Kazuro

    2013-01-01

    Purpose: To evaluate the utility of pulmonary magnetic resonance (MR) imaging with ultra-short echo times (UTEs) at a 3.0 T MR system for pulmonary functional loss and disease severity assessments of connective tissue disease (CTD) patients with interstitial lung disease (ILD). Materials and methods: This prospective study was approved by the institutional review board, and written informed consent was obtained from 18 CTD patients (eight men and ten women) and eight normal subjects with suspected chest disease (three men and five women). All subjects underwent thin-section MDCT, pulmonary MR imaging with UTEs, pulmonary function test and serum KL-6. Regional T2* maps were generated from each MR data set, and mean T2* values were determined from ROI measurements. From each thin-section MDCT data set, CT-based disease severity was evaluated with a visual scoring system. Mean T2* values for normal and CTD subjects were statistically compared by using Student's t-test. To assess capability for pulmonary functional loss and disease severity assessments, mean T2* values were statistically correlated with pulmonary functional parameters, serum KL-6 and CT-based disease severity. Results: Mean T2* values for normal and CTD subjects were significantly different (p = 0.0019) and showed significant correlations with %VC, %DL CO , serum KL-6 and CT-based disease severity of CTD patients (p < 0.05). Conclusion: Pulmonary MR imaging with UTEs is useful for pulmonary functional loss and disease severity assessments of CTD patients with ILD

  5. Pulmonary MR imaging with ultra-short TEs: Utility for disease severity assessment of connective tissue disease patients

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Yoshiharu, E-mail: yosirad@kobe-u.ac.jp [Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Nishio, Mizuho [Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Koyama, Hisanobu [Division of Radiology, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Takenaka, Daisuke [Division of Radiology, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Department of Radiology, Hyogo Cancer Center, Akashi, Hyogo (Japan); Takahashi, Masaya [Advanced Imaging Research Center, Department of Radiology, University of Texas Southwestern Medical Center, Houston, TX (United States); Yoshikawa, Takeshi; Matsumoto, Sumiaki [Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Obara, Makoto; Cauteren, Marc van [Philips Electronics Japan, Tokyo (Japan); Sugimura, Kazuro [Division of Radiology, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan)

    2013-08-15

    Purpose: To evaluate the utility of pulmonary magnetic resonance (MR) imaging with ultra-short echo times (UTEs) at a 3.0 T MR system for pulmonary functional loss and disease severity assessments of connective tissue disease (CTD) patients with interstitial lung disease (ILD). Materials and methods: This prospective study was approved by the institutional review board, and written informed consent was obtained from 18 CTD patients (eight men and ten women) and eight normal subjects with suspected chest disease (three men and five women). All subjects underwent thin-section MDCT, pulmonary MR imaging with UTEs, pulmonary function test and serum KL-6. Regional T2* maps were generated from each MR data set, and mean T2* values were determined from ROI measurements. From each thin-section MDCT data set, CT-based disease severity was evaluated with a visual scoring system. Mean T2* values for normal and CTD subjects were statistically compared by using Student's t-test. To assess capability for pulmonary functional loss and disease severity assessments, mean T2* values were statistically correlated with pulmonary functional parameters, serum KL-6 and CT-based disease severity. Results: Mean T2* values for normal and CTD subjects were significantly different (p = 0.0019) and showed significant correlations with %VC, %DL{sub CO}, serum KL-6 and CT-based disease severity of CTD patients (p < 0.05). Conclusion: Pulmonary MR imaging with UTEs is useful for pulmonary functional loss and disease severity assessments of CTD patients with ILD.

  6. Divergent functional connectivity during attentional processing in Lewy body dementia and Alzheimer's disease

    OpenAIRE

    Kobeleva, Xenia; Firbank, Michael; Peraza, Luis; Gallagher, Peter; Thomas, Alan; Burn, David J.; O'Brien, John; Taylor, John-Paul

    2017-01-01

    Attention and executive dysfunction are features of Lewy body dementia (LBD) but their neuroanatomical basis is poorly understood. To investigate underlying dysfunctional attention-executive network (EXEC) interactions, we examined functional connectivity (FC) in 30 patients with LBD, 20 patients with Alzheimer's disease (AD), and 21 healthy controls during an event-related functional magnetic resonance imaging (fMRI) experiment. Participants performed a modified Attention Network Test (ANT),...

  7. Porcine models for the study of local and systemic regulation of innate immune factors in obesity

    DEFF Research Database (Denmark)

    Højbøge, Tina Rødgaard

    state of low-grade inflammation in the adipose tissues, which involves several factors of the innate immune response having a range of systemic effects and which has been implicated in the development of the metabolic syndrome. To investigate the impact of obesity and obesity-related diseases good...... translational animal models are needed, and as such pigs have been proposed as relevant models for human obesity-induced inflammation as pigs share many genetic, anatomical and physiological features with humans. In this project the up- and downregulation of genes and proteins involved in the innate immune...... the number of animals to be used in a trial to obtain statistical power. For the gene regulation analysis, two platforms for quantitative real-time PCR (qPCR) were employed: The Rotor-Gene Q instrument and the microfluidics-based high-throughput Bio-Mark. For the serum protein concentrations analysis several...

  8. Th1- and Th2-like subsets of innate lymphoid cells

    NARCIS (Netherlands)

    Bernink, Jochem; Mjösberg, Jenny; Spits, Hergen

    2013-01-01

    Innate lymphoid cells (ILCs) constitute a family of effectors in innate immunity and regulators of tissue remodeling that have a cytokine and transcription factor expression pattern that parallels that of the T-helper (Th) cell family. Here, we discuss how ILCs can be categorized and summarize the

  9. Innate immune recognition and activation during HIV infection

    Directory of Open Access Journals (Sweden)

    Larsen Carsten S

    2010-06-01

    Full Text Available Abstract The pathogenesis of HIV infection, and in particular the development of immunodeficiency, remains incompletely understood. Whichever intricate molecular mechanisms are at play between HIV and the host, it is evident that the organism is incapable of restricting and eradicating the invading pathogen. Both innate and adaptive immune responses are raised, but they appear to be insufficient or too late to eliminate the virus. Moreover, the picture is complicated by the fact that the very same cells and responses aimed at eliminating the virus seem to play deleterious roles by driving ongoing immune activation and progressive immunodeficiency. Whereas much knowledge exists on the role of adaptive immunity during HIV infection, it has only recently been appreciated that the innate immune response also plays an important part in HIV pathogenesis. In this review, we present current knowledge on innate immune recognition and activation during HIV infection based on studies in cell culture, non-human primates, and HIV-infected individuals, and discuss the implications for the understanding of HIV immunopathogenesis.

  10. Acute Modulation of Brain Connectivity in Parkinson Disease after Automatic Mechanical Peripheral Stimulation: A Pilot Study

    Science.gov (United States)

    Piervincenzi, Claudia; Galli, Manuela; Melgari, Jean Marc; Salomone, Gaetano; Sale, Patrizio; Mallio, Carlo Augusto; Carducci, Filippo; Stocchi, Fabrizio

    2015-01-01

    Objective The present study shows the results of a double-blind sham-controlled pilot trial to test whether measurable stimulus-specific functional connectivity changes exist after Automatic Mechanical Peripheral Stimulation (AMPS) in patients with idiopathic Parkinson Disease. Methods Eleven patients (6 women and 5 men) with idiopathic Parkinson Disease underwent brain fMRI immediately before and after sham or effective AMPS. Resting state Functional Connectivity (RSFC) was assessed using the seed-ROI based analysis. Seed ROIs were positioned on basal ganglia, on primary sensory-motor cortices, on the supplementary motor areas and on the cerebellum. Individual differences for pre- and post-effective AMPS and pre- and post-sham condition were obtained and first entered in respective one-sample t-test analyses, to evaluate the mean effect of condition. Results Effective AMPS, but not sham stimulation, induced increase of RSFC of the sensory motor cortex, nucleus striatum and cerebellum. Secondly, individual differences for both conditions were entered into paired group t-test analysis to rule out sub-threshold effects of sham stimulation, which showed stronger connectivity of the striatum nucleus with the right lateral occipital cortex and the cuneal cortex (max Z score 3.12) and with the right anterior temporal lobe (max Z score 3.42) and of the cerebellum with the right lateral occipital cortex and the right cerebellar cortex (max Z score 3.79). Conclusions Our results suggest that effective AMPS acutely increases RSFC of brain regions involved in visuo-spatial and sensory-motor integration. Classification of Evidence This study provides Class II evidence that automatic mechanical peripheral stimulation is effective in modulating brain functional connectivity of patients with Parkinson Disease at rest. Trial Registration Clinical Trials.gov NCT01815281 PMID:26469868

  11. DMPD: Innate immune recognition of, and regulation by, DNA. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16979939 Innate immune recognition of, and regulation by, DNA. Ishii KJ, Akira S. T...rends Immunol. 2006 Nov;27(11):525-32. Epub 2006 Sep 18. (.png) (.svg) (.html) (.csml) Show Innate immune recognition... of, and regulation by, DNA. PubmedID 16979939 Title Innate immune recognition of, and regulation b

  12. Innate immunity in the lung regulates the development of asthma.

    Science.gov (United States)

    DeKruyff, Rosemarie H; Yu, Sanhong; Kim, Hye Young; Umetsu, Dale T

    2014-07-01

    The lung, while functioning as a gas exchange organ, encounters a large array of environmental factors, including particulate matter, toxins, reactive oxygen species, chemicals, allergens, and infectious microbes. To rapidly respond to and counteract these elements, a number of innate immune mechanisms have evolved that can lead to lung inflammation and asthma, which is the focus of this review. These innate mechanisms include a role for two incompletely understood cell types, invariant natural killer T (iNKT) cells and innate lymphoid cells (ILCs), which together produce a wide range of cytokines, including interleukin-4 (IL-4), IL-5, IL-13, interferon-γ, IL-17, and IL-22, independently of adaptive immunity and conventional antigens. The specific roles of iNKT cells and ILCs in immunity are still being defined, but both cell types appear to play important roles in the lungs, particularly in asthma. As we gain a better understanding of these innate cell types, we will acquire great insight into the mechanisms by which allergic and non-allergic asthma phenotypes develop. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. The biology of innate lymphoid cells

    NARCIS (Netherlands)

    Artis, David; Spits, Hergen

    2015-01-01

    The innate immune system is composed of a diverse array of evolutionarily ancient haematopoietic cell types, including dendritic cells, monocytes, macrophages and granulocytes. These cell populations collaborate with each other, with the adaptive immune system and with non-haematopoietic cells to

  14. Immune system development during early childhood in tropical Latin America: evidence for the age-dependent down regulation of the innate immune response.

    Science.gov (United States)

    Teran, Rommy; Mitre, Edward; Vaca, Maritza; Erazo, Silvia; Oviedo, Gisela; Hübner, Marc P; Chico, Martha E; Mattapallil, Joseph J; Bickle, Quentin; Rodrigues, Laura C; Cooper, Philip J

    2011-03-01

    The immune response that develops in early childhood underlies the development of inflammatory diseases such as asthma and there are few data from tropical Latin America (LA). This study investigated the effects of age on the development of immunity during the first 5 years of life by comparing innate and adaptive immune responses in Ecuadorian children aged 6-9 months, 22-26 months, and 48-60 months. Percentages of naïve CD4+ T cells declined with age while those of memory CD4(+) and CD8(+) T cells increased indicating active development of the immune system throughout the first five years. Young infants had greater innate immune responses to TLR agonists compared to older children while regulatory responses including SEB-induced IL-10 and percentages of FoxP3(+) T-regulatory cells decreased with age. Enhanced innate immunity in early life may be important for host defense against pathogens but may increase the risk of immunopathology. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Innate Immunity and Breast Milk.

    Science.gov (United States)

    Cacho, Nicole Theresa; Lawrence, Robert M

    2017-01-01

    Human milk is a dynamic source of nutrients and bioactive factors; unique in providing for the human infant's optimal growth and development. The growing infant's immune system has a number of developmental immune deficiencies placing the infant at increased risk of infection. This review focuses on how human milk directly contributes to the infant's innate immunity. Remarkable new findings clarify the multifunctional nature of human milk bioactive components. New research techniques have expanded our understanding of the potential for human milk's effect on the infant that will never be possible with milk formulas. Human milk microbiome directly shapes the infant's intestinal microbiome, while the human milk oligosaccharides drive the growth of these microbes within the gut. New techniques such as genomics, metabolomics, proteomics, and glycomics are being used to describe this symbiotic relationship. An expanded role for antimicrobial proteins/peptides within human milk in innate immune protection is described. The unique milieu of enhanced immune protection with diminished inflammation results from a complex interaction of anti-inflammatory and antioxidative factors provided by human milk to the intestine. New data support the concept of mucosal-associated lymphoid tissue and its contribution to the cellular content of human milk. Human milk stem cells (hMSCs) have recently been discovered. Their direct role in the infant for repair and regeneration is being investigated. The existence of these hMSCs could prove to be an easily harvested source of multilineage stem cells for the study of cancer and tissue regeneration. As the infant's gastrointestinal tract and immune system develop, there is a comparable transition in human milk over time to provide fewer immune factors and more calories and nutrients for growth. Each of these new findings opens the door to future studies of human milk and its effect on the innate immune system and the developing infant.

  16. Association of HLA-DRB1 alleles with susceptibility to mixed connective tissue disease in Polish patients.

    Science.gov (United States)

    Paradowska-Gorycka, A; Stypińska, B; Olesińska, M; Felis-Giemza, A; Mańczak, M; Czuszynska, Z; Zdrojewski, Z; Wojciechowicz, J; Jurkowska, M

    2016-01-01

    Mixed connective tissue disease (MCTD) is a systemic autoimmune disease, originally defined as a connective tissue inflammatory syndrome with overlapping features of systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), polymyositis/dermatomyositis (PM/DM) and systemic sclerosis (SSc), characterized by the presence of antibodies against components of the U1 small nuclear ribonucleoprotein (U1snRNP). The aim of the study was to assess the frequency of (high-resolution-typed) DRB1 alleles in a cohort of Polish patients with MCTD (n = 103). Identification of the variants potentially associated with risk and protection was carried out by comparison with the DKMS Polish Bone Marrow Donor Registry (41306 alleles). DRB1*15:01 (odds ratio (OR): 6.06; 95% confidence interval (CI) 4.55-8.06), DRB1*04 (OR: 3.69; 95% CI 2.69-5.01) and *09:01 (OR: 8.12; 95% CI 2.15-21.75) were identified as risk alleles for MCTD, while HLA-DRB1*07:01 allele was found to be protective (OR: 0.50; 95% CI 0.28-0.83). The carrier frequency of the DRB1*01 was higher in MCTD patients compared with controls, although the differences were not statistically significant. Our results confirm the modulating influence of HLA-DRB1 genotypes on development of connective tissue diseases such as MCTD. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Network topologies and dynamics leading to endotoxin tolerance and priming in innate immune cells.

    Directory of Open Access Journals (Sweden)

    Yan Fu

    Full Text Available The innate immune system, acting as the first line of host defense, senses and adapts to foreign challenges through complex intracellular and intercellular signaling networks. Endotoxin tolerance and priming elicited by macrophages are classic examples of the complex adaptation of innate immune cells. Upon repetitive exposures to different doses of bacterial endotoxin (lipopolysaccharide or other stimulants, macrophages show either suppressed or augmented inflammatory responses compared to a single exposure to the stimulant. Endotoxin tolerance and priming are critically involved in both immune homeostasis and the pathogenesis of diverse inflammatory diseases. However, the underlying molecular mechanisms are not well understood. By means of a computational search through the parameter space of a coarse-grained three-node network with a two-stage Metropolis sampling approach, we enumerated all the network topologies that can generate priming or tolerance. We discovered three major mechanisms for priming (pathway synergy, suppressor deactivation, activator induction and one for tolerance (inhibitor persistence. These results not only explain existing experimental observations, but also reveal intriguing test scenarios for future experimental studies to clarify mechanisms of endotoxin priming and tolerance.

  18. Innateness and the instinct to learn

    Directory of Open Access Journals (Sweden)

    Peter Marler

    2004-06-01

    Full Text Available Concepts of innateness were at the heart of Darwin's approach to behavior and central to the ethological theorizing of Lorenz and, at least to start with, of Tinbergen. Then Tinbergen did an about face, and for some twenty years the term 'innate' became highly suspect. He attributed the change to Lehrman's famous 1953 critique in which he asserted that classifying behaviors as innate tells us nothing about how they develop. Although Lehrman made many valid points, I will argue that this exchange also led to profound misunderstandings that were ultimately damaging to progress in research on the development of behavior. The concept of 'instincts to learn', receiving renewed support from current theorizing among geneticists about phenotypic plasticity, provides a potential resolution of some of the controversies that Lehrman created. Bioacoustical studies, particularly on song learning in birds, serve both to confirm some of Lehrman's anxieties about the term 'innate', but also to make a case that he threw out the genetic baby with the bathwater. The breathtaking progress in molecular and developmental genetics has prepared the way for a fuller understanding of the complexities underlying even the simplest notions of innate behavior, necessary before we can begin to comprehend the ontogeny of behavior.O conceito de inato estava no cerne da abordagem de Darwin ao comportamento assim como no das teorias etológicas de Lorenz e, pelo menos inicialmente, de Tinbergen. Depois, Tinbergen deu uma reviravolta e, durante mais ou menos vinte anos, o termo ''inato'' tornou-se altamente suspeito. Tinbergen atribuiu sua mudança à famosa crítica de Lehrman, em 1953, segundo a qual classificar comportamentos como inatos não traz informação alguma a respeito de seu desenvolvimento. Embora muitas das críticas de Lehrman sejam relevantes, tentarei mostrar que a mudança de enfoque também gerou sérios equívocos que acabaram prejudicando o progresso da

  19. Subversion of innate defenses by the interplay between DENV and pre-existing enhancing antibodies: TLRs signaling collapse.

    Directory of Open Access Journals (Sweden)

    Naphak Modhiran

    Full Text Available BACKGROUND: The phenomenon of antibody dependent enhancement as a major determinant that exacerbates disease severity in DENV infections is well accepted. While the detailed mechanism of antibody enhanced disease severity is unclear, evidence suggests that it is associated with both increased DENV infectivity and suppression of the type I IFN and pro-inflammatory cytokine responses. Therefore, it is imperative for us to understand the intracellular mechanisms altered during ADE infection to decipher the mechanism of severe pathogenesis. METHODOLOGY/PRINCIPAL FINDINGS: In this present work, qRT-PCR, immunoblotting and gene array analysis were conducted to determine whether DENV-antibody complex infection exerts a suppressive effect on the expression and/or function of the pathogen recognition patterns, focusing on the TLR-signaling pathway. We show here that FcγRI and FcγRIIa synergistically facilitated entry of DENV-antibody complexes into monocytic THP-1 cells. Ligation between DENV-antibody complexes and FcR not only down regulated TLRs gene expression but also up regulated SARM, TANK, and negative regulators of the NF-κB pathway, resulting in suppression of innate responses but increased viral production. These results were confirmed by blocking with anti-FcγRI or anti-FcγRIIa antibodies which reduced viral production, up-regulated IFN-β synthesis, and increased gene expression in the TLR-dependent signaling pathway. The negative impact of DENV-ADE infection on the TLR-dependent pathway was strongly supported by gene array screening which revealed that both MyD88-dependent and -independent signaling molecules were down regulated during DENV-ADE infection. Importantly, the same phenomenon was seen in PBMC of secondary DHF/DSS patients but not in PBMC of DF patients. CONCLUSIONS/SIGNIFICANCE: Our present work demonstrates the mechanism by which DENV uses pre-existing immune mediators to defeat the principal activating pathway of innate

  20. Injury to Allografts: innate immune pathways to acute and chronic rejection

    International Nuclear Information System (INIS)

    Land, W. G.

    2005-01-01

    An emerging body of evidence suggests that innate immunity, as the first line of host defense against invading pathogens or their components [pathogen-associated molecular patterns, (PAMPs)], plays also a critical role in acute and chronic allograft rejection. Injury to the donor organ induces an inflammatory milieu in the allograft, which appears to be the initial key event for activation of the innate immune system. Injury-induced generation of putative endogenous molecular ligand, in terms of damaged/danger-associated molecular patterns (DAMPs) such as heat shock proteins, are recognized by Toll-like receptors (TLRs), a family of pattern recognition receptors on cells of innate immunity. Acute allograft injury (e.g. oxidative stress during donor brain-death condition, post-ischemic reperfusion injury in the recipient) includes DAMPs which may interact with, and activate, innate TLR-bearing dendritic cells (DCs) which, in turn, via direct allo-recognition through donor-derived DCs and indirect allo-recogntion through recipient-derived DCs, initiate the recipient's adaptive alloimmune response leading to acute allograft rejection. Chronic injurious events in the allograft (e.g. hypertension, hyperlipidemia, CMV infection, administration of cell-toxic drugs [calcineurin-inhibitors]) induce the generation of D AMPs , which may interact with and activate innate TLR-bearing vascular cells (endothelial cells, smooth muscle cells) which, in turn, contribute to the development of atherosclerosis of donor organ vessels (alloatherosclerosis), thus promoting chronic allograft rejection. (author)

  1. Self-consuming innate immunity in Arabidopsis

    DEFF Research Database (Denmark)

    Hofius, Daniel; Mundy, John; Petersen, Morten

    2009-01-01

    Programmed cell death (PCD) associated with the pathogen-induced hypersensitive response (HR) is a hallmark of plant innate immunity. HR PCD is triggered upon recognition of pathogen effector molecules by host immune receptors either directly or indirectly via effector modulation of host targets...

  2. Péptidos antimicrobianos en la inmunidad innata de enfermedades infecciosas Antimicrobial peptides in the innate immunity of infectious diseases

    Directory of Open Access Journals (Sweden)

    Bruno Rivas-Santiago

    2006-02-01

    described in plants and animals. Antimicrobial peptides are divided according to the position of disulfide bridges and structural conformation. Defensins are the most studied antimicrobial peptides and are classified into alpha-defensins and beta-defensins. Many of these defensins can be induced by proinflammatory cytokines and pathogen associated molecules. Moreover, they have been shown to partake in the immunopathology of several diseases. The main role of antimicrobial peptides is the direct lysis of microbes. These peptides also have chemotactic properties, which may modulate the immune response, serving as a bridge between the innate and adaptive immune responses. Currently, several studies are exploring the possibility of using these antimicrobial peptides as new therapeutic agents against different infectious diseases.

  3. Cheetahs have a stronger constitutive innate immunity than leopards.

    Science.gov (United States)

    Heinrich, Sonja K; Hofer, Heribert; Courtiol, Alexandre; Melzheimer, Jörg; Dehnhard, Martin; Czirják, Gábor Á; Wachter, Bettina

    2017-03-23

    As a textbook case for the importance of genetics in conservation, absence of genetic variability at the major histocompatibility complex (MHC) is thought to endanger species viability, since it is considered crucial for pathogen resistance. An alternative view of the immune system inspired by life history theory posits that a strong response should evolve in other components of the immune system if there is little variation in the MHC. In contrast to the leopard (Panthera pardus), the cheetah (Acinonyx jubatus) has a relatively low genetic variability at the MHC, yet free-ranging cheetahs are healthy. By comparing the functional competence of the humoral immune system of both species in sympatric populations in Namibia, we demonstrate that cheetahs have a higher constitutive innate but lower induced innate and adaptive immunity than leopards. We conclude (1) immunocompetence of cheetahs is higher than previously thought; (2) studying both innate and adaptive components of immune systems will enrich conservation science.

  4. Pathogen recognition in the innate immune response.

    Science.gov (United States)

    Kumar, Himanshu; Kawai, Taro; Akira, Shizuo

    2009-04-28

    Immunity against microbial pathogens primarily depends on the recognition of pathogen components by innate receptors expressed on immune and non-immune cells. Innate receptors are evolutionarily conserved germ-line-encoded proteins and include TLRs (Toll-like receptors), RLRs [RIG-I (retinoic acid-inducible gene-I)-like receptors] and NLRs (Nod-like receptors). These receptors recognize pathogens or pathogen-derived products in different cellular compartments, such as the plasma membrane, the endosomes or the cytoplasm, and induce the expression of cytokines, chemokines and co-stimulatory molecules to eliminate pathogens and instruct pathogen-specific adaptive immune responses. In the present review, we will discuss the recent progress in the study of pathogen recognition by TLRs, RLRs and NLRs and their signalling pathways.

  5. MECHANISMS OF ANTIINFECTIOUS FUNCTIONS OF INNATE IMMUNITY: ROLE OF TOLL-LIKE RECEPTORS

    Directory of Open Access Journals (Sweden)

    S. I. Suskov

    2012-01-01

    Full Text Available This review describes the main role of toll-like receptors of innate immunity for pathogen recognition; signaling; production of inflammatory response. Also Interrelation of innate and adaptive Immunity in conditions of pathology and organ transplantation were considered. 

  6. Alterations in conflict monitoring are related to functional connectivity in Parkinson's disease.

    Science.gov (United States)

    Rosenberg-Katz, Keren; Maidan, Inbal; Jacob, Yael; Giladi, Nir; Mirelman, Anat; Hausdorff, Jeffrey M

    2016-09-01

    Patients with Parkinson's disease (PD) have difficulties in executive functions including conflict monitoring. The neural mechanisms underlying these difficulties are not yet fully understood. In order to examine the neural mechanisms related to conflict monitoring in PD, we evaluated 35 patients with PD and 20 healthy older adults while they performed a word-color Stroop paradigm in the MRI. Specifically, we focused on changes between the groups in task-related functional connectivity using psycho-physiological interaction (PPI) analysis. The anterior cingulate cortex (ACC), which is a brain node previously associated with the Stroop paradigm, was selected as the seed region for this analysis. Patients with PD, as compared to healthy controls, had reduced task-related functional connectivity between the ACC and parietal regions including the precuneus and inferior parietal lobe. This was seen only in the incongruent Stroop condition. A higher level of connectivity between the ACC and precuneus was correlated with a lower error rate in the conflicting, incongruent Stroop condition in the healthy controls, but not in the patients with PD. Furthermore, the patients also had reduced functional connectivity between the ACC and the superior frontal gyrus which was present in both the incongruent and congruent task condition. The present findings shed light on brain mechanisms that are apparently associated with specific cognitive difficulties in patients with PD. Among patients with PD, impaired conflict monitoring processing within the ACC-based fronto-parietal network may contribute to difficulties under increased executive demands. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. LPS-Stimulated Whole Blood Cytokine Production Is Not Related to Disease Behavior in Patients with Quiescent Crohn's Disease

    NARCIS (Netherlands)

    Broekman, M.M.T.J.; Roelofs, H.M.; Hoentjen, F.; Wiegertjes, R.; Stoel, N.; Joosten, L.A.B.; Jong, D.J. de; Wanten, G.J.A.

    2015-01-01

    INTRODUCTION: Crohn's disease (CD) is a chronic inflammatory disease in which cytokines play a pivotal role in the induction and maintenance of inflammation. Innate cytokine production is genetically determined and varies largely between individuals; this might impact the severity of inflammation.

  8. Characteristic of innate lymphoid cells (ILC

    Directory of Open Access Journals (Sweden)

    Mateusz Adamiak

    2014-12-01

    Full Text Available Innate lymphoid cells (ILC is a newly described family of immune cells that are part of the natural immunity which is important not only during infections caused by microorganisms, but also in the formation of lymphoid tissue, tissue remodeling after damage due to injury and homeostasis tissue stromal cells. Family ILC cells form NK cells (natural killer and lymphoid tissue inducer T cells (LTi, which, although they have different functions, are evolutionarily related. NK cells are producing mainly IFN-γ, whereas LTi cells as NKR+LTi like, IL-17 and/or IL-22, which suggests that the last two cells, can also represent the innate versions of helper T cell - TH17 and TH22. Third population of ILC is formed by cells with characteristics such as NK cells and LTi (ILC22 - which are named NK22 cells, natural cytotoxicity receptor 22 (NCR22 cells or NK receptor-positive (LTi NKR+ LTi cells. Fourth population of ILC cells are ILC17 - producing IL-17, while the fifth is formed by natural helper type 2 T cells (nTH2, nuocyte, innate type 2 helper cells (IH2 and multi-potent progenitor type 2 cells (MPPtype2. Cells of the last population synthesize IL-5 and IL-13. It is assumed that an extraordinary functional diversity of ILC family, resembles T cells, probably because they are under the control of the corresponding transcription factors - as direct regulation factors, such as the family of lymphocytes T.

  9. Arthropod Innate Immune Systems and Vector-Borne Diseases

    OpenAIRE

    Baxter, Richard H. G.; Contet, Alicia; Krueger, Kathryn

    2017-01-01

    Arthropods, especially ticks and mosquitoes, are the vectors for a number of parasitic and viral human diseases, including malaria, sleeping sickness, Dengue, and Zika, yet arthropods show tremendous individual variation in their capacity to transmit disease. A key factor in this capacity is the group of genetically encoded immune factors that counteract infection by the pathogen. Arthropod-specific pattern recognition receptors and protease cascades detect and respond to infection. Proteins ...

  10. Interplay between Candida albicans and the Mammalian Innate Host Defense

    Science.gov (United States)

    Cheng, Shih-Chin; Joosten, Leo A. B.; Kullberg, Bart-Jan

    2012-01-01

    Candida albicans is both the most common fungal commensal microorganism in healthy individuals and the major fungal pathogen causing high mortality in at-risk populations, especially immunocompromised patients. In this review, we summarize the interplay between the host innate system and C. albicans, ranging from how the host recognizes, responds, and clears C. albicans infection to how C. albicans evades, dampens, and escapes from host innate immunity. PMID:22252867

  11. Significance of connective tissue diseases features in pulmonary fibrosis

    Directory of Open Access Journals (Sweden)

    Vincent Cottin

    2013-09-01

    Full Text Available Interstitial lung disease (ILD can occur in any of the connective tissue diseases (CTD with varying frequency and severity, and an overall long-term prognosis that is less severe than that of idiopathic pulmonary fibrosis (IPF. Because ILD may be the presenting manifestation of CTD and/or the dominant manifestation of CTD, clinical extra-thoracic manifestations should be systematically considered in the diagnostic approach of ILD. When present, autoantibodies strongly contribute to the recognition and classification of the CTD. Patients with clinical extrathoracic manifestations of CTD and/or autoantibodies (especially with a high titer and/or the antibody is considered “highly specific” of an autoimmune condition, but who do not fit with established international CTD criteria may be called undifferentiated CTD or “lung-dominant CTD”. Although it remains to be determined which combination of symptoms and serologic tests best identify the subset of patients with clinically relevant CTD features, available evidence suggests that such patients may have distinct clinical and imaging presentation and may portend a distinct clinical course. However, autoantibodies alone when present in IPF patients do not seem to impact prognosis or management. Referral to a rheumatologist and multidisciplinary discussion may contribute to management of patients with undifferentiated CTD.

  12. John Calvin and John Locke on the Sensus Divinitatis and Innatism

    Directory of Open Access Journals (Sweden)

    J. Caleb Clanton

    2017-02-01

    Full Text Available Inheritors of the Calvinist Reformed tradition have long disagreed about whether knowledge of God’s nature and existence can be or need be acquired inferentially by means of the standard arguments of natural theology. Nonetheless, they have traditionally coalesced around the thought that some sense or awareness of God is naturally implanted or innate in human beings. A root of this orientation can be found in John Calvin’s discussion of the sensus divinitatis in the first book of The Institutes of the Christian Religion. This paper outlines a pedagogical strategy for organizing and evaluating Calvin’s treatment of the sensus divinitatis, chiefly by putting it in tension with John Locke’s polemic against innatism in Book I of An Essay concerning Human Understanding. I begin by reconstructing Calvin’s depiction of the sensus divinitatis, as well as his case for thinking that it is innate. I then explain how Locke’s critique of innatism offers a fairly direct response to Calvin and, hence, a useful framework for exploring the limits of Calvin’s treatment of the sensus divinitatis.

  13. New Players in Immunity to Tuberculosis: The Host Microbiome, Lung Epithelium, and Innate Immune Cells

    Science.gov (United States)

    Gupta, Nancy; Kumar, Rakesh; Agrawal, Babita

    2018-01-01

    Tuberculosis (TB) is a highly contagious infection and devastating chronic disease, causing 10.4 million new infections and 1.8 million deaths every year globally. Efforts to control and eradicate TB are hampered by the rapid emergence of drug resistance and limited efficacy of the only available vaccine, BCG. Immunological events in the airways and lungs are of major importance in determining whether exposure to Mycobacterium tuberculosis (Mtb) results in successful infection or protective immunity. Several studies have demonstrated that the host microbiota is in constant contact with the immune system, and thus continually directs the nature of immune responses occurring during new infections. However, little is known about its role in the eventual outcome of the mycobacterial infection. In this review, we highlight the changes in microbial composition in the respiratory tract and gut that have been linked to the alteration of immune responses, and to the risk, prevention, and treatment of TB. In addition, we summarize our current understanding of alveolar epithelial cells and the innate immune system, and their interaction with Mtb during early infection. Extensive studies are warranted to fully understand the all-inclusive role of the lung microbiota, its interaction with epithelium and innate immune responses and resulting adaptive immune responses, and in the pathogenesis and/or protection from Mtb infection. Novel interventions aimed at influencing the microbiota, the alveolar immune system and innate immunity will shape future strategies of prevention and treatment for TB. PMID:29692778

  14. Trauma: the role of the innate immune system

    Directory of Open Access Journals (Sweden)

    Rijkers GT

    2006-05-01

    Full Text Available Abstract Immune dysfunction can provoke (multiple organ failure in severely injured patients. This dysfunction manifests in two forms, which follow a biphasic pattern. During the first phase, in addition to the injury by trauma, organ damage is caused by the immune system during a systemic inflammatory response. During the second phase the patient is more susceptible for sepsis due to host defence failure (immune paralysis. The pathophysiological model outlined in this review encompasses etiological factors and the contribution of the innate immune system in the end organ damage. The etiological factors can be divided into intrinsic (genetic predisposition and physiological status and extrinsic components (type of injury or "traumaload" and surgery or "intervention load". Of all the factors, the intervention load is the only one which, can be altered by the attending emergency physician. Adjustment of the therapeutic approach and choice of the most appropriate treatment strategy can minimize the damage caused by the immune response and prevent the development of immunological paralysis. This review provides a pathophysiological basis for the damage control concept, in which a staged approach of surgery and post-traumatic immunomonitoring have become important aspects of the treatment protocol. The innate immune system is the main objective of immunomonitoring as it has the most prominent role in organ failure after trauma. Polymorphonuclear phagocytes and monocytes are the main effector-cells of the innate immune system in the processes that lead to organ failure. These cells are controlled by cytokines, chemokines, complement factors and specific tissue signals. The contribution of tissue barrier integrity and its interaction with the innate immune system is further evaluated.

  15. Evolutionary perspectives on innate immunity from the study of Caenorhabditis elegans.

    Science.gov (United States)

    Kim, Dennis H; Ausubel, Frederick M

    2005-02-01

    Genetic and functional genomic approaches have begun to define the molecular determinants of pathogen resistance in Caenorhabditis elegans. Conserved signal transduction components are required for pathogen resistance, including a Toll/IL-1 receptor domain adaptor protein that functions upstream of a conserved p38 MAP kinase pathway. We suggest that this pathway is an ancestral innate immune signaling pathway present in the common ancestor of nematodes, arthropods and vertebrates, which is likely to predate the involvement of canonical Toll signaling pathways in innate immunity. We anticipate that the study of pathogen resistance in C. elegans will continue to provide evolutionary and mechanistic insights into the signal transduction and physiology of innate immunity.

  16. Elevated DMBT1 levels in neonatal gastrointestinal diseases

    DEFF Research Database (Denmark)

    Müller, Hanna; Renner, Marcus; Helmke, Burkhard M

    2016-01-01

    Deleted in malignant brain tumor 1 (DMBT1) is involved in innate immunity and epithelial differentiation. Previous studies in adults indicated a strong intestinal expression of DMBT1 and an important role in inflammatory bowel diseases. Here, we analyzed the DMBT1 expression in the fetal gastroin......, and herniation. DMBT1 may play a role in epithelial differentiation and local innate immunity during neonatal inflammatory bowel processes....

  17. Integration of temporal and spatial properties of dynamic connectivity networks for automatic diagnosis of brain disease.

    Science.gov (United States)

    Jie, Biao; Liu, Mingxia; Shen, Dinggang

    2018-07-01

    Functional connectivity networks (FCNs) using resting-state functional magnetic resonance imaging (rs-fMRI) have been applied to the analysis and diagnosis of brain disease, such as Alzheimer's disease (AD) and its prodrome, i.e., mild cognitive impairment (MCI). Different from conventional studies focusing on static descriptions on functional connectivity (FC) between brain regions in rs-fMRI, recent studies have resorted to dynamic connectivity networks (DCNs) to characterize the dynamic changes of FC, since dynamic changes of FC may indicate changes in macroscopic neural activity patterns in cognitive and behavioral aspects. However, most of the existing studies only investigate the temporal properties of DCNs (e.g., temporal variability of FC between specific brain regions), ignoring the important spatial properties of the network (e.g., spatial variability of FC associated with a specific brain region). Also, emerging evidence on FCNs has suggested that, besides temporal variability, there is significant spatial variability of activity foci over time. Hence, integrating both temporal and spatial properties of DCNs can intuitively promote the performance of connectivity-network-based learning methods. In this paper, we first define a new measure to characterize the spatial variability of DCNs, and then propose a novel learning framework to integrate both temporal and spatial variabilities of DCNs for automatic brain disease diagnosis. Specifically, we first construct DCNs from the rs-fMRI time series at successive non-overlapping time windows. Then, we characterize the spatial variability of a specific brain region by computing the correlation of functional sequences (i.e., the changing profile of FC between a pair of brain regions within all time windows) associated with this region. Furthermore, we extract both temporal variabilities and spatial variabilities from DCNs as features, and integrate them for classification by using manifold regularized multi

  18. Serum proteomics reveals systemic dysregulation of innate immunity in type 1 diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qibin; Fillmore, Thomas L.; Schepmoes, Athena A.; Clauss, Therese RW; Gritsenko, Marina A.; Mueller, Patricia W.; Rewers, Marian; Atkinson, Mark A.; Smith, Richard D.; Metz, Thomas O.

    2013-01-14

    Using global liquid chromatography-mass spectrometry (LC-MS)-based proteomics analyses, we identified 24 serum proteins significantly variant between those with type 1 diabetes and healthy controls. Functionally, these proteins represent innate immune responses, the activation cascade of complement, inflammatory responses and blood coagulation. Targeted verification analyses were performed on 52 surrogate peptides representing these proteins with serum samples from an antibody standardization program cohort of 100 healthy control and 50 type 1 diabetic subjects, and 16 peptides were verified having very good discriminating power, with areas under the receiver operator characteristic curve ≥ 0.8. Further validation with blinded serum samples from an independent cohort (10 healthy control and 10 type 1 diabetic) demonstrated that peptides from platelet basic protein and C1 inhibitor achieved both 100% sensitivity and 100% specificity for classification of samples. The disease specificity of these proteins was assessed using serum from 50 age matched type 2 diabetic individuals, and a subset of proteins, particularly C1 inhibitor were exceptionally good discriminators between these two forms of diabetes. The panel of biomarkers distinguishing those with type 1 diabetes from healthy control and type 2 diabetes suggests dysregulated innate immune responses may be associated with the development of this disorder.

  19. Activation of innate immune-response genes in little brown bats (Myotis lucifugus) infected with the fungus Pseudogymnoascus destructans.

    Science.gov (United States)

    Rapin, Noreen; Johns, Kirk; Martin, Lauren; Warnecke, Lisa; Turner, James M; Bollinger, Trent K; Willis, Craig K R; Voyles, Jamie; Misra, Vikram

    2014-01-01

    Recently bats have been associated with the emergence of diseases, both as reservoirs for several new viral diseases in humans and other animals and, in the northern Americas, as hosts for a devastating fungal disease that threatens to drive several bat species to regional extinction. However, despite these catastrophic events little Information is available on bat defences or how they interact with their pathogens. Even less is known about the response of bats to infection during torpor or long-term hibernation. Using tissue samples collected at the termination of an experiment to explore the pathogenesis of White Nose Syndrome in Little Brown Bats, we determined if hibernating bats infected with the fungus Pseudogymnoascus destructans could respond to infection by activating genes responsible for innate immune and stress responses. Lesions due to fungal infection and, in some cases, secondary bacterial infections, were restricted to the skin. However, we were unable to obtain sufficient amounts of RNA from these sites. We therefore examined lungs for response at an epithelial surface not linked to the primary site of infection. We found that bats responded to infection with a significant increase in lungs of transcripts for Cathelicidin (an anti-microbial peptide) as well as the immune modulators tumor necrosis factor alpha and interleukins 10 and 23. In conclusion, hibernating bats can respond to experimental P. destructans infection by activating expression of innate immune response genes.

  20. Progressively Disrupted Intrinsic Functional Connectivity of Basolateral Amygdala in Very Early Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Marion Ortner

    2016-09-01

    Full Text Available Abstract:Very early Alzheimer’s disease (AD - i.e., AD at stages of mild cognitive impairment (MCI and mild dementia - is characterized by progressive structural and neuropathologic changes such as atrophy or tangle deposition in medial temporal lobes, including hippocampus and entorhinal cortex but also adjacent amygdala. While progressively disrupted intrinsic connectivity of hippocampus with other brain areas has been demonstrated by many studies, amygdala connectivity was rarely investigated in AD, notwithstanding its known relevance for emotion processing and mood disturbances, which are both important in early AD. Intrinsic functional connectivity (iFC patterns of hippocampus and amygdala overlap in healthy persons. Thus, we hypothesized that increased alteration of iFC patterns along AD is not limited to the hippocampus but also concerns the amygdala, independent from atrophy. To address this hypothesis, we applied structural and functional resting-state MRI in healthy controls (CON, n=33 and patients with AD in the stages of MCI (AD-MCI, n=38 and mild dementia (AD-D, n=36. Outcome measures were voxel-based morphometry (VBM values and region of interest-based intrinsic functional connectivity maps (iFC of basolateral amygdala, which has extended cortical connectivity. Amygdala VBM values were progressively reduced in patients (CON > AD-MCI and AD-D. Amygdala iFC was progressively reduced along impairment severity (CON > AD-MCI > AD-D, particularly for hippocampus, temporal lobes, and fronto-parietal areas. Notably, decreased iFC was independent of amygdala atrophy. Results demonstrate progressively impaired amygdala intrinsic connectivity in temporal and fronto-parietal lobes independent from increasing amygdala atrophy in very early AD. Data suggest that early AD disrupts intrinsic connectivity of medial temporal lobe key regions including that of amygdala.

  1. The role of extracellular vesicles when innate meets adaptive.

    Science.gov (United States)

    Groot Kormelink, Tom; Mol, Sanne; de Jong, Esther C; Wauben, Marca H M

    2018-04-03

    Innate immune cells are recognized for their rapid and critical contribution to the body's first line of defense against invading pathogens and harmful agents. These actions can be further amplified by specific adaptive immune responses adapted to the activating stimulus. Recently, the awareness has grown that virtually all innate immune cells, i.e., mast cells, neutrophils, macrophages, eosinophils, basophils, and NK cells, are able to communicate with dendritic cells (DCs) and/or T and B cells, and thereby significantly contribute to the orchestration of adaptive immune responses. The means of communication that are thus far primarily associated with this function are cell-cell contacts and the release of a broad range of soluble mediators. Moreover, the possible contribution of innate immune cell-derived extracellular vesicles (EVs) to the modulation of adaptive immunity will be outlined in this review. EVs are submicron particles composed of a lipid bilayer, proteins, and nucleic acids released by cells in a regulated fashion. EVs are involved in intercellular communication between multiple cell types, including those of the immune system. A good understanding of the mechanisms by which innate immune cell-derived EVs influence adaptive immune responses, or vice versa, may reveal novel insights in the regulation of the immune system and can open up new possibilities for EVs (or their components) in controlling immune responses, either as a therapy, target, or as an adjuvant in future immune modulating treatments.

  2. Connecting Network Properties of Rapidly Disseminating Epizoonotics

    Science.gov (United States)

    Rivas, Ariel L.; Fasina, Folorunso O.; Hoogesteyn, Almira L.; Konah, Steven N.; Febles, José L.; Perkins, Douglas J.; Hyman, James M.; Fair, Jeanne M.; Hittner, James B.; Smith, Steven D.

    2012-01-01

    Background To effectively control the geographical dissemination of infectious diseases, their properties need to be determined. To test that rapid microbial dispersal requires not only susceptible hosts but also a pre-existing, connecting network, we explored constructs meant to reveal the network properties associated with disease spread, which included the road structure. Methods Using geo-temporal data collected from epizoonotics in which all hosts were susceptible (mammals infected by Foot-and-mouth disease virus, Uruguay, 2001; birds infected by Avian Influenza virus H5N1, Nigeria, 2006), two models were compared: 1) ‘connectivity’, a model that integrated bio-physical concepts (the agent’s transmission cycle, road topology) into indicators designed to measure networks (‘nodes’ or infected sites with short- and long-range links), and 2) ‘contacts’, which focused on infected individuals but did not assess connectivity. Results The connectivity model showed five network properties: 1) spatial aggregation of cases (disease clusters), 2) links among similar ‘nodes’ (assortativity), 3) simultaneous activation of similar nodes (synchronicity), 4) disease flows moving from highly to poorly connected nodes (directionality), and 5) a few nodes accounting for most cases (a “20∶80″ pattern). In both epizoonotics, 1) not all primary cases were connected but at least one primary case was connected, 2) highly connected, small areas (nodes) accounted for most cases, 3) several classes of nodes were distinguished, and 4) the contact model, which assumed all primary cases were identical, captured half the number of cases identified by the connectivity model. When assessed together, the synchronicity and directionality properties explained when and where an infectious disease spreads. Conclusions Geo-temporal constructs of Network Theory’s nodes and links were retrospectively validated in rapidly disseminating infectious diseases. They distinguished

  3. Fibrosis in connective tissue disease: the role of the myofibroblast and fibroblast-epithelial cell interactions

    Science.gov (United States)

    Krieg, Thomas; Abraham, David; Lafyatis, Robert

    2007-01-01

    Fibrosis, characterized by excessive extracellular matrix accumulation, is a common feature of many connective tissue diseases, notably scleroderma (systemic sclerosis). Experimental studies suggest that a complex network of intercellular interactions involving endothelial cells, epithelial cells, fibroblasts and immune cells, using an array of molecular mediators, drives the pathogenic events that lead to fibrosis. Transforming growth factor-β and endothelin-1, which are part of a cytokine hierarchy with connective tissue growth factor, are key mediators of fibrogenesis and are primarily responsible for the differentiation of fibroblasts toward a myofibroblast phenotype. The tight skin mouse (Tsk-1) model of cutaneous fibrosis suggests that numerous other genes may also be important. PMID:17767742

  4. The S-Connect study: results from a randomized, controlled trial of Souvenaid in mild-to-moderate Alzheimer's disease

    OpenAIRE

    Shah, R.C.; Kamphuis, P.J.; Leurgans, S.; Swinkels, S.H.; Sadowsky, C.H.; Bongers, A.; Rappaport, S.A.; Quinn, J.F.; Wieggers, R.L.; Scheltens, P.; Bennett, D.A.

    2013-01-01

    Introduction. Souvenaid® containing Fortasyn® Connect is a medical food designed to support synapse synthesis in persons with Alzheimer's disease (AD). Fortasyn Connect includes precursors (uridine monophosphate; choline; phospholipids; eicosapentaenoic acid; docosahexaenoic acid) and cofactors (vitamins E, C, B12, and B6; folic acid; selenium) for the formation of neuronal membranes. Whether Souvenaid slows cognitive decline in treated persons with mild-to-moderate AD has not been addressed....

  5. Alcohol resistance in Drosophila is modulated by the Toll innate immune pathway.

    Science.gov (United States)

    Troutwine, B R; Ghezzi, A; Pietrzykowski, A Z; Atkinson, N S

    2016-04-01

    A growing body of evidence has shown that alcohol alters the activity of the innate immune system and that changes in innate immune system activity can influence alcohol-related behaviors. Here, we show that the Toll innate immune signaling pathway modulates the level of alcohol resistance in Drosophila. In humans, a low level of response to alcohol is correlated with increased risk of developing an alcohol use disorder. The Toll signaling pathway was originally discovered in, and has been extensively studied in Drosophila. The Toll pathway is a major regulator of innate immunity in Drosophila, and mammalian Toll-like receptor signaling has been implicated in alcohol responses. Here, we use Drosophila-specific genetic tools to test eight genes in the Toll signaling pathway for effects on the level of response to ethanol. We show that increasing the activity of the pathway increases ethanol resistance whereas decreasing the pathway activity reduces ethanol resistance. Furthermore, we show that gene products known to be outputs of innate immune signaling are rapidly induced following ethanol exposure. The interaction between the Toll signaling pathway and ethanol is rooted in the natural history of Drosophila melanogaster. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  6. The participation of cortical amygdala in innate, odor-driven behavior

    OpenAIRE

    Root, Cory M.; Denny, Christine A.; Hen, Ren?; Axel, Richard

    2014-01-01

    Innate behaviors are observed in na?ve animals without prior learning or experience, suggesting that the neural circuits that mediate these behaviors are genetically determined and stereotyped. The neural circuits that convey olfactory information from the sense organ to the cortical and subcortical olfactory centers have been anatomically defined 1-3 but the specific pathways responsible for innate responses to volatile odors have not been identified. We have devised genetic strategies that ...

  7. Isolation of Human Innate Lymphoid Cells.

    Science.gov (United States)

    Krabbendam, Lisette; Nagasawa, Maho; Spits, Hergen; Bal, Suzanne M

    2018-06-29

    Innate lymphoid cells (ILCs) are innate immune cells of lymphoid origin that have important effector and regulatory functions in the first line of defense against pathogens, but also regulate tissue homeostasis, remodeling, and repair. Their function mirrors T helper cells and cytotoxic CD8 + T lymphocytes, but they lack expression of rearranged antigen-specific receptors. Distinct ILC subsets are classified in group 1 ILCs (ILC1s), group 2 ILCs (ILC2s), and group 3 ILCs (ILC3s and lymphoid tissue-inducer cells), based on the expression of transcription factors and the cytokines they produce. As the frequency of ILCs is low, their isolation requires extensive depletion of other cell types. The lack of unique cell surface antigens further complicates the identification of these cells. Here, methods for ILC isolation and characterization from human peripheral blood and different tissues are described. © 2018 by John Wiley & Sons, Inc. © 2018 John Wiley & Sons, Inc.

  8. Altered resting state cortico-striatal connectivity in mild to moderate stage Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Youngbin Kwak

    2010-09-01

    Full Text Available Parkinson’s disease (PD is a progressive neurodegenerative disorder that is characterized by dopamine depletion in the striatum. One consistent pathophysiological hallmark of PD is an increase in spontaneous oscillatory activity in the basal ganglia thalamocortical networks. We evaluated these effects using resting state functional connectivity MRI (fcMRI in mild to moderate stage Parkinson’s patients on and off L-DOPA and age-matched controls using six different striatal seed regions. We observed an overall increase in the strength of cortico-striatal functional connectivity in PD patients off L-DOPA compared to controls. This enhanced connectivity was down-regulated by L-DOPA as shown by an overall decrease in connectivity strength, particularly within motor cortical regions. We also performed a frequency content analysis of the BOLD signal time course extracted from the six striatal seed regions. PD off L-DOPA exhibited increased power in the frequency band 0.02 – 0.05 Hz compared to controls and to PD on L-DOPA. The L-DOPA associated decrease in the power of this frequency range modulated the L-DOPA associated decrease in connectivity strength between striatal seeds and the thalamus. In addition, the L-DOPA associated decrease in power in this frequency band also correlated with the L-DOPA associated improvement in cognitive performance. Our results demonstrate that PD and L-DOPA modulate striatal resting state BOLD signal oscillations and corticostriatal network coherence.

  9. Parvovirus B19 infection in an adult presenting with connective tissue disease-like symptoms: a report of the clinical and histological findings.

    Science.gov (United States)

    Liles, J E; Shalin, S C; White, B A; Trigg, L B; Kaley, J R

    2017-06-15

    Parvovirus B19 infections in adults are usually associated with nonspecific and mild symptoms. However, cases presenting with a lupus-like syndrome have been described, leading to the hypothesis that parvovirus infection can induce connective tissue disease. Various histopathologic features of cutaneous manifestations of parvovirus have been reported, including features which overlap with those of connective tissue disease. Herein, we discuss an unusual case of Parvovirus  B19 infection in a middle-aged woman. The biopsy results showed granulomatous vasculitis and were consistent with the previously described superantigen id reaction. This case demonstrates that infectious causes should be considered in the differential diagnosis for granulomatous vasculitis and clinicopathologic correlation is required for accurate diagnosis. We also provide a review of the literature highlighting the possible role of parvovirus in induction of a connective tissue disease-like presentation.

  10. DMPD: Innate immune responses: crosstalk of signaling and regulation of genetranscription. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16753195 Innate immune responses: crosstalk of signaling and regulation of genetran...l) (.csml) Show Innate immune responses: crosstalk of signaling and regulation of genetranscription. PubmedI...D 16753195 Title Innate immune responses: crosstalk of signaling and regulation o

  11. Thrombotic Thrombocytopenic Purpura Associated with Mixed Connective Tissue Disease: A Case Report

    Directory of Open Access Journals (Sweden)

    João Tadeu Damian Souto Filho

    2011-01-01

    Full Text Available Thrombotic thrombocytopenic purpura (TTP is a multisystemic disorder characterized by microangiopathic hemolytic anemia and thrombocytopenia, which may be accompanied by fever, renal, or neurologic abnormalities. Cases are divided into acute idiopathic TTP and secondary TTP. Autoimmune diseases, especially systemic lupus erythematosus, in association with TTP have been described so far in many patients. In contrast, TTP occurring in a patient with mixed connected tissue disease (MCTD is extremely rare and has only been described in nine patients. We describe the case of a 42-year-old female with MCTD who developed thrombocytopenia, microangiopathic hemolytic anemia, fever, and neurological symptoms. The patient had a good clinical evolution with infusion of high volume of fresh frozen plasma, steroid therapy, and support in an intensive care unit. Although the occurrence of TTP is rare in MCTD patients, it is important to recognize TTP as a cause of thrombocytopenia and hemolytic anemia in any patient with autoimmune diseases. Prompt institution of treatment remains the cornerstone of treatment of TTP even if plasma exchange is not available like what frequently happens in developing countries.

  12. Age-dependent changes in innate immune phenotype and function in rhesus macaques (Macaca mulatta

    Directory of Open Access Journals (Sweden)

    Mark Asquith

    2012-06-01

    Full Text Available Aged individuals are more susceptible to infections due to a general decline in immune function broadly referred to as immune senescence. While age-related changes in the adaptive immune system are well documented, aging of the innate immune system remains less well understood, particularly in nonhuman primates. A more robust understanding of age-related changes in innate immune function would provide mechanistic insight into the increased susceptibility of the elderly to infection. Rhesus macaques have proved a critical translational model for aging research, and present a unique opportunity to dissect age-dependent modulation of the innate immune system. We examined age-related changes in: (i innate immune cell frequencies; (ii expression of pattern recognition receptors (PRRs and innate signaling molecules; (iii cytokine responses of monocytes and dendritic cells (DC following stimulation with PRR agonists; and (iv plasma cytokine levels in this model. We found marked changes in both the phenotype and function of innate immune cells. This included an age-associated increased frequency of myeloid DC (mDC. Moreover, we found toll-like receptor (TLR agonists lipopolysaccharide (TLR4, fibroblast stimulating ligand-1 (TLR2/6, and ODN2006 (TLR7/9 induced reduced cytokine responses in aged mDC. Interestingly, with the exception of the monocyte-derived TNFα response to LPS, which increased with age, TNFα, IL-6, and IFNα responses declined with age. We also found that TLR4, TLR5, and innate negative regulator, sterile alpha and TIR motif containing protein (SARM, were all expressed at lower levels in young animals. By contrast, absent in melanoma 2 and retinoic acid-inducible gene I expression was lowest in aged animals. Together, these observations indicate that several parameters of innate immunity are significantly modulated by age and contribute to differential immune function in aged macaques.

  13. Solute Carrier NTCP Regulates Innate Antiviral Immune Responses Targeting Hepatitis C Virus Infection of Hepatocytes.

    Science.gov (United States)

    Verrier, Eloi R; Colpitts, Che C; Bach, Charlotte; Heydmann, Laura; Zona, Laetitia; Xiao, Fei; Thumann, Christine; Crouchet, Emilie; Gaudin, Raphaël; Sureau, Camille; Cosset, François-Loïc; McKeating, Jane A; Pessaux, Patrick; Hoshida, Yujin; Schuster, Catherine; Zeisel, Mirjam B; Baumert, Thomas F

    2016-10-25

    Chronic hepatitis B, C, and D virus (HBV, HCV, and HDV) infections are the leading causes of liver disease and cancer worldwide. Recently, the solute carrier and sodium taurocholate co-transporter NTCP has been identified as a receptor for HBV and HDV. Here, we uncover NTCP as a host factor regulating HCV infection. Using gain- and loss-of-function studies, we show that NTCP mediates HCV infection of hepatocytes and is relevant for cell-to-cell transmission. NTCP regulates HCV infection by augmenting the bile-acid-mediated repression of interferon-stimulated genes (ISGs), including IFITM3. In conclusion, our results uncover NTCP as a mediator of innate antiviral immune responses in the liver, and they establish a role for NTCP in the infection process of multiple viruses via distinct mechanisms. Collectively, our findings suggest a role for solute carriers in the regulation of innate antiviral responses, and they have potential implications for virus-host interactions and antiviral therapies. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. MAP kinase cascades in Arabidopsis innate immunity

    DEFF Research Database (Denmark)

    Rasmussen, Magnus Wohlfahrt; Roux, Milena Edna; Petersen, Morten

    2012-01-01

    Plant mitogen-activated protein kinase (MAPK) cascades generally transduce extracellular stimuli into cellular responses. These stimuli include the perception of pathogen-associated molecular patterns (PAMPs) by host transmembrane pattern recognition receptors which trigger MAPK-dependent innate ...

  15. Autophagy, inflammation and innate immunity in inflammatory myopathies.

    Directory of Open Access Journals (Sweden)

    Cristina Cappelletti

    Full Text Available Autophagy has a large range of physiological functions and its dysregulation contributes to several human disorders, including autoinflammatory/autoimmune diseases such as inflammatory myopathies (IIMs. In order to better understand the pathogenetic mechanisms of these muscular disorders, we sought to define the role of autophagic processes and their relation with the innate immune system in the three main subtypes of IIM, specifically sporadic inclusion body myositis (sIBM, polymyositis (PM, dermatomyositis (DM and juvenile dermatomyositis (JDM. We found that although the mRNA transcript levels of the autophagy-related genes BECN1, ATG5 and FBXO32 were similar in IIM and controls, autophagy activation in all IIM subgroups was suggested by immunoblotting results and confirmed by immunofluorescence. TLR4 and TLR3, two potent inducers of autophagy, were highly increased in IIM, with TLR4 transcripts significantly more expressed in PM and DM than in JDM, sIBM and controls, and TLR3 transcripts highly up-regulated in all IIM subgroups compared to controls. Co-localization between autophagic marker, LC3, and TLR4 and TLR3 was observed not only in sIBM but also in PM, DM and JDM muscle tissues. Furthermore, a highly association with the autophagic processes was observed in all IIM subgroups also for some TLR4 ligands, endogenous and bacterial HSP60, other than the high-mobility group box 1 (HMGB1. These findings indicate that autophagic processes are active not only in sIBM but also in PM, DM and JDM, probably in response to an exogenous or endogenous 'danger signal'. However, autophagic activation and regulation, and also interaction with the innate immune system, differ in each type of IIM. Better understanding of these differences may lead to new therapies for the different IIM types.

  16. Effects of protein hydrolysates supplementation in low fish meal diets on growth performance, innate immunity and disease resistance of red sea bream Pagrus major.

    Science.gov (United States)

    Khosravi, Sanaz; Rahimnejad, Samad; Herault, Mikaël; Fournier, Vincent; Lee, Cho-Rong; Dio Bui, Hien Thi; Jeong, Jun-Bum; Lee, Kyeong-Jun

    2015-08-01

    This study was conducted to evaluate the supplemental effects of three different types of protein hydrolysates in a low fish meal (FM) diet on growth performance, feed utilization, intestinal morphology, innate immunity and disease resistance of juvenile red sea bream. A FM-based diet was used as a high fish meal diet (HFM) and a low fish meal (LFM) diet was prepared by replacing 50% of FM by soy protein concentrate. Three other diets were prepared by supplementing shrimp, tilapia or krill hydrolysate to the LFM diet (designated as SH, TH and KH, respectively). Triplicate groups of fish (4.9 ± 0.1 g) were fed one of the test diets to apparent satiation twice daily for 13 weeks and then challenged by Edwardsiella tarda. At the end of the feeding trial, significantly (P red sea bream. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. IL-17 producing innate lymphoid cells 3 (ILC3) but not Th17 cells might be the potential danger factor for preeclampsia and other pregnancy associated diseases.

    Science.gov (United States)

    Barnie, Prince A; Lin, Xin; Liu, Yueqin; Xu, Huaxi; Su, Zhaoliang

    2015-01-01

    In pregnancy, the immunologic system plays an important role that ensures normal pregnancy development and can as well promote the development of complications. Pregnancy success appears to rely on a discrete balance between the Th cytokines, which are involved in fetal growth and development. Preeclampsia and gestational diabetes are known complications associated with pregnancy. However, the source of the increased IL-17 cytokine in preeclampsia and other pregnancy associated diseases still remains unclear amidst numerous inconsistencies. The recent identification of innate lymphoid cells (ILC) has raised more doubts about the sources of most of the Th associated cytokines. We investigated the source of peripheral IL-17 levels in preeclamptic, gestational diabetics and chronic diabetics compared to healthy pregnancy subjects. To evaluate the source of the increased IL-17 cytokine among preeclampsia, chronic diabetic and gestational diabetic patients we investigated the proportion of Th17 cell populations in peripheral blood mononuclear cells using flow cytometry as well as analyzing levels of IFN-γ, IL-17, IL-1β and HMGB1. This study found that the Th17 cell populations in peripheral blood of preeclamptic, gestational nor chronic diabetes during pregnancy did not correlate with the increased IL-17. We report that the increased IL-17 levels observed in patients with preeclampsia, gestational diabetes and chronic diabetes are associated with innate lymphoid cells 3 (ILC3) and may pose threats to the fetus if disregulated.

  18. Immune-Neuroendocrine Interactions and Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Luis J. Jara

    2006-01-01

    Full Text Available The relationship between immune-neuroendocrine system is firmly established. The messengers of this connection are hormones, neuropeptides, neurotransmitters and cytokines. The immune-neuroendocrine system have the capacity to synthesize and release these molecules, which, in turn, can stimulate or suppress the activity of immune or neuroendocrine cells by binding to receptors. In fact, hormones, neuropeptides and neurotransmitters participate in innate and adaptive immune response.

  19. The long noncoding RNA Tug1 connects metabolic changes with kidney disease in podocytes.

    Science.gov (United States)

    Li, Szu Yuan; Susztak, Katalin

    2016-11-01

    An increasing amount of evidence suggests that metabolic alterations play a key role in chronic kidney disease (CKD) pathogenesis. In this issue of the JCI, Long et al. report that the long noncoding RNA (lncRNA) taurine-upregulated 1 (Tug1) contributes to CKD development. The authors show that Tug1 regulates mitochondrial function in podocytes by epigenetic targeting of expression of the transcription factor PPARγ coactivator 1α (PGC-1α, encoded by Ppargc1a). Transgenic overexpression of Tug1 specifically in podocytes ameliorated diabetes-induced CKD in mice. Together, these results highlight an important connection between lncRNA-mediated metabolic alterations in podocytes and kidney disease development.

  20. Retinoic Acid and Its Role in Modulating Intestinal Innate Immunity

    Directory of Open Access Journals (Sweden)

    Paulo Czarnewski

    2017-01-01

    Full Text Available Vitamin A (VA is amongst the most well characterized food-derived nutrients with diverse immune modulatory roles. Deficiency in dietary VA has not only been associated with immune dysfunctions in the gut, but also with several systemic immune disorders. In particular, VA metabolite all-trans retinoic acid (atRA has been shown to be crucial in inducing gut tropism in lymphocytes and modulating T helper differentiation. In addition to the widely recognized role in adaptive immunity, increasing evidence identifies atRA as an important modulator of innate immune cells, such as tolerogenic dendritic cells (DCs and innate lymphoid cells (ILCs. Here, we focus on the role of retinoic acid in differentiation, trafficking and the functions of innate immune cells in health and inflammation associated disorders. Lastly, we discuss the potential involvement of atRA during the plausible crosstalk between DCs and ILCs.

  1. Innate lymphoid cells and their role in immune response regulation

    Directory of Open Access Journals (Sweden)

    Bibiana Patricia Ruiz-Sánchez

    2017-10-01

    Full Text Available Innate lymphoid cells (ILCs are lymphocytes lacking antigen recognition receptors and become activated in response to cytokines and through microbe-associated molecular pattern (MAMP receptors. ILCs are found mainly in mucosal tissues and participate in the immune response against infections and in chronic inflammatory conditions. ILCs are divided in ILC-1, ILC-2 and ILC-3, and these cells have analogue functions to those of immune adaptive response lymphocytes Th1, Th2 and Th17. ILC-1 express T-bet, produce IFNγ, protect against infections with intracellular microorganisms and are related to inflammatory bowel disease immunopathology. ILC-2 express GATA3, produce IL-4, IL-5, IL-13 and amphiregulin, protect against parasitic infections and related to allergy and obesity immunopathology. ILC-3 express ROR(γt, produce IL-17 and IL-22, protect against fungal infections and contribute to tolerance to intestinal microbiota and intestinal repair. They are related to inflammatory bowel disease and psoriasis immunopathology. In general terms, ILCs maintain homeostasis and coadjuvate in the protection against infections.

  2. HFE gene variants, iron, and lipids: a novel connection in Alzheimer's disease.

    Science.gov (United States)

    Ali-Rahmani, Fatima; Schengrund, Cara-Lynne; Connor, James R

    2014-01-01

    Iron accumulation and associated oxidative stress in the brain have been consistently found in several neurodegenerative diseases. Multiple genetic studies have been undertaken to try to identify a cause of neurodegenerative diseases but direct connections have been rare. In the iron field, variants in the HFE gene that give rise to a protein involved in cellular iron regulation, are associated with iron accumulation in multiple organs including the brain. There is also substantial epidemiological, genetic, and molecular evidence of disruption of cholesterol homeostasis in several neurodegenerative diseases, in particular Alzheimer's disease (AD). Despite the efforts that have been made to identify factors that can trigger the pathological events associated with neurodegenerative diseases they remain mostly unknown. Because molecular phenotypes such as oxidative stress, synaptic failure, neuronal loss, and cognitive decline, characteristics associated with AD, have been shown to result from disruption of a number of pathways, one can easily argue that the phenotype seen may not arise from a linear sequence of events. Therefore, a multi-targeted approach is needed to understand a complex disorder like AD. This can be achieved only when knowledge about interactions between the different pathways and the potential influence of environmental factors on them becomes available. Toward this end, this review discusses what is known about the roles and interactions of iron and cholesterol in neurodegenerative diseases. It highlights the effects of gene variants of HFE (H63D- and C282Y-HFE) on iron and cholesterol metabolism and how they may contribute to understanding the etiology of complex neurodegenerative diseases.

  3. How are cancer and connective tissue diseases related to sarcoidosis?

    Science.gov (United States)

    Chopra, Amit; Judson, Marc A

    2015-09-01

    Several studies have suggested an association between sarcoidosis and cancer, and between sarcoidosis and connective tissue diseases (CTDs). In this review, we discuss the evidence supporting and refuting these associations. In terms of a cancer risk in sarcoidosis patients, the data are somewhat conflicting but generally show a very small increased risk. The data supporting an association between sarcoidosis and CTD are not as robust as for cancer. However, it appears that scleroderma is the CTD most strongly associated with sarcoidosis. There are several important clinical and research-related implications of the association of sarcoidosis and CTDs. First, rigorous efforts should be made to exclude alternative causes for granulomatous inflammation before establishing a diagnosis of sarcoidosis. Second, the association between sarcoidosis and both cancer and CTDs may yield important insights into the immunopathogenesis of all three diseases. Finally, these data provide insight in answering a common question asked by sarcoidosis patients, 'Am I at an increased risk of developing cancer?' We believe that although there is an increased (relative) risk of cancer in sarcoidosis patients compared with the general population, that increased risk is quite small (low absolute risk).

  4. The diagnosis of MR and CT scan for myofascitis of connective tissue disease: comparison with biopsy examination

    International Nuclear Information System (INIS)

    Xu Jianrong; Zhou Yan; Chai Weimin; Yao Qiuying; Li Lei; Li Lan; Li Zhengyang

    2002-01-01

    Objective: To evaluate the utility of MRI, CT and biopsy examinations in detecting myofascitis lesions of connective tissue disease. Methods: The study group consisted of 22 patients proven by clinical features and laboratory examination, including 8 cases of dermatomyositis (DM), 12 cases of polymyositis (PM), and 2 cases of eosinophilic fascitis. All patients received CT scan, SE-T 1 WI, SE-T 2 WI, SPIR, and CT guiding biopsy at the thigh region. Results: Biopsy detected muscular diseases in 17 cases and fascitis in 5 cases. MRI detected muscular diseases in 14 and fascitis in 9. CT detected muscular diseases in 5 and fascitis in 9. Myositis, amyotrophy, and fascitis may be alone or united in one case. Myositis (9 cases) appeared as low signal on T 1 WI and high signal on T 2 WI or SPIR. Amyotrophy (9 cases) presented hyperintensity on both T 1 WI and T 2 WI. SPIR was more sensitive in detecting myositis than CT and T 1 WI, P < 0.05. Myositis was more frequent in cases with DM(6/8) than in cases with PM (3/12), P < 0.05. Also, myositis was more frequently encountered in active phase (7/11) than in quiescent phase (2/11). Conclusion: MRI and CT appear to be valuable in quantitatively and qualitatively estimating myofascitis of connective tissue diseases

  5. Innate Immunity and Breast Milk

    Directory of Open Access Journals (Sweden)

    Nicole Theresa Cacho

    2017-05-01

    Full Text Available Human milk is a dynamic source of nutrients and bioactive factors; unique in providing for the human infant’s optimal growth and development. The growing infant’s immune system has a number of developmental immune deficiencies placing the infant at increased risk of infection. This review focuses on how human milk directly contributes to the infant’s innate immunity. Remarkable new findings clarify the multifunctional nature of human milk bioactive components. New research techniques have expanded our understanding of the potential for human milk’s effect on the infant that will never be possible with milk formulas. Human milk microbiome directly shapes the infant’s intestinal microbiome, while the human milk oligosaccharides drive the growth of these microbes within the gut. New techniques such as genomics, metabolomics, proteomics, and glycomics are being used to describe this symbiotic relationship. An expanded role for antimicrobial proteins/peptides within human milk in innate immune protection is described. The unique milieu of enhanced immune protection with diminished inflammation results from a complex interaction of anti-inflammatory and antioxidative factors provided by human milk to the intestine. New data support the concept of mucosal-associated lymphoid tissue and its contribution to the cellular content of human milk. Human milk stem cells (hMSCs have recently been discovered. Their direct role in the infant for repair and regeneration is being investigated. The existence of these hMSCs could prove to be an easily harvested source of multilineage stem cells for the study of cancer and tissue regeneration. As the infant’s gastrointestinal tract and immune system develop, there is a comparable transition in human milk over time to provide fewer immune factors and more calories and nutrients for growth. Each of these new findings opens the door to future studies of human milk and its effect on the innate immune system

  6. Genome-wide RNAi screen reveals a new role of a WNT/CTNNB1 signaling pathway as negative regulator of virus-induced innate immune responses.

    Science.gov (United States)

    Baril, Martin; Es-Saad, Salwa; Chatel-Chaix, Laurent; Fink, Karin; Pham, Tram; Raymond, Valérie-Ann; Audette, Karine; Guenier, Anne-Sophie; Duchaine, Jean; Servant, Marc; Bilodeau, Marc; Cohen, Eric; Grandvaux, Nathalie; Lamarre, Daniel

    2013-01-01

    To identify new regulators of antiviral innate immunity, we completed the first genome-wide gene silencing screen assessing the transcriptional response at the interferon-β (IFNB1) promoter following Sendai virus (SeV) infection. We now report a novel link between WNT signaling pathway and the modulation of retinoic acid-inducible gene I (RIG-I)-like receptor (RLR)-dependent innate immune responses. Here we show that secretion of WNT2B and WNT9B and stabilization of β-catenin (CTNNB1) upon virus infection negatively regulate expression of representative inducible genes IFNB1, IFIT1 and TNF in a CTNNB1-dependent effector mechanism. The antiviral response is drastically reduced by glycogen synthase kinase 3 (GSK3) inhibitors but restored in CTNNB1 knockdown cells. The findings confirm a novel regulation of antiviral innate immunity by a canonical-like WNT/CTNNB1 signaling pathway. The study identifies novel avenues for broad-spectrum antiviral targets and preventing immune-mediated diseases upon viral infection.

  7. Genome-wide RNAi screen reveals a new role of a WNT/CTNNB1 signaling pathway as negative regulator of virus-induced innate immune responses.

    Directory of Open Access Journals (Sweden)

    Martin Baril

    Full Text Available To identify new regulators of antiviral innate immunity, we completed the first genome-wide gene silencing screen assessing the transcriptional response at the interferon-β (IFNB1 promoter following Sendai virus (SeV infection. We now report a novel link between WNT signaling pathway and the modulation of retinoic acid-inducible gene I (RIG-I-like receptor (RLR-dependent innate immune responses. Here we show that secretion of WNT2B and WNT9B and stabilization of β-catenin (CTNNB1 upon virus infection negatively regulate expression of representative inducible genes IFNB1, IFIT1 and TNF in a CTNNB1-dependent effector mechanism. The antiviral response is drastically reduced by glycogen synthase kinase 3 (GSK3 inhibitors but restored in CTNNB1 knockdown cells. The findings confirm a novel regulation of antiviral innate immunity by a canonical-like WNT/CTNNB1 signaling pathway. The study identifies novel avenues for broad-spectrum antiviral targets and preventing immune-mediated diseases upon viral infection.

  8. The semantic connectivity map: an adapting self-organising knowledge discovery method in data bases. Experience in gastro-oesophageal reflux disease.

    Science.gov (United States)

    Buscema, Massimo; Grossi, Enzo

    2008-01-01

    We describe here a new mapping method able to find out connectivity traces among variables thanks to an artificial adaptive system, the Auto Contractive Map (AutoCM), able to define the strength of the associations of each variable with all the others in a dataset. After the training phase, the weights matrix of the AutoCM represents the map of the main connections between the variables. The example of gastro-oesophageal reflux disease data base is extremely useful to figure out how this new approach can help to re-design the overall structure of factors related to complex and specific diseases description.

  9. Transcriptional control of innate lymphoid cells

    NARCIS (Netherlands)

    Mjösberg, Jenny; Bernink, Jochem; Peters, Charlotte; Spits, Hergen

    2012-01-01

    Cells that belong to the family of innate lymphoid cells (ILCs) not only form a first line of defense against invading microbes, but also play essential roles in tissue remodeling and immune pathology. Ror?t+ ILCs, producing the cytokines IL-22 and IL-17, include lymphoid tissue inducer (LTi) cells

  10. Training for Micrographia Alters Neural Connectivity in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Evelien Nackaerts

    2018-01-01

    Full Text Available Despite recent advances in clarifying the neural networks underlying rehabilitation in Parkinson's disease (PD, the impact of prolonged motor learning interventions on brain connectivity in people with PD is currently unknown. Therefore, the objective of this study was to compare cortical network changes after 6 weeks of visually cued handwriting training (= experimental with a placebo intervention to address micrographia, a common problem in PD. Twenty seven early Parkinson's patients on dopaminergic medication performed a pre-writing task in both the presence and absence of visual cues during behavioral tests and during fMRI. Subsequently, patients were randomized to the experimental (N = 13 or placebo intervention (N = 14 both lasting 6 weeks, after which they underwent the same testing procedure. We used dynamic causal modeling to compare the neural network dynamics in both groups before and after training. Most importantly, intensive writing training propagated connectivity via the left hemispheric visuomotor stream to an increased coupling with the supplementary motor area, not witnessed in the placebo group. Training enhanced communication in the left visuomotor integration system in line with the learned visually steered training. Notably, this pattern was apparent irrespective of the presence of cues, suggesting transfer from cued to uncued handwriting. We conclude that in early PD intensive motor skill learning, which led to clinical improvement, alters cortical network functioning. We showed for the first time in a placebo-controlled design that it remains possible to enhance the drive to the supplementary motor area through motor learning.

  11. Endodontic medicine: connections between apical periodontitis and systemic diseases.

    Science.gov (United States)

    Segura-Egea, J J; Martín-González, J; Castellanos-Cosano, L

    2015-10-01

    The prevalence of apical periodontitis (AP) in Europe has been reported to affect 61% of individuals and 14% of teeth, and increase with age. Likewise, the prevalence of root canal treatment (RCT) in Europe is estimated to be around 30-50% of individuals and 2-9% of teeth with radiographic evidence of chronic persistent AP in 30-65% of root filled teeth (RFT). AP is not only a local phenomenon and for some time the medical and dental scientific community have analysed the possible connection between apical periodontits and systemic health. Endodontic medicine has developed, with increasing numbers of reports describing the association between periapical inflammation and systemic diseases. The results of studies carried out both in animal models and humans are not conclusive, but suggest an association between endodontic variables, that is AP and RCT, and diabetes mellitus (DM), tobacco smoking, coronary heart disease and other systemic diseases. Several studies have reported a higher prevalence of periapical lesions, delayed periapical repair, greater size of osteolityc lesions, greater likelihood of asymptomatic infections and poorer prognosis for RFT in diabetic patients. On the other hand, recent studies have found that a poorer periapical status correlates with higher HbA1c levels and poor glycaemic control in type 2 diabetic patients. However, there is no scientific evidence supporting a causal effect of periapical inflammation on diabetes metabolic control. The possible association between smoking habits and endodontic infection has also been investigated, with controversial results. The aim of this paper was to review the literature on the association between endodontic variables and systemic health (especially DM and smoking habits). © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  12. Group 1 innate lymphoid cells in Toxoplasma gondii infection.

    Science.gov (United States)

    Dunay, I R; Diefenbach, A

    2018-02-01

    Innate lymphoid cells (ILCs) are a group of lymphocytes that carry out important functions in immunity to infections and in organ homeostasis at epithelial barrier surfaces. ILCs are innate immune cells that provide an early source of cytokines to initiate immune responses against pathogens. Cytotoxic ILCs (i.e. conventional (c)NK cells) and several subsets of helper-like ILCs are the major branches of the ILC family. Conventional NK cells and group 1 ILCs share several characteristics such as surface receptors and the ability to produce IFN-γ upon activation, but they differ in their developmental paths and in their dependence on specific transcription factors. Infection of mice with the intracellular parasite Toxoplasma gondii is followed by a strong Th1-mediated immune response. Previous studies indicate that NK1.1 + cells contribute to the production of IFN-γ and TNF and cytotoxicity during acute T. gondii infection. Upon oral infection, the parasite infects intestinal enterocytes, and within the lamina propria, innate immune responses lead to initial parasite control although the infection disseminates widely and persists long-term in immune privileged sites despite adaptive immunity. Upon parasite entry into the small intestine, during the acute stage, ILC1 produce high levels of IFN-γ and TNF protecting barrier surfaces, thus essentially contributing to early parasite control. We will discuss here the role of innate lymphocytes during T. gondii infection in the context of the only recently appreciated diversity of ILC subsets. © 2018 John Wiley & Sons Ltd.

  13. Distinct pattern of lesion distribution in multiple sclerosis is associated with different circulating T-helper and helper-like innate lymphoid cell subsets.

    Science.gov (United States)

    Gross, Catharina C; Schulte-Mecklenbeck, Andreas; Hanning, Uta; Posevitz-Fejfár, Anita; Korsukewitz, Catharina; Schwab, Nicholas; Meuth, Sven G; Wiendl, Heinz; Klotz, Luisa

    2017-06-01

    Distinct lesion topography in relapsing-remitting multiple sclerosis (RRMS) might be due to different antigen presentation and/or trafficking routes of immune cells into the central nervous system (CNS). To investigate whether distinct lesion patterns in multiple sclerosis (MS) might be associated with a predominance of distinct circulating T-helper cell subset as well as their innate counterparts. Flow cytometric analysis of lymphocytes derived from the peripheral blood of patients with exclusively cerebral (n = 20) or predominantly spinal (n = 12) disease manifestation. Patients with exclusively cerebral or preferential spinal lesion manifestation were associated with increased proportions of circulating granulocyte-macrophage colony-stimulating factor (GM-CSF) producing T H 1 cells or interleukin (IL)-17-producing T H 17 cells, respectively. In contrast, proportions of peripheral IL-17/IL-22-producing lymphoid tissue inducer (LTi), the innate counterpart of T H 17 cells, were enhanced in RRMS patients with exclusively cerebral lesion topography. Distinct T-helper and T-helper-like innate lymphoid cell (ILC) subsets are associated with different lesion topography in RRMS.

  14. MicroRNAs, Innate Immunity and Ventricular Rupture in Human Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Nina Zidar

    2011-01-01

    Full Text Available MicroRNAs are non-coding RNAs, functionioning as post-transcriptional regulators of gene expression. Some microRNAs have been demonstrated to play a role in regulation of innate immunity. After myocardial infarction (MI, innate immunity is activated leading to an acute inflammatory reaction. There is evidence that an intense inflammatory reaction might contribute to the development of ventricular rupture (VR after MI.

  15. Altered thalamic functional connectivity in multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yaou; Liang, Peipeng; Duan, Yunyun; Huang, Jing; Ren, Zhuoqiong; Jia, Xiuqin [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Dong, Huiqing; Ye, Jing [Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Shi, Fu-Dong [Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052 (China); Butzkueven, Helmut [Department of Medicine, University of Melbourne, Parkville 3010 (Australia); Li, Kuncheng, E-mail: kunchengli55@gmail.com [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China)

    2015-04-15

    Highlights: •We demonstrated decreased connectivity between thalamus and cortical regions in MS. •Increased intra- and inter-thalamic connectivity was also observed in MS. •The increased functional connectivity is attenuated by increasing disease duration. -- Abstract: Objective: To compare thalamic functional connectivity (FC) in patients with multiple sclerosis (MS) and healthy controls (HC), and correlate these connectivity measures with other MRI and clinical variables. Methods: We employed resting-state functional MRI (fMRI) to examine changes in thalamic connectivity by comparing thirty-five patients with MS and 35 age- and sex-matched HC. Thalamic FC was investigated by correlating low frequency fMRI signal fluctuations in thalamic voxels with voxels in all other brain regions. Additionally thalamic volume fraction (TF), T2 lesion volume (T2LV), EDSS and disease duration were recorded and correlated with the FC changes. Results: MS patients were found to have a significantly lower TF than HC in bilateral thalami. Compared to HC, the MS group showed significantly decreased FC between thalamus and several brain regions including right middle frontal and parahippocampal gyri, and the left inferior parietal lobule. Increased intra- and inter-thalamic FC was observed in the MS group compared to HC. These FC alterations were not correlated with T2LV, thalamic volume or lesions. In the MS group, however, there was a negative correlation between disease duration and inter-thalamic connectivity (r = −0.59, p < 0.001). Conclusion: We demonstrated decreased FC between thalamus and several cortical regions, while increased intra- and inter-thalamic connectivity in MS patients. These complex functional changes reflect impairments and/or adaptations that are independent of T2LV, thalamic volume or presence of thalamic lesions. The negative correlation between disease duration and inter-thalamic connectivity could indicate an adaptive role of thalamus that is

  16. A novel mode of induction of the humoral innate immune response in Drosophila larvae

    Directory of Open Access Journals (Sweden)

    Hiroyuki Kenmoku

    2017-03-01

    Full Text Available Drosophila adults have been utilized as a genetically tractable model organism to decipher the molecular mechanisms of humoral innate immune responses. In an effort to promote the utility of Drosophila larvae as an additional model system, in this study, we describe a novel aspect of an induction mechanism for innate immunity in these larvae. By using a fine tungsten needle created for manipulating semi-conductor devices, larvae were subjected to septic injury. However, although Toll pathway mutants were susceptible to infection with Gram-positive bacteria as had been shown for Drosophila adults, microbe clearance was not affected in the mutants. In addition, Drosophila larvae were found to be sensitive to mechanical stimuli with respect to the activation of a sterile humoral response. In particular, pinching with forceps to a degree that might cause minor damage to larval tissues could induce the expression of the antifungal peptide gene Drosomycin; notably, this induction was partially independent of the Toll and immune deficiency pathways. We therefore propose that Drosophila larvae might serve as a useful model to analyze the infectious and non-infectious inflammation that underlies various inflammatory diseases such as ischemia, atherosclerosis and cancer.

  17. Immune modules shared by innate lymphoid cells and T cells.

    Science.gov (United States)

    Robinette, Michelle L; Colonna, Marco

    2016-11-01

    In recent years, innate lymphoid cells (ILCs) have emerged as innate correlates to T cells. The similarities between ILCs and T cells indicate that lymphocytes of fundamentally distinct lineages can share core "immune modules" that encompass transcriptional circuitry and effector functions while using nonredundant complementary mechanisms of pattern recognition to enact these functions. We review modules currently recognized to be shared between ILCs and T cells. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  18. Trained innate immunity as underlying mechanism for the long-term, nonspecific effects of vaccines

    DEFF Research Database (Denmark)

    Blok, Bastiaan A; Arts, Rob J W; van Crevel, Reinout

    2015-01-01

    An increasing body of evidence shows that the innate immune system has adaptive characteristics that involve a heterologous memory of past insults. Both experimental models and proof-of-principle clinical trials show that innate immune cells, such as monocytes, macrophages, and NK cells, can...... provide protection against certain infections in vaccination models independently of lymphocytes. This process is regulated through epigenetic reprogramming of innate immune cells and has been termed "trained immunity." It has been hypothesized that induction of trained immunity is responsible...... for the protective, nonspecific effects induced by vaccines, such as BCG, measles vaccination, and other whole-microorganism vaccines. In this review, we will present the mechanisms of trained immunity responsible for the long-lasting effects of vaccines on the innate immune system....

  19. Gliadin stimulation of murine macrophage inflammatory gene expression and intestinal permeability are MyD88-dependent: role of the innate immune response in Celiac disease.

    Science.gov (United States)

    Thomas, Karen E; Sapone, Anna; Fasano, Alessio; Vogel, Stefanie N

    2006-02-15

    Recent studies have demonstrated the importance of TLR signaling in intestinal homeostasis. Celiac disease (CD) is an autoimmune enteropathy triggered in susceptible individuals by the ingestion of gliadin-containing grains. In this study, we sought to test the hypothesis that gliadin initiates this response by stimulating the innate immune response to increase intestinal permeability and by up-regulating macrophage proinflammatory gene expression and cytokine production. To this end, intestinal permeability and the release of zonulin (an endogenous mediator of gut permeability) in vitro, as well as proinflammatory gene expression and cytokine release by primary murine macrophage cultures, were measured. Gliadin and its peptide derivatives, 33-mer and p31-43, were found to be potent inducers of both a zonulin-dependent increase in intestinal permeability and macrophage proinflammatory gene expression and cytokine secretion. Gliadin-induced zonulin release, increased intestinal permeability, and cytokine production were dependent on myeloid differentiation factor 88 (MyD88), a key adapter molecule in the TLR/IL-1R signaling pathways, but were neither TLR2- nor TLR4-dependent. Our data support the following model for the innate immune response to gliadin in the initiation of CD. Gliadin interaction with the intestinal epithelium increases intestinal permeability through the MyD88-dependent release of zonulin that, in turn, enables paracellular translocation of gliadin and its subsequent interaction with macrophages within the intestinal submucosa. There, the interaction of gliadin with macrophages elicits a MyD88-dependent proinflammatory cytokine milieu that facilitates the interaction of T cells with APCs, leading ultimately to the Ag-specific adaptive immune response seen in patients with CD.

  20. Abnormal resting-state connectivity of motor and cognitive networks in early manifest Huntington's disease.

    Science.gov (United States)

    Wolf, R C; Sambataro, F; Vasic, N; Depping, M S; Thomann, P A; Landwehrmeyer, G B; Süssmuth, S D; Orth, M

    2014-11-01

    Functional magnetic resonance imaging (fMRI) of multiple neural networks during the brain's 'resting state' could facilitate biomarker development in patients with Huntington's disease (HD) and may provide new insights into the relationship between neural dysfunction and clinical symptoms. To date, however, very few studies have examined the functional integrity of multiple resting state networks (RSNs) in manifest HD, and even less is known about whether concomitant brain atrophy affects neural activity in patients. Using MRI, we investigated brain structure and RSN function in patients with early HD (n = 20) and healthy controls (n = 20). For resting-state fMRI data a group-independent component analysis identified spatiotemporally distinct patterns of motor and prefrontal RSNs of interest. We used voxel-based morphometry to assess regional brain atrophy, and 'biological parametric mapping' analyses to investigate the impact of atrophy on neural activity. Compared with controls, patients showed connectivity changes within distinct neural systems including lateral prefrontal, supplementary motor, thalamic, cingulate, temporal and parietal regions. In patients, supplementary motor area and cingulate cortex connectivity indices were associated with measures of motor function, whereas lateral prefrontal connectivity was associated with cognition. This study provides evidence for aberrant connectivity of RSNs associated with motor function and cognition in early manifest HD when controlling for brain atrophy. This suggests clinically relevant changes of RSN activity in the presence of HD-associated cortical and subcortical structural abnormalities.

  1. The biology of human innate lymphoid cells

    NARCIS (Netherlands)

    Bernink, J.H.J.

    2016-01-01

    In this thesis I performed studies to investigate the contribution of human innate lymphoid cells (ILCs) in maintaining the mucosal homeostasis, initiating and/or propagating inflammatory responses, but also - when not properly regulated - how these cells contribute to immunopathology. First I

  2. Neuroinflammation in Alzheimer's disease

    DEFF Research Database (Denmark)

    Heneka, Michael T; Carson, Monica J; Khoury, Joseph El

    2015-01-01

    Increasing evidence suggests that Alzheimer's disease pathogenesis is not restricted to the neuronal compartment, but includes strong interactions with immunological mechanisms in the brain. Misfolded and aggregated proteins bind to pattern recognition receptors on microglia and astroglia......, and trigger an innate immune response characterised by release of inflammatory mediators, which contribute to disease progression and severity. Genome-wide analysis suggests that several genes that increase the risk for sporadic Alzheimer's disease encode factors that regulate glial clearance of misfolded...... therapeutic or preventive strategies for Alzheimer's disease....

  3. Endovascular Repair of Thoracoabdominal and Arch Aneurysms in Patients with Connective Tissue Disease Using Branched and Fenestrated Devices.

    Science.gov (United States)

    Clough, Rachel E; Martin-Gonzalez, Teresa; Van Calster, Katrien; Hertault, Adrien; Spear, Rafaëlle; Azzaoui, Richard; Sobocinski, Jonathan; Haulon, Stéphan

    2017-10-01

    Prophylactic open surgery is the standard practice in patients with connective tissue and thoracoabdominal aortic aneurysm (TAAA) and aortic arch disease. Branched and fenestrated devices offer a less invasive alternative but there are concerns regarding the durability of the repair and the effect of the stent graft on the fragile aortic wall. The aim of this study is to evaluate mid-term outcomes of fenestrated and/or branched endografting in patients with connective tissue disease. All patients with connective tissue disease who underwent TAAA or arch aneurysm repair using a fenestrated and/or branched endograft in a single, high-volume center between 2004 and 2015 were included. Ruptured aneurysms and acute aortic dissections were excluded from this study, but not chronic aortic dissections. In total, 427 (403 pararenal and TAAAs, and 24 arch aneurysms) endovascular interventions were performed during the study period. Of these, 17 patients (4%) (16 TAAAs, 1 arch) had connective tissue disease. All patients were classified as unfit for open repair. The mean age was 51 ± 8 years. Thirteen patients with TAAA were treated with a fenestrated, 1 with a branched, and 2 with a combined fenestrated/branch device. A double inner branch device was used to treat the arch aneurysm. The technical success rate was 100% with no incidence of early mortality, spinal cord ischemia, stroke, or further dissection. Postoperative deterioration in renal function was seen in 3 patients (18.8%) and no hemodialysis was required. The mean follow-up was 3.4 years (0.3-7.4). Aneurysm sac shrinkage was seen in 35% of patients (6/17) and the sac diameter remained stable in 65% of patients (11/17). No sac or sealing zone enlargement was observed in any of the patients and there were no conversions to open repair. Reintervention was required in 1 patient at 2 years for bilateral renal artery occlusion (successful fibrinolysis). One type II endoleak (lumbar) is under surveillance and 1 type

  4. Metabolic signals and innate immune activation in obesity and exercise.

    Science.gov (United States)

    Ringseis, Robert; Eder, Klaus; Mooren, Frank C; Krüger, Karsten

    2015-01-01

    The combination of a sedentary lifestyle and excess energy intake has led to an increased prevalence of obesity which constitutes a major risk factor for several co-morbidities including type 2 diabetes and cardiovascular diseases. Intensive research during the last two decades has revealed that a characteristic feature of obesity linking it to insulin resistance is the presence of chronic low-grade inflammation being indicative of activation of the innate immune system. Recent evidence suggests that activation of the innate immune system in the course of obesity is mediated by metabolic signals, such as free fatty acids (FFAs), being elevated in many obese subjects, through activation of pattern recognition receptors thereby leading to stimulation of critical inflammatory signaling cascades, like IκBα kinase/nuclear factor-κB (IKK/NF- κB), endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) and NOD-like receptor P3 (NLRP3) inflammasome pathway, that interfere with insulin signaling. Exercise is one of the main prescribed interventions in obesity management improving insulin sensitivity and reducing obesity- induced chronic inflammation. This review summarizes current knowledge of the cellular recognition mechanisms for FFAs, the inflammatory signaling pathways triggered by excess FFAs in obesity and the counteractive effects of both acute and chronic exercise on obesity-induced activation of inflammatory signaling pathways. A deeper understanding of the effects of exercise on inflammatory signaling pathways in obesity is useful to optimize preventive and therapeutic strategies to combat the increasing incidence of obesity and its comorbidities. Copyright © 2015 International Society of Exercise and Immunology. All rights reserved.

  5. Activation of Innate Immune-Response Genes in Little Brown Bats (Myotis lucifugus) Infected with the Fungus Pseudogymnoascus destructans

    Science.gov (United States)

    Rapin, Noreen; Johns, Kirk; Martin, Lauren; Warnecke, Lisa; Turner, James M.; Bollinger, Trent K.; Willis, Craig K. R.; Voyles, Jamie; Misra, Vikram

    2014-01-01

    Recently bats have been associated with the emergence of diseases, both as reservoirs for several new viral diseases in humans and other animals and, in the northern Americas, as hosts for a devastating fungal disease that threatens to drive several bat species to regional extinction. However, despite these catastrophic events little Information is available on bat defences or how they interact with their pathogens. Even less is known about the response of bats to infection during torpor or long-term hibernation. Using tissue samples collected at the termination of an experiment to explore the pathogenesis of White Nose Syndrome in Little Brown Bats, we determined if hibernating bats infected with the fungus Pseudogymnoascus destructans could respond to infection by activating genes responsible for innate immune and stress responses. Lesions due to fungal infection and, in some cases, secondary bacterial infections, were restricted to the skin. However, we were unable to obtain sufficient amounts of RNA from these sites. We therefore examined lungs for response at an epithelial surface not linked to the primary site of infection. We found that bats responded to infection with a significant increase in lungs of transcripts for Cathelicidin (an anti-microbial peptide) as well as the immune modulators tumor necrosis factor alpha and interleukins 10 and 23. In conclusion, hibernating bats can respond to experimental P. destructans infection by activating expression of innate immune response genes. PMID:25391018

  6. Activation of innate immune-response genes in little brown bats (Myotis lucifugus infected with the fungus Pseudogymnoascus destructans.

    Directory of Open Access Journals (Sweden)

    Noreen Rapin

    Full Text Available Recently bats have been associated with the emergence of diseases, both as reservoirs for several new viral diseases in humans and other animals and, in the northern Americas, as hosts for a devastating fungal disease that threatens to drive several bat species to regional extinction. However, despite these catastrophic events little Information is available on bat defences or how they interact with their pathogens. Even less is known about the response of bats to infection during torpor or long-term hibernation. Using tissue samples collected at the termination of an experiment to explore the pathogenesis of White Nose Syndrome in Little Brown Bats, we determined if hibernating bats infected with the fungus Pseudogymnoascus destructans could respond to infection by activating genes responsible for innate immune and stress responses. Lesions due to fungal infection and, in some cases, secondary bacterial infections, were restricted to the skin. However, we were unable to obtain sufficient amounts of RNA from these sites. We therefore examined lungs for response at an epithelial surface not linked to the primary site of infection. We found that bats responded to infection with a significant increase in lungs of transcripts for Cathelicidin (an anti-microbial peptide as well as the immune modulators tumor necrosis factor alpha and interleukins 10 and 23. In conclusion, hibernating bats can respond to experimental P. destructans infection by activating expression of innate immune response genes.

  7. Feeding frequency affects stress, innate immunity and disease resistance of juvenile blunt snout bream Megalobrama amblycephala.

    Science.gov (United States)

    Li, Xiang-Fei; Tian, Hong-Yan; Zhang, Ding-Dong; Jiang, Guang-Zhen; Liu, Wen-Bin

    2014-05-01

    This study aimed to evaluate the effects of feeding frequency on stress, innate immunity and disease resistance of juvenile blunt snout bream Megalobrama amblycephala (average weight: 9.92 ± 0.06 g). Fish were randomly assigned to one of six feeding frequencies (1, 2, 3, 4, 5 and 6 times/day) following the same ration size for 8 weeks. After the feeding trial, fish were challenged by Aeromonas hydrophila and cumulative mortality was recorded for the next 10 days. Daily gain index of fish fed 3-5 times/day was significantly higher than that of the other groups. High feeding frequencies induced significantly elevated plasma levels of both cortisol and lactate. Fish fed 3-4 times/day exhibited relatively low liver catalase and glutathione peroxidase activities as well as malondialdehyde contents, but obtained significantly higher reduced glutathione levels and post-challenged haemato-immunological parameters (include blood leukocyte and erythrocyte counts as well as plasma lysozyme, alternative complement, acid phosphatase and myeloperoxidase activities) compared with that of the other groups. After challenge, the lowest mortality was observed in fish fed 4 times/day. It was significantly lower than that of fish fed 1-3 times/day, but exhibited no statistical difference with that of the other groups. In conclusion, both low and high feeding frequencies could cause oxidative stress of juvenile M. amblycephala, as might consequently lead to the depressed immunity and reduced resistance to A. hydrophila infection. The optimal feeding frequency to enhance growth and boost immunity of this species at juvenile stage is 4 times/day. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. PKA/KIN-1 mediates innate immune responses to bacterial pathogens in Caenorhabditis elegans.

    Science.gov (United States)

    Xiao, Yi; Liu, Fang; Zhao, Pei-Ji; Zou, Cheng-Gang; Zhang, Ke-Qin

    2017-11-01

    The genetically tractable organism Caenorhabditis elegans is a powerful model animal for the study of host innate immunity. Although the intestine and the epidermis of C. elegans that is in contact with pathogens are likely to function as sites for the immune function, recent studies indicate that the nervous system could control innate immunity in C. elegans. In this report, we demonstrated that protein kinase A (PKA)/KIN-1 in the neurons contributes to resistance against Salmonella enterica infection in C. elegans. Microarray analysis revealed that PKA/KIN-1 regulates the expression of a set of antimicrobial effectors in the non-neuron tissues, which are required for innate immune responses to S. enterica. Furthermore, PKA/KIN-1 regulated the expression of lysosomal genes during S. enterica infection. Our results suggest that the lysosomal signaling molecules are involved in autophagy by controlling autophagic flux, rather than formation of autophagosomes. As autophagy is crucial for host defense against S. enterica infection in a metazoan, the lysosomal pathway also acts as a downstream effector of the PKA/KIN-1 signaling for innate immunity. Our data indicate that the PKA pathway contributes to innate immunity in C. elegans by signaling from the nervous system to periphery tissues to protect the host against pathogens.

  9. Group 2 Innate Lymphoid Cells in Pulmonary Immunity and Tissue Homeostasis

    Directory of Open Access Journals (Sweden)

    Barbara C. Mindt

    2018-04-01

    Full Text Available Group 2 innate lymphoid cells (ILC2 represent an evolutionary rather old but only recently identified member of the family of innate lymphoid cells and have received much attention since their detailed description in 2010. They can orchestrate innate as well as adaptive immune responses as they interact with and influence several immune and non-immune cell populations. Moreover, ILC2 are able to rapidly secrete large amounts of type 2 cytokines that can contribute to protective but also detrimental host immune responses depending on timing, location, and physiological context. Interestingly, ILC2, despite their scarcity, are the dominant innate lymphoid cell population in the lung, indicating a key role as first responders and amplifiers upon immune challenge at this site. In addition, the recently described tissue residency of ILC2 further underlines the importance of their respective microenvironment. In this review, we provide an overview of lung physiology including a description of the most prominent pulmonary resident cells together with a review of known and potential ILC2 interactions within this unique environment. We will further outline recent observations regarding pulmonary ILC2 during immune challenge including respiratory infections and discuss different models and approaches to study ILC2 biology in the lung.

  10. Group 2 Innate Lymphoid Cells in Pulmonary Immunity and Tissue Homeostasis.

    Science.gov (United States)

    Mindt, Barbara C; Fritz, Jörg H; Duerr, Claudia U

    2018-01-01

    Group 2 innate lymphoid cells (ILC2) represent an evolutionary rather old but only recently identified member of the family of innate lymphoid cells and have received much attention since their detailed description in 2010. They can orchestrate innate as well as adaptive immune responses as they interact with and influence several immune and non-immune cell populations. Moreover, ILC2 are able to rapidly secrete large amounts of type 2 cytokines that can contribute to protective but also detrimental host immune responses depending on timing, location, and physiological context. Interestingly, ILC2, despite their scarcity, are the dominant innate lymphoid cell population in the lung, indicating a key role as first responders and amplifiers upon immune challenge at this site. In addition, the recently described tissue residency of ILC2 further underlines the importance of their respective microenvironment. In this review, we provide an overview of lung physiology including a description of the most prominent pulmonary resident cells together with a review of known and potential ILC2 interactions within this unique environment. We will further outline recent observations regarding pulmonary ILC2 during immune challenge including respiratory infections and discuss different models and approaches to study ILC2 biology in the lung.

  11. Silencing the alarms: innate immune antagonism by rotavirus NSP1 and VP3

    Science.gov (United States)

    Morelli, Marco; Ogden, Kristen M.; Patton, John T.

    2016-01-01

    The innate immune response involves a broad array of pathogen sensors that stimulate the production of interferons (IFN) to induce an antiviral state. Rotavirus, a significant cause of childhood gastroenteritis and a member of the Reoviridae family of segmented, double-stranded RNA viruses, encodes at least two direct antagonists of host innate immunity: NSP1 and VP3. NSP1, a putative E3 ubiquitin ligase, mediates the degradation of cellular factors involved in both IFN induction and downstream signaling. VP3, the viral capping enzyme, utilizes a 2H-phosphodiesterase domain to prevent activation of the cellular oligoadenylate synthase (OAS)-RNase L pathway. Computational, molecular, and biochemical studies have provided key insights into the structural and mechanistic basis of innate immune antagonism by NSP1 and VP3 of group A rotaviruses (RVA). Future studies with non-RVA isolates will be essential to understand how other RV species evade host innate immune responses. PMID:25724417

  12. Dairy cows affected by ketosis show alterations in innate immunity and lipid and carbohydrate metabolism during the dry off period and postpartum.

    Science.gov (United States)

    Zhang, Guanshi; Hailemariam, Dagnachew; Dervishi, Elda; Goldansaz, Seyed Ali; Deng, Qilan; Dunn, Suzanna M; Ametaj, Burim N

    2016-08-01

    The objective of this investigation was to search for alterations in blood variables related to innate immunity and carbohydrate and lipid metabolism during the transition period in cows affected by ketosis. One hundred multiparous Holstein dairy cows were involved in the study. Blood samples were collected at -8, -4, week of disease diagnosis (+1 to +3weeks), and +4weeks relative to parturition from 6 healthy cows (CON) and 6 cows with ketosis and were analyzed for serum variables. Results showed that cows with ketosis had greater concentrations of serum β-hydroxybutyric acid (BHBA), interleukin (IL)-6, tumor necrosis factor (TNF), serum amyloid A (SAA), and lactate in comparison with the CON animals. Serum concentrations of BHBA, IL-6, TNF, and lactate were greater starting at -8 and -4weeks prior to parturition in cows with ketosis vs those of CON group. Cows with ketosis also had lower DMI and milk production vs CON cows. Milk fat also was lower in ketotic cows at diagnosis of disease. Cows affected by ketosis showed an activated innate immunity and altered carbohydrate and lipid metabolism several weeks prior to diagnosis of disease. Serum IL-6 and lactate were the strongest discriminators between ketosis cows and CON ones before the occurrence of ketosis, which might be useful as predictive biomarkers of the disease state. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Molecular Mechanisms That Underlie the Dynamic Adaptation of Innate Monocyte Memory to Varying Stimulant Strength of TLR Ligands.

    Science.gov (United States)

    Yuan, Ruoxi; Geng, Shuo; Li, Liwu

    2016-01-01

    In adaptation to rising stimulant strength, innate monocytes can be dynamically programed to preferentially express either pro- or anti-inflammatory mediators. Such dynamic innate adaptation or programing may bear profound relevance in host health and disease. However, molecular mechanisms that govern innate adaptation to varying strength of stimulants are not well understood. Using lipopolysaccharide (LPS), the model stimulant of toll-like-receptor 4 (TLR4), we reported that the expressions of pro-inflammatory mediators are preferentially sustained in monocytes adapted by lower doses of LPS, and suppressed/tolerized in monocytes adapted by higher doses of LPS. Mechanistically, monocytes adapted by super-low dose LPS exhibited higher levels of transcription factor, interferon regulatory factor 5 (IRF5), and reduced levels of transcriptional modulator B lymphocyte-induced maturation protein-1 (Blimp-1). Intriguingly, the inflammatory monocyte adaptation by super-low dose LPS is dependent upon TRAM/TRIF but not MyD88. Similar to LPS, we also observed biphasic inflammatory adaptation and tolerance in monocytes challenged with varying dosages of TLR7 agonist. In sharp contrast, rising doses of TLR3 agonist preferentially caused inflammatory adaptation without inducing tolerance. At the molecular level, the differential regulation of IRF5 and Blimp-1 coincides with unique monocyte adaptation dynamics by TLR4/7 and TLR3 agonists. Our study provides novel clue toward the understanding of monocyte adaptation and memory toward distinct TLR ligands.

  14. Molecular mechanisms that underlie the dynamic adaptation of innate monocyte memory to varying stimulant strength of TLR ligands

    Directory of Open Access Journals (Sweden)

    Ruoxi Yuan

    2016-11-01

    Full Text Available In adaptation to rising stimulant strength, innate monocytes can be dynamically programmed to preferentially express either pro- or anti-inflammatory mediators. Such dynamic innate adaptation or programming may bear profound relevance in host health and disease. However, molecular mechanisms that govern innate adaptation to varying strength of stimulants are not well understood. Using lipopolysaccharide (LPS, the model stimulant of Toll-Like-Receptor 4 (TLR4, we reported that the expressions of pro-inflammatory mediators are preferentially sustained in monocytes adapted by lower doses of LPS, and suppressed/tolerized in monocytes adapted by higher doses of LPS. Mechanistically, monocytes adapted by super-low dose LPS exhibited higher levels of transcription factor IRF5 and reduced levels of transcriptional modulator BLIMP-1. Intriguingly, the inflammatory monocyte adaptation by super-low dose LPS is dependent upon TRAM/TRIF but not MyD88. Similar to LPS, we also observed biphasic inflammatory adaptation and tolerance in monocytes challenged with varying dosages of TLR7 agonist. In sharp contrast, rising doses of TLR3 agonist preferentially caused inflammatory adaptation without inducing tolerance. At the molecular level, the differential regulation of IRF5 and Blimp-1 coincides with unique monocyte adaptation dynamics by TLR4/7 and TLR3 agonists. Our study provides novel clue toward the understanding of monocyte adaptation and memory toward distinct TLR ligands.

  15. Increased number and frequency of group 3 innate lymphoid cells in nonlesional psoriatic skin

    DEFF Research Database (Denmark)

    Dyring-Andersen, B; Geisler, Carsten; Agerbeck, C

    2014-01-01

    BACKGROUND: Psoriasis is a common immune-mediated inflammatory disease that affects the skin and joints. The interleukin (IL)-23/IL-17A axis and IL-22 play key roles in the pathogenesis of psoriasis. IL-23-responsive innate lymphoid cells (ILCs) with a high capacity to produce IL-17 and/or IL-22....... METHODS: Skin biopsies were taken from healthy skin, nonlesional and lesional psoriatic skin, and nickel- and petrolatum-exposed skin from patients with contact allergy to nickel, and lymphocytes were isolated. The cells were stained and characterized by flow cytometry. Cytokine and ligand mRNA expression...

  16. Interactions between the intestinal microbiota and innate lymphoid cells

    Science.gov (United States)

    Chen, Vincent L; Kasper, Dennis L

    2014-01-01

    The mammalian intestine must manage to contain 100 trillion intestinal bacteria without inducing inappropriate immune responses to these microorganisms. The effects of the immune system on intestinal microorganisms are numerous and well-characterized, and recent research has determined that the microbiota influences the intestinal immune system as well. In this review, we first discuss the intestinal immune system and its role in containing and maintaining tolerance to commensal organisms. We next introduce a category of immune cells, the innate lymphoid cells, and describe their classification and function in intestinal immunology. Finally, we discuss the effects of the intestinal microbiota on innate lymphoid cells. PMID:24418741

  17. Establishment and function of tissue-resident innate lymphoid cells in the skin

    Directory of Open Access Journals (Sweden)

    Jie Yang

    2017-03-01

    Full Text Available ABSTRACT Innate lymphoid cells (ILCs are a newly classified family of immune cells of the lymphoid lineage. While they could be found in both lymphoid organs and non-lymphoid tissues, ILCs are preferentially enriched in barrier tissues such as the skin, intestine, and lung where they could play important roles in maintenance of tissue integrity and function and protection against assaults of foreign agents. On the other hand, dysregulated activation of ILCs could contribute to tissue inflammatory diseases. In spite of recent progress towards understanding roles of ILCs in the health and disease, mechanisms regulating specific establishment, activation, and function of ILCs in barrier tissues are still poorly understood. We herein review the up-to-date understanding of tissue-specific relevance of ILCs. Particularly we will focus on resident ILCs of the skin, the outmost barrier tissue critical in protection against various foreign hazardous agents and maintenance of thermal and water balance. In addition, we will discuss remaining outstanding questions yet to be addressed.

  18. Establishment and function of tissue-resident innate lymphoid cells in the skin.

    Science.gov (United States)

    Yang, Jie; Zhao, Luming; Xu, Ming; Xiong, Na

    2017-07-01

    Innate lymphoid cells (ILCs) are a newly classified family of immune cells of the lymphoid lineage. While they could be found in both lymphoid organs and non-lymphoid tissues, ILCs are preferentially enriched in barrier tissues such as the skin, intestine, and lung where they could play important roles in maintenance of tissue integrity and function and protection against assaults of foreign agents. On the other hand, dysregulated activation of ILCs could contribute to tissue inflammatory diseases. In spite of recent progress towards understanding roles of ILCs in the health and disease, mechanisms regulating specific establishment, activation, and function of ILCs in barrier tissues are still poorly understood. We herein review the up-to-date understanding of tissue-specific relevance of ILCs. Particularly we will focus on resident ILCs of the skin, the outmost barrier tissue critical in protection against various foreign hazardous agents and maintenance of thermal and water balance. In addition, we will discuss remaining outstanding questions yet to be addressed.

  19. DMPD: Regulation of innate immunity by suppressor of cytokine signaling (SOCS)proteins. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18406369 Regulation of innate immunity by suppressor of cytokine signaling (SOCS)proteins...svg) (.html) (.csml) Show Regulation of innate immunity by suppressor of cytokine signaling (SOCS)proteins. ...PubmedID 18406369 Title Regulation of innate immunity by suppressor of cytokine signaling (SOCS)proteins

  20. Mixed connective tissue disease: The King Faisal Specialist Hospital experience

    International Nuclear Information System (INIS)

    Al-Rayes, H.; Al-Sheikh, A.; Al-Dalaan, A.; Al-Saleh, S.

    2002-01-01

    The aim of this study was to assess the clinical presentation, complications and serological analysis of mixed connective tissue disease (MCTD) at King Faisal Specialist Hospital and Research Centre (KFSHRC), and to determine the long-term clinical and immunologic outcomes. This was a retrospective study with prospective follow-up of 18 patients with MCTD who were followed at KFSHRC between 1982 and 1999. The age at onset of the disease ranged from 6 to 44 years, with mean age of 17.9 years. The female to male ratio was 2.5:1 and the mean follow-up time was 5 years. The most frequent presenting symptoms were arthralgia in all patients, Raynaud's phenomenon in 16 patients (88%) and swollen hands in 11 patients (61%). Arthritis was seen in 12 patients in (67%) and definite myositis in 10 patients (58%). The most common skin rashes encountered included lupus-like rash in 8 patients (44%) and cutaneous vasculitis in 5 patients (28%). Pulmonary hypertension occurred in 4 patients (22%). Other clinical manifestations encountered were esophageal hypomotility in 10 patients (56%), myocarditis in 2 patients (11%) and proteinurea in 2 patients (11%), while various neurological manifestations were present in 7 patients (39%). All patients exhibited higher titer of ANA and anti-nRNP antibodies. Five of the 18 patients (28%) had marked reduction in the anti-nRNP during remission. Following treatment, features of inflammation as well as Raynaud's phenomenon and esophageal hypomotility diminished, while pulmonary hypertension persisted. A favorable outcome was observed in 12 patients (67%), 3 patients (17%) had continued active disease, while 3 patients (17%) died, with death related to pulmonary hypertension occurring in 2 patients (11%). The studied patients demonstrated the typical clinical and serological findings of MCTD, which support the correlation between anti-nRNP antibody specificities and MCTD. Autoantibody reactivity against nRNP polypeptides tends to regress during