WorldWideScience

Sample records for discussed numerical examples

  1. Example Postings' Effects on Online Discussion and Cognitive Load

    Science.gov (United States)

    Jin, Li

    2012-01-01

    This study investigated the effects of example-postings on students' cognitive load and performance in online discussions. Cognitive overload was assumed had caused the problem of the lack of reflective and thoughtful contributions in student discussions. The theoretical foundation supporting the use of example-postings aiming at reduce…

  2. On vortex loops and filaments: three examples of numerical predictions of flows containing vortices.

    Science.gov (United States)

    Krause, Egon

    2003-01-01

    Vortex motion plays a dominant role in many flow problems. This article aims at demonstrating some of the characteristic features of vortices with the aid of numerical solutions of the governing equations of fluid mechanics, the Navier-Stokes equations. Their discretized forms will first be reviewed briefly. Thereafter three problems of fluid flow involving vortex loops and filaments are discussed. In the first, the time-dependent motion and the mutual interaction of two colliding vortex rings are discussed, predicted in good agreement with experimental observations. The second example shows how vortex rings are generated, move, and interact with each other during the suction stroke in the cylinder of an automotive engine. The numerical results, validated with experimental data, suggest that vortex rings can be used to influence the spreading of the fuel droplets prior to ignition and reduce the fuel consumption. In the third example, it is shown that vortices can also occur in aerodynamic flows over delta wings at angle of attack as well as pipe flows: of particular interest for technical applications of these flows is the situation in which the vortex cores are destroyed, usually referred to as vortex breakdown or bursting. Although reliable breakdown criteria could not be established as yet, the numerical predictions obtained so far are found to agree well with the few experimental data available in the recent literature.

  3. Numerical approaches towards life cycle interpretation five examples

    NARCIS (Netherlands)

    Heijungs, R.; Kleijn, R.

    2001-01-01

    The ISO-standard for LCA distinguishes four phases, of which the last one, the interpretation, is the least elaborated. It can be regarded as containing procedural steps (like a completeness check) as well as numerical steps (like a sensitivity check). This paper provides five examples of techniques

  4. Direct design of LPV feedback controllers: technical details and numerical examples

    OpenAIRE

    Novara, Carlo

    2014-01-01

    The paper contains technical details of recent results developed by the author, regarding the design of LPV controllers directly from experimental data. Two numerical examples are also presented, about control of the Duffing oscillator and control of a two-degree-of-freedom manipulator.

  5. [Effects decomposition in mediation analysis: a numerical example].

    Science.gov (United States)

    Zugna, Daniela; Richiardi, Lorenzo

    2018-01-01

    Mediation analysis aims to decompose the total effect of the exposure on the outcome into a direct effect (unmediated) and an indirect effect (mediated by a mediator). When the interest also lies on understanding whether the exposure effect differs in different sub-groups of study population or under different scenarios, the mediation analysis needs to be integrated with interaction analysis. In this setting it is necessary to decompose the total effect not only into two components, the direct and indirect effects, but other two components linked to interaction. The interaction between the exposure and the mediator in their effect on the outcome could indeed act through the effect of the exposure on the mediator or through the mediator when the mediator is not totally explained by the exposure. We describe options for decomposition, proposed in literature, of the total effect and we illustrate them through a hypothetical example of the effect of age at diagnosis of cancer on survival, mediated and unmediated by the therapeutical approach, and a numerical example.

  6. Higher order perturbation theory - An example for discussion

    International Nuclear Information System (INIS)

    Lewins, J.D.; Parks, G.; Babb, A.L.

    1986-01-01

    Higher order perturbation theory is developed in the form of a Taylor series expansion to third order to calculate the thermal utilization of a nonuniform cell. The development takes advantage of the self-adjoint property of the diffusion operator to provide a simple development of this illustration of generalized perturbation theory employing scalar perturbation parameters. The results show how a designer might employ a second-order theory to quantify proposed design improvements, together with the limitations of second- and third-order theory. The chosen example has an exact optimization solution and thus provides a clear understanding of the role of perturbation theory at its various orders. Convergence and the computational advantages and disadvantages of the method are discussed

  7. Numerical modelling of mine workings.

    CSIR Research Space (South Africa)

    Lightfoot, N

    1999-03-01

    Full Text Available to cover most of what is required for a practising rock mechanics engineer to be able to use any of these five programs to solve practical mining problems. The chapters on specific programs discuss their individual strengths and weaknesses and highlight... and applications of numerical modelling in the context of the South African gold and platinum mining industries. This includes an example that utilises a number of different numerical 3 modelling programs to solve a single problem. This particular example...

  8. An example of numerical simulation in causal set dynamics

    International Nuclear Information System (INIS)

    Krugly, Alexey L; Tserkovnikov, Ivan A

    2013-01-01

    The model of a discrete pregeometry on a microscopic scale is an x-graph. This is a directed acyclic graph. An outdegree and an indegree of each vertex are not more than 2. The sets of vertices and edges of x-graph are particular cases of causal sets. The sequential growth of a graph is an addition of new vertices one by one. A simple stochastic algorithm of sequential growth of x-graph are considered. It is based on a random walk at the x-graph. The particles in this model must be self-organized repetitive structures. We introduce the method of search of such repetitive structures. It is based on a discrete Fourier transformation. An example of numerical simulation is introduced.

  9. Numerical model CCC

    International Nuclear Information System (INIS)

    Bodvarsson, G.S.; Lippmann, M.J.

    1980-01-01

    The computer program CCC (conduction-convection-consolidation), developed at Lawrence Berkeley Laboratory, solves numerically the heat and mass flow equations for a fully saturated medium, and computes one-dimensional consolidation of the simulated systems. The model employs the Integrated Finite Difference Method (IFDM) in discretizing the saturated medium and formulating the governing equations. The sets of equations are solved either by an iterative solution technique (old version) or an efficient sparse solver (new version). The deformation of the medium is calculated using the one-dimensional consolidation theory of Terzaghi. In this paper, the numerical code is described, validation examples given and areas of application discussed. Several example problems involving flow through fractured media are also presented

  10. Practical examples and discussion in junior high school biological delivery classes

    OpenAIRE

    石井, 照久; ISHII, Teruhisa

    2013-01-01

    Practical examples of the delivery class in junior high school biological education were reported. In 2006-2012, author did 13 times of delivery class in 5 junior high schools in Akita Prefecture. The contents of the delivery classes were‘‘Observation of animals in river’’, ‘‘Marine ecology’’, ‘‘Ecological problems’’ and ‘‘cells and DNA’’. In this report, these contents were discussed in regard to new course of education in Japan. Also, better delivery class in junior high school biological e...

  11. A finite difference, multipoint flux numerical approach to flow in porous media: Numerical examples

    KAUST Repository

    Osman, Hossam Omar; Salama, Amgad; Sun, Shuyu; Bao, Kai

    2012-01-01

    It is clear that none of the current available numerical schemes which may be adopted to solve transport phenomena in porous media fulfill all the required robustness conditions. That is while the finite difference methods are the simplest of all, they face several difficulties in complex geometries and anisotropic media. On the other hand, while finite element methods are well suited to complex geometries and can deal with anisotropic media, they are more involved in coding and usually require more execution time. Therefore, in this work we try to combine some features of the finite element technique, namely its ability to work with anisotropic media with the finite difference approach. We reduce the multipoint flux, mixed finite element technique through some quadrature rules to an equivalent cell-centered finite difference approximation. We show examples on using this technique to single-phase flow in anisotropic porous media.

  12. A finite difference, multipoint flux numerical approach to flow in porous media: Numerical examples

    KAUST Repository

    Osman, Hossam Omar

    2012-06-17

    It is clear that none of the current available numerical schemes which may be adopted to solve transport phenomena in porous media fulfill all the required robustness conditions. That is while the finite difference methods are the simplest of all, they face several difficulties in complex geometries and anisotropic media. On the other hand, while finite element methods are well suited to complex geometries and can deal with anisotropic media, they are more involved in coding and usually require more execution time. Therefore, in this work we try to combine some features of the finite element technique, namely its ability to work with anisotropic media with the finite difference approach. We reduce the multipoint flux, mixed finite element technique through some quadrature rules to an equivalent cell-centered finite difference approximation. We show examples on using this technique to single-phase flow in anisotropic porous media.

  13. Numerical Recipes in C++: The Art of Scientific Computing (2nd edn). Numerical Recipes Example Book (C++) (2nd edn). Numerical Recipes Multi-Language Code CD ROM with LINUX or UNIX Single-Screen License Revised Version

    International Nuclear Information System (INIS)

    Borcherds, P

    2003-01-01

    The two Numerical Recipes books are marvellous. The principal book, The Art of Scientific Computing, contains program listings for almost every conceivable requirement, and it also contains a well written discussion of the algorithms and the numerical methods involved. The Example Book provides a complete driving program, with helpful notes, for nearly all the routines in the principal book. The first edition of Numerical Recipes: The Art of Scientific Computing was published in 1986 in two versions, one with programs in Fortran, the other with programs in Pascal. There were subsequent versions with programs in BASIC and in C. The second, enlarged edition was published in 1992, again in two versions, one with programs in Fortran (NR(F)), the other with programs in C (NR(C)). In 1996 the authors produced Numerical Recipes in Fortran 90: The Art of Parallel Scientific Computing as a supplement, called Volume 2, with the original (Fortran) version referred to as Volume 1. Numerical Recipes in C++ (NR(C++)) is another version of the 1992 edition. The numerical recipes are also available on a CD ROM: if you want to use any of the recipes, I would strongly advise you to buy the CD ROM. The CD ROM contains the programs in all the languages. When the first edition was published I bought it, and have also bought copies of the other editions as they have appeared. Anyone involved in scientific computing ought to have a copy of at least one version of Numerical Recipes, and there also ought to be copies in every library. If you already have NR(F), should you buy the NR(C++) and, if not, which version should you buy? In the preface to Volume 2 of NR(F), the authors say 'C and C++ programmers have not been far from our minds as we have written this volume, and we think that you will find that time spent in absorbing its principal lessons will be amply repaid in the future as C and C++ eventually develop standard parallel extensions'. In the preface and introduction to NR

  14. Freeform aberrations in phase space: an example.

    Science.gov (United States)

    Babington, James

    2017-06-01

    We consider how optical propagation and aberrations of freeform systems can be formulated in phase space. As an example system, a freeform prism is analyzed and discussed. Symmetry considerations and their group theory descriptions are given some importance. Numerical aberrations are also highlighted and put into the context of the underlying aberration theory.

  15. Numerical and experimental analysis of eddy currents induced in tokamak machines

    International Nuclear Information System (INIS)

    Takahashi, T.; Takahashi, G.; Kazawa, Y.; Suzuki, Y.

    1977-01-01

    This paper deals with eddy current phenomena in Tokamak machines. A numerical method is presented which will permit eddy currents to be calculated. Examples of numerical results and a discussion of the JT-60 are shown. Calculations are checked by measurements in basic models

  16. Numerical evaluation of one-loop diagrams near exceptional momentum configurations

    International Nuclear Information System (INIS)

    Giele, Walter T.; Zanderighi, Giulia; Glover, E.W.N.

    2004-01-01

    One problem which plagues the numerical evaluation of one-loop Feynman diagrams using recursive integration by part relations is a numerical instability near exceptional momentum configurations. In this contribution we will discuss a generic solution to this problem. As an example we consider the case of forward light-by-light scattering

  17. Numerical calculation of impurity charge state distributions

    International Nuclear Information System (INIS)

    Crume, E.C.; Arnurius, D.E.

    1977-09-01

    The numerical calculation of impurity charge state distributions using the computer program IMPDYN is discussed. The time-dependent corona atomic physics model used in the calculations is reviewed, and general and specific treatments of electron impact ionization and recombination are referenced. The complete program and two examples relating to tokamak plasmas are given on a microfiche so that a user may verify that his version of the program is working properly. In the discussion of the examples, the corona steady-state approximation is shown to have significant defects when the plasma environment, particularly the electron temperature, is changing rapidly

  18. Numerical treatment of experimental data in calibration procedures

    International Nuclear Information System (INIS)

    Moreno, C.

    1993-06-01

    A discussion of a numerical procedure to find the proportionality factor between two measured quantities is given in the framework of the least-squares method. Variable, as well as constant, amounts of experimental uncertainties are considered for each variable along their measured range. The variance of the proportionality factor is explicitly given as a closed analytical expression valid for the general case. Limits of the results obtained here have been studied allowing comparisons with those obtained using classical least-squares expressions. Analytical and numerical examples are also discussed. (author). 11 refs, 1 fig., 1 tab

  19. Piecewise Polynomial Aggregation as Preprocessing for Data Numerical Modeling

    Science.gov (United States)

    Dobronets, B. S.; Popova, O. A.

    2018-05-01

    Data aggregation issues for numerical modeling are reviewed in the present study. The authors discuss data aggregation procedures as preprocessing for subsequent numerical modeling. To calculate the data aggregation, the authors propose using numerical probabilistic analysis (NPA). An important feature of this study is how the authors represent the aggregated data. The study shows that the offered approach to data aggregation can be interpreted as the frequency distribution of a variable. To study its properties, the density function is used. For this purpose, the authors propose using the piecewise polynomial models. A suitable example of such approach is the spline. The authors show that their approach to data aggregation allows reducing the level of data uncertainty and significantly increasing the efficiency of numerical calculations. To demonstrate the degree of the correspondence of the proposed methods to reality, the authors developed a theoretical framework and considered numerical examples devoted to time series aggregation.

  20. Numerical simulations in granular matter: The discharge of a 2D silo

    Indian Academy of Sciences (India)

    ... short and elementary review of numerical simulations in granular assemblies, giving the process of discharge of a 2D silo as an example. The strengths and limitations of different approaches are discussed, together with some comments on the specific issues related to the numerics of discontinuous dissipative collisions.

  1. The numerical simulation of accelerator components

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.; Hanerfeld, H.

    1987-05-01

    The techniques of the numerical simulation of plasmas can be readily applied to problems in accelerator physics. Because the problems usually involve a single component ''plasma,'' and times that are at most, a few plasma oscillation periods, it is frequently possible to make very good simulations with relatively modest computation resources. We will discuss the methods and illustrate them with several examples. One of the more powerful techniques of understanding the motion of charged particles is to view computer-generated motion pictures. We will show several little movie strips to illustrate the discussions. The examples will be drawn from the application areas of Heavy Ion Fusion, electron-positron linear colliders and injectors for free-electron lasers. 13 refs., 10 figs., 2 tabs

  2. A novel numerical approach for workspace determination of parallel mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yiqun; Niu, Junchuan; Liu, Zhihui; Zhang, Fuliang [Shandong University, Shandong (China)

    2017-06-15

    In this paper, a novel numerical approach is proposed for workspace determination of parallel mechanisms. Compared with the classical numerical approaches, this presented approach discretizes both location and orientation of the mechanism simultaneously, not only one of the two. This technique makes the presented numerical approach applicable in determining almost all types of workspaces, while traditional numerical approaches are only applicable in determining the constant orientation workspace and orientation workspace. The presented approach and its steps to determine the inclusive orientation workspace and total orientation workspace are described in detail. A lower-mobility parallel mechanism and a six-degrees-of-freedom Stewart platform are set as examples, the workspaces of these mechanisms are estimated and visualized by the proposed numerical approach. Furthermore, the efficiency of the presented approach is discussed. The examples show that the presented approach is applicable in determining the inclusive orientation workspace and total orientation workspace of parallel mechanisms with high efficiency.

  3. A textbook of computer based numerical and statistical techniques

    CERN Document Server

    Jaiswal, AK

    2009-01-01

    About the Book: Application of Numerical Analysis has become an integral part of the life of all the modern engineers and scientists. The contents of this book covers both the introductory topics and the more advanced topics such as partial differential equations. This book is different from many other books in a number of ways. Salient Features: Mathematical derivation of each method is given to build the students understanding of numerical analysis. A variety of solved examples are given. Computer programs for almost all numerical methods discussed have been presented in `C` langu

  4. Numerical models for high beta magnetohydrodynamic flow

    International Nuclear Information System (INIS)

    Brackbill, J.U.

    1987-01-01

    The fundamentals of numerical magnetohydrodynamics for highly conducting, high-beta plasmas are outlined. The discussions emphasize the physical properties of the flow, and how elementary concepts in numerical analysis can be applied to the construction of finite difference approximations that capture these features. The linear and nonlinear stability of explicit and implicit differencing in time is examined, the origin and effect of numerical diffusion in the calculation of convective transport is described, and a technique for maintaining solenoidality in the magnetic field is developed. Many of the points are illustrated by numerical examples. The techniques described are applicable to the time-dependent, high-beta flows normally encountered in magnetically confined plasmas, plasma switches, and space and astrophysical plasmas. 40 refs

  5. A two-dimensional adaptive numerical grids generation method and its realization

    International Nuclear Information System (INIS)

    Xu Tao; Shui Hongshou

    1998-12-01

    A two-dimensional adaptive numerical grids generation method and its particular realization is discussed. This method is effective and easy to realize if the control functions are given continuously, and the grids for some regions is showed in this case. For Computational Fluid Dynamics, because the control values of adaptive grids-numerical solution is given in dispersed form, it is needed to interpolate these values to get the continuous control functions. These interpolation techniques are discussed, and some efficient adaptive grids are given. A two-dimensional fluid dynamics example was also given

  6. Numerical models for differential problems

    CERN Document Server

    Quarteroni, Alfio

    2017-01-01

    In this text, we introduce the basic concepts for the numerical modelling of partial differential equations. We consider the classical elliptic, parabolic and hyperbolic linear equations, but also the diffusion, transport, and Navier-Stokes equations, as well as equations representing conservation laws, saddle-point problems and optimal control problems. Furthermore, we provide numerous physical examples which underline such equations. We then analyze numerical solution methods based on finite elements, finite differences, finite volumes, spectral methods and domain decomposition methods, and reduced basis methods. In particular, we discuss the algorithmic and computer implementation aspects and provide a number of easy-to-use programs. The text does not require any previous advanced mathematical knowledge of partial differential equations: the absolutely essential concepts are reported in a preliminary chapter. It is therefore suitable for students of bachelor and master courses in scientific disciplines, an...

  7. Numerical calculation of two-phase flows

    International Nuclear Information System (INIS)

    Travis, J.R.; Harlow, F.H.; Amsden, A.A.

    1975-06-01

    The theoretical study of time-varying two-phase flow problems in several space dimensions introduces such a complicated set of coupled nonlinear partial differential equations that numerical solution procedures for high-speed computers are required in almost all but the simplest examples. Efficient attainment of realistic solutions for practical problems requires a finite- difference formulation that is simultaneously implicit in the treatment of mass convection, equations of state, and the momentum coupling between phases. Such a method is described, the equations on which it is based are discussed, and its properties are illustrated by means of examples. In particular, the capability for calculating physical instabilities and other time-varying dynamics, at the same time avoiding numerical instability is emphasized. The computer code is applicable to problems in reactor safety analysis, the dynamics of fluidized dust beds, raindrops or aerosol transport, and a variety of similar circumstances, including the effects of phase transitions and the release of latent heat or chemical energy. (U.S.)

  8. A summary of numerical computation for special functions

    International Nuclear Information System (INIS)

    Zhang Shanjie

    1992-01-01

    In the paper, special functions frequently encountered in science and engineering calculations are introduced. The computation of the values of Bessel function and elliptic integrals are taken as the examples, and some common algorithms for computing most special functions, such as series expansion for small argument, asymptotic approximations for large argument, polynomial approximations, recurrence formulas and iteration method, are discussed. In addition, the determination of zeros of some special functions, and the other questions related to numerical computation are also discussed

  9. Projector Method: theory and examples

    International Nuclear Information System (INIS)

    Dahl, E.D.

    1985-01-01

    The Projector Method technique for numerically analyzing lattice gauge theories was developed to take advantage of certain simplifying features of gauge theory models. Starting from a very general notion of what the Projector Method is, the techniques are applied to several model problems. After these examples have traced the development of the actual algorithm from the general principles of the Projector Method, a direct comparison between the Projector and the Euclidean Monte Carlo is made, followed by a discussion of the application to Periodic Quantum Electrodynamics in two and three spatial dimensions. Some methods for improving the efficiency of the Projector in various circumstances are outlined. 10 refs., 7 figs

  10. Stable Numerical Approach for Fractional Delay Differential Equations

    Science.gov (United States)

    Singh, Harendra; Pandey, Rajesh K.; Baleanu, D.

    2017-12-01

    In this paper, we present a new stable numerical approach based on the operational matrix of integration of Jacobi polynomials for solving fractional delay differential equations (FDDEs). The operational matrix approach converts the FDDE into a system of linear equations, and hence the numerical solution is obtained by solving the linear system. The error analysis of the proposed method is also established. Further, a comparative study of the approximate solutions is provided for the test examples of the FDDE by varying the values of the parameters in the Jacobi polynomials. As in special case, the Jacobi polynomials reduce to the well-known polynomials such as (1) Legendre polynomial, (2) Chebyshev polynomial of second kind, (3) Chebyshev polynomial of third and (4) Chebyshev polynomial of fourth kind respectively. Maximum absolute error and root mean square error are calculated for the illustrated examples and presented in form of tables for the comparison purpose. Numerical stability of the presented method with respect to all four kind of polynomials are discussed. Further, the obtained numerical results are compared with some known methods from the literature and it is observed that obtained results from the proposed method is better than these methods.

  11. Numerical methods for characterization of synchrotron radiation based on the Wigner function method

    Directory of Open Access Journals (Sweden)

    Takashi Tanaka

    2014-06-01

    Full Text Available Numerical characterization of synchrotron radiation based on the Wigner function method is explored in order to accurately evaluate the light source performance. A number of numerical methods to compute the Wigner functions for typical synchrotron radiation sources such as bending magnets, undulators and wigglers, are presented, which significantly improve the computation efficiency and reduce the total computation time. As a practical example of the numerical characterization, optimization of betatron functions to maximize the brilliance of undulator radiation is discussed.

  12. Exact solutions, numerical relativity and gravitational radiation

    International Nuclear Information System (INIS)

    Winicour, J.

    1986-01-01

    In recent years, there has emerged a new use for exact solutions to Einstein's equation as checks on the accuracy of numerical relativity codes. Much has already been written about codes based upon the space-like Cauchy problem. In the case of two Killing vectors, a numerical characteristic initial value formulation based upon two intersecting families of null hypersurfaces has successfully evolved the Schwarzschild and the colliding plane wave vacuum solutions. Here the author discusses, in the context of exact solutions, numerical studies of gravitational radiation based upon the null cone initial value problem. Every stage of progress in the null cone approach has been associated with exact solutions in some sense. He begins by briefly recapping this history. Then he presents two new examples illustrating how exact solutions can be useful

  13. Numerical methods and analysis of multiscale problems

    CERN Document Server

    Madureira, Alexandre L

    2017-01-01

    This book is about numerical modeling of multiscale problems, and introduces several asymptotic analysis and numerical techniques which are necessary for a proper approximation of equations that depend on different physical scales. Aimed at advanced undergraduate and graduate students in mathematics, engineering and physics – or researchers seeking a no-nonsense approach –, it discusses examples in their simplest possible settings, removing mathematical hurdles that might hinder a clear understanding of the methods. The problems considered are given by singular perturbed reaction advection diffusion equations in one and two-dimensional domains, partial differential equations in domains with rough boundaries, and equations with oscillatory coefficients. This work shows how asymptotic analysis can be used to develop and analyze models and numerical methods that are robust and work well for a wide range of parameters.

  14. Third-order-accurate numerical methods for efficient, large time-step solutions of mixed linear and nonlinear problems

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, J.W.

    1995-02-01

    There is an increasing need for more accurate numerical methods for large-scale nonlinear magneto-fluid turbulence calculations. These methods should not only increase the current state of the art in terms of accuracy, but should also continue to optimize other desired properties such as simplicity, minimized computation, minimized memory requirements, and robust stability. This includes the ability to stably solve stiff problems with long time-steps. This work discusses a general methodology for deriving higher-order numerical methods. It also discusses how the selection of various choices can affect the desired properties. The explicit discussion focuses on third-order Runge-Kutta methods, including general solutions and five examples. The study investigates the linear numerical analysis of these methods, including their accuracy, general stability, and stiff stability. Additional appendices discuss linear multistep methods, discuss directions for further work, and exhibit numerical analysis results for some other commonly used lower-order methods.

  15. Numerical simulation of impact tests on reinforced concrete beams

    International Nuclear Information System (INIS)

    Jiang, Hua; Wang, Xiaowo; He, Shuanhai

    2012-01-01

    Highlights: ► Predictions using advanced concrete model compare well with the impact test results. ► Several important behavior of concrete is discussed. ► Two mesh ways incorporating rebar into concrete mesh is also discussed. ► Gives a example of using EPDC model and references to develop new constitutive models. -- Abstract: This paper focuses on numerical simulation of impact tests of reinforced concrete (RC) beams by the LS-DYNA finite element (FE) code. In the FE model, the elasto-plastic damage cap (EPDC) model, which is based on continuum damage mechanics in combination with plasticity theory, is used for concrete, and the reinforcement is assumed to be elasto-plastic. The numerical results compares well with the experimental values reported in the literature, in terms of impact force history, mid-span deflection history and crack patterns of RC beams. By comparing the numerical and experimental results, several important behavior of concrete material is investigated, which includes: damage variable to describe the strain softening section of stress–strain curve; the cap surface to describe the plastic volume change; the shape of the meridian and deviatoric plane to describe the yield surface as well as two methods of incorporating rebar into concrete mesh. This study gives a good example of using EPDC model and can be utilized for the development new constitutive models for concrete in future.

  16. Component-oriented approach to the development and use of numerical models in high energy physics

    International Nuclear Information System (INIS)

    Amelin, N.S.; Komogorov, M.Eh.

    2002-01-01

    We discuss the main concepts of a component approach to the development and use of numerical models in high energy physics. This approach is realized as the NiMax software system. The discussed concepts are illustrated by numerous examples of the system user session. In appendix chapter we describe physics and numerical algorithms of the model components to perform simulation of hadronic and nuclear collisions at high energies. These components are members of hadronic application modules that have been developed with the help of the NiMax system. Given report is served as an early release of the NiMax manual mainly for model component users

  17. Literature survey, numerical examples, and recommended design studies for main-coolant pumps. Final report

    International Nuclear Information System (INIS)

    Allaire, P.E.; Barrett, L.E.

    1982-06-01

    This report presents an up-to-date literature survey, examples of calculations of seal forces or other pump properties, and recommendations for future work pertaining to primary coolant pumps and primary recirculating pumps in the nuclear power industry. Five main areas are covered: pump impeller forces, fluid annuli, bearings, seals, and rotor calculations. The main conclusion is that forces in pump impellers is perhaps the least well understood area, seals have had some good design work done on them recently, fluid annuli effects are being discussed in the literature, bearing designs are fairly well known, and rotor calculations have been discussed widely in the literature. It should be noted, however, that usually the literature in a given area is not applied to pumps in nuclear power stations. The most immediate need for a combined theoretical and experimental design capability exists in mechanical face seals

  18. Stochastic numerical methods an introduction for students and scientists

    CERN Document Server

    Toral, Raul

    2014-01-01

    Stochastic Numerical Methods introduces at Master level the numerical methods that use probability or stochastic concepts to analyze random processes. The book aims at being rather general and is addressed at students of natural sciences (Physics, Chemistry, Mathematics, Biology, etc.) and Engineering, but also social sciences (Economy, Sociology, etc.) where some of the techniques have been used recently to numerically simulate different agent-based models. Examples included in the book range from phase-transitions and critical phenomena, including details of data analysis (extraction of critical exponents, finite-size effects, etc.), to population dynamics, interfacial growth, chemical reactions, etc. Program listings are integrated in the discussion of numerical algorithms to facilitate their understanding. From the contents: Review of Probability ConceptsMonte Carlo IntegrationGeneration of Uniform and Non-uniformRandom Numbers: Non-correlated ValuesDynamical MethodsApplications to Statistical MechanicsIn...

  19. Numerical methods design, analysis, and computer implementation of algorithms

    CERN Document Server

    Greenbaum, Anne

    2012-01-01

    Numerical Methods provides a clear and concise exploration of standard numerical analysis topics, as well as nontraditional ones, including mathematical modeling, Monte Carlo methods, Markov chains, and fractals. Filled with appealing examples that will motivate students, the textbook considers modern application areas, such as information retrieval and animation, and classical topics from physics and engineering. Exercises use MATLAB and promote understanding of computational results. The book gives instructors the flexibility to emphasize different aspects--design, analysis, or computer implementation--of numerical algorithms, depending on the background and interests of students. Designed for upper-division undergraduates in mathematics or computer science classes, the textbook assumes that students have prior knowledge of linear algebra and calculus, although these topics are reviewed in the text. Short discussions of the history of numerical methods are interspersed throughout the chapters. The book a...

  20. Numerical analysis of short-pulse laser interactions with thin metal film

    Directory of Open Access Journals (Sweden)

    E. Majchrzak

    2010-10-01

    Full Text Available Thin metal film subjected to a short-pulse laser heating is considered. The hyperbolic two-temperature model describing the temporal andspatial evolution of the lattice and electrons temperatures is discussed. At the stage of numerical computations the finite difference method is used. In the final part of the paper the examples of computations are shown.

  1. Interactive Numerical and Symbolic Analysis: A New Paradigm for Teaching Electronics

    Directory of Open Access Journals (Sweden)

    Jean-Claude Thomassian

    2008-09-01

    Full Text Available Analog Insydes, Mathematica’s symbolic circuit analysis toolbox, uses modern algorithms of expression simplification depending on comparisons with a numerical reference solution of the circuit under investigation. Some insight is offered on how the complexity of an expression barrier is overcome followed by two classical examples, a BJT emitter follower and a MOSFET common-gate amplifier stage to illustrate the proposed method at work. A concluding section discusses that time spent teaching introductory electronics by computer-aided circuit analysis, interactive numerical and symbolic, is a worthwhile investment.

  2. Theory and applications of numerical analysis

    CERN Document Server

    Phillips, G M

    1996-01-01

    This text is a self-contained Second Edition, providing an introductory account of the main topics in numerical analysis. The book emphasizes both the theorems which show the underlying rigorous mathematics andthe algorithms which define precisely how to program the numerical methods. Both theoretical and practical examples are included.* a unique blend of theory and applications* two brand new chapters on eigenvalues and splines* inclusion of formal algorithms* numerous fully worked examples* a large number of problems, many with solutions

  3. Numerical integration for ab initio many-electron self energy calculations within the GW approximation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fang, E-mail: fliu@lsec.cc.ac.cn [School of Statistics and Mathematics, Central University of Finance and Economics, Beijing 100081 (China); Lin, Lin, E-mail: linlin@math.berkeley.edu [Department of Mathematics, University of California, Berkeley, CA 94720 (United States); Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Vigil-Fowler, Derek, E-mail: vigil@berkeley.edu [Department of Physics, University of California, Berkeley, CA 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lischner, Johannes, E-mail: jlischner597@gmail.com [Department of Physics, University of California, Berkeley, CA 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kemper, Alexander F., E-mail: afkemper@lbl.gov [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Sharifzadeh, Sahar, E-mail: ssharifz@bu.edu [Department of Electrical and Computer Engineering and Division of Materials Science and Engineering, Boston University, Boston, MA 02215 (United States); Jornada, Felipe H. da, E-mail: jornada@berkeley.edu [Department of Physics, University of California, Berkeley, CA 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Deslippe, Jack, E-mail: jdeslippe@lbl.gov [NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Yang, Chao, E-mail: cyang@lbl.gov [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); and others

    2015-04-01

    We present a numerical integration scheme for evaluating the convolution of a Green's function with a screened Coulomb potential on the real axis in the GW approximation of the self energy. Our scheme takes the zero broadening limit in Green's function first, replaces the numerator of the integrand with a piecewise polynomial approximation, and performs principal value integration on subintervals analytically. We give the error bound of our numerical integration scheme and show by numerical examples that it is more reliable and accurate than the standard quadrature rules such as the composite trapezoidal rule. We also discuss the benefit of using different self energy expressions to perform the numerical convolution at different frequencies.

  4. Towards standard testbeds for numerical relativity

    International Nuclear Information System (INIS)

    Alcubierre, Miguel; Allen, Gabrielle; Bona, Carles; Fiske, David; Goodale, Tom; Guzman, F Siddhartha; Hawke, Ian; Hawley, Scott H; Husa, Sascha; Koppitz, Michael; Lechner, Christiane; Pollney, Denis; Rideout, David; Salgado, Marcelo; Schnetter, Erik; Seidel, Edward; Shinkai, Hisa-aki; Shoemaker, Deirdre; Szilagyi, Bela; Takahashi, Ryoji; Winicour, Jeff

    2004-01-01

    In recent years, many different numerical evolution schemes for Einstein's equations have been proposed to address stability and accuracy problems that have plagued the numerical relativity community for decades. Some of these approaches have been tested on different spacetimes, and conclusions have been drawn based on these tests. However, differences in results originate from many sources, including not only formulations of the equations, but also gauges, boundary conditions, numerical methods and so on. We propose to build up a suite of standardized testbeds for comparing approaches to the numerical evolution of Einstein's equations that are designed to both probe their strengths and weaknesses and to separate out different effects, and their causes, seen in the results. We discuss general design principles of suitable testbeds, and we present an initial round of simple tests with periodic boundary conditions. This is a pivotal first step towards building a suite of testbeds to serve the numerical relativists and researchers from related fields who wish to assess the capabilities of numerical relativity codes. We present some examples of how these tests can be quite effective in revealing various limitations of different approaches, and illustrating their differences. The tests are presently limited to vacuum spacetimes, can be run on modest computational resources and can be used with many different approaches used in the relativity community

  5. Towards standard testbeds for numerical relativity

    Energy Technology Data Exchange (ETDEWEB)

    Alcubierre, Miguel [Inst. de Ciencias Nucleares, Univ. Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico Distrito Federal 04510 (Mexico); Allen, Gabrielle; Goodale, Tom; Guzman, F Siddhartha; Hawke, Ian; Husa, Sascha; Koppitz, Michael; Lechner, Christiane; Pollney, Denis; Rideout, David [Max-Planck-Inst. fuer Gravitationsphysik, Albert-Einstein-Institut, 14476 Golm (Germany); Bona, Carles [Departament de Fisica, Universitat de les Illes Balears, Ctra de Valldemossa km 7.5, 07122 Palma de Mallorca (Spain); Fiske, David [Dept. of Physics, Univ. of Maryland, College Park, MD 20742-4111 (United States); Hawley, Scott H [Center for Relativity, Univ. of Texas at Austin, Austin, Texas 78712 (United States); Salgado, Marcelo [Inst. de Ciencias Nucleares, Univ. Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico Distrito Federal 04510 (Mexico); Schnetter, Erik [Inst. fuer Astronomie und Astrophysik, Universitaet Tuebingen, 72076 Tuebingen (Germany); Seidel, Edward [Max-Planck-Inst. fuer Gravitationsphysik, Albert-Einstein-Inst., 14476 Golm (Germany); Shinkai, Hisa-aki [Computational Science Div., Inst. of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Shoemaker, Deirdre [Center for Radiophysics and Space Research, Cornell Univ., Ithaca, NY 14853 (United States); Szilagyi, Bela [Dept. of Physics and Astronomy, Univ. of Pittsburgh, Pittsburgh, PA 15260 (United States); Takahashi, Ryoji [Theoretical Astrophysics Center, Juliane Maries Vej 30, 2100 Copenhagen, (Denmark); Winicour, Jeff [Max-Planck-Inst. fuer Gravitationsphysik, Albert-Einstein-Institut, 14476 Golm (Germany)

    2004-01-21

    In recent years, many different numerical evolution schemes for Einstein's equations have been proposed to address stability and accuracy problems that have plagued the numerical relativity community for decades. Some of these approaches have been tested on different spacetimes, and conclusions have been drawn based on these tests. However, differences in results originate from many sources, including not only formulations of the equations, but also gauges, boundary conditions, numerical methods and so on. We propose to build up a suite of standardized testbeds for comparing approaches to the numerical evolution of Einstein's equations that are designed to both probe their strengths and weaknesses and to separate out different effects, and their causes, seen in the results. We discuss general design principles of suitable testbeds, and we present an initial round of simple tests with periodic boundary conditions. This is a pivotal first step towards building a suite of testbeds to serve the numerical relativists and researchers from related fields who wish to assess the capabilities of numerical relativity codes. We present some examples of how these tests can be quite effective in revealing various limitations of different approaches, and illustrating their differences. The tests are presently limited to vacuum spacetimes, can be run on modest computational resources and can be used with many different approaches used in the relativity community.

  6. Elliptic differential equations theory and numerical treatment

    CERN Document Server

    Hackbusch, Wolfgang

    2017-01-01

    This book simultaneously presents the theory and the numerical treatment of elliptic boundary value problems, since an understanding of the theory is necessary for the numerical analysis of the discretisation. It first discusses the Laplace equation and its finite difference discretisation before addressing the general linear differential equation of second order. The variational formulation together with the necessary background from functional analysis provides the basis for the Galerkin and finite-element methods, which are explored in detail. A more advanced chapter leads the reader to the theory of regularity. Individual chapters are devoted to singularly perturbed as well as to elliptic eigenvalue problems. The book also presents the Stokes problem and its discretisation as an example of a saddle-point problem taking into account its relevance to applications in fluid dynamics.

  7. Spectral methods in numerical plasma simulation

    International Nuclear Information System (INIS)

    Coutsias, E.A.; Hansen, F.R.; Huld, T.; Knorr, G.; Lynov, J.P.

    1989-01-01

    An introduction is given to the use of spectral methods in numerical plasma simulation. As examples of the use of spectral methods, solutions to the two-dimensional Euler equations in both a simple, doubly periodic region, and on an annulus will be shown. In the first case, the solution is expanded in a two-dimensional Fourier series, while a Chebyshev-Fourier expansion is employed in the second case. A new, efficient algorithm for the solution of Poisson's equation on an annulus is introduced. Problems connected to aliasing and to short wavelength noise generated by gradient steepening are discussed. (orig.)

  8. Domain-General Factors Influencing Numerical and Arithmetic Processing

    Directory of Open Access Journals (Sweden)

    André Knops

    2017-12-01

    Full Text Available This special issue contains 18 articles that address the question how numerical processes interact with domain-general factors. We start the editorial with a discussion of how to define domain-general versus domain-specific factors and then discuss the contributions to this special issue grouped into two core numerical domains that are subject to domain-general influences (see Figure 1. The first group of contributions addresses the question how numbers interact with spatial factors. The second group of contributions is concerned with factors that determine and predict arithmetic understanding, performance and development. This special issue shows that domain-general (Table 1a as well as domain-specific (Table 1b abilities influence numerical and arithmetic performance virtually at all levels and make it clear that for the field of numerical cognition a sole focus on one or several domain-specific factors like the approximate number system or spatial-numerical associations is not sufficient. Vice versa, in most studies that included domain-general and domain-specific variables, domain-specific numerical variables predicted arithmetic performance above and beyond domain-general variables. Therefore, a sole focus on domain-general aspects such as, for example, working memory, to explain, predict and foster arithmetic learning is also not sufficient. Based on the articles in this special issue we conclude that both domain-general and domain-specific factors contribute to numerical cognition. But the how, why and when of their contribution still needs to be better understood. We hope that this special issue may be helpful to readers in constraining future theory and model building about the interplay of domain-specific and domain-general factors.

  9. Discussion on geochemical characteristics, mechanism and prospecting model of gluey type sandstone uranium mineralization--taking Redwell uranium deposit as an example

    International Nuclear Information System (INIS)

    Wang Jinping

    1998-01-01

    Redwell uranium deposit hosted in the red clastic rock formation, is a typical example of gluey type uranium mineralization, which has not been reported so far in China. Based on the study of geochemical characteristics of Redwell deposit, the author discusses the genetic mechanism of this type deposits, and proposes the prospecting model of 4 in 1 of red bed-fault-oil gas-uranium source

  10. Analysis by numerical simulations of non-linear phenomenons in vertical pump rotor dynamic

    International Nuclear Information System (INIS)

    Bediou, J.; Pasqualini, G.

    1992-01-01

    Controlling dynamical behavior of main coolant pumps shaftlines is an interesting subject for the user and the constructor. The first is mainly concerned by the interpretation of on field observed behavior, monitoring, reliability and preventive maintenance of his machines. The second must in addition manage with sometimes contradictory requirements related to mechanical design and performances optimization (shaft diameter reduction, clearance,...). The use of numerical modeling is now a classical technique for simple analysis (rough prediction of critical speeds for instance) but is still limited, in particular for vertical shaftline especially when equipped with hydrodynamic bearings, due to the complexity of encountered phenomenons in that type of machine. The vertical position of the shaftline seems to be the origin of non linear dynamical behavior, the analysis of which, as presented in the following discussion, requires specific modelization of fluid film, particularly for hydrodynamic bearings. The low static load generally no longer allows use of stiffness and damping coefficients classically calculated by linearizing fluid film equations near a stable static equilibrium position. For the analysis of such machines, specific numerical models have been developed at Electricite de France in a package for general rotordynamics analysis. Numerical models are briefly described. Then an example is precisely presented and discussed to illustrate some considered phenomenons and their consequences on machine behavior. In this example, the authors interpret the observed behavior by using numerical models, and demonstrate the advantage of such analysis for better understanding of vertical pumps rotordynamic

  11. Replica symmetry breaking in short range spin glasses: A review of the theoretical foundations and of the numerical evidence

    International Nuclear Information System (INIS)

    Marinari, E.; Zuliani, F.; Parisi, G.; Ricci-Tersenghi, F.; Ruiz-Lorenzo, J.J.

    2000-04-01

    We discuss Replica Symmetry Breaking (RSB) in Spin Glasses. We present an update about the state of the matter, both from the analytical and from the numerical point of view. We put a particular attention in discussing the difficulties stressed by Newman and Stein concerning the problem of constructing pure states in spin glass systems. We mainly discuss about what happens in finite dimensional, realistic spin glasses. Together with a detailed review of some of most important features, facts, data, phenomena, we present some new theoretical ideas and numerical results. We discuss among others the basic idea of the RSB theory, correlation functions, interfaces, overlaps, pure states, random field and the dynamical approach. We present new numerical results for the behavior of coupled replicas and about the numerical verification of sum rules, and we review some of the available numerical results that we consider of larger importance (for example the determination of the phase transition point, the correlation functions, the window overlaps, the dynamical behavior of the system). (author)

  12. Numerical analysis

    CERN Document Server

    Rao, G Shanker

    2006-01-01

    About the Book: This book provides an introduction to Numerical Analysis for the students of Mathematics and Engineering. The book is designed in accordance with the common core syllabus of Numerical Analysis of Universities of Andhra Pradesh and also the syllabus prescribed in most of the Indian Universities. Salient features: Approximate and Numerical Solutions of Algebraic and Transcendental Equation Interpolation of Functions Numerical Differentiation and Integration and Numerical Solution of Ordinary Differential Equations The last three chapters deal with Curve Fitting, Eigen Values and Eigen Vectors of a Matrix and Regression Analysis. Each chapter is supplemented with a number of worked-out examples as well as number of problems to be solved by the students. This would help in the better understanding of the subject. Contents: Errors Solution of Algebraic and Transcendental Equations Finite Differences Interpolation with Equal Intervals Interpolation with Unequal Int...

  13. Numerical relativity

    International Nuclear Information System (INIS)

    Piran, T.

    1982-01-01

    There are many recent developments in numerical relativity, but there remain important unsolved theoretical and practical problems. The author reviews existing numerical approaches to solution of the exact Einstein equations. A framework for classification and comparison of different numerical schemes is presented. Recent numerical codes are compared using this framework. The discussion focuses on new developments and on currently open questions, excluding a review of numerical techniques. (Auth.)

  14. An introduction to numerical methods and analysis

    CERN Document Server

    Epperson, James F

    2013-01-01

    Praise for the First Edition "". . . outstandingly appealing with regard to its style, contents, considerations of requirements of practice, choice of examples, and exercises.""-Zentralblatt MATH "". . . carefully structured with many detailed worked examples.""-The Mathematical Gazette The Second Edition of the highly regarded An Introduction to Numerical Methods and Analysis provides a fully revised guide to numerical approximation. The book continues to be accessible and expertly guides readers through the many available techniques of numerical methods and analysis. An Introduction to

  15. Usage of Numerical Optimization in Wind Turbine Airfoil Design

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, F. [ECN Wind Energy, Petten (Netherlands)

    2011-01-15

    One important key element in the aerodynamic design of wind turbines is the use of specially tailored airfoils to increase the ratio of energy capture to the loading and thereby to reduce the cost of energy. This work is focused on the design of a wind turbine airfoil by using numerical optimization. First, the requirements for this class of airfoils are illustrated and discussed in order to have an exhaustive outline of the complexity of the problem. Then the optimization approach is presented; a gradient-based algorithm is used, coupled with RFOIL solver and a composite Bezier geometrical parameterization. A particularly sensitive point is the choice and implementation of constraints; to formalize the design requirements in the most complete and effective way, the effects of activating specific constraints are discussed. Finally, a numerical example regarding the design of a high-efficiency airfoil for the outer part of a blade is illustrated, and the results are compared with existing wind turbine airfoils.

  16. Numerical methods using Matlab

    CERN Document Server

    Lindfield, George

    2012-01-01

    Numerical Methods using MATLAB, 3e, is an extensive reference offering hundreds of useful and important numerical algorithms that can be implemented into MATLAB for a graphical interpretation to help researchers analyze a particular outcome. Many worked examples are given together with exercises and solutions to illustrate how numerical methods can be used to study problems that have applications in the biosciences, chaos, optimization, engineering and science across the board. Numerical Methods using MATLAB, 3e, is an extensive reference offering hundreds of use

  17. Maple by example

    CERN Document Server

    Abell, Martha L

    2005-01-01

    Maple by Example, Third Edition, is a reference/text with CD for beginning and experienced students, professional engineers, and other Maple users. This new edition has been updated to be compatible with the most recent release of the Maple software. Coverage includes built-in Maple commands used in courses and practices that involve calculus, linear algebra, business mathematics, ordinary and partial differential equations, numerical methods, graphics and more. The CD-ROM provides updated Maple input and all text from the book.* Updated coverage of Maple features and functions * Backwards compatible for all versions* New applications from a variety of fields, including biology, physics and engineering* Expanded topics with many additional examples

  18. Numerically stable finite difference simulation for ultrasonic NDE in anisotropic composites

    Science.gov (United States)

    Leckey, Cara A. C.; Quintanilla, Francisco Hernando; Cole, Christina M.

    2018-04-01

    Simulation tools can enable optimized inspection of advanced materials and complex geometry structures. Recent work at NASA Langley is focused on the development of custom simulation tools for modeling ultrasonic wave behavior in composite materials. Prior work focused on the use of a standard staggered grid finite difference type of mathematical approach, by implementing a three-dimensional (3D) anisotropic Elastodynamic Finite Integration Technique (EFIT) code. However, observations showed that the anisotropic EFIT method displays numerically unstable behavior at the locations of stress-free boundaries for some cases of anisotropic materials. This paper gives examples of the numerical instabilities observed for EFIT and discusses the source of instability. As an alternative to EFIT, the 3D Lebedev Finite Difference (LFD) method has been implemented. The paper briefly describes the LFD approach and shows examples of stable behavior in the presence of stress-free boundaries for a monoclinic anisotropy case. The LFD results are also compared to experimental results and dispersion curves.

  19. Numerical algorithms for contact problems in linear elastostatics

    International Nuclear Information System (INIS)

    Barbosa, H.J.C.; Feijoo, R.A.

    1984-01-01

    In this work contact problems in linear elasticity are analysed by means of Finite Elements and Mathematical Programming Techniques. The principle of virtual work leads in this case to a variational inequality which in turn is equivalent, for Hookean materials and infinitesimal strains, to the minimization of the total potential energy over the set of all admissible virtual displacements. The use of Gauss-Seidel algorithm with relaxation and projection and also Lemke's algorithm and Uzawa's algorithm for solving the minimization problem is discussed. Finally numerical examples are presented. (Author) [pt

  20. Introductory numerical analysis

    CERN Document Server

    Pettofrezzo, Anthony J

    2006-01-01

    Written for undergraduates who require a familiarity with the principles behind numerical analysis, this classical treatment encompasses finite differences, least squares theory, and harmonic analysis. Over 70 examples and 280 exercises. 1967 edition.

  1. FINAS. Example manual. 2

    International Nuclear Information System (INIS)

    Iwata, Koji; Tsukimori, Kazuyuki; Ueno, Mutsuo

    2003-12-01

    FINAS is a general purpose structural analysis computer program which was developed by Japan Nuclear Cycle Development Institute for the analysis of static, dynamic and thermal responses of elastic and inelastic structures by the finite element method. This manual contains typical analysis examples that illustrate applications of FINAS to a variety of structural engineering problems. The first part of this manual presents fundamental examples in which numerical solutions by FINAS are compared with some analytical reference solutions, and the second part of this manual presents more complex examples intended for practical application. All the input data images and principal results for each problem are included in this manual for beginners' convenience. All the analyses are performed by using the FINAS Version 13.0. (author)

  2. Generic Example Proving Criteria for All

    Science.gov (United States)

    Yopp, David; Ely, Rob; Johnson­-Leung, Jennifer

    2015-01-01

    We review literature that discusses generic example proving and highlight ambiguities that pervade our research community's discourse about generic example arguments. We distinguish between pedagogical advice for choosing good examples that can serve as generic examples when teaching and advice for developing generic example arguments. We provide…

  3. Numerical Methods for Solution of the Extended Linear Quadratic Control Problem

    DEFF Research Database (Denmark)

    Jørgensen, John Bagterp; Frison, Gianluca; Gade-Nielsen, Nicolai Fog

    2012-01-01

    In this paper we present the extended linear quadratic control problem, its efficient solution, and a discussion of how it arises in the numerical solution of nonlinear model predictive control problems. The extended linear quadratic control problem is the optimal control problem corresponding...... to the Karush-Kuhn-Tucker system that constitute the majority of computational work in constrained nonlinear and linear model predictive control problems solved by efficient MPC-tailored interior-point and active-set algorithms. We state various methods of solving the extended linear quadratic control problem...... and discuss instances in which it arises. The methods discussed in the paper have been implemented in efficient C code for both CPUs and GPUs for a number of test examples....

  4. Numerical analysis

    CERN Document Server

    Khabaza, I M

    1960-01-01

    Numerical Analysis is an elementary introduction to numerical analysis, its applications, limitations, and pitfalls. Methods suitable for digital computers are emphasized, but some desk computations are also described. Topics covered range from the use of digital computers in numerical work to errors in computations using desk machines, finite difference methods, and numerical solution of ordinary differential equations. This book is comprised of eight chapters and begins with an overview of the importance of digital computers in numerical analysis, followed by a discussion on errors in comput

  5. Time Series Analysis and Forecasting by Example

    CERN Document Server

    Bisgaard, Soren

    2011-01-01

    An intuition-based approach enables you to master time series analysis with ease Time Series Analysis and Forecasting by Example provides the fundamental techniques in time series analysis using various examples. By introducing necessary theory through examples that showcase the discussed topics, the authors successfully help readers develop an intuitive understanding of seemingly complicated time series models and their implications. The book presents methodologies for time series analysis in a simplified, example-based approach. Using graphics, the authors discuss each presented example in

  6. Numerical integration of massive two-loop Mellin-Barnes integrals in Minkowskian regions

    International Nuclear Information System (INIS)

    Dubovyk, Ievgen

    2016-07-01

    Mellin-Barnes (MB) techniques applied to integrals emerging in particle physics perturbative calculations are summarized. New versions of AMBRE packages which construct planar and nonplanar MB representations are shortly discussed. The numerical package MBnumerics.m is presented for the first time which is able to calculate with a high precision multidimensional MB integrals in Minkowskian regions. Examples are given for massive vertex integrals which include threshold effects and several scale parameters.

  7. Numerical integration of massive two-loop Mellin-Barnes integrals in Minkowskian regions

    Energy Technology Data Exchange (ETDEWEB)

    Dubovyk, Ievgen [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Gluza, Janusz [Uniwersytet Slaski, Katowice (Poland). Inst. Fizyki; Riemann, Tord [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Uniwersytet Slaski, Katowice (Poland). Inst. Fizyki; Usovitsch, Johann [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2016-07-15

    Mellin-Barnes (MB) techniques applied to integrals emerging in particle physics perturbative calculations are summarized. New versions of AMBRE packages which construct planar and nonplanar MB representations are shortly discussed. The numerical package MBnumerics.m is presented for the first time which is able to calculate with a high precision multidimensional MB integrals in Minkowskian regions. Examples are given for massive vertex integrals which include threshold effects and several scale parameters.

  8. Numerical Characterization of Piezoceramics Using Resonance Curves

    Science.gov (United States)

    Pérez, Nicolás; Buiochi, Flávio; Brizzotti Andrade, Marco Aurélio; Adamowski, Julio Cezar

    2016-01-01

    Piezoelectric materials characterization is a challenging problem involving physical concepts, electrical and mechanical measurements and numerical optimization techniques. Piezoelectric ceramics such as Lead Zirconate Titanate (PZT) belong to the 6 mm symmetry class, which requires five elastic, three piezoelectric and two dielectric constants to fully represent the material properties. If losses are considered, the material properties can be represented by complex numbers. In this case, 20 independent material constants are required to obtain the full model. Several numerical methods have been used to adjust the theoretical models to the experimental results. The continuous improvement of the computer processing ability has allowed the use of a specific numerical method, the Finite Element Method (FEM), to iteratively solve the problem of finding the piezoelectric constants. This review presents the recent advances in the numerical characterization of 6 mm piezoelectric materials from experimental electrical impedance curves. The basic strategy consists in measuring the electrical impedance curve of a piezoelectric disk, and then combining the Finite Element Method with an iterative algorithm to find a set of material properties that minimizes the difference between the numerical impedance curve and the experimental one. Different methods to validate the results are also discussed. Examples of characterization of some common piezoelectric ceramics are presented to show the practical application of the described methods. PMID:28787875

  9. Numerical Characterization of Piezoceramics Using Resonance Curves

    Directory of Open Access Journals (Sweden)

    Nicolás Pérez

    2016-01-01

    Full Text Available Piezoelectric materials characterization is a challenging problem involving physical concepts, electrical and mechanical measurements and numerical optimization techniques. Piezoelectric ceramics such as Lead Zirconate Titanate (PZT belong to the 6 mm symmetry class, which requires five elastic, three piezoelectric and two dielectric constants to fully represent the material properties. If losses are considered, the material properties can be represented by complex numbers. In this case, 20 independent material constants are required to obtain the full model. Several numerical methods have been used to adjust the theoretical models to the experimental results. The continuous improvement of the computer processing ability has allowed the use of a specific numerical method, the Finite Element Method (FEM, to iteratively solve the problem of finding the piezoelectric constants. This review presents the recent advances in the numerical characterization of 6 mm piezoelectric materials from experimental electrical impedance curves. The basic strategy consists in measuring the electrical impedance curve of a piezoelectric disk, and then combining the Finite Element Method with an iterative algorithm to find a set of material properties that minimizes the difference between the numerical impedance curve and the experimental one. Different methods to validate the results are also discussed. Examples of characterization of some common piezoelectric ceramics are presented to show the practical application of the described methods.

  10. Numerical spin tracking in a synchrotron computer code Spink: Examples (RHIC)

    International Nuclear Information System (INIS)

    Luccio, A.

    1995-01-01

    In the course of acceleration of polarized protons in a synchrotron, many depolarizing resonances are encountered. They are classified in two categories: Intrinsic resonances that depend on the lattice structure of the ring and arise from the coupling of betatron oscillations with horizontal magnetic fields, and imperfection resonances caused by orbit distortions due to field errors. In general, the spectrum of resonances vs spin tune Gγ(G = 1.7928, the proton gyromagnetic anomaly, and y the proton relativistic energy ratio) for a given lattice tune ν, or vs ν for a given Gγ, contains a multitude of lines with various amplitudes or resonance strengths. The depolarization due to the resonance lines can be studied by numerically tracking protons with spin in a model accelerator. Tracking will allow one to check the strength of resonances, to study the effects of devices like Siberian Snakes, to find safe lattice tune regions where to operate, and finally to study in detail the operation of special devices such as Spin Flippers. A few computer codes exist that calculate resonance strengths E k and perform tracking, for proton and electron machines. Most relevant to our work for the AGS and RHIC machines are the programs Depol and Snake. Depol, calculates the E k 's by Fourier analysis. The input to Depol is the output of a machine model code, such as Synch or Mad, containing all details of the lattice. Snake, does the tracking, starting from a synthetic machine, that contains a certain number of periods, of FODO cells, of Siberian snakes, etc. We believed the complexities of machines like the AGS or RHIC could not be adequately represented by Snake. Then, we decided to write a new code, Spink, that combines some of the features of Depol and Snake. I.E., Spink reads a Mad output like Depol and tracks as Snake does. The structure of the code and examples for RHIC are described in the following

  11. Eye-gaze patterns as students study worked-out examples in mechanics

    Directory of Open Access Journals (Sweden)

    Brian H. Ross

    2010-10-01

    Full Text Available This study explores what introductory physics students actually look at when studying worked-out examples. Our classroom experiences indicate that introductory physics students neither discuss nor refer to the conceptual information contained in the text of worked-out examples. This study is an effort to determine to what extent students incorporate the textual information into the way they study. Student eye-gaze patterns were recorded as they studied the examples to aid them in solving a target problem. Contrary to our expectations from classroom interactions, students spent 40±3% of their gaze time reading the textual information. Their gaze patterns were also characterized by numerous jumps between corresponding mathematical and textual information, implying that they were combining information from both sources. Despite this large fraction of time spent reading the text, student recall of the conceptual information contained therein remained very poor. We also found that having a particular problem in mind had no significant effects on the gaze-patterns or conceptual information retention.

  12. Fast and Elegant Numerical Linear Algebra Using the RcppEigen Package

    Directory of Open Access Journals (Sweden)

    Douglas Bates

    2013-01-01

    Full Text Available The RcppEigen package provides access from R (R Core Team 2012a to the Eigen (Guennebaud, Jacob, and others 2012 C++ template library for numerical linear algebra. Rcpp (Eddelbuettel and François 2011, 2012 classes and specializations of the C++ templated functions as and wrap from Rcpp provide the "glue" for passing objects from R to C++ and back. Several introductory examples are presented. This is followed by an in-depth discussion of various available approaches for solving least-squares problems, including rank-revealing methods, concluding with an empirical run-time comparison. Last but not least, sparse matrix methods are discussed.

  13. A Critical Discussion of the Efficacy of Using Visual Learning Aids from the Internet to Promote Understanding, Illustrated with Examples Explaining the Daniell Voltaic Cell

    Science.gov (United States)

    Eilks, Ingo; Witteck, Torsten; Pietzner, Verena

    2009-01-01

    This paper discusses what chemistry students might see while working with animations found on the Internet and how these electronic illustrations can potentially interact to reinforce rather than resolve misconceptions about chemical principles that a student may possess. The Daniell voltaic cell serves as an example to illustrate the ways in…

  14. Numerical Optimization in Microfluidics

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg

    2017-01-01

    Numerical modelling can illuminate the working mechanism and limitations of microfluidic devices. Such insights are useful in their own right, but one can take advantage of numerical modelling in a systematic way using numerical optimization. In this chapter we will discuss when and how numerical...... optimization is best used....

  15. Numerical investigation on exterior conformal mappings with application to airfoils

    International Nuclear Information System (INIS)

    Mohamad Rashidi Md Razali; Hu Laey Nee

    2000-01-01

    A numerical method is described in computing a conformal map from an exterior region onto the exterior of the unit disk. The numerical method is based on a boundary integral equation which is similar to the Kerzman-Stein integral equation for interior mapping. Some examples show that numerical results of high accuracy can be obtained provided that the boundaries are smooth. This numerical method has been applied to the mapping airfoils. However, due to the fact that the parametric representation of an air foil is not known, a cubic spline interpolation method has been used. Some numerical examples with satisfying results have been obtained for the symmetrical and cambered airfoils. (Author)

  16. Fluid dynamics theory, computation, and numerical simulation

    CERN Document Server

    Pozrikidis, C

    2017-01-01

    This book provides an accessible introduction to the basic theory of fluid mechanics and computational fluid dynamics (CFD) from a modern perspective that unifies theory and numerical computation. Methods of scientific computing are introduced alongside with theoretical analysis and MATLAB® codes are presented and discussed for a broad range of topics: from interfacial shapes in hydrostatics, to vortex dynamics, to viscous flow, to turbulent flow, to panel methods for flow past airfoils. The third edition includes new topics, additional examples, solved and unsolved problems, and revised images. It adds more computational algorithms and MATLAB programs. It also incorporates discussion of the latest version of the fluid dynamics software library FDLIB, which is freely available online. FDLIB offers an extensive range of computer codes that demonstrate the implementation of elementary and advanced algorithms and provide an invaluable resource for research, teaching, classroom instruction, and self-study. This ...

  17. Numerical analysis of interacting cracks in biaxial stress field

    International Nuclear Information System (INIS)

    Kovac, M.; Cizelj, L.

    1999-01-01

    The stress corrosion cracks as seen for example in PWR steam generator tubing made of Inconel 600 usually produce highly irregular kinked and branched crack patterns. Crack initialization and propagation depends on stress state underlying the crack pattern. Numerical analysis (such as finite element method) of interacting kinked and branched cracks can provide accurate solutions. This paper discusses the use of general-purpose finite element code ABAQUS for evaluating stress fields at crack tips of interacting complex cracks. The results obtained showed reasonable agreement with the reference solutions and confirmed use of finite elements in such class of problems.(author)

  18. A primer on stochastic epidemic models: Formulation, numerical simulation, and analysis

    Directory of Open Access Journals (Sweden)

    Linda J.S. Allen

    2017-05-01

    Full Text Available Some mathematical methods for formulation and numerical simulation of stochastic epidemic models are presented. Specifically, models are formulated for continuous-time Markov chains and stochastic differential equations. Some well-known examples are used for illustration such as an SIR epidemic model and a host-vector malaria model. Analytical methods for approximating the probability of a disease outbreak are also discussed. Keywords: Branching process, Continuous-time Markov chain, Minor outbreak, Stochastic differential equation, 2000 MSC: 60H10, 60J28, 92D30

  19. Numerical and statistical based damage analysis by the example of kiln elements; Numerisch und statistisch gestuetzte Schadensanalyse am Beispiel von Brennofenelementen

    Energy Technology Data Exchange (ETDEWEB)

    Reinert, U. [DEKRA-ETS Europaeische Gesellschaft fuer Technische Sicherheit mbH, Saarbruecken (Germany); Klaer, P. [Saar-Hartmetall und Werkzeuge GmbH, Voelklingen (Germany)

    1999-02-01

    The nonoxidic ceramics (for example SiC), used as a supporting structure in kilns, are subject to instantaneous damage, which as a rule is accompanied by high costs. Of interest in this context is the question whether a satisfactory statement can be made about the increase of damage frequency as a function of the firing temperature, the firing time, the geometry of the component, the material properties and the loading. Knowledge of these correlations provides the user with the possibility of minimizing the costs of damage by means of suitable selection of material and timely replacement of the components. The procedure presented in the following is based on the combination of numerical studies with statistically evaluated experiments. (orig.)

  20. Numerical Modelling of Induction Heating for a Molten Salts Pyrochemical Process

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Xuan-Tuyen; Feraud, Jean-Pierre; Ode, Denis [CEA Marcoule: DTEC/SGCS/LGCI Bat. 57 B17171, 30207 Bagnols/Ceze (France); Du Terrail Couvat, Yves [SIMaP, Grenoble INP, CNRS: ENSEEG, BP 75, 38402 Saint Martin d' Heres Cedex (France)

    2008-07-01

    Technological developments in the pyro-chemistry program are required to allow choices for a reprocessing experiment on 100 g of spent nuclear fuel. In this context, a special device must be designed for the solid/gas reaction phases followed by actinide extraction and stripping in molten salt. This paper discusses a modelling approach for designing an induction furnace. Using this numerical approach is a good way to improve thermal performance of the device in terms of magnetic/thermal coupling phenomena. The influence of current frequency is also studied to give another view of the possibilities of an induction furnace. Electromagnetic forces are taken into account in a computational fluid dynamics code derived from a specifically developed exchange library. Induction heating systems are an example of a typical multi-physics problem involving numerically coupled equations. (authors)

  1. Numerical Modelling of Induction Heating for a Molten Salts Pyrochemical Process

    International Nuclear Information System (INIS)

    Vu, Xuan-Tuyen; Feraud, Jean-Pierre; Ode, Denis; Du Terrail Couvat, Yves

    2008-01-01

    Technological developments in the pyro-chemistry program are required to allow choices for a reprocessing experiment on 100 g of spent nuclear fuel. In this context, a special device must be designed for the solid/gas reaction phases followed by actinide extraction and stripping in molten salt. This paper discusses a modelling approach for designing an induction furnace. Using this numerical approach is a good way to improve thermal performance of the device in terms of magnetic/thermal coupling phenomena. The influence of current frequency is also studied to give another view of the possibilities of an induction furnace. Electromagnetic forces are taken into account in a computational fluid dynamics code derived from a specifically developed exchange library. Induction heating systems are an example of a typical multi-physics problem involving numerically coupled equations. (authors)

  2. Numerical Feedback Stabilization with Applications to Networks

    Directory of Open Access Journals (Sweden)

    Simone Göttlich

    2017-01-01

    Full Text Available The focus is on the numerical consideration of feedback boundary control problems for linear systems of conservation laws including source terms. We explain under which conditions the numerical discretization can be used to design feedback boundary values for network applications such as electric transmission lines or traffic flow systems. Several numerical examples illustrate the properties of the results for different types of networks.

  3. Dynamical Systems Method and Applications Theoretical Developments and Numerical Examples

    CERN Document Server

    Ramm, Alexander G

    2012-01-01

    Demonstrates the application of DSM to solve a broad range of operator equations The dynamical systems method (DSM) is a powerful computational method for solving operator equations. With this book as their guide, readers will master the application of DSM to solve a variety of linear and nonlinear problems as well as ill-posed and well-posed problems. The authors offer a clear, step-by-step, systematic development of DSM that enables readers to grasp the method's underlying logic and its numerous applications. Dynamical Systems Method and Applications begins with a general introduction and

  4. A Finite Difference, Semi-implicit, Equation-of-State Efficient Algorithm for the Compositional Flow Modeling in the Subsurface: Numerical Examples

    KAUST Repository

    Saavedra, Sebastian

    2012-07-01

    The mathematical model that has been recognized to have the more accurate approximation to the physical laws govern subsurface hydrocarbon flow in reservoirs is the Compositional Model. The features of this model are adequate to describe not only the performance of a multiphase system but also to represent the transport of chemical species in a porous medium. Its importance relies not only on its current relevance to simulate petroleum extraction processes, such as, Primary, Secondary, and Enhanced Oil Recovery Process (EOR) processes but also, in the recent years, carbon dioxide (CO2) sequestration. The purpose of this study is to investigate the subsurface compositional flow under isothermal conditions for several oil well cases. While simultaneously addressing computational implementation finesses to contribute to the efficiency of the algorithm. This study provides the theoretical framework and computational implementation subtleties of an IMplicit Pressure Explicit Composition (IMPEC)-Volume-balance (VB), two-phase, equation-of-state, approach to model isothermal compositional flow based on the finite difference scheme. The developed model neglects capillary effects and diffusion. From the phase equilibrium premise, the model accounts for volumetric performances of the phases, compressibility of the phases, and composition-dependent viscosities. The Equation of State (EoS) employed to approximate the hydrocarbons behaviour is the Peng Robinson Equation of State (PR-EOS). Various numerical examples were simulated. The numerical results captured the complex physics involved, i.e., compositional, gravitational, phase-splitting, viscosity and relative permeability effects. Regarding the numerical scheme, a phase-volumetric-flux estimation eases the calculation of phase velocities by naturally fitting to phase-upstream-upwinding. And contributes to a faster computation and an efficient programming development.

  5. Numerical solution of boundary-integral equations for molecular electrostatics.

    Science.gov (United States)

    Bardhan, Jaydeep P

    2009-03-07

    Numerous molecular processes, such as ion permeation through channel proteins, are governed by relatively small changes in energetics. As a result, theoretical investigations of these processes require accurate numerical methods. In the present paper, we evaluate the accuracy of two approaches to simulating boundary-integral equations for continuum models of the electrostatics of solvation. The analysis emphasizes boundary-element method simulations of the integral-equation formulation known as the apparent-surface-charge (ASC) method or polarizable-continuum model (PCM). In many numerical implementations of the ASC/PCM model, one forces the integral equation to be satisfied exactly at a set of discrete points on the boundary. We demonstrate in this paper that this approach to discretization, known as point collocation, is significantly less accurate than an alternative approach known as qualocation. Furthermore, the qualocation method offers this improvement in accuracy without increasing simulation time. Numerical examples demonstrate that electrostatic part of the solvation free energy, when calculated using the collocation and qualocation methods, can differ significantly; for a polypeptide, the answers can differ by as much as 10 kcal/mol (approximately 4% of the total electrostatic contribution to solvation). The applicability of the qualocation discretization to other integral-equation formulations is also discussed, and two equivalences between integral-equation methods are derived.

  6. Numerical Modeling and Design of Thermoelectric Cooling Systems and Its Application to Manufacturing Machines

    Science.gov (United States)

    Gallo, A.; Arana, A.; Oyanguren, A.; García, G.; Barbero, A.; Larrañaga, J.; Ulacia, I.

    2013-07-01

    In this work the properties of thermoelectric modules (TEMs) and their behavior have been numerically modeled. Moreover, their applications very often require modeling not only of the TEM but also of the working environment and the product in which they will be working. A clear example is the fact that TEMs are very often installed with heat-dissipating elements such as fans, heat sinks, and heat exchangers; thus, the module will only work according to the heat dissipation conditions that these external sources can provide in a certain environment. In this context, analytic approaches, even though they have been proved to be useful, do not provide enough, accurate information in this regard. Therefore, numerical modeling has been identified as a powerful tool to improve detailed designs of thermoelectric solutions. This paper presents numerical simulations of a TEM in different working conditions, as well as with different commercial dissipation devices. The objective is to obtain the characteristic curve of a TEM using a valid numerical model that can be introduced into larger models of different applications. Also, the numerical model of the module and different cooling devices is provided. Both of them are compared against real tested modules, so that the deviation between them can be measured and discussed. Finally, the TEM is introduced into a manufacturing application and results are discussed to validate the model for further use.

  7. Elimination of numerical diffusion in 1 - phase and 2 - phase flows

    Energy Technology Data Exchange (ETDEWEB)

    Rajamaeki, M. [VTT Energy (Finland)

    1997-07-01

    The new hydraulics solution method PLIM (Piecewise Linear Interpolation Method) is capable of avoiding the excessive errors, numerical diffusion and also numerical dispersion. The hydraulics solver CFDPLIM uses PLIM and solves the time-dependent one-dimensional flow equations in network geometry. An example is given for 1-phase flow in the case when thermal-hydraulics and reactor kinetics are strongly coupled. Another example concerns oscillations in 2-phase flow. Both the example computations are not possible with conventional methods.

  8. Elimination of numerical diffusion in 1 - phase and 2 - phase flows

    International Nuclear Information System (INIS)

    Rajamaeki, M.

    1997-01-01

    The new hydraulics solution method PLIM (Piecewise Linear Interpolation Method) is capable of avoiding the excessive errors, numerical diffusion and also numerical dispersion. The hydraulics solver CFDPLIM uses PLIM and solves the time-dependent one-dimensional flow equations in network geometry. An example is given for 1-phase flow in the case when thermal-hydraulics and reactor kinetics are strongly coupled. Another example concerns oscillations in 2-phase flow. Both the example computations are not possible with conventional methods

  9. Numerically and experimentally analysis of creep

    International Nuclear Information System (INIS)

    Fontanive, J.A.

    1982-11-01

    The problems of creep in concrete are analyzed experimentally and numerically, comparing with classical methods and suggesting a numerical procedure for the solution of these problems. Firstly, fundamentals of viscoelasticity and its application to concrete behaviour representation are presented. Then the theories of Dischinger and Arutyunyan are studied, and a computing numerical solutions are compared in several examples. Finally, experiences on creep and relaxation are described, and its result are analyzed. Some coments on possible future developments are included. (Author) [pt

  10. Transportation package design using numerical optimization

    International Nuclear Information System (INIS)

    Harding, D.C.; Witkowski, W.R.

    1991-01-01

    The purpose of this overview is twofold: first, to outline the theory and basic elements of numerical optimization; and second, to show how numerical optimization can be applied to the transportation packaging industry and used to increase efficiency and safety of radioactive and hazardous material transportation packages. A more extensive review of numerical optimization and its applications to radioactive material transportation package design was performed previously by the authors (Witkowski and Harding 1992). A proof-of-concept Type B package design is also presented as a simplified example of potential improvements achievable using numerical optimization in the design process

  11. Numerical studies of impurities in fusion plasmas

    International Nuclear Information System (INIS)

    Hulse, R.A.

    1982-09-01

    The coupled partial differential equations used to describe the behavior of impurity ions in magnetically confined controlled fusion plasmas require numerical solution for cases of practical interest. Computer codes developed for impurity modeling at the Princeton Plasma Physics Laboratory are used as examples of the types of codes employed for this purpose. These codes solve for the impurity ionization state densities and associated radiation rates using atomic physics appropriate for these low-density, high-temperature plasmas. The simpler codes solve local equations in zero spatial dimensions while more complex cases require codes which explicitly include transport of the impurity ions simultaneously with the atomic processes of ionization and recombination. Typical applications are discussed and computational results are presented for selected cases of interest

  12. Safety philiosophies in technology-related law discussed for the example of atomic energy law

    International Nuclear Information System (INIS)

    Rossnagel, A.

    1993-01-01

    In practice, legal ruling and its technical implementation stand isolated side by side. Taking the example of atomic energy law, the reasons for this situation and the significance of the deficit in the legal control of technology are examined. It is discussed how the controlling capacity of the law can be increased through the legal implementation of safety philosophies for technology. The paper deals with the problematic realtionship between technical and legal norms, with safety philosophies in the sense of mental approaches, safety concepts or safety postulates and their legal significance, and with the safety philosophy adhered to by the authorities and courts. The following learning processes in safety philosophy are described: new concepts of protection within the field of determinism, probabilistic safety concepts as well as concepts for the reduction of damage potential. Altogether it can be stated that the safety philosophy currently adhered to in Federal German licensing practice is not the only possible one; rather, that there are many different ways of conceptualizing, stipulating and checking technical safety. At least in the field of atomic energy law, this insight has a twofold significance: de lege lata there are several ways of operationalizing the licence requirements laid down in Article 7 of the Atomic Energy Law and the legally defined requirements for a licence withdrawal with the aid of technical licensing criteria. In all cases the legal wording is indeterminate and does not prescribe any specific safety philosophy. De lege ferenda it must be noted that amendments to the Atomic Energy Law entail a regularization of safety philosophy. This is a political necessity if the Atomic Energy Law is to be developed further and thus maintained as a modern security law. (orig.) [de

  13. Nonlinear dynamics and numerical uncertainties in CFD

    Science.gov (United States)

    Yee, H. C.; Sweby, P. K.

    1996-01-01

    The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching, approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with spurious behavior observed in CFD computations.

  14. Numerical Aspects of Eigenvalue and Eigenfunction Computations for Chaotic Quantum Systems

    Science.gov (United States)

    Bäcker, A.

    Summary: We give an introduction to some of the numerical aspects in quantum chaos. The classical dynamics of two-dimensional area-preserving maps on the torus is illustrated using the standard map and a perturbed cat map. The quantization of area-preserving maps given by their generating function is discussed and for the computation of the eigenvalues a computer program in Python is presented. We illustrate the eigenvalue distribution for two types of perturbed cat maps, one leading to COE and the other to CUE statistics. For the eigenfunctions of quantum maps we study the distribution of the eigenvectors and compare them with the corresponding random matrix distributions. The Husimi representation allows for a direct comparison of the localization of the eigenstates in phase space with the corresponding classical structures. Examples for a perturbed cat map and the standard map with different parameters are shown. Billiard systems and the corresponding quantum billiards are another important class of systems (which are also relevant to applications, for example in mesoscopic physics). We provide a detailed exposition of the boundary integral method, which is one important method to determine the eigenvalues and eigenfunctions of the Helmholtz equation. We discuss several methods to determine the eigenvalues from the Fredholm equation and illustrate them for the stadium billiard. The occurrence of spurious solutions is discussed in detail and illustrated for the circular billiard, the stadium billiard, and the annular sector billiard. We emphasize the role of the normal derivative function to compute the normalization of eigenfunctions, momentum representations or autocorrelation functions in a very efficient and direct way. Some examples for these quantities are given and discussed.

  15. Discussion of the numerical stability of an improved upwinding scheme

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Kim, J.H.

    1986-01-01

    The prediction of multidimensional heat transfer and fluid flow problems requires the solution of Navier-Stokes equations. Although the use of upwind approximation for the convection terms removes the potential of nonphysical spatial oscillations, such a procedure is burdened with excessive numerical diffusion. Recently published work by Smith and Hutton presented results for some 20 different candidate methods to estimate the convection terms. The overall conclusion was that none of the methods was totally successful. The more accurate methods exhibited nonphysical spatial oscillations. More recently, a procedure was proposed that alleviates the problem of false diffusion. The purpose of this paper is to present several challenging cases, with various flow orientation, to show that the proposed procedure always circumvents the negative coefficients in the discretization equation such that the influence coefficients cannot become negative. The Smith and Hutton test case has been examined to illustrate the merit of this technique. The results are competitive with a large majority of those examined by Smith and Hutton

  16. Numerical Study on Several Stabilized Finite Element Methods for the Steady Incompressible Flow Problem with Damping

    Directory of Open Access Journals (Sweden)

    Jilian Wu

    2013-01-01

    Full Text Available We discuss several stabilized finite element methods, which are penalty, regular, multiscale enrichment, and local Gauss integration method, for the steady incompressible flow problem with damping based on the lowest equal-order finite element space pair. Then we give the numerical comparisons between them in three numerical examples which show that the local Gauss integration method has good stability, efficiency, and accuracy properties and it is better than the others for the steady incompressible flow problem with damping on the whole. However, to our surprise, the regular method spends less CPU-time and has better accuracy properties by using Crout solver.

  17. On the numerical evaluation of algebro-geometric solutions to integrable equations

    International Nuclear Information System (INIS)

    Kalla, C; Klein, C

    2012-01-01

    Physically meaningful periodic solutions to certain integrable partial differential equations are given in terms of multi-dimensional theta functions associated with real Riemann surfaces. Typical analytical problems in the numerical evaluation of these solutions are studied. In the case of hyperelliptic surfaces efficient algorithms exist even for almost degenerate surfaces. This allows the numerical study of solitonic limits. For general real Riemann surfaces, the choice of a homology basis adapted to the anti-holomorphic involution is important for a convenient formulation of the solutions and smoothness conditions. Since existing algorithms for algebraic curves produce a homology basis not related to automorphisms of the curve, we study symplectic transformations to an adapted basis and give explicit formulae for M-curves. As examples we discuss solutions of the Davey–Stewartson and the multi-component nonlinear Schrödinger equations

  18. Some illustrative examples of model uncertainty

    International Nuclear Information System (INIS)

    Bier, V.M.

    1994-01-01

    In this paper, we first discuss the view of model uncertainty proposed by Apostolakis. We then present several illustrative examples related to model uncertainty, some of which are not well handled by this formalism. Thus, Apostolakis' approach seems to be well suited to describing some types of model uncertainty, but not all. Since a comprehensive approach for characterizing and quantifying model uncertainty is not yet available, it is hoped that the examples presented here will service as a springboard for further discussion

  19. Numeral-Incorporating Roots in Numeral Systems: A Comparative Analysis of Two Sign Languages

    Science.gov (United States)

    Fuentes, Mariana; Massone, Maria Ignacia; Fernandez-Viader, Maria del Pilar; Makotrinsky, Alejandro; Pulgarin, Francisca

    2010-01-01

    Numeral-incorporating roots in the numeral systems of Argentine Sign Language (LSA) and Catalan Sign Language (LSC), as well as the main features of the number systems of both languages, are described and compared. Informants discussed the use of numerals and roots in both languages (in most cases in natural contexts). Ten informants took part in…

  20. Between Certainty and Uncertainty Statistics and Probability in Five Units with Notes on Historical Origins and Illustrative Numerical Examples

    CERN Document Server

    Laudański, Ludomir M

    2013-01-01

    „Between Certainty & Uncertainty” is a one-of–a-kind short course on statistics for students, engineers  and researchers.  It is a fascinating introduction to statistics and probability with notes on historical origins and 80 illustrative numerical examples organized in the five units:   ·         Chapter 1  Descriptive Statistics:  Compressing small samples, basic averages - mean and variance, their main properties including God’s proof; linear transformations and z-scored statistics .   ·         Chapter 2 Grouped data: Udny Yule’s concept of qualitative and quantitative variables. Grouping these two kinds of data. Graphical tools. Combinatorial rules and qualitative variables.  Designing frequency histogram. Direct and coded evaluation of quantitative data. Significance of percentiles.   ·         Chapter 3 Regression and correlation: Geometrical distance and equivalent distances in two orthogonal directions  as a prerequisite to the concept of two regressi...

  1. Numeral Incorporation in Japanese Sign Language

    Science.gov (United States)

    Ktejik, Mish

    2013-01-01

    This article explores the morphological process of numeral incorporation in Japanese Sign Language. Numeral incorporation is defined and the available research on numeral incorporation in signed language is discussed. The numeral signs in Japanese Sign Language are then introduced and followed by an explanation of the numeral morphemes which are…

  2. Discussion paper for a highly parallel array processor-based machine

    International Nuclear Information System (INIS)

    Hagstrom, R.; Bolotin, G.; Dawson, J.

    1984-01-01

    The architectural plant for a quickly realizable implementation of a highly parallel special-purpose computer system with peak performance in the range of 6 billion floating point operations per second is discussed. The architecture is suitable to Lattice Gauge theoretical computations of fundamental physics interest and may be applicable to a range of other problems which deal with numerically intensive computational problems. The plan is quickly realizable because it employs a maximum of commercially available hardware subsystems and because the architecture is software-transparent to the individual processors, allowing straightforward re-use of whatever commercially available operating-systems and support software that is suitable to run on the commercially-produced processors. A tiny prototype instrument, designed along this architecture has already operated. A few elementary examples of programs which can run efficiently are presented. The large machine which the authors would propose to build would be based upon a highly competent array-processor, the ST-100 Array Processor, and specific design possibilities are discussed. The first step toward realizing this plan practically is to install a single ST-100 to allow algorithm development to proceed while a demonstration unit is built using two of the ST-100 Array Processors

  3. Killer "Killer Examples" for Design Patterns

    DEFF Research Database (Denmark)

    Caspersen, Michael Edelgaard; Alphonce, Carl; Decker, Adrienne

    2007-01-01

    Giving students an appreciation of the benefits of using design patterns and an ability to use them effectively in developing code presents several interesting pedagogical challenges. This paper discusses pedagogical lessons learned at the "Killer Examples" for Design Patterns and Objects First s...... series of workshops held at the Object Oriented Programming, Systems, Languages and Applications (OOPSLA) conference over the past four years. It also showcases three "killer examples" which can be used to support the teaching of design patterns.......Giving students an appreciation of the benefits of using design patterns and an ability to use them effectively in developing code presents several interesting pedagogical challenges. This paper discusses pedagogical lessons learned at the "Killer Examples" for Design Patterns and Objects First...

  4. Analysis of numerical methods

    CERN Document Server

    Isaacson, Eugene

    1994-01-01

    This excellent text for advanced undergraduates and graduate students covers norms, numerical solution of linear systems and matrix factoring, iterative solutions of nonlinear equations, eigenvalues and eigenvectors, polynomial approximation, and other topics. It offers a careful analysis and stresses techniques for developing new methods, plus many examples and problems. 1966 edition.

  5. Evaluating OO example programs for CS1

    DEFF Research Database (Denmark)

    Börstler, Jürgen; Christensen, Henrik Bærbak; Bennedsen, Jens

    2008-01-01

    Example programs play an important role in learning to program. They work as templates, guidelines, and inspiration for learners when developing their own programs. It is therefore important to provide learners with high quality examples. In this paper, we discuss properties of example programs...... that might affect the teaching and learning of object-oriented programming. Furthermore, we present an evaluation instrument for example programs and report on initial experiences of its application to a selection of examples from popular introductory programming textbooks....

  6. Numerical solution of electromagnetic field problems in two and three dimensions

    International Nuclear Information System (INIS)

    Trowbridge, C.W.

    1981-01-01

    Recent developments in algorithms for solving electromagnetic field problems carried out at Rutherford Appleton Laboratory (RAL) are reviewed. The interaction of electric and magnetic fields provides many examples of coupled problems which have been solved by the Finite Element method. This paper concentrates on static and low frequency problems using the differential operator approach. The status of computation for 2D fields is discussed. The use of scalar potentials for 3D static fields for economy is emphasised and the importance of selecting potential types carefully to minimise numerical cancellation errors is also discussed. Some formulations for the vector 3D field problem for eddy current fields are derived with analytic and experimental field measurement comparisons. Results using software packages built at RAL are presented to illustrate the methods. (author)

  7. FPGA prototyping by Verilog examples Xilinx Spartan-3 version

    CERN Document Server

    Chu, Pong P

    2008-01-01

    FPGA Prototyping Using Verilog Examples will provide you with a hands-on introduction to Verilog synthesis and FPGA programming through a "learn by doing" approach. By following the clear, easy-to-understand templates for code development and the numerous practical examples, you can quickly develop and simulate a sophisticated digital circuit, realize it on a prototyping device, and verify the operation of its physical implementation. This introductory text that will provide you with a solid foundation, instill confidence with rigorous examples for complex systems and prepare you for future development tasks.

  8. Numerical modeling in photonic crystals integrated technology: the COPERNICUS Project

    DEFF Research Database (Denmark)

    Malaguti, Stefania; Armaroli, Andrea; Bellanca, Gaetano

    2011-01-01

    Photonic crystals will play a fundamental role in the future of optical communications. The relevance of the numerical modeling for the success of this technology is assessed by using some examples concerning the experience of the COPERNICUS Project.......Photonic crystals will play a fundamental role in the future of optical communications. The relevance of the numerical modeling for the success of this technology is assessed by using some examples concerning the experience of the COPERNICUS Project....

  9. Improving the quality of numerical software through user-centered design

    Energy Technology Data Exchange (ETDEWEB)

    Pancake, C. M., Oregon State University

    1998-06-01

    The software interface - whether graphical, command-oriented, menu-driven, or in the form of subroutine calls - shapes the user`s perception of what software can do. It also establishes upper bounds on software usability. Numerical software interfaces typically are based on the designer`s understanding of how the software should be used. That is a poor foundation for usability, since the features that are ``instinctively right`` from the developer`s perspective are often the very ones that technical programmers find most objectionable or most difficult to learn. This paper discusses how numerical software interfaces can be improved by involving users more actively in design, a process known as user-centered design (UCD). While UCD requires extra organization and effort, it results in much higher levels of usability and can actually reduce software costs. This is true not just for graphical user interfaces, but for all software interfaces. Examples show how UCD improved the usability of a subroutine library, a command language, and an invocation interface.

  10. Numeric computation and statistical data analysis on the Java platform

    CERN Document Server

    Chekanov, Sergei V

    2016-01-01

    Numerical computation, knowledge discovery and statistical data analysis integrated with powerful 2D and 3D graphics for visualization are the key topics of this book. The Python code examples powered by the Java platform can easily be transformed to other programming languages, such as Java, Groovy, Ruby and BeanShell. This book equips the reader with a computational platform which, unlike other statistical programs, is not limited by a single programming language. The author focuses on practical programming aspects and covers a broad range of topics, from basic introduction to the Python language on the Java platform (Jython), to descriptive statistics, symbolic calculations, neural networks, non-linear regression analysis and many other data-mining topics. He discusses how to find regularities in real-world data, how to classify data, and how to process data for knowledge discoveries. The code snippets are so short that they easily fit into single pages. Numeric Computation and Statistical Data Analysis ...

  11. Public Energy Education: Issues for Discussion. Draft.

    Science.gov (United States)

    Public Energy Education Task Force.

    This paper was intended to stimulate discussion of energy education issues at a conference on energy issues. The discussion ranges through numerous topics at issue in energy education including public energy awareness, definition of public education, the distinction between public education and public relations, and the presentation of a model…

  12. The Beam Break-Up Numerical Simulator

    International Nuclear Information System (INIS)

    Travish, G.A.

    1989-11-01

    Beam Break-Up (BBU) is a severe constraint in accelerator design, limiting beam current and quality. The control of BBU has become the focus of much research in the design of the next generation collider, recirculating and linear induction accelerators and advanced accelerators. Determining the effect on BBU of modifications to cavities, the focusing elements or the beam is frequently beyond the ability of current analytic models. A computer code was written to address this problem. The Beam Break-Up Numerical Simulator (BBUNS) was designed to numerically solve for beam break-up (BBU) due to an arbitrary transverse wakefield. BBUNS was developed to be as user friendly as possible on the Cray computer series. The user is able to control all aspects of input and output by using a single command file. In addition, the wakefield is specified by the user and read in as a table. The program can model energy variations along and within the beam, focusing magnetic field profiles can be specified, and the graphical output can be tailored. In this note we discuss BBUNS, its structure and application. Included are detailed instructions, examples and a sample session of BBUNS. This program is available for distribution. 50 refs., 18 figs., 5 tabs

  13. Numerical Hydrodynamics in General Relativity

    Directory of Open Access Journals (Sweden)

    Font José A.

    2003-01-01

    Full Text Available The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. With respect to an earlier version of the article, the present update provides additional information on numerical schemes, and extends the discussion of astrophysical simulations in general relativistic hydrodynamics. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A large sample of available numerical schemes is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of astrophysical simulations in strong gravitational fields is presented. These include gravitational collapse, accretion onto black holes, and hydrodynamical evolutions of neutron stars. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances on the formulation of the gravitational field and hydrodynamic equations and the numerical methodology designed to solve them.

  14. Numerical Modeling of Climate-Chemistry Connections: Recent Developments and Future Challenges

    Directory of Open Access Journals (Sweden)

    Patrick Jöckel

    2013-05-01

    Full Text Available This paper reviews the current state and development of different numerical model classes that are used to simulate the global atmospheric system, particularly Earth’s climate and climate-chemistry connections. The focus is on Chemistry-Climate Models. In general, these serve to examine dynamical and chemical processes in the Earth atmosphere, their feedback, and interaction with climate. Such models have been established as helpful tools in addition to analyses of observational data. Definitions of the global model classes are given and their capabilities as well as weaknesses are discussed. Examples of scientific studies indicate how numerical exercises contribute to an improved understanding of atmospheric behavior. There, the focus is on synergistic investigations combining observations and model results. The possible future developments and challenges are presented, not only from the scientific point of view but also regarding the computer technology and respective consequences for numerical modeling of atmospheric processes. In the future, a stronger cross-linkage of subject-specific scientists is necessary, to tackle the looming challenges. It should link the specialist discipline and applied computer science.

  15. On numerically pluricanonical cyclic coverings

    International Nuclear Information System (INIS)

    Kulikov, V S; Kharlamov, V M

    2014-01-01

    We investigate some properties of cyclic coverings f:Y→X (where X is a complex surface of general type) branched along smooth curves B⊂X that are numerically equivalent to a multiple of the canonical class of X. Our main results concern coverings of surfaces of general type with p g =0 and Miyaoka-Yau surfaces. In particular, such coverings provide new examples of multi-component moduli spaces of surfaces with given Chern numbers and new examples of surfaces that are not deformation equivalent to their complex conjugates

  16. Numerical integration of asymptotic solutions of ordinary differential equations

    Science.gov (United States)

    Thurston, Gaylen A.

    1989-01-01

    Classical asymptotic analysis of ordinary differential equations derives approximate solutions that are numerically stable. However, the analysis also leads to tedious expansions in powers of the relevant parameter for a particular problem. The expansions are replaced with integrals that can be evaluated by numerical integration. The resulting numerical solutions retain the linear independence that is the main advantage of asymptotic solutions. Examples, including the Falkner-Skan equation from laminar boundary layer theory, illustrate the method of asymptotic analysis with numerical integration.

  17. Upscaling of permeability field of fractured rock system: Numerical examples

    KAUST Repository

    Bao, K.; Salama, Amgad; Sun, S.

    2012-01-01

    When the permeability field of a given porous medium domain is heterogeneous by the existence of randomly distributed fractures such that numerical investigation becomes cumbersome, another level of upscaling may be required. That is such complex permeability field could be relaxed (i.e., smoothed) by constructing an effective permeability field. The effective permeability field is an approximation to the real permeability field that preserves certain quantities and provides an overall acceptable description of the flow field. In this work, the effective permeability for a fractured rock system is obtained for different coarsening scenarios starting from very coarse mesh all the way towards the fine mesh simulation. In all these scenarios, the effective permeability as well as the pressure at each cell is obtained. The total flux at the exit boundary is calculated in all these cases, and very good agreement is obtained.

  18. Numerical and experimental investigation of melting with internal heat generation within cylindrical enclosures

    Energy Technology Data Exchange (ETDEWEB)

    Amber Shrivastava; Brian Williams; Ali S. Siahpush; Bruce Savage; John Crepeau

    2014-06-01

    There have been significant efforts by the heat transfer community to investigate the melting phenomenon of materials. These efforts have included the analytical development of equations to represent melting, numerical development of computer codes to assist in modeling the phenomena, and collection of experimental data. The understanding of the melting phenomenon has application in several areas of interest, for example, the melting of a Phase Change Material (PCM) used as a thermal storage medium as well as the melting of the fuel bundle in a nuclear power plant during an accident scenario. The objective of this research is two-fold. First a numerical investigation, using computational fluid dynamics (CFD), of melting with internal heat generation for a vertical cylindrical geometry is presented. Second, to the best of authors knowledge, there are very limited number of engineering experimental results available for the case of melting with Internal Heat Generation (IHG). An experiment was performed to produce such data using resistive, or Joule, heating as the IHG mechanism. The numerical results are compared against the experimental results and showed favorable correlation. Uncertainties in the numerical and experimental analysis are discussed. Based on the numerical and experimental analysis, recommendations are made for future work.

  19. Evaluation of steel corrosion by numerical analysis

    OpenAIRE

    Kawahigashi, Tatsuo

    2017-01-01

    Recently, various non-destructive and numerical methods have been used and many cases of steel corrosion are examined. For example, methods of evaluating corrosion through various numerical methods and evaluating macrocell corrosion and micro-cell corrosion using measurements have been proposed. However, there are few reports on estimating of corrosion loss with distinguishing the macro-cell and micro-cell corrosion and with resembling an actuality phenomenon. In this study, for distinguishin...

  20. Numerical computation of MHD equilibria

    International Nuclear Information System (INIS)

    Atanasiu, C.V.

    1982-10-01

    A numerical code for a two-dimensional MHD equilibrium computation has been carried out. The code solves the Grad-Shafranov equation in its integral form, for both formulations: the free-boundary problem and the fixed boundary one. Examples of the application of the code to tokamak design are given. (author)

  1. Numerical bifurcation analysis of a class of nonlinear renewal equations

    NARCIS (Netherlands)

    Breda, Dimitri; Diekmann, Odo; Liessi, Davide; Scarabel, Francesca

    2016-01-01

    We show, by way of an example, that numerical bifurcation tools for ODE yield reliable bifurcation diagrams when applied to the pseudospectral approximation of a one-parameter family of nonlinear renewal equations. The example resembles logistic-and Ricker-type population equations and exhibits

  2. Discussion record of the workshop on nonlocal transport

    International Nuclear Information System (INIS)

    Itoh, K.; Itoh, S.-I.; Stroth, U.; Iwasaki, T.; Yagi, M.; Fukuyama, A.

    1997-06-01

    The discussion on the problem of the transient response and nonlocal transport is reported. Problem of the transient response is surveyed, and several approaches are reviewed. The formulation based on the nonlocal transport is discussed. Example of the analysis is presented. Future study is identified. (author)

  3. The numerical solution of boundary value problems over an infinite domain

    International Nuclear Information System (INIS)

    Shepherd, M.; Skinner, R.

    1976-01-01

    A method is presented for the numerical solution of boundary value problems over infinite domains. An example that illustrates also the strength and accuracy of a numerical procedure for calculating Green's functions is described in detail

  4. Experimental and numerical investigation on two-phase flow instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Ruspini, Leonardo Carlos

    2013-03-01

    Two-phase flow instabilities are experimentally and numerically studied within this thesis. In particular, the phenomena called Ledinegg instability, density wave oscillations and pressure drop oscillations are investigated. The most important investigations regarding the occurrence of two-phase flow instabilities are reviewed. An extensive description of the main contributions in the experimental and analytical research is presented. In addition, a critical discussion and recommendations for future investigations are presented. A numerical framework using a hp-adaptive method is developed in order to solve the conservation equations modelling general thermo-hydraulic systems. A natural convection problem is analysed numerically in order to test the numerical solver. Moreover, the description of an adaptive strategy to solve thermo-hydraulic problems is presented. In the second part of this dissertation, a homogeneous model is used to study Ledinegg, density wave and pressure drop oscillations phenomena numerically. The dynamic characteristics of the Ledinegg (flow excursion) phenomenon are analysed through the simulation of several transient examples. In addition, density wave instabilities in boiling and condensing systems are investigated. The effects of several parameters, such as the fluid inertia and compressibility volumes, on the stability limits of Ledinegg and density wave instabilities are studied, showing a strong influence of these parameters. Moreover, the phenomenon called pressure drop oscillations is numerically investigated. A discussion of the physical representation of several models is presented with reference to the obtained numerical results. Finally, the influence of different parameters on these phenomena is analysed. In the last part, an experimental investigation of these phenomena is presented. The designing methodology used for the construction of the experimental facility is described. Several simulations and a non

  5. Three example applications of optimization techniques to Department of Energy contractor radiation protection programs

    International Nuclear Information System (INIS)

    Merwin, S.E.; Martin, J.B.; Tawil, J.J.; Selby, J.M.

    1986-06-01

    Six numerical examples of optimization of radiation protection are provided in the appendices of International Commission on Radiological Protection (ICRP) Publication 37 (ICRP83). In each case, the calculations are based on fairly well-defined parameters and assumptions that were well understood. In this paper, we have examined three different numerical examples that are based on empirical data and less certain assumptions. These examples are intended to represent typical applications of optimization principles to the evaluation of specific elements of a radiation protection program. In the first example, the optimum bioassay frequency for certain tritium workers was found to be once every 95 days, which compared well with the recommendations of ICRP Publication 10 (ICRP67). The second example showed that the optimum frequency for recalibrating a group of ''Cutie-Pie'' (CP)-type ionization chamber survey instruments was once every 102 days. In the third example, one continuous air monitor (CAM) was determined to be the optimum number in a workplace of a Department of Energy (DOE) plutonium facility. The optimum location of the CAM was determined from past glovebox release studies

  6. Numerical Analysis of Partial Differential Equations

    CERN Document Server

    Lui, S H

    2011-01-01

    A balanced guide to the essential techniques for solving elliptic partial differential equations Numerical Analysis of Partial Differential Equations provides a comprehensive, self-contained treatment of the quantitative methods used to solve elliptic partial differential equations (PDEs), with a focus on the efficiency as well as the error of the presented methods. The author utilizes coverage of theoretical PDEs, along with the nu merical solution of linear systems and various examples and exercises, to supply readers with an introduction to the essential concepts in the numerical analysis

  7. Structural dynamics teaching example: A linear test analysis case using open software

    DEFF Research Database (Denmark)

    Sturesson, P. O.; Brandt, A.; Ristinmaa, M.

    2013-01-01

    Teaching the topic of structural dynamics in any engineering field is a true challenge due to the wide span of the underlying subjects like mathematics, mechanics (both rigid body and continuum mechanics), numerical analysis, random data analysis and physical understanding.With the increased avai...... available as open source code. © The Society for Experimental Mechanics, Inc. 2013....... experimental modal analysis data. By using open software, based on MATLAB®1 as a basis for the example, the applied numerical methods are made transparent to the student. The example is built on a combination of the free CALFEM®2 and ABRAVIBE toolboxes, and thus all code used in this paper is publically...

  8. Extensible numerical library in JAVA

    International Nuclear Information System (INIS)

    Aso, T.; Okazawa, H.; Takashimizu, N.

    2001-01-01

    The authors present the current status of the project for developing the numerical library in JAVA. The authors have presented how object-oriented techniques improve usage and also development of numerical libraries compared with the conventional way at previous conference. The authors need many functions for data analysis which is not provided within JAVA language, for example, good random number generators, special functions and so on. Authors' development strategy is focused on easiness of implementation and adding new features by users themselves not only by developers. In HPC field, there are other focus efforts to develop numerical libraries in JAVA. However, their focus is on the performance of execution, not easiness of extension. Following the strategy, the authors have designed and implemented more classes for random number generators and so on

  9. The development of system to promote discussion in the e-learning software of engineering ethics

    International Nuclear Information System (INIS)

    Matsue, K.; Ono, S.; Kimura, H.; Madarame, H.

    2005-01-01

    We developed the engineering ethics education program, which contains 'Case Study' program and 'Discussion' program in February 2004. We opened this education program on the WWW. In the result our program is useful for 'Case Study' program. So we found that 'Discussion' program should be improved more. In order to make discussion excite, it is necessary that we make new system to help users to consider the case example. So I provided the new systems, the 'discussion movie' and the 'vote button'. The discussion Movie is the system that it introduced the process to draw one solution of the case example. The vote button is the system by which users can express their own attitude for the opinion of the discussion movie, agree or disagree. In order to estimate these new systems, we carried out thus experimental test. We prepared 3 types of education program. SYSTEM1: Case Example, and BBS. SYSTEM2: Case Example, Discussion Movie, and BBS. SYSTEM3: Case Example, Discussion Movie, Vote Button, and BBS. We took test users into one of these 3 types of education program. And users took part in their own education program for a week. (authors)

  10. Numerical model of the nanoindentation test based on the digital material representation of the Ti/TiN multilayers

    Directory of Open Access Journals (Sweden)

    Perzyński Konrad

    2015-06-01

    Full Text Available The developed numerical model of a local nanoindentation test, based on the digital material representation (DMR concept, has been presented within the paper. First, an efficient algorithm describing the pulsed laser deposition (PLD process was proposed to realistically recreate the specific morphology of a nanolayered material in an explicit manner. The nanolayered Ti/TiN composite was selected for the investigation. Details of the developed cellular automata model of the PLD process were presented and discussed. Then, the Ti/TiN DMR was incorporated into the finite element software and numerical model of the nanoindentation test was established. Finally, examples of obtained results presenting capabilities of the proposed approach were highlighted.

  11. Numerical solution of ordinary differential equations

    CERN Document Server

    Fox, L

    1987-01-01

    Nearly 20 years ago we produced a treatise (of about the same length as this book) entitled Computing methods for scientists and engineers. It was stated that most computation is performed by workers whose mathematical training stopped somewhere short of the 'professional' level, and that some books are therefore needed which use quite simple mathematics but which nevertheless communicate the essence of the 'numerical sense' which is exhibited by the real computing experts and which is surely needed, at least to some extent, by all who use modern computers and modern numerical software. In that book we treated, at no great length, a variety of computational problems in which the material on ordinary differential equations occupied about 50 pages. At that time it was quite common to find books on numerical analysis, with a little on each topic ofthat field, whereas today we are more likely to see similarly-sized books on each major topic: for example on numerical linear algebra, numerical approximation, numeri...

  12. Numerical Solution of Fuzzy Differential Equations by Runge-Kutta Verner Method

    Directory of Open Access Journals (Sweden)

    T. Jayakumar

    2015-01-01

    Full Text Available In this paper we study the numerical methods for Fuzzy Differential equations by an application of the Runge-Kutta Verner method for fuzzy differential equations. We prove a convergence result and give numerical examples to illustrate the theory.

  13. A discussion support model for a regional dairy-pasture system with an example from Reunion island

    NARCIS (Netherlands)

    Nidumolu, U.B.; Lubbers, M.T.M.H.; Alary, V.; Lecomte, P.; Keulen, van H.

    2011-01-01

    Reunion Island, situated in the Indian Ocean, presents a unique case study for modelling regional bio-economic parameters of the dairy industry. It is a good example of a closed system for several parameters of the model such as movement of animals, labour, consumption and available land. The

  14. Numerical considerations for Lagrangian stochastic dispersion models: Eliminating rogue trajectories, and the importance of numerical accuracy

    Science.gov (United States)

    When Lagrangian stochastic models for turbulent dispersion are applied to complex flows, some type of ad hoc intervention is almost always necessary to eliminate unphysical behavior in the numerical solution. This paper discusses numerical considerations when solving the Langevin-based particle velo...

  15. The concept of stability in numerical mathematics

    CERN Document Server

    Hackbusch, Wolfgang

    2014-01-01

    In this book, the author compares the meaning of stability in different subfields of numerical mathematics.  Concept of Stability in numerical mathematics opens by examining the stability of finite algorithms. A more precise definition of stability holds for quadrature and interpolation methods, which the following chapters focus on. The discussion then progresses to the numerical treatment of ordinary differential equations (ODEs). While one-step methods for ODEs are always stable, this is not the case for hyperbolic or parabolic differential equations, which are investigated next. The final chapters discuss stability for discretisations of elliptic differential equations and integral equations. In comparison among the subfields we discuss the practical importance of stability and the possible conflict between higher consistency order and stability.  

  16. Numerical methods in simulation of resistance welding

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Martins, Paulo A.F.; Zhang, Wenqi

    2015-01-01

    Finite element simulation of resistance welding requires coupling betweenmechanical, thermal and electrical models. This paper presents the numerical models and theircouplings that are utilized in the computer program SORPAS. A mechanical model based onthe irreducible flow formulation is utilized...... a resistance welding point of view, the most essential coupling between the above mentioned models is the heat generation by electrical current due to Joule heating. The interaction between multiple objects is anothercritical feature of the numerical simulation of resistance welding because it influences...... thecontact area and the distribution of contact pressure. The numerical simulation of resistancewelding is illustrated by a spot welding example that includes subsequent tensile shear testing...

  17. Fundamental Travel Demand Model Example

    Science.gov (United States)

    Hanssen, Joel

    2010-01-01

    Instances of transportation models are abundant and detailed "how to" instruction is available in the form of transportation software help documentation. The purpose of this paper is to look at the fundamental inputs required to build a transportation model by developing an example passenger travel demand model. The example model reduces the scale to a manageable size for the purpose of illustrating the data collection and analysis required before the first step of the model begins. This aspect of the model development would not reasonably be discussed in software help documentation (it is assumed the model developer comes prepared). Recommendations are derived from the example passenger travel demand model to suggest future work regarding the data collection and analysis required for a freight travel demand model.

  18. Numerical analysis of the Anderson localization

    International Nuclear Information System (INIS)

    Markos, P.

    2006-01-01

    The aim of this paper is to demonstrate, by simple numerical simulations, the main transport properties of disordered electron systems. These systems undergo the metal insulator transition when either Fermi energy crosses the mobility edge or the strength of the disorder increases over critical value. We study how disorder affects the energy spectrum and spatial distribution of electronic eigenstates in the diffusive and insulating regime, as well as in the critical region of the metal-insulator transition. Then, we introduce the transfer matrix and conductance, and we discuss how the quantum character of the electron propagation influences the transport properties of disordered samples. In the weakly disordered systems, the weak localization and anti-localization as well as the universal conductance fluctuation are numerically simulated and discussed. The localization in the one dimensional system is described and interpreted as a purely quantum effect. Statistical properties of the conductance in the critical and localized regimes are demonstrated. Special attention is given to the numerical study of the transport properties of the critical regime and to the numerical verification of the single parameter scaling theory of localization. Numerical data for the critical exponent in the orthogonal models in dimension 2 < d ≤ 5 are compared with theoretical predictions. We argue that the discrepancy between the theory and numerical data is due to the absence of the self-averaging of transmission quantities. This complicates the analytical analysis of the disordered systems. Finally, theoretical methods of description of weakly disordered systems are explained and their possible generalization to the localized regime is discussed. Since we concentrate on the one-electron propagation at zero temperature, no effects of electron-electron interaction and incoherent scattering are discussed in the paper (Author)

  19. The numerical simulation of convection delayed dominated diffusion equation

    Directory of Open Access Journals (Sweden)

    Mohan Kumar P. Murali

    2016-01-01

    Full Text Available In this paper, we propose a fitted numerical method for solving convection delayed dominated diffusion equation. A fitting factor is introduced and the model equation is discretized by cubic spline method. The error analysis is analyzed for the consider problem. The numerical examples are solved using the present method and compared the result with the exact solution.

  20. Numerical Transducer Modeling

    DEFF Research Database (Denmark)

    Henriquez, Vicente Cutanda

    This thesis describes the development of a numerical model of the propagation of sound waves in fluids with viscous and thermal losses, with application to the simulation of acoustic transducers, in particular condenser microphones for measurement. The theoretical basis is presented, numerical...... manipulations are developed to satisfy the more complicated boundary conditions, and a model of a condenser microphone with a coupled membrane is developed. The model is tested against measurements of ¼ inch condenser microphones and analytical calculations. A detailed discussion of the results is given....

  1. Numerical analysis of the bearing capacity of complex rock mechanical underground systems with filigree structures in the presence of imponderables. A contribution to the systematization of the investigative process with application/demonstration using the example of the salt cavern ASSE II/south flank

    International Nuclear Information System (INIS)

    Dyogtyev, Oleksandr

    2017-01-01

    The thesis dealing with the numerical analysis of the bearing capacity of complex rock mechanical underground systems with filigree structures in the presence of imponderables covers the following issues: status of science and technology, concept for the performance of numerical studies on the bearing capacity of large-volume underground systems, application example salt cavern ASSE II - application of the developed concept/development of numerical tools for the overall system/application of the global model to the given questions/realization of the modification potential.

  2. Spectral Methods in Numerical Plasma Simulation

    DEFF Research Database (Denmark)

    Coutsias, E.A.; Hansen, F.R.; Huld, T.

    1989-01-01

    An introduction is given to the use of spectral methods in numerical plasma simulation. As examples of the use of spectral methods, solutions to the two-dimensional Euler equations in both a simple, doubly periodic region, and on an annulus will be shown. In the first case, the solution is expanded...

  3. Numerical simulation in plasma physics

    International Nuclear Information System (INIS)

    Samarskii, A.A.

    1980-01-01

    Plasma physics is not only a field for development of physical theories and mathematical models but also an object of application of the computational experiment comprising analytical and numerical methods adapted for computers. The author considers only MHD plasma physics problems. Examples treated are dissipative structures in plasma; MHD model of solar dynamo; supernova explosion simulation; and plasma compression by a liner. (Auth.)

  4. Numerical solution of distributed order fractional differential equations

    Science.gov (United States)

    Katsikadelis, John T.

    2014-02-01

    In this paper a method for the numerical solution of distributed order FDEs (fractional differential equations) of a general form is presented. The method applies to both linear and nonlinear equations. The Caputo type fractional derivative is employed. The distributed order FDE is approximated with a multi-term FDE, which is then solved by adjusting appropriately the numerical method developed for multi-term FDEs by Katsikadelis. Several example equations are solved and the response of mechanical systems described by such equations is studied. The convergence and the accuracy of the method for linear and nonlinear equations are demonstrated through well corroborated numerical results.

  5. Nuclear transparency: the French example

    International Nuclear Information System (INIS)

    Phuc Tran Dai

    2016-01-01

    In France nuclear industry is from far the industrial sector that has set the most numerous commissions that allow a dialogue with the public in order to favor transparency. There are 4 local structures of information: -)there are 38 Local Committees of Information (CLI) associated with nuclear facilities, -) the Information Committees (CI) associated with secret nuclear facilities, -) the Follow-up Committees (CSS) for facilities dedicated to the processing of wastes, and the Committees for the prevention of industrial pollution (SPPPI). These committees involve numerous actors: public service, industrialists, supervisory authorities, elected representatives, employee representatives, members of associations and residents living nearby. Since 2000, 10 national public hearings around the 'atom' have been organized by the CNDP (National Commission for Public Consultation). Most actors of the nuclear industry allow residents living nearby to visit their installations, EDF ranks 3 as the company most visited with 400.000 people a year. Following the nuclear example the French chemical industry progressively moves toward more transparency. (A.C.)

  6. Numerical Modelling of Flow and Settling in Secondary Settling Tanks

    DEFF Research Database (Denmark)

    Dahl, Claus Poulsen

    This thesis discusses the development of a numerical model for the simulation of secondary settling tanks. In the first part, the status on the development of numerical models for settling tanks and a discussion of the current design practice are presented. A study of the existing numerical models...... and design practice proved a demand for further development to include numerical models in the design of settling tanks, thus improving the future settling tanks....

  7. On the Hughes model and numerical aspects

    KAUST Repository

    Gomes, Diogo A.

    2017-01-05

    We study a crowd model proposed by R. Hughes in [11] and we describe a numerical approach to solve it. This model comprises a Fokker-Planck equation coupled with an eikonal equation with Dirichlet or Neumann data. First, we establish a priori estimates for the solutions. Second, we study radial solutions and identify a shock formation mechanism. Third, we illustrate the existence of congestion, the breakdown of the model, and the trend to the equilibrium. Finally, we propose a new numerical method and consider two examples.

  8. Interagency mechanical operations group numerical systems group

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This report consists of the minutes of the May 20-21, 1971 meeting of the Interagency Mechanical Operations Group (IMOG) Numerical Systems Group. This group looks at issues related to numerical control in the machining industry. Items discussed related to the use of CAD and CAM, EIA standards, data links, and numerical control.

  9. Numerical simulation of real-world flows

    Energy Technology Data Exchange (ETDEWEB)

    Hayase, Toshiyuki, E-mail: hayase@ifs.tohoku.ac.jp [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 (Japan)

    2015-10-15

    Obtaining real flow information is important in various fields, but is a difficult issue because measurement data are usually limited in time and space, and computational results usually do not represent the exact state of real flows. Problems inherent in the realization of numerical simulation of real-world flows include the difficulty in representing exact initial and boundary conditions and the difficulty in representing unstable flow characteristics. This article reviews studies dealing with these problems. First, an overview of basic flow measurement methodologies and measurement data interpolation/approximation techniques is presented. Then, studies on methods of integrating numerical simulation and measurement, namely, four-dimensional variational data assimilation (4D-Var), Kalman filters (KFs), state observers, etc are discussed. The first problem is properly solved by these integration methodologies. The second problem can be partially solved with 4D-Var in which only initial and boundary conditions are control parameters. If an appropriate control parameter capable of modifying the dynamical structure of the model is included in the formulation of 4D-Var, unstable modes are properly suppressed and the second problem is solved. The state observer and KFs also solve the second problem by modifying mathematical models to stabilize the unstable modes of the original dynamical system by applying feedback signals. These integration methodologies are now applied in simulation of real-world flows in a wide variety of research fields. Examples are presented for basic fluid dynamics and applications in meteorology, aerospace, medicine, etc. (topical review)

  10. Numerical methods in software and analysis

    CERN Document Server

    Rice, John R

    1992-01-01

    Numerical Methods, Software, and Analysis, Second Edition introduces science and engineering students to the methods, tools, and ideas of numerical computation. Introductory courses in numerical methods face a fundamental problem-there is too little time to learn too much. This text solves that problem by using high-quality mathematical software. In fact, the objective of the text is to present scientific problem solving using standard mathematical software. This book discusses numerous programs and software packages focusing on the IMSL library (including the PROTRAN system) and ACM Algorithm

  11. Balancing of linkages and robot manipulators advanced methods with illustrative examples

    CERN Document Server

    Arakelian, Vigen

    2015-01-01

    In this book advanced balancing methods for planar and spatial linkages, hand operated and automatic robot manipulators are presented. It is organized into three main parts and eight chapters. The main parts are the introduction to balancing, the balancing of linkages and the balancing of robot manipulators. The review of state-of-the-art literature including more than 500 references discloses particularities of shaking force/moment balancing and gravity compensation methods. Then new methods for balancing of linkages are considered. Methods provided in the second part of the book deal with the partial and complete shaking force/moment balancing of various linkages. A new field for balancing methods applications is the design of mechanical systems for fast manipulation. Special attention is given to the shaking force/moment balancing of robot manipulators. Gravity balancing methods are also discussed. The suggested balancing methods are illustrated by numerous examples.

  12. Some Numerical Aspects on Crowd Motion - The Hughes Model

    KAUST Repository

    Gomes, Diogo A.

    2016-01-06

    Here, we study a crowd model proposed by R. Hughes in [5] and we describe a numerical approach to solve it. This model comprises a Fokker-Planck equation coupled with an Eikonal equation with Dirichlet or Neumann data. First, we establish a priori estimates for the solution. Second, we study radial solutions and identify a shock formation mechanism. Third, we illustrate the existence of congestion, the breakdown of the model, and the trend to the equilibrium. Finally, we propose a new numerical method and consider two numerical examples.

  13. The treatment of conceptual model uncertainty in the Nagra programme: a few examples

    International Nuclear Information System (INIS)

    Zuidema, P.; Gautschi, A.; Smith, P.; Vomvoris, S.

    1995-01-01

    In this paper, a few examples are discussed which demonstrate how conceptual model uncertainty is treated within the Nagra programme. These examples cover geometric aspects, small-scale properties of the host rock and direction of the flow paths. Based on the examples, the pragmatic approach adopted in performance assessment is briefly discussed. (author). 3 refs., 7 figs

  14. Parallel computing for data science with examples in R, C++ and CUDA

    CERN Document Server

    Matloff, Norman

    2015-01-01

    Parallel Computing for Data Science: With Examples in R, C++ and CUDA is one of the first parallel computing books to concentrate exclusively on parallel data structures, algorithms, software tools, and applications in data science. It includes examples not only from the classic ""n observations, p variables"" matrix format but also from time series, network graph models, and numerous other structures common in data science. The examples illustrate the range of issues encountered in parallel programming.With the main focus on computation, the book shows how to compute on three types of platfor

  15. Numerical and adaptive grid methods for ideal magnetohydrodynamics

    Science.gov (United States)

    Loring, Burlen

    2008-02-01

    In this thesis numerical finite difference methods for ideal magnetohydrodynamics(MHD) are investigated. A review of the relevant physics, essential for interpreting the results of numerical solutions and constructing validation cases, is presented. This review includes a discusion of the propagation of small amplitude waves in the MHD system as well as a thorough discussion of MHD shocks, contacts and rarefactions and how they can be piece together to obtain a solutions to the MHD Riemann problem. Numerical issues relevant to the MHD system such as: the loss of nonlinear numerical stability in the presence of discontinuous solutions, the introduction of spurious forces due to the growth of the divergence of the magnetic flux density, the loss of pressure positivity, and the effects of non-conservative numerical methods are discussed, along with the practical approaches which can be used to remedy or minimize the negative consequences of each. The use of block structured adaptive mesh refinement is investigated in the context of a divergence free MHD code. A new method for conserving magnetic flux across AMR grid interfaces is developed and a detailed discussion of our implementation of this method using the CHOMBO AMR framework is given. A preliminary validation of the new method for conserving magnetic flux density across AMR grid interfaces illustrates that the method works. Finally a number of code validation cases are examined spurring a discussion of the strengths and weaknesses of the numerics employed.

  16. Three example applications of optimization techniques to Department of Energy contractor radiation protection programs

    International Nuclear Information System (INIS)

    Merwin, S.E.; Martin, J.B.; Tawil, J.J.; Selby, J.M.

    1989-01-01

    Six numerical examples of optimization of radiation protection are provided in the appendices of International Commission on Radiological Protection (ICRP) Publication No. 37 (1983). In each case, the calculations were based on well-defined parameters and assumptions. In this paper, we examined three different numerical examples that were based on empirical data and less-certain assumptions. In the first example, the optimum sampling frequency for a typical 3H bioassay program was found to be once every 2 mo. However, this result depended on assumed values for several variables that were difficult to evaluate. The second example showed that the optimum frequency for recalibrating a group of cutie pie (CP) ionization chamber survey instruments was once every 85 d. This result depended largely on the assumption that an improperly operating CP instrument could lead to a serious overexposure. In the third example, one continuous air monitor (CAM) was determined to be the optimum number in a workplace at a Department of Energy (DOE) Pu facility. The optimum location of the CAM was determined from past glove-box release studies. These examples demonstrated that cost-benefit analysis of individual elements of radiation protection programs can be useful even if limited data are available

  17. Two example applications of optimization techniques to US Department of Energy contractor radiation protection programs

    International Nuclear Information System (INIS)

    Merwin, S.E.; Martin, J.B.; Selby, J.M.; Vallario, E.J.

    1986-01-01

    Six numerical examples of optimization of radiation protection are provided in the appendices of ICRP Publication 37. In each case, the calculations are based on fairly well defined parameters and assumptions that were well understood. In this paper, we have examined two numerical examples that are based on empirical data and less certain assumptions. These examples may represent typical applications of optimization principles to the evaluation of specific elements of a radiation protection program. In the first example, the optimum bioassay frequency for tritium workers was found to be once every 95 days, which compared well with ICRP Publication 10 recommendations. However, this result depended heavily on the assumption that the value of a potential undetected rem was US $1000. The second example showed that the optimum frequency for recalibrating Cutie Pie (CP) type ionization chamber survey instruments was once every 102 days, which compared well with the Hanford standard frequency of once every 90 days. This result depended largely on the assumption that an improperly operating CP instrument could lead to a serious overexposure. These examples have led us to conclude that optimization of radiation protection programs must be a very dynamic process. Examples must be recalculated as empirical data expand and improve and as the uncertainties surrounding assumptions are reduced

  18. Crossing borders in educational innovation : Framing foreign examples in discussing comprehensive education in the Netherlands, 1969-1979

    NARCIS (Netherlands)

    Greveling, Linda; Amsing, Hilda T. A.; Dekker, Jeroen J. H.

    2014-01-01

    In the Netherlands, crossing borders to study comprehensive schools was an important strategy in the 1970s, a decisive period for the start and the end of the innovation. According to policy-borrowing theory, actors that engage in debating educational issues are framing foreign examples of

  19. Introduction to 3+1 numerical relativity

    CERN Document Server

    Alcubierre, Miguel

    2008-01-01

    This book introduces the modern field of 3+1 numerical relativity. The book has been written in a way as to be as self-contained as possible, and only assumes a basic knowledge of special relativity. Starting from a brief introduction to general relativity, it discusses the different concepts and tools necessary for the fully consistent numerical simulation of relativistic astrophysical systems, with strong and dynamical gravitational fields. Among the topics discussed in detail arethe following: the initial data problem, hyperbolic reductions of the field equations, gauge conditions, the evol

  20. Planar Quantum Mechanics: an Intriguing Supersymmetric Example

    CERN Document Server

    Veneziano, Gabriele

    2006-01-01

    After setting up a Hamiltonian formulation of planar (matrix) quantum mechanics, we illustrate its effectiveness in a non-trivial supersymmetric example. The numerical and analytical study of two sectors of the model, as a function of 't Hooft's coupling $\\lambda$, reveals both a phase transition at $\\lambda=1$ (disappearence of the mass gap and discontinuous jump in Witten's index) and a new form of strong-weak duality for $\\lambda \\to 1/\\lambda$.

  1. Dimensional analysis examples of the use of symmetry

    CERN Document Server

    Hornung, Hans G

    2006-01-01

    Derived from a course in fluid mechanics, this text for advanced undergraduates and beginning graduate students employs symmetry arguments to demonstrate the principles of dimensional analysis. The examples provided illustrate the effectiveness of symmetry arguments in obtaining the mathematical form of the functions yielded by dimensional analysis. Students will find these methods applicable to a wide field of interests.After discussing several examples of method, the text examines pipe flow, material properties, gasdynamical examples, body in nonuniform flow, and turbulent flow. Additional t

  2. Communication Patterns in Preschool Education Institutions ? Practical Examples

    OpenAIRE

    Radic-Hozo, Endica

    2014-01-01

    Introduction: Proper communication in pre-school institutions for education is undeniable importance to the development of the child, as evidenced by numerous studies. After the child's birth follows the most complex phase in its early phases - preschool education. Only high-quality, synergistic relationship triad: parent-child-educator and the modern postulates of preschool child education, warrants successful preschool child education. Methods and materials: Description, with examples from ...

  3. Numerical Simulation of Polynomial-Speed Convergence Phenomenon

    Science.gov (United States)

    Li, Yao; Xu, Hui

    2017-11-01

    We provide a hybrid method that captures the polynomial speed of convergence and polynomial speed of mixing for Markov processes. The hybrid method that we introduce is based on the coupling technique and renewal theory. We propose to replace some estimates in classical results about the ergodicity of Markov processes by numerical simulations when the corresponding analytical proof is difficult. After that, all remaining conclusions can be derived from rigorous analysis. Then we apply our results to seek numerical justification for the ergodicity of two 1D microscopic heat conduction models. The mixing rate of these two models are expected to be polynomial but very difficult to prove. In both examples, our numerical results match the expected polynomial mixing rate well.

  4. Polynomial model inversion control: numerical tests and applications

    OpenAIRE

    Novara, Carlo

    2015-01-01

    A novel control design approach for general nonlinear systems is described in this paper. The approach is based on the identification of a polynomial model of the system to control and on the on-line inversion of this model. Extensive simulations are carried out to test the numerical efficiency of the approach. Numerical examples of applicative interest are presented, concerned with control of the Duffing oscillator, control of a robot manipulator and insulin regulation in a type 1 diabetic p...

  5. Numerical Simulation of Cyclic Thermodynamic Processes

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård

    2006-01-01

    This thesis is on numerical simulation of cyclic thermodynamic processes. A modelling approach and a method for finding periodic steady state solutions are described. Examples of applications are given in the form of four research papers. Stirling machines and pulse tube coolers are introduced...... and a brief overview of the current state of the art in methods for simulating such machines is presented. It was found that different simulation approaches, which model the machines with different levels of detail, currently coexist. Methods using many simplifications can be easy to use and can provide...... models flexible and easy to modify, and to make simulations fast. A high level of accuracy was achieved for integrations of a model created using the modelling approach; the accuracy depended on the settings for the numerical solvers in a very predictable way. Selection of fast numerical algorithms...

  6. Exploring the nonequilibrium dynamics of ultracold quantum gases by using numerical tools

    Science.gov (United States)

    Heidrich-Meisner, Fabian

    Numerical tools such as exact diagonalization or the density matrix renormalization group method have been vital for the study of the nonequilibrium dynamics of strongly correlated many-body systems. Moreover, they provided unique insight for the interpretation of quantum gas experiments, whenever a direct comparison with theory is possible. By considering the example of the experiment by Ronzheimer et al., in which both an interaction quench and the release of bosons from a trap into an empty optical lattice (sudden expansion) was realized, I discuss several nonequilibrium effects of strongly interacting quantum gases. These include the thermalization of a closed quantum system and its connection to the eigenstate thermalization hypothesis, nonequilibrium mass transport, dynamical fermionization, and transient phenomena such as quantum distillation or dynamical quasicondensation. I highlight the role of integrability in giving rise to ballistic transport in strongly interacting 1D systems and in determining the asymptotic state after a quantum quench. The talk concludes with a perspective on open questions concerning 2D systems and the numerical simulation of their nonequilibrium dynamics. Supported by Deutsche Forschungsgemeinschaft (DFG) via FOR 801.

  7. Numerical Solution of the Fractional Partial Differential Equations by the Two-Dimensional Fractional-Order Legendre Functions

    Directory of Open Access Journals (Sweden)

    Fukang Yin

    2013-01-01

    Full Text Available A numerical method is presented to obtain the approximate solutions of the fractional partial differential equations (FPDEs. The basic idea of this method is to achieve the approximate solutions in a generalized expansion form of two-dimensional fractional-order Legendre functions (2D-FLFs. The operational matrices of integration and derivative for 2D-FLFs are first derived. Then, by these matrices, a system of algebraic equations is obtained from FPDEs. Hence, by solving this system, the unknown 2D-FLFs coefficients can be computed. Three examples are discussed to demonstrate the validity and applicability of the proposed method.

  8. Some examples of the estimation of error for calorimetric assay of plutonium-bearing solids

    International Nuclear Information System (INIS)

    Rodenburg, W.W.

    1977-04-01

    This report provides numerical examples of error estimation and related measurement assurance programs for the calorimetric assay of plutonium. It is primarily intended for users who do not consider themselves experts in the field of calorimetry. These examples will provide practical and useful information in establishing a calorimetric assay capability which fulfills regulatory requirements. 10 tables, 5 figures

  9. Description of Supply Openings in Numerical Models for Room Air Distribution

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    This paper discusses various possibilities for describing supply openings in numerical models of room air distribution.......This paper discusses various possibilities for describing supply openings in numerical models of room air distribution....

  10. Safety goals for nuclear power plants: a discussion paper

    International Nuclear Information System (INIS)

    1982-02-01

    This report includes a proposed policy statement on safety goals for nuclear power plants published by the Commission for public comment and a supporting discussion paper. Proposed qualitative goals and associated numerical guidelines for nuclear power-plant accident risks are presented. The significance of the goals and guidelines, their bases and rationale, and their proposed mode of implementation are discussed

  11. A numerical model for the simulation of quench in the ITER magnets

    International Nuclear Information System (INIS)

    Bottura, L.

    1996-01-01

    A computational model describing the initiation and evolution of normal zones in the cable-in-conduit superconductors designed for the international thermonuclear experimental reactor (ITER) is presented. Because of the particular geometry of the ITER cables, the model treats separately the helium momenta in the two cooling channels and the temperatures of the cable constituents. The numerical implementation of the model is discussed in conjunction with the selection of a well-suited solution algorithm. In particular, the solution procedure chosen is based on an implicit upwind finite element technique with adaptive time step and mesh size adjustment possibilities. The time step and mesh adaption procedures are described. Examples of application of the model are also reported. 39 refs., 6 figs., 2 tabs

  12. Fluid Dynamics Theory, Computation, and Numerical Simulation

    CERN Document Server

    Pozrikidis, Constantine

    2009-01-01

    Fluid Dynamics: Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner. The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming. This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice. There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes. Two distinguishing features of the discourse are: solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty. Matlab codes are presented and discussed for ...

  13. Numerical solution of the polymer system

    Energy Technology Data Exchange (ETDEWEB)

    Haugse, V.; Karlsen, K.H.; Lie, K.-A.; Natvig, J.R.

    1999-05-01

    The paper describes the application of front tracking to the polymer system, an example of a nonstrictly hyperbolic system. Front tracking computes piecewise constant approximations based on approximate Remain solutions and exact tracking of waves. It is well known that the front tracking method may introduce a blow-up of the initial total variation for initial data along the curve where the two eigenvalues of the hyperbolic system are identical. It is demonstrated by numerical examples that the method converges to the correct solution after a finite time that decreases with the discretization parameter. For multidimensional problems, front tracking is combined with dimensional splitting and numerical experiments indicate that large splitting steps can be used without loss of accuracy. Typical CFL numbers are in the range of 10 to 20 and comparisons with the Riemann free, high-resolution method confirm the high efficiency of front tracking. The polymer system, coupled with an elliptic pressure equation, models two-phase, tree-component polymer flooding in an oil reservoir. Two examples are presented where this model is solved by a sequential time stepping procedure. Because of the approximate Riemann solver, the method is non-conservative and CFL members must be chosen only moderately larger than unity to avoid substantial material balance errors generated in near-well regions after water breakthrough. Moreover, it is demonstrated that dimensional splitting may introduce severe grid orientation effects for unstable displacements that are accentuated for decreasing discretization parameters. 9 figs., 2 tabs., 26 refs.

  14. Neutrosophic Examples in Physics

    Directory of Open Access Journals (Sweden)

    Fu Yuhua

    2013-03-01

    Full Text Available Neutrosophy can be widely applied in physics and the like. For example, one of the reasons for 2011 Nobel Prize for physics is "for the discovery of the accelerating expansion of the universe through observations of distant supernovae", but according to neutrosophy, there exist seven or nine states of accelerating expansion and contraction and the neutrosophic state in the universe. Another two examples are "a revision to Gödel's incompleteness theorem by neutrosophy" and "six neutral (neutrosophic fundamental interactions". In addition, the "partial and temporary unified theory so far" is discussed (including "partial and temporary unified electromagnetic theory so far", "partial and temporary unified gravitational theory so far", "partial and temporary unified theory of four fundamental interactions so far", and "partial and temporary unified theory of natural science so far".

  15. Elements of calculation of reactivity by numerical processing

    International Nuclear Information System (INIS)

    Hedde, J.

    1968-01-01

    In order to explore the new opportunities provided by numerical techniques, the author describes the theoretical optimal conditions of a calculation in real time of reactivity from counting samples produced by a nuclear reactor. These optimal conditions can be the better approached if a more complex processing is adopted. A compromise is to be searched between the desired precision and simplicity of the numerical processing hardware. An example is reported to assess result accuracy on a wide power evolution range with a structure of reduced complexity [fr

  16. Mathematical properties of numerical inversion for jet calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Cukierman, Aviv [Physics Department, Stanford University, Stanford, CA 94305 (United States); SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025 (United States); Nachman, Benjamin, E-mail: bnachman@cern.ch [Physics Department, Stanford University, Stanford, CA 94305 (United States); SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025 (United States); Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94704 (United States)

    2017-06-21

    Numerical inversion is a general detector calibration technique that is independent of the underlying spectrum. This procedure is formalized and important statistical properties are presented, using high energy jets at the Large Hadron Collider as an example setting. In particular, numerical inversion is inherently biased and common approximations to the calibrated jet energy tend to over-estimate the resolution. Analytic approximations to the closure and calibrated resolutions are demonstrated to effectively predict the full forms under realistic conditions. Finally, extensions of numerical inversion are presented which can reduce the inherent biases. These methods will be increasingly important to consider with degraded resolution at low jet energies due to a much higher instantaneous luminosity in the near future.

  17. A fundamental discussion of what triggers localized deformation in geological materials

    Science.gov (United States)

    Peters, Max; Paesold, Martin; Poulet, Thomas; Herwegh, Marco; Regenauer-Lieb, Klaus; Veveakis, Manolis

    2015-04-01

    Discontinuous or localized structures are often marked by the transition from a homogeneously deforming into a highly localized mode. This transition has extensively been described in ductile shear zones, folding and pinch-and-swell boudinage, in natural examples, rock deformation experiments and numerical simulations, at various scales. It is conventionally assumed that ductile instabilities, which act as triggers for localized deformation, exclusively arise from structural heterogeneities, i.e. geometric interactions or material imperfections. However, Hansen et al. (2012) concluded from recent laboratory experiments that localized deformation might arise out of steady-state conditions, where the size of initial perturbations was either insufficiently large to trigger localization, or these heterogeneities were simply negligible at the scale of observation. We therefore propose the existence of a principal localization phenomenon, which is based on the material-specific rate-dependency of deformation at elevated temperatures. The concept of strain localization out of a mechanical steady state in a homogeneous material at a critical material parameter and/or deformation rate has previously been discussed for engineering materials (Gruntfest, 1963) and frictional faults (Veveakis et al., 2010). We expand this theory to visco-plastic carbonate rocks, considering deformation conditions and mechanisms encountered in naturally deformed rocks. In the numerical simulation, we implement a grain-size evolution based on the Paleowattmeter scaling relationship of Austin & Evans (2007), which takes both grain size sensitive (diffusion) and insensitive (dislocation) creep combined with grain growth into account (Herwegh et al., 2014). Based on constant strain rate simulations carried out under isothermal boundary conditions, we explore the parameter space in order to obtain the criteria for localization. We determine the criteria for the onset of localization, i.e. the

  18. Numerical simulation of mechatronic sensors and actuators

    CERN Document Server

    Kaltenbacher, Manfred

    2007-01-01

    Focuses on the physical modeling of mechatronic sensors and actuators and their precise numerical simulation using the Finite Element Method (FEM). This book discusses the physical modeling as well as numerical computation. It also gives a comprehensive introduction to finite elements, including their computer implementation.

  19. Dynamical networks of influence in small group discussions.

    Science.gov (United States)

    Moussaïd, Mehdi; Noriega Campero, Alejandro; Almaatouq, Abdullah

    2018-01-01

    In many domains of life, business and management, numerous problems are addressed by small groups of individuals engaged in face-to-face discussions. While research in social psychology has a long history of studying the determinants of small group performances, the internal dynamics that govern a group discussion are not yet well understood. Here, we rely on computational methods based on network analyses and opinion dynamics to describe how individuals influence each other during a group discussion. We consider the situation in which a small group of three individuals engages in a discussion to solve an estimation task. We propose a model describing how group members gradually influence each other and revise their judgments over the course of the discussion. The main component of the model is an influence network-a weighted, directed graph that determines the extent to which individuals influence each other during the discussion. In simulations, we first study the optimal structure of the influence network that yields the best group performances. Then, we implement a social learning process by which individuals adapt to the past performance of their peers, thereby affecting the structure of the influence network in the long run. We explore the mechanisms underlying the emergence of efficient or maladaptive networks and show that the influence network can converge towards the optimal one, but only when individuals exhibit a social discounting bias by downgrading the relative performances of their peers. Finally, we find a late-speaker effect, whereby individuals who speak later in the discussion are perceived more positively in the long run and are thus more influential. The numerous predictions of the model can serve as a basis for future experiments, and this work opens research on small group discussion to computational social sciences.

  20. Numerical Methods for Radiation Magnetohydrodynamics in Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Klein, R I; Stone, J M

    2007-11-20

    We describe numerical methods for solving the equations of radiation magnetohydrodynamics (MHD) for astrophysical fluid flow. Such methods are essential for the investigation of the time-dependent and multidimensional dynamics of a variety of astrophysical systems, although our particular interest is motivated by problems in star formation. Over the past few years, the authors have been members of two parallel code development efforts, and this review reflects that organization. In particular, we discuss numerical methods for MHD as implemented in the Athena code, and numerical methods for radiation hydrodynamics as implemented in the Orion code. We discuss the challenges introduced by the use of adaptive mesh refinement in both codes, as well as the most promising directions for future developments.

  1. Numerical Methods for Radiation Magnetohydrodynamics in Astrophysics

    International Nuclear Information System (INIS)

    Klein, R I; Stone, J M

    2007-01-01

    We describe numerical methods for solving the equations of radiation magnetohydrodynamics (MHD) for astrophysical fluid flow. Such methods are essential for the investigation of the time-dependent and multidimensional dynamics of a variety of astrophysical systems, although our particular interest is motivated by problems in star formation. Over the past few years, the authors have been members of two parallel code development efforts, and this review reflects that organization. In particular, we discuss numerical methods for MHD as implemented in the Athena code, and numerical methods for radiation hydrodynamics as implemented in the Orion code. We discuss the challenges introduced by the use of adaptive mesh refinement in both codes, as well as the most promising directions for future developments

  2. Development of SOVAT: a numerical-spatial decision support system for community health assessment research.

    Science.gov (United States)

    Scotch, Matthew; Parmanto, Bambang

    2006-01-01

    The development of numerical-spatial routines is frequently required to solve complex community health problems. Community health assessment (CHA) professionals who use information technology need a complete system that is capable of supporting the development of numerical-spatial routines. Currently, there is no decision support system (DSS) that is effectively able to accomplish this task as the majority of public health geospatial information systems (GIS) are based on traditional (relational) database architecture. On-Line Analytical Processing (OLAP) is a multidimensional data warehouse technique that is commonly used as a decision support system in standard industry. OLAP alone is not sufficient for solving numerical-spatial problems that frequently occur in CHA research. Coupling it with GIS technology offers the potential for a very powerful and useful system. A community health OLAP cube was created by integrating health and population data from various sources. OLAP and GIS technologies were then combined to develop the Spatial OLAP Visualization and Analysis Tool (SOVAT). The synergy of numerical and spatial environments within SOVAT is shown through an elaborate and easy-to-use drag and drop and direct manipulation graphical user interface (GUI). Community health problem-solving examples (routines) using SOVAT are shown through a series of screen shots. The impact of the difference between SOVAT and existing GIS public health applications can be seen by considering the numerical-spatial problem-solving examples. These examples are facilitated using OLAP-GIS functions. These functions can be mimicked in existing GIS public applications, but their performance and system response would be significantly worse since GIS is based on traditional (relational) backend. OLAP-GIS system offer great potential for powerful numerical-spatial decision support in community health analysis. The functionality of an OLAP-GIS system has been shown through a series of

  3. Numerical analysis of rapid drawdown: Applications in real cases

    Directory of Open Access Journals (Sweden)

    Eduardo E. Alonso

    2016-07-01

    Full Text Available In this study, rapid drawdown scenarios were analyzed by means of numerical examples as well as modeling of real cases with in situ measurements. The aim of the study was to evaluate different approaches available for calculating pore water pressure distributions during and after a drawdown. To do that, a single slope subjected to a drawdown was first analyzed under different calculation alternatives, and numerical results were discussed. Simple methods, such as undrained analysis and pure flow analysis, implicitly assuming a rigid soil skeleton, lead to significant errors in pore water pressure distributions when compared with coupled flow-deformation analysis. A similar analysis was performed for the upstream slope of the Glen Shira Dam, Scotland, and numerical results were compared with field measurements during a controlled drawdown. Field records indicate that classical undrained calculations are conservative but unrealistic. Then, a recent case of a major landslide triggered by a rapid drawdown in a reservoir was interpreted. A key aspect of the case was the correct characterization of permeability of a representative soil profile. This was achieved by combining laboratory test results and a back analysis of pore water pressure time records during a period of reservoir water level fluctuations. The results highlight the difficulty of predicting whether the pore water pressure is overestimated or underestimated when using simplified approaches, and it is concluded that predicting the pore water pressure distribution in a slope after a rapid drawdown requires a coupled flow-deformation analysis in saturated and unsaturated porous media.

  4. Fluid dynamics theory, computation, and numerical simulation

    CERN Document Server

    Pozrikidis, C

    2001-01-01

    Fluid Dynamics Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes Two distinguishing features of the discourse are solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty Matlab codes are presented and discussed for a broad...

  5. Numerical Flexural Strength Analysis of Thermally Stressed Delaminated Composite Structure under Sinusoidal Loading

    Science.gov (United States)

    Hirwani, C. K.; Biswash, S.; Mehar, K.; Panda, S. K.

    2018-03-01

    In this article, we investigate the thermomechanical deflection characteristics of the debonded composite plate structure using an isoparametric type of higher-order finite element model. The current formulation is derived using higher-order kinematic theory and the displacement variables described as constant along the thickness direction whereas varying nonlinearly for the in-plane directions. The present mid-plane kinematic model mainly obsoletes the use of shear correction factor as in the other lower-order theories. The separation between the adjacent layers is modeled via the sub-laminate technique and the intermittent continuity conditions imposed to avoid the mathematical ill conditions. The governing equation of equilibrium of the damaged plate structure under the combined state of loading are obtained using the variational principle and solved numerically to compute the deflection values. Further, the convergence test has been performed by refining the numbers of elements and validated through comparing the present results with available published values. The usefulness of the proposed formulation has been discussed by solving the different kind of numerical examples including the size, location and position of delamination.

  6. Numerical method for the nonlinear Fokker-Planck equation

    International Nuclear Information System (INIS)

    Zhang, D.S.; Wei, G.W.; Kouri, D.J.; Hoffman, D.K.

    1997-01-01

    A practical method based on distributed approximating functionals (DAFs) is proposed for numerically solving a general class of nonlinear time-dependent Fokker-Planck equations. The method relies on a numerical scheme that couples the usual path-integral concept to the DAF idea. The high accuracy and reliability of the method are illustrated by applying it to an exactly solvable nonlinear Fokker-Planck equation, and the method is compared with the accurate K-point Stirling interpolation formula finite-difference method. The approach is also used successfully to solve a nonlinear self-consistent dynamic mean-field problem for which both the cumulant expansion and scaling theory have been found by Drozdov and Morillo [Phys. Rev. E 54, 931 (1996)] to be inadequate to describe the occurrence of a long-lived transient bimodality. The standard interpretation of the transient bimodality in terms of the flat region in the kinetic potential fails for the present case. An alternative analysis based on the effective potential of the Schroedinger-like Fokker-Planck equation is suggested. Our analysis of the transient bimodality is strongly supported by two examples that are numerically much more challenging than other examples that have been previously reported for this problem. copyright 1997 The American Physical Society

  7. Gravitational radiation and 3D numerical relativity

    International Nuclear Information System (INIS)

    Nakamura, T.

    1986-01-01

    Study of Numerical Relativity in Kyoto is reviewed. Main topics discussed are 2D rotating collapse, phase cancellation effects and perturbation calculation of the gravitational radiation from a particle falling into a black hole. New numerical results on 3D time evolution of pure gravitational waves are also presented

  8. Performance-based regulation. Panel Discussion

    International Nuclear Information System (INIS)

    Youngblood, Robert; Bier, Vicki M.; Bukowski, Richard W.; Prasad Kadambi, N.; Koonce, James F.

    2001-01-01

    Full text of publication follows: Performance-based regulation is a part of the NRC's Strategic Plan and is realizing steady progress in conceptual development for actual applications. For example, high-level, conceptual guidelines have been proposed that would apply to reactors, materials, and waste areas. Performance-based approaches are also being applied in other regulated industries such as FAA and OSHA. The discussion will include comments from speakers from different parts of the nuclear industry and other industries regarding benefits and weaknesses of performance-based regulation. (authors)

  9. Two numerical methods for mean-field games

    KAUST Repository

    Gomes, Diogo A.

    2016-01-01

    Here, we consider numerical methods for stationary mean-field games (MFG) and investigate two classes of algorithms. The first one is a gradient flow method based on the variational characterization of certain MFG. The second one uses monotonicity properties of MFG. We illustrate our methods with various examples, including one-dimensional periodic MFG, congestion problems, and higher-dimensional models.

  10. Two numerical methods for mean-field games

    KAUST Repository

    Gomes, Diogo A.

    2016-01-09

    Here, we consider numerical methods for stationary mean-field games (MFG) and investigate two classes of algorithms. The first one is a gradient flow method based on the variational characterization of certain MFG. The second one uses monotonicity properties of MFG. We illustrate our methods with various examples, including one-dimensional periodic MFG, congestion problems, and higher-dimensional models.

  11. Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity

    Directory of Open Access Journals (Sweden)

    Font José A.

    2008-09-01

    Full Text Available This article presents a comprehensive overview of numerical hydrodynamics and magnetohydrodynamics (MHD in general relativity. Some significant additions have been incorporated with respect to the previous two versions of this review (2000, 2003, most notably the coverage of general-relativistic MHD, a field in which remarkable activity and progress has occurred in the last few years. Correspondingly, the discussion of astrophysical simulations in general-relativistic hydrodynamics is enlarged to account for recent relevant advances, while those dealing with general-relativistic MHD are amply covered in this review for the first time. The basic outline of this article is nevertheless similar to its earlier versions, save for the addition of MHD-related issues throughout. Hence, different formulations of both the hydrodynamics and MHD equations are presented, with special mention of conservative and hyperbolic formulations well adapted to advanced numerical methods. A large sample of numerical approaches for solving such hyperbolic systems of equations is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. As previously stated, a comprehensive summary of astrophysical simulations in strong gravitational fields is also presented. These are detailed in three basic sections, namely gravitational collapse, black-hole accretion, and neutron-star evolutions; despite the boundaries, these sections may (and in fact do overlap throughout the discussion. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances in the formulation of the gravitational field, hydrodynamics and MHD equations and the numerical methodology designed to solve them. To keep the length of this article reasonable

  12. Confidence in Numerical Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hemez, Francois M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-23

    This PowerPoint presentation offers a high-level discussion of uncertainty, confidence and credibility in scientific Modeling and Simulation (M&S). It begins by briefly evoking M&S trends in computational physics and engineering. The first thrust of the discussion is to emphasize that the role of M&S in decision-making is either to support reasoning by similarity or to “forecast,” that is, make predictions about the future or extrapolate to settings or environments that cannot be tested experimentally. The second thrust is to explain that M&S-aided decision-making is an exercise in uncertainty management. The three broad classes of uncertainty in computational physics and engineering are variability and randomness, numerical uncertainty and model-form uncertainty. The last part of the discussion addresses how scientists “think.” This thought process parallels the scientific method where by a hypothesis is formulated, often accompanied by simplifying assumptions, then, physical experiments and numerical simulations are performed to confirm or reject the hypothesis. “Confidence” derives, not just from the levels of training and experience of analysts, but also from the rigor with which these assessments are performed, documented and peer-reviewed.

  13. Statistical physics of learning from examples: a brief introduction

    International Nuclear Information System (INIS)

    Broeck, C. van den

    1994-01-01

    The problem of how one can learn from examples is illustrated on the case of a student perception trained by the Hebb rule on examples generated by a teacher perception. Two basic quantities are calculated: the training error and the generalization error. The obtained results are found to be typical. Other training rules are discussed. For the case of an Ising student with an Ising teacher, the existence of a first order phase transition is shown. Special effects such as dilution, queries, rejection, etc. are discussed and some results for multilayer networks are reviewed. In particular, the properties of a self-similar committee machine are derived. Finally, we discuss the statistic of generalization, with a review of the Hoeffding inequality, the Dvoretzky Kiefer Wolfowitz theorem and the Vapnik Chervonenkis theorem. (author). 29 refs, 6 figs

  14. Introduction to numerical computation in Pascal

    CERN Document Server

    Dew, P M

    1983-01-01

    Our intention in this book is to cover the core material in numerical analysis normally taught to students on degree courses in computer science. The main emphasis is placed on the use of analysis and programming techniques to produce well-designed, reliable mathematical software. The treatment should be of interest also to students of mathematics, science and engineering who wish to learn how to write good programs for mathematical computations. The reader is assumed to have some acquaintance with Pascal programming. Aspects of Pascal particularly relevant to numerical computation are revised and developed in the first chapter. Although Pascal has some drawbacks for serious numerical work (for example, only one precision for real numbers), the language has major compensating advantages: it is a widely used teaching language that will be familiar to many students and it encourages the writing of clear, well­ structured programs. By careful use of structure and documentation, we have produced codes that we be...

  15. Numerical solution of neutral functional-differential equations with proportional delays

    Directory of Open Access Journals (Sweden)

    Mehmet Giyas Sakar

    2017-07-01

    Full Text Available In this paper, homotopy analysis method is improved with optimal determination of auxiliary parameter by use of residual error function for solving neutral functional-differential equations (NFDEs with proportional delays. Convergence analysis and error estimate of method are given. Some numerical examples are solved and comparisons are made with the existing results. The numerical results show that the homotopy analysis method with residual error function is very effective and simple.

  16. On Sums of Numerical Series and Fourier Series

    Science.gov (United States)

    Pavao, H. Germano; de Oliveira, E. Capelas

    2008-01-01

    We discuss a class of trigonometric functions whose corresponding Fourier series, on a conveniently chosen interval, can be used to calculate several numerical series. Particular cases are presented and two recent results involving numerical series are recovered. (Contains 1 note.)

  17. Numerical solution of non-linear diffusion problems

    International Nuclear Information System (INIS)

    Carmen, A. del; Ferreri, J.C.

    1998-01-01

    This paper presents a method for the numerical solution of non-linear diffusion problems using finite-differences in moving grids. Due to the presence of steep fronts in the solution domain and to the presence of advective terms originating in the grid movement, an implicit TVD scheme, first order in time and second order in space has been developed. Some algebraic details of the derivation are given. Results are shown for the pure advection of a scalar as a test case and an example dealing with the slow spreading of viscous fluids over plane surfaces. The agreement between numerical and analytical solutions is excellent. (author). 8 refs., 3 figs

  18. Numerical integration of electromagnetic cascade equations, discussion of results for air, copper, iron, and lead

    International Nuclear Information System (INIS)

    Adler, A.; Fuchs, B.; Thielheim, K.O.

    1977-01-01

    The longitudinal development of electromagnetic cascades in air, copper, iron, and lead is studied on the basis of results derived recently by numerical integration of the cascade equations applying rather accurate expressions for the cross-sections involved with the interactions of high energy electrons, positrons, and photons in electromagnetic cascades. Special attention is given to scaling properties of transition curves. It is demonstrated that a good scaling may be achieved by means of the depth of maximum cascade development. (author)

  19. Numerical ecology with R

    CERN Document Server

    Borcard, Daniel; Legendre, Pierre

    2018-01-01

    This new edition of Numerical Ecology with R guides readers through an applied exploration of the major methods of multivariate data analysis, as seen through the eyes of three ecologists. It provides a bridge between a textbook of numerical ecology and the implementation of this discipline in the R language. The book begins by examining some exploratory approaches. It proceeds logically with the construction of the key building blocks of most methods, i.e. association measures and matrices, and then submits example data to three families of approaches: clustering, ordination and canonical ordination. The last two chapters make use of these methods to explore important and contemporary issues in ecology: the analysis of spatial structures and of community diversity. The aims of methods thus range from descriptive to explanatory and predictive and encompass a wide variety of approaches that should provide readers with an extensive toolbox that can address a wide palette of questions arising in contemporary mul...

  20. Teaching Research Methods and Statistics in eLearning Environments: Pedagogy, Practical Examples, and Possible Futures.

    Science.gov (United States)

    Rock, Adam J; Coventry, William L; Morgan, Methuen I; Loi, Natasha M

    2016-01-01

    Generally, academic psychologists are mindful of the fact that, for many students, the study of research methods and statistics is anxiety provoking (Gal et al., 1997). Given the ubiquitous and distributed nature of eLearning systems (Nof et al., 2015), teachers of research methods and statistics need to cultivate an understanding of how to effectively use eLearning tools to inspire psychology students to learn. Consequently, the aim of the present paper is to discuss critically how using eLearning systems might engage psychology students in research methods and statistics. First, we critically appraise definitions of eLearning. Second, we examine numerous important pedagogical principles associated with effectively teaching research methods and statistics using eLearning systems. Subsequently, we provide practical examples of our own eLearning-based class activities designed to engage psychology students to learn statistical concepts such as Factor Analysis and Discriminant Function Analysis. Finally, we discuss general trends in eLearning and possible futures that are pertinent to teachers of research methods and statistics in psychology.

  1. Teaching Research Methods and Statistics in eLearning Environments: Pedagogy, Practical Examples, and Possible Futures

    Science.gov (United States)

    Rock, Adam J.; Coventry, William L.; Morgan, Methuen I.; Loi, Natasha M.

    2016-01-01

    Generally, academic psychologists are mindful of the fact that, for many students, the study of research methods and statistics is anxiety provoking (Gal et al., 1997). Given the ubiquitous and distributed nature of eLearning systems (Nof et al., 2015), teachers of research methods and statistics need to cultivate an understanding of how to effectively use eLearning tools to inspire psychology students to learn. Consequently, the aim of the present paper is to discuss critically how using eLearning systems might engage psychology students in research methods and statistics. First, we critically appraise definitions of eLearning. Second, we examine numerous important pedagogical principles associated with effectively teaching research methods and statistics using eLearning systems. Subsequently, we provide practical examples of our own eLearning-based class activities designed to engage psychology students to learn statistical concepts such as Factor Analysis and Discriminant Function Analysis. Finally, we discuss general trends in eLearning and possible futures that are pertinent to teachers of research methods and statistics in psychology. PMID:27014147

  2. Teaching Research Methods and Statistics in eLearning Environments:Pedagogy, Practical Examples and Possible Futures

    Directory of Open Access Journals (Sweden)

    Adam John Rock

    2016-03-01

    Full Text Available Generally, academic psychologists are mindful of the fact that, for many students, the study of research methods and statistics is anxiety provoking (Gal, Ginsburg, & Schau, 1997. Given the ubiquitous and distributed nature of eLearning systems (Nof, Ceroni, Jeong, & Moghaddam, 2015, teachers of research methods and statistics need to cultivate an understanding of how to effectively use eLearning tools to inspire psychology students to learn. Consequently, the aim of the present paper is to discuss critically how using eLearning systems might engage psychology students in research methods and statistics. First, we critically appraise definitions of eLearning. Second, we examine numerous important pedagogical principles associated with effectively teaching research methods and statistics using eLearning systems. Subsequently, we provide practical examples of our own eLearning-based class activities designed to engage psychology students to learn statistical concepts such as Factor Analysis and Discriminant Function Analysis. Finally, we discuss general trends in eLearning and possible futures that are pertinent to teachers of research methods and statistics in psychology.

  3. Example and Non-Example Pada Pembelajaran Matematika

    OpenAIRE

    Yunarto, Wanda Nugroho

    2016-01-01

    Abstrak Example and Non-Example Learning Model merupakan model pembelajaran yang menggunakan gambar sebagai media pembelajaran yang bertujuan mendorong mahasiswa untuk belajar berfikir kritis dengan jalan memecahkan permasalahan-permasalahan yang terkandung dalam contoh-contoh permasalahan/ konsep yang disajikan. Tujuan dari penelitian ini adalah mendapatkan gambaran mengenai bagaimana penerapan model pembelajaran Example and non-Example pada mahasiswa program studi Pendidikan Matematika Univ...

  4. An outline review of numerical transport methods

    International Nuclear Information System (INIS)

    Budd, C.

    1981-01-01

    A brief review is presented of numerical methods for solving the neutron transport equation in the context of reactor physics. First the various forms of transport equation are given. Second, the various ways of classifying numerical transport methods are discussed. Finally each method (or class of methods) is outlined in turn. (U.K.)

  5. Introducing Geoscience Students to Numerical Modeling of Volcanic Hazards: The example of Tephra2 on VHub.org

    Directory of Open Access Journals (Sweden)

    Leah M. Courtland

    2012-07-01

    Full Text Available The Tephra2 numerical model for tephra fallout from explosive volcanic eruptions is specifically designed to enable students to probe ideas in model literacy, including code validation and verification, the role of simplifying assumptions, and the concepts of uncertainty and forecasting. This numerical model is implemented on the VHub.org website, a venture in cyberinfrastructure that brings together volcanological models and educational materials. The VHub.org resource provides students with the ability to explore and execute sophisticated numerical models like Tephra2. We present a strategy for using this model to introduce university students to key concepts in the use and evaluation of Tephra2 for probabilistic forecasting of volcanic hazards. Through this critical examination students are encouraged to develop a deeper understanding of the applicability and limitations of hazard models. Although the model and applications are intended for use in both introductory and advanced geoscience courses, they could easily be adapted to work in other disciplines, such as astronomy, physics, computational methods, data analysis, or computer science.

  6. BOOK REVIEW: Advanced Topics in Computational Partial Differential Equations: Numerical Methods and Diffpack Programming

    Science.gov (United States)

    Katsaounis, T. D.

    2005-02-01

    models used in finance, based on the Black--Scholes equation. Chapter 12 considers several numerical methods like Monte Carlo, lattice methods, finite difference and finite element methods. Implementation of these methods within Diffpack is presented in the last part of the chapter. Chapter 13 presents how the finite element method is used for the modelling and analysis of elastic structures. The authors describe the structural elements of Diffpack which include popular elements such as beams and plates and examples are presented on how to use them to simulate elastic structures. Chapter 14 describes an application problem, namely the extrusion of aluminum. This is a rather\\endcolumn complicated process which involves non-Newtonian flow, heat transfer and elasticity. The authors describe the systems of PDEs modelling the underlying process and use a finite element method to obtain a numerical solution. The implementation of the numerical method in Diffpack is presented along with some applications. The last chapter, chapter 15, focuses on mathematical and numerical models of systems of PDEs governing geological processes in sedimentary basins. The underlying mathematical model is solved using the finite element method within a fully implicit scheme. The authors discuss the implementational issues involved within Diffpack and they present results from several examples. In summary, the book focuses on the computational and implementational issues involved in solving partial differential equations. The potential reader should have a basic knowledge of PDEs and the finite difference and finite element methods. The examples presented are solved within the programming framework of Diffpack and the reader should have prior experience with the particular software in order to take full advantage of the book. Overall the book is well written, the subject of each chapter is well presented and can serve as a reference for graduate students, researchers and engineers who are

  7. Impression Management in Social Media: The Example of LinkedIn

    Directory of Open Access Journals (Sweden)

    Joanna Paliszkiewicz

    2016-09-01

    Full Text Available Nowadays, the relationships are often initiated and maintained in online environments, the formation and management of online impressions have gained importance and become the subject of numerous studies. The impression management is a conscious process in which people attempt to influence the perceptions of their image. They do it by controlling and managing information presented in social media. The presentation of identity is the key to success or failure for example in business life. In the article, the critical literature review related to impression management in social media is described. The example of the way of self-presentation in LinkedIn is presented. The future directions are indicated.

  8. Numerical methods for metamaterial design

    CERN Document Server

    2013-01-01

    This book describes a relatively new approach for the design of electromagnetic metamaterials.  Numerical optimization routines are combined with electromagnetic simulations to tailor the broadband optical properties of a metamaterial to have predetermined responses at predetermined wavelengths. After a review of both the major efforts within the field of metamaterials and the field of mathematical optimization, chapters covering both gradient-based and derivative-free design methods are considered.  Selected topics including surrogate-base optimization, adaptive mesh search, and genetic algorithms are shown to be effective, gradient-free optimization strategies.  Additionally, new techniques for representing dielectric distributions in two dimensions, including level sets, are demonstrated as effective methods for gradient-based optimization.  Each chapter begins with a rigorous review of the optimization strategy used, and is followed by numerous examples that combine the strategy with either electromag...

  9. Numerical evaluation of a robust self-triggered MPC algorithm

    NARCIS (Netherlands)

    Brunner, F.D.; Heemels, W.P.M.H.; Allgöwer, F.

    2016-01-01

    We present numerical examples demonstrating the efficacy of a recently proposed self-triggered model predictive control scheme for disturbed linear discrete-time systems with hard constraints on the input and state. In order to reduce the amount of communication between the controller and the

  10. Free and constrained symplectic integrators for numerical general relativity

    International Nuclear Information System (INIS)

    Richter, Ronny; Lubich, Christian

    2008-01-01

    We consider symplectic time integrators in numerical general relativity and discuss both free and constrained evolution schemes. For free evolution of ADM-like equations we propose the use of the Stoermer-Verlet method, a standard symplectic integrator which here is explicit in the computationally expensive curvature terms. For the constrained evolution we give a formulation of the evolution equations that enforces the momentum constraints in a holonomically constrained Hamiltonian system and turns the Hamilton constraint function from a weak to a strong invariant of the system. This formulation permits the use of the constraint-preserving symplectic RATTLE integrator, a constrained version of the Stoermer-Verlet method. The behavior of the methods is illustrated on two effectively (1+1)-dimensional versions of Einstein's equations, which allow us to investigate a perturbed Minkowski problem and the Schwarzschild spacetime. We compare symplectic and non-symplectic integrators for free evolution, showing very different numerical behavior for nearly-conserved quantities in the perturbed Minkowski problem. Further we compare free and constrained evolution, demonstrating in our examples that enforcing the momentum constraints can turn an unstable free evolution into a stable constrained evolution. This is demonstrated in the stabilization of a perturbed Minkowski problem with Dirac gauge, and in the suppression of the propagation of boundary instabilities into the interior of the domain in Schwarzschild spacetime

  11. Numerical methods for hyperbolic differential functional problems

    Directory of Open Access Journals (Sweden)

    Roman Ciarski

    2008-01-01

    Full Text Available The paper deals with the initial boundary value problem for quasilinear first order partial differential functional systems. A general class of difference methods for the problem is constructed. Theorems on the error estimate of approximate solutions for difference functional systems are presented. The convergence results are proved by means of consistency and stability arguments. A numerical example is given.

  12. Nonuniform fast Fourier transform method for numerical diffraction simulation on tilted planes.

    Science.gov (United States)

    Xiao, Yu; Tang, Xiahui; Qin, Yingxiong; Peng, Hao; Wang, Wei; Zhong, Lijing

    2016-10-01

    The method, based on the rotation of the angular spectrum in the frequency domain, is generally used for the diffraction simulation between the tilted planes. Due to the rotation of the angular spectrum, the interval between the sampling points in the Fourier domain is not even. For the conventional fast Fourier transform (FFT)-based methods, a spectrum interpolation is needed to get the approximate sampling value on the equidistant sampling points. However, due to the numerical error caused by the spectrum interpolation, the calculation accuracy degrades very quickly as the rotation angle increases. Here, the diffraction propagation between the tilted planes is transformed into a problem about the discrete Fourier transform on the uneven sampling points, which can be evaluated effectively and precisely through the nonuniform fast Fourier transform method (NUFFT). The most important advantage of this method is that the conventional spectrum interpolation is avoided and the high calculation accuracy can be guaranteed for different rotation angles, even when the rotation angle is close to π/2. Also, its calculation efficiency is comparable with that of the conventional FFT-based methods. Numerical examples as well as a discussion about the calculation accuracy and the sampling method are presented.

  13. Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach

    KAUST Repository

    Chertock, A.; Fellner, K.; Kurganov, A.; Lorz, A.; Markowich, P. A.

    2012-01-01

    examples, which illustrate (i) the formation of sinking plumes, (ii) the possible merging of neighbouring plumes and (iii) the convergence towards numerically stable stationary plumes. The examples with stable stationary plumes show how the surface

  14. Numerical linear algebra a concise introduction with Matlab and Julia

    CERN Document Server

    Bornemann, Folkmar

    2018-01-01

    This book offers an introduction to the algorithmic-numerical thinking using basic problems of linear algebra. By focusing on linear algebra, it ensures a stronger thematic coherence than is otherwise found in introductory lectures on numerics. The book highlights the usefulness of matrix partitioning compared to a component view, leading not only to a clearer notation and shorter algorithms, but also to significant runtime gains in modern computer architectures. The algorithms and accompanying numerical examples are given in the programming environment MATLAB, and additionally – in an appendix – in the future-oriented, freely accessible programming language Julia. This book is suitable for a two-hour lecture on numerical linear algebra from the second semester of a bachelor's degree in mathematics.

  15. The properties of atomic nuclei at the boundary of proton instability, discussed at the example of very neutron deficient isotopes in the mass range 100-150

    International Nuclear Information System (INIS)

    Roeckl, E.

    1981-10-01

    In this paper it shall be tried to strike the balance after the first years of experimenting at the on-line mass separator of the GSI Darmstadt and to present the main results of the study of very neutron deficient isotopes in the mass range 90-150 as well as the resulting questions for further experiments. First some foundations concerning the properties of neutron deficient nuclei and the measuring method are explained. The results and their interpretation are discussed using examples for the alpha decay, the beta decay, the mass-energy-area, and the proton-drip line. Finally the obtained results are summarized, and an outlook to further studies of nuclear properties far from beta stability is given. (orig.) [de

  16. Comparing Examples: WebAssign versus Textbook

    Science.gov (United States)

    Richards, Evan; Polak, Jeff; Hardin, Ashley; Risley, John, , Dr.

    2005-11-01

    Research shows students can learn from worked examples.^1 This pilot study compared two groups of students' performance (10 each) in solving physics problems. One group had access to interactive examples^2 released in WebAssign^3, while the other group had access to the counterpart textbook examples. Verbal data from students in problem solving sessions was collected using a think aloud protocol^4 and the data was analyzed using Chi's procedures.^5 An explanation of the methodology and results will be presented. Future phases of this pilot study based upon these results will also be discussed. ^1Atkinson, R.K., Derry, S.J., Renkl A., Wortham, D. (2000). ``Learning from Examples: Instructional Principles from the Worked Examples Research'', Review of Educational Research, vol. 70, n. 2, pp. 181-214. ^2Serway, R.A. & Faughn, J.S. (2006). College Physics (7^th ed.). Belmont, CA: Thomson Brooks/Cole. ^3 see www.webassign.net ^4 Ericsson, K.A. & Simon, H.A. (1984). Protocol Analysis: Verbal Reports as Data. Cambridge, Massachusetts: The MIT Press. ^5 Chi, Michelene T.H. (1997). ``Quantifying Qualitative Analyses of Verbal Data: A Practical Guide,'' The Journal of the Learning Sciences, vol. 6, n. 3, pp. 271-315.

  17. Effects of worked examples, example-problem, and problem-example pairs on novices’ learning

    NARCIS (Netherlands)

    Van Gog, Tamara; Kester, Liesbeth; Paas, Fred

    2010-01-01

    Van Gog, T., Kester, L., & Paas, F. (2011). Effects of worked examples, example-problem, and problem-example pairs on novices’ learning. Contemporary Educational Psychology, 36(3), 212-218. doi:10.1016/j.cedpsych.2010.10.004

  18. Rotation harmonics for a numerical diatomic potential

    International Nuclear Information System (INIS)

    Kobeissi, H.; Korek, M.

    1983-01-01

    The problem of the determination of the rotation harmonics phi 1 , phi 2 , ... for the case of a numerical diatomic potential is considered. These harmonics defined in a recent work by psisub(vJ) = psisub(vO) + lambda 2 phi 2 + ... (where psisub(vJ) is the wave function of the vibration level v and the rotation level J, and lambda = J(J+1)) are studied for the case of the Dunham potential and for a numerical potential defined by the coordinates of its turning points with polynomial interpolations and extrapolations. It is proved that the analytical expressions of the harmonics phi 1 , phi 2 , ... reduce to polynomials where the coefficients are simply related to those of the potential in the case of the Dunham potential, and to the coordinates of the turning points in the case of the numerical potential. The numerical application is simple. The examples presented show that the vibration-rotation wave function psisub(vJ) calculated by using two harmonics only is ''exact'' up to eight significant figures

  19. Robust Programming by Example

    OpenAIRE

    Bishop , Matt; Elliott , Chip

    2011-01-01

    Part 2: WISE 7; International audience; Robust programming lies at the heart of the type of coding called “secure programming”. Yet it is rarely taught in academia. More commonly, the focus is on how to avoid creating well-known vulnerabilities. While important, that misses the point: a well-structured, robust program should anticipate where problems might arise and compensate for them. This paper discusses one view of robust programming and gives an example of how it may be taught.

  20. Numerical solutions of multi-order fractional differential equations by Boubaker polynomials

    Directory of Open Access Journals (Sweden)

    Bolandtalat A.

    2016-01-01

    Full Text Available In this paper, we have applied a numerical method based on Boubaker polynomials to obtain approximate numerical solutions of multi-order fractional differential equations. We obtain an operational matrix of fractional integration based on Boubaker polynomials. Using this operational matrix, the given problem is converted into a set of algebraic equations. Illustrative examples are are given to demonstrate the efficiency and simplicity of this technique.

  1. Neologisms in bilingual digital dictionaries (on the example of Bulgarian-Polish dictionary

    Directory of Open Access Journals (Sweden)

    Ludmila Dimitrova

    2015-11-01

    Full Text Available Neologisms in bilingual digital dictionaries (on the example of Bulgarian-Polish dictionary The paper discusses the presentation of neologisms in the recent version of the Bulgarian-Polish digital dictionary. We also continue the discussion of important problems related to the classifiers of the verbs as headwords of the digital dictionary entries. We analyze some examples from ongoing experimental version of the Bulgarian-Polish digital dictionary.

  2. Empowerment: a conceptual discussion.

    Science.gov (United States)

    Tengland, Per-Anders

    2008-06-01

    The concept of 'empowerment' is used frequently in a number of professional areas, from psychotherapy to social work. But even if the same term is used, it is not always clear if the concept denotes the same goals or the same practice in these various fields. The purpose of this paper is to clarify the discussion and to find a plausible and useful definition of the concept that is suitable for work in various professions. Several suggestions are discussed in the paper, for example control over life or health, autonomy, ability, self-efficacy, self-esteem, and freedom, and it is concluded that there are two plausible complementary uses, one as a goal and one as a process or approach. Empowerment as a goal is to have control over the determinants of one's quality of life, and empowerment as a process is to create a professional relation where the client or community takes control over the change process, determining both the goals of this process and the means to use.

  3. Numerical method of identification of an unknown source term in a heat equation

    Directory of Open Access Journals (Sweden)

    Fatullayev Afet Golayo?lu

    2002-01-01

    Full Text Available A numerical procedure for an inverse problem of identification of an unknown source in a heat equation is presented. Approach of proposed method is to approximate unknown function by polygons linear pieces which are determined consecutively from the solution of minimization problem based on the overspecified data. Numerical examples are presented.

  4. Behavioral modeling of SRIM tables for numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Martinie, S., E-mail: sebastien.martinie@cea.fr; Saad-Saoud, T.; Moindjie, S.; Munteanu, D.; Autran, J.L., E-mail: jean-luc.autran@univ-amu.fr

    2014-03-01

    Highlights: • Behavioral modeling of SRIM data is performed on the basis of power polynomial fitting functions. • Fast and continuous numerical functions are proposed for the stopping power and projected range. • Functions have been successfully tested for a wide variety of ions and targets. • Typical accuracies below the percent have been obtained in the range 1 keV–1 GeV. - Abstract: This work describes a simple way to implement SRIM stopping power and range tabulated data in the form of fast and continuous numerical functions for intensive simulation. We provide here the methodology of this behavioral modeling as well as the details of the implementation and some numerical examples for ions in silicon target. Developed functions have been successfully tested and used for the simulation of soft errors in microelectronics circuits.

  5. Behavioral modeling of SRIM tables for numerical simulation

    International Nuclear Information System (INIS)

    Martinie, S.; Saad-Saoud, T.; Moindjie, S.; Munteanu, D.; Autran, J.L.

    2014-01-01

    Highlights: • Behavioral modeling of SRIM data is performed on the basis of power polynomial fitting functions. • Fast and continuous numerical functions are proposed for the stopping power and projected range. • Functions have been successfully tested for a wide variety of ions and targets. • Typical accuracies below the percent have been obtained in the range 1 keV–1 GeV. - Abstract: This work describes a simple way to implement SRIM stopping power and range tabulated data in the form of fast and continuous numerical functions for intensive simulation. We provide here the methodology of this behavioral modeling as well as the details of the implementation and some numerical examples for ions in silicon target. Developed functions have been successfully tested and used for the simulation of soft errors in microelectronics circuits

  6. Numerical stability in problems of linear algebra.

    Science.gov (United States)

    Babuska, I.

    1972-01-01

    Mathematical problems are introduced as mappings from the space of input data to that of the desired output information. Then a numerical process is defined as a prescribed recurrence of elementary operations creating the mapping of the underlying mathematical problem. The ratio of the error committed by executing the operations of the numerical process (the roundoff errors) to the error introduced by perturbations of the input data (initial error) gives rise to the concept of lambda-stability. As examples, several processes are analyzed from this point of view, including, especially, old and new processes for solving systems of linear algebraic equations with tridiagonal matrices. In particular, it is shown how such a priori information can be utilized as, for instance, a knowledge of the row sums of the matrix. Information of this type is frequently available where the system arises in connection with the numerical solution of differential equations.

  7. Recent or imminent separation and intimate violence against women. A conceptual overview and some Canadian examples.

    Science.gov (United States)

    Sev'er, A

    1997-12-01

    The link between recent or imminent separation and violence against female partners is discussed. Interviews were conducted among 87 divorced, separated and domestic violence survivors during 1985-88 to study violence perpetrated by men against their female intimate partners. Various bodies of literature are reviewed to establish the fact that separation heightens the risk of violence. The conceptual contributions of social learning and power and control theories are presented as they pertain to intimate violence against women. An expanded version of the power-and-control model is used to underscore the violence proneness of separations, especially when women initiate separations. To illustrate the expanded model, numerous Canadian examples are provided, drawn from interviews with divorced women, survivors of intimate violence, and news media reports. Finally, different strategies to break the cycle of violence are summarized.

  8. Numerical solution of electrostatic problems of the accelerator project VICKSI

    International Nuclear Information System (INIS)

    Janetzki, U.

    1975-03-01

    In this work, the numerical solution to a few of the electrostatic problems is dealt with which have occured within the framework of the heavy ion accelerator project VICKSI. By means of these selected examples, the versatile applicability of the numerical method is to be demonstrated, and simultaneously assistance is given for the solution of similar problems. The numerical process for solving ion-optics problems consists generally of two steps. In the first step, the potential distribution for a given boundary value problem is iteratively calculated for the Laplace equation, and then the image characteristics of the electostatic lense are investigated using the Raytrace method. (orig./LH) [de

  9. PATH1 self-teaching curriculum: example problems for Pathways-to-Man Model

    International Nuclear Information System (INIS)

    Helton, J.C.; Finley, N.C.

    1982-10-01

    The Pathways-to-Man Model was developed at Sandia National Laboratories to represent the environmental movement and human uptake of radionuclides. This model is implemented by the computer program PATH1. The purpose of this document is to present a sequence of examples of facilitate use of the model and the computer program which implements it. Each example consists of a brief description of the problem under consideration, a discussion of the data cards required to input the problem to PATH1, and the resultant program output. These examples are intended for use in conjunction with the technical report which describes the model and the computer progam which implements it (NUREG/CR-1636, Vol 1; SAND78-1711). In addition, a sequence of appendices provides the following: a description of a surface hydrologic system used in constructing several of the examples, a discussion of mixed-cell models, and a discussion of selected mathematical topics related to the Pathways Model. A copy of the program PATH1 is included with the report

  10. Introduction to Numerical Computation - analysis and Matlab illustrations

    DEFF Research Database (Denmark)

    Elden, Lars; Wittmeyer-Koch, Linde; Nielsen, Hans Bruun

    In a modern programming environment like eg MATLAB it is possible by simple commands to perform advanced calculations on a personal computer. In order to use such a powerful tool efiiciently it is necessary to have an overview of available numerical methods and algorithms and to know about...... are illustrated by examples in MATLAB....

  11. International Discussion Meeting on High-Tc Superconductors

    CERN Document Server

    1988-01-01

    In the past two years conferences on superconductivity have been characterized by the attendance of hundreds of scientists. Consequently, the organizers were forced to schedule numerous parallel sessions and poster presentations with an almost unsurveyable amount of information. It was, therefore, felt that a more informal get-together, providing ample time for a thourough discussion of some topics of current interest in high-temperature superconductivity, was timely and benefitial for leading scientists as well as for newcomers in the field. The present volume contains the majority of papers presented at the International Discussion Meeting on High-Tc Superconductors held at the Mauterndorf Castle in the Austrian Alps from February 7 to 11, 1988. Each subject was introduced in review form by a few invited speakers and then discussed together with the contributed poster presentations. These discussion sessions chaired by selected scientists turned out to be the highlights of the meeting, not only because all ...

  12. Numerical simulation in material science: principles and applications

    International Nuclear Information System (INIS)

    Ruste, Jacky

    2006-06-01

    The objective is here to describe the main simulation techniques currently used in material science. After a presentation of the concepts of modelling and simulation, of their objectives and uses, of the issue of simulation scale, and of means of numeric simulation, the author addresses simulations performed at a nano-scopic scale: 'ab-initio' methods, molecular dynamics, examples of applications of ab-initio methods to energy issues or to the study of surface properties of nano-materials. The next chapter addresses various Monte Carlo methods (Metropolis, atomic kinetics, objects kinetics, transport with the simulation of particle trajectories, generation of random numbers). The next parts address simulations performed at a mesoscopic scale (simulation and microstructure, phase field methods, dynamics of discrete dislocations, homogeneous chemical kinetics) and at a macroscopic scale (medium discretization with the notion of mesh, simulation of structure mechanics and of fluid behaviour). The issues of code coupling and scale coupling are then discussed. The last part proposes an overview of virtual metallurgy and modelling of industrial processes (welding, vacuum arc re-fusion, rolling, forming)

  13. A rapid numerical method for solving Serre-Green-Naghdi equations describing long free surface gravity waves

    Science.gov (United States)

    Favrie, N.; Gavrilyuk, S.

    2017-07-01

    A new numerical method for solving the Serre-Green-Naghdi (SGN) equations describing dispersive waves on shallow water is proposed. From the mathematical point of view, the SGN equations are the Euler-Lagrange equations for a ‘master’ lagrangian submitted to a differential constraint which is the mass conservation law. One major numerical challenge in solving the SGN equations is the resolution of an elliptic problem at each time instant. This is the most time-consuming part of the numerical method. The idea is to replace the ‘master’ lagrangian by a one-parameter family of ‘augmented’ lagrangians, depending on a greater number of variables, for which the corresponding Euler-Lagrange equations are hyperbolic. In such an approach, the ‘master’ lagrangian is recovered by the augmented lagrangian in some limit (for example, when the corresponding parameter is large). The choice of such a family of augmented lagrangians is proposed and discussed. The corresponding hyperbolic system is numerically solved by a Godunov type method. Numerical solutions are compared with exact solutions to the SGN equations. It appears that the computational time in solving the hyperbolic system is much lower than in the case where the elliptic operator is inverted. The new method is applied, in particular, to the study of ‘Favre waves’ representing non-stationary undular bores produced after reflection of the fluid flow with a free surface at an immobile wall.

  14. Numerical methods for image registration

    CERN Document Server

    Modersitzki, Jan

    2003-01-01

    Based on the author's lecture notes and research, this well-illustrated and comprehensive text is one of the first to provide an introduction to image registration with particular emphasis on numerical methods in medical imaging. Ideal for researchers in industry and academia, it is also a suitable study guide for graduate mathematicians, computer scientists, engineers, medical physicists, and radiologists.Image registration is utilised whenever information obtained from different viewpoints needs to be combined or compared and unwanted distortion needs to be eliminated. For example, CCTV imag

  15. Finite-State Mean-Field Games, Crowd Motion Problems, and its Numerical Methods

    KAUST Repository

    Machado Velho, Roberto

    2017-09-10

    In this dissertation, we present two research projects, namely finite-state mean-field games and the Hughes model for the motion of crowds. In the first part, we describe finite-state mean-field games and some applications to socio-economic sciences. Examples include paradigm shifts in the scientific community and the consumer choice behavior in a free market. The corresponding finite-state mean-field game models are hyperbolic systems of partial differential equations, for which we propose and validate a new numerical method. Next, we consider the dual formulation to two-state mean-field games, and we discuss numerical methods for these problems. We then depict different computational experiments, exhibiting a variety of behaviors, including shock formation, lack of invertibility, and monotonicity loss. We conclude the first part of this dissertation with an investigation of the shock structure for two-state problems. In the second part, we consider a model for the movement of crowds proposed by R. Hughes in [56] and describe a numerical approach to solve it. This model comprises a Fokker-Planck equation coupled with an Eikonal equation with Dirichlet or Neumann data. We first establish a priori estimates for the solutions. Next, we consider radial solutions, and we identify a shock formation mechanism. Subsequently, we illustrate the existence of congestion, the breakdown of the model, and the trend to the equilibrium. We also propose a new numerical method for the solution of Fokker-Planck equations and then to systems of PDEs composed by a Fokker-Planck equation and a potential type equation. Finally, we illustrate the use of the numerical method both to the Hughes model and mean-field games. We also depict cases such as the evacuation of a room and the movement of persons around Kaaba (Saudi Arabia).

  16. Confidence in Numerical Simulations

    International Nuclear Information System (INIS)

    Hemez, Francois M.

    2015-01-01

    This PowerPoint presentation offers a high-level discussion of uncertainty, confidence and credibility in scientific Modeling and Simulation (M&S). It begins by briefly evoking M&S trends in computational physics and engineering. The first thrust of the discussion is to emphasize that the role of M&S in decision-making is either to support reasoning by similarity or to ''forecast,'' that is, make predictions about the future or extrapolate to settings or environments that cannot be tested experimentally. The second thrust is to explain that M&S-aided decision-making is an exercise in uncertainty management. The three broad classes of uncertainty in computational physics and engineering are variability and randomness, numerical uncertainty and model-form uncertainty. The last part of the discussion addresses how scientists ''think.'' This thought process parallels the scientific method where by a hypothesis is formulated, often accompanied by simplifying assumptions, then, physical experiments and numerical simulations are performed to confirm or reject the hypothesis. ''Confidence'' derives, not just from the levels of training and experience of analysts, but also from the rigor with which these assessments are performed, documented and peer-reviewed.

  17. Teaching numerical methods with IPython notebooks and inquiry-based learning

    KAUST Repository

    Ketcheson, David I.

    2014-01-01

    A course in numerical methods should teach both the mathematical theory of numerical analysis and the craft of implementing numerical algorithms. The IPython notebook provides a single medium in which mathematics, explanations, executable code, and visualizations can be combined, and with which the student can interact in order to learn both the theory and the craft of numerical methods. The use of notebooks also lends itself naturally to inquiry-based learning methods. I discuss the motivation and practice of teaching a course based on the use of IPython notebooks and inquiry-based learning, including some specific practical aspects. The discussion is based on my experience teaching a Masters-level course in numerical analysis at King Abdullah University of Science and Technology (KAUST), but is intended to be useful for those who teach at other levels or in industry.

  18. Approximate Analytic and Numerical Solutions to Lane-Emden Equation via Fuzzy Modeling Method

    Directory of Open Access Journals (Sweden)

    De-Gang Wang

    2012-01-01

    Full Text Available A novel algorithm, called variable weight fuzzy marginal linearization (VWFML method, is proposed. This method can supply approximate analytic and numerical solutions to Lane-Emden equations. And it is easy to be implemented and extended for solving other nonlinear differential equations. Numerical examples are included to demonstrate the validity and applicability of the developed technique.

  19. Examples of Neutrosophic Probability in Physics

    Directory of Open Access Journals (Sweden)

    Fu Yuhua

    2015-01-01

    Full Text Available This paper re-discusses the problems of the so-called “law of nonconservation of parity” and “accelerating expansion of the universe”, and presents the examples of determining Neutrosophic Probability of the experiment of Chien-Shiung Wu et al in 1957, and determining Neutrosophic Probability of accelerating expansion of the partial universe.

  20. Two Numerical Approaches to Stationary Mean-Field Games

    KAUST Repository

    Almulla, Noha; Ferreira, Rita; Gomes, Diogo A.

    2016-01-01

    Here, we consider numerical methods for stationary mean-field games (MFG) and investigate two classes of algorithms. The first one is a gradient-flow method based on the variational characterization of certain MFG. The second one uses monotonicity properties of MFG. We illustrate our methods with various examples, including one-dimensional periodic MFG, congestion problems, and higher-dimensional models.

  1. Two Numerical Approaches to Stationary Mean-Field Games

    KAUST Repository

    Almulla, Noha

    2016-10-04

    Here, we consider numerical methods for stationary mean-field games (MFG) and investigate two classes of algorithms. The first one is a gradient-flow method based on the variational characterization of certain MFG. The second one uses monotonicity properties of MFG. We illustrate our methods with various examples, including one-dimensional periodic MFG, congestion problems, and higher-dimensional models.

  2. Numerical Oscillations Analysis for Nonlinear Delay Differential Equations in Physiological Control Systems

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2012-01-01

    Full Text Available This paper deals with the oscillations of numerical solutions for the nonlinear delay differential equations in physiological control systems. The exponential θ-method is applied to p′(t=β0ωμp(t−τ/(ωμ+pμ(t−τ−γp(t and it is shown that the exponential θ-method has the same order of convergence as that of the classical θ-method. Several conditions under which the numerical solutions oscillate are derived. Moreover, it is proven that every nonoscillatory numerical solution tends to positive equilibrium of the continuous system. Finally, the main results are illustrated with numerical examples.

  3. Examples in parametric inference with R

    CERN Document Server

    Dixit, Ulhas Jayram

    2016-01-01

    This book discusses examples in parametric inference with R. Combining basic theory with modern approaches, it presents the latest developments and trends in statistical inference for students who do not have an advanced mathematical and statistical background. The topics discussed in the book are fundamental and common to many fields of statistical inference and thus serve as a point of departure for in-depth study. The book is divided into eight chapters: Chapter 1 provides an overview of topics on sufficiency and completeness, while Chapter 2 briefly discusses unbiased estimation. Chapter 3 focuses on the study of moments and maximum likelihood estimators, and Chapter 4 presents bounds for the variance. In Chapter 5, topics on consistent estimator are discussed. Chapter 6 discusses Bayes, while Chapter 7 studies some more powerful tests. Lastly, Chapter 8 examines unbiased and other tests. Senior undergraduate and graduate students in statistics and mathematics, and those who have taken an introductory cou...

  4. Advanced Dynamics Analytical and Numerical Calculations with MATLAB

    CERN Document Server

    Marghitu, Dan B

    2012-01-01

    Advanced Dynamics: Analytical and Numerical Calculations with MATLAB provides a thorough, rigorous presentation of kinematics and dynamics while using MATLAB as an integrated tool to solve problems. Topics presented are explained thoroughly and directly, allowing fundamental principles to emerge through applications from areas such as multibody systems, robotics, spacecraft and design of complex mechanical devices. This book differs from others in that it uses symbolic MATLAB for both theory and applications. Special attention is given to solutions that are solved analytically and numerically using MATLAB. The illustrations and figures generated with MATLAB reinforce visual learning while an abundance of examples offer additional support. This book also: Provides solutions analytically and numerically using MATLAB Illustrations and graphs generated with MATLAB reinforce visual learning for students as they study Covers modern technical advancements in areas like multibody systems, robotics, spacecraft and des...

  5. Nonlinear reaction-diffusion equations with delay: some theorems, test problems, exact and numerical solutions

    Science.gov (United States)

    Polyanin, A. D.; Sorokin, V. G.

    2017-12-01

    The paper deals with nonlinear reaction-diffusion equations with one or several delays. We formulate theorems that allow constructing exact solutions for some classes of these equations, which depend on several arbitrary functions. Examples of application of these theorems for obtaining new exact solutions in elementary functions are provided. We state basic principles of construction, selection, and use of test problems for nonlinear partial differential equations with delay. Some test problems which can be suitable for estimating accuracy of approximate analytical and numerical methods of solving reaction-diffusion equations with delay are presented. Some examples of numerical solutions of nonlinear test problems with delay are considered.

  6. Foundations of children's numerical and mathematical skills: the roles of symbolic and nonsymbolic representations of numerical magnitude.

    Science.gov (United States)

    Lyons, Ian M; Ansari, Daniel

    2015-01-01

    Numerical and mathematical skills are critical predictors of academic success. The last three decades have seen a substantial growth in our understanding of how the human mind and brain represent and process numbers. In particular, research has shown that we share with animals the ability to represent numerical magnitude (the total number of items in a set) and that preverbal infants can process numerical magnitude. Further research has shown that similar processing signatures characterize numerical magnitude processing across species and developmental time. These findings suggest that an approximate system for nonsymbolic (e.g., dot arrays) numerical magnitude representation serves as the basis for the acquisition of cultural, symbolic (e.g., Arabic numerals) representations of numerical magnitude. This chapter explores this hypothesis by reviewing studies that have examined the relation between individual differences in nonsymbolic numerical magnitude processing and symbolic math abilities (e.g., arithmetic). Furthermore, we examine the extent to which the available literature provides strong evidence for a link between symbolic and nonsymbolic representations of numerical magnitude at the behavioral and neural levels of analysis. We conclude that claims that symbolic number abilities are grounded in the approximate system for the nonsymbolic representation of numerical magnitude are not strongly supported by the available evidence. Alternative models and future research directions are discussed. © 2015 Elsevier Inc. All rights reserved.

  7. Review of the phenomenon of fluidization and its numerical modelling techniques

    Directory of Open Access Journals (Sweden)

    H Khawaja

    2016-10-01

    Full Text Available The paper introduces the phenomenon of fluidization as a process. Fluidization occurs when a fluid (liquid or gas is pushed upwards through a bed of granular material. This may make the granular material to behave like a liquid and, for example, keep a level meniscus on a tilted container, or make a lighter object float on top and a heavier object sink to the bottom. The behavior of the granular material, when fluidized, depends on the superficial gas velocity, particle size, particle density, and fluid properties resulting in various regimes of fluidization. These regimes are discussed in detail in the paper. This paper also discusses the application of fluidized beds from its early usage in the Winkler coal gasifier to more recent applications for manufacturing of carbon nano-tubes. In addition, Geldart grouping based on the range of particle sizes is discussed. The minimum fluidization condition is defined and it is demonstrated that it may be registered slightly different when particles are being fluidized or de-fluidized. The paper presents discussion on three numerical modelling techniques: the two fluid model, unresolved fluid-particle model and resolved fluid particle model. The two fluid model is often referred to Eulerian-Eulerian method of solution and assumes particles as well as fluid as continuum. The unresolved and resolved fluid-particle models are based on Eulerian-Lagrangian method of solution. The key difference between them is the whether to use a drag correlation or solve the boundary layer around the particles. The paper ends with the discussion on the applicability of these models.

  8. Natural releases from contaminated groundwater, Example Reference Biosphere 2B

    Energy Technology Data Exchange (ETDEWEB)

    Simon, I. [CIEMAT/PIRA, Avda Complutense 22, 28040 Madrid (Spain)]. E-mail: isc@csn.es; Naito, M. [Nuclear Waste Management Organization of Japan (NUMO), 4-1-23 Shiba, Minato-ku, Tokyo, 108-0014 (Japan); Thorne, M.C. [Mike Thorne and Associates Limited, Abbotsleigh, Kebroyd Mount, Ripponden, Halifax, West Yorkshire HX6 3JA (United Kingdom); Walke, R. [Enviros QuantiSci, Building D5, Culham Science Centre, Culham, Oxfordshire OX14 3DB (United Kingdom)

    2005-07-01

    Safety assessment is a tool which, by means of an iterative procedure, allows the evaluation of the performance of a disposal system and its potential impact on human health and the environment. Radionuclides from a deep geological disposal facility may not reach the surface environment until many tens of thousands of years after closure of the facility. The BIOMASS Programme on BIOsphere Modelling and ASSessment developed Examples of 'Reference Biospheres' to illustrate the use of the methodology and to demonstrate how biosphere models can be developed and justified as being fit for purpose. The practical examples are also intended to be useful in their own right. The Example Reference Biosphere 2B presented here involves the consideration of alternative types of geosphere-biosphere interfaces and calculation of doses to members of hypothetical exposure groups arising from a wide range of exposure pathways within agricultural and semi-natural environments, but without allowing for evolution of the corresponding biosphere system. The example presented can be used as a generic analysis in some situations although it was developed around a relatively specific conceptual model. It should be a useful practical example, but the above numerical results are not intended to be understood as prescribed biosphere 'conversion factors'.

  9. Natural releases from contaminated groundwater, Example Reference Biosphere 2B

    International Nuclear Information System (INIS)

    Simon, I.; Naito, M.; Thorne, M.C.; Walke, R.

    2005-01-01

    Safety assessment is a tool which, by means of an iterative procedure, allows the evaluation of the performance of a disposal system and its potential impact on human health and the environment. Radionuclides from a deep geological disposal facility may not reach the surface environment until many tens of thousands of years after closure of the facility. The BIOMASS Programme on BIOsphere Modelling and ASSessment developed Examples of 'Reference Biospheres' to illustrate the use of the methodology and to demonstrate how biosphere models can be developed and justified as being fit for purpose. The practical examples are also intended to be useful in their own right. The Example Reference Biosphere 2B presented here involves the consideration of alternative types of geosphere-biosphere interfaces and calculation of doses to members of hypothetical exposure groups arising from a wide range of exposure pathways within agricultural and semi-natural environments, but without allowing for evolution of the corresponding biosphere system. The example presented can be used as a generic analysis in some situations although it was developed around a relatively specific conceptual model. It should be a useful practical example, but the above numerical results are not intended to be understood as prescribed biosphere 'conversion factors'

  10. Detection of the onset of numerical chaotic instabilities by lyapunov exponents

    Directory of Open Access Journals (Sweden)

    Alicia Serfaty De Markus

    2001-01-01

    Full Text Available It is commonly found in the fixed-step numerical integration of nonlinear differential equations that the size of the integration step is opposite related to the numerical stability of the scheme and to the speed of computation. We present a procedure that establishes a criterion to select the largest possible step size before the onset of chaotic numerical instabilities, based upon the observation that computational chaos does not occur in a smooth, continuous way, but rather abruptly, as detected by examining the largest Lyapunov exponent as a function of the step size. For completeness, examination of the bifurcation diagrams with the step reveals the complexity imposed by the algorithmic discretization, showing the robustness of a scheme to numerical instabilities, illustrated here for explicit and implicit Euler schemes. An example of numerical suppression of chaos is also provided.

  11. Round table discussion: Present and future applications of nanocrystalline magnetic materials

    International Nuclear Information System (INIS)

    Herzer, G.; Vazquez, M.; Knobel, M.; Zhukov, A.; Reininger, T.; Davies, H.A.; Groessinger, R.; Sanchez Ll, J.L.

    2005-01-01

    Examples of existing or potential applications of nanocrystalline magnetic materials, ranging from soft to hard magnetic alloys, are presented and discussed by experts in the respective fields of research and technology

  12. Numerical Clifford Analysis for the Non-stationary Schroedinger Equation

    International Nuclear Information System (INIS)

    Faustino, N.; Vieira, N.

    2007-01-01

    We construct a discrete fundamental solution for the parabolic Dirac operator which factorizes the non-stationary Schroedinger operator. With such fundamental solution we construct a discrete counterpart for the Teodorescu and Cauchy-Bitsadze operators and the Bergman projectors. We finalize this paper with convergence results regarding the operators and a concrete numerical example

  13. What can a numerical landscape evolution model tell us about the evolution of a real landscape? Two examples of modeling a real landscape without recreating it

    Science.gov (United States)

    Gasparini, N. M.; Whipple, K. X.; Willenbring, J.; Crosby, B. T.; Brocard, G. Y.

    2013-12-01

    Numerical landscape evolution models (LEMs) offer us the unique opportunity to watch a landscape evolve under any set of environmental forcings that we can quantify. The possibilities for using LEMs are infinite, but complications arise when trying to model a real landscape. Specifically, numerical models cannot recreate every aspect of a real landscape because exact initial conditions are unknown, there will always be gaps in the known tectonic and climatic history, and the geomorphic transport laws that govern redistribution of mass due to surface processes will always be a simplified representation of the actual process. Yet, even with these constraints, numerical models remain the only tool that offers us the potential to explore a limitless range of evolutionary scenarios, allowing us to, at the very least, identify possible drivers responsible for the morphology of the current landscape, and just as importantly, rule out others. Here we highlight two examples in which we use a numerical model to explore the signature of different forcings on landscape morphology and erosion patterns. In the first landscape, the Northern Bolivian Andes, the relative imprint of rock uplift and precipitation patterns on landscape morphology is widely contested. We use the CHILD LEM to systematically vary climate and tectonics and quantify their fingerprints on channel profiles across a steep mountain front. We find that rock uplift and precipitation patterns in this landscape and others can be teased out by examining channel profiles of variably sized catchments that drain different parts of the topography. In the second landscape, the South Fork Eel River (SFER), northern California, USA, the tectonic history is relatively well known; a wave of rock uplift swept through the watershed from headwaters to outlet, perturbing the landscape and sending a wave of bedrock incision upstream. Nine millennial-scale erosion rates from along the mainstem of the river illustrate a pattern of

  14. Summary of Numerical Modeling for Underground Nuclear Test Monitoring Symposium

    International Nuclear Information System (INIS)

    Taylor, S.R.; Kamm, J.R.

    1993-01-01

    This document contains the Proceedings of the Numerical Modeling for Underground Nuclear Test Monitoring Symposium held in Durango, Colorado on March 23-25, 1993. The symposium was sponsored by the Office of Arms Control and Nonproliferation of the United States Department of Energy and hosted by the Source Region Program of Los Alamos National Laboratory. The purpose of the meeting was to discuss state-of-the-art advances in numerical simulations of nuclear explosion phenomenology for the purpose of test ban monitoring. Another goal of the symposium was to promote discussion between seismologists and explosion source-code calculators. Presentation topics include the following: numerical model fits to data, measurement and characterization of material response models, applications of modeling to monitoring problems, explosion source phenomenology, numerical simulations and seismic sources

  15. Numerical Calculation of Transport Based on the Drift-Kinetic Equation for Plasmas in General Toroidal Magnetic Geometry: Numerical Methods

    International Nuclear Information System (INIS)

    Reynolds, J. M.; Lopez-Bruna, D.

    2009-01-01

    In this report we continue with the description of a newly developed numerical method to solve the drift kinetic equation for ions and electrons in toroidal plasmas. Several numerical aspects, already outlined in a previous report [Informes Tecnicos Ciemat 1165, mayo 2009], will be treated now in more detail. Aside from discussing the method in the context of other existing codes, various aspects will be now explained from the viewpoint of numerical methods: the way to solve convection equations, the adopted boundary conditions, the real-space meshing procedures along with a new software developed to build them, and some additional questions related with the parallelization and the numerical integration. (Author) 16 refs

  16. A new scheme to treat the numerical Tcherenkov instability for electromagnetic particle simulations

    International Nuclear Information System (INIS)

    Assous, F.; Degond, P.; Segre, J.; Degond, P.

    1997-10-01

    The aim of this paper is to present a new explicit time scheme for electromagnetic particle simulations. The main property of this new scheme, which depends on a parameter, is to reduce and in some cases to suppress numerical instabilities that can appear in this context, and are widely described in the literature. Other numerical properties are also investigated, and a numerical example is finally given to illustrate our purpose. This scheme is expected to be useful in the field of plasma modelling. (authors)

  17. Numerical modelling of steel arc welding

    International Nuclear Information System (INIS)

    Hamide, M.

    2008-07-01

    Welding is a highly used assembly technique. Welding simulation software would give access to residual stresses and information about the weld's microstructure, in order to evaluate the mechanical resistance of a weld. It would also permit to evaluate the process feasibility when complex geometrical components are to be made, and to optimize the welding sequences in order to minimize defects. This work deals with the numerical modelling of arc welding process of steels. After describing the industrial context and the state of art, the models implemented in TransWeld (software developed at CEMEF) are presented. The set of macroscopic equations is followed by a discussion on their numerical implementation. Then, the theory of re-meshing and our adaptive anisotropic re-meshing strategy are explained. Two welding metal addition techniques are investigated and are compared in terms of the joint size and transient temperature and stresses. The accuracy of the finite element model is evaluated based on experimental results and the results of the analytical solution. Comparative analysis between experimental and numerical results allows the assessment of the ability of the numerical code to predict the thermomechanical and metallurgical response of the welded structure. The models limitations and the phenomena identified during this study are finally discussed and permit to define interesting orientations for future developments. (author)

  18. Climate change and high-resolution whole-building numerical modelling

    NARCIS (Netherlands)

    Blocken, B.J.E.; Briggen, P.M.; Schellen, H.L.; Hensen, J.L.M.

    2010-01-01

    This paper briefly discusses the need of high-resolution whole-building numerical modelling in the context of climate change. High-resolution whole-building numerical modelling can be used for detailed analysis of the potential consequences of climate change on buildings and to evaluate remedial

  19. Benchmark problems for numerical implementations of phase field models

    International Nuclear Information System (INIS)

    Jokisaari, A. M.; Voorhees, P. W.; Guyer, J. E.; Warren, J.; Heinonen, O. G.

    2016-01-01

    Here, we present the first set of benchmark problems for phase field models that are being developed by the Center for Hierarchical Materials Design (CHiMaD) and the National Institute of Standards and Technology (NIST). While many scientific research areas use a limited set of well-established software, the growing phase field community continues to develop a wide variety of codes and lacks benchmark problems to consistently evaluate the numerical performance of new implementations. Phase field modeling has become significantly more popular as computational power has increased and is now becoming mainstream, driving the need for benchmark problems to validate and verify new implementations. We follow the example set by the micromagnetics community to develop an evolving set of benchmark problems that test the usability, computational resources, numerical capabilities and physical scope of phase field simulation codes. In this paper, we propose two benchmark problems that cover the physics of solute diffusion and growth and coarsening of a second phase via a simple spinodal decomposition model and a more complex Ostwald ripening model. We demonstrate the utility of benchmark problems by comparing the results of simulations performed with two different adaptive time stepping techniques, and we discuss the needs of future benchmark problems. The development of benchmark problems will enable the results of quantitative phase field models to be confidently incorporated into integrated computational materials science and engineering (ICME), an important goal of the Materials Genome Initiative.

  20. Examples of the nonlinear dynamics of ballistic capture and escape in the earth-moon system

    Science.gov (United States)

    Belbruno, Edward A.

    1990-01-01

    An example of a trajectory is given which is initially captured in an elliptic resonant orbit about the earth and then ballistically escapes the earth-moon system. This is demonstrated by a numerical example in three-dimensions using a planetary ephemeris. Another example shows a mechanism of how an elliptic orbit about the earth can increase its energy by performing a complex nonlinear transition to an elliptic orbit of a larger semi-major axis. Capture is also considered. An application of ballistic capture at the moon via an unstable periodic orbit using the four-body sun-earth-moon-S/C interaction is described.

  1. Numerical implementation of a transverse-isotropic inelastic, work-hardening constitutive model

    International Nuclear Information System (INIS)

    Baladi, G.Y.

    1978-01-01

    The numerical implementation of a transverse-isotropic inelastic, work-hardening plastic constitutive model is documented. A brief review of the model is presented first to facilitate the understanding of its numerical implementation. This model is formulated in terms of 'pseudo' stress invariants, so that the incremental stress-strain relationship can be readily incorporated into existing finite-difference or infinite-element computer codes. The anisotropic model reduces to its isotropic counterpart without any changes in the mathematical formulation or in the numerical implementation (algorithm) of the model. A typical example of the model and its behavior in uniaxial strain and triaxial compression is presented. (Auth.)

  2. A student's guide to numerical methods

    CERN Document Server

    Hutchinson, Ian H

    2015-01-01

    This concise, plain-language guide for senior undergraduates and graduate students aims to develop intuition, practical skills and an understanding of the framework of numerical methods for the physical sciences and engineering. It provides accessible self-contained explanations of mathematical principles, avoiding intimidating formal proofs. Worked examples and targeted exercises enable the student to master the realities of using numerical techniques for common needs such as solution of ordinary and partial differential equations, fitting experimental data, and simulation using particle and Monte Carlo methods. Topics are carefully selected and structured to build understanding, and illustrate key principles such as: accuracy, stability, order of convergence, iterative refinement, and computational effort estimation. Enrichment sections and in-depth footnotes form a springboard to more advanced material and provide additional background. Whether used for self-study, or as the basis of an accelerated introdu...

  3. On the characteristics of a numerical fluid dynamics simulator

    International Nuclear Information System (INIS)

    Winkler, K.H.A.; Norman, M.L.; Norton, J.L.

    1986-01-01

    John von Neumann envisioned scientists and mathematicians analyzing and controlling their numerical experiments on nonlinear dynamic systems interactively. The authors describe their concept of a real-time Numerical Fluid Dynamics Simulator NFDS. The authors envision the NFDS to be composed of simulation processors, data storage devices, and image processing devices of extremely high power and capacity, interconnected by very high throughput communication channels. They present individual component performance requirements for both real-time and playback operating modes of the NFDS, using problems of current interest in fluid dynamics as examples. Scaling relations are derived showing the dependence of system requirements on the dimensionality and complexity of the numerical model. The authors conclude by extending their analysis to the system requirements posed in modeling the more involved physics of radiation hydrodynamics

  4. Preface of "The Second Symposium on Border Zones Between Experimental and Numerical Application Including Solution Approaches By Extensions of Standard Numerical Methods"

    Science.gov (United States)

    Ortleb, Sigrun; Seidel, Christian

    2017-07-01

    In this second symposium at the limits of experimental and numerical methods, recent research is presented on practically relevant problems. Presentations discuss experimental investigation as well as numerical methods with a strong focus on application. In addition, problems are identified which require a hybrid experimental-numerical approach. Topics include fast explicit diffusion applied to a geothermal energy storage tank, noise in experimental measurements of electrical quantities, thermal fluid structure interaction, tensegrity structures, experimental and numerical methods for Chladni figures, optimized construction of hydroelectric power stations, experimental and numerical limits in the investigation of rain-wind induced vibrations as well as the application of exponential integrators in a domain-based IMEX setting.

  5. Numerical methods for scientists and engineers

    CERN Document Server

    Antia, H M

    2012-01-01

    This book presents an exhaustive and in-depth exposition of the various numerical methods used in scientific and engineering computations. It emphasises the practical aspects of numerical computation and discusses various techniques in sufficient detail to enable their implementation in solving a wide range of problems. The main addition in the third edition is a new Chapter on Statistical Inferences. There is also some addition and editing in the next chapter on Approximations. With this addition 12 new programs have also been added.

  6. A numerical library in Java for scientists and engineers

    CERN Document Server

    Lau, Hang T

    2003-01-01

    At last researchers have an inexpensive library of Java-based numeric procedures for use in scientific computation. The first and only book of its kind, A Numeric Library in Java for Scientists and Engineers is a translation into Java of the library NUMAL (NUMerical procedures in ALgol 60). This groundbreaking text presents procedural descriptions for linear algebra, ordinary and partial differential equations, optimization, parameter estimation, mathematical physics, and other tools that are indispensable to any dynamic research group. The book offers test programs that allow researchers to execute the examples provided; users are free to construct their own tests and apply the numeric procedures to them in order to observe a successful computation or simulate failure. The entry for each procedure is logically presented, with name, usage parameters, and Java code included. This handbook serves as a powerful research tool, enabling the performance of critical computations in Java. It stands as a cost-effi...

  7. Numerical Optimization Design of Dynamic Quantizer via Matrix Uncertainty Approach

    Directory of Open Access Journals (Sweden)

    Kenji Sawada

    2013-01-01

    Full Text Available In networked control systems, continuous-valued signals are compressed to discrete-valued signals via quantizers and then transmitted/received through communication channels. Such quantization often degrades the control performance; a quantizer must be designed that minimizes the output difference between before and after the quantizer is inserted. In terms of the broadbandization and the robustness of the networked control systems, we consider the continuous-time quantizer design problem. In particular, this paper describes a numerical optimization method for a continuous-time dynamic quantizer considering the switching speed. Using a matrix uncertainty approach of sampled-data control, we clarify that both the temporal and spatial resolution constraints can be considered in analysis and synthesis, simultaneously. Finally, for the slow switching, we compare the proposed and the existing methods through numerical examples. From the examples, a new insight is presented for the two-step design of the existing continuous-time optimal quantizer.

  8. An Introduction to Computational Fluid Mechanics by Example

    CERN Document Server

    Biringen, Sedat

    2011-01-01

    This new book builds on the original classic textbook entitled: An Introduction to Computational Fluid Mechanics by C. Y. Chow which was originally published in 1979. In the decades that have passed since this book was published the field of computational fluid dynamics has seen a number of changes in both the sophistication of the algorithms used but also advances in the computer hardware and software available. This new book incorporates the latest algorithms in the solution techniques and supports this by using numerous examples of applications to a broad range of industries from mechanical

  9. Numerical Hydrodynamics in Special Relativity.

    Science.gov (United States)

    Martí, José Maria; Müller, Ewald

    2003-01-01

    This review is concerned with a discussion of numerical methods for the solution of the equations of special relativistic hydrodynamics (SRHD). Particular emphasis is put on a comprehensive review of the application of high-resolution shock-capturing methods in SRHD. Results of a set of demanding test bench simulations obtained with different numerical SRHD methods are compared. Three applications (astrophysical jets, gamma-ray bursts and heavy ion collisions) of relativistic flows are discussed. An evaluation of various SRHD methods is presented, and future developments in SRHD are analyzed involving extension to general relativistic hydrodynamics and relativistic magneto-hydrodynamics. The review further provides FORTRAN programs to compute the exact solution of a 1D relativistic Riemann problem with zero and nonzero tangential velocities, and to simulate 1D relativistic flows in Cartesian Eulerian coordinates using the exact SRHD Riemann solver and PPM reconstruction. Supplementary material is available for this article at 10.12942/lrr-2003-7 and is accessible for authorized users.

  10. D 3.6 Africa: Discussion report

    DEFF Research Database (Denmark)

    Mandrup, Thomas

    2017-01-01

    in general, sub-matter experts, experts on peace and conflict studies, and practitioners in crisis management. A total of eighteen speakers explored the effectiveness of international assistance to the four African examples from different perspectives, drawing a rather pessimistic picture of the current......One round-table event was organised within the framework of Work Package III, part of the IECEU project. The events focused on the WP3’s four case studies: Libya, CAR, South Sudan and DRC. This report provides information on the round-table event and presents the main points of discussion...... that emerged during it. The round-table discussion and the subsequent seminar on the Effectiveness of International Assistance and Local Ownership in the four case studies was organised by the Royal Danish Defence College on 31 October-1. November 2016. The round-table participants included experts on Africa...

  11. Noninvariance of Space and Time Scale Ranges under a Lorentz Transformation and the Implications for the Numerical Study of Relativistic Systems

    International Nuclear Information System (INIS)

    Vay, J.-L.; Vay, J.-L.

    2007-01-01

    We present an analysis which shows that the ranges of space and time scales spanned by a system are not invariant under the Lorentz transformation. This implies the existence of a frame of reference which minimizes an aggregate measure of the range of space and time scales. Such a frame is derived for example cases: free electron laser, laser-plasma accelerator, and particle beam interacting with electron clouds. Implications for experimental, theoretical and numerical studies are discussed. The most immediate relevance is the reduction by orders of magnitude in computer simulation run times for such systems

  12. FOLDER: A numerical tool to simulate the development of structures in layered media

    Science.gov (United States)

    Adamuszek, Marta; Dabrowski, Marcin; Schmid, Daniel W.

    2015-04-01

    integration scheme. We also demonstrate that Euler and Leapfrog time integration schemes are not recommended for any practical use. Finally, the capabilities of the toolbox are illustrated based on two examples: 1) shortening of a synthetic multi-layer sequence and 2) extension of a folded quartz vein embedded in phyllite from Sprague Upper Reservoir (example discussed by Sherwin and Chapple [4]). The latter example demonstrates that FOLDER can be successfully used for reverse modelling and mechanical restoration. [1] Dabrowski, M., Krotkiewski, M., and Schmid, D. W., 2008, MILAMIN: MATLAB-based finite element method solver for large problems. Geochemistry Geophysics Geosystems, vol. 9. [2] Krotkiewski, M. and Dabrowski M., 2010 Parallel symmetric sparse matrix-vector product on scalar multi-core cpus. Parallel Computing, 36(4):181-198 [3] Shewchuk, J. R., 1996, Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator, In: Applied Computational Geometry: Towards Geometric Engineering'' (Ming C. Lin and Dinesh Manocha, editors), Vol. 1148 of Lecture Notes in Computer Science, pp. 203-222, Springer-Verlag, Berlin [4] Sherwin, J.A., Chapple, W.M., 1968. Wavelengths of single layer folds - a Comparison between theory and Observation. American Journal of Science 266 (3), p. 167-179

  13. A numerical model including PID control of a multizone crystal growth furnace

    Science.gov (United States)

    Panzarella, Charles H.; Kassemi, Mohammad

    1992-01-01

    This paper presents a 2D axisymmetric combined conduction and radiation model of a multizone crystal growth furnace. The model is based on a programmable multizone furnace (PMZF) designed and built at NASA Lewis Research Center for growing high quality semiconductor crystals. A novel feature of this model is a control algorithm which automatically adjusts the power in any number of independently controlled heaters to establish the desired crystal temperatures in the furnace model. The control algorithm eliminates the need for numerous trial and error runs previously required to obtain the same results. The finite element code, FIDAP, used to develop the furnace model, was modified to directly incorporate the control algorithm. This algorithm, which presently uses PID control, and the associated heat transfer model are briefly discussed. Together, they have been used to predict the heater power distributions for a variety of furnace configurations and desired temperature profiles. Examples are included to demonstrate the effectiveness of the PID controlled model in establishing isothermal, Bridgman, and other complicated temperature profies in the sample. Finally, an example is given to show how the algorithm can be used to change the desired profile with time according to a prescribed temperature-time evolution.

  14. Explicit appropriate basis function method for numerical solution of stiff systems

    International Nuclear Information System (INIS)

    Chen, Wenzhen; Xiao, Hongguang; Li, Haofeng; Chen, Ling

    2015-01-01

    Highlights: • An explicit numerical method called the appropriate basis function method is presented. • The method differs from the power series method for obtaining approximate numerical solutions. • Two cases show the method is fit for linear and nonlinear stiff systems. • The method is very simple and effective for most of differential equation systems. - Abstract: In this paper, an explicit numerical method, called the appropriate basis function method, is presented. The explicit appropriate basis function method differs from the power series method because it employs an appropriate basis function such as the exponential function, or periodic function, other than a polynomial, to obtain approximate numerical solutions. The method is successful and effective for the numerical solution of the first order ordinary differential equations. Two examples are presented to show the ability of the method for dealing with linear and nonlinear systems of differential equations

  15. The Turbulent Interstellar Medium: Insights and Questions from Numerical Models

    OpenAIRE

    Mac Low, Mordecai-Mark; de Avillez, Miguel A.; Korpi, Maarit J.

    2003-01-01

    "The purpose of numerical models is not numbers but insight." (Hamming) In the spirit of this adage, and of Don Cox's approach to scientific speaking, we discuss the questions that the latest generation of numerical models of the interstellar medium raise, at least for us. The energy source for the interstellar turbulence is still under discussion. We review the argument for supernovae dominating in star forming regions. Magnetorotational instability has been suggested as a way of coupling di...

  16. Getting More from Flashcards: Examples from Medical Microbiology

    Directory of Open Access Journals (Sweden)

    David S Senchina

    2011-02-01

    Full Text Available Four flashcard techniques, developed to stimulate in-depth studying, are discussed in this activity. For each, a medical microbiology course-based example is given. Each activity assumes that students have already familiarized themselves with the names and/or definitions on the flashcards. Smaller sets of terms should be used when first introducing the strategies; once students gain proficiency, larger numbers of flashcards may be included. Technique variations and other applications are discussed

  17. Efficient approximation of random fields for numerical applications

    KAUST Repository

    Harbrecht, Helmut; Peters, Michael; Siebenmorgen, Markus

    2015-01-01

    We consider the rapid computation of separable expansions for the approximation of random fields. We compare approaches based on techniques from the approximation of non-local operators on the one hand and based on the pivoted Cholesky decomposition on the other hand. We provide an a-posteriori error estimate for the pivoted Cholesky decomposition in terms of the trace. Numerical examples validate and quantify the considered methods.

  18. Efficient approximation of random fields for numerical applications

    KAUST Repository

    Harbrecht, Helmut

    2015-01-07

    We consider the rapid computation of separable expansions for the approximation of random fields. We compare approaches based on techniques from the approximation of non-local operators on the one hand and based on the pivoted Cholesky decomposition on the other hand. We provide an a-posteriori error estimate for the pivoted Cholesky decomposition in terms of the trace. Numerical examples validate and quantify the considered methods.

  19. Two split cell numerical methods for solving 2-D non-equilibrium radiation transport equations

    International Nuclear Information System (INIS)

    Feng Tinggui

    2004-11-01

    Two numerically positive methods, the step characteristic integral method and subcell balance method, for solving radiative transfer equations on quadrilateral grids are presented. Numerical examples shows that the schemes presented are feasible on non-rectangle grid computation, and that the computing results by the schemes presented are comparative to that by the discrete ordinate diamond scheme on rectangle grid. (author)

  20. Nonlinear time series theory, methods and applications with R examples

    CERN Document Server

    Douc, Randal; Stoffer, David

    2014-01-01

    FOUNDATIONSLinear ModelsStochastic Processes The Covariance World Linear Processes The Multivariate Cases Numerical Examples ExercisesLinear Gaussian State Space Models Model Basics Filtering, Smoothing, and Forecasting Maximum Likelihood Estimation Smoothing Splines and the Kalman Smoother Asymptotic Distribution of the MLE Missing Data Modifications Structural Component Models State-Space Models with Correlated Errors Exercises Beyond Linear ModelsNonlinear Non-Gaussian Data Volterra Series Expansion Cumulants and Higher-Order Spectra Bilinear Models Conditionally Heteroscedastic Models Thre

  1. Impression Management in Social Media: The Example of LinkedIn

    OpenAIRE

    Joanna Paliszkiewicz; Magdalena Madra-Sawicka

    2016-01-01

    Nowadays, the relationships are often initiated and maintained in online environments, the formation and management of online impressions have gained importance and become the subject of numerous studies. The impression management is a conscious process in which people attempt to influence the perceptions of their image. They do it by controlling and managing information presented in social media. The presentation of identity is the key to success or failure for example i...

  2. Introduction to numerical electrostatics using MATLAB

    CERN Document Server

    Dworsky, Lawrence N

    2014-01-01

    The first of its kind uniquely devoted to the field of computational electrostatics, this book dives headfirst into the actual problems that engineers are expected to solve using method of moment (MoM), finite difference, and finite element techniques. Readers are guided step by step through specific problems and challenges, covering all aspects of electrostatics with an emphasis on numerical procedures. Focusing on practical examples, mathematical equations, and common issues with algorithms, this is an ideal text for students in engineering, physics, and electrostatics-and working engineers

  3. Time's arrow: A numerical experiment

    Science.gov (United States)

    Fowles, G. Richard

    1994-04-01

    The dependence of time's arrow on initial conditions is illustrated by a numerical example in which plane waves produced by an initial pressure pulse are followed as they are multiply reflected at internal interfaces of a layered medium. Wave interactions at interfaces are shown to be analogous to the retarded and advanced waves of point sources. The model is linear and the calculation is exact and demonstrably time reversible; nevertheless the results show most of the features expected of a macroscopically irreversible system, including the approach to the Maxwell-Boltzmann distribution, ergodicity, and concomitant entropy increase.

  4. Effects of Worked Examples, Example-Problem Pairs, and Problem-Example Pairs Compared to Problem Solving

    NARCIS (Netherlands)

    Van Gog, Tamara; Kester, Liesbeth; Paas, Fred

    2010-01-01

    Van Gog, T., Kester, L., & Paas, F. (2010, August). Effects of worked examples, example-problem pairs, and problem-example pairs compared to problem solving. Paper presented at the Biannual EARLI SIG meeting of Instructional design and Learning and instruction with computers, Ulm, Germany.

  5. Discovering Genres of Online Discussion Threads via Text Mining

    Science.gov (United States)

    Lin, Fu-Ren; Hsieh, Lu-Shih; Chuang, Fu-Tai

    2009-01-01

    As course management systems (CMS) gain popularity in facilitating teaching. A forum is a key component to facilitate the interactions among students and teachers. Content analysis is the most popular way to study a discussion forum. But content analysis is a human labor intensity process; for example, the coding process relies heavily on manual…

  6. Numerical modeling of economic uncertainty

    DEFF Research Database (Denmark)

    Schjær-Jacobsen, Hans

    2007-01-01

    Representation and modeling of economic uncertainty is addressed by different modeling methods, namely stochastic variables and probabilities, interval analysis, and fuzzy numbers, in particular triple estimates. Focusing on discounted cash flow analysis numerical results are presented, comparisons...... are made between alternative modeling methods, and characteristics of the methods are discussed....

  7. Numerical method of applying shadow theory to all regions of multilayered dielectric gratings in conical mounting.

    Science.gov (United States)

    Wakabayashi, Hideaki; Asai, Masamitsu; Matsumoto, Keiji; Yamakita, Jiro

    2016-11-01

    Nakayama's shadow theory first discussed the diffraction by a perfectly conducting grating in a planar mounting. In the theory, a new formulation by use of a scattering factor was proposed. This paper focuses on the middle regions of a multilayered dielectric grating placed in conical mounting. Applying the shadow theory to the matrix eigenvalues method, we compose new transformation and improved propagation matrices of the shadow theory for conical mounting. Using these matrices and scattering factors, being the basic quantity of diffraction amplitudes, we formulate a new description of three-dimensional scattering fields which is available even for cases where the eigenvalues are degenerate in any region. Some numerical examples are given for cases where the eigenvalues are degenerate in the middle regions.

  8. Numerical modelling approach for mine backfill

    Indian Academy of Sciences (India)

    Muhammad Zaka Emad

    2017-07-24

    Jul 24, 2017 ... conditions. This paper discusses a numerical modelling strategy for modelling mine backfill material. The .... placed in an ore pass that leads the ore to the ore bin and crusher, from ... 1 year, depending on the mine plan.

  9. Numerical Analysis Objects

    Science.gov (United States)

    Henderson, Michael

    1997-08-01

    The Numerical Analysis Objects project (NAO) is a project in the Mathematics Department of IBM's TJ Watson Research Center. While there are plenty of numerical tools available today, it is not an easy task to combine them into a custom application. NAO is directed at the dual problems of building applications from a set of tools, and creating those tools. There are several "reuse" projects, which focus on the problems of identifying and cataloging tools. NAO is directed at the specific context of scientific computing. Because the type of tools is restricted, problems such as tools with incompatible data structures for input and output, and dissimilar interfaces to tools which solve similar problems can be addressed. The approach we've taken is to define interfaces to those objects used in numerical analysis, such as geometries, functions and operators, and to start collecting (and building) a set of tools which use these interfaces. We have written a class library (a set of abstract classes and implementations) in C++ which demonstrates the approach. Besides the classes, the class library includes "stub" routines which allow the library to be used from C or Fortran, and an interface to a Visual Programming Language. The library has been used to build a simulator for petroleum reservoirs, using a set of tools for discretizing nonlinear differential equations that we have written, and includes "wrapped" versions of packages from the Netlib repository. Documentation can be found on the Web at "http://www.research.ibm.com/nao". I will describe the objects and their interfaces, and give examples ranging from mesh generation to solving differential equations.

  10. Java technology for implementing efficient numerical analysis in intranet

    International Nuclear Information System (INIS)

    Song, Hee Yong; Ko, Sung Ho

    2001-01-01

    This paper introduces some useful Java technologies for utilizing the internet in numerical analysis, and suggests one architecture performing efficient numerical analysis in the intranet by using them. The present work has verified it's possibility by implementing some parts of this architecture with two easy examples. One is based on Servlet-Applet communication, JDBC and swing. The other is adding multi-threads, file transfer and Java remote method invocation to the former. Through this work it has been intended to make the base for the later advanced and practical research that will include efficiency estimates of this architecture and deal with advanced load balancing

  11. Radionuclides for process analysis problems and examples

    International Nuclear Information System (INIS)

    Otto, R.; Koennecke, H.G.; Luther, D.; Hecht, P.

    1986-01-01

    Both practical problems of the application of the tracer techniques for residence time measurements and the advantages of the methods are discussed. In this paper selected examples for tracer experiments carried out in a drinking water generator, a caprolactam production plant and a cokery are given. In all cases the efficiency of the processes investigated could be improved. (author)

  12. Numeric invariants from multidimensional persistence

    Energy Technology Data Exchange (ETDEWEB)

    Skryzalin, Jacek [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carlsson, Gunnar [Stanford Univ., Stanford, CA (United States)

    2017-05-19

    In this paper, we analyze the space of multidimensional persistence modules from the perspectives of algebraic geometry. We first build a moduli space of a certain subclass of easily analyzed multidimensional persistence modules, which we construct specifically to capture much of the information which can be gained by using multidimensional persistence over one-dimensional persistence. We argue that the global sections of this space provide interesting numeric invariants when evaluated against our subclass of multidimensional persistence modules. Lastly, we extend these global sections to the space of all multidimensional persistence modules and discuss how the resulting numeric invariants might be used to study data.

  13. Numerical solution of the kinetic equation for photoelectrons in the plasmasphere with account for free and trapped zones

    International Nuclear Information System (INIS)

    Khazanov, G.V.; Koen, M.A.; Burenkov, S.I.

    1979-01-01

    Considered is the dinamics of photoelectron fluxes formation in the Earth plasmasphere with account of zone interaction of free and trapped photoelectrons. An algorithm and the results of numerical solution of the equation are presented. The problem of boundary condition choice is discussed. The angular distribution of 10 eV energy photoelectrons at different altitudes of plasmasphere is presented as an example. It is shown that the changes of photoelectron distribution function from bottom of plasmasphere to the top of a force line of the geomagnetic field are within the 1.6 limits. Presented is the estimate of plasmasphere transmittance value and its comparison with the experiment for Mc Ilwain parameter L=2

  14. Qualitative Research: A Grounded Theory Example and Evaluation Criteria

    OpenAIRE

    Bitsch, Vera

    2005-01-01

    The qualitative research paradigm, although occasionally applied, is not widely discussed in agribusiness and agricultural economics literature. The primary goals of this paper are (a) to present insights into qualitative research approaches and processes by outlining grounded theory as an example of a systematic and rigorous qualitative approach, and (b) to discuss criteria for scientific rigor applicable to qualitative research. In addition, assessing qualitative research is demonstrated by...

  15. Integration of numerical analysis tools for automated numerical optimization of a transportation package design

    International Nuclear Information System (INIS)

    Witkowski, W.R.; Eldred, M.S.; Harding, D.C.

    1994-01-01

    The use of state-of-the-art numerical analysis tools to determine the optimal design of a radioactive material (RAM) transportation container is investigated. The design of a RAM package's components involves a complex coupling of structural, thermal, and radioactive shielding analyses. The final design must adhere to very strict design constraints. The current technique used by cask designers is uncoupled and involves designing each component separately with respect to its driving constraint. With the use of numerical optimization schemes, the complex couplings can be considered directly, and the performance of the integrated package can be maximized with respect to the analysis conditions. This can lead to more efficient package designs. Thermal and structural accident conditions are analyzed in the shape optimization of a simplified cask design. In this paper, details of the integration of numerical analysis tools, development of a process model, nonsmoothness difficulties with the optimization of the cask, and preliminary results are discussed

  16. Numerical solutions of stochastic Lotka-Volterra equations via operational matrices

    Directory of Open Access Journals (Sweden)

    F. Hosseini Shekarabi

    2016-03-01

    Full Text Available In this paper, an efficient and convenient method for numerical solutions of stochastic Lotka-Volterra dynamical system is proposed. Here, we consider block pulse functions and their operational matrices of integration. Illustrative example is included to demonstrate the procedure and accuracy of the operational matrices based on block pulse functions.

  17. Mathematical and numerical methods for Vlasov-Maxwell equations: the contributions of data mining

    International Nuclear Information System (INIS)

    Assous, F.; Chaskalovic, J.

    2014-01-01

    There exist a lot of formulations that can model plasma physics or particle accelerators problems as the Vlasov- Maxwell equations. This paper deals with the applications of data mining techniques in the evaluation of numerical solutions of Vlasov-Maxwell models. This is part of the topic of characterizing the model and approximation errors via learning techniques. We give two examples of application. The first one aims at comparing two Vlasov-Maxwell approximate models. In the second one, a scheme based on data mining techniques is proposed to characterize the errors between a P1 and a P2 finite element Particle-In-Cell approach. Beyond these examples, this original approach should operate in all cases where intricate numerical simulations like for the Vlasov-Maxwell equations take a central part. (authors)

  18. Numerical and Experimental Study of Pump Sump Flows

    Directory of Open Access Journals (Sweden)

    Wei-Liang Chuang

    2014-01-01

    Full Text Available The present study analyzes pump sump flows with various discharges and gate submergence. Investigations using a three-dimensional large eddy simulation model and an acoustic Doppler velocimeter are performed. Flow patterns and velocity profiles in the approaching flow are shown to describe the flow features caused by various discharges and gate submergence. The variation of a large-scale spanwise vortex behind a sluice gate is examined and discussed. The suction effect on approaching flow near the pipe column is examined using numerical modeling. To gain more understanding of the vortices variation, a comparison between time-averaged and instantaneous flow patterns is numerically conducted. Additionally, swirl angle, a widely used index for evaluating pump efficiency, is experimentally and numerically examined under various flow conditions. The results indicate that the pump becomes less efficient with increasing discharge and gate submergence. The fluctuation of the free surface over the pump sump is also discussed.

  19. Numerical simulation of a sour gas flare

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, A. [Alberta Research Council, Devon, AB (Canada)

    2008-07-01

    Due to the limited amount of information in the literature on sour gas flares and the cost of conducting wind tunnel and field experiments on sour flares, this presentation presented a modelling project that predicted the effect of operating conditions on flare performance and emissions. The objectives of the project were to adapt an existing numerical model suitable for flare simulation, incorporate sulfur chemistry, and run simulations for a range of conditions typical of sour flares in Alberta. The study involved the use of modelling expertise at the University of Utah, and employed large eddy simulation (LES) methods to model open flames. The existing model included the prediction of turbulent flow field; hydrocarbon reaction chemistry; soot formation; and radiation heat transfer. The presentation addressed the unique features of the model and discussed whether LES could predict the flow field. Other topics that were presented included the results from a University of Utah comparison; challenges of the LES model; an example of a run time issue; predicting the impact of operating conditions; and the results of simulations. Last, several next steps were identified and preliminary results were provided. Future work will focus on reducing computation time and increasing information reporting. figs.

  20. Numerical analysis

    CERN Document Server

    Jacques, Ian

    1987-01-01

    This book is primarily intended for undergraduates in mathematics, the physical sciences and engineering. It introduces students to most of the techniques forming the core component of courses in numerical analysis. The text is divided into eight chapters which are largely self-contained. However, with a subject as intricately woven as mathematics, there is inevitably some interdependence between them. The level of difficulty varies and, although emphasis is firmly placed on the methods themselves rather than their analysis, we have not hesitated to include theoretical material when we consider it to be sufficiently interesting. However, it should be possible to omit those parts that do seem daunting while still being able to follow the worked examples and to tackle the exercises accompanying each section. Familiarity with the basic results of analysis and linear algebra is assumed since these are normally taught in first courses on mathematical methods. For reference purposes a list of theorems used in the t...

  1. Numerical investigation of complex flooding schemes for surfactant polymer based enhanced oil recovery

    Science.gov (United States)

    Dutta, Sourav; Daripa, Prabir

    2015-11-01

    Surfactant-polymer flooding is a widely used method of chemical enhanced oil recovery (EOR) in which an array of complex fluids containing suitable and varying amounts of surfactant or polymer or both mixed with water is injected into the reservoir. This is an example of multiphase, multicomponent and multiphysics porous media flow which is characterized by the spontaneous formation of complex viscous fingering patterns and is modeled by a system of strongly coupled nonlinear partial differential equations with appropriate initial and boundary conditions. Here we propose and discuss a modern, hybrid method based on a combination of a discontinuous, multiscale finite element formulation and the method of characteristics to accurately solve the system. Several types of flooding schemes and rheological properties of the injected fluids are used to numerically study the effectiveness of various injection policies in minimizing the viscous fingering and maximizing oil recovery. Numerical simulations are also performed to investigate the effect of various other physical and model parameters such as heterogeneity, relative permeability and residual saturation on the quantities of interest like cumulative oil recovery, sweep efficiency, fingering intensity to name a few. Supported by the grant NPRP 08-777-1-141 from the Qatar National Research Fund (a member of The Qatar Foundation).

  2. Nonlinear ordinary differential equations analytical approximation and numerical methods

    CERN Document Server

    Hermann, Martin

    2016-01-01

    The book discusses the solutions to nonlinear ordinary differential equations (ODEs) using analytical and numerical approximation methods. Recently, analytical approximation methods have been largely used in solving linear and nonlinear lower-order ODEs. It also discusses using these methods to solve some strong nonlinear ODEs. There are two chapters devoted to solving nonlinear ODEs using numerical methods, as in practice high-dimensional systems of nonlinear ODEs that cannot be solved by analytical approximate methods are common. Moreover, it studies analytical and numerical techniques for the treatment of parameter-depending ODEs. The book explains various methods for solving nonlinear-oscillator and structural-system problems, including the energy balance method, harmonic balance method, amplitude frequency formulation, variational iteration method, homotopy perturbation method, iteration perturbation method, homotopy analysis method, simple and multiple shooting method, and the nonlinear stabilized march...

  3. Numerical investigations of gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Csizmadia, Peter; Racz, Istvan, E-mail: iracz@rmki.kfki.h [RMKI, Budapest, Konkoly Thege Miklos ut 29-33, H-1121 (Hungary)

    2010-03-01

    Some properties of a new framework for simulating generic 4-dimensional spherically symmetric gravitating systems are discussed. The framework can be used to investigate spacetimes that undergo complete gravitational collapse. The analytic setup is chosen to ensure that our numerical method is capable to follow the time evolution everywhere, including the black hole region.

  4. Increased-accuracy numerical modeling of electron-optical systems with space-charge

    International Nuclear Information System (INIS)

    Sveshnikov, V.

    2011-01-01

    This paper presents a method for improving the accuracy of space-charge computation for electron-optical systems. The method proposes to divide the computational region into two parts: a near-cathode region in which analytical solutions are used and a basic one in which numerical methods compute the field distribution and trace electron ray paths. A numerical method is used for calculating the potential along the interface, which involves solving a non-linear equation. Preliminary results illustrating the improvement of accuracy and the convergence of the method for a simple test example are presented.

  5. Numerical treatment of elliptic BVP with several solutions and of MHD equilibrium problems

    International Nuclear Information System (INIS)

    Meyer-Spasche, R.

    1975-12-01

    It is found out empirically that Newton iteration and difference methods are very suitable for the numerical treatment of elliptic boundary value problems (Lu)(x) = f(x,u(x)) in D c R 2 , u/deltaD = g having several solutions. Some convergence theorems for these methods are presented. Some notable numerical examples are given, including bifurcation diagrams, which are interesting in themselves and show also the applicability of the methods developed. (orig./WB) [de

  6. Groundwater flow through a natural fracture. Flow experiments and numerical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Erik [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept of Geology

    1997-09-01

    Groundwater flow and transport play an important role not only for groundwater exploration but also in environmental engineering problems. This report considers how the hydraulic properties of fractures in crystalline rock depend on the fracture aperture geometry. Different numerical models are discussed and a FDM computer code for two- and three- dimensional flow-modelling has been developed. Different relations between the cells in the model are tested and compared with results in the literature. A laboratory experimental work has been done to carry out flow experiments and aperture measurements on the same specimen of a natural fracture. The drilled core sample had fractures parallel to the core axis and was placed inside a biaxial cell during the experiments. The water pressure gradient and the compression stress were varied during the experiments and also a tracer test was done. After the flow experiments, the aperture distribution for a certain compression was measured by injecting an epoxy resin into the fracture. The thickness of the resin layer was then studied in saw cut sections of the sample. The results from the experiments were used to validate numerical and analytical models, based on aperture distribution, for flow and transport simulations. In the disturbed zone around a drift both water and air are present in the fractures. The gas will go to the most wide part of the fracture because the capillarity and the conductivity decrease. The dependence of the effective conductivity on the variance of the conductivity and the effect of extinction of highly conductive cells has also been studied. A discussion of how gas in fractures around a drift can cause a skin effect is modelled and an example is given of what a saturation depending on the magnitude of the flow causes. 25 refs, 17 tabs, 43 figs.

  7. Groundwater flow through a natural fracture. Flow experiments and numerical modelling

    International Nuclear Information System (INIS)

    Larsson, Erik

    1997-09-01

    Groundwater flow and transport play an important role not only for groundwater exploration but also in environmental engineering problems. This report considers how the hydraulic properties of fractures in crystalline rock depend on the fracture aperture geometry. Different numerical models are discussed and a FDM computer code for two- and three- dimensional flow-modelling has been developed. Different relations between the cells in the model are tested and compared with results in the literature. A laboratory experimental work has been done to carry out flow experiments and aperture measurements on the same specimen of a natural fracture. The drilled core sample had fractures parallel to the core axis and was placed inside a biaxial cell during the experiments. The water pressure gradient and the compression stress were varied during the experiments and also a tracer test was done. After the flow experiments, the aperture distribution for a certain compression was measured by injecting an epoxy resin into the fracture. The thickness of the resin layer was then studied in saw cut sections of the sample. The results from the experiments were used to validate numerical and analytical models, based on aperture distribution, for flow and transport simulations. In the disturbed zone around a drift both water and air are present in the fractures. The gas will go to the most wide part of the fracture because the capillarity and the conductivity decrease. The dependence of the effective conductivity on the variance of the conductivity and the effect of extinction of highly conductive cells has also been studied. A discussion of how gas in fractures around a drift can cause a skin effect is modelled and an example is given of what a saturation depending on the magnitude of the flow causes

  8. Numerical simulation of ion-surface interactions

    International Nuclear Information System (INIS)

    Hou, M.

    1994-01-01

    This paper, based on examples from the author's contribution, aims to illustrate the role of ballistic simulations of the interaction between an ion beam and a surface in the characterization of surface properties. Several aspects of the ion-surface interaction have been modelled to various levels of sophistication by computer simulation. Particular emphasis is given to the ion scattering in the impact mode, in the multiple scattering regime and at grazing incidence, as well as to the Auger emission resulting from electronic excitation. Some examples are then given in order to illustrate the use of the combination between simulation and experiment to study the ion-surface interaction and surface properties. Ion-induced Auger emission, the determination of potentials and of overlay structures are discusse. The possibility to tackle dynamical surface properties by menas of a combination between molecular dynamics, ballistic simulations and ion scattering measurements in then briefly discussed. (orig.)

  9. Researching non-formal religious education: The example of the ...

    African Journals Online (AJOL)

    2017-07-26

    Jul 26, 2017 ... In others words, I want to use the present article as an opportunity for discussing some of ... example of the European study on confirmation work. Read online: ..... in English in three volumes (Schweitzer et al. 2010; 2015;.

  10. Example book

    International Nuclear Information System (INIS)

    Donnat, Ph.; Treimany, C.; Gouedard, C.; Morice, O.

    1998-06-01

    This document presents some examples which were used for debugging the code. It seemed useful to write these examples onto a book to be sure the code would not regret; to give warranties for the code's functionality; to propose some examples to illustrate the possibilities and the limits of Miro. (author)

  11. Examples of pseudo-bosons in quantum mechanics

    International Nuclear Information System (INIS)

    Bagarello, F.

    2010-01-01

    We discuss two physical examples of the so-called pseudo-bosons, recently introduced in connection with pseudo-hermitian quantum mechanics. In particular, we show that the so-called extended harmonic oscillator and the Swanson model satisfy all the assumptions of the pseudo-bosonic framework introduced by the author. We also prove that the biorthogonal bases they produce are not Riesz bases.

  12. Examples of radiation protection optimization in design and operation

    International Nuclear Information System (INIS)

    Gonzalez, A.J.; Palacios, E.; Curti, A.; Agatiello, O.; Majchrzak, J.

    1982-01-01

    The practical use of the requirement of optimization of radiological protection is presented. Application examples for designing ventilation systems and for maintenance operations of nuclear plants are given. A method is developed for the application of the optimization requirement to the design of ventilation systems in contaminated environments. Representative values of the main parameters are presented and their relevant features are discussed. A practical example shows actual results for a radioisotope production plant. Causes influencing collective doses incurred by the workers during maintenance operations are analyzed. A method is presented for the optimization of both the level of training of personnel and the apportionment of individual doses. As an example, this methodology is applied to the maintenance operations in a nuclear power plant. (author)

  13. Numerical implementation of the loop-tree duality method

    Energy Technology Data Exchange (ETDEWEB)

    Buchta, Sebastian; Rodrigo, German [Universitat de Valencia-Consejo Superior de Investigaciones Cientificas, Parc Cientific, Instituto de Fisica Corpuscular, Valencia (Spain); Chachamis, Grigorios [Universidad Autonoma de Madrid, Instituto de Fisica Teorica UAM/CSIC, Madrid (Spain); Draggiotis, Petros [Institute of Nuclear and Particle Physics, NCSR ' ' Demokritos' ' , Agia Paraskevi (Greece)

    2017-05-15

    We present a first numerical implementation of the loop-tree duality (LTD) method for the direct numerical computation of multi-leg one-loop Feynman integrals. We discuss in detail the singular structure of the dual integrands and define a suitable contour deformation in the loop three-momentum space to carry out the numerical integration. Then we apply the LTD method to the computation of ultraviolet and infrared finite integrals, and we present explicit results for scalar and tensor integrals with up to eight external legs (octagons). The LTD method features an excellent performance independently of the number of external legs. (orig.)

  14. Numerical functional integration method for studying the properties of the physical vacuum

    International Nuclear Information System (INIS)

    Lobanov, Yu.Yu.

    1998-01-01

    The new approach to investigate the physical vacuum in quantum theories including its nonperturbative topological structure is discussed. This approach is based on the representation of the matrix element of the evolution operator in Euclidean metrics in a form of the functional integral with a certain measure in the corresponding space and on the use of approximation formulas which we constructed for this kind of integral. No preliminary discretization of space and time is required, as well as no simplifying assumptions like semiclassical approximation, collective excitations, introduction of ''short-time'' propagators, etc. are necessary in this approach. The method allows to use the more preferable deterministic algorithms instead of the traditional stochastic technique. It has been proven that our approach has important advantages over the other known methods, including the higher efficiency of computations. Examples of application of the method to the numerical study of some potential nuclear models and to the computation of the topological susceptibility and the θ-vacua energy are presented. (author)

  15. Gas dynamics an introduction with examples from astrophysics and geophysics

    CERN Document Server

    Achterberg, Abraham

    2016-01-01

    This book lays the foundations of gas- and fluid dynamics. The basic equations are developed from first principles, building on the (assumed) knowledge of Classical Mechanics. This leads to the discussion of the mathematical properties of flows, conservation laws, perturbation analysis, waves and shocks. Most of the discussion centers on ideal (frictionless) fluids and gases. Viscous flows are discussed when considering flows around obstacles and shocks. Many of the examples used to illustrate various processes come from astrophysics and geophysical phenomena.

  16. Transportation package design using numerical optimization

    International Nuclear Information System (INIS)

    Harding, D.C.; Witkowski, W.R.

    1992-01-01

    The design of structures and engineering systems has always been an iterative process whose complexity was dependent upon the boundary conditions, constraints and available analytical tools. Transportation packaging design is no exception with structural, thermal and radiation shielding constraints based on regulatory hypothetical accident conditions. Transportation packaging design is often accomplished by a group of specialists, each designing a single component based on one or more simple criteria, pooling results with the group, evaluating the open-quotes pooledclose quotes design, and then reiterating the entire process until a satisfactory design is reached. The manual iterative methods used by the designer/analyst can be summarized in the following steps: design the part, analyze the part, interpret the analysis results, modify the part, and re-analyze the part. The inefficiency of this design practice and the frequently conservative result suggests the need for a more structured design methodology, which can simultaneously consider all of the design constraints. Numerical optimization is a structured design methodology whose maturity in development has allowed it to become a primary design tool in many industries. The purpose of this overview is twofold: first, to outline the theory and basic elements of numerical optimization; and second, to show how numerical optimization can be applied to the transportation packaging industry and used to increase efficiency and safety of radioactive and hazardous material transportation packages. A more extensive review of numerical optimization and its applications to radioactive material transportation package design was performed previously by the authors (Witkowski and Harding 1992). A proof-of-concept Type B package design is also presented as a simplified example of potential improvements achievable using numerical optimization in the design process

  17. The instanton method and its numerical implementation in fluid mechanics

    Science.gov (United States)

    Grafke, Tobias; Grauer, Rainer; Schäfer, Tobias

    2015-08-01

    A precise characterization of structures occurring in turbulent fluid flows at high Reynolds numbers is one of the last open problems of classical physics. In this review we discuss recent developments related to the application of instanton methods to turbulence. Instantons are saddle point configurations of the underlying path integrals. They are equivalent to minimizers of the related Freidlin-Wentzell action and known to be able to characterize rare events in such systems. While there is an impressive body of work concerning their analytical description, this review focuses on the question on how to compute these minimizers numerically. In a short introduction we present the relevant mathematical and physical background before we discuss the stochastic Burgers equation in detail. We present algorithms to compute instantons numerically by an efficient solution of the corresponding Euler-Lagrange equations. A second focus is the discussion of a recently developed numerical filtering technique that allows to extract instantons from direct numerical simulations. In the following we present modifications of the algorithms to make them efficient when applied to two- or three-dimensional (2D or 3D) fluid dynamical problems. We illustrate these ideas using the 2D Burgers equation and the 3D Navier-Stokes equations.

  18. The instanton method and its numerical implementation in fluid mechanics

    International Nuclear Information System (INIS)

    Grafke, Tobias; Grauer, Rainer; Schäfer, Tobias

    2015-01-01

    A precise characterization of structures occurring in turbulent fluid flows at high Reynolds numbers is one of the last open problems of classical physics. In this review we discuss recent developments related to the application of instanton methods to turbulence. Instantons are saddle point configurations of the underlying path integrals. They are equivalent to minimizers of the related Freidlin–Wentzell action and known to be able to characterize rare events in such systems. While there is an impressive body of work concerning their analytical description, this review focuses on the question on how to compute these minimizers numerically. In a short introduction we present the relevant mathematical and physical background before we discuss the stochastic Burgers equation in detail. We present algorithms to compute instantons numerically by an efficient solution of the corresponding Euler–Lagrange equations. A second focus is the discussion of a recently developed numerical filtering technique that allows to extract instantons from direct numerical simulations. In the following we present modifications of the algorithms to make them efficient when applied to two- or three-dimensional (2D or 3D) fluid dynamical problems. We illustrate these ideas using the 2D Burgers equation and the 3D Navier–Stokes equations. (topical review)

  19. Stability of numerical method for semi-linear stochastic pantograph differential equations

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2016-01-01

    Full Text Available Abstract As a particular expression of stochastic delay differential equations, stochastic pantograph differential equations have been widely used in nonlinear dynamics, quantum mechanics, and electrodynamics. In this paper, we mainly study the stability of analytical solutions and numerical solutions of semi-linear stochastic pantograph differential equations. Some suitable conditions for the mean-square stability of an analytical solution are obtained. Then we proved the general mean-square stability of the exponential Euler method for a numerical solution of semi-linear stochastic pantograph differential equations, that is, if an analytical solution is stable, then the exponential Euler method applied to the system is mean-square stable for arbitrary step-size h > 0 $h>0$ . Numerical examples further illustrate the obtained theoretical results.

  20. Numerical analysis of electromagnetic fields

    CERN Document Server

    Zhou Pei Bai

    1993-01-01

    Numerical methods for solving boundary value problems have developed rapidly. Knowledge of these methods is important both for engineers and scientists. There are many books published that deal with various approximate methods such as the finite element method, the boundary element method and so on. However, there is no textbook that includes all of these methods. This book is intended to fill this gap. The book is designed to be suitable for graduate students in engineering science, for senior undergraduate students as well as for scientists and engineers who are interested in electromagnetic fields. Objective Numerical calculation is the combination of mathematical methods and field theory. A great number of mathematical concepts, principles and techniques are discussed and many computational techniques are considered in dealing with practical problems. The purpose of this book is to provide students with a solid background in numerical analysis of the field problems. The book emphasizes the basic theories ...

  1. Numerical techniques for lattice gauge theories

    International Nuclear Information System (INIS)

    Creutz, M.

    1981-01-01

    The motivation for formulating gauge theories on a lattice is reviewed. Monte Carlo simulation techniques are then discussed for these systems. Finally, the Monte Carlo methods are combined with renormalization group analysis to give strong numerical evidence for confinement of quarks by non-Abelian gauge fields

  2. Numerical solution of an inverse 2D Cauchy problem connected with the Helmholtz equation

    International Nuclear Information System (INIS)

    Wei, T; Qin, H H; Shi, R

    2008-01-01

    In this paper, the Cauchy problem for the Helmholtz equation is investigated. By Green's formulation, the problem can be transformed into a moment problem. Then we propose a numerical algorithm for obtaining an approximate solution to the Neumann data on the unspecified boundary. Error estimate and convergence analysis have also been given. Finally, we present numerical results for several examples and show the effectiveness of the proposed method

  3. A numerical study of bulk evaporation and condensation problem

    International Nuclear Information System (INIS)

    Ding, Z.; Anghaie, S.

    1996-01-01

    A numerical model is developed to simulate the dynamic behavior of bulk evaporation and condensation process in an encapsulated container with internal heat generation at micro-gravity level. Thermal performance of a multi-phase system with internal heat generation is investigated. The numerical simulation yields the evolution of the bulk liquid-vapor phase change process. This includes the evolution of the liquid-vapor interface, the formation and development of the liquid film covering the side wall surface, the temperature distribution and the convection flow field. An example of such systems is a phase change nuclear fuel element which was first introduced by Ding and Anghaie with application in high temperature space nuclear power and propulsion systems

  4. On the numerical treatment of selected oscillatory evolutionary problems

    Science.gov (United States)

    Cardone, Angelamaria; Conte, Dajana; D'Ambrosio, Raffaele; Paternoster, Beatrice

    2017-07-01

    We focus on evolutionary problems whose qualitative behaviour is known a-priori and exploited in order to provide efficient and accurate numerical schemes. For classical numerical methods, depending on constant coefficients, the required computational effort could be quite heavy, due to the necessary employ of very small stepsizes needed to accurately reproduce the qualitative behaviour of the solution. In these situations, it may be convenient to use special purpose formulae, i.e. non-polynomially fitted formulae on basis functions adapted to the problem (see [16, 17] and references therein). We show examples of special purpose strategies to solve two families of evolutionary problems exhibiting periodic solutions, i.e. partial differential equations and Volterra integral equations.

  5. Susy theories and QCD: numerical approaches

    International Nuclear Information System (INIS)

    Ita, Harald

    2011-01-01

    We review on-shell and unitarity methods and discuss their application to precision predictions for Large Hadron Collider (LHC) physics. Being universal and numerically robust, these methods are straightforward to automate for next-to-leading-order computations within standard model and beyond. Several state-of-the-art results including studies of (W/Z+3)-jet and (W+4)-jet production have explicitly demonstrated the effectiveness of the unitarity method for describing multi-parton scattering. Here we review central ideas needed to obtain efficient numerical implementations. This includes on-shell loop-level recursions, the unitarity method, color management and further refined tricks. (review)

  6. Design of analog networks in the control theory formulation. Part 2: Numerical results

    OpenAIRE

    Zemliak, A. M.

    2005-01-01

    The paper presents numerical results of design of nonlinear electronic networks based on the problem formulation in terms of the control theory. Several examples illustrate the prospects of the approach suggested in the first part of the work.

  7. Numerical study of nonspherical black hole accretion

    International Nuclear Information System (INIS)

    Hawley, J.F.

    1984-01-01

    This thesis describes in detail a two-dimensional, axisymmetric computer code for calculating fully relativistic ideal gas hydrodynamics around a Kerr black hole. The aim is to study fully dynamic inviscid fluid accretion onto black holes, as well as to study the evolution and development of nonlinear instabilities in pressure supported accretion disks. In order to fully calibrate and document the code, certain analytic solutions for shock tubes and special accretion flows are derived; these solutions form the basis for code testing. The numerical techniques used are developed and discussed. A variety of alternate differencing schemes are compared on an analytic test bed. Some discussion is devoted to general issues in finite differencing. The working code is calibrated using analytically solvable accretion problems, including the radial accretion of dust and of fluid with pressure (Bondi accretion). Two dimensional test problems include the spiraling infall of low angular momentum fluid, the formation of a pressure supported torus, and the stable evolution of a torus. A series of numerical models are discussed and illustrated with selected plots

  8. An Adjoint-based Numerical Method for a class of nonlinear Fokker-Planck Equations

    KAUST Repository

    Festa, Adriano; Gomes, Diogo A.; Machado Velho, Roberto

    2017-01-01

    Here, we introduce a numerical approach for a class of Fokker-Planck (FP) equations. These equations are the adjoint of the linearization of Hamilton-Jacobi (HJ) equations. Using this structure, we show how to transfer the properties of schemes for HJ equations to the FP equations. Hence, we get numerical schemes with desirable features such as positivity and mass-preservation. We illustrate this approach in examples that include mean-field games and a crowd motion model.

  9. An Adjoint-based Numerical Method for a class of nonlinear Fokker-Planck Equations

    KAUST Repository

    Festa, Adriano

    2017-03-22

    Here, we introduce a numerical approach for a class of Fokker-Planck (FP) equations. These equations are the adjoint of the linearization of Hamilton-Jacobi (HJ) equations. Using this structure, we show how to transfer the properties of schemes for HJ equations to the FP equations. Hence, we get numerical schemes with desirable features such as positivity and mass-preservation. We illustrate this approach in examples that include mean-field games and a crowd motion model.

  10. The Thermodynamics of Internal Combustion Engines: Examples of Insights

    Directory of Open Access Journals (Sweden)

    Jerald A. Caton

    2018-05-01

    Full Text Available A major goal of the development of internal combustion (IC engines continues to be higher performance and efficiencies. A major aspect of achieving higher performance and efficiencies is based on fundamental thermodynamics. Both the first and second laws of thermodynamics provide strategies for and limits to the thermal efficiencies of engines. The current work provides three examples of the insights that thermodynamics provides to the performance and efficiencies of an IC engine. The first example evaluates low heat rejection engine concepts, and, based on thermodynamics, demonstrates the difficulty of this concept for increasing efficiencies. The second example compares and contrasts the thermodynamics associated with external and internal exhaust gas dilution. Finally, the third example starts with a discussion of the Otto cycle analysis and explains why this is an incorrect model for the IC engine. An important thermodynamic property that is responsible for many of the observed effects is specific heat.

  11. Collapse of the random-phase approximation: Examples and counter-examples from the shell model

    International Nuclear Information System (INIS)

    Johnson, Calvin W.; Stetcu, Ionel

    2009-01-01

    The Hartree-Fock approximation to the many-fermion problem can break exact symmetries, and in some cases by changing a parameter in the interaction one can drive the Hartree-Fock minimum from a symmetry-breaking state to a symmetry-conserving state (also referred to as a 'phase transition' in the literature). The order of the transition is important when one applies the random-phase approximation (RPA) to the of the Hartree-Fock wave function: if first order, RPA is stable through the transition, but if second-order, then the RPA amplitudes become large and lead to unphysical results. The latter is known as 'collapse' of the RPA. While the difference between first- and second-order transitions in the RPA was first pointed out by Thouless, we present for the first time nontrivial examples of both first- and second-order transitions in a uniform model, the interacting shell-model, where we can compare to exact numerical results.

  12. Numerical computation of soliton dynamics for NLS equations in a driving potential

    Directory of Open Access Journals (Sweden)

    Marco Caliari

    2010-06-01

    Full Text Available We provide numerical computations for the soliton dynamics of the nonlinear Schrodinger equation with an external potential. After computing the ground state solution r of a related elliptic equation we show that, in the semi-classical regime, the center of mass of the solution with initial datum built upon r is driven by the solution to $ddot x=- abla V(x$. Finally, we provide examples and analyze the numerical errors in the two dimensional case when V is a harmonic potential.

  13. The development of efficient numerical time-domain modeling methods for geophysical wave propagation

    Science.gov (United States)

    Zhu, Lieyuan

    This Ph.D. dissertation focuses on the numerical simulation of geophysical wave propagation in the time domain including elastic waves in solid media, the acoustic waves in fluid media, and the electromagnetic waves in dielectric media. This thesis shows that a linear system model can describe accurately the physical processes of those geophysical waves' propagation and can be used as a sound basis for modeling geophysical wave propagation phenomena. The generalized stability condition for numerical modeling of wave propagation is therefore discussed in the context of linear system theory. The efficiency of a series of different numerical algorithms in the time-domain for modeling geophysical wave propagation are discussed and compared. These algorithms include the finite-difference time-domain method, pseudospectral time domain method, alternating directional implicit (ADI) finite-difference time domain method. The advantages and disadvantages of these numerical methods are discussed and the specific stability condition for each modeling scheme is carefully derived in the context of the linear system theory. Based on the review and discussion of these existing approaches, the split step, ADI pseudospectral time domain (SS-ADI-PSTD) method is developed and tested for several cases. Moreover, the state-of-the-art stretched-coordinate perfect matched layer (SCPML) has also been implemented in SS-ADI-PSTD algorithm as the absorbing boundary condition for truncating the computational domain and absorbing the artificial reflection from the domain boundaries. After algorithmic development, a few case studies serve as the real-world examples to verify the capacities of the numerical algorithms and understand the capabilities and limitations of geophysical methods for detection of subsurface contamination. The first case is a study using ground penetrating radar (GPR) amplitude variation with offset (AVO) for subsurface non-aqueous-liquid (NAPL) contamination. The

  14. Object-based Landslide Mapping: Examples, Challenges and Opportunities

    Science.gov (United States)

    Hölbling, Daniel; Eisank, Clemens; Friedl, Barbara; Chang, Kang-Tsung; Tsai, Tsai-Tsung; Birkefeldt Møller Pedersen, Gro; Betts, Harley; Cigna, Francesca; Chiang, Shou-Hao; Aubrey Robson, Benjamin; Bianchini, Silvia; Füreder, Petra; Albrecht, Florian; Spiekermann, Raphael; Weinke, Elisabeth; Blaschke, Thomas; Phillips, Chris

    2016-04-01

    Over the last decade, object-based image analysis (OBIA) has been increasingly used for mapping landslides that occur after triggering events such as heavy rainfall. The increasing availability and quality of Earth Observation (EO) data in terms of temporal, spatial and spectral resolution allows for comprehensive mapping of landslides at multiple scales. Most often very high resolution (VHR) or high resolution (HR) optical satellite images are used in combination with a digital elevation model (DEM) and its products such as slope and curvature. Semi-automated object-based mapping makes use of various characteristics of image objects that are derived through segmentation. OBIA enables numerous spectral, spatial, contextual and textural image object properties to be applied during an analysis. This is especially useful when mapping complex natural features such as landslides and constitutes an advantage over pixel-based image analysis. However, several drawbacks in the process of object-based landslide mapping have not been overcome yet. The developed classification routines are often rather complex and limited regarding their transferability across areas and sensors. There is still more research needed to further improve present approaches and to fully exploit the capabilities of OBIA for landslide mapping. In this study several examples of object-based landslide mapping from various geographical regions with different characteristics are presented. Examples from the Austrian and Italian Alps are shown, whereby one challenge lies in the detection of small-scale landslides on steep slopes while preventing the classification of false positives with similar spectral properties (construction areas, utilized land, etc.). Further examples feature landslides mapped in Iceland, where the differentiation of landslides from other landscape-altering processes in a highly dynamic volcanic landscape poses a very distinct challenge, and in Norway, which is exposed to multiple

  15. Examining the Effect of Small Group Discussions and Question Prompts on Vicarious Learning Outcomes

    Science.gov (United States)

    Lee, Yekyung; Ertmer, Peggy A.

    2006-01-01

    This study investigated the effect of group discussions and question prompts on students' vicarious learning experiences. Vicarious experiences were delivered to 65 preservice teachers via VisionQuest, a Web site that provided examples of successful technology integration. A 2x2 factorial research design employed group discussions and question…

  16. Practical example of the infrastructure protection against rock fall

    Science.gov (United States)

    Jirásko, Daniel; Vaníček, Ivan

    2017-09-01

    The protection of transport infrastructures against rock falls represents for the Czech Republic one of the sensitive questions. Rock falls, similarly as other typical geo-hazards for the Czech Republic, as landslides and floods, can have negative impact on safety and security of these infrastructures. One practical example how to reduce risk of rock fall is described in the paper. Great care is devoted to the visual inspection enabling to indicate places with high potential to failure. With the help of numerical modelling the range of rock fall negative impact is estimated. Protection measures are dealing with two basic ways. The first one utilize the results of numerical modelling for the optimal design of protection measures and the second one is focused on the monitoring of the rock blocks with high potential of instability together with wire-less transfer of measured results. After quick evaluation, e.g. comparison with warning values, some protection measures, mostly connected with closure of the potential sector, can be recommended.

  17. Practical integrated simulation systems for coupled numerical simulations in parallel

    Energy Technology Data Exchange (ETDEWEB)

    Osamu, Hazama; Zhihong, Guo [Japan Atomic Energy Research Inst., Centre for Promotion of Computational Science and Engineering, Tokyo (Japan)

    2003-07-01

    In order for the numerical simulations to reflect 'real-world' phenomena and occurrences, incorporation of multidisciplinary and multi-physics simulations considering various physical models and factors are becoming essential. However, there still exist many obstacles which inhibit such numerical simulations. For example, it is still difficult in many instances to develop satisfactory software packages which allow for such coupled simulations and such simulations will require more computational resources. A precise multi-physics simulation today will require parallel processing which again makes it a complicated process. Under the international cooperative efforts between CCSE/JAERI and Fraunhofer SCAI, a German institute, a library called the MpCCI, or Mesh-based Parallel Code Coupling Interface, has been implemented together with a library called STAMPI to couple two existing codes to develop an 'integrated numerical simulation system' intended for meta-computing environments. (authors)

  18. Theoretical stability in coefficient inverse problems for general hyperbolic equations with numerical reconstruction

    Science.gov (United States)

    Yu, Jie; Liu, Yikan; Yamamoto, Masahiro

    2018-04-01

    In this article, we investigate the determination of the spatial component in the time-dependent second order coefficient of a hyperbolic equation from both theoretical and numerical aspects. By the Carleman estimates for general hyperbolic operators and an auxiliary Carleman estimate, we establish local Hölder stability with either partial boundary or interior measurements under certain geometrical conditions. For numerical reconstruction, we minimize a Tikhonov functional which penalizes the gradient of the unknown function. Based on the resulting variational equation, we design an iteration method which is updated by solving a Poisson equation at each step. One-dimensional prototype examples illustrate the numerical performance of the proposed iteration.

  19. Application of symplectic integrator to numerical fluid analysis

    International Nuclear Information System (INIS)

    Tanaka, Nobuatsu

    2000-01-01

    This paper focuses on application of the symplectic integrator to numerical fluid analysis. For the purpose, we introduce Hamiltonian particle dynamics to simulate fluid behavior. The method is based on both the Hamiltonian formulation of a system and the particle methods, and is therefore called Hamiltonian Particle Dynamics (HPD). In this paper, an example of HPD applications, namely the behavior of incompressible inviscid fluid, is solved. In order to improve accuracy of HPD with respect to space, CIVA, which is a highly accurate interpolation method, is combined, but the combined method is subject to problems in that the invariants of the system are not conserved in a long-time computation. For solving the problems, symplectic time integrators are introduced and the effectiveness is confirmed by numerical analyses. (author)

  20. Numerical modeling of slow shocks

    International Nuclear Information System (INIS)

    Winske, D.

    1987-01-01

    This paper reviews previous attempt and the present status of efforts to understand the structure of slow shocks by means of time dependent numerical calculations. Studies carried out using MHD or hybrid-kinetic codes have demonstrated qualitative agreement with theory. A number of unresolved issues related to hybrid simulations of the internal shock structure are discussed in some detail. 43 refs., 8 figs

  1. Recent developments in KTF. Code optimization and improved numerics

    International Nuclear Information System (INIS)

    Jimenez, Javier; Avramova, Maria; Sanchez, Victor Hugo; Ivanov, Kostadin

    2012-01-01

    The rapid increase of computer power in the last decade facilitated the development of high fidelity simulations in nuclear engineering allowing a more realistic and accurate optimization as well as safety assessment of reactor cores and power plants compared to the legacy codes. Thermal hydraulic subchannel codes together with time dependent neutron transport codes are the options of choice for an accurate prediction of local safety parameters. Moreover, fast running codes with the best physical models are needed for high fidelity coupled thermal hydraulic / neutron kinetic solutions. Hence at KIT, different subchannel codes such as SUBCHANFLOW and KTF are being improved, validated and coupled with different neutron kinetics solutions. KTF is a subchannel code developed for best-estimate analysis of both Pressurized Water Reactor (PWR) and BWR. It is based on the Pennsylvania State University (PSU) version of COBRA-TF (Coolant Boling in Rod Arrays Two Fluids) named CTF. In this paper, the investigations devoted to the enhancement of the code numeric and informatics structure are presented and discussed. By some examples the gain on code speed-up will be demonstrated and finally an outlook of further activities concentrated on the code improvements will be given. (orig.)

  2. Recent developments in KTF. Code optimization and improved numerics

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, Javier; Avramova, Maria; Sanchez, Victor Hugo; Ivanov, Kostadin [Karlsruhe Institute of Technology (KIT) (Germany). Inst. for Neutron Physics and Reactor Technology (INR)

    2012-11-01

    The rapid increase of computer power in the last decade facilitated the development of high fidelity simulations in nuclear engineering allowing a more realistic and accurate optimization as well as safety assessment of reactor cores and power plants compared to the legacy codes. Thermal hydraulic subchannel codes together with time dependent neutron transport codes are the options of choice for an accurate prediction of local safety parameters. Moreover, fast running codes with the best physical models are needed for high fidelity coupled thermal hydraulic / neutron kinetic solutions. Hence at KIT, different subchannel codes such as SUBCHANFLOW and KTF are being improved, validated and coupled with different neutron kinetics solutions. KTF is a subchannel code developed for best-estimate analysis of both Pressurized Water Reactor (PWR) and BWR. It is based on the Pennsylvania State University (PSU) version of COBRA-TF (Coolant Boling in Rod Arrays Two Fluids) named CTF. In this paper, the investigations devoted to the enhancement of the code numeric and informatics structure are presented and discussed. By some examples the gain on code speed-up will be demonstrated and finally an outlook of further activities concentrated on the code improvements will be given. (orig.)

  3. Examples of NRC research products used in regulation

    International Nuclear Information System (INIS)

    Anderson, N.R.

    1987-01-01

    The key to effective research is a close relationship between information needs and research results. This can only be achieved by close cooperation between the researchers and the regulators. At the NRC, this relationship has matured over the years until now the researchers participate in definition of the information needs and the regulators help define the research programs. The more formal means of ensuring a close match between needs and results include joint research groups, oversight working groups, and a system of Research Information Letters (RILs). On an informal basis there are many day to day discussions and meetings on the various programs which ensure effective program guidance and early identification of significant findings. This paper describes both the formal and informal researcher/regulation interface and discusses some examples of how specific research programs are utilized in the regulatory process. Specific programs described are the pressurized thermal shock program, the seismic margins program and the Category 1 structures program. Other examples cited are the aging and life extension programs

  4. Almost Surely Asymptotic Stability of Numerical Solutions for Neutral Stochastic Delay Differential Equations

    Directory of Open Access Journals (Sweden)

    Zhanhua Yu

    2011-01-01

    convergence theorem. It is shown that the Euler method and the backward Euler method can reproduce the almost surely asymptotic stability of exact solutions to NSDDEs under additional conditions. Numerical examples are demonstrated to illustrate the effectiveness of our theoretical results.

  5. Numerical model of phase transformation of steel C80U during hardening

    Directory of Open Access Journals (Sweden)

    T. Domański

    2007-12-01

    Full Text Available The article concerns numerical modelling of the phase transformations in solid state hardening of tool steel C80U. The transformations were assumed: initial structure – austenite, austenite – perlite, bainite and austenite – martensite. Model for evaluation of fractions of phases and their kinetics based on continuous heating diagram (CHT and continuous cooling diagram (CCT. The dilatometric tests on the simulator of thermal cycles were performed. The results of dilatometric tests were compared with the results of the test numerical simulations. In this way the derived models for evaluating phase content and kinetics of transformations in heating and cooling processes were verified. The results of numerical simulations confirm correctness of the algorithm that were worked out. In the numerical example the simulated estimation of the phase fraction in the hardened axisimmetrical element was performed.

  6. Nuclear waste under glass, further discussion

    Science.gov (United States)

    O'Keefe, J. A.; Barkatt, A.; Glass, B. P.; Alterescu, S.

    J. J. Crovisier and J. Honnorez [1988] discuss an article by W. W. Maggs, “Mg May Protect Waste Under Glass” [Maggs, 1988] summarizing work by A. Barkatt (Catholic University, Washington, D.C.), B. P. Glass (University of Delaware, Newark), and S. Alterescu and J. A. O'Keefe (NASA/GSFC, Greenbelt, Md.). We found that seawater is orders of magnitude less corrosive t h an fresh water in attacking tektite glass; traced the protective effect to the presence of magnesium, at a level of about 1.3 g/L in seawater; and suggested that the effect might be useful in protecting nuclear waste glasses from corrosion.Crovisier and Honnorez first make the point that the rate of corrosion of glass is, in principle, a function of the ratio of surface area 5 to the effective volume V. This concept, which is usually discussed in American literature under the name of S/V effects, is discussed by Crovisier and Honnorez in terms of the “permeability of the environment.” These effects have been carefully considered throughout our work (see, for example, Barkatt et al. [19867rsqb;). It turns out that in the sea the effective S/V is so small that the effects referred to by Crovisier and Honnorez can be ignored.

  7. Pseudospectral operational matrix for numerical solution of single and multiterm time fractional diffusion equation

    OpenAIRE

    GHOLAMI, SAEID; BABOLIAN, ESMAIL; JAVIDI, MOHAMMAD

    2016-01-01

    This paper presents a new numerical approach to solve single and multiterm time fractional diffusion equations. In this work, the space dimension is discretized to the Gauss$-$Lobatto points. We use the normalized Grunwald approximation for the time dimension and a pseudospectral successive integration matrix for the space dimension. This approach shows that with fewer numbers of points, we can approximate the solution with more accuracy. Some examples with numerical results in tables and fig...

  8. A New Method to Solve Numeric Solution of Nonlinear Dynamic System

    Directory of Open Access Journals (Sweden)

    Min Hu

    2016-01-01

    Full Text Available It is well known that the cubic spline function has advantages of simple forms, good convergence, approximation, and second-order smoothness. A particular class of cubic spline function is constructed and an effective method to solve the numerical solution of nonlinear dynamic system is proposed based on the cubic spline function. Compared with existing methods, this method not only has high approximation precision, but also avoids the Runge phenomenon. The error analysis of several methods is given via two numeric examples, which turned out that the proposed method is a much more feasible tool applied to the engineering practice.

  9. Designing museum exhibits that facilitate visitor reflection and discussion

    DEFF Research Database (Denmark)

    Skydsgaard, Morten Arnika; Andersen, Hanne Møller; King, Heather

    2016-01-01

    This paper explores how four design principles (curiosity, challenge, narratives and participation) facilitate reflection and discussion among young visitors in the issues-based exhibition Dear, Difficult Body. The investigation is based on a mixed-method approach combining questionnaire and inte......This paper explores how four design principles (curiosity, challenge, narratives and participation) facilitate reflection and discussion among young visitors in the issues-based exhibition Dear, Difficult Body. The investigation is based on a mixed-method approach combining questionnaire...... and interview data. The implementation of design principles resulted in a variety of exhibits which variously prompted reflection and discussion on the part of visitors. Exhibits with narratives, for example, here defined as both personal and expert narratives, were found to be effective in facilitating...... personal reflection but also prompted discussion. Participation, defined as including both physical interaction with exhibits, and dialogic interaction between visitors, facilitated the sharing of ideas and feelings between visitors. Exhibits with elements of curiosity and challenge were found to attract...

  10. On the numerical solution of fault trees

    International Nuclear Information System (INIS)

    Demichela, M.; Piccinini, N.; Ciarambino, I.; Contini, S.

    2003-01-01

    In this paper an account will be given of the numerical solution of the logic trees directly extracted from the Recursive Operability Analysis. Particular attention will be devoted to the use of the NOT and INH logic gates for correct logical representation of Fault Trees prior to their quantitative resolution. The NOT gate is needed for correct logical representation of events when both non-intervention and correct intervention of a protective system may lead to a Top Event. The INH gate must be used to correctly represent the time link between two events that are both necessary, but must occur in sequence. Some numerical examples will be employed to show both the correct identification of the events entering the INH gates and how use of the AND gate instead of the INH gate leads to overestimation of the probability of occurrence of a Top Event

  11. Numerical method for solving linear Fredholm fuzzy integral equations of the second kind

    Energy Technology Data Exchange (ETDEWEB)

    Abbasbandy, S. [Department of Mathematics, Imam Khomeini International University, P.O. Box 288, Ghazvin 34194 (Iran, Islamic Republic of)]. E-mail: saeid@abbasbandy.com; Babolian, E. [Faculty of Mathematical Sciences and Computer Engineering, Teacher Training University, Tehran 15618 (Iran, Islamic Republic of); Alavi, M. [Department of Mathematics, Arak Branch, Islamic Azad University, Arak 38135 (Iran, Islamic Republic of)

    2007-01-15

    In this paper we use parametric form of fuzzy number and convert a linear fuzzy Fredholm integral equation to two linear system of integral equation of the second kind in crisp case. We can use one of the numerical method such as Nystrom and find the approximation solution of the system and hence obtain an approximation for fuzzy solution of the linear fuzzy Fredholm integral equations of the second kind. The proposed method is illustrated by solving some numerical examples.

  12. A New Language Design for Prototyping Numerical Computation

    Directory of Open Access Journals (Sweden)

    Thomas Derby

    1996-01-01

    Full Text Available To naturally and conveniently express numerical algorithms, considerable expressive power is needed in the languages in which they are implemented. The language Matlab is widely used by numerical analysts for this reason. Expressiveness or ease-of-use can also result in a loss of efficiency, as is the case with Matlab. In particular, because numerical analysts are highly interested in the performance of their algorithms, prototypes are still often implemented in languages such as Fortran. In this article we describe a language design that is intended to both provide expressiveness for numerical computation, and at the same time provide performance guarantees. In our language, EQ, we attempt to include both syntactic and semantic features that correspond closely to the programmer's model of the problem, including unordered equations, large-granularity state transitions, and matrix notation. The resulting language does not fit into standard language categories such as functional or imperative but has features of both paradigms. We also introduce the notion of language dependability, which is the idea that a language should guarantee that certain program transformations are performed by all implementations. We first describe the interesting features of EQ, and then present three examples of algorithms written using it. We also provide encouraging performance results from an initial implementation of our language.

  13. A first course in ordinary differential equations analytical and numerical methods

    CERN Document Server

    Hermann, Martin

    2014-01-01

    This book presents a modern introduction to analytical and numerical techniques for solving ordinary differential equations (ODEs). Contrary to the traditional format—the theorem-and-proof format—the book is focusing on analytical and numerical methods. The book supplies a variety of problems and examples, ranging from the elementary to the advanced level, to introduce and study the mathematics of ODEs. The analytical part of the book deals with solution techniques for scalar first-order and second-order linear ODEs, and systems of linear ODEs—with a special focus on the Laplace transform, operator techniques and power series solutions. In the numerical part, theoretical and practical aspects of Runge-Kutta methods for solving initial-value problems and shooting methods for linear two-point boundary-value problems are considered. The book is intended as a primary text for courses on the theory of ODEs and numerical treatment of ODEs for advanced undergraduate and early graduate students. It is assumed t...

  14. Magni Reproducibility Example

    DEFF Research Database (Denmark)

    2016-01-01

    An example of how to use the magni.reproducibility package for storing metadata along with results from a computational experiment. The example is based on simulating the Mandelbrot set.......An example of how to use the magni.reproducibility package for storing metadata along with results from a computational experiment. The example is based on simulating the Mandelbrot set....

  15. The plasma focus - numerical experiments leading technology

    International Nuclear Information System (INIS)

    Saw, S.H.; Lee, S.

    2013-01-01

    Numerical experiments on the plasma focus are now used routinely to assist design and provide reference points for diagnostics. More importantly guidance has been given regarding the implementation of technology for new generations of plasma focus devices. For example intensive series of experiments have shown that it is of no use to reduce static bank inductance L0 below certain values because of the consistent loading effects of the plasma focus dynamics on the capacitor bank. Thus whilst it was thought that the PF1000 could receive major benefits by reducing its bank inductance L 0 , numerical experiments have shown to the contrary that its present L 0 of 30 nH is already optimum and that reducing L 0 would be a very expensive fruitless exercise. This knowledge gained from numerical experiments now acts as a general valuable guideline to all high performance (ie low inductance) plasma focus devices not to unnecessarily attempt to further lower the static inductance L 0 . The numerical experiments also show that the deterioration of the yield scaling law (e.g. the fusion neutron yield scaling with storage energy) is inevitable again due to the consistent loading effect of the plasma focus, which becomes more and more dominant as capacitor bank impedance reduces with increasing capacitance C 0 as storage energy is increased. This line of thinking has led to the suggestion of using higher voltages (as an alternative to increasing C 0 ) and to seeding of Deuterium with noble gases in order to enhance compression through thermodynamic mechanisms and through radiation cooling effects of strong line radiation. Circuit manipulation e.g. to enhance focus pinch compression by current-stepping is also being numerically experimented upon. Ultimately however systems have to be built, guided by numerical experiments, so that the predicted technology may be proven and realized. (author)

  16. Numerical implementation of the Dirac equation on hypercube multicomputers

    International Nuclear Information System (INIS)

    Wells, J.C.

    1991-01-01

    Motivated by an interest in nonperturbative electromagnetic lepton-pair production in relativistic heavy-ion collisions, we discuss the numerical methods used in implementing a lattice solution of the time-dependent Dirac equation in three-dimensional Cartesian coordinates. Discretization is obtained using the lattice basis-spline collocation method, in which quantum-state vectors and coordinate-space operators are expressed in terms of basis-spline functions, and represented on a spatial lattice. All numerical procedures reduce to a series of matrix-vector operations which we perform on the Intel iPSC/860 hypercube multicomputer. We discuss solutions to the problems of limited node memory and node-to-node communication overhead inherent in using distributed-memory, multiple-instruction, multiple-data parallel computers

  17. Bayesian methods for the physical sciences learning from examples in astronomy and physics

    CERN Document Server

    Andreon, Stefano

    2015-01-01

    Statistical literacy is critical for the modern researcher in Physics and Astronomy. This book empowers researchers in these disciplines by providing the tools they will need to analyze their own data. Chapters in this book provide a statistical base from which to approach new problems, including numerical advice and a profusion of examples. The examples are engaging analyses of real-world problems taken from modern astronomical research. The examples are intended to be starting points for readers as they learn to approach their own data and research questions. Acknowledging that scientific progress now hinges on the availability of data and the possibility to improve previous analyses, data and code are distributed throughout the book. The JAGS symbolic language used throughout the book makes it easy to perform Bayesian analysis and is particularly valuable as readers may use it in a myriad of scenarios through slight modifications.

  18. Comparison between numeric and approximate analytic solutions for the prediction of soil metal uptake by roots. Example of cadmium.

    Science.gov (United States)

    Schneider, André; Lin, Zhongbing; Sterckeman, Thibault; Nguyen, Christophe

    2018-04-01

    The dissociation of metal complexes in the soil solution can increase the availability of metals for root uptake. When it is accounted for in models of bioavailability of soil metals, the number of partial differential equations (PDEs) increases and the computation time to numerically solve these equations may be problematic when a large number of simulations are required, for example for sensitivity analyses or when considering root architecture. This work presents analytical solutions for the set of PDEs describing the bioavailability of soil metals including the kinetics of complexation for three scenarios where the metal complex in solution was fully inert, fully labile, or partially labile. The analytical solutions are only valid i) at steady-state when the PDEs become ordinary differential equations, the transient phase being not covered, ii) when diffusion is the major mechanism of transport and therefore, when convection is negligible, iii) when there is no between-root competition. The formulation of the analytical solutions is for cylindrical geometry but the solutions rely on the spread of the depletion profile around the root, which was modelled assuming a planar geometry. The analytical solutions were evaluated by comparison with the corresponding PDEs for cadmium in the case of the French agricultural soils. Provided that convection was much lower than diffusion (Péclet's number<0.02), the cumulative uptakes calculated from the analytic solutions were in very good agreement with those calculated from the PDEs, even in the case of a partially labile complex. The analytic solutions can be used instead of the PDEs to predict root uptake of metals. The analytic solutions were also used to build an indicator of the contribution of a complex to the uptake of the metal by roots, which can be helpful to predict the effect of soluble organic matter on the bioavailability of soil metals. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. 7th International Conference on Hyperbolic Problems Theory, Numerics, Applications

    CERN Document Server

    Jeltsch, Rolf

    1999-01-01

    These proceedings contain, in two volumes, approximately one hundred papers presented at the conference on hyperbolic problems, which has focused to a large extent on the laws of nonlinear hyperbolic conservation. Two-fifths of the papers are devoted to mathematical aspects such as global existence, uniqueness, asymptotic behavior such as large time stability, stability and instabilities of waves and structures, various limits of the solution, the Riemann problem and so on. Roughly the same number of articles are devoted to numerical analysis, for example stability and convergence of numerical schemes, as well as schemes with special desired properties such as shock capturing, interface fitting and high-order approximations to multidimensional systems. The results in these contributions, both theoretical and numerical, encompass a wide range of applications such as nonlinear waves in solids, various computational fluid dynamics from small-scale combustion to relativistic astrophysical problems, multiphase phe...

  20. Numerical analysis of the big bounce in loop quantum cosmology

    International Nuclear Information System (INIS)

    Laguna, Pablo

    2007-01-01

    Loop quantum cosmology (LQC) homogeneous models with a massless scalar field show that the big-bang singularity can be replaced by a big quantum bounce. To gain further insight on the nature of this bounce, we study the semidiscrete loop quantum gravity Hamiltonian constraint equation from the point of view of numerical analysis. For illustration purposes, we establish a numerical analogy between the quantum bounces and reflections in finite difference discretizations of wave equations triggered by the use of nonuniform grids or, equivalently, reflections found when solving numerically wave equations with varying coefficients. We show that the bounce is closely related to the method for the temporal update of the system and demonstrate that explicit time-updates in general yield bounces. Finally, we present an example of an implicit time-update devoid of bounces and show back-in-time, deterministic evolutions that reach and partially jump over the big-bang singularity

  1. Numerical modelling of so-called secondary ultrasonic echoes

    International Nuclear Information System (INIS)

    Langenberg, K.J.; Fellinger, P.; Hofmann, C.

    1994-01-01

    The formation of secondary ultrasonic echoes is discussed for a particularly simple testing situation. This discussion is based upon the intuitive visualization of elastic wave propagation as obtained with the numerical EFIT-Code (Elastodynamic Finite Integration Technique). The resulting travel times for the econdary echoes contain well-defined limits as they originate from the simple model of grazing incidence plane longitudinal wave mode conversion. (orig.) [de

  2. Direct numerical simulation of noninvasive channel healing in electrical field

    KAUST Repository

    Wang, Yi

    2017-11-25

    Noninvasive channel healing is a new idea to repair the broken pipe wall, using external electric fields to drive iron particles to the destination. The repair can be done in the normal operation of the pipe flow without any shutdown of the pipeline so that this method can be a potentially efficient and safe technology of pipe healing. However, the real application needs full knowledge of healing details. Numerical simulation is an effective method. Thus, in this research, we first established a numerical model for noninvasive channel healing technology to represent fluid–particle interaction. The iron particles can be attached to a cracking area by external electrostatic forces or can also be detached by mechanical forces from the fluid. When enough particles are permanently attached on the cracking area, the pipe wall can be healed. The numerical criterion of the permanent attachment is discussed. A fully three-dimensional finite difference framework of direct numerical simulation is established and applied to different cases to simulate the full process of channel healing. The impact of Reynolds number and particle concentration on the healing process is discussed. This numerical investigation provides valuable reference and tools for further simulation of real pipe healing in engineering.

  3. Numerical and experimental study of a hydrodynamic cavitation tube

    Science.gov (United States)

    Hu, H.; Finch, J. A.; Zhou, Z.; Xu, Z.

    1998-08-01

    A numerical analysis of hydrodynamics in a cavitation tube used for activating fine particle flotation is described. Using numerical procedures developed for solving the turbulent k-ɛ model with boundary fitted coordinates, the stream function, vorticity, velocity, and pressure distributions in a cavitation tube were calculated. The calculated pressure distribution was found to be in excellent agreement with experimental results. The requirement of a pressure drop below approximately 10 m water for cavitation to occur was observed experimentally and confirmed by the model. The use of the numerical procedures for cavitation tube design is discussed briefly.

  4. Numerical simulation and physical aspects of supersonic vortex breakdown

    Science.gov (United States)

    Liu, C. H.; Kandil, O. A.; Kandil, H. A.

    1993-01-01

    Existing numerical simulations and physical aspects of subsonic and supersonic vortex-breakdown modes are reviewed. The solution to the problem of supersonic vortex breakdown is emphasized in this paper and carried out with the full Navier-Stokes equations for compressible flows. Numerical simulations of vortex-breakdown modes are presented in bounded and unbounded domains. The effects of different types of downstream-exit boundary conditions are studied and discussed.

  5. Extraction of gravitational waves in numerical relativity.

    Science.gov (United States)

    Bishop, Nigel T; Rezzolla, Luciano

    2016-01-01

    A numerical-relativity calculation yields in general a solution of the Einstein equations including also a radiative part, which is in practice computed in a region of finite extent. Since gravitational radiation is properly defined only at null infinity and in an appropriate coordinate system, the accurate estimation of the emitted gravitational waves represents an old and non-trivial problem in numerical relativity. A number of methods have been developed over the years to "extract" the radiative part of the solution from a numerical simulation and these include: quadrupole formulas, gauge-invariant metric perturbations, Weyl scalars, and characteristic extraction. We review and discuss each method, in terms of both its theoretical background as well as its implementation. Finally, we provide a brief comparison of the various methods in terms of their inherent advantages and disadvantages.

  6. A numerical method for transient gas-liquid two-phase flow using a general curvilinear coordinate system. 1. Governing equations and numerical method

    International Nuclear Information System (INIS)

    Tomiyama, Akio; Matsuoka, Toshiyuki.

    1995-01-01

    A simple numerical method for solving a transient incompressible two-fluid model was proposed in the present study. A general curvilinear coordinate system was adopted in this method for predicting transient flows in practical engineering devices. The simplicity of the present method is due to the fact that the field equations and constitutive equations were expressed in a tensor form in the general curvilinear coordinate system. When a conventional rectangular mesh is adopted in a calculation, the method reduces to a numerical method for a Cartesian coordinate system. As an example, the present method was applied to transient air-water bubbly flow in a vertical U-tube. It was confirmed that the effects of centrifugal and gravitational forces on the phase distribution in the U-tube were reasonably predicted. (author)

  7. A new numerical approach for uniquely solvable exterior Riemann-Hilbert problem on region with corners

    Science.gov (United States)

    Zamzamir, Zamzana; Murid, Ali H. M.; Ismail, Munira

    2014-06-01

    Numerical solution for uniquely solvable exterior Riemann-Hilbert problem on region with corners at offcorner points has been explored by discretizing the related integral equation using Picard iteration method without any modifications to the left-hand side (LHS) and right-hand side (RHS) of the integral equation. Numerical errors for all iterations are converge to the required solution. However, for certain problems, it gives lower accuracy. Hence, this paper presents a new numerical approach for the problem by treating the generalized Neumann kernel at LHS and the function at RHS of the integral equation. Due to the existence of the corner points, Gaussian quadrature is employed which avoids the corner points during numerical integration. Numerical example on a test region is presented to demonstrate the effectiveness of this formulation.

  8. Use of Green's functions in the numerical solution of two-point boundary value problems

    Science.gov (United States)

    Gallaher, L. J.; Perlin, I. E.

    1974-01-01

    This study investigates the use of Green's functions in the numerical solution of the two-point boundary value problem. The first part deals with the role of the Green's function in solving both linear and nonlinear second order ordinary differential equations with boundary conditions and systems of such equations. The second part describes procedures for numerical construction of Green's functions and considers briefly the conditions for their existence. Finally, there is a description of some numerical experiments using nonlinear problems for which the known existence, uniqueness or convergence theorems do not apply. Examples here include some problems in finding rendezvous orbits of the restricted three body system.

  9. Numerical treatment of linearized equations describing inhomogeneous collisionless plasmas

    International Nuclear Information System (INIS)

    Lewis, H.R.

    1979-01-01

    The equations governing the small-signal response of spatially inhomogeneous collisionless plasmas have practical significance in physics, for example in controlled thermonuclear fusion research. Although the solutions are very complicated and the equations are different to solve numerically, effective methods for them are being developed which are applicable when the equilibrium involves only one nonignorable coordinate. The general theoretical framework probably will provide a basis for progress when there are two or three nonignorable coordinates

  10. Alpha particle effects in burning tokamak plasmas: overview and specific examples

    International Nuclear Information System (INIS)

    Sigmar, D.J.

    1986-07-01

    Using the total power balance of an ignited tokamak plasma as a guideline, a range of alpha driven effects is surveyed regarding their impact on achieving and maintaining fusion burn. Specific examples of MHD and kinetic modes and multi species transport dynamics are discussed, including the possible interaction of these categories of effects. This power balance approach rather than a straightforward enumeration of possible effects serves to reveal their non-linear dependence and the ensuing fragility of our understanding of the approach to and maintenance of ignition. Specific examples are given of the interaction between α-power driven sawtoothing and ideal MHD stability, and direct α-effects on MHD modes including kinetic corrections. Anomalous ion heat transport and central impurity peaking mechanisms and anomalous and collisional α-transport including the ambipolar electric field are discussed

  11. Numerical methods for coupled fracture problems

    Science.gov (United States)

    Viesca, Robert C.; Garagash, Dmitry I.

    2018-04-01

    We consider numerical solutions in which the linear elastic response to an opening- or sliding-mode fracture couples with one or more processes. Classic examples of such problems include traction-free cracks leading to stress singularities or cracks with cohesive-zone strength requirements leading to non-singular stress distributions. These classical problems have characteristic square-root asymptotic behavior for stress, relative displacement, or their derivatives. Prior work has shown that such asymptotics lead to a natural quadrature of the singular integrals at roots of Chebyhsev polynomials of the first, second, third, or fourth kind. We show that such quadratures lead to convenient techniques for interpolation, differentiation, and integration, with the potential for spectral accuracy. We further show that these techniques, with slight amendment, may continue to be used for non-classical problems which lack the classical asymptotic behavior. We consider solutions to example problems of both the classical and non-classical variety (e.g., fluid-driven opening-mode fracture and fault shear rupture driven by thermal weakening), with comparisons to analytical solutions or asymptotes, where available.

  12. RELAP5 two-phase fluid model and numerical scheme for economic LWR system simulation

    International Nuclear Information System (INIS)

    Ransom, V.H.; Wagner, R.J.; Trapp, J.A.

    1981-01-01

    The RELAP5 two-phase fluid model and the associated numerical scheme are summarized. The experience accrued in development of a fast running light water reactor system transient analysis code is reviewed and example of the code application are given

  13. On the theories, techniques, and computer codes used in numerical reactor criticality and burnup calculations

    International Nuclear Information System (INIS)

    El-Osery, I.A.

    1981-01-01

    The purpose of this paper is to discuss the theories, techniques and computer codes that are frequently used in numerical reactor criticality and burnup calculations. It is a part of an integrated nuclear reactor calculation scheme conducted by the Reactors Department, Inshas Nuclear Research Centre. The crude part in numerical reactor criticality and burnup calculations includes the determination of neutron flux distribution which can be obtained in principle as a solution of Boltzmann transport equation. Numerical methods used for solving transport equations are discussed. Emphasis are made on numerical techniques based on multigroup diffusion theory. These numerical techniques include nodal, modal, and finite difference ones. The most commonly known computer codes utilizing these techniques are reviewed. Some of the main computer codes that have been already developed at the Reactors Department and related to numerical reactor criticality and burnup calculations have been presented

  14. Numerical Study of the Thermal Behaviour of a Thermo-Structural Aeronautical Composite under Fire Stress

    OpenAIRE

    Grange , N; Chetehouna , K; Gascoin , Nicolas; Senave , S

    2015-01-01

    International audience; The use of composite materials for aeronautical applications has been growing since several years because of the opportunity to produce lightweight structures reducing the fuel bills and emissions. The need for fireproof certification imposes costly and time consuming experiments that might be replaced or complemented in the years to come by numerical calculations. The present work creates a CFD numerical model of a fireproof test. As an example, a composite part (plen...

  15. Numerical solutions of ordinary and partial differential equations in the frequency domain

    International Nuclear Information System (INIS)

    Hazi, G.; Por, G.

    1997-01-01

    Numerical problems during the noise simulation in a nuclear power plant are discussed. The solutions of ordinary and partial differential equations are studied in the frequency domain. Numerical methods by the transfer function method are applied. It is shown that the correctness of the numerical methods is limited for ordinary differential equations in the frequency domain. To overcome the difficulties, step-size selection is suggested. (author)

  16. Making Common Sense of Vaccines: An Example of Discussing the Recombinant Attenuated Salmonella Vaccine with the Public.

    Science.gov (United States)

    Dankel, Dorothy J; Roland, Kenneth L; Fisher, Michael; Brenneman, Karen; Delgado, Ana; Santander, Javier; Baek, Chang-Ho; Clark-Curtiss, Josephine; Strand, Roger; Curtiss, Roy

    2014-01-01

    Researchers have iterated that the future of synthetic biology and biotechnology lies in novel consumer applications of crossing biology with engineering. However, if the new biology's future is to be sustainable, early and serious efforts must be made towards social sustainability. Therefore, the crux of new applications of synthetic biology and biotechnology is public understanding and acceptance. The RASVaccine is a novel recombinant design not found in nature that re-engineers a common bacteria ( Salmonella ) to produce a strong immune response in humans. Synthesis of the RASVaccine has the potential to improve public health as an inexpensive, non-injectable product. But how can scientists move forward to create a dialogue of creating a 'common sense' of this new technology in order to promote social sustainability? This paper delves into public issues raised around these novel technologies and uses the RASVaccine as an example of meeting the public with a common sense of its possibilities and limitations.

  17. Numerical analysis of Swiss roll metamaterials

    International Nuclear Information System (INIS)

    Demetriadou, A; Pendry, J B

    2009-01-01

    A Swiss roll metamaterial is a resonant magnetic medium, with a negative magnetic permeability for a range of frequencies, due to its self-inductance and self-capacitance components. In this paper, we discuss the band structure, S-parameters and effective electromagnetic parameters of Swiss roll metamaterials, with both analytical and numerical results, which show an exceptional convergence.

  18. A numerical primer for the chemical engineer

    NARCIS (Netherlands)

    Zondervan, E.

    2015-01-01

    This book provides an introduction to numerical methods for students in chemical engineering. The book starts with a recap on linear algebra. It then presents methods for solving linear and nonlinear equations, with a special focus on Gaussian elimination and Newton’s method. It also discusses

  19. Numerical Exploration of Kaldorian Macrodynamics: Hopf-Neimark Bifurcations and Business Cycles with Fixed Exchange Rates

    Directory of Open Access Journals (Sweden)

    Toichiro Asada

    2007-01-01

    Full Text Available We explore numerically a three-dimensional discrete-time Kaldorian macrodynamic model in an open economy with fixed exchange rates, focusing on the effects of variation of the model parameters, the speed of adjustment of the goods market α, and the degree of capital mobility β on the stability of equilibrium and on the existence of business cycles. We determine the stability region in the parameter space and find that increase of α destabilizes the equilibrium more quickly than increase of β. We determine the Hopf-Neimark bifurcation curve along which business cycles are generated, and discuss briefly the occurrence of Arnold tongues. Bifurcation and Lyapunov exponent diagrams are computed providing information on the emergence, persistence, and amplitude of the cycles and illustrating the complex dynamics involved. Examples of cycles and other attractors are presented. Finally, we discuss a two-dimensional variation of the model related to a “wealth effect,” called model 2, and show that in this case, α does not destabilize the equilibrium more quickly than β, and that a Hopf-Neimark bifurcation curve does not exist in the parameter space, therefore model 2 does not produce cycles.

  20. Numerical models of groundwater flow and transport

    International Nuclear Information System (INIS)

    Konikow, L.F.

    1996-01-01

    This chapter reviews the state-of-the-art in deterministic modeling of groundwater flow and transport processes, which can be used for interpretation of isotope data through groundwater flow analyses. Numerical models which are available for this purpose are described and their applications to complex field problems are discussed. The theoretical bases of deterministic modeling are summarized, and advantages and limitations of numerical models are described. The selection of models for specific applications and their calibration procedures are described, and results of a few illustrative case study type applications are provided. (author). 145 refs, 17 figs, 2 tabs

  1. Numerical models of groundwater flow and transport

    Energy Technology Data Exchange (ETDEWEB)

    Konikow, L F [Geological Survey, Reston, VA (United States)

    1996-10-01

    This chapter reviews the state-of-the-art in deterministic modeling of groundwater flow and transport processes, which can be used for interpretation of isotope data through groundwater flow analyses. Numerical models which are available for this purpose are described and their applications to complex field problems are discussed. The theoretical bases of deterministic modeling are summarized, and advantages and limitations of numerical models are described. The selection of models for specific applications and their calibration procedures are described, and results of a few illustrative case study type applications are provided. (author). 145 refs, 17 figs, 2 tabs.

  2. NUMERICAL RESEARCH TECHNIQUES OF MAGNETIC FIELDS GENERATED BY INDUCTION CURRENTS IN A MASSIVE CONDUCTOR

    OpenAIRE

    Tchernykh A. G.

    2015-01-01

    We consider the technology of application of numerical methods in the educational process in physics on the example of a study of the magnetic field induced by induction currents in a cylindrical conductor in a quasi-stationary magnetic field. Here is given the numerical calculation of the real and imaginary parts of the Bessel functions of complex argument. The listing of the program of drawing the graphs of the radial dependence of the amplitude and phase shift of the inductive currents fie...

  3. A Numerical Method for Lane-Emden Equations Using Hybrid Functions and the Collocation Method

    Directory of Open Access Journals (Sweden)

    Changqing Yang

    2012-01-01

    Full Text Available A numerical method to solve Lane-Emden equations as singular initial value problems is presented in this work. This method is based on the replacement of unknown functions through a truncated series of hybrid of block-pulse functions and Chebyshev polynomials. The collocation method transforms the differential equation into a system of algebraic equations. It also has application in a wide area of differential equations. Corresponding numerical examples are presented to demonstrate the accuracy of the proposed method.

  4. A numerical scheme for optimal transition paths of stochastic chemical kinetic systems

    International Nuclear Information System (INIS)

    Liu Di

    2008-01-01

    We present a new framework for finding the optimal transition paths of metastable stochastic chemical kinetic systems with large system size. The optimal transition paths are identified to be the most probable paths according to the Large Deviation Theory of stochastic processes. Dynamical equations for the optimal transition paths are derived using the variational principle. A modified Minimum Action Method (MAM) is proposed as a numerical scheme to solve the optimal transition paths. Applications to Gene Regulatory Networks such as the toggle switch model and the Lactose Operon Model in Escherichia coli are presented as numerical examples

  5. On the numerical simulation of tracer flows in porous media

    International Nuclear Information System (INIS)

    Aquino, J.; Pereira, F.; Amaral Souto, H.P.; Francisco, A.S.

    2007-01-01

    We discuss in detail a new Lagrangian, locally conservative procedure which has been proposed for the numerical solution of linear transport problems in porous media. The new scheme is computationally efficient, virtually free of numerical diffusion, and can be applied to investigate numerically the time evolution of radionuclide contaminant plumes. Results of two-dimensional simulations of tracer flows will be presented to show the influence on the computed solutions of distinct interpolation functions for evaluating the velocity field at any position of the physical domain, as required by the Lagrangian scheme. (author)

  6. A numerical formulation and algorithm for limit and shakedown analysis of large-scale elastoplastic structures

    Science.gov (United States)

    Peng, Heng; Liu, Yinghua; Chen, Haofeng

    2018-05-01

    In this paper, a novel direct method called the stress compensation method (SCM) is proposed for limit and shakedown analysis of large-scale elastoplastic structures. Without needing to solve the specific mathematical programming problem, the SCM is a two-level iterative procedure based on a sequence of linear elastic finite element solutions where the global stiffness matrix is decomposed only once. In the inner loop, the static admissible residual stress field for shakedown analysis is constructed. In the outer loop, a series of decreasing load multipliers are updated to approach to the shakedown limit multiplier by using an efficient and robust iteration control technique, where the static shakedown theorem is adopted. Three numerical examples up to about 140,000 finite element nodes confirm the applicability and efficiency of this method for two-dimensional and three-dimensional elastoplastic structures, with detailed discussions on the convergence and the accuracy of the proposed algorithm.

  7. A round robin on numerical analyses for impact problems

    International Nuclear Information System (INIS)

    Yagawa, G.; Ohtsubo, H.; Toi, Y.; Aizawa, T.; Ikushima, T.

    1984-01-01

    In this paper, two types of numerical tests are performed using several general- and special-purpose computer codes to understand dynamic behaviors of CASK for nuclear fuel shipping under the impact onto rigid floor due to the accidental fall from the height of 9 m. Discussed are the efficiency and the validity of direct time integration schemes and the effects of material and geometric nonlinearities and contact conditions on the numerical data. (orig.)

  8. Comments on numerical simulations

    International Nuclear Information System (INIS)

    Sato, T.

    1984-01-01

    The author comments on a couple of things about numerical simulation. One is just about the philosophical discussion that is, spontaneous or driven. The other thing is the numerical or technical one. Frankly, the author didn't want to touch on the technical matter because this should be a common sense one for those who are working at numerical simulation. But since many people take numerical simulation results at their face value, he would like to remind you of the reality hidden behind them. First, he would point out that the meaning of ''driven'' in driven reconnection is different from that defined by Schindler or Akasofu. The author's definition is closer to Axford's definition. In the spontaneous case, for some unpredicted reason an excess energy of the system is suddenly released at a certain point. However, one does not answer how such an unstable state far beyond a stable limit is realized in the magnetotail. In the driven case, there is a definite energy buildup phase starting from a stable state; namely, energy in the black box increases from a stable level subject to an external source. When the state has reached a certain position, the energy is released suddenly. The difference between driven and spontaneous is whether the cause (plasma flow) to trigger reconnection is specified or reconnection is triggered unpredictably. Another difference is that in driven reconnection the reconnection rate is dependent on the speed of the external plasma flow, but in spontaneous reconnection the rate is dependent on the internal condition such as the resistivity

  9. Sparse grid spectral methods for the numerical solution of partial differential equations with periodic boundary conditions

    International Nuclear Information System (INIS)

    Kupka, F.

    1997-11-01

    This thesis deals with the extension of sparse grid techniques to spectral methods for the solution of partial differential equations with periodic boundary conditions. A review on boundary and initial-boundary value problems and a discussion on numerical resolution is used to motivate this research. Spectral methods are introduced by projection techniques, and by three model problems: the stationary and the transient Helmholtz equations, and the linear advection equation. The approximation theory on the hyperbolic cross is reviewed and its close relation to sparse grids is demonstrated. This approach extends to non-periodic problems. Various Sobolev spaces with dominant mixed derivative are introduced to provide error estimates for Fourier approximation and interpolation on the hyperbolic cross and on sparse grids by means of Sobolev norms. The theorems are immediately applicable to the stability and convergence analysis of sparse grid spectral methods. This is explicitly demonstrated for the three model problems. A variant of the von Neumann condition is introduced to simplify the stability analysis of the time-dependent model problems. The discrete Fourier transformation on sparse grids is discussed together with its software implementation. Results on numerical experiments are used to illustrate the performance of the new method with respect to the smoothness properties of each example. The potential of the method in mathematical modelling is estimated and generalizations to other sparse grid methods are suggested. The appendix includes a complete Fortran90 program to solve the linear advection equation by the sparse grid Fourier collocation method and a third-order Runge-Kutta routine for integration in time. (author)

  10. The numerical solution of linear multi-term fractional differential equations: systems of equations

    Science.gov (United States)

    Edwards, John T.; Ford, Neville J.; Simpson, A. Charles

    2002-11-01

    In this paper, we show how the numerical approximation of the solution of a linear multi-term fractional differential equation can be calculated by reduction of the problem to a system of ordinary and fractional differential equations each of order at most unity. We begin by showing how our method applies to a simple class of problems and we give a convergence result. We solve the Bagley Torvik equation as an example. We show how the method can be applied to a general linear multi-term equation and give two further examples.

  11. A higher order numerical method for time fractional partial differential equations with nonsmooth data

    Science.gov (United States)

    Xing, Yanyuan; Yan, Yubin

    2018-03-01

    Gao et al. [11] (2014) introduced a numerical scheme to approximate the Caputo fractional derivative with the convergence rate O (k 3 - α), 0 equation is sufficiently smooth, Lv and Xu [20] (2016) proved by using energy method that the corresponding numerical method for solving time fractional partial differential equation has the convergence rate O (k 3 - α), 0 equation has low regularity and in this case the numerical method fails to have the convergence rate O (k 3 - α), 0 quadratic interpolation polynomials. Based on this scheme, we introduce a time discretization scheme to approximate the time fractional partial differential equation and show by using Laplace transform methods that the time discretization scheme has the convergence rate O (k 3 - α), 0 0 for smooth and nonsmooth data in both homogeneous and inhomogeneous cases. Numerical examples are given to show that the theoretical results are consistent with the numerical results.

  12. Energy efficient product development. 25 examples; Energiezuinige productontwikkeling. 25 voorbeelden

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    This report discusses a number of examples of applications of energy efficient product development. These examples featured on separate web pages of the website www.senternovem.nl/mja from 2006 to 2010. The section on 'explanation of energy benefits' is based on a rough calculation made by SenterNovem. The examples illustrate in which stage(s) of the chain the energy benefit is realized. [Dutch] Dit rapport bevat een aantal voorbeelden van de toepassing van energiezuinige productontwikkeling. Deze voorbeelden hebben van 2006 tot 2010 als afzonderlijke pagina's gestaan op de website www.senternovem.nl/mja. De paragraaf 'Toelichting energiewinst' bij de voorbeelden is gebaseerd op een globale berekening van SenterNovem. De voorbeelden geven aan in welke fase(s) in de keten de energiewinst wordt behaald.

  13. Attempts at a numerical realisation of stochastic differential equations containing Preisach operator

    International Nuclear Information System (INIS)

    McCarthy, S; Rachinskii, D

    2011-01-01

    We describe two Euler type numerical schemes obtained by discretisation of a stochastic differential equation which contains the Preisach memory operator. Equations of this type are of interest in areas such as macroeconomics and terrestrial hydrology where deterministic models containing the Preisach operator have been developed but do not fully encapsulate stochastic aspects of the area. A simple price dynamics model is presented as one motivating example for our studies. Some numerical evidence is given that the two numerical schemes converge to the same limit as the time step decreases. We show that the Preisach term introduces a damping effect which increases on the parts of the trajectory demonstrating a stronger upwards or downwards trend. The results are preliminary to a broader programme of research of stochastic differential equations with the Preisach hysteresis operator.

  14. Numerical simulation of low Mach number reacting flows

    International Nuclear Information System (INIS)

    Bell, J B; Aspden, A J; Day, M S; Lijewski, M J

    2007-01-01

    Using examples from active research areas in combustion and astrophysics, we demonstrate a computationally efficient numerical approach for simulating multiscale low Mach number reacting flows. The method enables simulations that incorporate an unprecedented range of temporal and spatial scales, while at the same time, allows an extremely high degree of reaction fidelity. Sample applications demonstrate the efficiency of the approach with respect to a traditional time-explicit integration method, and the utility of the methodology for studying the interaction of turbulence with terrestrial and astrophysical flame structures

  15. Transient productivity index for numerical well test simulations

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, G.; Ding, D.Y.; Ene, A. [Institut Francais du Petrole, Pau (France)] [and others

    1997-08-01

    The most difficult aspect of numerical simulation of well tests is the treatment of the Bottom Hole Flowing (BHF) Pressure. In full field simulations, this pressure is derived from the Well-block Pressure (WBP) using a numerical productivity index which accounts for the grid size and permeability, and for the well completion. This productivity index is calculated assuming a pseudo-steady state flow regime in the vicinity of the well and is therefore constant during the well production period. Such a pseudo-steady state assumption is no longer valid for the early time of a well test simulation as long as the pressure perturbation has not reached several grid-blocks around the well. This paper offers two different solutions to this problem: (1) The first one is based on the derivation of a Numerical Transient Productivity Index (NTPI) to be applied to Cartesian grids; (2) The second one is based on the use of a Corrected Transmissibility and Accumulation Term (CTAT) in the flow equation. The representation of the pressure behavior given by both solutions is far more accurate than the conventional one as shown by several validation examples which are presented in the following pages.

  16. Numerically abnormal chromosome constitutions in humans

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    Chapter 24, discusses numerically abnormal chromosome constitutions in humans. This involves abnormalities of human chromosome number, including polyploidy (when the number of sets of chromosomes increases) and aneuploidy (when the number of individual normal chromosomes changes). Chapter sections discuss the following chromosomal abnormalities: human triploids, imprinting and uniparental disomy, human tetraploids, hydatidiform moles, anomalies caused by chromosomal imbalance, 13 trisomy (D{sub 1} trisomy, Patau syndrome), 21 trisomy (Down syndrome), 18 trisomy syndrome (Edwards syndrome), other autosomal aneuploidy syndromes, and spontaneous abortions. The chapter concludes with remarks on the nonrandom participation of chromosomes in trisomy. 69 refs., 3 figs., 4 tabs.

  17. Mathematical analysis and numerical simulation of patterns in fractional and classical reaction-diffusion systems

    International Nuclear Information System (INIS)

    Owolabi, Kolade M.

    2016-01-01

    The aim of this paper is to examine pattern formation in the sub— and super-diffusive scenarios and compare it with that of classical or standard diffusive processes in two-component fractional reaction-diffusion systems that modeled a predator-prey dynamics. The focus of the work concentrates on the use of two separate mathematical techniques, we formulate a Fourier spectral discretization method as an efficient alternative technique to solve fractional reaction-diffusion problems in higher-dimensional space, and later advance the resulting systems of ODEs in time with the adaptive exponential time-differencing solver. Obviously, the fractional Fourier approach is able to achieve spectral convergence up to machine precision regardless of the fractional order α, owing to the fact that our approach is able to give full diagonal representation of the fractional operator. The complexity of the dynamics in this system is theoretically discussed and graphically displayed with some examples and numerical simulations in one, two and three dimensions.

  18. Re-Computation of Numerical Results Contained in NACA Report No. 496

    Science.gov (United States)

    Perry, Boyd, III

    2015-01-01

    An extensive examination of NACA Report No. 496 (NACA 496), "General Theory of Aerodynamic Instability and the Mechanism of Flutter," by Theodore Theodorsen, is described. The examination included checking equations and solution methods and re-computing interim quantities and all numerical examples in NACA 496. The checks revealed that NACA 496 contains computational shortcuts (time- and effort-saving devices for engineers of the time) and clever artifices (employed in its solution methods), but, unfortunately, also contains numerous tripping points (aspects of NACA 496 that have the potential to cause confusion) and some errors. The re-computations were performed employing the methods and procedures described in NACA 496, but using modern computational tools. With some exceptions, the magnitudes and trends of the original results were in fair-to-very-good agreement with the re-computed results. The exceptions included what are speculated to be computational errors in the original in some instances and transcription errors in the original in others. Independent flutter calculations were performed and, in all cases, including those where the original and re-computed results differed significantly, were in excellent agreement with the re-computed results. Appendix A contains NACA 496; Appendix B contains a Matlab(Reistered) program that performs the re-computation of results; Appendix C presents three alternate solution methods, with examples, for the two-degree-of-freedom solution method of NACA 496; Appendix D contains the three-degree-of-freedom solution method (outlined in NACA 496 but never implemented), with examples.

  19. The numerical multiconfiguration self-consistent field approach for atoms

    International Nuclear Information System (INIS)

    Stiehler, Johannes

    1995-12-01

    The dissertation uses the Multiconfiguration Self-Consistent Field Approach to specify the electronic wave function of N electron atoms in a static electrical field. It presents numerical approaches to describe the wave functions and introduces new methods to compute the numerical Fock equations. Based on results computed with an implemented computer program the universal application, flexibility and high numerical precision of the presented approach is shown. RHF results and for the first time MCSCF results for polarizabilities and hyperpolarizabilities of various states of the atoms He to Kr are discussed. In addition, an application to interpret a plasma spectrum of gallium is presented. (orig.)

  20. Numerical simulation of explosive magnetic cumulative generator EMG-720

    Energy Technology Data Exchange (ETDEWEB)

    Deryugin, Yu N; Zelenskij, D K; Kazakova, I F; Kargin, V I; Mironychev, P V; Pikar, A S; Popkov, N F; Ryaslov, E A; Ryzhatskova, E G [All-Russian Research Inst. of Experimental Physics, Sarov (Russian Federation)

    1997-12-31

    The paper discusses the methods and results of numerical simulations used in the development of a helical-coaxial explosive magnetic cumulative generator (EMG) with the stator up to 720 mm in diameter. In the process of designing, separate units were numerically modeled, as was the generator operation with a constant inductive-ohmic load. The 2-D processes of the armature acceleration by the explosion products were modeled as well as those of the formation of the sliding high-current contact between the armature and stator`s insulated turns. The problem of the armature integrity in the region of the detonation waves collision was numerically analyzed. 8 figs., 2 refs.

  1. The Role of Oncology Nurses in Discussing Clinical Trials.

    Science.gov (United States)

    Flocke, Susan A; Antognoli, Elizabeth; Daly, Barbara J; Jackson, Brigid; Fulton, Sarah E; Liu, Tasnuva M; Surdam, Jessica; Manne, Sharon; Meropol, Neal J

    2017-09-01

    To describe oncology nurses' experiences discussing clinical trials with their patients, and to assess barriers to these discussions.
. A qualitative study designed to elicit narratives from oncology nurses. 
. Community- and academic-based oncology clinics throughout the United States.
. 33 oncology nurses involved in direct patient care in community-based and large hospital-based settings. The sample was drawn from members of the Oncology Nursing Society. 
. In-depth interviews were conducted and analyzed using a 
immersion/crystallization approach to identify themes and patterns. The analyses highlight specific issues, examples, and contexts that present challenges to clinical trial discussions with patients.
. Oncology nurses view their roles as patient educators and advocates to be inclusive of discussion of clinical trials. Barriers to such discussions include lack of knowledge and strategies for addressing patients' common misconceptions and uncertainty about the timing of discussions.
. These data indicate that enabling nurses to actively engage patients in discussions of clinical trials requires educational interventions to build self-efficacy and close knowledge gaps. 
. Oncology nurses can play a critical role in advancing cancer care by supporting patients in decision making about clinical trial participation. This will require training and education to build their knowledge, reduce barriers, and increase their self-efficacy to fulfill this responsibility in various clinical settings.

  2. Application of multicomponent medium model for numerical simulation of reactor element melting and melt relocation under severe accidents

    International Nuclear Information System (INIS)

    Vladimir Ya Kumaev

    2005-01-01

    Full text of publication follows: Numerical simulation of the melting processes is necessary in substantiating the safety of new generation reactors to determine the quantitative characteristics of the melt formed, destruction of reactor vessel and components, melt interaction processes in the melt localization systems (MLS), formation and transport of hydrogen, radioactive aerosols under severe accidents. The results of computations will be applied in developing the procedures for severe accident management and mitigation of its consequences and designing melt localization systems. The report is devoted to the development and application of the two-dimensional and three-dimensional versions of the DINCOR code intended for numerical simulation of the thermal hydraulic processes in a multicomponent medium with solid-liquid phase changes. The basic set of equations of multicomponent medium is presented. The numerical method to solve the governing equations is discussed. Some examples of two-dimensional code applications are presented. The experience of application of the code has shown that joint calculations of hydrodynamics, heat transfer, stratification and chemical interaction enable the process description accuracy to be significantly increased and the number of initial experimental data to be reduced. The multicomponent medium model can be used as the base for the development of a three-dimensional version of the code. At the same time, it was established that the models being used need be further developed. The most important problems are the following: -development of the local mathematical models of liquefaction and solidification of materials under front melting and melting due to the action of internal sources; -development of the model of incompressible components separation; -development of the models of dissolution and chemical interaction of multicomponent medium components. In conclusion possible verification of the computer code is discussed. (author)

  3. Examples of testing global identifiability of biological and biomedical models with the DAISY software.

    Science.gov (United States)

    Saccomani, Maria Pia; Audoly, Stefania; Bellu, Giuseppina; D'Angiò, Leontina

    2010-04-01

    DAISY (Differential Algebra for Identifiability of SYstems) is a recently developed computer algebra software tool which can be used to automatically check global identifiability of (linear and) nonlinear dynamic models described by differential equations involving polynomial or rational functions. Global identifiability is a fundamental prerequisite for model identification which is important not only for biological or medical systems but also for many physical and engineering systems derived from first principles. Lack of identifiability implies that the parameter estimation techniques may not fail but any obtained numerical estimates will be meaningless. The software does not require understanding of the underlying mathematical principles and can be used by researchers in applied fields with a minimum of mathematical background. We illustrate the DAISY software by checking the a priori global identifiability of two benchmark nonlinear models taken from the literature. The analysis of these two examples includes comparison with other methods and demonstrates how identifiability analysis is simplified by this tool. Thus we illustrate the identifiability analysis of other two examples, by including discussion of some specific aspects related to the role of observability and knowledge of initial conditions in testing identifiability and to the computational complexity of the software. The main focus of this paper is not on the description of the mathematical background of the algorithm, which has been presented elsewhere, but on illustrating its use and on some of its more interesting features. DAISY is available on the web site http://www.dei.unipd.it/ approximately pia/. 2010 Elsevier Ltd. All rights reserved.

  4. Integration of Detectors Into a Large Experiment: Examples From ATLAS and CMS

    CERN Document Server

    Froidevaux, D

    2011-01-01

    Integration of Detectors Into a Large Experiment: Examples From ATLAS andCMS, part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B2: Detectors for Particles and Radiation. Part 2: Systems and Applications'. This document is part of Part 2 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Chapter '5 Integration of Detectors Into a Large Experiment: Examples From ATLAS and CMS' with the content: 5 Integration of Detectors Into a Large Experiment: Examples From ATLAS and CMS 5.1 Introduction 5.1.1 The context 5.1.2 The main initial physics goals of ATLAS and CMS at the LHC 5.1.3 A snapshot of the current status of the ATLAS and CMS experiments 5.2 Overall detector concept and magnet systems 5.2.1 Overall detector concept 5.2.2 Magnet systems 5.2.2.1 Rad...

  5. The usage of numerical code FLASH in plasma astrophysics

    OpenAIRE

    BROŽ, Jaroslav

    2013-01-01

    My diploma thesis is focused on the use of numerical computer codes for simulation in plasma astrophysics. They will learn the basic characteristics of the Sun, a closer focus on the solar corona and the solar corona heating problem. The following section is devoted to simulation software in plasma astrophysics, their installing and displaying the results using the visualization software. In the conclusion is demonstrated using this software on a model example and a simulation that performs s...

  6. European Conference on Numerical Mathematics and Advanced Applications

    CERN Document Server

    Manguoğlu, Murat; Tezer-Sezgin, Münevver; Göktepe, Serdar; Uğur, Ömür

    2016-01-01

    The European Conference on Numerical Mathematics and Advanced Applications (ENUMATH), held every 2 years, provides a forum for discussing recent advances in and aspects of numerical mathematics and scientific and industrial applications. The previous ENUMATH meetings took place in Paris (1995), Heidelberg (1997), Jyvaskyla (1999), Ischia (2001), Prague (2003), Santiago de Compostela (2005), Graz (2007), Uppsala (2009), Leicester (2011) and Lausanne (2013). This book presents a selection of invited and contributed lectures from the ENUMATH 2015 conference, which was organised by the Institute of Applied Mathematics (IAM), Middle East Technical University, Ankara, Turkey, from September 14 to 18, 2015. It offers an overview of central recent developments in numerical analysis, computational mathematics, and applications in the form of contributions by leading experts in the field.

  7. Smoothing a Piecewise-Smooth: An Example from Plankton Population Dynamics

    DEFF Research Database (Denmark)

    Piltz, Sofia Helena

    2016-01-01

    In this work we discuss a piecewise-smooth dynamical system inspired by plankton observations and constructed for one predator switching its diet between two different types of prey. We then discuss two smooth formulations of the piecewise-smooth model obtained by using a hyperbolic tangent funct...... function and adding a dimension to the system. We compare model behaviour of the three systems and show an example case where the steepness of the switch is determined from a comparison with data on freshwater plankton....

  8. Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM

    Science.gov (United States)

    Idelsohn, S. R.; Marti, J.; Souto-Iglesias, A.; Oñate, E.

    2008-12-01

    The paper aims to introduce new fluid structure interaction (FSI) tests to compare experimental results with numerical ones. The examples have been chosen for a particular case for which experimental results are not much reported. This is the case of FSI including free surface flows. The possibilities of the Particle Finite Element Method (PFEM) [1] for the simulation of free surface flows is also tested. The simulations are run using the same scale as the experiment in order to minimize errors due to scale effects. Different scenarios are simulated by changing the boundary conditions for reproducing flows with the desired characteristics. Details of the input data for all the examples studied are given. The aim is to identifying benchmark problems for FSI including free surface flows for future comparisons between different numerical approaches.

  9. The Relationship between Big Data and Mathematical Modeling: A Discussion in a Mathematical Education Scenario

    Science.gov (United States)

    Dalla Vecchia, Rodrigo

    2015-01-01

    This study discusses aspects of the association between Mathematical Modeling (MM) and Big Data in the scope of mathematical education. We present an example of an activity to discuss two ontological factors that involve MM. The first is linked to the modeling stages. The second involves the idea of pedagogical objectives. The main findings…

  10. Advanced numerical simulation based on a non-local micromorphic model for metal forming processes

    Directory of Open Access Journals (Sweden)

    Diamantopoulou Evangelia

    2016-01-01

    Full Text Available An advanced numerical methodology is developed for metal forming simulation based on thermodynamically-consistent nonlocal constitutive equations accounting for various fully coupled mechanical phenomena under finite strain in the framework of micromorphic continua. The numerical implementation into ABAQUS/Explicit is made for 2D quadrangular elements thanks to the VUEL users’ subroutine. Simple examples with presence of a damaged area are made in order to show the ability of the proposed methodology to describe the independence of the solution from the space discretization.

  11. A numerical technique for solving fractional optimal control problems and fractional Riccati differential equations

    Directory of Open Access Journals (Sweden)

    F. Ghomanjani

    2016-10-01

    Full Text Available In the present paper, we apply the Bezier curves method for solving fractional optimal control problems (OCPs and fractional Riccati differential equations. The main advantage of this method is that it can reduce the error of the approximate solutions. Hence, the solutions obtained using the Bezier curve method give good approximations. Some numerical examples are provided to confirm the accuracy of the proposed method. All of the numerical computations have been performed on a PC using several programs written in MAPLE 13.

  12. An Example of Using History of Mathematics in Classes

    Science.gov (United States)

    Goktepe, Sevda; Ozdemir, Ahmet Sukru

    2013-01-01

    In recent years, the topic of integrating history to mathematics lessons in teaching-learning processes has been frequently discussed among researchers. The main aim of this study is to present an example activity which enriched with history of mathematics and to take the views of students about teaching course in this way. In addition, to create…

  13. Analysis and presentation of experimental results with examples, problems and programs

    CERN Document Server

    Christodoulides, Costas

    2017-01-01

    This book is intended as a guide to the analysis and presentation of experimental results. It develops various techniques for the numerical processing of experimental data, using basic statistical methods and the theory of errors. After presenting basic theoretical concepts, the book describes the methods by which the results can be presented, both numerically and graphically. The book is divided into three parts, of roughly equal length, addressing the theory, the analysis of data, and the presentation of results. Examples are given and problems are solved using the Excel, Origin, Python and R software packages. In addition, programs in all four languages are made available to readers, allowing them to use them in analyzing and presenting the results of their own experiments. Subjects are treated at a level appropriate for undergraduate students in the natural sciences, but this book should also appeal to anyone whose work involves dealing with experimental results.

  14. Texas Employee Health and Fitness Program. An Example of Unique Legislation.

    Science.gov (United States)

    Haydon, Donald F.; And Others

    1986-01-01

    The Texas State Employee Health Fitness and Education Act of 1983 enables state agencies and educational institutions to finance employee health and fitness programs. This legislation is discussed and an example of the state-supported program is given. (MT)

  15. Beyond “Political” Communicative Spaces : Talking Politics on the Wife Swap Discussion Forum

    NARCIS (Netherlands)

    Graham, T.S.

    2012-01-01

    Net-based public sphere researchers have examined online deliberation in numerous ways. However, most studies have focused exclusively on political discussion forums. This article moves beyond such spaces by analyzing political talk from an online forum dedicated to reality television. The purpose

  16. On a New Method for Computing the Numerical Solution of Systems of Nonlinear Equations

    Directory of Open Access Journals (Sweden)

    H. Montazeri

    2012-01-01

    Full Text Available We consider a system of nonlinear equations F(x=0. A new iterative method for solving this problem numerically is suggested. The analytical discussions of the method are provided to reveal its sixth order of convergence. A discussion on the efficiency index of the contribution with comparison to the other iterative methods is also given. Finally, numerical tests illustrate the theoretical aspects using the programming package Mathematica.

  17. Ethical issues in the use of in-depth interviews: literature review and discussion

    OpenAIRE

    Allmark, Peter; Boote, Jonathan; Chambers, E.; Clarke, Amanda; McDonnell, A.; Thompson, Andrew; Tod, Angela

    2009-01-01

    This paper reports a literature review on the topic of ethical issues in in-depth interviews. The review returned three types of article: general discussion, issues in particular studies, and studies of interview-based research ethics. Whilst many of the issues discussed in these articles are generic to research ethics, such as confidentiality, they often had particular manifestations in this type of research. For example, privacy was a significant problem as interviews sometimes probe unexpe...

  18. Development of a Numerical Model for Orthogonal Cutting. Discussion about the Sensitivity to Friction Problem

    Science.gov (United States)

    San Juan, M.; de la Iglesia, J. M.; Martín, O.; Santos, F. J.

    2009-11-01

    In despite of the important progresses achieved in the knowledge of cutting processes, the study of certain aspects has undergone the very limitations of the experimental means: temperature gradients, frictions, contact, etc… Therefore, the development of numerical models is a valid tool as a first approach to study of those problems. In the present work, a calculation model under Abaqus Explicit code is developed to represent the orthogonal cutting of AISI 4140 steel. A bidimensional simulation under plane strain conditions, which is considered as adiabatic due to the high speed of the material flow, is chosen. The chip separation is defined by means of a fracture law that allows complex simulations of tool penetration in the workpiece. The strong influence of friction on cutting is proved, therefore a very good definition of materials behaviour laws could be obtained, but an erroneous value of friction coefficient could notably reduce the reliability. Considering the difficulty of checking the friction models used in the simulation, from the tests carried out habitually, the most efficacious way to characterize the friction would be to combine simulation models with cutting tests.

  19. Programs that work : California case examples

    International Nuclear Information System (INIS)

    Rodgrigues, G.

    2007-01-01

    Examples of programs that work in California with respect to greenhouse gas emissions were discussed. Specifically, Southern California Edison (SCE) was noted as one of the country's largest investor-owned utilities that has provided environmental leadership in this area. Energy, environment, economy, and community were mentioned as being the four value propositions for demand side management (DSM) programs. The environmental benefits of California investor-owned utilities programs were also discussed. Customer participation in SCE's energy efficiency programs was defined as an important measure of success. Other topics that were addressed in the presentation included energy efficiency in the long-term resource plan; ratcheting codes and standards; effective marketing and outreach; residential and non-residential programs; partnership programs; and competitively-selected programs. Measurement, verification and evaluation were noted as being real savings. Initiatives on the horizon such as the California solar initiative and Edison smartconnect were presented. tabs., figs

  20. A numerical method for complex structural dynamics in nuclear plant facilities

    International Nuclear Information System (INIS)

    Zeitner, W.

    1979-01-01

    The solution of dynamic problems is often connected with difficulties in setting up a system of equations of motion because of the constraint conditions of the system. Such constraint conditions may be of geometric nature as for example gaps or slidelines, they may be compatibility conditions or thermodynamic criteria for the energy balance of a system. The numerical method proposed in this paper for the treatment of a dynamic problem with constraint conditions requires only to set up the equations of motion without considering the constraints. This always leads to a relatively simple formulation. The constraint conditions themselves are included in the integration procedure by a numerical application of Gauss' principle. (orig.)

  1. Multiregional demographic projections in practice: a metropolitan example.

    Science.gov (United States)

    Congdon, P

    1992-01-01

    "This paper examines options for local and regional projections which reflect both demographic interdependencies with jobs and housing at this area scale, and the inapplicability of traditional demographic projection methods to population or areal subdivisions. This context for local demographic projections requires constraints (for example, to job and housing forecasts or to higher area totals), the use of proxy or explanatory indicators to predict demographic rates or totals, and parameterization of demographic schedules, to facilitate comparison across numerous localities and to set future assumptions about demographic components. The traditional framework of self-contained projection by deterministic cohort survival is therefore widened to include regio-scientific and stochastic modelling concepts. The framework for empirical analysis is London [England] and its boroughs." (SUMMARY IN FRE AND GER) excerpt

  2. The Adriatic response to the bora forcing. A numerical study

    International Nuclear Information System (INIS)

    Rachev, N.

    2001-01-01

    This paper deals with the bora wind effect on the Adriatic Sea circulation as simulated by a 3-D numerical code (the DieCAST model). The main result of this forcing is the formation of intense upwelling along the eastern coast in agreement with previous theoretical studies and observations. Different numerical experiments are discussed for various boundary and initial conditions to evaluate their influence on both circulation and upwelling patterns

  3. A semantic framework to protect the privacy of electronic health records with non-numerical attributes.

    Science.gov (United States)

    Martínez, Sergio; Sánchez, David; Valls, Aida

    2013-04-01

    Structured patient data like Electronic Health Records (EHRs) are a valuable source for clinical research. However, the sensitive nature of such information requires some anonymisation procedure to be applied before releasing the data to third parties. Several studies have shown that the removal of identifying attributes, like the Social Security Number, is not enough to obtain an anonymous data file, since unique combinations of other attributes as for example, rare diagnoses and personalised treatments, may lead to patient's identity disclosure. To tackle this problem, Statistical Disclosure Control (SDC) methods have been proposed to mask sensitive attributes while preserving, up to a certain degree, the utility of anonymised data. Most of these methods focus on continuous-scale numerical data. Considering that part of the clinical data found in EHRs is expressed with non-numerical attributes as for example, diagnoses, symptoms, procedures, etc., their application to EHRs produces far from optimal results. In this paper, we propose a general framework to enable the accurate application of SDC methods to non-numerical clinical data, with a focus on the preservation of semantics. To do so, we exploit structured medical knowledge bases like SNOMED CT to propose semantically-grounded operators to compare, aggregate and sort non-numerical terms. Our framework has been applied to several well-known SDC methods and evaluated using a real clinical dataset with non-numerical attributes. Results show that the exploitation of medical semantics produces anonymised datasets that better preserve the utility of EHRs. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Customer requirement modeling and mapping of numerical control machine

    Directory of Open Access Journals (Sweden)

    Zhongqi Sheng

    2015-10-01

    Full Text Available In order to better obtain information about customer requirement and develop products meeting customer requirement, it is necessary to systematically analyze and handle the customer requirement. This article uses the product service system of numerical control machine as research objective and studies the customer requirement modeling and mapping oriented toward configuration design. It introduces the conception of requirement unit, expounds the customer requirement decomposition rules, and establishes customer requirement model; it builds the house of quality using quality function deployment and confirms the weight of technical feature of product and service; it explores the relevance rules between data using rough set theory, establishes rule database, and solves the target value of technical feature of product. Using economical turning center series numerical control machine as an example, it verifies the rationality of proposed customer requirement model.

  5. Concepts and examples of safety analyses for radioactive waste repositories in continental geological formations

    International Nuclear Information System (INIS)

    1983-01-01

    This document is addressed to authorities and specialists responsible for or involved in planning, performing and/or reviewing safety assessments of underground radioactive waste repositories. It is a companion to a general introductory document on the subject ''Safety Assessment for the Underground Disposal of Radioactive Wastes'', IAEA Safety Series No. 56, 1981, and reference to this earlier document will facilitate the reader's understanding of the present report. Since examples of safety analyses are summarized here, it is hoped that this document will contribute to providing a basis for a common understanding among authorities and specialists concerned with the numerous studies involving a variety of scientific disciplines. While providing technical information, this document is also intended to stimulate further international discussion. The purposes of this report are: a) to identify the factors to be taken into account in radiological safety analyses of deep geological repositories, indicating as far as possible their relative importance during the various phases of system development; b) to show how these factors have been analysed in various safety assessment studies; and c) to comment on the merits of the selected and alternative approaches

  6. Concepts and examples of safety analyses for radioactive waste repositories in continental geological formations

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    This document is addressed to authorities and specialists responsible for or involved in planning, performing and/or reviewing safety assessments of underground radioactive waste repositories. It is a companion to a general introductory document on the subject ''Safety Assessment for the Underground Disposal of Radioactive Wastes'', IAEA Safety Series No. 56, 1981, and reference to this earlier document will facilitate the reader's understanding of the present report. Since examples of safety analyses are summarized here, it is hoped that this document will contribute to providing a basis for a common understanding among authorities and specialists concerned with the numerous studies involving a variety of scientific disciplines. While providing technical information, this document is also intended to stimulate further international discussion. The purposes of this report are: a) to identify the factors to be taken into account in radiological safety analyses of deep geological repositories, indicating as far as possible their relative importance during the various phases of system development; b) to show how these factors have been analysed in various safety assessment studies; and c) to comment on the merits of the selected and alternative approaches.

  7. Teaching the First Law of Thermodynamics via Real-Life Examples

    Science.gov (United States)

    Chang, Wheijen

    2011-01-01

    The literature has revealed that many students encounter substantial difficulties in applying the first law of thermodynamics. For example, university students sometimes fail to recognize that heat and work are independent means of energy transfer. When discussing adiabatic processes for an ideal gas, few students can correctly refer to the…

  8. Leading to a New Paradigm: The Example of Bioregional Mapping.

    Science.gov (United States)

    Shapiro, David W.

    1996-01-01

    Examines bioregional mapping as an example of how a different system (educational or otherwise) could be designed through shifting the focus of figure-ground gestalts and revisioning core metaphors. Discusses the notions of community and place, the potential for cognitive restructuring, literal and conceptual maps, and the potential of solving…

  9. An uncoupling strategy for numerically solving the dynamic thermoelasticity equations

    International Nuclear Information System (INIS)

    Moura, C.A. de; Feijoo, R.A.

    1981-01-01

    The dynamic equations of coupled linear thermoelasticity are presented. A numerical algorithm which combines finite-element space approximation with a two-step time discretization in such a way as to reach significant computational savings is presented: It features a strategy for independently calculating the displacement and temperature fields through equations that nevertheless remain coupled. The scheme convergence was shown to be optimal and its machine performance, as ilustrated by some examples, fairly satisfactory. (Author) [pt

  10. PAREX, a numerical code in the service of La Hague plant operations

    Energy Technology Data Exchange (ETDEWEB)

    Bisson, J.; Huron, P.; Huel, C. [AREVA NC, La Hague Plant, Technical Direction, 50444, Beaumont-Hague (France); Dinh, B. [CEA, Centre de Marcoule, Nuclear Energy Division, Radiochemistry and Process Department, F-30207, Bagnols-sur-Ceze (France)

    2016-07-01

    The PAREX code developed by the CEA is able to simulate the PUREX process in steady or transient state. From an operator point of view, this numerical code for simulation of liquid-liquid extraction operations is an outstanding tool as an aid for plant operation through process flow sheet optimization, troubleshooting and safety analysis calculations. This paper focuses on two examples. The first concerns the evaluation of the available operating margin of the extraction zone of the first purification cycle flowsheet. The second example concerns a uranium-plutonium splitting operation where the code was used to explain a shift of plutonium concentration in the solvent outlet. (authors)

  11. Numerical modeling techniques for flood analysis

    Science.gov (United States)

    Anees, Mohd Talha; Abdullah, K.; Nawawi, M. N. M.; Ab Rahman, Nik Norulaini Nik; Piah, Abd. Rahni Mt.; Zakaria, Nor Azazi; Syakir, M. I.; Mohd. Omar, A. K.

    2016-12-01

    Topographic and climatic changes are the main causes of abrupt flooding in tropical areas. It is the need to find out exact causes and effects of these changes. Numerical modeling techniques plays a vital role for such studies due to their use of hydrological parameters which are strongly linked with topographic changes. In this review, some of the widely used models utilizing hydrological and river modeling parameters and their estimation in data sparse region are discussed. Shortcomings of 1D and 2D numerical models and the possible improvements over these models through 3D modeling are also discussed. It is found that the HEC-RAS and FLO 2D model are best in terms of economical and accurate flood analysis for river and floodplain modeling respectively. Limitations of FLO 2D in floodplain modeling mainly such as floodplain elevation differences and its vertical roughness in grids were found which can be improve through 3D model. Therefore, 3D model was found to be more suitable than 1D and 2D models in terms of vertical accuracy in grid cells. It was also found that 3D models for open channel flows already developed recently but not for floodplain. Hence, it was suggested that a 3D model for floodplain should be developed by considering all hydrological and high resolution topographic parameter's models, discussed in this review, to enhance the findings of causes and effects of flooding.

  12. Resolution of VTI anisotropy with elastic full-waveform inversion: theory and basic numerical examples

    Science.gov (United States)

    Podgornova, O.; Leaney, S.; Liang, L.

    2018-03-01

    Extracting medium properties from seismic data faces some limitations due to the finite frequency content of the data and restricted spatial positions of the sources and receivers. Some distributions of the medium properties make low impact on the data (including none). If these properties are used as the inversion parameters, then the inverse problem becomes over-parametrized, leading to ambiguous results. We present an analysis of multiparameter resolution for the linearized inverse problem in the framework of elastic full-waveform inversion. We show that the spatial and multiparameter sensitivities are intertwined and non-sensitive properties are spatial distributions of some non-trivial combinations of the conventional elastic parameters. The analysis accounts for the Hessian information and frequency content of the data; it is semi-analytical (in some scenarios analytical), easy to interpret, and enhances results of the widely used radiation pattern analysis. Single-type scattering is shown to have limited sensitivity, even for full-aperture data. Finite-frequency data lose multiparameter sensitivity at smooth and fine spatial scales. Also, we establish ways to quantify a spatial-multiparameter coupling and demonstrate that the theoretical predictions agree well with the numerical results.

  13. Numerical Simulations Of Flagellated Micro-Swimmers

    Science.gov (United States)

    Rorai, Cecilia; Markesteijn, Anton; Zaitstev, Mihail; Karabasov, Sergey

    2017-11-01

    We study flagellated microswimmers locomotion by representing the entire swimmer body. We discuss and contrast the accuracy and computational cost of different numerical approaches including the Resistive Force Theory, the Regularized Stokeslet Method and the Finite Element Method. We focus on how the accuracy of the methods in reproducing the swimming trajectories, velocities and flow field, compares to the sensitivity of these quantities to certain physical parameters, such as the body shape and the location of the center of mass. We discuss the opportunity and physical relevance of retaining inertia in our models. Finally, we present some preliminary results toward collective motion simulations. Marie Skodowska-Curie Individual Fellowship.

  14. Automatic validation of numerical solutions

    DEFF Research Database (Denmark)

    Stauning, Ole

    1997-01-01

    This thesis is concerned with ``Automatic Validation of Numerical Solutions''. The basic theory of interval analysis and self-validating methods is introduced. The mean value enclosure is applied to discrete mappings for obtaining narrow enclosures of the iterates when applying these mappings...... differential equations, but in this thesis, we describe how to use the methods for enclosing iterates of discrete mappings, and then later use them for discretizing solutions of ordinary differential equations. The theory of automatic differentiation is introduced, and three methods for obtaining derivatives...... are described: The forward, the backward, and the Taylor expansion methods. The three methods have been implemented in the C++ program packages FADBAD/TADIFF. Some examples showing how to use the three metho ds are presented. A feature of FADBAD/TADIFF not present in other automatic differentiation packages...

  15. Numerical Aspects of Atomic Physics: Helium Basis Sets and Matrix Diagonalization

    Science.gov (United States)

    Jentschura, Ulrich; Noble, Jonathan

    2014-03-01

    We present a matrix diagonalization algorithm for complex symmetric matrices, which can be used in order to determine the resonance energies of auto-ionizing states of comparatively simple quantum many-body systems such as helium. The algorithm is based in multi-precision arithmetic and proceeds via a tridiagonalization of the complex symmetric (not necessarily Hermitian) input matrix using generalized Householder transformations. Example calculations involving so-called PT-symmetric quantum systems lead to reference values which pertain to the imaginary cubic perturbation (the imaginary cubic anharmonic oscillator). We then proceed to novel basis sets for the helium atom and present results for Bethe logarithms in hydrogen and helium, obtained using the enhanced numerical techniques. Some intricacies of ``canned'' algorithms such as those used in LAPACK will be discussed. Our algorithm, for complex symmetric matrices such as those describing cubic resonances after complex scaling, is faster than LAPACK's built-in routines, for specific classes of input matrices. It also offer flexibility in terms of the calculation of the so-called implicit shift, which is used in order to ``pivot'' the system toward the convergence to diagonal form. We conclude with a wider overview.

  16. Numerical simulations of thermal conductivity in dissipative two-dimensional Yukawa systems.

    Science.gov (United States)

    Khrustalyov, Yu V; Vaulina, O S

    2012-04-01

    Numerical data on the heat transfer constants in two-dimensional Yukawa systems were obtained. Numerical study of the thermal conductivity and diffusivity was carried out for the equilibrium systems with parameters close to conditions of laboratory experiments with dusty plasma. For calculations of heat transfer constants the Green-Kubo formulas were used. The influence of dissipation (friction) on the heat transfer processes in nonideal systems was investigated. The approximation of the coefficient of thermal conductivity is proposed. Comparison of the obtained results to the existing experimental and numerical data is discussed.

  17. A technique for increasing the accuracy of the numerical inversion of the Laplace transform with applications

    Science.gov (United States)

    Berger, B. S.; Duangudom, S.

    1973-01-01

    A technique is introduced which extends the range of useful approximation of numerical inversion techniques to many cycles of an oscillatory function without requiring either the evaluation of the image function for many values of s or the computation of higher-order terms. The technique consists in reducing a given initial value problem defined over some interval into a sequence of initial value problems defined over a set of subintervals. Several numerical examples demonstrate the utility of the method.

  18. TRAN-STAT, Issue No. 3, January 1978. Topics discussed: some statistical aspects of compositing field samples

    International Nuclear Information System (INIS)

    Gilbert, R.O.

    1978-01-01

    Some statistical aspects of compositing field samples of soils for determining the content of Pu are discussed. Some of the potential problems involved in pooling samples are reviewed. This is followed by more detailed discussions and examples of compositing designs, adequacy of mixing, statistical models and their role in compositing, and related topics

  19. Factors associated with advance care planning discussions by area agency on aging care managers.

    Science.gov (United States)

    Hazelett, Susan; Baughman, Kristin R; Palmisano, Barbara R; Sanders, Margaret; Ludwick, Ruth E

    2013-12-01

    Initiating advance care planning (ACP) discussions in the home may prevent avoidable hospitalizations by elucidating goals of care. Area agencies on aging care managers (AAACMs) work in the home with high-risk consumers. To determine which AAACM characteristics contribute to an increased frequency of ACP discussions. Cross-sectional investigator-generated surveys administered to AAACMs at 3 AAAs in Ohio. Of 289 AAACMs, 182 (63%) responded. The more experience and comfort AAACMs felt with ACP discussions, the more likely they were to initiate ACP discussions. It may be necessary to build interactive educational experiences where, for example, AAACMs are asked to fill out their own advance directives and/or facilitate others in ACP discussions to improve experience and comfort with ACP discussions.

  20. A contemporary view of systems engineering. [definition of system and discussion of systems approach

    Science.gov (United States)

    Miles, R. F., Jr.

    1974-01-01

    The concept of a 'system' is defined, and the 'systems approach' is discussed. Four contemporary examples of the systems approach are presented: an operations research project, the planning-programming-budgeting system, an information processing system, and aerospace programs.

  1. Numerical and Evolutionary Optimization Workshop

    CERN Document Server

    Trujillo, Leonardo; Legrand, Pierrick; Maldonado, Yazmin

    2017-01-01

    This volume comprises a selection of works presented at the Numerical and Evolutionary Optimization (NEO) workshop held in September 2015 in Tijuana, Mexico. The development of powerful search and optimization techniques is of great importance in today’s world that requires researchers and practitioners to tackle a growing number of challenging real-world problems. In particular, there are two well-established and widely known fields that are commonly applied in this area: (i) traditional numerical optimization techniques and (ii) comparatively recent bio-inspired heuristics. Both paradigms have their unique strengths and weaknesses, allowing them to solve some challenging problems while still failing in others. The goal of the NEO workshop series is to bring together people from these and related fields to discuss, compare and merge their complimentary perspectives in order to develop fast and reliable hybrid methods that maximize the strengths and minimize the weaknesses of the underlying paradigms. Throu...

  2. Key issues review: numerical studies of turbulence in stars

    Science.gov (United States)

    Arnett, W. David; Meakin, Casey

    2016-10-01

    Three major problems of single-star astrophysics are convection, magnetic fields and rotation. Numerical simulations of convection in stars now have sufficient resolution to be truly turbulent, with effective Reynolds numbers of \\text{Re}>{{10}4} , and some turbulent boundary layers have been resolved. Implications of these developments are discussed for stellar structure, evolution and explosion as supernovae. Methods for three-dimensional (3D) simulations of stars are compared and discussed for 3D atmospheres, solar rotation, core-collapse and stellar boundary layers. Reynolds-averaged Navier-Stokes (RANS) analysis of the numerical simulations has been shown to provide a novel and quantitative estimate of resolution errors. Present treatments of stellar boundaries require revision, even for early burning stages (e.g. for mixing regions during He-burning). As stellar core-collapse is approached, asymmetry and fluctuations grow, rendering spherically symmetric models of progenitors more unrealistic. Numerical resolution of several different types of three-dimensional (3D) stellar simulations are compared; it is suggested that core-collapse simulations may be under-resolved. The Rayleigh-Taylor instability in explosions has a deep connection to convection, for which the abundance structure in supernova remnants may provide evidence.

  3. Electrochemical energy conversion: methanol fuel cell as example

    Directory of Open Access Journals (Sweden)

    Vielstich Wolf

    2003-01-01

    Full Text Available Thermodynamic and kinetic limitations of the electrochemical energy conversion are presented for the case of a methanol/oxygen fuel cell. The detection of intermediates and products is demonstrated using insitu FTIR spectroscopy and online mass spectrometry. The bifunctional catalysis of methanol oxydation by PtRu model surfaces is explained. The formation of HCOOH and HCHO via parallel reaction pathways is discussed. An example of DMFC system technology is presented.

  4. GIS as a tool in participatory natural resource management: Examples from the Peruvian Andes

    OpenAIRE

    Bussink, C.

    2003-01-01

    Metadata only record Geographic Information Systems (GIS) are often seen as incompatible with participatory processes. However, since the late 1990s, attempts have been made in numerous projects around the world to define 'best practices' for improved natural resource management projects that integrate participation and accurate spatial information, using GIS (for example, see www.iapad.org/participatory_gis.htm). This article describes a project in the Peruvian Andes where spatial informa...

  5. Numerical algorithms for uniform Airy-type asymptotic expansions

    NARCIS (Netherlands)

    N.M. Temme (Nico)

    1997-01-01

    textabstractAiry-type asymptotic representations of a class of special functions are considered from a numerical point of view. It is well known that the evaluation of the coefficients of the asymptotic series near the transition point is a difficult problem. We discuss two methods for computing

  6. Planning design of Ukrainian mines by the means of numerical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ruppel, Ulrich; Scior, Carsten [DMT GmbH und Co. KG (DMT), Essen (Germany). Rock Mechanic Dept.

    2008-08-21

    Using a mine in the Ukraine as an example it is shown how the DMT performs rock mechanical and support planning or roadways in hard coal mines worldwide. Therefore it is necessary to analyse existing measurements and operating experience within a few days as well as organising further surveys on site on short notice. Based on these results the numerical models are calibrated. Using the numerical simulation technology it is possible for DMT to quantify and analyse the rock mechanical impact of different support systems within a short time. Finally the results of the numerical calculations are set in comparison in a rating matrix. Besides making a decision on implementing new roadway and support systems with the objective to use the roadways up to the second longwall panel, the rating matrix is also used for analysing the optimization potentials of existing support systems. This allows the recommendations to immediate improvement of the strata control in the miner's roadways. (orig.)

  7. Numerical modelling of carbonate platforms and reefs: approaches and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Dalmasso, H.; Montaggioni, L.F.; Floquet, M. [Universite de Provence, Marseille (France). Centre de Sedimentologie-Palaeontologie; Bosence, D. [Royal Holloway University of London, Egham (United Kingdom). Dept. of Geology

    2001-07-01

    This paper compares different computing procedures that have been utilized in simulating shallow-water carbonate platform development. Based on our geological knowledge we can usually give a rather accurate qualitative description of the mechanisms controlling geological phenomena. Further description requires the use of computer stratigraphic simulation models that allow quantitative evaluation and understanding of the complex interactions of sedimentary depositional carbonate systems. The roles of modelling include: (1) encouraging accuracy and precision in data collection and process interpretation (Watney et al., 1999); (2) providing a means to quantitatively test interpretations concerning the control of various mechanisms on producing sedimentary packages; (3) predicting or extrapolating results into areas of limited control; (4) gaining new insights regarding the interaction of parameters; (5) helping focus on future studies to resolve specific problems. This paper addresses two main questions, namely: (1) What are the advantages and disadvantages of various types of models? (2) How well do models perform? In this paper we compare and discuss the application of five numerical models: CARBONATE (Bosence and Waltham, 1990), FUZZIM (Nordlund, 1999), CARBPLAT (Bosscher, 1992), DYNACARB (Li et al., 1993), PHIL (Bowman, 1997) and SEDPAK (Kendall et al., 1991). The comparison, testing and evaluation of these models allow one to gain a better knowledge and understanding of controlling parameters of carbonate platform development, which are necessary for modelling. Evaluating numerical models, critically comparing results from models using different approaches, and pushing experimental tests to their limits, provide an effective vehicle to improve and develop new numerical models. A main feature of this paper is to closely compare the performance between two numerical models: a forward model (CARBONATE) and a fuzzy logic model (FUZZIM). These two models use common

  8. LIE GROUPS AND NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS: INVARIANT DISCRETIZATION VERSUS DIFFERENTIAL APPROXIMATION

    Directory of Open Access Journals (Sweden)

    Decio Levi

    2013-10-01

    Full Text Available We briefly review two different methods of applying Lie group theory in the numerical solution of ordinary differential equations. On specific examples we show how the symmetry preserving discretization provides difference schemes for which the “first differential approximation” is invariant under the same Lie group as the original ordinary differential equation.

  9. Mechanics, waves and thermodynamics an example-based approach

    CERN Document Server

    Jain, Sudhir Ranjan

    2016-01-01

    The principles of classical physics, though superseded in specific fields by such theories as quantum mechanics and general relativity, are still of great importance in a broad range of applications. The book presents fundamental concepts of classical physics in a coherent and logical manner. It discusses important topics including the mechanics of a single particle, kinetic theory, oscillations and waves. Topics including the kinetic theory of gases, thermodynamics and statistical mechanics are discussed, which are normally not present in the books on classical physics. The fundamental concepts of energy, momentum, mass and entropy are explained with examples. Discussion on concepts of thermodynamics is presented along with the simplified explanation on Caratheodory's axioms. It covers chapters on wave motion and statistical physics, useful for the graduate students. Each concept is supported with real-life applications on several concepts including impulse and collision, Bernoulli's equation, and friction.

  10. Programs that work : California case examples

    Energy Technology Data Exchange (ETDEWEB)

    Rodgrigues, G. [Southern California Edison, Rosemead, CA (United States)

    2007-07-01

    Examples of programs that work in California with respect to greenhouse gas emissions were discussed. Specifically, Southern California Edison (SCE) was noted as one of the country's largest investor-owned utilities that has provided environmental leadership in this area. Energy, environment, economy, and community were mentioned as being the four value propositions for demand side management (DSM) programs. The environmental benefits of California investor-owned utilities programs were also discussed. Customer participation in SCE's energy efficiency programs was defined as an important measure of success. Other topics that were addressed in the presentation included energy efficiency in the long-term resource plan; ratcheting codes and standards; effective marketing and outreach; residential and non-residential programs; partnership programs; and competitively-selected programs. Measurement, verification and evaluation were noted as being real savings. Initiatives on the horizon such as the California solar initiative and Edison smartconnect were presented. tabs., figs.

  11. Numerical indicators of nuclear power plant safety performance

    International Nuclear Information System (INIS)

    1991-04-01

    The workshop was attended by representatives from twenty-two Member States operating nuclear power plants (NPP). The current status of the development and use of numerical indicators of NPP safety performance was presented. A consensus on the benefits of use of numerical indicators was reached. The Technical Committee Meeting reviewed the progress in the development and use of performance indicators and identified them as the most appropriate ones for international use. The purpose of this document is to summarize the discussions held and conclusions reached in both meetings. Lists of participants and all the papers of both meetings are presented

  12. On Numerical Methods in Non-Newtonian Flows

    International Nuclear Information System (INIS)

    Fileas, G.

    1982-12-01

    The constitutive equations for non-Newtonian flows are presented and the various flow models derived from continuum mechanics and molecular theories are considered and evaluated. Detailed account is given of numerical simulation employing differential and integral models of different kinds of non-Newtonian flows using finite-difference and finite-element techniques. Appreciating the fact that no book or concentrated material on Numerical Non-Newtonian Fluid Flow exists at the present, procedures for computer set-ups are described and references are given for finite-difference, finite-element and molecular-theory based programmes for several kinds of flow. Achievements and unreached goals in the field of numerical simulation of non-Newtonian flows are discussed and the lack of numerical work in the fields of suspension flows and heat transfer is pointed out. Finally, FFOCUS is presented as a newly built computer program which can simulate freezing flows on Newtonian fluids through various geometries and is aimed to be further developed to handle non-Newtonian freezing flows and certain types of suspension phenomena involved in corium flow after a hypothetical core melt-down accident in a PWR. (author)

  13. Numerical determination of axisymmetric toroidal magnetohydrodynamic equilibria

    International Nuclear Information System (INIS)

    Johnson, J.L.; Dalhed, H.E.; Greene, J.M.

    1978-07-01

    Numerical schemes for the determination of stationary axisymmetric toroidal equilibria appropriate for modeling real experimental devices are given. Iterative schemes are used to solve the elliptic nonlinear partial differential equation for the poloidal flux function psi. The principal emphasis is on solving the free boundary (plasma-vacuum interface) equilibrium problem where external current-carrying toroidal coils support the plasma column, but fixed boundary (e.g., conducting shell) cases are also included. The toroidal current distribution is given by specifying the pressure and either the poloidal current or the safety factor profiles as functions of psi. Examples of the application of the codes to tokamak design at PPPL are given

  14. Parameter estimation method that directly compares gravitational wave observations to numerical relativity

    Science.gov (United States)

    Lange, J.; O'Shaughnessy, R.; Boyle, M.; Calderón Bustillo, J.; Campanelli, M.; Chu, T.; Clark, J. A.; Demos, N.; Fong, H.; Healy, J.; Hemberger, D. A.; Hinder, I.; Jani, K.; Khamesra, B.; Kidder, L. E.; Kumar, P.; Laguna, P.; Lousto, C. O.; Lovelace, G.; Ossokine, S.; Pfeiffer, H.; Scheel, M. A.; Shoemaker, D. M.; Szilagyi, B.; Teukolsky, S.; Zlochower, Y.

    2017-11-01

    We present and assess a Bayesian method to interpret gravitational wave signals from binary black holes. Our method directly compares gravitational wave data to numerical relativity (NR) simulations. In this study, we present a detailed investigation of the systematic and statistical parameter estimation errors of this method. This procedure bypasses approximations used in semianalytical models for compact binary coalescence. In this work, we use the full posterior parameter distribution for only generic nonprecessing binaries, drawing inferences away from the set of NR simulations used, via interpolation of a single scalar quantity (the marginalized log likelihood, ln L ) evaluated by comparing data to nonprecessing binary black hole simulations. We also compare the data to generic simulations, and discuss the effectiveness of this procedure for generic sources. We specifically assess the impact of higher order modes, repeating our interpretation with both l ≤2 as well as l ≤3 harmonic modes. Using the l ≤3 higher modes, we gain more information from the signal and can better constrain the parameters of the gravitational wave signal. We assess and quantify several sources of systematic error that our procedure could introduce, including simulation resolution and duration; most are negligible. We show through examples that our method can recover the parameters for equal mass, zero spin, GW150914-like, and unequal mass, precessing spin sources. Our study of this new parameter estimation method demonstrates that we can quantify and understand the systematic and statistical error. This method allows us to use higher order modes from numerical relativity simulations to better constrain the black hole binary parameters.

  15. Numerical relativity

    CERN Document Server

    Shibata, Masaru

    2016-01-01

    This book is composed of two parts: First part describes basics in numerical relativity, that is, the formulations and methods for a solution of Einstein's equation and general relativistic matter field equations. This part will be helpful for beginners of numerical relativity who would like to understand the content of numerical relativity and its background. The second part focuses on the application of numerical relativity. A wide variety of scientific numerical results are introduced focusing in particular on the merger of binary neutron stars and black holes.

  16. Comparative numerical solutions of stiff Ordinary differential equations using magnus series expansion method

    Directory of Open Access Journals (Sweden)

    SURE KÖME

    2014-12-01

    Full Text Available In this paper, we investigated the effect of Magnus Series Expansion Method on homogeneous stiff ordinary differential equations with different stiffness ratios. A Magnus type integrator is used to obtain numerical solutions of two different examples of stiff problems and exact and approximate results are tabulated. Furthermore, absolute error graphics are demonstrated in detail.

  17. An example of multidimensional analysis: Discriminant analysis

    International Nuclear Information System (INIS)

    Lutz, P.

    1990-01-01

    Among the approaches on the data multi-dimensional analysis, lectures on the discriminant analysis including theoretical and practical aspects are presented. The discrimination problem, the analysis steps and the discrimination categories are stressed. Examples on the descriptive historical analysis, the discrimination for decision making, the demonstration and separation of the top quark are given. In the linear discriminant analysis the following subjects are discussed: Huyghens theorem, projection, discriminant variable, geometrical interpretation, case for g=2, classification method, separation of the top events. Criteria allowing the obtention of relevant results are included [fr

  18. On the numerical treatment of the Griffin-Hill-Eheeler equation

    International Nuclear Information System (INIS)

    Galleti, D.; Toledo Piza, A.F.R.

    The precision attainable in the numerical treatment of the Griffin-Hill-Wheeler equation is studied in a solvable model. Trucation errors related to the generator coordinate kinematics are exhibited and briefly discussed [pt

  19. Plasma modelling and numerical simulation

    International Nuclear Information System (INIS)

    Van Dijk, J; Kroesen, G M W; Bogaerts, A

    2009-01-01

    Plasma modelling is an exciting subject in which virtually all physical disciplines are represented. Plasma models combine the electromagnetic, statistical and fluid dynamical theories that have their roots in the 19th century with the modern insights concerning the structure of matter that were developed throughout the 20th century. The present cluster issue consists of 20 invited contributions, which are representative of the state of the art in plasma modelling and numerical simulation. These contributions provide an in-depth discussion of the major theories and modelling and simulation strategies, and their applications to contemporary plasma-based technologies. In this editorial review, we introduce and complement those papers by providing a bird's eye perspective on plasma modelling and discussing the historical context in which it has surfaced. (editorial review)

  20. Radiation Diffusion: An Overview of Physical and Numerical Concepts

    International Nuclear Information System (INIS)

    Graziani, F R

    2005-01-01

    An overview of the physical and mathematical foundations of radiation transport is given. Emphasis is placed on how the diffusion approximation and its transport corrections arise. An overview of the numerical handling of radiation diffusion coupled to matter is also given. Discussions center on partial temperature and grey methods with comments concerning fully implicit methods. In addition finite difference, finite element and Pert representations of the div-grad operator is also discussed

  1. [Violent computergames: distribution via and discussion on the Internet].

    Science.gov (United States)

    Nagenborg, Michael

    2005-11-01

    The spread and use of computer-games including (interactive) depictions of violence are considered a moral problem, particularly if played by children and youths. This essay expresses an opinion on H. Volper's (2004) demand of condemning certain contents by media ethics. At the same time, an overview on the spread and use of "violent games" by children and youths is offered. As a matter of fact, the share of these titles in the complete range must not be estimated too high, certain titles on the other hand are extremely wide-spread. Finally, Fritz's and Fehr's thesis of the cultural conflict "computer game" (2004) is discussed, demonstrated at the example of the discussion on the Internet, and on the basis of this thesis a mediating position between the two cultures including audience ethics (Funiok 1999) is presented.

  2. Black-Hole Binaries, Gravitational Waves, and Numerical Relativity

    Science.gov (United States)

    Kelly, Bernard J.; Centrella, Joan; Baker, John G.; Kelly, Bernard J.; vanMeter, James R.

    2010-01-01

    Understanding the predictions of general relativity for the dynamical interactions of two black holes has been a long-standing unsolved problem in theoretical physics. Black-hole mergers are monumental astrophysical events ' releasing tremendous amounts of energy in the form of gravitational radiation ' and are key sources for both ground- and spacebased gravitational wave detectors. The black-hole merger dynamics and the resulting gravitational waveforms can only he calculated through numerical simulations of Einstein's equations of general relativity. For many years, numerical relativists attempting to model these mergers encountered a host of problems, causing their codes to crash after just a fraction of a binary orbit cnuld be simulated. Recently ' however, a series of dramatic advances in numerical relativity has ' for the first time, allowed stable / robust black hole merger simulations. We chronicle this remarkable progress in the rapidly maturing field of numerical relativity, and the new understanding of black-hole binary dynamics that is emerging. We also discuss important applications of these fundamental physics results to astrophysics, to gravitationalwave astronomy, and in other areas.

  3. Learning SciPy for numerical and scientific computing

    CERN Document Server

    Silva

    2013-01-01

    A step-by-step practical tutorial with plenty of examples on research-based problems from various areas of science, that prove how simple, yet effective, it is to provide solutions based on SciPy. This book is targeted at anyone with basic knowledge of Python, a somewhat advanced command of mathematics/physics, and an interest in engineering or scientific applications---this is broadly what we refer to as scientific computing.This book will be of critical importance to programmers and scientists who have basic Python knowledge and would like to be able to do scientific and numerical computatio

  4. Numerical identifiability of the parameters of induction machines

    Energy Technology Data Exchange (ETDEWEB)

    Corcoles, F.; Pedra, J.; Salichs, M. [Dep. d' Eng. Electrica ETSEIB. UPC, Barcelona (Spain)

    2000-08-01

    This paper analyses the numerical identifiability of the electrical parameters of induction machines. Relations between parameters and the impossibility to estimate all of them - when only external measures are used: voltage, current, speed and torque - are shown. Formulations of the single and double-cage induction machine, with and without core losses in both models, are developed. The proposed solution is the formulation of machine equations by using the minimum number of parameters (which are identifiable parameters). As an application example, the parameters of a double-cage induction machine are identified using steady-state measurements corresponding to different angular speeds. (orig.)

  5. Numerical study of fire whirlwind taking into account radiative heat transfer

    Science.gov (United States)

    Sakai, S.; Miyagi, N.

    2010-06-01

    The fire whirlwind is a strong swirling flow with flame and spark, which may occur in the case of, widespread fire in the urban region by an earthquake disaster or an air raid, and a large-scale fire such as a forest fire. Fire whirlwind moves and promotes spread of fire and may extend serious damage rapidly. In this study, performing the numerical analysis of fire whirlwind with respect to scale effect, it is examined whether a relationship exists between a real phenomenon and the phenomenon in the reduction model with taking into account radiative heat transfer. Three dimensional analyses are performed to investigate the thermal and flow fields by using the analytical software FLUENT6.3. It is analyzed that those swirling flow in original scale, 1/10 scale, 1/50 scale, 1/100 scale from the original brake out to vanish. As an analytical condition, parameter calculation is repeated to get the velocity of a parallel flow which is the easiest to occur the swirling flow for each reduction model, and then scale effect is discussed by comparing the velocity of the natural convection, the velocity of the parallel flow, the center pressure of the whirlwind and the continuance time of the swirling flow. The analysis model of C-character heat source model is performed as well as the analysis in L-character model, which is one of the representative example of the fire whirlwind occurred at Tokyo in the Great Kanto Earthquake (1923). The result of the numerical analysis shows that there is a scale effect to the speed of the parallel flow to generate the swirling flow.

  6. Numerical study of fire whirlwind taking into account radiative heat transfer

    International Nuclear Information System (INIS)

    Sakai, S; Miyagi, N

    2010-01-01

    The fire whirlwind is a strong swirling flow with flame and spark, which may occur in the case of, widespread fire in the urban region by an earthquake disaster or an air raid, and a large-scale fire such as a forest fire. Fire whirlwind moves and promotes spread of fire and may extend serious damage rapidly. In this study, performing the numerical analysis of fire whirlwind with respect to scale effect, it is examined whether a relationship exists between a real phenomenon and the phenomenon in the reduction model with taking into account radiative heat transfer. Three dimensional analyses are performed to investigate the thermal and flow fields by using the analytical software FLUENT6.3. It is analyzed that those swirling flow in original scale, 1/10 scale, 1/50 scale, 1/100 scale from the original brake out to vanish. As an analytical condition, parameter calculation is repeated to get the velocity of a parallel flow which is the easiest to occur the swirling flow for each reduction model, and then scale effect is discussed by comparing the velocity of the natural convection, the velocity of the parallel flow, the center pressure of the whirlwind and the continuance time of the swirling flow. The analysis model of C-character heat source model is performed as well as the analysis in L-character model, which is one of the representative example of the fire whirlwind occurred at Tokyo in the Great Kanto Earthquake (1923). The result of the numerical analysis shows that there is a scale effect to the speed of the parallel flow to generate the swirling flow.

  7. Professional mathematicians differ from controls in their spatial-numerical associations.

    Science.gov (United States)

    Cipora, Krzysztof; Hohol, Mateusz; Nuerk, Hans-Christoph; Willmes, Klaus; Brożek, Bartosz; Kucharzyk, Bartłomiej; Nęcka, Edward

    2016-07-01

    While mathematically impaired individuals have been shown to have deficits in all kinds of basic numerical representations, among them spatial-numerical associations, little is known about individuals with exceptionally high math expertise. They might have a more abstract magnitude representation or more flexible spatial associations, so that no automatic left/small and right/large spatial-numerical association is elicited. To pursue this question, we examined the Spatial Numerical Association of Response Codes (SNARC) effect in professional mathematicians which was compared to two control groups: Professionals who use advanced math in their work but are not mathematicians (mostly engineers), and matched controls. Contrarily to both control groups, Mathematicians did not reveal a SNARC effect. The group differences could not be accounted for by differences in mean response speed, response variance or intelligence or a general tendency not to show spatial-numerical associations. We propose that professional mathematicians possess more abstract and/or spatially very flexible numerical representations and therefore do not exhibit or do have a largely reduced default left-to-right spatial-numerical orientation as indexed by the SNARC effect, but we also discuss other possible accounts. We argue that this comparison with professional mathematicians also tells us about the nature of spatial-numerical associations in persons with much less mathematical expertise or knowledge.

  8. Numerical Investigation on Detection of Prestress Losses in a Prestressed Concrete Slab by Modal Analysis

    Science.gov (United States)

    Kovalovs, A.; Rucevskis, S.; Akishin, P.; Kolupajevs, J.

    2017-10-01

    The paper presents numerical results of loss of prestress in the reinforced prestressed precast hollow core slabs by modal analysis. Loss of prestress is investigated by the 3D finite element method, using ANSYS software. In the numerical examples, variables initial stresses were introduced into seven-wire stress-relieved strands of the concrete slabs. The effects of span and material properties of concrete on the modal frequencies of the concrete structure under initial stress were studied. Modal parameters computed from the finite element models were compared. Applicability and effectiveness of the proposed method was investigated.

  9. Almost Surely Asymptotic Stability of Exact and Numerical Solutions for Neutral Stochastic Pantograph Equations

    Directory of Open Access Journals (Sweden)

    Zhanhua Yu

    2011-01-01

    Full Text Available We study the almost surely asymptotic stability of exact solutions to neutral stochastic pantograph equations (NSPEs, and sufficient conditions are obtained. Based on these sufficient conditions, we show that the backward Euler method (BEM with variable stepsize can preserve the almost surely asymptotic stability. Numerical examples are demonstrated for illustration.

  10. A note on numerical solution of a parabolic-Schrödinger equation

    Science.gov (United States)

    Ozdemir, Yildirim; Alp, Mustafa

    2016-08-01

    In the present study, a nonlocal boundary value problem for a parabolic-Schrödinger equation is considered. The stability estimates for the solution of the given problem is established. The first and second order of difference schemes are presented for approximately solving a specific nonlocal boundary problem. The theoretical statements for the solution of these difference schemes are supported by the result of numerical examples.

  11. Exponential and Bessel fitting methods for the numerical solution of the Schroedinger equation

    International Nuclear Information System (INIS)

    Raptis, A.D.; Cash, J.R.

    1987-01-01

    A new method is developed for the numerical integration of the one dimensional radial Schroedinger equation. This method involves using different integration formulae in different parts of the range of integration rather than using the same integration formula throughout. Two new integration formulae are derived, one which integrates Bessel and Neumann functions exactly and another which exactly integrates certain exponential functions. It is shown that, for large r, these new formulae are much more accurate than standard integration methods for the Schroedinger equation. The benefit of using this new approach is demonstrated by considering some numerical examples based on the Lennard-Jones potential. (orig.)

  12. A numerical scheme for a kinetic model for mixtures in the diffusive limit using the moment method

    OpenAIRE

    Bondesan , Andrea; Boudin , Laurent; Grec , Bérénice

    2018-01-01

    In this article, we consider a multi-species kinetic model which leads to the Maxwell-Stefan equations under a standard diffusive scaling (small Knudsen and Mach numbers). We propose a suitable numerical scheme which approximates both the solution of the kinetic model in rarefied regime and the one in the diffusion limit. We prove some a priori estimates (mass conservation and nonnegativity) and well-posedness of the discrete problem. We also present numerical examples where we observe the as...

  13. Numerical construction of 'optimal' nonoscillating amplitude and phase functions

    International Nuclear Information System (INIS)

    Matzkin, A.; Lombardi, M.

    2002-01-01

    A numerical recipe for the construction of nonoscillating amplitude and phase functions for potentials with a single minimum is given. We give different examples illustrating the recipe, showing the usefulness of the procedure for the construction of basis functions in bound-state scattering processes, such as those described by quantum defect theory. The resulting amplitude and accumulated phase functions are coined as 'optimal' nonoscillating (as a function of the space and energy variables) because they are the counterpart for the quantum problem of the classical action for the analog semiclassical problem

  14. Numerical calculation of beam coupling impedances in synchrotron accelerators

    International Nuclear Information System (INIS)

    Haenichen, Lukas

    2016-01-01

    , particle velocities significantly lower than the speed of light occur and the commonly applied ultra-relativistic limit case may no longer be practicable. Ferrite-loaded kicker magnets are commonly used to achieve abrupt changes of the beam direction of motion and contribute to the coupling impedance due to hysteresis properties of the ferrite material. These coupling impedance contributions must be determined in order to assess the feedback action on the traversing particles of the beam. After introducing important mathematical relations and presentation of two calculation methods, a few reference examples are discussed, which can be treated by means of the classical electromagnetic field theory. After showing that the simulation results are in accordance with the corresponding analytical results, the focus is put on simulation models that represent actual components of the FAIR (Facility for Antiproton and Ion Research GmbH) SIS100 synchrotron accelerator.

  15. Numerical calculation of beam coupling impedances in synchrotron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Haenichen, Lukas

    2016-07-01

    , particle velocities significantly lower than the speed of light occur and the commonly applied ultra-relativistic limit case may no longer be practicable. Ferrite-loaded kicker magnets are commonly used to achieve abrupt changes of the beam direction of motion and contribute to the coupling impedance due to hysteresis properties of the ferrite material. These coupling impedance contributions must be determined in order to assess the feedback action on the traversing particles of the beam. After introducing important mathematical relations and presentation of two calculation methods, a few reference examples are discussed, which can be treated by means of the classical electromagnetic field theory. After showing that the simulation results are in accordance with the corresponding analytical results, the focus is put on simulation models that represent actual components of the FAIR (Facility for Antiproton and Ion Research GmbH) SIS100 synchrotron accelerator.

  16. Ethical issues in the use of in-depth interviews: literature review and discussion\\ud

    OpenAIRE

    Allmark, P.; Boote, J.; Chambers, E.; Clarke, A.; McDonnell, A.; Thompson, A.R.; Tod, A.

    2009-01-01

    This paper reports a literature review on the topic of ethical issues in in-depth interviews. The review returned three\\ud types of article: general discussion, issues in particular studies, and studies of interview-based research ethics. Whilst\\ud many of the issues discussed in these articles are generic to research ethics, such as confidentiality, they often had particular\\ud manifestations in this type of research. For example, privacy was a significant problem as interviews sometimes\\ud ...

  17. Modelling of multidimensional quantum systems by the numerical functional integration

    International Nuclear Information System (INIS)

    Lobanov, Yu.Yu.; Zhidkov, E.P.

    1990-01-01

    The employment of the numerical functional integration for the description of multidimensional systems in quantum and statistical physics is considered. For the multiple functional integrals with respect to Gaussian measures in the full separable metric spaces the new approximation formulas exact on a class of polynomial functionals of a given summary degree are constructed. The use of the formulas is demonstrated on example of computation of the Green function and the ground state energy in multidimensional Calogero model. 15 refs.; 2 tabs

  18. 12 CFR 222.2 - Examples.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Examples. 222.2 Section 222.2 Banks and Banking... (REGULATION V) General Provisions § 222.2 Examples. The examples in this part are not exclusive. Compliance with an example, to the extent applicable, constitutes compliance with this part. Examples in a...

  19. 12 CFR 334.2 - Examples.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Examples. 334.2 Section 334.2 Banks and Banking... General Provisions § 334.2 Examples. The examples in this part are not exclusive. Compliance with an example, to the extent applicable, constitutes compliance with this part. Examples in a paragraph...

  20. Analysis of thermal-plastic response of shells of revolution by numerical integration

    International Nuclear Information System (INIS)

    Leonard, J.W.

    1975-01-01

    A numerical method based instead on the numerical integration of the governing shell equations has been shown, for elastic cases, to be more efficient than the finite element method when applied to shells of revolution. In the numerical integration method, the governing differential equations of motions are converted into a set of initial-value problems. Each initial-value problem is integrated numerically between meridional boundary points and recombined so as to satisfy boundary conditions. For large-deflection elasto-plastic behavior, the equations are nonlinear and, hence, are recombined in an iterative manner using the Newton-Raphson procedure. Suppression techniques are incorporated in order to eliminate extraneous solutions within the numerical integration procedure. The Reissner-Meissner shell theory for shells of revolution is adopted to account for large deflection and higher-order rotation effects. The computer modelling of the equations is quite general in that specific shell segment geometries, e.g. cylindrical, spherical, toroidal, conical segments, and any combinations thereof can be handled easily. The elasto-plastic constitutive relations adopted are in accordance with currently recommended constitutive equations for inelastic design analysis of FFTF Components. The Von Mises yield criteria and associated flow rule is used and the kinematic hardening law is followed. Examples are considered in which stainless steels common to LMFBR application are used

  1. The Fundamentals of Economic Dynamics and Policy Analyses : Learning through Numerical Examples. Part Ⅳ. Overlapping Generations Model

    OpenAIRE

    Futamura, Hiroshi

    2015-01-01

    An overlapping generations model is an applied dynamic general equilibrium model for which the lifecycle models are employed as main analytical tools. At any point in time, there are overlapping generations consisting of individuals born this year, individuals born last year, individuals born two years ago, and so on. As we saw in the analysis of lifecycle models, each individual makes an optimal consumption-saving plan to maximize lifetime utility over her/his lifecycle. For example, an indi...

  2. Partial differential equations with numerical methods

    CERN Document Server

    Larsson, Stig

    2003-01-01

    The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering. The main theme is the integration of the theory of linear PDEs and the numerical solution of such equations. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. As preparation, the two-point boundary value problem and the initial-value problem for ODEs are discussed in separate chapters. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. Some background on linear functional analysis and Sobolev spaces, and also on numerical linear algebra, is reviewed in two appendices.

  3. 12 CFR 571.2 - Examples.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Examples. 571.2 Section 571.2 Banks and Banking... Examples. The examples in this part are not exclusive. Compliance with an example, to the extent applicable, constitutes compliance with this part. Examples in a paragraph illustrate only the issue described in the...

  4. 12 CFR 717.2 - Examples.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Examples. 717.2 Section 717.2 Banks and Banking... Provisions § 717.2 Examples. The examples in this part are not exclusive. Compliance with an example, to the extent applicable, constitutes compliance with this part. Examples in a paragraph illustrate only the...

  5. Children, algorithm and the decimal numeral system

    Directory of Open Access Journals (Sweden)

    Clélia Maria Ignatius Nogueira

    2010-08-01

    Full Text Available A large number of studies in Mathematics Education approach some possible problems in the study of algorithms in the early school years of arithmetic teaching. However, this discussion is not exhausted. In this feature, this article presents the results of a research which proposed to investigate if the arithmetic’s teaching, with emphasis in the fundamental operation’s algorithm, cooperate to build the mathematics knowledge, specifically of the Decimal Numeral System. In order to achieve this purpose, we interviewed, using the Piaget Critique Clinical Method, twenty students from a public school. The result’s analysis indicates that they mechanically reproduce the regular algorithm’s techniques without notice the relations between the techniques and the principle and the Decimal Numeral System’s properties.

  6. Numerical modeling of large field-induced strains in ferroelastic bodies: a continuum approach

    International Nuclear Information System (INIS)

    Raikher, Yu L; Stolbov, O V

    2008-01-01

    A consistent continuum model of a soft magnetic elastomer (SME) is presented and developed for the case of finite strain. The numeric algorithm enabling one to find the field-induced shape changes of an SME body is described. The reliability of the method is illustrated by several examples revealing specifics of the magnetostriction effect in SME samples of various geometries

  7. Transportation package design using numerical optimization

    International Nuclear Information System (INIS)

    Harding, D.C.; Witkowski, W.R.

    1993-01-01

    Since the design of transportation packages involves a complex coupling of structural, thermal and radiation shielding analyses and must follow very strict design constraints, numerical optimization provides the potential for more efficient container designs. In numerical optimization, the requirements of the design problem are mathematically formulated through the use of an objective function and constraints. The objective function(s), e.g., package weight, cost, volume, or combination thereof, is the function to be minimized or maximized by altering a set of design variables that define the package's shape and dimensions. Constraints are limitations on the performance of the system, such as resisting structural and thermal accident environments. Two constraints defined for an example wire mesh composite Type B package are: 1) deformation in the containment vessel seal region remains small enough throughout the 10 CFR-71 accident conditions to meet containment criteria, and 2) the elastomeric seal region remains below its operational temperature limit to guarantee seal integrity in the fire environment. The first constraint of a minimum energy absorbing layer thickness is evaluated with finite element analyses of the proposed dynamic crush accident criteria. The second constraint is evaluated with a 1-D transient thermal finite difference code parametrized for variable composite layer thicknesses, and is integrated with the optimization process. (J.P.N.)

  8. Analytical and Numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations

    Science.gov (United States)

    Gómez-Aguilar, J. F.

    2018-03-01

    In this paper, we analyze an alcoholism model which involves the impact of Twitter via Liouville-Caputo and Atangana-Baleanu-Caputo fractional derivatives with constant- and variable-order. Two fractional mathematical models are considered, with and without delay. Special solutions using an iterative scheme via Laplace and Sumudu transform were obtained. We studied the uniqueness and existence of the solutions employing the fixed point postulate. The generalized model with variable-order was solved numerically via the Adams method and the Adams-Bashforth-Moulton scheme. Stability and convergence of the numerical solutions were presented in details. Numerical examples of the approximate solutions are provided to show that the numerical methods are computationally efficient. Therefore, by including both the fractional derivatives and finite time delays in the alcoholism model studied, we believe that we have established a more complete and more realistic indicator of alcoholism model and affect the spread of the drinking.

  9. Numerical analysis and nuclear standard code application to thermal fatigue

    International Nuclear Information System (INIS)

    Merola, M.

    1992-01-01

    The present work describes the Joint Research Centre Ispra contribution to the IAEA benchmark exercise 'Lifetime Behaviour of the First Wall of Fusion Machines'. The results of the numerical analysis of the reference thermal fatigue experiment are presented. Then a discussion on the numerical analysis of thermal stress is tackled, pointing out its particular aspects in view of their influence on the stress field evaluation. As far as the design-allowable number of cycles are concerned the American nuclear code ASME and the French code RCC-MR are applied and the reasons for the different results obtained are investigated. As regards a realistic fatigue lifetime evaluation, the main problems to be solved are brought out. This work, is intended as a preliminary basis for a discussion focusing on the main characteristics of the thermal fatigue problem from both a numerical and a lifetime assessment point of view. In fact the present margin of discretion left to the analyst may cause undue discrepancies in the results obtained. A sensitivity analysis of the main parameters involved is desirable and more precise design procedures should be stated

  10. Advanced approach to numerical forecasting using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Michael Štencl

    2009-01-01

    Full Text Available Current global market is driven by many factors, such as the information age, the time and amount of information distributed by many data channels it is practically impossible analyze all kinds of incoming information flows and transform them to data with classical methods. New requirements could be met by using other methods. Once trained on patterns artificial neural networks can be used for forecasting and they are able to work with extremely big data sets in reasonable time. The patterns used for learning process are samples of past data. This paper uses Radial Basis Functions neural network in comparison with Multi Layer Perceptron network with Back-propagation learning algorithm on prediction task. The task works with simplified numerical time series and includes forty observations with prediction for next five observations. The main topic of the article is the identification of the main differences between used neural networks architectures together with numerical forecasting. Detected differences then verify on practical comparative example.

  11. OPTIMIZATION OF HEATING OF GEAR WHEEL USING NUMERICAL MODELING

    Directory of Open Access Journals (Sweden)

    Soňa Benešová

    2013-09-01

    Full Text Available Successful heat treating and carburizing of gear wheels for wind turbine gear boxes requires that plastic deformation in the wheel is minimized. Numerical modeling using the DEFORM software was aimed at exploring the effects of the base, on which the gear wheel rests during heating, on the heating process. Homogeneous heating was assumed. It was found that the base heats up more quickly than the workpiece. It is the consequence of the base's shape and volume. As a result, the base expands and slides against the wheel, predominantly at the first heating stage. Later on, it prevents the gear wheel from expanding, causing plastic deformation in the wheel. The findings were used for designing new heating schedules to minimize these undesirable interactions and to reduce the plastic deformation to a negligible magnitude. In addition, this paper presents an example of a practical use of numerical modeling in the DEFORM software.

  12. OPTIMIZATION OF HEATING OF GEAR WHEEL USING NUMERICAL MODELING

    Directory of Open Access Journals (Sweden)

    Sona Benesova

    2013-05-01

    Full Text Available Successful heat treating and carburizing of gear wheels for wind turbine gear boxes requires that plastic deformation in the wheel is minimized. Numerical modeling using the DEFORM software was aimed at exploring the effects of the base, on which the gear wheel rests during heating, on the heating process. Homogeneous heating was assumed. It was found that the base heats up more quickly than the workpiece. It is the consequence of the base's shape and volume. As a result, the base expands and slides against the wheel, predominantly at the first heating stage. Later on, it prevents the gear wheel from expanding, causing plastic deformation in the wheel. The findings were used for designing new heating schedules to minimize these undesirable interactions and to reduce the plastic deformation to a negligible magnitude. In addition, this paper presents an example of a practical use of numerical modeling in the DEFORM software.

  13. A numerical approach to the study of the perpetual case of Ameripean options

    Science.gov (United States)

    Kandilarov, J.

    2013-12-01

    A new numerical method for solving the perpetual case of Ameripean options is proposed. The Ameripean delayed exercise model analyzes a new class of option model with American and ParAsian features. The model is mathematically described by ultraparabolic and parabolic PDE's which are valid over different regions. The perpetual case leads to the parabolic-elliptic two-phase Stefan problem with free internal boundary. To deal with the obtained nonlinear problem an iterative numerical method is proposed. Numerical analysis are presented and discussed.

  14. Ethnic syndromes as disguise for protest against colonialism: three ethnographic examples.

    Science.gov (United States)

    Hegeman, Elizabeth

    2013-01-01

    Historical connections are suggested between the domination of 1 culture by another and dissociative spiritual and religious responses to that oppression. Connections are drawn between colonial oppression, trauma, and 3 examples of dissociation and spirit possession: the Zar cult of Southern Sudan, "Puerto Rican syndrome" or ataque, and the Balinese trance dance. Discussed by means of these examples are the role and functions of spirit possession as a means of escape from unbearable reality, where it becomes a form of the expression of needs and desires forbidden by authorities, a way of entering an identity not subject to traditional authorities, and reenactment of traumatic experience.

  15. Numerical evidences of universal trap-like aging dynamics

    Science.gov (United States)

    Cammarota, Chiara; Marinari, Enzo

    2018-04-01

    Trap models have been initially proposed as toy models for dynamical relaxation in extremely simplified rough potential energy landscapes. Their importance has recently grown considerably thanks to the discovery that the trap-like aging mechanism directly controls the out-of-equilibrium relaxation processes of more sophisticated spin models, that are considered as the solvable counterpart of real disordered systems. Further establishing the connection between these spin models, out-of-equilibrium behavior and the trap like aging mechanism could shed new light on the properties, which are still largely mysterious, for the activated out-of-equilibrium dynamics of disordered systems. In this work we discuss numerical evidence based on the computations of the permanence times of an emergent trap-like aging behavior in a variety of very simple disordered models—developed from the trap model paradigm. Our numerical results are backed by analytic derivations and heuristic discussions. Such exploration reveals some of the tricks needed to reveal the trap behavior in spite of the occurrence of secondary processes, of the existence of dynamical correlations and of strong finite system’s size effects.

  16. ABAQUS-EPGEN: a general-purpose finite element code. Volume 3. Example problems manual

    International Nuclear Information System (INIS)

    Hibbitt, H.D.; Karlsson, B.I.; Sorensen, E.P.

    1983-03-01

    This volume is the Example and Verification Problems Manual for ABAQUS/EPGEN. Companion volumes are the User's, Theory and Systems Manuals. This volume contains two major parts. The bulk of the manual (Sections 1-8) contains worked examples that are discussed in detail, while Appendix A documents a large set of basic verification cases that provide the fundamental check of the elements in the code. The examples in Sections 1-8 illustrate and verify significant aspects of the program's capability. Most of these problems provide verification, but they have also been chosen to allow discussion of modeling and analysis techniques. Appendix A contains basic verification cases. Each of these cases verifies one element in the program's library. The verification consists of applying all possible load or flux types (including thermal loading of stress elements), and all possible foundation or film/radiation conditions, and checking the resulting force and stress solutions or flux and temperature results. This manual provides program verification. All of the problems described in the manual are run and the results checked, for each release of the program, and these verification results are made available

  17. On the Numerical Accuracy of Spreadsheets

    Directory of Open Access Journals (Sweden)

    Alejandro C. Frery

    2010-10-01

    Full Text Available This paper discusses the numerical precision of five spreadsheets (Calc, Excel, Gnumeric, NeoOffice and Oleo running on two hardware platforms (i386 and amd64 and on three operating systems (Windows Vista, Ubuntu Intrepid and Mac OS Leopard. The methodology consists of checking the number of correct significant digits returned by each spreadsheet when computing the sample mean, standard deviation, first-order autocorrelation, F statistic in ANOVA tests, linear and nonlinear regression and distribution functions. A discussion about the algorithms for pseudorandom number generation provided by these platforms is also conducted. We conclude that there is no safe choice among the spreadsheets here assessed: they all fail in nonlinear regression and they are not suited for Monte Carlo experiments.

  18. Numerical algorithm for rigid body position estimation using the quaternion approach

    Science.gov (United States)

    Zigic, Miodrag; Grahovac, Nenad

    2017-11-01

    This paper deals with rigid body attitude estimation on the basis of the data obtained from an inertial measurement unit mounted on the body. The aim of this work is to present the numerical algorithm, which can be easily applied to the wide class of problems concerning rigid body positioning, arising in aerospace and marine engineering, or in increasingly popular robotic systems and unmanned aerial vehicles. Following the considerations of kinematics of rigid bodies, the relations between accelerations of different points of the body are given. A rotation matrix is formed using the quaternion approach to avoid singularities. We present numerical procedures for determination of the absolute accelerations of the center of mass and of an arbitrary point of the body expressed in the inertial reference frame, as well as its attitude. An application of the algorithm to the example of a heavy symmetrical gyroscope is presented, where input data for the numerical procedure are obtained from the solution of differential equations of motion, instead of using sensor measurements.

  19. Comparison of Different Numerical Methods for Quality Factor Calculation of Nano and Micro Photonic Cavities

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Mørk, Jesper; Chung, Il-Sug

    2014-01-01

    Four different numerical methods for calculating the quality factor and resonance wavelength of a nano or micro photonic cavity are compared. Good agreement was found for a wide range of quality factors. Advantages and limitations of the different methods are discussed.......Four different numerical methods for calculating the quality factor and resonance wavelength of a nano or micro photonic cavity are compared. Good agreement was found for a wide range of quality factors. Advantages and limitations of the different methods are discussed....

  20. A case for the introduction of numerical fiscal rules in the Serbian Constitution

    Directory of Open Access Journals (Sweden)

    Begović Boris

    2017-01-01

    Full Text Available The recommendation of numerical fiscal rules in Serbia, presented in this paper, is based on the inherent bias of fiscal policy towards expenditure, and consequently continuous fiscal deficit and excessive sovereign debt. It is recommended that simple and straightforward numeric fiscal rules should be introduced into the Serbian Constitution. There should be two cumulative numerical fiscal rules, the first regarding the ceiling on sovereign debt and the second regarding the ceiling on net new borrowing. Neither of the rules may be violated. The ceiling on the debt level should be prescribed by the Constitution. The ceiling on new net borrowing should depend on the distance of the sovereign debt from the debt ceiling. An illustrative example is provided, with a debt ceiling of 60%. However, the Fiscal Council should specify a specific sovereign debt ceiling as part of the proposed constitutional amendment.