WorldWideScience

Sample records for discuss potential applications

  1. Discussion on the application potential of thermal infrared remote sensing technology in uranium deposits exploration

    Wang Junhu; Zhang Jielin; Liu Dechang

    2011-01-01

    With the continual development of new thermal infrared sensors and thermal radiation theory, the technology of thermal infrared remote sensing has shown great potential for applications in resources exploration, especially in the field of uranium exploration. The paper makes a systemic summary of the theoretical basis and research status of the thermal infrared remote sensing applications in resources exploration from the surface temperature, thermal inertia and thermal infrared spectrum. What's more, the research objective and the research content of thermal infrared remote sensing in the uranium deposits exploration applications are discussed in detail. Besides, based on the thermal infrared ASTER data, the paper applies this technology to the granite-type uranium deposits in South China and achieves good result. Above all, the practice proves that the thermal infrared remote sensing technology has a good application prospects and particular value in the field of uranium prospecting and will play an important role in the prospecting target of the uranium deposits. (authors)

  2. Status seminar on the application potential of fullerenes. Status seminar and panel discussion; Statusseminar Anwendungspotential der Fullerene. Vortraege und Podiumsdiskussion

    Hoffschulz, H [comp.

    1997-12-31

    The application potential of fullerenes extends to the following areas: Owing to their similarity to active carbon the use of fullerenes as well as of the soot arising during their production in catalytic applications appears an interesting possibility. Structural modifications will permit influencing the catalytic properties of the employed substances. Addition of functional groups has led to a wide range of fullerne variants whose chemical properties and application potentials are still being studied. Polymers can be altered in their structure and properties by the integration of fullerenes. The possibility of increasing the photoconductivity of polymers in this way could be applied to photodetectors and solar cells, for example. Exposure to light causes fullerenes to polymerise and drastically reduces their solubility in commercial solvents. This may render them useful as a masking material in microstructuring. Diamond layers from fullerene vapour are very durable and can be manufactured in large sheets at comparatively low cost. In spite of their low density nanotubes are of incredible stiffness and as such an ideal component for composite materials. In monitors nanotubes can function as electron sources and replace the traditional cathode ray tube. A prerequisite for studying the properties of endohedral fullerenes is their availability in macroscopic amounts. In order to assess their potential it will first be necessary to develop suitable production methods. (orig./SR) [Deutsch] Folgende Anwendungspotentiale fuer Fullorene sind denkbar: - Die Verwandtschaft der Fullerene und des bei ihrer Erzeugung anfallenden Russes zur Aktivkohle sind fuer katalytische Anwendungen interessant, wobei die Katalyseeigenschaften durch Modifizierungen der Struktur veraendert werden koennen. - Mittlerweile stehen eine Vielzahl verschiedener Fulleren-Modifikationen durch Anbringen von funktionellen Gruppen zur Verfuegung, deren chemische Eigenschaften und Anwendungspotentiale

  3. Potential for nuclear terrorism: a discussion

    Kellen, K.

    1987-01-01

    Because there has never been an incident of nuclear terrorism, the author is reduced to informed speculation. The past cannot be used to extrapolate into the future. For terrorists as for nations, the domain of nuclear attack represents are unprecedented quantum leap, one that groups think carefully about. Terrorists will consider many factors, including the public climate, because they are not psychotics operating in a vacuum (though groups may include psychotic individuals). Rather, they are people involved in a reciprocal political and psychological relationship with the rest of the world. In reaching some assessment of the potential for nuclear terrorism, there is an immense number of variables to deal with, beginning with the many types of terrorists and terrorism, including nuclear. They can, however, look at individual terrorist groups - a their compositions, capabilities, motivations, and modus operandi - and reach some conclusions. The author first looks at the possible forms nuclear terrorism might take and at the severity of the consequences. A strict distinction must be made between nuclear terrorism where nuclear things are the means (for example, a nuclear device) and nuclear terrorism where nuclear things are the target (for example, nuclear power stations), or where they are both such as a nuclear weapon thrown at a nuclear power station. 2 tables

  4. Discussion about photodiode architectures for space applications

    Gravrand, O.; Destefanis, G.; Cervera, C.; Zanatta, J.-P.; Baier, N.; Ferron, A.; Boulade, O.

    2017-11-01

    Detection for space application is very demanding on the IR detector: all wavelengths, from visible-NIR (2- 3um cutoff) to LWIR (10-12.5um cutoff), even sometimes VLWIR (15um cutoff) may be of interest. Moreover, various scenarii are usually considered. Some are imaging applications where the focal plane array (FPA) is used as an optical element to sense an image. However, the FPA may also be used in spectrometric applications where light is triggered on the different pixels depending on its wavelength. In some cases, star pointing is another use of FPAs where the retina is used to sense the position of the satellite. In all those configurations, we might distinguish several categories of applications: • low flux applications where the FPA is staring at space and the detection occurs with only a few number of photons. • high flux applications where the FPA is usually staring at the earth. In this case, the black body emission of the earth and its atmosphere ensures usually a large number of photons to perform the detection. Those two different categories are highly dimensioning for the detector as it usually determines the level of dark current and quantum efficiency (QE) requirements. Indeed, high detection performance usually requires a large number of integrated photons such that high QE is needed for low flux applications, in order to limit the integration time as much as possible. Moreover, dark current requirement is also directly linked to the expected incoming flux, in order to limit as much as possible the SNR degradation due to dark charges vs photocharges. Note that in most cases, this dark current is highly depending on operating temperature which dominates detector consumption. A classical way to mitigate dark current is to cool down the detector to very low temperatures. This paper won't discuss the need for wavefront sensing where the number of detected photons is low because of a very narrow integration window. Rigorously, this kind of

  5. Discussion

    Sutcliffe, W.G.

    1991-01-01

    This is an edited transcript of the recorded discussions that followed the presentation of each paper and on the general comments at the conclusion of the session. No attempt was made to identity those who offered comments or asked questions

  6. Diatomic interaction potential theory applications

    Goodisman, Jerry

    2013-01-01

    Diatomic Interaction Potential Theory, Volume 2: Applications discusses the variety of applicable theoretical material and approaches in the calculations for diatomic systems in their ground states. The volume covers the descriptions and illustrations of modern calculations. Chapter I discusses the calculation of the interaction potential for large and small values of the internuclear distance R (separated and united atom limits). Chapter II covers the methods used for intermediate values of R, which in principle means any values of R. The Hartree-Fock and configuration interaction schemes des

  7. Severe accidents and operator training - discussion of potential issues

    Vidard, Michel

    1997-01-01

    R and D programs developed throughout the world allowed significant progress in the understanding of physical phenomena and Severe Accident Management (SAM) programs started in many OECD countries. Basically, the common denominator to all these SAM programs was to provide utility operators with procedures or guidelines allowing to deal with complex situations not formally considered in the Design Basis, including accidents where a significant portion of the core had molten. These SAM procedures or guidelines complement the traditional accident management procedures (event, symptom or physical-state oriented) and should allow operators to deal with a reasonably bounding set of situations. Dealing with operator or crisis team training, it was recognized that training would be beneficial but that training programs were lagging, i.e. though training sessions were either organized or contemplated after implementation of SAM programs, they seemed to be somewhat different from more traditional training sessions on Accident Management. After some explanations on the differences between Design Basis Accidents (DBAs) and Beyond Design Basis Accidents (BDBAs), this paper underlines some potential difficulties for training operators and discuss problems to be addressed by organisms contemplating SAM training sessions consistent with similar activities for less complex events

  8. Path integral discussion for Smorodinsky-Winternitz potentials. Pt. 1

    Grosche, C.; Pogosyan, G.S.; Sissakian, A.N.

    1994-02-01

    Path integral formulations for the Smorodinsky-Winternitz potentials in two- and three-dimensional Euclidean space are presented. We mention all coordinate systems which separate the Smorodinsky-Winternitz potentials and state the corresponding path integral formulations. Whereas in many coordinate systems an explicit path integralformulation is not possible, we list in all soluble cases the path integral evaluations explicity in terms of the propagators and the spectral expansions into the wave-functions. (orig.)

  9. Energy summit discussions with Federal Chancellor Merkel - potential legislative consequences

    Heller, W.

    2006-01-01

    The energy summit discussions held by Federal Chancellor Merkel are to converge in a consistent energy policy concept by late 2007. The second summit held on October 9, 2006 was prepared by three working groups. Working Group 1 was to handle 'International Aspects', Working Group 2, the 'National Aspects of Energy Supply', and Working Group 3, finally, 'Research and Energy Efficiency'. The reports dealing with international aspects and with research and energy efficiency were in the focus of discussions at the summit. The report about national aspects had not yet reached the level of maturity required for discussion. None of the reports contained anything under the headings of 'Setting aside the Gorleben Moratorium' and 'Continued Exploration of the Salt Dome for a Repository' and 'Extension of the Plant Life of Our Nuclear Power Plants'. This sounds very easy and is urgently required, but it is neither announced nor seriously debated in politics. If these legislative measures were taken and the rhetoric about the broad energy mix turned into energy policy reality, many problems in climate protection, in energy supply continuity, and in competitive electricity supply could be solved more easily. (orig.)

  10. Round table discussion: Present and future applications of nanocrystalline magnetic materials

    Herzer, G.; Vazquez, M.; Knobel, M.; Zhukov, A.; Reininger, T.; Davies, H.A.; Groessinger, R.; Sanchez Ll, J.L.

    2005-01-01

    Examples of existing or potential applications of nanocrystalline magnetic materials, ranging from soft to hard magnetic alloys, are presented and discussed by experts in the respective fields of research and technology

  11. Application of gamma spectrometry survey and discussion on data processing

    Li Ji'an; He Jianguo

    2008-01-01

    This paper analyzed and discussed the different opinions about the measured parameters of gamma spectrometry data, introduced the effect of gamma spectrometry survey to the search for sandstone type uranium deposit. The author believes that it is very necessary to perform some ground gamma spectrometry survey and enforce the development and application of airborne radiometric data so as to carry out the role of gamma spectrometry in the exploration of sandstone type uranium deposit. (authors)

  12. Application of potential

    Petris, L.

    1979-01-01

    This report summarizes the results obtained with the nucleon-nucleon potential presented previously for: 1) the deuteron properties and wave function, 2) a Hartree-Fock calculation on O 16 , and 3) the perturbation V-matrix and G-matrix results for the potential in relation to the results of other potentials and to saturation

  13. Potential applications of high temperature helium

    Schleicher, R.W. Jr.; Kennedy, A.J.

    1992-09-01

    This paper discusses the DOE MHTGR-SC program's recent activity to improve the economics of the MHTGR without sacrificing safety performance and two potential applications of high temperature helium, the MHTGR gas turbine plant and a process heat application for methanol production from coal

  14. Discussion meet on electroanalytical techniques and their applications

    Aggarwal, S.K.; Gopinath, N.; Govindan, R.

    2008-02-01

    Electrochemistry is truly an interdisciplinary science and plays an important role in different branches of science and technology. The present Discussion Meet on ElectroAnalytical Techniques (DM- ELANTE-2008) is focused on the update of various electroanalytical techniques which have brought out a substantial change in electroanalytical chemistry. The aim of this Discussion Meet is to provide a forum to all the electroanalytical scientists to discuss their recent findings and information, learn from the mutual experiences and interests, and to promote cooperation both nationally and internationally. It is proposed to have tutorial lectures as well as invited talks during the Discussion Meet on various electroanalytical techniques including Electrochemical Impedance Spectroscopy (EIS), Spectro-electrochemistry, Scanning Electrochemical Microscopy (SECM), Electrochemical Quartz Crystal Microbalance (EQCM), Surface Plasmon Resonance (SPR) etc. Papers relevant to INIS are indexed separately

  15. Discussion on CRM applications in irradiation processing enterprise

    Liu Zhiling; Tang Yuxin; Xiao Rong; Cao Qingsui

    2006-01-01

    The necessity of customer relationship management (CRM) in irradiation processing enterprises is discussed on the basis of the competition status of irradiation industry and the CRM framework. In the meantime, an idiographic method of how to create the CRM system is put forward aimed at the present situation of irradiation industry. (authors)

  16. Clinical application and assessment of Belotero: a roundtable discussion.

    Lorenc, Z Paul; Fagien, Steven; Flynn, Timothy C; Waldorf, Heidi A

    2013-10-01

    In this final article for the Supplement, the authors address the physical and aesthetic characteristics of the latest hyaluronic acid, Belotero Balance. Topics include unique characteristics of the hyaluronic acid, aesthetic indications, administration techniques, adverse events, and differences between Belotero and other hyaluronic acids. The article closes with a brief discussion about nomenclature of hyaluronic acid products.

  17. THE APPLICABILITY OF SMALL GROUP DISCUSSION IN ENGLISH READING CLASS

    Kurniawan Yudhi Nugroho

    2017-04-01

    Full Text Available Success of learning is not only a matter of using an appropriate teaching resources, instead, the interference of teaching method is found to be essential to determine the students’ learning achievement. Teacher as a captain of class has the right to choose type of method used in the classroom for sake of students’ improvement. This study was designed as an attempt to help Master Students from a well established private university improve their reading comprehension skill through small group discussion. This study was participated by 30 students, later divided into two classes and served differently as an experimental group for the class A and a control group for the class B. Referring to the final data analysis of the study, it is found that there is an improving learning achievement in the experimental group, indicated by higher performance of posttest (20.333 than the pretest. Apart from this, further analysis was also conducted to find out whether or not small group discussion was able to show better performance than another teaching method applied in another different class. Based on the result of statistical calculation, it shows that small group discussion got better result 12.334 than that of another group. As a result, some suggestions were made by referring to result of the study.

  18. Volume 1. Probabilistic analysis of HTGR application studies. Technical discussion

    May, J.; Perry, L.

    1980-01-01

    The HTGR Program encompasses a number of decisions facing both industry and government which are being evaluated under the HTGR application studies being conducted by the GCRA. This report is in support of these application studies, specifically by developing comparative probabilistic energy costs of the alternative HTGR plant types under study at this time and of competitive PWR and coal-fired plants. Management decision analytic methodology was used as the basis for the development of the comparative probabilistic data. This study covers the probabilistic comparison of various HTGR plant types at a commercial development stage with comparative PWR and coal-fired plants. Subsequent studies are needed to address the sequencing of HTGR plants from the lead plant to the commercial plants and to integrate the R and D program into the plant construction sequence. The probabilistic results cover the comparison of the 15-year levelized energy costs for commercial plants, all with 1995 startup dates. For comparison with the HTGR plants, PWR and fossil-fired plants have been included in the probabilistic analysis, both as steam electric plants and as combined steam electric and process heat plants

  19. Discussion on water resources value accounting and its application

    Guo, Biying; Huang, Xiaorong; Ma, Kai; Gao, Linyun; Wang, Yanqiu

    2018-06-01

    The exploration of the compilation of natural resources balance sheet has been proposed since 2013. Several elements of water resources balance sheet have been discussed positively in China, including basic concept, framework and accounting methods, which focused on calculating the amount of water resources with statistical methods but lacked the analysis of the interrelationship between physical volume and magnitude of value. Based on the study of physical accounting of water resources balance sheet, the connotation of water resources value is analyzed in combination with research on the value of water resources in the world. What's more, the theoretical framework, form of measurement and research methods of water resources value accounting are further explored. Taking Chengdu, China as an example, the index system of water resources balance sheet in Chengdu which includes both physical and valuable volume is established to account the depletion of water resources, environmental damage and ecological water occupation caused by economic and social water use. Moreover, the water resources balance sheet in this region which reflects the negative impact of the economy on the environment is established. It provides a reference for advancing water resources management, improving government and social investment, realizing scientific and rational allocation of water resources.

  20. Potential Applications of Manual Games,

    1984-02-01

    34 just because some electronic equipment is used to keep track of logistics, combat results, and force status. Even a highly computerized game like...D-A152 541 POTENTIAL APPLICATIONS OF MANUAL GAMES (U) RAND CORP ii SANTA MONICA CA T A BROW~N FEB 84 RAND/P-6957 UNCLASI7FIED F/G 12/2 N El..I 111 1...128 112.5 111 m; * _ 1.8 I1111 ’I’ll MICROCOPY RESOLUTION TEST CHART NATI NAl fii~ t1 RI 1A L4k, I POTENTIAL APPLICATIONS OF MANUJAL GAMES Lfl N Lfl

  1. Potential therapeutic applications of biosurfactants.

    Gudiña, Eduardo J; Rangarajan, Vivek; Sen, Ramkrishna; Rodrigues, Lígia R

    2013-12-01

    Biosurfactants have recently emerged as promising molecules for their structural novelty, versatility, and diverse properties that are potentially useful for many therapeutic applications. Mainly due to their surface activity, these molecules interact with cell membranes of several organisms and/or with the surrounding environments, and thus can be viewed as potential cancer therapeutics or as constituents of drug delivery systems. Some types of microbial surfactants, such as lipopeptides and glycolipids, have been shown to selectively inhibit the proliferation of cancer cells and to disrupt cell membranes causing their lysis through apoptosis pathways. Moreover, biosurfactants as drug delivery vehicles offer commercially attractive and scientifically novel applications. This review covers the current state-of-the-art in biosurfactant research for therapeutic purposes, providing new directions towards the discovery and development of molecules with novel structures and diverse functions for advanced applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Geothermal Direct Heat Application Potential

    Lienau, Paul J

    1989-01-01

    The geothermal direct-use industry growth trends, potential, needs, and how they can be met, are addressed. Recent investigations about the current status of the industry and the identification of institutional and technical needs provide the basis on which this paper is presented. Initial drilling risk is the major obstacle to direct-use development. The applications presented include space and district heating projects, heat pumps (heating and cooling), industrial processes, resorts and pools, aquaculture and agriculture.

  3. Discussion on prospecting potential for rich uranium deposits in Xiazhuang uranium ore-field, northern Guangdong

    Wu Lieqin; Tan Zhengzhong

    2004-01-01

    Based on analyzing the prospecting potential for uranium deposits in Xiazhuang uranium ore field this paper discusses the prospecting for rich uranium deposits and prospecting potential in the region. Research achievements indicate: that the Xiazhuang ore-field is an ore-concentrated area where uranium has been highly enriched, and possesses good prospecting potential and perspective, becoming one of the most important prospecting areas for locating rich uranium deposits in northern Guangdong; that the 'intersection type', the alkaline metasomatic fractured rock type and the vein-group type uranium deposits are main targets and the prospecting direction for future uranium prospecting in this region

  4. Virtual reality technology and discussion on its application to uranium geology

    Ye Fawang; Liu Dechang; Zhang Baoju

    2004-01-01

    Based on the introduction to the concept, characteristics of virtual reality technology, and its current application situation, the application prospect of virtual reality technology to uranium geology is preliminarily discussed in this paper

  5. Initial scoping of GHG emissions trading potential in Alberta : CABREE discussion paper

    Armstrong, R.

    2002-03-01

    The past five years have seen the emergence of the concept of emissions trading for greenhouse gases, which would make possible a reduction of the costs required to meet emissions targets agreed upon under the Kyoto Protocol. Emissions trading potential and initial scoping in Alberta is examined in this document, with a special emphasis placed on greenhouse gases. The design of a system, encompassing the theory underlying the mechanism, the current developments, issues of importance in this context, as well as the potential for inclusion of other sectors in Alberta were also discussed. For the purpose of this document, emissions trading was defined as one party reducing its emissions levels then transferring the ownership of that reduction to another party who can then purchase this reduction to assist in meeting its own emissions target. Emission trading can be divided into two basic types called Cap and Trade, and Baseline and Credit. Market creation and behaviour, and regulatory behaviour are factors that can render a trading system more feasible. It is important to analyze the goals before designing the specifics of the system. The incorporation of the various sectors of the economy of Alberta would be affected by their unique features. The greatest promise for emissions trading in Alberta is shown by the energy sector. The percentage of emissions covered, the number of participants, the economic effectiveness are all criteria that affect the performance of any system. figs

  6. Discussion on application of water source heat pump technology to uranium mines

    An Qiang

    2011-01-01

    Application of water source heat pump units in recovering waste heat from uranium mines is discussed, and several forms of waste heat recovery are introduced. The problems in the application of water source heat pump technology are analyzed. Analysis results show that the water source heat pump technology has broad application prospects in uranium mines, and it is a way to exchange existing structure of heat and cold sources in uranium mines. (authors)

  7. Zeta potential in colloid science principles and applications

    Hunter, Robert J; Rowell, R L

    2013-01-01

    Zeta Potential in Colloid Science: Principles and Applications covers the concept of the zeta potential in colloid chemical theory. The book discusses the charge and potential distribution at interfaces; the calculation of the zeta potential; and the experimental techniques used in the measurement of electrokinetic parameters. The text also describes the electroviscous and viscoelectric effects; applications of the zeta potential to areas of colloid science; and the influence of simple inorganic ions or more complex adsorbates on zeta potential. Physical chemists and people involved in the stu

  8. Interrogating discourse: the application of Foucault's methodological discussion to specific inquiry.

    Fadyl, Joanna K; Nicholls, David A; McPherson, Kathryn M

    2013-09-01

    Discourse analysis following the work of Michel Foucault has become a valuable methodology in the critical analysis of a broad range of topics relating to health. However, it can be a daunting task, in that there seems to be both a huge number of possible approaches to carrying out this type of project, and an abundance of different, often conflicting, opinions about what counts as 'Foucauldian'. This article takes the position that methodological design should be informed by ongoing discussion and applied as appropriate to a particular area of inquiry. The discussion given offers an interpretation and application of Foucault's methodological principles, integrating a reading of Foucault with applications of his work by other authors, showing how this is then applied to interrogate the practice of vocational rehabilitation. It is intended as a contribution to methodological discussion in this area, offering an interpretation of various methodological elements described by Foucault, alongside specific application of these aspects.

  9. Some arachnidan peptides with potential medical application

    ME De Lima

    2010-01-01

    Full Text Available The search for new active drugs that can alleviate or cure different diseases is a constant challenge to researchers in the biological area and to the pharmaceutical industry. Historically, research has focused on the study of substances from plants. More recently, however, animal venoms have been attracting attention and studies have been successful in addressing treatment of accidents. Furthermore, venoms and their toxins have been considered good tools for prospecting for new active drugs or models for new therapeutic drugs. In this review, we discuss some possibilities of using different toxins, especially those from arachnid venoms, which have shown some potential application in diseases involving pain, hypertension, epilepsy and erectile dysfunction. A new generation of drugs is likely to emerge from peptides, including those found in animal venoms.

  10. Innovative probabilistic risk assessment applications: barrier impairments and fracture toughness. Panel Discussion

    Osterman, Michael; Root, Steven; Li, F.; Modarres, Mohammad; Reinhart, F. Mark; Bradley, Biff; Calhoun, David J.

    2001-01-01

    Full text of publication follows: New probabilistic risk assessment (PRA) applications promise to improve the overall safety and efficiency of nuclear plant operations. This discussion will explore the use of PRA in evaluating barrier integrity with respect to the consequences of natural phenomena such as tornadoes, floods, and harsh environments. Additionally, the session will explore proposals to improve fracture toughness techniques using PRA. (authors)

  11. Plant Operations. OSHA on Campus: Campus Safety Officers Discuss Problems and Potentials

    Kuchta, Joseph F.; And Others

    1973-01-01

    The Occupation Safety and Health Act (OSHA) has presented campus safety officers with new problems, but it is also offering them new potentials, which were explored at the recent national conference on Campus Security. (Editor)

  12. Supporting socialisation in the transition to university: A potential use for on-line discussion boards

    Robinson, Leslie; Reeves, Pauline; Murphy, Fred; Hogg, Peter

    2010-01-01

    Background: Promoting socialisation for students entering Higher Education is desirable on two grounds. In the first instance it facilitates the processes of student collaboration which, according to sociocultural pedagogies, is important for effective learning. Secondly, it provides a supportive social network, enhancing the student experience which is thought to reduce the risk of attrition. These two drivers provided the rationale for our work. Method: Using the Blackboard Virtual Learning Environment, two on-line discussion boards were used during the transition and induction period for the BSc (Hons) Diagnostic Radiography programme at the University of Salford. The aim was to facilitate socialisation between students about to embark on the programme and current students and staff. The use of discussion boards was evaluated using a mixed methods approach. Statistical data regarding postings was analysed. Posts and focus group comments were subject to content analysis. Results: The discussion boards were 'hit' 5718 times and there were 280 posts. A small number of students did not post any messages. There was evidence of the key features of on-line socialisation which were; establishing an identity; getting to know others; discovering and contributing to communication etiquette; and developing supporting and trusting relationships. Conclusion: The discussion boards were deemed a successful method of providing socialisation during transition and induction. There were some limitations with discussion board layout and functionality and a blog, with its chronological layout and capability to display visual cues such as emoticons may be more effective. The limited participation by some students may provide a means by which to identify 'at-risk' students before the start of the course and this would be an interesting area for further study.

  13. Discussions in symposium 'neutron dosimetry in neutron fields - from detection techniques to medical applications'

    Tanimura, Y.; Sato, T.; Kumada, H.; Terunuma, T.; Sakae, T.; Harano, H.; Matsumoto, T.; Suzuki, T.; Matsufuji, N.

    2008-01-01

    Recently the traceability system (JCSS) of neutron standard based on the Japanese law 'Measurement Act' has been instituted. In addition, importance of the neutron dose evaluation has been increasing in not only the neutron capture medical treatment but also the proton or heavy particle therapy. Against such a background, a symposium 'Neutron dosimetry in neutron fields - From detection techniques to medical applications-' was held on March 29, 2008 and recent topics on the measuring instruments and their calibration, the traceability system, the simulation technique and the medical applications were introduced. This article summarizes the key points in the discussion at the symposium. (author)

  14. Plant life extensions for German nuclear power plants? Controversial discussion on potential electricity price effects

    Matthes, Felix C.; Hermann, Hauke

    2009-06-01

    The discussions on electricity price effects in case of the plant life extension of German nuclear power plants covers the following topics: (1) Introduction and methodology. (2) Electricity generation in nuclear power plants and electricity price based on an empirical view: electricity generation in nuclear power plants and final consumption price for households and industry in the European Union; electricity generation in nuclear power plants and electricity wholesale price in case of low availability of nuclear power plants in Germany; comparison of electricity wholesale prices in Germany and France. (3) Model considerations in relation to electricity prices and nuclear phase-out. (4) Concluding considerations.

  15. Medical language proficiency: A discussion of interprofessional language competencies and potential for patient risk.

    Hull, Melodie

    2016-02-01

    In increasingly multilingual healthcare environments worldwide, ensuring accurate, effective communication is requisite. Language proficiency is essential, particularly medical language proficiency. Medical language is a universal construct in healthcare, the shared language of health and allied health professions. It is highly evolved, career-specific, technical and cultural-bound-a language for specific purposes. Its function differs significantly from that of a standard language. Proficiency requires at minimum, a common understanding of discipline-specific jargon, abstracts, euphemisms, abbreviations; acronyms. An optimal medical language situation demands a level of competency beyond the superficial wherein one can convey or interpret deeper meanings, distinguish themes, voice opinion, and follow directions precisely. It necessitates the use of clarity, and the ability to understand both lay and formal language-characteristics not essential to standard language. Proficiency influences professional discourse and can have the potential to positively or negatively affect patient outcomes. While risks have been identified when there is language discordance between care provider and patient, almost nothing has been said about this within care teams themselves. This article will do so in anticipation that care providers, regulators, employers, and researchers will acknowledge potential language-based communication barriers and work towards resolutions. This is predicated on the fact that the growing interest in language and communication in healthcare today appears to be rested in globalization and increasingly linguistically diverse patient populations. Consideration of the linguistically diverse healthcare workforce is absent. An argument will be posited that if potential risks to patient safety exist and there are potentials for disengagement from care by patients when health providers do not speak their languages then logically these language-based issues can

  16. Laser wakefield accelerator based light sources: potential applications and requirements

    Albert, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). NIF and Photon Sciences; Thomas, A. G. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Nuclear Engineering and Radiological Sciences; Mangles, S. P.D. [Imperial College, London (United Kingdom). Blackett Lab.; Banerjee, S. [Univ. of Nebraska, Lincoln, NE (United States); Corde, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Flacco, A. [ENSTA, CNRS, Ecole Polytechnique, Palaiseau (France); Litos, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Neely, D. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Central Laser Facility; Viera, J. [Univ. of Lisbon (Portugal). GoLP-Inst. de Plasmas e Fusao Nuclear-Lab. Associado; Najmudin, Z. [Imperial College, London (United Kingdom). Blackett Lab.; Bingham, R. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Central Laser Facility; Joshi, C. [Univ. of California, Los Angeles, CA (United States). Dept. of Electrical Engineering; Katsouleas, T. [Duke Univ., Durham, NC (United States). Platt School of Engineering

    2015-01-15

    In this article we review the prospects of laser wakefield accelerators as next generation light sources for applications. This work arose as a result of discussions held at the 2013 Laser Plasma Accelerators Workshop. X-ray phase contrast imaging, X-ray absorption spectroscopy, and nuclear resonance fluorescence are highlighted as potential applications for laser-plasma based light sources. We discuss ongoing and future efforts to improve the properties of radiation from plasma betatron emission and Compton scattering using laser wakefield accelerators for these specific applications.

  17. Private Protected Areas as policy instruments to tackle environmental challenges: discussing potentialities and pitfalls

    Giulia Iannuzzi

    2016-12-01

    Full Text Available Protected Areas owned and managed by private actors are expected to have a relevant role in nature conservation policy as an additional tool to public-run protected sites. By reducing natural habitats destruction and degradation, well designed and well governed private protected areas (PPAs can have a key role in tackling two intertwined global threats: biodiversity loss and climate change. In this article we will present PPAs diffusion in Europe basing on data collected from the European Common Database on Nationally Designated Areas. In addition, an assessment framework will be proposed, with the purpose of contributing to a broader understanding of PPAs potentialities and pitfalls. The main challenges for PPAs effectiveness deal with their geographical distribution and their ability to provide strong and stable legal structures for private protection, assuring adequate and inclusive governance.

  18. The Lake Bosumtwi impact structure in Ghana: A brief environmental assessment and discussion of ecotourism potential

    Boamah, Daniel; Koeberl, Christian

    Lake Bosumtwi is a natural inland freshwater lake that originated from a meteorite impact. The lake is becoming a popular tourist attraction in Ghana and has the potential to be developed as an ecotourism site in the future. However, there have been some unregulated human activities and unplanned infrastructure development, and there are increased levels of pollutants in the lake water. In order to make ecotourism at Lake Bosumtwi successful in the long term, the Lake Bosumtwi Development Committee has been formed to ensure that local people are empowered to mobilize their own capacities. It has been realized that an important criterion required to develop ecotourism in a socially responsible, economically efficient, and environmentally viable way is to foster a constructive dialogue between the local people and tourists about the needs of the indigenous people.

  19. Panel discussion on 'Government and industry social responsibility towards potential communities hosting radioactive waste management sites'

    Cragg, W.; Storey, K.; Cooper, H.; McIntyre, J.; Brown, P.

    2006-01-01

    'Full text:' In healthy democracies, support from local communities for industrial/development projects is highly desirable. What are the respective roles of the various stakeholder sectors, i.e. governments, industry, and communities around industrial projects, including waste management facilities, and how can they interact with sustainable development in mind? Should the private sector be involved in public policy? Should the public sector have an active role in providing funding complementing the notion of the Polluter pays principle? Should communities have a greater role in overseeing the activities of industry and be enabled to do so? Should communities be empowered to increase their role in decision-making processes? Are there trends emerging in this area? Are there improvements to be made? The Not-in-My-Backyard (NIMBY) reflex is not e thical . Thoughtful review is required when considering the right or the desirability to develop. Each of the invited panel members will briefly approach this issue from the perspective of their respective sector. A discussion period will ensue which hopefully will provide insight into how diverse sectors can work together to ensure the establishment of radioactive waste management facilities in communities which support such projects based on local and national values. (author)

  20. Potential environmental hazards of photovoltaic panel disposal: Discussion of Tammaro et al. (2015).

    Sinha, Parikhit

    2017-02-05

    In their recent publication in Journal of Hazardous Materials (http://dx.doi.org/10.1016/j.jhazmat.2015.12.018), Tammaro et al. evaluate the potential environmental impacts of an illegal disposal scenario of photovoltaic panels in the European Union. Critical assumptions that underlie the study's conclusions would benefit from clarification. A scenario of photovoltaic panels finely crushed and abandoned in nature is not supported with field breakage data, in which photovoltaic panels remain largely intact with a number of glass fractures or cracks, as opposed to breakage into cm-scale pieces. Fate and transport analysis is necessary to evaluate how leachate transforms and disperses in moving from the point of emissions to the point of exposure, prior to making comparisons with drinking water limits. Some hazardous metal content has declined in both crystalline silicon and thin film panels, including a 50% decline in semiconductor material intensity in CdTe thin film panels (g CdTe/W) from 2009 to 2015. Waste laws, recycling requirements and minimum treatment standards under the EU WEEE Directive, and illegal disposal rates affect the accuracy of forecasts of releasable metal amounts from PV panels in Europe through 2050. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Potential To Increase Productivity And Sustainability In Argentinean Agriculture With Controlled Traffic Farming: A Short Discussion

    Antille Diogenes L.

    2015-09-01

    Full Text Available Drivers for and potential barriers against adoption of controlled traffic farming (CTF systems in Argentina are reviewed. Traffic compaction is one of the main factors affecting crop productivity within Argentinean agriculture, and has significant although less quantified impacts on the whole-of-farm system. This suggests that the benefits of no-tillage (NT, which represents the dominant form of cropping in Argentina, are not fully realised. Conservative estimates indicate that crop yields could be improved by at least 15% if NT is used in conjunction with CTF. Cost-benefit analyses of available options for compaction management are required. Despite this, and based on reported evidence internationally, a shift toward increased uptake of CTF within Argentinean agriculture is likely to: (1 improve productivity and farm profitability, (2 enhance environmental performance, and (3 maintain competitiveness of the agricultural sector. Appropriate technical advice and support is a key requirement to drive adoption of CTF. Therefore, the adoption process will benefit from collaboration developed with well-established research and extension organisations in Australia and the United Kingdom, and active engagement of machinery manufacturers.

  2. Potential applications of insect symbionts in biotechnology.

    Berasategui, Aileen; Shukla, Shantanu; Salem, Hassan; Kaltenpoth, Martin

    2016-02-01

    Symbiotic interactions between insects and microorganisms are widespread in nature and are often the source of ecological innovations. In addition to supplementing their host with essential nutrients, microbial symbionts can produce enzymes that help degrade their food source as well as small molecules that defend against pathogens, parasites, and predators. As such, the study of insect ecology and symbiosis represents an important source of chemical compounds and enzymes with potential biotechnological value. In addition, the knowledge on insect symbiosis can provide novel avenues for the control of agricultural pest insects and vectors of human diseases, through targeted manipulation of the symbionts or the host-symbiont associations. Here, we discuss different insect-microbe interactions that can be exploited for insect pest and human disease control, as well as in human medicine and industrial processes. Our aim is to raise awareness that insect symbionts can be interesting sources of biotechnological applications and that knowledge on insect ecology can guide targeted efforts to discover microorganisms of applied value.

  3. Potential applications of electron emission membranes in medicine

    Bilevych, Yevgen [Fraunhofer Institute for Reliability and Microintegration (IZM), Berlin (Germany); University of Bonn, Bonn (Germany); Brunner, Stefan E. [Delft University of Technology, Delft (Netherlands); Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, Vienna (Austria); Chan, Hong Wah; Charbon, Edoardo [Delft University of Technology, Delft (Netherlands); Graaf, Harry van der, E-mail: vdgraaf@nikhef.nl [Delft University of Technology, Delft (Netherlands); Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); Hagen, Cornelis W. [Delft University of Technology, Delft (Netherlands); Nützel, Gert; Pinto, Serge D. [Photonis, Roden (Netherlands); Prodanović, Violeta [Delft University of Technology, Delft (Netherlands); Rotman, Daan [Delft University of Technology, Delft (Netherlands); Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); University of Amsterdam, Amsterdam (Netherlands); Santagata, Fabio [State Key Lab for Solid State Lighti Changzhou base, F7 R& D HUB 1, Science and Education Town, Changzhou 213161, Jangsu Province (China); Sarro, Lina; Schaart, Dennis R. [Delft University of Technology, Delft (Netherlands); Sinsheimer, John; Smedley, John [Brookhaven National Laboratory, Upton, NY (United States); Tao, Shuxia; Theulings, Anne M.M.G. [Delft University of Technology, Delft (Netherlands); Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands)

    2016-02-11

    With a miniaturised stack of transmission dynodes, a noise free amplifier is being developed for the detection of single free electrons, with excellent time- and 2D spatial resolution and efficiency. With this generic technology, a new family of detectors for individual elementary particles may become possible. Potential applications of such electron emission membranes in medicine are discussed.

  4. Discussion on the entransy expressions of the thermodynamic laws and their applications

    Cheng, XueTao; Liang, XinGang

    2013-01-01

    In this paper, the entransy expressions of the three thermodynamic laws are discussed. The entransy expression of the first law is that the entransy of any thermodynamic system is in balance. For the second law, the entransy expression for heat transfer is that the entransy flow will never be transported from a low temperature body to a high temperature body automatically and entransy dissipation always exists. The entransy expression for heat-work conversion is that it is impossible for any device to operate in a cycle that receives heat entransy flow from a single reservoir and results in an equivalent amount of work entransy flow. The two entransy expressions of the second law are proved to be equivalent to each other. For the third law, its entransy expression is that it is impossible to achieve the zero entransy for any body through limited processes. With these expressions, the Clausius inequality is proved, and the concept of entransy loss is defined. The application of entransy loss to heat transfer and heat-work conversion is discussed. - Highlights: • The entransy expressions of the three thermodynamic laws are discussed. • The Clausius inequality is proved with the entransy expressions of the laws. • The concept of entransy loss is defined with the entransy expressions of the laws. • Entransy loss can be used to analyze heat transfer and heat-work conversion

  5. Application and evaluation of a combination of socratice and learning through discussion techniques

    EJ van Aswegen

    2001-09-01

    Full Text Available This article has its genesis in the inquirer’s interest in the need for internalizing critical thinking, creative thinking and reflective skills in adult learners. As part of a broader study the inquirer used a combination of two techniques over a period of nine months, namely: Socratic discussion/questioning and Learning Through Discussion Technique. The inquirer within this inquiry elected mainly qualitative methods, because they were seen as more adaptable to dealing with multiple realities and more sensitive and adaptable to the many shaping influences and value patterns that may be encountered (Lincoln & Guba, 1989. Purposive sampling was used and sample size (n =10 was determined by the willingness of potential participants to enlist in the chosen techniques. Feedback from participants was obtained: (1 verbally after each discussion session, and (2 in written format after completion of the course content. The final/ summative evaluation was obtained through a semi-structured questionnaire. This was deemed necessary, in that the participants were already studying for the end of the year examination. For the purpose of this condensed report the inquirer reflected only on the feedback obtained with the help of the questionnaire. The empirical study showed that in spite of various adaptation problems experienced, eight (8 of the ten (10 participants felt positive toward the applied techniques.

  6. Application and evaluation of a combination of socratice and learning through discussion techniques.

    van Aswegen, E J; Brink, H I; Steyn, P J

    2001-11-01

    This article has its genesis in the inquirer's interest in the need for internalizing critical thinking, creative thinking and reflective skills in adult learners. As part of a broader study the inquirer used a combination of two techniques over a period of nine months, namely: Socratic discussion/questioning and Learning Through Discussion Technique. The inquirer within this inquiry elected mainly qualitative methods, because they were seen as more adaptable to dealing with multiple realities and more sensitive and adaptable to the many shaping influences and value patterns that may be encountered (Lincoln & Guba, 1989). Purposive sampling was used and sample size (n = 10) was determined by the willingness of potential participants to enlist in the chosen techniques. Feedback from participants was obtained: (1) verbally after each discussion session, and (2) in written format after completion of the course content. The final/summative evaluation was obtained through a semi-structured questionnaire. This was deemed necessary, in that the participants were already studying for the end of the year examination. For the purpose of this condensed report the inquirer reflected only on the feedback obtained with the help of the questionnaire. The empirical study showed that in spite of various adaptation problems experienced, eight (8) of the ten (10) participants felt positive toward the applied techniques.

  7. Use of isotopes in organic matter studies: a discussion illustrated by recent applications

    Warembourg, F.R.

    1982-01-01

    After a presentation of the various concepts leading to the advantageous use of isotope tracers in soil organic matter and related studies, a discussion is proposed around three main types of methods which are related to the time scale of the processes occurring in the soil organic matter transformations. Examples help to illustrate the purpose. Static methods describing the state of soil organic matter such as carbon dating. Long term dynamic studies involving the use of labelled plant materials and their applications in situ. Short term dynamic studies as an insight into the short term lived processes such as biotic and abiotic energetic activivation, flushes, priming effect, nitrogen fixation. More than an exhaustive enumeration of the litterature, the main objective of this presentation will tend to be a comprehensive analysis of the many problems arising from the study of soil activities and of the modern approaches of investigation. (Author) [pt

  8. Potential biomedical applications of marine algae.

    Wang, Hui-Min David; Li, Xiao-Chun; Lee, Duu-Jong; Chang, Jo-Shu

    2017-11-01

    Functional components extracted from algal biomass are widely used as dietary and health supplements with a variety of applications in food science and technology. In contrast, the applications of algae in dermal-related products have received much less attention, despite that algae also possess high potential for the uses in anti-infection, anti-aging, skin-whitening, and skin tumor treatments. This review, therefore, focuses on integrating studies on algae pertinent to human skin care, health and therapy. The active compounds in algae related to human skin treatments are mentioned and the possible mechanisms involved are described. The main purpose of this review is to identify serviceable algae functions in skin treatments to facilitate practical applications in this high-potential area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Proceedings of the eleventh ISEAC international discussion meet on electrochemistry and its applications

    Aggarwal, Suresh K.; Guin, Saurav K.; Gupta, Ruma S.; Ambolikar, Arvind S.

    2014-01-01

    Electrochemistry has truly emerged as a multidisciplinary science and is being used in different fields for variety of applications. Several electrochemically synthesized nano composites of conducting polymers and nanoparticles of noble metals are promising electrode materials in fuel cells because of their electrocatalytic behavior. Room Temperature Ionic Liquids (RTILs) are the green solvents which have generated a lot of interest because of their broad electrochemical window which allows the reduction of ions with very high negative redox potentials on Pt, Au, glassy carbon electrodes etc., without significant hydrogen evolution. Therefore, RTILs are promising electrolytes for electrochemical studies on actinides and lanthanides. This issue includes two tutorial articles viz. Carbon nanotubes and its significance in electrochemistry and introduction to electrodeposition of metals and alloys. Papers relevant to INIS are indexed separately

  10. Potential application of electron accelerators in Malaysia

    Alang Md Rashid, Nahrul Khair; Mohd Dahlan, Khairul Zaman [Nuclear Energy Unit, Bangi, Selangor (Malaysia)

    1994-12-31

    Briefly discussed some applications of electron accelerators i.e. sterilization, pasteurization (high energy EBM - up to 10 MV), crosslinking of wire and cable and insulation (medium energy EBM - 1 to 5 MV), treatment of flue gases for removal of NO sub x and SO sub x from burning coal(low energy EBM - 700 to 900 kV), curing of surface coatings, printing ink, adhesives (low energy EBM - 200 to 500 kV); advantages and electron beam processing.

  11. Potential application of electron accelerators in Malaysia

    Nahrul Khair Alang Md Rashid; Khairul Zaman Mohd Dahlan

    1994-01-01

    Briefly discussed some applications of electron accelerators i.e. sterilization, pasteurization (high energy EBM - up to 10 MV), crosslinking of wire and cable and insulation (medium energy EBM - 1 to 5 MV), treatment of flue gases for removal of NO sub x and SO sub x from burning coal(low energy EBM - 700 to 900 kV), curing of surface coatings, printing ink, adhesives (low energy EBM - 200 to 500 kV); advantages and electron beam processing

  12. Bacteriophages-potential for application in wastewater treatment processes

    Withey, S.; Cartmell, E.; Avery, L.M.; Stephenson, T.

    2005-01-01

    Bacteriophages are viruses that infect and lyse bacteria. Interest in the ability of phages to control bacterial populations has extended from medical applications into the fields of agriculture, aquaculture and the food industry. Here, the potential application of phage techniques in wastewater treatment systems to improve effluent and sludge emissions into the environment is discussed. Phage-mediated bacterial mortality has the potential to influence treatment performance by controlling the abundance of key functional groups. Phage treatments have the potential to control environmental wastewater process problems such as: foaming in activated sludge plants; sludge dewaterability and digestibility; pathogenic bacteria; and to reduce competition between nuisance bacteria and functionally important microbial populations. Successful application of phage therapy to wastewater treatment does though require a fuller understanding of wastewater microbial community dynamics and interactions. Strategies to counter host specificity and host cell resistance must also be developed, as should safety considerations regarding pathogen emergence through transduction

  13. Tunable resistive pulse sensing: potential applications in nanomedicine.

    Sivakumaran, Muttuswamy; Platt, Mark

    2016-08-01

    An accurate characterization of nanomaterials used in clinical diagnosis and therapeutics is of paramount importance to realize the full potential of nanotechnology in medicine and to avoid unexpected and potentially harmful toxic effects due to these materials. A number of technical modalities are currently in use to study the physical, chemical and biological properties of nanomaterials but they all have advantages and disadvantages. In this review, we discuss the potential of a relative newcomer, tunable resistive pulse sensing, for the characterization of nanomaterials and its applications in nanodiagnostics.

  14. Potential of Starch Nanocomposites for Biomedical Applications

    Zakaria, N. H.; Muhammad, N.; Abdullah, M. M. A. B.

    2017-06-01

    In recent years, the development of biodegradable materials from renewable sources based on polymeric biomaterials have grown rapidly due to increase environmental concerns and the shortage of petroleum sources. In this regard, naturally renewable polymers such as starch has shown great potential as environmental friendly materials. Besides, the unique properties of starch such as biodegradable and non-toxic, biocompatible and solubility make them useful for a various biomedical applications. Regardless of their unique properties, starch materials are known to have limitations in term of poor processability, low mechanical properties, poor long term stability and high water sensitivity. In order to overcome these limitations, the incorporation of nano size fillers into starch materials (nanocomposites) has been introduced. This review aims to give an overview about structure and characteristics of starch, modification of starch by nanocomposites and their potential for biomedical applications.

  15. Alcohol pipelines: a discussion of the applicable legislation; Alcooldutos: uma discussao sobre a legislacao aplicavel

    Estevao, Luciana R.M.; Costa, Julia R.S.S.; Costa, Heloise H.L.M.; Veloso, Luciano G.; Barros, B.S.S.; Cecchi, Jose C. [Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Since the end of the 1990s, Brazil has assumed the position of the world's largest producer of alcohol fuel. This status is being consolidated through the steady increase in demand in both the internal and external markets for environmentally friendly renewable fuels, which have gained significant importance in defining the country's energetic matrix. Due to the increasing importance of ethanol in the fuel production and consumption sectors, the involved parties are facing the need to improve the logistic facilities for receiving and delivering the product. However, the applicable legislation for the construction and operation of ethanol pipelines is still a matter of much controversy. The aim of this study is to discuss the existing Brazilian regulation framework regarding pipeline transportation and to explore the consequences of the regulatory void established between Laws 9,478/97 and 7,029/82. In addition, the need to define a granting regime, namely, concession (Law 7,029/82) or authorization (Law 9,478/97) for the activity will also be evaluated. (author)

  16. CFD analysis of a rotary kiln using for plaster production and discussion of the effects of flue gas recirculation application

    Gürtürk, Mert; Oztop, Hakan F.; Pambudi, Nugroho Agung

    2018-04-01

    In this study, the CFD analysis of the rotary kiln is carried out for examining effects of various parameters on energy consumption and efficiency of the rotary kiln. The flue gas recirculation using in many applications is a useful method for combusting of fuel unburned in the flue gas. Also, effects of flue gas recirculation on the combusting of fuel, operating temperature and efficiency of the rotary kiln are discussed in this study. The rotary kiln, which is considered in this study, is used in plaster plant. Two different CFD models were created and these models are compared according to many parameters such as temperature distribution, mixture fraction, the mass fraction of O2, CO, CO and CH4 in the combustion chamber. It is found that the plaster plant has a great potential for an increase in energy efficiency. Results obtained for producers of rotary kiln and burner will be useful for determining better design parameters.

  17. Digital projection radiography. Technical principles, image properties and potential applications

    Busch, H.P.

    1999-01-01

    The history of development of digital projection radiography as a diagnostic method is presented in a comprehensive survey. The various technical principles are explained in detail and illustrated by means of graphic figures and digital X-ray pictures. A comparative assessment of currently applied radiographic systems is given and the potential clinical applications of the method of digital projection radiography are discussed. (orig./CB) [de

  18. Video mediated teaching of young students in peripheral regions of the Nordic countries - a discussion of problems and potentials

    Andreasen, Karen Egedal

    Modern labour market is characterized by high educational demands. However, the opportunities for young people living in peripheral regions of countries of meeting such demands are reduced. Modern technology and improvements of video technology widened the possibilities of providing young people...... in these areas with education and has given rise to an increase in the interest of using video mediated teaching. Recent years several experiments have been implemented in Denmark and in the Nordic countries in general. In a Danish region a comprehensive innovation project including video mediated simultaneous...... teaching at two locations was implemented in years 2008 - 2010 (Andreasen, 2012). Drawing on theory of Etienne Wenger (2004) about learning and communities of practice this article discusses results from the dialogue research related to the project. The article will discuss problems and potentials...

  19. Education Levels and Mortgage Application Outcomes: Evidence of Financial Literacy. Discussion Paper No. 1369-09

    Collins, J. Michael

    2009-01-01

    This paper uses 2005 Home Mortgage Disclosure Act data aggregated by census tract to measure the relationship between census tract-level college completion rates and the rates at which first lien refinance mortgage applicants submit incomplete loan applications, withdraw loan applications before they are reviewed, and reject lender approved loan…

  20. Applicability of ambient dose equivalent H*(d) in mixed radiation fields - a critical discussion

    Hajek, M.; Vana, N.

    2004-01-01

    skin dose equivalent may well be used as a conservative estimate for the whole body effective dose. The intention of ICRU in introducing H*(d) was that this quantity should be suitable for metrology, and be unified, i.e. the same for all radiation fields. As was demonstrated by our experiments, this demand can only be satisfied for radiation fields encountered in terrestrial standard dosimetry, but it will certainly fail for complexly mixed fields. It therefore has to be discussed to substitute the philosophy of ambient dose equivalent by a new concept that could be based on microdosimetric principles, offering the unique potential of a more direct correlation with radiobiological parameters. (author)

  1. Applicability of Ambient Dose Equivalent H (d) in Mixed Radiation Fields - A Critical Discussion

    Vana, R.; Hajek, M.; Bergerm, T.

    2004-01-01

    dose equivalent may well be used as a conservative estimate for the whole body effective dose. The intention of ICRU in introducing H(d) was that this quantity should (i) be suitable for metrology, and (ii) be unified, i.e. the same for all radiation fields. As was demonstrated by our experiments, this demand can only be satisfied for radiation fields encountered in terrestrial standard dosimetry, but it will certainly fail for complexly mixed fields. It therefore has to be discussed to substitute the philosophy of ambient dose equivalent by a new concept that could be based on microdosimetric principles, offering the unique potential of a more direct correlation with radiobiological parameters. (Author)

  2. Synthesis, Properties and Potential Applications of Porous Graphene: A Review

    Paola Russo; Anming Hu; Giuseppe Compagnini

    2013-01-01

    Since the discovery of graphene, many efforts have been done to modify the graphene structure for integrating this novel material to nanoelectronics, fuel cells, energy storage devices and in many other applications. This leads to the production of different types of graphene-based materials, which possess properties different from those of pure graphene. Porous graphene is an example of this type of materials. It can be considered as a graphene sheet with some holes/pores within the atomic plane. Due to its spongy structure, porous graphene can have potential applications as membranes for molecular sieving, energy storage components and in nanoelectronics. In this review, we present the recent progress in the synthesis of porous graphene. The properties and the potential applications of this new material are also discussed.

  3. The principle of vulnerability and its potential applications in bioethics

    Demény Enikő

    2016-12-01

    Full Text Available The principle of vulnerability is a specific principle within European Bioethics. On the one hand, vulnerability expresses human limits and frailty on the other hand it represents moral and ethical action principles. In this paper a discussion on the relationship between the concepts of autonomy, vulnerability and responsibility is proposed and presentation of some possible applications of the principle of vulnerability within bioethics. In conclusion, some potential benefits of applying the principle of vulnerability as well as possible difficulties in its application are highlighted.

  4. POTENTIAL APPLICATION OF NANOMETALS IN ENVIRONMENTAL PROTECTION

    Dagmara Malina

    2017-02-01

    Full Text Available In recent years, great interest in metallic nanoparticles has been observed, both because of their unlimited application possibilities, and also because of the unusual biological, chemical and physical features. It is expected that developments in nanotechnology will become the main promoter of scientific and technological innovations in the coming decades. Searching for a new and safe alternative to chemical pesticides, high hopes are associated with nanotechnology development. Particularly useful may be preparations containing nanoscale metal particles with strong antimicrobial properties. Importantly, safe and non-toxic for the plant components of biological origin may be used in nanoparticles synthesis. This article is a description of the potential applications of nanomaterials in environmental protection, which may become the basis for developing of new protection plant products with antimicrobial properties relative to plant pathogens and non-toxic to higher organisms.

  5. Vibration Energy Harvesting Potential for Turbomachinery Applications

    Adrian STOICESCU

    2018-03-01

    Full Text Available The vibration energy harvesting process represents one of the research directions for increasing power efficiency of electric systems, increasing instrumentation nodes autonomy in hard to reach locations and decreasing total system mass by eliminating cables and higher-power adapters. Research based on the possibility of converting vibration energy into useful electric energy is used to evaluate the potential of its use on turbomachinery applications. Aspects such as the structure and characteristics of piezoelectric generators, harvesting networks, their setup and optimization, are considered. Finally, performance test results are shown using piezoelectric systems on a turbine engine.

  6. Potential aerospace applications of high temperature superconductors

    Selim, Raouf

    1994-01-01

    The recent discovery of High Temperature Superconductors (HTS) with superconducting transition temperature, T(sub c), above the boiling point of liquid nitrogen has opened the door for using these materials in new and practical applications. These materials have zero resistance to electric current, have the capability of carrying large currents and as such have the potential to be used in high magnetic field applications. One of the space applications that can use superconductors is electromagnetic launch of payloads to low-earth-orbit. An electromagnetic gun-type launcher can be used in small payload systems that are launched at very high velocity, while sled-type magnetically levitated launcher can be used to launch larger payloads at smaller velocities. Both types of launchers are being studied by NASA and the aerospace industry. The use of superconductors will be essential in any of these types of launchers in order to produce the large magnetic fields required to obtain large thrust forces. Low Temperature Superconductor (LTS) technology is mature enough and can be easily integrated in such systems. As for the HTS, many leading companies are currently producing HTS coils and magnets that potentially can be mass-produced for these launchers. It seems that designing and building a small-scale electromagnetic launcher is the next logical step toward seriously considering this method for launching payloads into low-earth-orbit. A second potential application is the use of HTS to build sensitive portable devices for the use in Non Destructive Evaluation (NDE). Superconducting Quantum Interference Devices (SQUID's) are the most sensitive instruments for measuring changes in magnetic flux. By using HTS in SQUID's, one will be able to design a portable unit that uses liquid nitrogen or a cryocooler pump to explore the use of gradiometers or magnetometers to detect deep cracks or corrosion in structures. A third use is the replacement of Infra-Red (IR) sensor leads on

  7. The potential application of stem cell in dentistry

    Ketut Suardita

    2006-12-01

    Full Text Available Stem cells are generally defined as cells that have the capacity to self-renewal and differentiate to specialize cell. There are two kinds of stem cell, embryonic stem cell and adult stem cells. Stem cell therapy has been used to treat diseases including Parkinson’s and Alzheimer’s diseases, spinal cord injury, stroke, burns, heart diseases, diabetes, osteoarthritis, and rheumatoid arthritis. Stem cells were found in dental pulp, periodontal ligament, and alveolar bone marrow. Because of their potential in medical therapy, stem cells were used to regenerate lost or damage teeth and periodontal structures. This article discusses the potential application of stem cells for dental field.

  8. Potential commercial applications of centrifuge technology

    1985-08-01

    As part of an effort to prevent the loss of and maximize the use of unique developments of the centrifuge program, this document identifies and briefly describes unclassified technologies potentially available for transfer. In addition, this document presents a preliminary plan for action needed to carry out the transfer activity. Continuing efforts will provide additional descriptions of technologies which have applications that are not as apparent or as obvious as those presented here. Declassification of some of the program information, now classified as restricted data, would permit the descriptions of additional technologies which have significant commercial potential. The following are major areas of technology where transfer opportunities exist: biomedical; separation; motors and control systems; materials; vacuum; dynamics and balancing; and diagnostics and instrumentation

  9. Highlights from the Faraday Discussion on Ionic Liquids: From Fundamental Properties to Practical Applications, Cambridge, UK, September 2017.

    Aldous, Leigh; Bendova, Magdalena; Gonzalez-Miquel, Maria; Swadźba-Kwaśny, Małgorzata

    2018-05-22

    For the third time, a Faraday Discussion addressed ionic liquids. Encompassing the wealth of research in this field, the contributions ranged from fundamental insights to the diverse applications of ionic liquids. Lively discussions initiated in the lecture hall and during poster sessions then seamlessly continued during the social program.

  10. Marine bioactives and potential application in sports.

    Gammone, Maria Alessandra; Gemello, Eugenio; Riccioni, Graziano; D'Orazio, Nicolantonio

    2014-04-30

    An enriched diet with antioxidants, such as vitamin E, vitamin C, β-carotene and phenolic compounds, has always been suggested to improve oxidative stress, preventing related diseases. In this respect, marine natural product (MNP), such as COX inhibitors, marine steroids, molecules interfering with factors involved in the modulation of gene expression (such as NF-κB), macrolides, many antioxidant agents, thermogenic substances and even substances that could help the immune system and that result in the protection of cartilage, have been recently gaining attention. The marine world represents a reserve of bioactive ingredients, with considerable potential as functional food. Substances, such as chitin, chitosan, n-3 oils, carotenoids, vitamins, minerals and bioactive peptides, can provide several health benefits, such as the reduction of cardiovascular diseases, anti-inflammatory and anticarcinogenic activities. In addition, new marine bioactive substances with potential anti-inflammatory, antioxidant and thermogenic capacity may provide health benefits and performance improvement, especially in those who practice physical activity, because of their increased free radical and Reacting Oxygen Species (ROS) production during exercise, and, particularly, in athletes. The aim of this review is to examine the potential pharmacological properties and application of many marine bioactive substances in sports.

  11. A Model-Independent Discussion of Quark Number Density and Quark Condensate at Zero Temperature and Finite Quark Chemical Potential

    Xu Shu-Sheng; Shi Chao; Cui Zhu-Fang; Zong Hong-Shi; Jiang Yu

    2015-01-01

    Generally speaking, the quark propagator is dependent on the quark chemical potential in the dense quantum chromodynamics (QCD). By means of the generating functional method, we prove that the quark propagator actually depends on p_4 + iμ from the first principle of QCD. The relation between quark number density and quark condensate is discussed by analyzing their singularities. It is concluded that the quark number density has some singularities at certain μ when T = 0, and the variations of the quark number density as well as the quark condensate are located at the same point. In other words, at a certain μ the quark number density turns to nonzero, while the quark condensate begins to decrease from its vacuum value. (paper)

  12. Promoting Liberal Arts Thinking through Online Discussion: A Practical Application and its Theoretical Basis

    Dr. Dave S. Knowlton

    2002-07-01

    Full Text Available Addressing Carsten and Worsfold's (2000 assertion that online learning eliminates the possibility for "liberal learning," the author of this paper describes the context and guidelines for an online discussion assignment that he used as a faculty member at a liberal arts college. The purpose of this assignment was to help students engage in personal development by examining the ways course content manifested itself in their own lives. After describing the assignment guidelines, the author connects the assignment to numerous theories that are often associated with "liberal arts" learning. This theoretical explication includes connections to the need for a synthesis between the personal and professional selves, notions of constructing knowledge, and online discussion's placement within the writing process. The implication of this article is that the instructional strategies embedded in an online discussion, not the online environment itself, sustains a liberal education.

  13. Positive technology–A powerful partnership between positive psychology and interactive technology. A discussion of potential and challenges.

    Sarah Diefenbach

    2017-11-01

    Full Text Available Under the umbrella term "positive computing" concepts of positive psychology are transferred to the domain of human-computer interaction (HCI. In an interdisciplinary community psychologist, computer scientists, designers and others are exploring promising ways how to utilize interactive technology to support wellbeing and human flourishing. Along with this, the recent popularity of smartphone apps aiming at the improvement of health behavior, mindfulness and positive routines, suggests the general acceptance of technology as a facilitator of personal development. Given this, there generally seems a high potential for a technology mediated trigger of positive behavior change, especially in context of positive psychology and resource oriented approaches such as solution-focused coaching. At the same time, there is still a lack of well-founded approaches to design such technology which consider its responsible role as an "interactive coach" and systematically integrate the needed expertise of different disciplines. The present article discusses the general potential and particular challenges to support the goals of positive psychology and human desire for self-improvement through interactive technology and highlights critical steps for a successful partnership between both.

  14. Graphene plasmonics: physics and potential applications

    Huang Shenyang

    2016-10-01

    Full Text Available Plasmon in graphene possesses many unique properties. It originates from the collective motion of massless Dirac fermions, and the carrier density dependence is distinctively different from conventional plasmons. In addition, graphene plasmon is highly tunable and shows strong energy confinement capability. Most intriguingly, as an atom-thin layer, graphene and its plasmon are very sensitive to the immediate environment. Graphene plasmons strongly couple to polar phonons of the substrate, molecular vibrations of the adsorbates, and lattice vibrations of other atomically thin layers. In this review, we present the most important advances in graphene plasmonics field. The topics include terahertz plasmons, mid-infrared plasmons, plasmon-phonon interactions, and potential applications. Graphene plasmonics opens an avenue for reconfigurable metamaterials and metasurfaces; it is an exciting and promising new subject in the nanophotonics and plasmonics research field.

  15. Advanced Communications Technology Satellite (ACTS) and potential system applications

    Wright, David L.; Balombin, Joseph R.; Sohn, Philip Y.

    1990-01-01

    A description of the advanced communications technology satellite (ACTS) system is given with special emphasis on the communication characteristics. Potential satellite communications scenarios, including future operational ACTS-like satellite systems, are discussed. The description of the ACTS system updates previously published ACTS system references. Detailed information on items such as experimental ground stations is presented. The potential services can be generically described as voice, video, and data services. The implementation of these services on future operational ACTS-like systems can lead to unique quality, flexibility, and capacity characteristics at lower service costs. The specific service applications that could be supported range from low to high data rates and include both domestic and international applications.

  16. Connected and Ubiquitous: A Discussion of Two Theories That Impact Future Learning Applications

    Bair, Richard A.; Stafford, Timothy

    2016-01-01

    Mobile media break down traditional barriers that have defined learning in schools because they enable constant, personalized access to media. This information-rich environment could dramatically expand learning opportunities. This article identifies and discusses two instructional design theories for mobile learning including the major…

  17. Discussion meeting on nuclear-, radio- and radiation chemistry - basics and applications

    1982-01-01

    The following fields have been represented at this meeting: 1. nuclear reactions and properties of the formed products; 2. geo- and cosmochemistry; 3. chemistry of actinides and other radioisotopes; 4. radioanalysis; 5. isotope applications; 6. nuclear fuel cycle. Single papers are listed under appropriate categories. (RB)

  18. Potential National Security Applications of Nuclear Resonance Fluorescence Methods

    Warren, Glen A.; Peplowski, Patrick N.; Caggiano, Joseph A.

    2009-01-01

    The objective of this report is to document the initial investigation into the possible research issues related to the development of NRF-based national security applications. The report discusses several potential applications ranging from measuring uranium enrichment in UF6 canisters to characterization of gas samples. While these applications are varied, there are only a few research issues that need to be addressed to understand the limitation of NRF in solving these problems. These research issues range from source and detector development to measuring small samples. The next effort is to determine how best to answer the research issues, followed by a prioritization of those questions to ensure that the most important are addressed. These issues will be addressed through either analytical calculations, computer simulations, analysis of previous data or collection of new measurements. It will also be beneficial to conduct a thorough examination of a couple of the more promising applications in order to develop concrete examples of how NRF may be applied in specific situations. The goals are to develop an understanding of whether the application of NRF is limited by technology or physics in addressing national security applications, to gain a motivation to explore those possible applications, and to develop a research roadmap so that those possibilities may be made reality.

  19. Discussion of environmental impact assessment for the nuclear technology application in hospital

    Li Shaoting; Xu Zhongyang

    2010-01-01

    Medical use of ionizing radiation has become the greatest artificial radiation in the world. Based on the characteristics of the nuclear technology application in hospital the content of the environmental impact assessment has been stated, including identification of the environmental impact factor, the standard, the environmental impact, control of the pollution as well. The dose of the medical staff which engaged in interventional operation and the accompanies of the patients which received nuclear medicine treatment should be focused on. (authors)

  20. Discussion about the application of treatment process for dehydrated wet waste at nuclear power station

    Li Guanghua; Wu Qiang

    2009-01-01

    In nuclear power station, the most popular treatment about low level radioactive wet waste generated during the unit operating and maintenance is embedded by cement. For radioactive waste minimization, this article introduces a new treatment process to dehydrate and compress wet waste. According to the development and application of the treatment process for the wet waste, and comparing with the formerly treatment-the cement embedding, prove that the new treatment can meet the purpose for volume reduction of wet waste. (authors)

  1. Application and Discussion of Dual Fluidized Bed Reactor in Biomass Energy Utilization

    Guan, Haibin; Fan, Xiaoxu; Zhao, Baofeng; Yang, Liguo; Sun, Rongfeng

    2018-01-01

    As an important clean and renewable energy, biomass has a broad market prospect. The dual fluidized bed is widely used in biomass gasification technology, and has become an important way of biomass high-value utilization. This paper describes the basic principle of dual fluidized bed gasification, from the gas composition, tar content and thermal efficiency of the system point of view, analyzes and summarizes several typical dual fluidized bed biomass gasification technologies, points out the existence of gas mixing, the external heat source, catalyst development problems on gas. Finally, it is clear that the gasification of biomass in dual fluidized bed is of great industrial application and development prospect.

  2. Preliminary discussion on the application of the geological conceptual model method of uranium ore formation

    Ma Guangzhong; Wei Mingji; Luo Yiyue

    1992-01-01

    The geological conceptual model method of uranium ore formation is established on the basis of geological theory and apriorism. Variables are screened with the application of the method of mathematical geology to find out the variables which are more contributed. In combination with the practical situation in Xikang-Yunnan axis, the variables are compiled and graded so as to determine the optimal ore-controlling factor and to establish the statistical predictive model which is of geological significance. The resources evaluation work has been conducted in the Late Proterozoic geological terrain in Xikang-Yunnan axis

  3. Being reflexive in qualitative grounded theory: discussion and application of a model of reflexivity.

    Engward, Hilary; Davis, Geraldine

    2015-07-01

    A discussion of the meaning of reflexivity in research with the presentation of examples of how a model of reflexivity was used in a grounded theory research project. Reflexivity requires the researcher to make transparent the decisions they make in the research process and is therefore important in developing quality in nursing research. The importance of being reflexive is highlighted in the literature in relation to nursing research, however, practical guidance as to how to go about doing research reflexively is not always clearly articulated. This is a discussion paper. The concept of reflexivity in research is explored using the Alvesson and Skoldberg model of reflexivity and practical examples of how a researcher developed reflexivity in a grounded theory project are presented. Nurse researchers are encouraged to explore and apply the concept of reflexivity in their research practices to develop transparency in the research process and to increase robustness in their research. The Alvesson and Skoldberg model is of value in applying reflexivity in qualitative nursing research, particularly in grounded theory research. Being reflexive requires the researcher to be completely open about decisions that are made in the research process. The Alvesson and Skolberg model of reflexivity is a useful model that can enhance reflexivity in the research process. It can be a useful practical tool to develop reflexivity in grounded theory research. © 2015 John Wiley & Sons Ltd.

  4. Discussion: Comparison of slope instability screening tools following a large storm event and application to forest management and policy

    Lingley, Leslie; Slaughter, Stephen L.; Sarikhan, Isabelle Y.; Norman, David K.

    2013-02-01

    This discussion is in response to the article entitled "Comparison of slope stability screening tools following a large storm event and application to forest management and policy" by Kara Whittaker and Dan McShane (Geomorphology 145-146 (2012) 115-122). The discussion is coauthored by several geologists at the Washington Department of Natural Resources (WDNR) including those from the research and policy sections of the state agency.

  5. Highlights of the round table discussion on trends and future developments of the application of pressure to high Tc materials

    Chu, C.W.; Ayache, C.; Fietz, W.J.; Kourouklis, G.K.; Liarokapis, E.; Wijngaarden, R.

    1991-01-01

    A discussion of current trends and the future development of the application of pressure to high T c materials was initiated by a brief presentation by each panel member and followed by an active exchange among all participants in the Workshop. The current status of the study of high temperature superconductivity and the past, current, and future roles of pressure in that study were discussed

  6. [Ecological memory and its potential applications in ecology: a review].

    Sun, Zhong-yu; Ren, Hai

    2011-03-01

    Ecological memory (EM) is defined as the capability of the past states or experiences of a community to influence the present or future ecological responses of the community. As a relatively new concept, EM has received considerable attention in the study of ecosystem structure and function, such as community succession, ecological restoration, biological invasion, and natural resource management. This review summarized the definition, components, and categories of EM, and discussed the possible mechanisms and affecting factors of EM. Also, the potential applications of EM were proposed, in order to further understand the mechanisms of community succession and to guide ecological restoration.

  7. GEOGRAPHIC INFORMATION SYSTEMS AND APPLIED ECONOMICS: AN INITIAL DISCUSSION OF POTENTIAL APPLICATIONS AND CONTRIBUTIONS

    Taupier, Richard; Willis, Cleve E.

    1994-01-01

    Geographic Information Systems (GIS) are becoming increasingly important to virtually all of the natural and social sciences. Applied economists will find that GIS can make valuable contributions to many of the problems with which they are concerned. Moreover, a great deal of the science behind GIS technology would benefit from the contributions of applied economists. This paper presents some initial suggestions for the ways in which GIS may be important to economics and the GIS related issue...

  8. Discussion on the applicability of entropy generation minimization to the analyses and optimizations of thermodynamic processes

    Cheng, XueTao; Liang, XinGang

    2013-01-01

    Highlights: • The applicability of entropy generation minimization is conditional. • The concept of exergy-work conversion efficiency is defined. • The concept of exergy destruction number is introduced. • Smaller exergy destruction number leads to larger exergy-work conversion efficiency. - Abstract: This work reports the analyses of some thermodynamic systems with the concepts of entropy generation, entropy generation numbers and revised entropy generation number, as well as exergy destruction number and exergy-work conversion efficiency that are proposed in this paper. The applicability of entropy generation minimization (EGM) is conditional if the optimization objective is the output power. The EGM leads to the maximum output power when the net exergy flow rate into the system is fixed, but it may not be appropriate if the net exergy flow rate into the system is not fixed. On the other hand, smaller exergy destruction number always corresponds to larger exergy-work conversion efficiency. The refrigeration cycle with the reverse Carnot engine is also analyzed in which mechanical work is input. The result shows that the EGM leads to the largest COP if the temperature of the high temperature heat source is fixed

  9. Atomic spectrometry methods for wine analysis: A critical evaluation and discussion of recent applications

    Grindlay, Guillermo, E-mail: guillermo.grindlay@ua.es [Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, PO Box 99, 03080 Alicante (Spain); Mora, Juan; Gras, Luis [Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, PO Box 99, 03080 Alicante (Spain); Loos-Vollebregt, Margaretha T.C. de [Delft University of Technology, Faculty of Applied Sciences, Analytical Biotechnology, Julianalaan 67, 2628 BC Delft (Netherlands)

    2011-04-08

    The analysis of wine is of great importance since wine components strongly determine its stability, organoleptic or nutrition characteristics. In addition, wine analysis is also important to prevent fraud and to assess toxicological issues. Among the different analytical techniques described in the literature, atomic spectrometry has been traditionally employed for elemental wine analysis due to its simplicity and good analytical figures of merit. The scope of this review is to summarize the main advantages and drawbacks of various atomic spectrometry techniques for elemental wine analysis. Special attention is paid to interferences (i.e. matrix effects) affecting the analysis as well as the strategies available to mitigate them. Finally, latest studies about wine speciation are briefly discussed.

  10. Atomic spectrometry methods for wine analysis: a critical evaluation and discussion of recent applications.

    Grindlay, Guillermo; Mora, Juan; Gras, Luis; de Loos-Vollebregt, Margaretha T C

    2011-04-08

    The analysis of wine is of great importance since wine components strongly determine its stability, organoleptic or nutrition characteristics. In addition, wine analysis is also important to prevent fraud and to assess toxicological issues. Among the different analytical techniques described in the literature, atomic spectrometry has been traditionally employed for elemental wine analysis due to its simplicity and good analytical figures of merit. The scope of this review is to summarize the main advantages and drawbacks of various atomic spectrometry techniques for elemental wine analysis. Special attention is paid to interferences (i.e. matrix effects) affecting the analysis as well as the strategies available to mitigate them. Finally, latest studies about wine speciation are briefly discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Atomic spectrometry methods for wine analysis: A critical evaluation and discussion of recent applications

    Grindlay, Guillermo; Mora, Juan; Gras, Luis; Loos-Vollebregt, Margaretha T.C. de

    2011-01-01

    The analysis of wine is of great importance since wine components strongly determine its stability, organoleptic or nutrition characteristics. In addition, wine analysis is also important to prevent fraud and to assess toxicological issues. Among the different analytical techniques described in the literature, atomic spectrometry has been traditionally employed for elemental wine analysis due to its simplicity and good analytical figures of merit. The scope of this review is to summarize the main advantages and drawbacks of various atomic spectrometry techniques for elemental wine analysis. Special attention is paid to interferences (i.e. matrix effects) affecting the analysis as well as the strategies available to mitigate them. Finally, latest studies about wine speciation are briefly discussed.

  12. Uncertainty analysis in WWTP model applications: a critical discussion using an example from design

    Sin, Gürkan; Gernaey, Krist; Neumann, Marc B.

    2009-01-01

    of design performance criteria differs significantly. The implication for the practical applications of uncertainty analysis in the wastewater industry is profound: (i) as the uncertainty analysis results are specific to the framing used, the results must be interpreted within the context of that framing......This study focuses on uncertainty analysis of WWTP models and analyzes the issue of framing and how it affects the interpretation of uncertainty analysis results. As a case study, the prediction of uncertainty involved in model-based design of a wastewater treatment plant is studied. The Monte...... to stoichiometric, biokinetic and influent parameters; (2) uncertainty due to hydraulic behaviour of the plant and mass transfer parameters; (3) uncertainty due to the combination of (1) and (2). The results demonstrate that depending on the way the uncertainty analysis is framed, the estimated uncertainty...

  13. Discussion on Regression Methods Based on Ensemble Learning and Applicability Domains of Linear Submodels.

    Kaneko, Hiromasa

    2018-02-26

    To develop a new ensemble learning method and construct highly predictive regression models in chemoinformatics and chemometrics, applicability domains (ADs) are introduced into the ensemble learning process of prediction. When estimating values of an objective variable using subregression models, only the submodels with ADs that cover a query sample, i.e., the sample is inside the model's AD, are used. By constructing submodels and changing a list of selected explanatory variables, the union of the submodels' ADs, which defines the overall AD, becomes large, and the prediction performance is enhanced for diverse compounds. By analyzing a quantitative structure-activity relationship data set and a quantitative structure-property relationship data set, it is confirmed that the ADs can be enlarged and the estimation performance of regression models is improved compared with traditional methods.

  14. Luminescent Metal Nanoclusters for Potential Chemosensor Applications

    Muthaiah Shellaiah

    2017-12-01

    Full Text Available Studies of metal nanocluster (M-NCs-based sensors for specific analyte detection have achieved significant progress in recent decades. Ultra-small-size (<2 nm M-NCs consist of several to a few hundred metal atoms and exhibit extraordinary physical and chemical properties. Similar to organic molecules, M-NCs display absorption and emission properties via electronic transitions between energy levels upon interaction with light. As such, researchers tend to apply M-NCs in diverse fields, such as in chemosensors, biological imaging, catalysis, and environmental and electronic devices. Chemo- and bio-sensory uses have been extensively explored with luminescent NCs of Au, Ag, Cu, and Pt as potential sensory materials. Luminescent bi-metallic NCs, such as Au-Ag, Au-Cu, Au-Pd, and Au-Pt have also been used as probes in chemosensory investigations. Both metallic and bi-metallic NCs have been utilized to detect various analytes, such as metal ions, anions, biomolecules, proteins, acidity or alkalinity of a solution (pH, and nucleic acids, at diverse detection ranges and limits. In this review, we have summarized the chemosensory applications of luminescent M-NCs and bi-metallic NCs.

  15. POTENTIAL APPLICATIONS OF BIOCHAR FOR COMPOSTING

    Krystyna Malińska

    2014-10-01

    for composting of materials with high moisture and/or nitrogen contents. The addition of biochar to composting mixtures can reduce ammonia emissions, and thus limit nitrogen losses during composting, increase water holding capacity and retention of nutrients. Biochar can also function as a carrier substrate for microbial inoculants and a scrubing material used in biofilters at composting facilities. Due to the fact that the literature does not provide many examples of biochar applications for composting, and there is little known about the effects of biochar added to composting mixtures on composting dynamics and properties of final composts, futher investigations should focus on mechanisms of biochar-composting mixtures interactions and analysis of properties of biochar-based composts. The overall goal of the article is to analyze the potentials of biochars for composting, to report the effects of various biochars on composting dynamics and quality of produced biochar-based composts, and to indicate the areas of further studies on biochar properties that would allow optimization of composting and improve the quality of final products.

  16. Potential impacts of nanotechnology on energy transmission applications and needs.

    Elcock, D.; Environmental Science Division

    2007-11-30

    The application of nanotechnologies to energy transmission has the potential to significantly impact both the deployed transmission technologies and the need for additional development. This could be a factor in assessing environmental impacts of right-of-way (ROW) development and use. For example, some nanotechnology applications may produce materials (e.g., cables) that are much stronger per unit volume than existing materials, enabling reduced footprints for construction and maintenance of electricity transmission lines. Other applications, such as more efficient lighting, lighter-weight materials for vehicle construction, and smaller batteries having greater storage capacities may reduce the need for long-distance transport of energy, and possibly reduce the need for extensive future ROW development and many attendant environmental impacts. This report introduces the field of nanotechnology, describes some of the ways in which processes and products developed with or incorporating nanomaterials differ from traditional processes and products, and identifies some examples of how nanotechnology may be used to reduce potential ROW impacts. Potential environmental, safety, and health impacts are also discussed.

  17. Potential Applications of Zeolite Membranes in Reaction Coupling Separation Processes

    Tunde V. Ojumu

    2012-10-01

    Full Text Available Future production of chemicals (e.g., fine and specialty chemicals in industry is faced with the challenge of limited material and energy resources. However, process intensification might play a significant role in alleviating this problem. A vision of process intensification through multifunctional reactors has stimulated research on membrane-based reactive separation processes, in which membrane separation and catalytic reaction occur simultaneously in one unit. These processes are rather attractive applications because they are potentially compact, less capital intensive, and have lower processing costs than traditional processes. Therefore this review discusses the progress and potential applications that have occurred in the field of zeolite membrane reactors during the last few years. The aim of this article is to update researchers in the field of process intensification and also provoke their thoughts on further research efforts to explore and exploit the potential applications of zeolite membrane reactors in industry. Further evaluation of this technology for industrial acceptability is essential in this regard. Therefore, studies such as techno-economical feasibility, optimization and scale-up are of the utmost importance.

  18. Potential Application of ENR/EPDM Blends

    B.L. Chan

    2017-06-01

    resistance properties, or some in the development of potential thermoplastic rubber and its thermoplastic vulcanizates. In this paper, the author would like to share some findingsof the ENR/EPDM blends that have good flexand dynamic properties, relatively low compression set, and tolerant tensile properties that satisfy most rubber products that are required for and used in the industrial, mechanical, and even automotive parts. More importantly, the sliding skid resistance/frictional property and wear resistance of the blends are also examined. In some blends, the thermal dynamic behaviour is also measured over a temperature range depicting the low-temperature stability, its temperature of transition and the dynamic factor like tangent delta (σ. These are the potential factors that could enhance the blend properties that give possible, good high speed and traction, applicable in tyres.

  19. A critical discussion on the applicability of Compound Topographic Index (CTI) for predicting ephemeral gully erosion

    Casalí, Javier; Chahor, Youssef; Giménez, Rafael; Campo-Bescós, Miguel

    2016-04-01

    The so-called Compound Topographic Index (CTI) can be calculated for each grid cell in a DEM and be used to identify potential locations for ephemeral gullies (e. g.) based on land topography (CTI = A.S.PLANC, where A is upstream drainage area, S is local slope and PLANC is planform curvature, a measure of the landscape convergence) (Parker et al., 2007). It can be shown that CTI represents stream power per unit bed area and it considers the major parameters controlling the pattern and intensity of concentrated surface runoff in the field (Parker et al., 2007). However, other key variables controlling e.g. erosion (e. g. e.) such as soil characteristics, land-use and management, are not had into consideration. The critical CTI value (CTIc) "represents the intensity of concentrated overland flow necessary to initiate erosion and channelised flow under a given set of circumstances" (Parker et al., 2007). AnnAGNPS (Annualized Agriculture Non-Point Source) pollution model is an important management tool developed by (USDA) and uses CTI to locate potential ephemeral gullies. Then, and depending on rainfall characteristics of the period simulated by AnnAGNPS, potential e. g. can become "actual", and be simulated by the model accordingly. This paper presents preliminary results and a number of considerations after evaluating the CTI tool in Navarre. CTIc values found are similar to those cited by other authors, and the e. g. networks that on average occur in the area have been located reasonably well. After our experience we believe that it is necessary to distinguish between the CTIc corresponding to the location of headcuts whose migrations originate the e. g. (CTIc1); and the CTIc necessary to represent the location of the gully networks in the watershed (CTIc2), where gully headcuts are located in the upstream end of the gullies. Most scientists only consider one CTIc value, although, from our point of view, the two situations are different. CTIc1 would represent the

  20. Non-targeted effects of radiation: applications for radiation protection and contribution to LNT discussion

    Belyakov, O.V.; Folkard, M.; Prise, K.M.; Michael, B.D.; Mothersill, C.

    2002-01-01

    According to the target theory of radiation induced effects (Lea, 1946), which forms a central core of radiation biology, DNA damage occurs during or very shortly after irradiation of the nuclei in targeted cells and the potential for biological consequences can be expressed within one or two cell generations. A range of evidence has now emerged that challenges the classical effects resulting from targeted damage to DNA. These effects have also been termed non-(DNA)-targeted (Ward, 1999) and include radiation-induced bystander effects (Iyer and Lehnert, 2000a), genomic instability (Wright, 2000), adaptive response (Wolff, 1998), low dose hyper-radiosensitivity (HRS) (Joiner, et al., 2001), delayed reproductive death (Seymour, et al., 1986) and induction of genes by radiation (Hickman, et al., 1994). An essential feature of non-targeted effects is that they do not require a direct nuclear exposure by irradiation to be expressed and they are particularly significant at low doses. This new evidence suggests a new paradigm for radiation biology that challenges the universality of target theory. In this paper we will concentrate on the radiation-induced bystander effects because of its particular importance for radiation protection

  1. Electric Potential and Electric Field Imaging with Dynamic Applications & Extensions

    Generazio, Ed

    2017-01-01

    The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field made be used for volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. Extensions to environment, Space and subterranean applications will be presented, and initial results for quantitative characterizing material properties are shown. A wearable EFI system has been developed by using fundamental EFI concepts. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, manufacturing quality control, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of

  2. ICTs for rural development: potential applications and barriers involved

    Anastasia Stratigea

    2013-03-01

    Full Text Available Rural policy nowadays is at the heart of the policy discussion in many countries all over the world, in the effort to address and effectively support the specific needs and opportunities of rural places and their population in the new era. Along these lines, the focus of the present paper is twofold: on the one hand it attempts to shed light on the role of ICTs and their applications as enabling tools empowering rural development; while on the other hand it explores the barriers appearing towards the adoption and use of ICTs in rural regions. In such a context, it firstly places emphasis on the evolving new rural development paradigm. Then, the range and potential of ICTs applications is explored, that can serve the implementation of the new policy paradigm in rural regions. It follows a discussion on the steps that are needed in order to develop value-added ICTs applications in rural regions and the barriers appearing in the adoption and use of ICTs in these regions. Finally, are presented some issues of policy concern in respect to the adoption and use of ICTs in a rural development perspective.

  3. Minor snake venom proteins: Structure, function and potential applications.

    Boldrini-França, Johara; Cologna, Camila Takeno; Pucca, Manuela Berto; Bordon, Karla de Castro Figueiredo; Amorim, Fernanda Gobbi; Anjolette, Fernando Antonio Pino; Cordeiro, Francielle Almeida; Wiezel, Gisele Adriano; Cerni, Felipe Augusto; Pinheiro-Junior, Ernesto Lopes; Shibao, Priscila Yumi Tanaka; Ferreira, Isabela Gobbo; de Oliveira, Isadora Sousa; Cardoso, Iara Aimê; Arantes, Eliane Candiani

    2017-04-01

    Snake venoms present a great diversity of pharmacologically active compounds that may be applied as research and biotechnological tools, as well as in drug development and diagnostic tests for certain diseases. The most abundant toxins have been extensively studied in the last decades and some of them have already been used for different purposes. Nevertheless, most of the minor snake venom protein classes remain poorly explored, even presenting potential application in diverse areas. The main difficulty in studying these proteins lies on the impossibility of obtaining sufficient amounts of them for a comprehensive investigation. The advent of more sensitive techniques in the last few years allowed the discovery of new venom components and the in-depth study of some already known minor proteins. This review summarizes information regarding some structural and functional aspects of low abundant snake venom proteins classes, such as growth factors, hyaluronidases, cysteine-rich secretory proteins, nucleases and nucleotidases, cobra venom factors, vespryns, protease inhibitors, antimicrobial peptides, among others. Some potential applications of these molecules are discussed herein in order to encourage researchers to explore the full venom repertoire and to discover new molecules or applications for the already known venom components. Copyright © 2016. Published by Elsevier B.V.

  4. Graphene electrochemistry: an overview of potential applications.

    Brownson, Dale A C; Banks, Craig E

    2010-11-01

    Graphene, a 2D nanomaterial that possesses spectacular physical, chemical and thermal properties, has caused immense excitement amongst scientists since its freestanding form was isolated in 2004. With research into graphene rife, it promises enhancements and vast applicability within many industrial aspects. Furthermore, graphene possesses a vast array of unique and highly desirable electrochemical properties, and it is this application that offers the most enthralling and spectacular journey. We present a review of the current literature concerning the electrochemical applications and advancements of graphene, starting with its use as a sensor substrate through to applications in energy production and storage, depicting the truly remarkable journey of a material that has just come of age.

  5. The potential of diffraction grating for spatial applications

    Jourlin, Y.; Parriaux, O.; Pigeon, F.; Tischenko, A. V.

    2017-11-01

    Diffraction gratings are know, and have been fabricated for more than one century. They are now making a come back for two reasons: first, because they are now better understood which leads to the efficient exploitation of what was then called their "anomalies"; secondly, because they are now fabricable by means of the modern manufacturing potential of planar technologies. Novel grating can now perform better than conventional gratings, and address new application fields which were not expected to be theirs. This is the case of spatial applications where they can offer multiple optical functions, low size, low weight and mechanical robustness. The proposed contribution will briefly discuss the use of gratings for spatial applications. One of the most important applications is in the measurement of displacement. Usual translation and rotation sensors are bulky devices, which impose a system breakdown leading to cumbersome and heavy assemblies. We are proposing a miniaturized version of the traditional moving grating technique using submicron gratings and a specific OptoASIC which enables the measurement function to be non-obtrusively inserted into light and compact electro-mechanical systems. Nanometer resolution is possible with no compromise on the length of the measurement range. Another family of spatial application is in the field of spectrometers where new grating types allow a more flexible processing of the optical spectrum. Another family of applications addresses the question of inter-satellite communications: the introduction of gratings in laser cavities or in the laser mirrors enables the stabilization of the emitted polarization, the stabilization of the frequency as well as wide range frequency sweeping without mobile parts.

  6. In situ vitrification: Demonstrated capabilities and potential applications

    Luey, J.K.

    1993-01-01

    A large-scale demonstration of the in situ vitrification (ISV) process was performed in April 1990 on the 116-B-6A Crib in the 100 Area of the Hanford Site in southeastern Washington. The 116-B-6A Crib is a radioactive mixed waste site and was selected to demonstrate the applicability of ISV to soils contaminated with mixed wastes common to many US Department of Energy (DOE) sites. Results from the demonstration show that the ISV process is a viable remediation technology for contaminated soils. The demonstration of the ISV process on an actual contaminated soil site followed research and development efforts by the Pacific Northwest Laboratory (PNL) over the last 10 years. PNL's research has led to the development of the ISV process as a viable remediation technology for contaminated soils and the creation of a commercial supplier of ISV services, Geosafe Corporation. Development efforts for ISV applications other than treatment of contaminated soils, by PNL and in collaboration with Oak Ridge National Laboratory (ORNL) and Idaho National Engineering Laboratory (INEL), show the ISV process has potential applicability for remediating buried waste sites, remediating underground storage tanks, and enabling the placement of subsurface vitrified barriers and engineered structures. This paper discusses the results from the April 1990 large-scale demonstration and provides a general overview of the current capabilities of the ISV process for contaminated soils. In addition, this paper outlines some of the technical issues associated with other ISV applications and provides a qualitative discussion of the level of effort needed to resolve these technical issues

  7. Survey of potential applications of superconducting suspensions

    Rao, D.K.; Bupara, S.S.

    1993-01-01

    The purpose of this report is to survey the recent developments in applying the bulk superconductors to mechanical applications. These applications, called superconducting suspensions, can be broadly divided into three groups - Passive Magnetic Bearings, Passive Superconducting Dampers and Active Superconducting Bearings. Basically, passive magnetic bearings utilize bulk superconductors to support a rotating shaft without contact while active superconducting bearings employ superconducting wires. Passive superconducting dampers, on the other hand, dissipate energy from a vibrating component. Over the past one year, dramatic improvements have been made in processing large-size specimens made of high grade bulk superconductors. As a result, they can meet the size requirements and load capacity requirements of many applications. With this size-scale up, one can utilize them in a wider number of applications than what was possible a few years back. At present several organizations have demonstrated the capability of passive magnetic bearings. The targeted applications include miniature cryoturboexpanders, cryoturbopumps, energy storage wheels and turbomolecular pumps. These demonstrations indicate that the passive magnetic bearings are closer to technology maturity. (orig.)

  8. Potentials of RFID Application in Retailing

    Foscht, Thomas; Kotzab, Herbert; Maloles III, Cesar

    2008-01-01

    The willingness of retailers to adopt RFID systems, as well as finding optimal RFID applications has yet not been investigated. This paper examines the issues associated with the RFID adoption based on the results of a conjoint analysis. The conjoint measurement looked at the trade-off decisions...... among different possible set-ups of RFID applications in retailing companies. Considerable willingness to adopt, but low diffusion and a structure of preferences with respect to RFID features was shown throughout the examined retailing companies. Furthermore, differences were shown among different types...... of retailers in their preferences for RFID system features and clusters were implied....

  9. Microfluidic desalination techniques and their potential applications

    Roelofs, Susan Helena; van den Berg, Albert; Odijk, Mathieu

    2015-01-01

    In this review we discuss recent developments in the emerging research field of miniaturized desalination. Traditionally desalination is performed to convert salt water into potable water and research is focused on improving performance of large-scale desalination plants. Microfluidic desalination

  10. Program for certification of waste from contained firing facility: Establishment of waste as non-reactive and discussion of potential waste generation problems

    Green, L.; Garza, R.; Maienschein, J.; Pruneda, C.

    1997-01-01

    Debris from explosives testing in a shot tank that contains 4 weight percent or less of explosive is shown to be non-reactive under the specified testing protocol in the Code of Federal Regulations. This debris can then be regarded as a non-hazardous waste on the basis of reactivity, when collected and packaged in a specified manner. If it is contaminated with radioactive components (e.g. depleted uranium), it can therefore be disposed of as radioactive waste or mixed waste, as appropriate (note that debris may contain other materials that render it hazardous, such as beryllium). We also discuss potential waste generation issues in contained firing operations that are applicable to the planned new Contained Firing Facility (CFF). The goal of this program is to develop and document conditions under which shot debris from the planned Contained Firing Facility (CFF) can be handled, shipped, and accepted for waste disposal as non-reactive radioactive or mixed waste. This report fulfills the following requirements as established at the outset of the program: 1. Establish through testing the maximum level of explosive that can be in a waste and still have it certified as non-reactive. 2. Develop the procedure to confirm the acceptability of radioactive-contaminated debris as non-reactive waste at radioactive waste disposal sites. 3. Outline potential disposal protocols for different CFF scenarios (e.g. misfires with scattered explosive)

  11. Electric Potential and Electric Field Imaging with Applications

    Generazio, Ed

    2016-01-01

    The technology and techniques for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for (illuminating) volumes to be inspected with EFI. The baseline sensor technology, electric field sensor (e-sensor), and its construction, optional electric field generation (quasistatic generator), and current e-sensor enhancements (ephemeral e-sensor) are discussed. Demonstrations for structural, electronic, human, and memory applications are shown. This new EFI capability is demonstrated to reveal characterization of electric charge distribution, creating a new field of study that embraces areas of interest including electrostatic discharge mitigation, crime scene forensics, design and materials selection for advanced sensors, dielectric morphology of structures, inspection of containers, inspection for hidden objects, tether integrity, organic molecular memory, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  12. Preliminary discussion on prospecting potential for sandstone-type uranium deposits in meso-cenozoic basins, northern Ordos

    Di Yongqiang

    2002-01-01

    Characteristics of the regional stratigraphy, tectonic movement, geologic evolution and hydrogeology are briefly introduced. Using the metallogenic theory and prospecting criteria for interlayer oxidation zone sandstone-type uranium deposits, the author analyses the prospecting potential and main prospecting targets in the region, and proposes suggestions for further prospecting work as well

  13. Potential non-oncological applications of histone deacetylase inhibitors.

    Ververis, Katherine; Karagiannis, Tom C

    2011-01-01

    Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutic drugs. Their clinical utility in oncology stems from their intrinsic cytotoxic properties and combinatorial effects with other conventional cancer therapies. To date, the histone deacetylase inhibitors suberoylanilide hydroxamic acid (Vorinostat, Zolinza®) and depsipeptide (Romidepsin, Istodax®) have been approved by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Further, there are currently over 100 clinical trials involving the use of histone deacetylase inhibitors in a wide range of solid and hematological malignancies. The therapeutic potential of histone deacetylase inhibitors has also been investigated for numerous other diseases. For example, the cytotoxic properties of histone deacetylase inhibitors are currently being harnessed as a potential treatment for malaria, whereas the efficacy of these compounds for HIV relies on de-silencing latent virus. The anti-inflammatory properties of histone deacetylase inhibitors are the predominant mechanisms for other diseases, such as hepatitis, systemic lupus erythematosus and a wide range of neurodegenerative conditions. Additionally, histone deacetylase inhibitors have been shown to be efficacious in animal models of cardiac hypertrophy and asthma. Broad-spectrum histone deacetylase inhibitors are clinically available and have been used almost exclusively in preclinical systems to date. However, it is emerging that class- or isoform-specific compounds, which are becoming more readily available, may be more efficacious particularly for non-oncological applications. The aim of this review is to provide an overview of the effects and clinical potential of histone deacetylase inhibitors in various diseases. Apart from applications in oncology, the discussion is focused on the potential efficacy of histone deacetylase inhibitors for the treatment of neurodegenerative diseases, cardiac

  14. Customized Learning: Potential Air Force Applications

    2011-01-01

    talents, and interests— while they also gather evidence to show that they are meeting academic expectations. (Clark, 2003, p. 12) Taking a highly...figures). The emotional element looks at academic motivation (need to achieve academic success), responsibility, persistence, and need for struc- ture...relate that the system enhances key teacher-student functions, such as automatic grading, checking for plagiarism , discussion boards, and a shared

  15. Bee venom therapy: Potential mechanisms and therapeutic applications.

    Zhang, Shuai; Liu, Yi; Ye, Yang; Wang, Xue-Rui; Lin, Li-Ting; Xiao, Ling-Yong; Zhou, Ping; Shi, Guang-Xia; Liu, Cun-Zhi

    2018-04-11

    Bee venom is a very complex mixture of natural products extracted from honey bee which contains various pharmaceutical properties such as peptides, enzymes, biologically active amines and nonpeptide components. The use of bee venom into the specific points is so called bee venom therapy, which is widely used as a complementary and alternative therapy for 3000 years. A growing number of evidence has demonstrated the anti-inflammation, the anti-apoptosis, the anti-fibrosis and the anti-arthrosclerosis effects of bee venom therapy. With these pharmaceutical characteristics, bee venom therapy has also been used as the therapeutic method in treating rheumatoid arthritis, amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, liver fibrosis, atherosclerosis, pain and others. Although widely used, several cases still reported that bee venom therapy might cause some adverse effects, such as local itching or swelling. In this review, we summarize its potential mechanisms, therapeutic applications, and discuss its existing problems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. 7T: Physics, safety, and potential clinical applications.

    Kraff, Oliver; Quick, Harald H

    2017-12-01

    With more than 60 installed magnetic resonance imaging (MRI) systems worldwide operating at a magnetic field strength of 7T or higher, ultrahigh-field (UHF) MRI has been established as a platform for clinically oriented research in recent years. Profound technical and methodological developments have helped overcome the inherent physical challenges of UHF radiofrequency (RF) signal homogenization in the human body. The ongoing development of dedicated RF coil arrays was pivotal in realizing UHF body MRI, beyond mere brain imaging applications. Another precondition to clinical application of 7T MRI is the safety testing of implants and the establishment of safety concepts. Against this backdrop, 7T MRI and MR spectroscopy (MRS) recently have demonstrated capabilities and potentials for clinical diagnostics in a variety of studies. This article provides an overview of the immanent physical challenges of 7T UHF MRI and discusses recent technical solutions and safety concepts. Furthermore, recent clinically oriented studies are highlighted that span a broad application spectrum from 7T UHF brain to body MRI. 4 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1573-1589. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Probabilistic empirical prediction of seasonal climate: evaluation and potential applications

    Dieppois, B.; Eden, J.; van Oldenborgh, G. J.

    2017-12-01

    Preparing for episodes with risks of anomalous weather a month to a year ahead is an important challenge for governments, non-governmental organisations, and private companies and is dependent on the availability of reliable forecasts. The majority of operational seasonal forecasts are made using process-based dynamical models, which are complex, computationally challenging and prone to biases. Empirical forecast approaches built on statistical models to represent physical processes offer an alternative to dynamical systems and can provide either a benchmark for comparison or independent supplementary forecasts. Here, we present a new evaluation of an established empirical system used to predict seasonal climate across the globe. Forecasts for surface air temperature, precipitation and sea level pressure are produced by the KNMI Probabilistic Empirical Prediction (K-PREP) system every month and disseminated via the KNMI Climate Explorer (climexp.knmi.nl). K-PREP is based on multiple linear regression and built on physical principles to the fullest extent with predictive information taken from the global CO2-equivalent concentration, large-scale modes of variability in the climate system and regional-scale information. K-PREP seasonal forecasts for the period 1981-2016 will be compared with corresponding dynamically generated forecasts produced by operational forecast systems. While there are many regions of the world where empirical forecast skill is extremely limited, several areas are identified where K-PREP offers comparable skill to dynamical systems. We discuss two key points in the future development and application of the K-PREP system: (a) the potential for K-PREP to provide a more useful basis for reference forecasts than those based on persistence or climatology, and (b) the added value of including K-PREP forecast information in multi-model forecast products, at least for known regions of good skill. We also discuss the potential development of

  18. ANALYSIS OF THE TEACHERS’ INVOLVEMENT IN THE DISCUSSION OF THE APPLICATION OF THE FEDERAL STATE EDUCATIONAL STANDARDS VIA ONLINE RESOURCES

    С Н Вачкова

    2017-12-01

    Full Text Available This article presents the research results of the teachers’ involvement extent in current problems emerging in educational activities. The paper discusses the concept of involvement, its functions and scientific approaches to its analysis; suggests the original definition and structure of this concept, describes the chosen methodology of its analysis, database research and the nature of the sample, analysis tools. The base of the present research was the Internet portal “Public expertise of normative documents in education”. There is a detailed description of quantitative results, the indicators of teachers’ participation in discussing problems of education in relation to normative educational documents of Federal state educational standards of primary, basic and secondary general education. The research results showed the indicators of teachers’ activity and the expressed problems in application the Federal state educational standards.

  19. Thermoluminescence: Potential Applications in Forensic Science

    Ingham, J. D.; Lawson, D. D.

    1973-01-01

    In crime laboratories one of the most difficult operations is to determine unequivocally whether or not two samples of evidence of the same type were originally part of the same thing or were from the same source. It has been found that high temperature thermoluminescence (room temperature to 723 K) can be used for comparisons of this type, although work to date indicates that there is generally a finite probability for coincidental matching of glass or soil samples. Further work is required to determine and attempt to minimize these probabilities for different types of materials, and to define more clearly the scope of applicability of thermoluminescence to actual forensic situations.

  20. Nanotechnologies, technologies converging and potential biomedical applications

    Capuano, Vincenzo

    2005-01-01

    The applications of nanotechnology to biology and medicine appear really promising far diagnostics, for various therapeutic approaches and in medical instrumentations. The growing synergism among nanotechnology, biotechnology, information technology and cognitive sciences, their convergence (NBIC) from the nano scale, could involve on next decades great changes in medicine, from a reactive to a predictive and preventive approach. It is expected that NBIC converging technologies could achieve tremendous improvements in human abilities and enhance societal achievements. It appears therefore necessary a careful assessment of related social and ethical implications, in the framework of a constant dialogue between science and society [it

  1. [The discussion about the application and impact of music on depressive diseases throughout history and at present].

    Heise, S; Steinberg, H; Himmerich, H

    2013-08-01

    Music therapy is the customised application of music for therapeutic use. For the treatment of depression it is mostly applied within a multimodal therapeutic approach. Since music was already used in prehistoric societies to cure diseases, it can be considered as a traditional therapy. As early as the antiquity physicians discussed the kind of music, the duration and frequency of its application. In the 19th century the pioneers of modern scientific psychiatry began to follow these questions with empirical experimental research. Since the 20th century, research has been investigating the influence of music on biological and psychological parameters. Current studies show that music therapy appears to improve symptoms of depression, especially in combination with antidepressants. Due to the limited number of randomised studies, the validity of its efficiency is limited. Further research is necessary to provide evidence-based recommendations regarding music therapy for the treatment of depression. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Microbial siderophores and their potential applications: a review.

    Saha, Maumita; Sarkar, Subhasis; Sarkar, Biplab; Sharma, Bipin Kumar; Bhattacharjee, Surajit; Tribedi, Prosun

    2016-03-01

    Siderophores are small organic molecules produced by microorganisms under iron-limiting conditions which enhance the uptake of iron to the microorganisms. In environment, the ferric form of iron is insoluble and inaccessible at physiological pH (7.35-7.40). Under this condition, microorganisms synthesize siderophores which have high affinity for ferric iron. These ferric iron-siderophore complexes are then transported to cytosol. In cytosol, the ferric iron gets reduced into ferrous iron and becomes accessible to microorganism. In recent times, siderophores have drawn much attention due to its potential roles in different fields. Siderophores have application in microbial ecology to enhance the growth of several unculturable microorganisms and can alter the microbial communities. In the field of agriculture, different types of siderophores promote the growth of several plant species and increase their yield by enhancing the Fe uptake to plants. Siderophores acts as a potential biocontrol agent against harmful phyto-pathogens and holds the ability to substitute hazardous pesticides. Heavy-metal-contaminated samples can be detoxified by applying siderophores, which explicate its role in bioremediation. Siderophores can detect the iron content in different environments, exhibiting its role as a biosensor. In the medical field, siderophore uses the "Trojan horse strategy" to form complexes with antibiotics and helps in the selective delivery of antibiotics to the antibiotic-resistant bacteria. Certain iron overload diseases for example sickle cell anemia can be treated with the help of siderophores. Other medical applications of siderophores include antimalarial activity, removal of transuranic elements from the body, and anticancer activity. The aim of this review is to discuss the important roles and applications of siderophores in different sectors including ecology, agriculture, bioremediation, biosensor, and medicine.

  3. Survey of potential electronic applications of high temperature superconductors

    Hammond, R.B.; Bourne, L.C.

    1991-01-01

    In this paper the authors present a survey of the potential electronic applications of high temperature superconductor (HTSC) thin films. During the past four years there has been substantial speculation on this topic. The authors will cover only a small fraction of the potential electronic applications that have been identified. Their treatment is influenced by the developments over the past few years in materials and device development and in market analysis. They present their view of the most promising potential applications. Superconductors have two important properties that make them attractive for electronic applications. These are (a) low surface resistance at high frequencies, and (b) the Josephson effect

  4. Small-scale fuel cell cogen: application potentials and market strategies

    Vogel, Bernd

    2000-01-01

    Small (less than 5 kW) fuel-cell cogeneration systems are now being developed for use in residential buildings. The devices are expected to be on the market in five years. The article discusses the potential for their large-scale introduction, the impact of this new technology on the natural gas business, potential applications and marketing strategies

  5. DISTANCE LEARNING: POTENTIAL APPLICATION AND DEVELOPMENT OUTLOOK

    Yulija Mihajlovna Tsarapkina

    2017-11-01

    Full Text Available The article is devoted to the actual problem of distance education potential and prospects research in the Russian education system. According to the UNESCO estimates, if the current trend continues, then the number of people with a firm desire to receive an education would increase from 165 millions to 263 millions [7, 12]. Thus 98 million qualified students worldwide will be excluded from higher education due to a shortage of university seats. The purpose of the study is to analyze the historical and present state of the problem, to identify the potential and prospects of the development in distance learning within higher education. The methodological base of the research has become common methods of pedagogical sciences: pedagogical observation, survey, questionnaire, testing, comparative analysis, pedagogical experiment. The analytical review has shown several problem areas within distance learning, such as student’s motivation while distance course learning and training efficiency as compared to full-time university training. Combination of full-time training and distance learning leads to 31% enhancement of training efficiency and shows a sustainable increase of student’s motivation.

  6. Potential applications of ionizing radiation in postharvest handling of fresh fruits and vegetables

    Kader, A.A.

    1986-01-01

    The advantages and limitations of potential uses of ionizing radiation of harvested fresh fruits and vegetables are discussed. Potential applications include: sprout inhibition of tuber, bulb, and root vegetables; inhibition of post-harvest growth of asparagus and mushrooms; insect disinfestation; alteration of ripening and senescence in fresh fruits; and post-harvest microorganism disease control. Cost, consumer acceptance, and logistical problems are cited as possible limiting factors. Factors influencing response also are discussed

  7. Geothermal energy in Yugoslavia, potentials and applications

    Boreli, F.; Paradjanin, Lj.; Stankovic, Srb.

    2002-01-01

    This paper promotes the use of Geothermal energy (GTE) in Serbia, and argues that while GTE is both a viable and environmentally friendly energy source, as demonstrated elsewhere in the world, there is also a multitude of opportunities in this region, and the local knowledge and capabilities required for implementing the GTE plants. First, a general introduction to GTE in is given. The basis of GTE is the thermal energy accumulated in fluids and rocks masses in the Earth's Crust. The main GTE advantage compared to the traditional energy sources like thermo-electric plants is the absence of environmental deterioration, however GTE also has advantages compared to other NARES, as the GT sources are permanently available and independent of weather conditions. Worldwide energy potential of GTE is huge, as the reduction of Earth Crust temperature for just 0.1 deg. C would give enough Energy to produce Electrical Energy, at the present dissipation level, for the next 15,000 years. An overview of the regions in Yugoslavia which have a high GTE potential is given. There are two distinct regions with higher GTE values in Serbia: the first is a part of the South Panonian basin including Vojvodina, with Macva and Yu-part along Danube and Morava rivers. This is a sedimental part of the Tercier's Panonic Sea 'Parathetis', with partial depression and Backa subsupression, and is well investigated due to oil and gas holeboring. The second region includes Central and Southern part of Serbia, south from the Panonia basin, with pretercier's and tercier's magmatic volcanic intrusions, which produce a very high and stable thermal flux. This Region is rich in GT-warm water springs with stable yields, and includes 217 locations with 970 natural springs with temperature above 20 deg. C. These compare very favorably with international locations where GTE is exploited. GTE can be used for Electric Energy production using corresponding heat pump systems, for house heating and warm water

  8. Current use and potential of additive manufacturing for optical applications

    Brunelle, Matthew; Ferralli, Ian; Whitsitt, Rebecca; Medicus, Kate

    2017-10-01

    Additive manufacturing, or 3D printing, has become widely used in recent years for the creation of both prototype and end-use parts. Because the parts are created in a layer-by-layer manner, the flexibility of additive manufacturing is unparalleled and has opened the design space to enable features like undercuts and internal channels which cannot exist on traditional, subtractively manufactured parts. This flexibility can also be leveraged for optical applications. This paper outlines some of the current uses of 3D printing in the optical manufacturing process at Optimax. Several materials and additive technologies are utilized, including polymer printing through fused deposition modeling, which creates parts by depositing a softened thermoplastic filament in a layerwise fashion. Stereolithography, which uses light to cure layers of a photopolymer resin, will also be discussed. These technologies are used to manufacture functional prototypes, fixtures, sealed housings, and other components. Additionally, metal printing through selective laser melting, which uses a laser to melt metal powder layers into a dense solid, will be discussed due to the potential to manufacture thermally stable opticalmechanical assembly frameworks and functional optics. Examples of several additively manufactured optical components will be shown.

  9. Potential of low-temperature nuclear heat applications

    1986-12-01

    At present, more than one third of the fossil fuel currently used is being consumed to produce space heating and to meet industrial needs in many countries of the world. Imported oil still represents a large portion of this fossil fuel and despite its present relatively low price future market evolutions with consequent upward cost revisions cannot be excluded. Thus the displacement of the fossil fuel by cheaper low-temperature heat produced in nuclear power plants is a matter which deserves careful consideration. Technico-economic studies in many countries have shown that the use of nuclear heat is fully competitive with most of fossil-fuelled plants, the higher investment costs being offset by lower production cost. Another point in favour of heat generation by nuclear source is its indisputable advantage in terms of benefits to the environment. The IAEA activity plans for 1985-86 concentrate on information exchange with specific emphasis on the design criteria, operating experience, safety requirements and specifications of heat-only reactors, co-generation plants and existing power plants backfitted for additional heat applications. The information gained up to 1985 was discussed during the Advisory Group Meeting on the Potential of Low-Temperature Nuclear Heat Applications held in the Federal Institute for Reactor Research, Wuerenlingen, Switzerland in September 1985 and, is included in the present Technical Document

  10. Photonic Integrated Circuit (PIC) Device Structures: Background, Fabrication Ecosystem, Relevance to Space Systems Applications, and Discussion of Related Radiation Effects

    Alt, Shannon

    2016-01-01

    Electronic integrated circuits are considered one of the most significant technological advances of the 20th century, with demonstrated impact in their ability to incorporate successively higher numbers transistors and construct electronic devices onto a single CMOS chip. Photonic integrated circuits (PICs) exist as the optical analog to integrated circuits; however, in place of transistors, PICs consist of numerous scaled optical components, including such "building-block" structures as waveguides, MMIs, lasers, and optical ring resonators. The ability to construct electronic and photonic components on a single microsystems platform offers transformative potential for the development of technologies in fields including communications, biomedical device development, autonomous navigation, and chemical and atmospheric sensing. Developing on-chip systems that provide new avenues for integration and replacement of bulk optical and electro-optic components also reduces size, weight, power and cost (SWaP-C) limitations, which are important in the selection of instrumentation for specific flight projects. The number of applications currently emerging for complex photonics systems-particularly in data communications-warrants additional investigations when considering reliability for space systems development. This Body of Knowledge document seeks to provide an overview of existing integrated photonics architectures; the current state of design, development, and fabrication ecosystems in the United States and Europe; and potential space applications, with emphasis given to associated radiation effects and reliability.

  11. Virtual Reality and Its Potential Application in Education and Training.

    Milheim, William D.

    1995-01-01

    An overview is provided of current trends in virtual reality research and development, including discussion of hardware, types of virtual reality, and potential problems with virtual reality. Implications for education and training are explored. (Author/JKP)

  12. Built-up index methods and their applications for urban extraction from Sentinel 2A satellite data: discussion.

    Valdiviezo-N, Juan C; Téllez-Quiñones, Alejandro; Salazar-Garibay, Adan; López-Caloca, Alejandra A

    2018-01-01

    Several built-up indices have been proposed in the literature in order to extract the urban sprawl from satellite data. Given their relative simplicity and easy implementation, such methods have been widely adopted for urban growth monitoring. Previous research has shown that built-up indices are sensitive to different factors related to image resolution, seasonality, and study area location. Also, most of them confuse urban surfaces with bare soil and barren land covers. By gathering the existing built-up indices, the aim of this paper is to discuss some of their advantages, difficulties, and limitations. In order to illustrate our study, we provide some application examples using Sentinel 2A data.

  13. Summary discussions

    Ritchie, R.H.

    1982-01-01

    Remarks intended to highlight topics of importance for future research were made by three of the participants at the conclusion of the Seminar. A brief listing is given of topics discussed by each of these rapporteurs

  14. The potentials of ICT application to increased relevance and ...

    The potentials of ICT application to increased relevance and sustainability of University Library Services in Nigeria. ... in Kenneth Dike library, University of Ibadan and University of Lagos Libraries and library search of recent literature on ICT application and marketing of ICT based services in Nigerian University libraries.

  15. A systematic review of the literature on self-management interventions and discussion of their potential relevance for people living with HIV in sub-Saharan Africa

    Aantjes, C.J.; Rameran, L; Bunders-Aelen, J.G.F.

    2014-01-01

    Objective: This study systematically reviews the literature on self-management interventions provided by health care teams, community partners, patients and families and discusses the potential relevance of these interventions for people living with HIV in sub-Saharan Africa. Methods: We searched

  16. Potential game theory applications in radio resource allocation

    Lã, Quang Duy; Soong, Boon-Hee

    2016-01-01

    This book offers a thorough examination of potential game theory and its applications in radio resource management for wireless communications systems and networking. The book addresses two major research goals: how to identify a given game as a potential game, and how to design the utility functions and the potential functions with certain special properties in order to formulate a potential game. After proposing a unifying mathematical framework for the identification of potential games, the text surveys existing applications of this technique within wireless communications and networking problems found in OFDMA 3G/4G/WiFi networks, as well as next-generation systems such as cognitive radios and dynamic spectrum access networks. Professionals interested in understanding the theoretical aspect of this specialized field will find Potential Game Theory a valuable resource, as will advanced-level engineering students. It paves the way for extensive and rigorous research exploration on a topic whose capacity for...

  17. Potential Application of Environmental Noise Recordings in Geoarchaeological Site Characterization

    Di Luzio, E.

    2015-12-01

    Environmental noise recordings are commonly applied in seismic microzonation studies. By calculating the H/V spectral ratio, the fundamental frequency of soft terrains overlying a rigid bedrock can be determined (Nakamura (1989). In such a simple two-layer system, equation f = n Vs/4H (1) links the resonance frequency "f" to the thickness "H" and shear waves velocity "Vs "of the resonating layer. In recent years, this methodology has been applied generally to obtain information on the seismostratigraphy of an investigated site in different environmental context. In this work, its potential application in the characterization of archaeological features hosted in shallow geological levels is discussed. Field cases are identified in the Appia Antica archaeological site which is placed in central Italy. Here, acknowledged targets correspond to: i) empty tanks carved by the Romans into Cretaceous limestone in the IV-III cen. BC and ii): the basaltic stone paving of the ancient road track which is locally buried beneath colluvial deposits. Narrowly-spaced recordings of environmental noise were carried using a portable digital seismograph equipped with three electrodynamic orthogonal sensors (velocimeters) responding in the band 0.1 ÷1024 Hz and adopting a sampling frequency of 256 Hz.. Results are discussed in terms of absolute H/V values and related distribution maps in the very high-frequency interval of 10-40Hz. In the tanks hosting area, interpolation of H/V maximum values around 13Hz matches caves location and alignment, which is also evidenced by clear inversions (H/V<1) at lower frequencies (10-1Hz). Correlation between H/V peaks and the top surface of the buried stone paving along the prosecution of the road track is even more straightforward. Finally, the depth variations of the tank roofs and the basaltic paving were reconstructed combining in equation (1) results of noise recordings with borehole data and geophysical surveys (SASW analysis).

  18. Dehalogenases: From Improved Performance to Potential Microbial Dehalogenation Applications

    Thiau-Fu Ang

    2018-05-01

    Full Text Available The variety of halogenated substances and their derivatives widely used as pesticides, herbicides and other industrial products is of great concern due to the hazardous nature of these compounds owing to their toxicity, and persistent environmental pollution. Therefore, from the viewpoint of environmental technology, the need for environmentally relevant enzymes involved in biodegradation of these pollutants has received a great boost. One result of this great deal of attention has been the identification of environmentally relevant bacteria that produce hydrolytic dehalogenases—key enzymes which are considered cost-effective and eco-friendly in the removal and detoxification of these pollutants. These group of enzymes catalyzing the cleavage of the carbon-halogen bond of organohalogen compounds have potential applications in the chemical industry and bioremediation. The dehalogenases make use of fundamentally different strategies with a common mechanism to cleave carbon-halogen bonds whereby, an active-site carboxylate group attacks the substrate C atom bound to the halogen atom to form an ester intermediate and a halide ion with subsequent hydrolysis of the intermediate. Structurally, these dehalogenases have been characterized and shown to use substitution mechanisms that proceed via a covalent aspartyl intermediate. More so, the widest dehalogenation spectrum of electron acceptors tested with bacterial strains which could dehalogenate recalcitrant organohalides has further proven the versatility of bacterial dehalogenators to be considered when determining the fate of halogenated organics at contaminated sites. In this review, the general features of most widely studied bacterial dehalogenases, their structural properties, basis of the degradation of organohalides and their derivatives and how they have been improved for various applications is discussed.

  19. Dehalogenases: From Improved Performance to Potential Microbial Dehalogenation Applications.

    Ang, Thiau-Fu; Maiangwa, Jonathan; Salleh, Abu Bakar; Normi, Yahaya M; Leow, Thean Chor

    2018-05-07

    The variety of halogenated substances and their derivatives widely used as pesticides, herbicides and other industrial products is of great concern due to the hazardous nature of these compounds owing to their toxicity, and persistent environmental pollution. Therefore, from the viewpoint of environmental technology, the need for environmentally relevant enzymes involved in biodegradation of these pollutants has received a great boost. One result of this great deal of attention has been the identification of environmentally relevant bacteria that produce hydrolytic dehalogenases—key enzymes which are considered cost-effective and eco-friendly in the removal and detoxification of these pollutants. These group of enzymes catalyzing the cleavage of the carbon-halogen bond of organohalogen compounds have potential applications in the chemical industry and bioremediation. The dehalogenases make use of fundamentally different strategies with a common mechanism to cleave carbon-halogen bonds whereby, an active-site carboxylate group attacks the substrate C atom bound to the halogen atom to form an ester intermediate and a halide ion with subsequent hydrolysis of the intermediate. Structurally, these dehalogenases have been characterized and shown to use substitution mechanisms that proceed via a covalent aspartyl intermediate. More so, the widest dehalogenation spectrum of electron acceptors tested with bacterial strains which could dehalogenate recalcitrant organohalides has further proven the versatility of bacterial dehalogenators to be considered when determining the fate of halogenated organics at contaminated sites. In this review, the general features of most widely studied bacterial dehalogenases, their structural properties, basis of the degradation of organohalides and their derivatives and how they have been improved for various applications is discussed.

  20. Magnetic nanoparticles as potential candidates for biomedical and biological applications.

    Zeinali Sehrig, Fatemeh; Majidi, Sima; Nikzamir, Nasrin; Nikzamir, Nasim; Nikzamir, Mohammad; Akbarzadeh, Abolfazl

    2016-05-01

    Magnetic iron oxide nanoparticles have become the main candidates for biomedical and biological applications, and the application of small iron oxide nanoparticles in in vitro diagnostics has been practiced for about half a century. Magnetic nanoparticles (MNPs), in combination with an external magnetic field and/or magnetizable grafts, allow the delivery of particles to the chosen target area, fix them at the local site while the medication is released, and act locally. In this review, we focus mostly on the potential use of MNPs for biomedical and biotechnological applications, and the improvements made in using these nanoparticles (NPs) in biological applications.

  1. Foucault's notion of problematization: a methodological discussion of the application of Foucault's later work to nursing research.

    Frederiksen, Kirsten; Lomborg, Kirsten; Beedholm, Kirsten

    2015-09-01

    This study takes its point of departure in an oft-voiced critique that the French philosopher Michel Foucault gives discourse priority over practice, thereby being deterministic and leaving little space for the individual to act as an agent. Based on an interpretation of the latter part of Foucault's oeuvre, we argue against this critique and provide a methodological discussion of the perception that Foucault's method constitutes, primarily, discourse analysis. We argue that it is possible to overcome this critique of Foucault's work by the application of methodological tools adapted from Foucault's later writings and his diagnosis of his own work as studies of forms of problematization. To shed light on the possibilities that this approach offers to the researcher, we present a reading of aspects of Foucault's work, with a focus on his notion of forms of problematization. Furthermore, we elaborate on concepts from his so-called genealogical period, namely 'the dispositive', strategy and tactics. Our interpretation is supported by examples from a study of the emergence of Danish nursing education, which is based on an analytical framework that we developed in the light of an interpretation of aspects of Foucault's work. © 2015 John Wiley & Sons Ltd.

  2. Panel discussion

    Anon.

    1980-01-01

    The panel discussion at the 10th Allianz Forum on 'Technology and Insurance' dealt with the following topics: New technologies: energy conversion (coal, petroleum, natural gas, nuclear energy, solar energy); infrastructure (transport, data processing); basic products (metallic materials, chemical products, pharmaceutical products); integrated products (microprocessors, production line machines) as well as new risks: political; general economic (financing, market structure); insurance-related, dangers to persons and property; reduction of risks. (orig.) [de

  3. An overview of means-end theory: potential application in consumer-oriented food product design

    Costa, A.I.A.; Dekker, M.; Jongen, W.M.F.

    2004-01-01

    This paper presents an overview of the means-end chain theory and associated techniques, and discusses the virtues and shortcomings of its potential application in consumer-oriented food product design. This overview, based on literature in the food area, presents also the process of conducting a

  4. Eikonal form of the dynamic polarization potential and its application to the scattering of exotic nuclei

    Canto, L F; Donangelo, R [Universidade Federal do Rio de Janeiro, RJ (Brazil). Inst. de Fisica; Hussein, M S [Sao Paulo Univ. (Brazil). Inst. de Fisica

    1991-07-01

    The eikonal theory of the dynamic polarization potential (DDP) is developed. Application to the scattering of loosely bound exotic nuclei is made. In particular, the effect of our DPP on the scattering of {sup 11}Li+{sup 12}C at 85 AxMeV is discussed. (orig.).

  5. BIOTECHNOLOGICAL APPLICATIONS AND POTENTIAL USES OF THE MUSHROOM TRAMESTES VERSICOLOR

    CÓRDOBA M., Ketty A.; RÍOS H., Alicia

    2012-01-01

    The use of products obtained from fungi (particularly mushrooms) has increased lately due to their broad applicability in different scientific and industrial fields. The genus Trametes comprises a group of white rot producing ligninolytic fungi, with medicinal properties, biotechnological importance and environmental applications. One of the most potentially useful species is T. versicolor, formerly known as Coriolus versicolor or Polyporus versicolor. Also known as Yun Zhi in China, is a fun...

  6. Discussion Graphs

    Kiciman, Emre; Counts, Scott; Gamon, Michael

    2014-01-01

    , time and other confounding factors, few of the studies that attempt to extract information from social media actually condition on such factors due to the difficulty in extracting these factors from naturalistic data and the added complexity of including them in analyses. In this paper, we present......Much research has focused on studying complex phenomena through their reflection in social media, from drawing neighborhood boundaries to inferring relationships between medicines and diseases. While it is generally recognized in the social sciences that such studies should be conditioned on gender...... a simple framework for specifying and implementing common social media analyses that makes it trivial to inspect and condition on contextual information. Our data model—discussion graphs—captures both the structural features of relationships inferred from social media as well as the context...

  7. Protection from potential exposures: application to selected radiation sources

    1997-09-01

    This ICRP Report begins with the general principles of radiation protection in the case of potential exposures, followed by special issues in application and compliance with regulatory aims. The rest of the report uses event trees or fault trees to derive the logical structure of six scenarios of potential exposure, i.e. two irradiators, a large research accelerator, an accelerator for industrial isotope production, an industrial radiography device using a mobile source of radiation, and finally a medical gamma radiotherapy device. (UK)

  8. On the calibration strategies of the Johnson–Cook strength model: Discussion and applications to experimental data

    Gambirasio, Luca; Rizzi, Egidio

    2014-01-01

    The present paper aims at assessing the various procedures adoptable for calibrating the parameters of the so-called Johnson–Cook strength model, expressing the deviatoric behavior of elastoplastic materials, with particular reference to the description of High Strain Rate (HSR) phenomena. The procedures rely on input experimental data corresponding to a set of hardening functions recorded at different equivalent plastic strain rates and temperatures. After a brief review of the main characteristics of the Johnson–Cook strength model, five different calibration strategies are framed and widely described. The assessment is implemented through a systematic application of each calibration strategy to three different real material cases, i.e. a DH-36 structural steel, a commercially pure niobium and an AL-6XN stainless steel. Experimental data available in the literature are considered. Results are presented in terms of plots showing the predicted Johnson–Cook hardening functions against the experimental trends, together with tables describing the fitting problematics which arise in each case, by assessing both lower yield stress and overall plastic flow introduced errors. The consequences determined by each calibration approach are then carefully compared and evaluated. A discussion on the positive and negative aspects of each strategy is presented and some suggestions on how to choose the best calibration approach are outlined, by considering the available experimental data and the objectives of the following modeling process. The proposed considerations should provide a useful guideline in the process of determining the best Johnson–Cook parameters in each specific situation in which the model is going to be adopted. A last section introduces some considerations about the calibration of the Johnson–Cook strength model through experimental data different from those consisting in a set of hardening functions relative to different equivalent plastic strain

  9. A single competency-based education and training and competency-based career framework for the Australian health workforce: discussing the potential value add

    Brownie, Sharon Mary; Thomas, Janelle

    2014-01-01

    This brief discusses the policy implications of a research study commissioned by Health Workforce Australia (HWA) within its health workforce innovation and reform work program. The project explored conceptually complex and operationally problematic concepts related to developing a whole-of-workforce competency-based education and training and competency-based career framework for the Australian health workforce and culminated with the production of three reports published by HWA. The project raised important queries as to whether such a concept is desirable, feasible or implementable – in short what is the potential value add and is it achievable? In setting the scene for discussion, the foundation of the project’s genesis and focus of the study are highlighted. A summary of key definitions related to competency-based education and training frameworks and competency-based career frameworks are provided to further readers’ commonality of understanding. The nature of the problem to be solved is explored and the potential value-add for the Australian health workforce and its key constituents proposed. The paper concludes by discussing relevance and feasibility issues within Australia’s current and changing healthcare context along with the essential steps and implementation realities that would need to be considered and actioned if whole-of-workforce frameworks were to be developed and implemented. PMID:25279384

  10. Profiling application potential for alkali treated sisal fiber ...

    The effect of alkali treatment on sisal fiber from the plant agave sisalana in appropriation for composite material application is presented. Effectiveness of the fiber's reinforcement potential within polypropylene (PP) matrix is evaluated through morphological analysis, crystallinity levels, and tensile, where ultimate tensile ...

  11. Highly stressed carbon film coatings on silicon potential applications

    Sharda, T

    2002-01-01

    The fabrication of highly stressed and strongly adhered nanocrystalline diamond films on Si substrates is presented. A microwave plasma CVD method with controlled and continuous bias current density was used to grow the films. The stress/curvature of the films can be varied and controlled by altering the BCD. Potential applications for these films include particle physics and x-ray optics.

  12. Applications of Diatoms as Potential Microalgae in Nanobiotechnology

    Ahmad Yari Khosroushahi; Miguel de la Guardia; Mohamad Moradi Ghorakhlu; Ali Akbar Jamali; Fariba Akbari

    2012-01-01

    Introduction: Diatoms are single cell eukaryotic microalgae, which present in nearly every water habitat make them ideal tools for a wide range of applications such as oil explora­tion, forensic examination, environmental indication, biosilica pattern generation, toxicity testing and eutrophication of aqueous ecosystems. Methods: Essential information on diatoms were reviewed and discussed towards impacts of diatoms on biosynthesis and bioremediation. Results: In this review, we present the ...

  13. Thermal properties and application of potential lithium silicate breeder materials

    Skokan, A.; Wedemeyer, H.; Vollath, D.; Gunther, E.

    1987-01-01

    Phase relations, thermal stability and preparation methods of the Li 2 O-rich silicates Li 8 SiO 6 and ''Li 6 SiO 5 '' have been investigated experimentally, the application of these compounds as solid breeder materials is discussed. In the second part of this contribution, the results of thermal expansion measurements on the silicates Li 2 SiO 3 , Li 4 SiO 4 and Li 8 SiO 6 are presented

  14. Thermal properties and application of potential lithium silicate breeder materials

    Skokan, A.; Wedemeyer, H.; Vollath, D.; Guenther, E.

    1986-01-01

    Phase relations, thermal stability and preparation methods of the Li 2 O-rich silicates Li 8 SiO 6 and 'Li 6 SiO 5 ' have been investigated experimentally, the application of these compounds as solid breeder materials is discussed. In the second part of this contribution, the results of thermal expansion measurements on the silicates Li 2 SiO 3 , Li 4 SiO 4 and Li 8 SiO 6 are presented. (author)

  15. Potential high efficiency solar cells: Applications from space photovoltaic research

    Flood, D. J.

    1986-01-01

    NASA involvement in photovoltaic energy conversion research development and applications spans over two decades of continuous progress. Solar cell research and development programs conducted by the Lewis Research Center's Photovoltaic Branch have produced a sound technology base not only for the space program, but for terrestrial applications as well. The fundamental goals which have guided the NASA photovoltaic program are to improve the efficiency and lifetime, and to reduce the mass and cost of photovoltaic energy conversion devices and arrays for use in space. The major efforts in the current Lewis program are on high efficiency, single crystal GaAs planar and concentrator cells, radiation hard InP cells, and superlattice solar cells. A brief historical perspective of accomplishments in high efficiency space solar cells will be given, and current work in all of the above categories will be described. The applicability of space cell research and technology to terrestrial photovoltaics will be discussed.

  16. Thermophilic and alkaliphilic Actinobacteria: Biology and potential applications

    L eShivlata

    2015-09-01

    Full Text Available Microbes belonging to the phylum Actinobacteria are prolific sources of antibiotics, clinically useful bioactive compounds and industrially important enzymes. The focus of the current review is on the diversity and potential applications of thermophilic and alkaliphilic actinobacteria, which are highly diverse in their taxonomy and morphology with a variety of adaptations for surviving and thriving in hostile environments. The specific metabolic pathways in these actinobacteria are activated for elaborating pharmaceutically, agriculturally and biotechnologically relevant biomolecules/bioactive compounds, which find multifarious applications.

  17. High-power CO laser and its potential applications

    Sato, Shunichi; Takahashi, Kunimitsu; Shimamoto, Kojiro; Takashima, Yoichi; Matsuda, Keiichi; Kuribayashi, Shizuma; Noda, Osamu; Imatake, Shigenori; Kondo, Motoe.

    1995-01-01

    The R and D program for the development of a high-power CO laser and its application technologies is described. Based on a self-sustained discharge excitation scheme, the available laser output has been successfully scaled to over 20 kW. The CO laser cutting experiments for thick metals have been performed in association with the decommissioning technologies development. Other potential applications, which include those based on photo chemical process, are reviewed. Recently demonstrated high-power tunable operation and room-temperature operation are also reported. (author)

  18. Thermophilic and alkaliphilic Actinobacteria: biology and potential applications

    Shivlata, L.; Satyanarayana, Tulasi

    2015-01-01

    Microbes belonging to the phylum Actinobacteria are prolific sources of antibiotics, clinically useful bioactive compounds and industrially important enzymes. The focus of the current review is on the diversity and potential applications of thermophilic and alkaliphilic actinobacteria, which are highly diverse in their taxonomy and morphology with a variety of adaptations for surviving and thriving in hostile environments. The specific metabolic pathways in these actinobacteria are activated for elaborating pharmaceutically, agriculturally, and biotechnologically relevant biomolecules/bioactive compounds, which find multifarious applications. PMID:26441937

  19. Active compounds from cyanobacteria and microalgae: properties and potential applications in biomedicine

    Alexey Llopiz

    2016-05-01

    Full Text Available Cyanobacteria and microalgae are source of many chemicals substances with potential applications on biopharmaceutical industry. Many structures have been characterized in these organism, such as: peptides, proteins, carbohydrates, terpenoids, polyinsatured fatty acids, flavonoids, phenolic compounds, vitamins, porfirins and other organic substances. Chemicals structures of isolated compounds are diverse and it depends of microalgae habitats. Pharmacological activities located in microalgae are bactericides, immunomodulatory, antioxidants, cytoprotective, fungicides and antivirals. These properties may possible the potential treatment of many diseases including autoimmunes disorders, tumoral, and infectious process. In this review are presented and discussed some elements associated to chemical structure and biological activities around of compounds with potential uses as biopharmaceuticals.

  20. SARAL/Altika for inland water: current and potential applications

    Tarpanelli, Angelica; Brocca, Luca; Barbetta, Silvia; Moramarco, Tommaso; Santos da Silva, Joécila; Calmant, Stephane

    2015-04-01

    Although representing less than 1% of the total amount of water on Earth the freshwater is essential for terrestrial life and human needs. Over one third of the world's population is not served by adequate supplies of clean water and for this reason freshwater wars are becoming one of the most pressing environmental issues exacerbating the already difficult tensions between the riparian nations. Notwithstanding the foregoing, we have surprisingly poor knowledge of the spatial and temporal dynamics of surface discharge. In-situ gauging networks quantify the instantaneous water volume in the main river channels but provide few information about the spatial dynamics of surface water extent, such as floodplain flows and the dynamics of wetlands. The growing reduction of hydrometric monitoring networks over the world, along with the inaccessibility of many remote areas and the difficulties for data sharing among developing countries feed the need to develop new procedures for river discharge estimation based on remote sensing technology. The major challenge in this case is the possibility of using Earth Observation data without ground measurements. Radar altimeters are a valuable tool to retrieve hydrological information from space such as water level of inland water. More than a decade of research on the application of radar altimetry has demonstrated its advantages also for monitoring continental water, providing global coverage and regular temporal sampling. The high accuracy of altimetry data provided by the latest spatial missions and the convincing results obtained in the previous applications suggest that these data may be employed for hydraulic/hydrological applications as well. If used in synergy with the modeling, the potential benefits of the altimetry measurements can grow significantly. The new SARAL French-Indian mission, providing improvements in terms of vertical accuracy and spatial resolution of the onboard altimeter Altika, can offer a great

  1. A Discussion of Students Understanding, Learning and Application of Theory of Science within Humanities and Social Science

    Wiberg, Merete

    when they learn a disciplinary area and in this context design strategies for investigations and project writing. Due to the massification of education and research (Gibbons 1998, 2005) in most universities the tendency is that science and research have become oriented towards practice, partnerships...... is to discuss the role of theory of science in teaching and learning in the actual university context. It is to be discussed why a discussion of ontological complexity is relevant for the understanding of scientific work for both the researcher of today and the academics which are to apply research strategies......: European Educational Research Journal, Volume 6, no. 2, 2007 Nowotny, H. Scott, P., Gibbons, M. (2011). Re-Thinking Science, Cambridge: Polity Press Wittgenstein, L. (1984). Philosophische Untersuchungen. I: Wittgenstein, L. Werkausgabe Band 1. Frankfurt am Main: Suhrkamp....

  2. Potential Applications of Peroxidases in the Fine Chemical Industries

    Casella, Luigi; Monzani, Enrico; Nicolis, Stefania

    A description of selected types of reactions catalyzed by heme peroxidases is given. In particular, the discussion is focused mainly on those of potential interest for fine chemical synthesis. The division into subsections has been done fromthe point of view of the enzyme action, i.e., giving emphasis to themechanismof the enzymatic reaction, and from that of the substrate, i.e., analyzing the type of transformation promoted by the enzyme. These two approaches have several points in common.

  3. Potential Coir Fibre Composite for Small Wind Turbine Blade Application

    Bakri Bakri

    2017-03-01

    Full Text Available Natural fibers have been developed as reinforcement of composite to shift synthetic fibers. One of potential natural fibers developed is coir fiber. This paper aims to describe potential coir fiber as reinforcement of composite for small wind turbine blade application. The research shows that mechanical properties ( tensile, impact, shear, flexural and compression strengths of coir fiber composite have really similar to wood properties for small wind turbine blade material, but inferior to glass fiber composite properties. The effect of weathering was also evaluated to coir fiber composite in this paper.

  4. Market potential for non-electric applications of nuclear energy

    2002-01-01

    The objective of this report is to assess the market potential for the non-electric applications of nuclear energy in the near (before 2020) and long (2020-2050) terms. The main non-electric applications are defined here as district heating, desalination (of sea, brackish and waste water), industrial heat supply, ship propulsion and the energy supply for spacecraft. This report is principally devoted to these applications, although a less detailed assessment of some innovative applications (e.g. hydrogen production and coal gasification) is also provided. While the technical details of these applications are covered briefly, emphasis is placed on the economic and other factors that may promote or hinder the penetration of the nuclear option into the market for non-electric energy services. The report is intentionally targeted towards expected demands. It is for this reason that its sections are structured by demand categories and not according to possible reactor types. At the same time, the orientation on the demand side can result in overlaps at the supply side, because the same nuclear reactor can often serve more than one type of demand. Such cases are noted as appropriate. Each section characterizes a specific non-electric application in terms of its market size, its prospects for nuclear technologies and the economic competitiveness of the technologies

  5. Potential applications of immunoassays in studies of flatfish recruitment

    Feller, Robert J.

    The fisheries recruitment-stock problem, a lack of correlation between measures of reproductive output of the parent stock and recruitment to the fishery, has several potential biotic and abiotic causes. Immunoassays may be useful in examining several aspects of this and several other problems in flatfish ecology: stock identification, parasitism and disease, and trophic interactions. Given stage-specific antisera capable of recognozing antigenic moieties of, for instance, eggs, larvae, or newly-settled juveniles, it is possible to screen stomach contents of many putative predators ( e.g., shrimp or crabs) rapidly for the presence and amounts of platfish prey. This trophic application of immunological methods has great promise for measuring loss of potential recruits to predation. All immunoassays are limited by the quality of antisera used and the researcher's ability to interpret quantitative data in an ecologically meaningful way. Key references for applications of immunoassays in fish-related questions are provided with recommendations for their utilization.

  6. Potential applications of biosurfactant rhamnolipids in agriculture and biomedicine.

    Chen, Jianwei; Wu, Qihao; Hua, Yi; Chen, Jun; Zhang, Huawei; Wang, Hong

    2017-12-01

    Rhamnolipids have recently emerged as promising bioactive molecules due to their novel structures, diverse and versatile biological functions, lower toxicity, higher biodegradability, as well as production from renewable resources. The advantages of rhamnolipids make them attractive targets for research in a wide variety of applications. Especially rhamnolipids are likely to possess potential applications of the future in areas such as biomedicine, therapeutics, and agriculture. The purpose of this mini review is to provide a comprehensive prospective of biosurfactant rhamnolipids as potential antimicrobials, immune modulators, and virulence factors, and anticancer agents in the field of biomedicine and agriculture that may meet the ever-increasing future pharmacological treatment and food safety needs in human health.

  7. Application of non-bijective transformations to various potentials

    Kibler, M.

    1987-11-01

    Some results about non-bijective quadratic transformations generalizing the Kustaanheimo-Stiefel and Levi-Civita transformations are reviewed in Chapter 1. The three remaining sections are devoted to new results: Chapter 2 deals with the Lie algebras under constraints associated to some Hurwitz transformations; Chapter 3 and Chapter 4 are concerned with several applications of some Hurwitz transformations to wave equations for various potentials in R 3 and R 5

  8. Potential applications of nanostructured materials in nuclear waste management.

    Braterman, Paul S. (The University of North Texas, Denton, TX); Phol, Phillip Isabio; Xu, Zhi-Ping (The University of North Texas, Denton, TX); Brinker, C. Jeffrey; Yang, Yi (University of New Mexico, Albuquerque, NM); Bryan, Charles R.; Yu, Kui; Xu, Huifang (University of New Mexico, Albuquerque, NM); Wang, Yifeng; Gao, Huizhen

    2003-09-01

    This report summarizes the results obtained from a Laboratory Directed Research & Development (LDRD) project entitled 'Investigation of Potential Applications of Self-Assembled Nanostructured Materials in Nuclear Waste Management'. The objectives of this project are to (1) provide a mechanistic understanding of the control of nanometer-scale structures on the ion sorption capability of materials and (2) develop appropriate engineering approaches to improving material properties based on such an understanding.

  9. Beyond Bitcoin: Potential Applications of Blockchain Technology in Dermatology.

    Tung, J K; Nambudiri, V E

    2018-06-26

    Since its initial popularization in 2008 as the underpinnings of the digital currency Bitcoin, blockchain has seen its implications spread beyond the financial industry. 1 The field of dermatology presents promising potential applications for this burgeoning technology. Blockchain facilitates communication on a peer-to-peer platform with users sharing data directly with each other (Figure). This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. The Right Approach in Practice: A Discussion of the Applicability of EFL Writing Practices in a Saudi Context

    Oraif, Iman M.

    2016-01-01

    The aim of this paper is to describe the different approaches applied to teaching writing in the L2 context and the way these different methods have been established so far. The perspectives include a product approach, genre approach and process approach. Each has its own merits and objectives for application. Regarding the study context, it may…

  11. Teaching psychology to nursing students-a discussion of the potential contribution of psychology towards building resilience to lapses in compassionate caring.

    de Vries, Jan M A; Timmins, Fiona

    2017-09-01

    Psychology is a required element in nursing education in many countries. It is particularly aimed at teaching nursing students to get a better understanding of patients, colleagues, health care organizations and themselves, and moreover to apply what they learn about psychology to optimise their care. A meaningful integration of psychology within nursing education requires an emphasis on its application in understanding aspects of care and skills development. However, its ultimate value is demonstrated when addressing problem areas in nursing and health care. In this paper the authors outline an approach to psychology education in nursing which emphasises its development as a problem solving support. An example is presented which focuses on the application of psychology to the challenge of care erosion and deficient critical nursing reflection. The discussion includes the organisational context, social pressure, social cognition, reflection and the role of inner conflict (cognitive dissonance). Nursing educators can contribute to the prevention of care erosion by a combined effort to teach awareness of psychological mechanisms, 'critical' reflection, mastery in practice, strong values and standards, and 'inoculation' against justifications of substandard care. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Potential Applications of Smart Multifunctional Wearable Materials to Gerontology.

    Armstrong, David G; Najafi, Bijan; Shahinpoor, Mohsen

    2017-01-01

    Smart multifunctional materials can play a constructive role in addressing some very important aging-related issues. Aging affects the ability of older adults to continue to live safely and economically in their own residences for as long as possible. Thus, there will be a greater need for preventive, acute, rehabilitative, and long-term health care services for older adults as well as a need for tools to enable them to function independently during daily activities. The objective of this paper is, thus, to present a comprehensive review of some potential smart materials and their areas of applications to gerontology. Thus, brief descriptions of various currently available multifunctional smart materials and their possible applications to aging-related problems are presented. It is concluded that some of the most important applications to geriatrics may be in various sensing scenarios to collect health-related feedback or information and provide personalized care. Further described are the applications of wearable technologies to aging-related needs, including devices for home rehabilitation, remote monitoring, social well-being, frailty monitoring, monitoring of diabetes and wound healing and fall detection or prediction. It is also concluded that wearable technologies, when combined with an appropriate application and with appropriate feedback, may help improve activities and functions of older patients with chronic diseases. Finally, it is noted that methods developed to measure what one collectively manages in this population may provide a foundation to establish new definitions of quality of life. © 2017 S. Karger AG, Basel.

  13. Superplastic ceramics and intermetallics and their potential applications

    Wadsworth, J.; Nieh, T.G.

    1994-11-01

    Recent advances in the basic understanding of superplasticity and superplastic forming of ceramics and intermetallics are reviewed. Fine-grained superplastic ceramics, including yttria-stabilized tetragonal zirconia polycrystal, Y- or MgO-doped Al 2 O 3 Hydroxyapatite, β-spodumene glass ceramics, Al 2 0 3 -YTZP two-phase composites, SiC-Si 3 N 4 and Fe-Fe 3 C composites, are discussed. Superplasticity in the nickel-base (e.g., Ni 3 Al and Ni 3 Si) and titanium-base intermetallics (TiAl and T1 3 Al), is described. Deformation mechanisms as well as microstructural requirements and effects such as grain size, grain growth, and grain-boundary phases, on the superplastic deformation behavior am addressed. Factors that control the superplastic tensile elongation of ceramics are discussed. Superplastic forming, and particularly biaxial gas-pressure forming, of several ceramics and intermetallics are presented with comments on the likelihood of commercial application

  14. Recent advances and potential applications of modulated differential scanning calorimetry (mDSC) in drug development

    Knopp, Matthias Manne; Löbmann, Korbinian; Elder, David P.

    2016-01-01

    Differential scanning calorimetry (DSC) is frequently the thermal analysis technique of choice within preformulation and formulation sciences because of its ability to provide detailed information about both the physical and energetic properties of a substance and/or formulation. However, convent......-dried formulations. However, as discussed in the present review, a number of other potential applications could also be relevant for the pharmaceutical scientist....

  15. Applications of Diatoms as Potential Microalgae in Nanobiotechnology

    Ahmad Yari Khosroushahi

    2012-05-01

    Full Text Available Introduction: Diatoms are single cell eukaryotic microalgae, which present in nearly every water habitat make them ideal tools for a wide range of applications such as oil explora­tion, forensic examination, environmental indication, biosilica pattern generation, toxicity testing and eutrophication of aqueous ecosystems. Methods: Essential information on diatoms were reviewed and discussed towards impacts of diatoms on biosynthesis and bioremediation. Results: In this review, we present the recent progress in this century on the application of diatoms in waste degradation, synthesis of biomaterial, biomineraliza­tion, toxicity and toxic effects of mineral elements evaluations. Conclusion: Diatoms can be considered as metal toxicity bioindicators and they can be applied for biomineralization, synthesis of biomaterials, and degradation of wastes.

  16. Potential application of lipid organogels for food industry.

    Chaves, Kamila Ferreira; Barrera-Arellano, Daniel; Ribeiro, Ana Paula Badan

    2018-03-01

    Controversial issues regarding the role of trans fatty acids in food have led to progressive changes in the legislation of several countries to include more information for consumers. In response, the industries decided to gradually replace trans fat in various products with the development of fatty bases of equivalent functionality and economic viability to partially hydrogenated fats, causing, however, a substantial increase in the content of saturated fatty acids in foods. Today, the lipid science aims to define alternatives to a problem that is widely discussed by health organizations worldwide: limit the saturated fat content in food available to the population. In this context, organogels have been indicated as a viable alternative to obtain semi-solid fats with reduced content of saturated fatty acids and compatible properties for food application. The objective of this review was to present the studies that address the lipid organogels as an alternative for food application. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes

    Wang, Luda; Boutilier, Michael S. H.; Kidambi, Piran R.; Jang, Doojoon; Hadjiconstantinou, Nicolas G.; Karnik, Rohit

    2017-06-01

    Graphene and other two-dimensional materials offer a new approach to controlling mass transport at the nanoscale. These materials can sustain nanoscale pores in their rigid lattices and due to their minimum possible material thickness, high mechanical strength and chemical robustness, they could be used to address persistent challenges in membrane separations. Here we discuss theoretical and experimental developments in the emerging field of nanoporous atomically thin membranes, focusing on the fundamental mechanisms of gas- and liquid-phase transport, membrane fabrication techniques and advances towards practical application. We highlight potential functional characteristics of the membranes and discuss applications where they are expected to offer advantages. Finally, we outline the major scientific questions and technological challenges that need to be addressed to bridge the gap from theoretical simulations and proof-of-concept experiments to real-world applications.

  18. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes.

    Wang, Luda; Boutilier, Michael S H; Kidambi, Piran R; Jang, Doojoon; Hadjiconstantinou, Nicolas G; Karnik, Rohit

    2017-06-06

    Graphene and other two-dimensional materials offer a new approach to controlling mass transport at the nanoscale. These materials can sustain nanoscale pores in their rigid lattices and due to their minimum possible material thickness, high mechanical strength and chemical robustness, they could be used to address persistent challenges in membrane separations. Here we discuss theoretical and experimental developments in the emerging field of nanoporous atomically thin membranes, focusing on the fundamental mechanisms of gas- and liquid-phase transport, membrane fabrication techniques and advances towards practical application. We highlight potential functional characteristics of the membranes and discuss applications where they are expected to offer advantages. Finally, we outline the major scientific questions and technological challenges that need to be addressed to bridge the gap from theoretical simulations and proof-of-concept experiments to real-world applications.

  19. Evaluation of impacts of climate change and local stressors on the biotechnological potential of marine macroalgae: a brief theoretical discussion of likely scenarios

    Paulo A. Horta

    2012-08-01

    Full Text Available Climate change can be associated with variations in the frequency and intensity of extreme temperatures and precipitation events on the local and regional scales. Along coastal areas, flooding associated with increased occupation has seriously impacted products and services generated by marine life, in particular the biotechnological potential that macroalgae hold. Therefore, this paper analyzes the available information on the taxonomy, ecology and physiology of macroalgae and discusses the impacts of climate change and local stress on the biotechnological potential of Brazilian macroalgae. Based on data compiled from a series of floristic and ecological works, we note the disappearance in some Brazilian regions of major groups of biotechnological interest. In some cases, the introduction of exotic species has been documented, as well as expansion of the distribution range of economically important species. We also verify an increase in the similarities between the Brazilian phycogeographic provinces, although they still remain different. It is possible that these changes have resulted from the warming of South Atlantic water, as observed for its surface in southeastern Brazilian, mainly during the winter. However, unplanned urbanization of coastal areas can also produce similar biodiversity losses, which requires efforts to generate long-term temporal data on the composition, community structure and physiology of macroalgae.

  20. Market Potential for Non-electric Applications of Nuclear Energy

    Konishi, T.; Kononov, S.; Kupitz, J.; McDonald, A.; Rogner, H.H.; Nisan, S.

    2002-01-01

    The paper presents results of a recent IAEA study to assess the market potential for non-electric applications of nuclear energy in the near (before 2020) and long term (2020-2050). The applications covered are district heating, desalination, industrial heat supply, ship propulsion, energy supply for spacecraft, and, to a lesser extent, 'innovative' applications such as hydrogen production, coal gasification, etc. While technical details are covered only briefly, emphasis is placed on economics and other factors that may promote or hinder the penetration of nuclear options in the markets for non-electric energy services. The study makes a distinction between the market size (demand for a given service) and the market potential for nuclear penetration (which may be smaller because of technical or non-technical constraints). Near-term nuclear prospects are assessed on the basis of on-going projects in the final stages of design or under construction. For the long term, use has been made of a qualitative scale ranging from 0 to 2 for five critical areas: market structure, demand pressure, technical basis, economic competitiveness, and public acceptance. The paper presents the resulting evaluation of long-term prospects for nuclear energy entering into non-electric markets. (authors)

  1. Nanotechnology in meat processing and packaging: potential applications - a review.

    Ramachandraiah, Karna; Han, Sung Gu; Chin, Koo Bok

    2015-02-01

    Growing demand for sustainable production, increasing competition and consideration of health concerns have led the meat industries on a path to innovation. Meat industries across the world are focusing on the development of novel meat products and processes to meet consumer demand. Hence, a process innovation, like nanotechnology, can have a significant impact on the meat processing industry through the development of not only novel functional meat products, but also novel packaging for the products. The potential benefits of utilizing nanomaterials in food are improved bioavailability, antimicrobial effects, enhanced sensory acceptance and targeted delivery of bioactive compounds. However, challenges exist in the application of nanomaterials due to knowledge gaps in the production of ingredients such as nanopowders, stability of delivery systems in meat products and health risks caused by the same properties which also offer the benefits. For the success of nanotechnology in meat products, challenges in public acceptance, economics and the regulation of food processed with nanomaterials which may have the potential to persist, accumulate and lead to toxicity need to be addressed. So far, the most promising area for nanotechnology application seems to be in meat packaging, but the long term effects on human health and environment due to migration of the nanomaterials from the packaging needs to be studied further. The future of nanotechnology in meat products depends on the roles played by governments, regulatory agencies and manufacturers in addressing the challenges related to the application of nanomaterials in food.

  2. Survey of networked control systems and their potential applications in nuclear power plants

    Kadri, A. [Univ. of Western Ontario, Dept. of Electrical and Computer Engineering, London, Ontario (Canada)]. E-mail: akadri@uwo.ca

    2006-07-01

    This paper provides an overview of networked control systems (NCSs) and their industrial applications. Most widely used NCSs based on fieldbus technologies; namely, ControlNet, Profibus (DP/PA), and Foundation Fieldbus have been discussed. The objectives and benefits of using such networks are presented and factors influencing their design and implementation are examined. Then, some of the special requirements in controlling nuclear power plant (NPP) have been considered. The potential of applying networked control systems in such installations has been discussed. Finally, the concept of wireless networked control systems is also described. (author)

  3. Synthesis, Prop erties and Potential Applications of Porous Graphene:A Review

    Paola Russo; Anming Hu; Giuseppe Compagnini

    2013-01-01

    Since the discovery of graphene, many efforts have been done to modify the graphene structure for integrating this novel material to nanoelectronics, fuel cells, energy storage devices and in many other appli-cations. This leads to the production of different types of graphene-based materials, which possess properties different from those of pure graphene. Porous graphene is an example of this type of materials. It can be con-sidered as a graphene sheet with some holes/pores within the atomic plane. Due to its spongy structure, porous graphene can have potential applications as membranes for molecular sieving, energy storage components and in nanoelectronics. In this review, we present the recent progress in the synthesis of porous graphene. The properties and the potential applications of this new material are also discussed.

  4. Tourist Potential in a Sustainable Approach. An Application Case

    Eddy Soria-Leyva

    2015-11-01

    Full Text Available In this research is proposed a methodology to evaluate the tourist potential with a sustainable approach and it is validated through an application in the municipality of the Tercer Frente, Santiago de Cuba. With this aim, some instruments of measure and mathematical formulas are submitted in order to obtain discriminating information about tourist resources, taking into account the delimitation of zones for the tourist development and the classification of determining factors of the tourist potential according to the capability of attraction and reception of the tourist demand, becoming adapted to the historic concrete conditions of the territory. Therefore, its application will determine a solid base for the future planning of tourist local development of this municipality. Among the main conclusions, it is deduced that Tercer Frente is a secondary semi-specialized destination which has medium tourist potential and possibilities to increase the spatial correlation among the tourist plant and the distribution of attractions in five zones.

  5. Potential biodefense model applications for portable chlorine dioxide gas production.

    Stubblefield, Jeannie M; Newsome, Anthony L

    2015-01-01

    Development of decontamination methods and strategies to address potential infectious disease outbreaks and bioterrorism events are pertinent to this nation's biodefense strategies and general biosecurity. Chlorine dioxide (ClO2) gas has a history of use as a decontamination agent in response to an act of bioterrorism. However, the more widespread use of ClO2 gas to meet current and unforeseen decontamination needs has been hampered because the gas is too unstable for shipment and must be prepared at the application site. Newer technology allows for easy, onsite gas generation without the need for dedicated equipment, electricity, water, or personnel with advanced training. In a laboratory model system, 2 unique applications (personal protective equipment [PPE] and animal skin) were investigated in the context of potential development of decontamination protocols. Such protocols could serve to reduce human exposure to bacteria in a decontamination response effort. Chlorine dioxide gas was capable of reducing (2-7 logs of vegetative and spore-forming bacteria), and in some instances eliminating, culturable bacteria from difficult to clean areas on PPE facepieces. The gas was effective in eliminating naturally occurring bacteria on animal skin and also on skin inoculated with Bacillus spores. The culturable bacteria, including Bacillus spores, were eliminated in a time- and dose-dependent manner. Results of these studies suggested portable, easily used ClO2 gas generation systems have excellent potential for protocol development to contribute to biodefense strategies and decontamination responses to infectious disease outbreaks or other biothreat events.

  6. Schumann Resonances and Their Potential Applications: a Review Article

    Amal Fathi Alrais

    2017-12-01

    Full Text Available Introduction: Schumann resonances is an important topic gains great interest in research areas which has extensive use of Schumann resonances in a variety of desplines such as biological evolutionary processes, the optimal functioning of the human brain waves and lightning-related studies. Materials and Methods: This dictates the major emphasis on economic, environmental, and engineering applications and hazard assessments in the form of earthquake and volcano monitoring. Results: This review is aimed at the reader generally unfamiliar with the Schumann Resonances. It is our hope that this review will increase the interest in SR among researchers previously unfamiliar with this phenomenon. Discussion and Conclusions: In this review paper, a brief introduction about Schumann resonances is presented. A general description of Earth’s ionosphere is outlined. The electromagnetic waves spectrum from lightning is discussed. The history of Schumann resonances is briefly presented. The connection of man with nature through Schumann resonances is introduced. Present Schumann resonances researches are briefly outlined. Schumann (global electromagnetic resonances in the cavity Earth – ionosphere play a critical role in all biological evolutionary processes. However, there is a great need for independent research into the bio-compatibility between natural and manmade signals. Serious attention must now be paid to the possible biological role of standing waves in the atmosphere. Being a global phenomenon, Schumann resonances have numerous applications in lightning research.

  7. Probabilistic risk analysis and fault trees: Initial discussion of application to identification of risk at a wellhead

    Rodak, C.; Silliman, S.

    2012-02-01

    Wellhead protection is of critical importance for managing groundwater resources. While a number of previous authors have addressed questions related to uncertainties in advective capture zones, methods for addressing wellhead protection in the presence of uncertainty in the chemistry of groundwater contaminants, the relationship between land-use and contaminant sources, and the impact on health of the receiving population are limited. It is herein suggested that probabilistic risk analysis (PRA) combined with fault trees (FT) provides a structure whereby chemical transport can be combined with uncertainties in source, chemistry, and health impact to assess the probability of negative health outcomes in the population. As such, PRA-FT provides a new strategy for the identification of areas of probabilistically high human health risk. Application of this approach is demonstrated through a simplified case study involving flow to a well in an unconfined aquifer with heterogeneity in aquifer properties and contaminant sources.

  8. Bacterial and Fungal Proteolytic Enzymes: Production, Catalysis and Potential Applications.

    da Silva, Ronivaldo Rodrigues

    2017-09-01

    Submerged and solid-state bioprocesses have been extensively explored worldwide and employed in a number of important studies dealing with microbial cultivation for the production of enzymes. The development of these production technologies has facilitated the generation of new enzyme-based products with applications in pharmaceuticals, food, bioactive peptides, and basic research studies, among others. The applicability of microorganisms in biotechnology is potentiated because of their various advantages, including large-scale production, short time of cultivation, and ease of handling. Currently, several studies are being conducted to search for new microbial peptidases with peculiar biochemical properties for industrial applications. Bioprospecting, being an important prerequisite for research and biotechnological development, is based on exploring the microbial diversity for enzyme production. Limited information is available on the production of specific proteolytic enzymes from bacterial and fungal species, especially on the subgroups threonine and glutamic peptidases, and the seventh catalytic type, nonhydrolytic asparagine peptide lyase. This gap in information motivated the present study about these unique biocatalysts. In this study, the biochemical and biotechnological aspects of the seven catalytic types of proteolytic enzymes, namely aspartyl, cysteine, serine, metallo, glutamic, and threonine peptidase, and asparagine peptide lyase, are summarized, with an emphasis on new studies, production, catalysis, and application of these enzymes.

  9. Potential Applications of Polyamines in Agriculture and Plant Biotechnology.

    Tiburcio, Antonio F; Alcázar, Rubén

    2018-01-01

    The polyamines putrescine, spermidine and spermine have been implicated in a myriad of biological functions in many organisms. Research done during the last decades has accumulated a large body of evidence demonstrating that polyamines are key modulators of plant growth and development. Different experimental approaches have been employed including the measurement of endogenous polyamine levels and the activities of polyamine metabolic enzymes, the study of the effects resulting from exogenous polyamine applications and chemical or genetic manipulation of endogenous polyamine titers. This chapter reviews the role of PAs in seed germination, root development, plant architecture, in vitro plant regeneration, flowering and plant senescence. Evidence presented here indicates that polyamines should be regarded as plant growth regulators with potential applications in agriculture and plant biotechnology.

  10. Expert system characteristics and potential applications in safeguards

    Chapman, L.D.

    1986-01-01

    The general growth of expert, knowledge-based (KB) or rule based systems will significantly increase in the next three to five years. Improvements in computer hardware (speed, reduced size, power) and software (rule based, data based, user interfaces) in recent years are providing the foundations for the growth of expert systems. A byproduct of this growth will undoubtedly be the application of expert systems to various safeguards problems. Characteristics of these expert systems will involve 1) multiple rules governing an outcome, 2) confidence factors on individual variables and rule sets, 3) priority, cost, and risk based rule sets, and 4) the reasoning behind the advice or decision given by the expert system. This paper presents characteristics, structures, and examples of simple rule based systems. Potential application areas for these expert systems may include training, operations, management, designs, evaluations, and specific hardware operation

  11. Neural networks and their potential application in nuclear power plants

    Uhrig, R.E.

    1991-01-01

    A neural network is a data processing system consisting of a number of simple, highly interconnected processing elements in an architecture inspired by the structure of the cerebral cortex portion of the brain. Hence, neural networks are often capable of doing things which humans or animals do well but which conventional computers often do poorly. Neural networks have emerged in the past few years as an area of unusual opportunity for research, development and application to a variety of real world problems. Indeed, neural networks exhibit characteristics and capabilities not provided by any other technology. Examples include reading Japanese Kanji characters and human handwriting, reading a typewritten manuscript aloud, compensating for alignment errors in robots, interpreting very noise signals (e.g., electroencephalograms), modeling complex systems that cannot be modeled mathematically, and predicting whether proposed loans will be good or fail. This paper presents a brief tutorial on neural networks and describes research on the potential applications to nuclear power plants

  12. Nanotechnology and stem cell therapy for cardiovascular diseases: potential applications.

    La Francesca, Saverio

    2012-01-01

    The use of stem cell therapy for the treatment of cardiovascular diseases has generated significant interest in recent years. Limitations to the clinical application of this therapy center on issues of stem cell delivery, engraftment, and fate. Nanotechnology-based cell labeling and imaging techniques facilitate stem cell tracking and engraftment studies. Nanotechnology also brings exciting new opportunities to translational stem cell research as it enables the controlled engineering of nanoparticles and nanomaterials that can properly relate to the physical scale of cell-cell and cell-niche interactions. This review summarizes the most relevant potential applications of nanoscale technologies to the field of stem cell therapy for the treatment of cardiovascular diseases.

  13. The versatile biopolymer chitosan: potential sources, evaluation of extraction methods and applications.

    Kaur, Surinder; Dhillon, Gurpreet Singh

    2014-05-01

    Among the biopolymers, chitin and its derivative chitosan (CTS) have been receiving increasing attention. Both are composed of randomly distributed β-(1-4)-linked d-glucosamine and N-acetyl glucosamine units. On commercial scale, CTS is mainly obtained from the crustacean shells. The chemical methods employed for extraction of CTS from crustacean shells are laden with many disadvantages. Waste fungal biomass represents a potential biological source of CTS, in fact with superior physico-chemical properties, such as high degree of deacetylation, low molecular weight, devoid of protein contamination and high bioactivity. Researchers around the globe are attempting to commercialize CTS production and extraction from fungal sources. Fungi are promising and environmentally benign source of CTS and they have the potential to completely replace crustacean-derived CTS. Waste fungal biomass resulting from various pharmaceutical and biotechnological industries is grown on inexpensive agro-industrial wastes and its by-products are a rich and inexpensive source of CTS. CTS is emerging as an important natural polymer having broad range of applications in different fields. In this context, the present review discusses the potential sources of CTS and their advantages and disadvantages. This review also deals with potential applications of CTS in different fields. Finally, the various attributes of CTS sought in different applications are discussed.

  14. HTR process heat applications, status of technology and economical potential

    Barnet, H.

    1997-01-01

    The technical and industrial feasibility of the production of high temperature heat from nuclear fuel is presented. The technical feasibility of high temperature heat consuming processes is reviewed and assessed. The conclusion is drawn that the next technological step for pilot plant scale demonstration is the nuclear heated steam reforming process. The economical potential of HTR process heat applications is reviewed: It is directly coupled to the economical competitiveness of HTR electricity production. Recently made statements and pre-conditions on the economic competitiveness in comparison to world market coal are reported. (author). 8 figs

  15. Assessment of potential solder candidates for high temperature applications

    pressure to eliminate lead containing materials despite the fact that materials for high Pb containing alloys are currently not affected by any legislations. A tentative assessment was carried out to determine the potential solder candidates for high temperature applications based on the solidification...... criterion, phases predicted in the bulk solder and the thermodynamic stability of chlorides. These promising solder candidates were precisely produced using the hot stage microscope and its respective anodic and cathodic polarization curves were investigated using a micro-electrochemical set up...

  16. Potential ceramics processing applications with high-energy electron beams

    Struve, K.W.; Turman, B.N.

    1993-01-01

    High-energy, high-current electron beams may offer unique features for processing of ceramics that are not available with any other heat source. These include the capability to instantaneously heat to several centimeters in depth, to preferentially deposit energy in dense, high-z materials, to process at atmospheric pressures in air or other gases, to have large control over heating volume and heating rate, and to have efficient energy conversion. At a recent workshop organized by the authors to explore opportunities for electron beam processing of ceramics, several applications were identified for further development. These were ceramic joining, fabrication of ceramic powders, and surface processing of ceramics. It may be possible to join ceramics by either electron-beam brazing or welding. Brazing with refractory metals might also be feasible. The primary concern for brazing is whether the braze material can wet to the ceramic when rapidly heated by an electron beam. Raw ceramic powders, such as silicon nitride and aluminum nitride, which are difficult to produce by conventional techniques, could possibly be produced by vaporizing metals in a nitrogen atmosphere. Experiments need to be done to verify that the vaporized metal can fully react with the nitrogen. By adjusting beam parameters, high-energy beams can be used to remove surface flaws which are often sites of fracture initiation. They can also be used for surface cleaning. The advantage of electron beams rather than ion beams for this application is that the heat deposition can be graded into the material. The authors will discuss the capabilities of beams from existing machines for these applications and discuss planned experiments

  17. Higher order statistical moment application for solar PV potential analysis

    Basri, Mohd Juhari Mat; Abdullah, Samizee; Azrulhisham, Engku Ahmad; Harun, Khairulezuan

    2016-10-01

    Solar photovoltaic energy could be as alternative energy to fossil fuel, which is depleting and posing a global warming problem. However, this renewable energy is so variable and intermittent to be relied on. Therefore the knowledge of energy potential is very important for any site to build this solar photovoltaic power generation system. Here, the application of higher order statistical moment model is being analyzed using data collected from 5MW grid-connected photovoltaic system. Due to the dynamic changes of skewness and kurtosis of AC power and solar irradiance distributions of the solar farm, Pearson system where the probability distribution is calculated by matching their theoretical moments with that of the empirical moments of a distribution could be suitable for this purpose. On the advantage of the Pearson system in MATLAB, a software programming has been developed to help in data processing for distribution fitting and potential analysis for future projection of amount of AC power and solar irradiance availability.

  18. Liquid crystals: high technology materials for potential applications

    Saeed, M.A.; Badaruddin; Rizvi, T.Z.

    1993-01-01

    Liquid crystals have very rapidly emerged as a basis of many high technology fields within the last few decades. These materials because of their intriguing physical properties are regarded as the fourth state of matter. At present the applications of liquid crystals are established in digital display devices, electro-optical switches, optical computing, acousto-optics, thermo-indicators, laser thermo-recording, photo-chemical image recording and optical communication networks. More recently due to the concept of molecularly based electronics (MBE): the logical extreme for miniaturization of electronic device, liquid crystals are foreseen to play a vital role in the future optics based technologies. This paper gives a brief introduction to liquid crystals, the types of meso phases found in these materials together with their applications in research and industry. Some technical details of the construction liquid crystal cells for some typical applications in digital displays and other electro optical devices have also been discussed with special emphasis on relevant physical processes occurring at molecular level. (author)

  19. Closed Loop Deep Brain Stimulation for PTSD, Addiction, and Disorders of Affective Facial Interpretation: Review and Discussion of Potential Biomarkers and Stimulation Paradigms

    Robert W. Bina

    2018-05-01

    Full Text Available The treatment of psychiatric diseases with Deep Brain Stimulation (DBS is becoming more of a reality as studies proliferate the indications and targets for therapies. Opinions on the initial failures of DBS trials for some psychiatric diseases point to a certain lack of finesse in using an Open Loop DBS (OLDBS system in these dynamic, cyclical pathologies. OLDBS delivers monomorphic input into dysfunctional brain circuits with modulation of that input via human interface at discrete time points with no interim modulation or adaptation to the changing circuit dynamics. Closed Loop DBS (CLDBS promises dynamic, intrinsic circuit modulation based on individual physiologic biomarkers of dysfunction. Discussed here are several psychiatric diseases which may be amenable to CLDBS paradigms as the neurophysiologic dysfunction is stochastic and not static. Post-Traumatic Stress Disorder (PTSD has several peripheral and central physiologic and neurologic changes preceding stereotyped hyper-activation behavioral responses. Biomarkers for CLDBS potentially include skin conductance changes indicating changes in the sympathetic nervous system, changes in serum and central neurotransmitter concentrations, and limbic circuit activation. Chemical dependency and addiction have been demonstrated to be improved with both ablation and DBS of the Nucleus Accumbens and as a serendipitous side effect of movement disorder treatment. Potential peripheral biomarkers are similar to those proposed for PTSD with possible use of environmental and geolocation based cues, peripheral signs of physiologic arousal, and individual changes in central circuit patterns. Non-substance addiction disorders have also been serendipitously treated in patients with OLDBS for movement disorders. As more is learned about these behavioral addictions, DBS targets and effectors will be identified. Finally, discussed is the use of facial recognition software to modulate activation of inappropriate

  20. Geopolymer Composites for Potential Applications in Cultural Heritage

    Laura Ricciotti

    2017-12-01

    Full Text Available A new class of geopolymer composites, as materials alternative to traditional binders, was synthesized and its potentialities as restoration material in Cultural Heritage has been explored. This material has been prepared through a co-reticulation reaction in mild conditions of a metakaolin-based geopolymer inorganic matrix and a commercial epoxy resin. The freshly prepared slurry displays a consistency, workability and thixotropic behavior that make it suitable to be spread on different substrates in restoration, repair and reinforcement actions, even on walls and ceilings. Applicability and compatibility tests on tuff and concrete substrates were carried out and the microstructure of the samples in correspondence of the transition zone was analyzed by means of scanning electron microscope (SEM observations and energy dispersive spectroscopy (EDS mapping. Our studies pointed out the formation of a continuous phase between the geopolymer composite and tuff and concrete substrates, highlighting a high compatibility of the geopolymer binder with different kinds of materials. These features indicate a large potential for applications of these materials in Cultural Heritage.

  1. Potential Applications of PET/MR Imaging in Cardiology.

    Ratib, Osman; Nkoulou, René

    2014-06-01

    Recent advances in hybrid PET/MR imaging have opened new perspectives for cardiovascular applications. Although cardiac MR imaging has gained wider adoption for routine clinical applications, PET images remain the reference in many applications for which objective analysis of metabolic and physiologic parameters is needed. In particular, in cardiovascular diseases-more specifically, coronary artery disease-the use of quantitative and measurable parameters in a reproducible way is essential for the management of therapeutic decisions and patient follow-up. Functional MR images and dynamic assessment of myocardial perfusion from transit of intravascular contrast medium can provide useful criteria for identifying areas of decreased myocardial perfusion or for assessing tissue viability from late contrast enhancement of scar tissue. PET images, however, will provide more quantitative data on true tissue perfusion and metabolism. Quantitative myocardial flow can also lead to accurate assessment of coronary flow reserve. The combination of both modalities will therefore provide complementary data that can be expected to improve the accuracy and reproducibility of diagnostic procedures. But the true potential of hybrid PET/MR imaging may reside in applications beyond the domain of coronary artery disease. The combination of both modalities in assessment of other cardiac diseases such as inflammation and of other systemic diseases can also be envisioned. It is also predicted that the 2 modalities combined could help characterize atherosclerotic plaques and differentiate plaques with a high risk of rupture from stable plaques. In the future, the development of new tracers will also open new perspectives in evaluating myocardial remodeling and in assessing the kinetics of stem cell therapy in myocardial infarction. New tracers will also provide new means for evaluating alterations in cardiac innervation, angiogenesis, and even the assessment of reporter gene technologies

  2. Wind erosion potential after land application of biosolids

    PI, H.; Sharratt, B. S.; Schillinger, W. F.; Bary, A.; Cogger, C.

    2017-12-01

    The world population is currently 7.6 billion and, along with continued population growth, comes the challenge of disposing of wastewater and sewage sludge (biosolids). Applying biosolids to agricultural land to replace synthetic fertilizers represents a relatively safe method to recycle or sustainably use biosolids. While land application of biosolids is recognized as a sustainable management practice for enhancing soil health, no studies have determined the effects of biosolids on soil wind erosion. Wind erosion potential of a silt loam was assessed using a portable wind tunnel after applying synthetic and biosolid fertilizer to conventional and conservation tillage practices during the summer fallow phase of a winter wheat-summer fallow rotation in 2015 and 2016 in east-central Washington. Little difference in soil loss was observed between biosolid and synthetic fertilizer treatments, but this result appeared to be dependent on susceptibility of the soil to erosion. Regression analysis between soil loss from fertilizer or tillage treatments indicated that soil loss was lower from biosolid versus synthetic fertilizer and conservation versus conventional tillage at high erosion rates. This suggests that biosolids may reduce wind erosion under highly erodible conditions. Meanwhile, heavy metal concentrations in the windblown sediment were similar for the biosolid and synthetic fertilizer treatments whereas metal loss in windblown sediment was 10% lower from biosolid than synthetic fertilizer. Our results indicate that land application of biosolids did not accelerate the loss of metals or nutrients from soils during high winds. KeywordsLand application of biosolids; wind erosion; wind tunnel; sustainable agriculture

  3. Potential Applications of Carbohydrases Immobilization in the Food Industry

    Contesini, Fabiano Jares; de Alencar Figueira, Joelise; Kawaguti, Haroldo Yukio; de Barros Fernandes, Pedro Carlos; de Oliveira Carvalho, Patrícia; Nascimento, Maria da Graça; Sato, Hélia Harumi

    2013-01-01

    Carbohydrases find a wide application in industrial processes and products, mainly in the food industry. With these enzymes, it is possible to obtain different types of sugar syrups (viz. glucose, fructose and inverted sugar syrups), prebiotics (viz. galactooligossacharides and fructooligossacharides) and isomaltulose, which is an interesting sweetener substitute for sucrose to improve the sensory properties of juices and wines and to reduce lactose in milk. The most important carbohydrases to accomplish these goals are of microbial origin and include amylases (α-amylases and glucoamylases), invertases, inulinases, galactosidases, glucosidases, fructosyltransferases, pectinases and glucosyltransferases. Yet, for all these processes to be cost-effective for industrial application, a very efficient, simple and cheap immobilization technique is required. Immobilization techniques can involve adsorption, entrapment or covalent bonding of the enzyme into an insoluble support, or carrier-free methods, usually based on the formation of cross-linked enzyme aggregates (CLEAs). They include a broad variety of supports, such as magnetic materials, gums, gels, synthetic polymers and ionic resins. All these techniques present advantages and disadvantages and several parameters must be considered. In this work, the most recent and important studies on the immobilization of carbohydrases with potential application in the food industry are reviewed. PMID:23344046

  4. Neural networks and their potential application to nuclear power plants

    Uhrig, R.E.

    1991-01-01

    A network of artificial neurons, usually called an artificial neural network is a data processing system consisting of a number of highly interconnected processing elements in an architecture inspired by the structure of the cerebral cortex portion of the brain. Hence, neural networks are often capable of doing things which humans or animals do well but which conventional computers often do poorly. Neural networks exhibit characteristics and capabilities not provided by any other technology. Neural networks may be designed so as to classify an input pattern as one of several predefined types or to create, as needed, categories or classes of system states which can be interpreted by a human operator. Neural networks have the ability to recognize patterns, even when the information comprising these patterns is noisy, sparse, or incomplete. Thus, systems of artificial neural networks show great promise for use in environments in which robust, fault-tolerant pattern recognition is necessary in a real-time mode, and in which the incoming data may be distorted or noisy. The application of neural networks, a rapidly evolving technology used extensively in defense applications, alone or in conjunction with other advanced technologies, to some of the problems of operating nuclear power plants has the potential to enhance the safety, reliability and operability of nuclear power plants. The potential applications of neural networking include, but are not limited to diagnosing specific abnormal conditions, identification of nonlinear dynamics and transients, detection of the change of mode of operation, control of temperature and pressure during start-up, signal validation, plant-wide monitoring using autoassociative neural networks, monitoring of check valves, modeling of the plant thermodynamics, emulation of core reload calculations, analysis of temporal sequences in NRC's ''licensee event reports,'' and monitoring of plant parameters

  5. Thermal plasma spraying for SOFCs: Applications, potential advantages, and challenges

    Hui, Rob; Wang, Zhenwei; Jankovic, Jasna; Yick, Sing; Maric, Radenka; Ghosh, Dave [National Research Council Institute for Fuel Cell Innovation, 4250 Wesbrook Mall, Vancouver, BC V6T 1W5 (Canada); Kesler, Olivera [National Research Council Institute for Fuel Cell Innovation, 4250 Wesbrook Mall, Vancouver, BC V6T 1W5 (Canada); Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC V6T 1Z4 (Canada); Rose, Lars [National Research Council Institute for Fuel Cell Innovation, 4250 Wesbrook Mall, Vancouver, BC V6T 1W5 (Canada); Department of Materials Engineering, University of British Columbia, 309-6350 Stores Road, Vancouver, BC V6T 1Z4 (Canada)

    2007-07-10

    In this article, the applications, potential advantages, and challenges of thermal plasma spray (PS) processing for nanopowder production and cell fabrication of solid oxide fuel cells (SOFCs) are reviewed. PS processing creates sufficiently high temperatures to melt all materials fed into the plasma. The heated material can either be quenched into oxide powders or deposited as coatings. This technique has been applied to directly deposit functional layers as well as nanopowder for SOFCs application. In particularly, low melting point and highly active electrodes can be directly fabricated on zirconia-based electrolytes. This is a simple processing technique that does not require the use of organic solvents, offering the opportunity for flexible adjustment of process parameters, and significant time saving in production of the cell and cost reduction compared with tape casting, screen printing and sintering processing steps. Most importantly, PS processing shows strong potential to enable the deposition of metal-supported SOFCs through the integrated fabrication of membrane-electrode assemblies (MEA) on porous metallic substrates with consecutive deposition steps. On the other hand, the application of PS processing to produce SOFCs faces some challenges, such as insufficient porosity of the electrodes, the difficulty of obtaining a thin (<10 {mu}m) and dense electrolyte layer. Fed with H{sub 2} as the fuel gas and oxygen as the oxidant gas, the plasma sprayed cell reached high power densities of 770 mW cm{sup -2} at 900 C and 430 mW cm{sup -2} at 800 C at a cell voltage of 0.7 V. (author)

  6. Monoterpenol Oxidative Metabolism: Role in Plant Adaptation and Potential Applications

    Ilc, Tina; Parage, Claire; Boachon, Benoît; Navrot, Nicolas; Werck-Reichhart, Danièle

    2016-01-01

    Plants use monoterpenols as precursors for the production of functionally and structurally diverse molecules, which are key players in interactions with other organisms such as pollinators, flower visitors, herbivores, fungal, or microbial pathogens. For humans, many of these monoterpenol derivatives are economically important because of their pharmaceutical, nutraceutical, flavor, or fragrance applications. The biosynthesis of these derivatives is to a large extent catalyzed by enzymes from the cytochrome P450 superfamily. Here we review the knowledge on monoterpenol oxidative metabolism in plants with special focus on recent elucidations of oxidation steps leading to diverse linalool and geraniol derivatives. We evaluate the common features between oxidation pathways of these two monoterpenols, such as involvement of the CYP76 family, and highlight the differences. Finally, we discuss the missing steps and other open questions in the biosynthesis of oxygenated monoterpenol derivatives. PMID:27200002

  7. Recombinant Spider Silks—Biopolymers with Potential for Future Applications

    Thomas Scheibel

    2011-03-01

    Full Text Available Nature has evolved a range of materials that compete with man-made materials in physical properties; one of these is spider silk. Silk is a fibrous material that exhibits extremely high strength and toughness with regard to its low density. In this review we discuss the molecular structure of spider silk and how this understanding has allowed the development of recombinant silk proteins that mimic the properties of natural spider silks. Additionally, we will explore the material morphologies and the applications of these proteins. Finally, we will look at attempts to combine the silk structure with chemical polymers and how the structure of silk has inspired the engineering of novel polymers.

  8. Evanescent field: A potential light-tool for theranostics application

    Polley, Nabarun; Singh, Soumendra; Giri, Anupam; Pal, Samir Kumar

    2014-03-01

    A noninvasive or minimally invasive optical approach for theranostics, which would reinforce diagnosis, treatment, and preferably guidance simultaneously, is considered to be major challenge in biomedical instrument design. In the present work, we have developed an evanescent field-based fiber optic strategy for the potential theranostics application in hyperbilirubinemia, an increased concentration of bilirubin in the blood and is a potential cause of permanent brain damage or even death in newborn babies. Potential problem of bilirubin deposition on the hydroxylated fiber surface at physiological pH (7.4), that masks the sensing efficacy and extraction of information of the pigment level, has also been addressed. Removal of bilirubin in a blood-phantom (hemoglobin and human serum albumin) solution from an enhanced level of 77 μM/l (human jaundice >50 μM/l) to ˜30 μM/l (normal level ˜25 μM/l in human) using our strategy has been successfully demonstrated. In a model experiment using chromatography paper as a mimic of biological membrane, we have shown efficient degradation of the bilirubin under continuous monitoring for guidance of immediate/future course of action.

  9. Lantibiotics produced by Actinobacteria and their potential applications (a review).

    Gomes, Karen Machado; Duarte, Rafael Silva; de Freire Bastos, Maria do Carmo

    2017-02-01

    The phylum Actinobacteria, which comprises a great variety of Gram-positive bacteria with a high G+C content in their genomes, is known for its large production of bioactive compounds, including those with antimicrobial activity. Among the antimicrobials, bacteriocins, ribosomally synthesized peptides, represent an important arsenal of potential new drugs to face the increasing prevalence of resistance to antibiotics among microbial pathogens. The actinobacterial bacteriocins form a heterogeneous group of substances that is difficult to adapt to most proposed classification schemes. However, recent updates have accommodated efficiently the diversity of bacteriocins produced by this phylum. Among the bacteriocins, the lantibiotics represent a source of new antimicrobials to control infections caused mainly by Gram-positive bacteria and with a low propensity for resistance development. Moreover, some of these compounds have additional biological properties, exhibiting activity against viruses and tumour cells and having also potential to be used in blood pressure or inflammation control and in pain relief. Thus, lantibiotics already described in Actinobacteria exhibit potential practical applications in medical settings, food industry and agriculture, with examples at different stages of pre-clinical and clinical trials.

  10. Genome-editing technologies and their potential application in horticultural crop breeding

    Xiong, Jin-Song; Ding, Jing; Li, Yi

    2015-01-01

    Plant breeding, one of the oldest agricultural activities, parallels human civilization. Many crops have been domesticated to satisfy human's food and aesthetical needs, including numerous specialty horticultural crops such as fruits, vegetables, ornamental flowers, shrubs, and trees. Crop varieties originated through selection during early human civilization. Other technologies, such as various forms of hybridization, mutation, and transgenics, have also been invented and applied to crop breeding over the past centuries. The progress made in these breeding technologies, especially the modern biotechnology-based breeding technologies, has had a great impact on crop breeding as well as on our lives. Here, we first review the developmental process and applications of these technologies in horticultural crop breeding. Then, we mainly describe the principles of the latest genome-editing technologies and discuss their potential applications in the genetic improvement of horticultural crops. The advantages and challenges of genome-editing technologies in horticultural crop breeding are also discussed. PMID:26504570

  11. Potential applications of robotics in advanced liquid-metal reactors

    Carroll, D.G.; Thompson, M.L.

    1990-01-01

    The advanced liquid-metal reactor (ALMR) design includes a range of robots and automation devices. They extend from stationary robots that are a part of the current design to more exotic concepts with mobile, autonomous units, which may become part of the design. Development of robotic application requirements is enhanced by using computer models of work spaces in three dimensions. The primary goals of the more autonomous machines are to: (1) extent and/or enhance one's capabilities in a hazardous environment; some tasks could encounter high temperatures (up to 800 degree F), high radiation (fields up to several hundred thousand roentgens per hour), rooms filled with inert gas and/or sodium aerosol, or combinations of these; (2) reduce operating and maintenance cost through inservice inspection (ISI) of various parts of the reactor, through consideration of as-low-as-reasonably achievable radiation levels, and through automation of some maintenance/processing operations. This paper discusses some applications in the fuel cycle, in refueling operations, and in inspection

  12. Encouraging Classroom Discussion

    Robert Joseph McKee

    2014-10-01

    Full Text Available Classroom discussion has the potential to enhance the learning environment and encourages students to become active participants in the educational process. Student participation in classroom discussion has been shown to significantly improve the student learning experience. Research suggests that classroom discussion is an effective method for encouraging student classroom participation and for motivating student learning beyond the classroom. Participation in classroom discussion encourages students to become active collaborators in the learning process, while at the same time providing instructors with a practical method of assessing student learning. Classroom discussion is an effective tool for developing higher-level cognitive skills like critical thinking. Despite the potential discussion holds for student learning, many in academia lament the lack of participation in the classroom. The lack of student participation in classroom discussion is not a recent problem; it is one that has frustrated instructors for decades. Instructors report that some of the more current methods for encouraging classroom discussion can be exasperating and at times non-productive. This two-year study of 510 college and university students provides insight into the reasons why some students do not participate in classroom discussion. This study, which also elicited input from sixteen college and university professors and two high school teachers, offers some suggestions for creating and encouraging an environment conducive to student participation in the classroom.

  13. Synthetic Biology and Human Health: Potential Applications for Spaceflight

    Karouia, Fathi; Carr, Christopher; Cai, Yizhi; Chen, Y.; Grenon, Marlene; Larios-Sanz, Maia; Jones, Jeffrey A.; Santos, Orlando

    2011-01-01

    Human space travelers experience a unique environment that affects homeostasis and physiologic adaptation. Spaceflight-related changes have been reported in the musculo-skeletal, cardiovascular, neurovestibular, endocrine, and immune systems. The spacecraft environment further subjects the traveler to noise and gravitational forces, as well as airborne chemical, microbiological contaminants, and radiation exposure. As humans prepare for longer duration missions effective countermeasures must be developed, verified, and implemented to ensure mission success. Over the past ten years, synthetic biology has opened new avenues for research and development in areas such as biological control, biomaterials, sustainable energy production, bioremediation, and biomedical therapies. The latter in particular is of great interest to the implementation of long-duration human spaceflight capabilities. This article discusses the effects of spaceflight on humans, and reviews current capabilities and potential needs associated with the health of the astronauts where synthetic biology could play an important role in the pursuit of space exploration.

  14. RBC micromotors carrying multiple cargos towards potential theranostic applications

    Wu, Zhiguang; Esteban-Fernández de Ávila, Berta; Martín, Aída; Christianson, Caleb; Gao, Weiwei; Thamphiwatana, Soracha Kun; Escarpa, Alberto; He, Qiang; Zhang, Liangfang; Wang, Joseph

    2015-08-01

    Red blood cell (RBC)-based micromotors containing both therapeutic and diagnostic modalities are described as a means for potential theranostic applications. In this natural RBC-based multicargo-loaded micromotor system, quantum dots (QDs), anti-cancer drug doxorubicin (DOX), and magnetic nanoparticles (MNPs), were co-encapsulated into RBC micromotors. The fluorescent emission of both QDs and DOX provides direct visualization of their loading inside the RBC motors at two distinct wavelengths. The presence of MNPs within the RBCs allows for efficient magnetic guidance under ultrasound propulsion along with providing the potential for magnetic resonance imaging. The simultaneous encapsulation of the imaging nanoparticles and therapeutic payloads within the same RBC micromotor has a minimal effect upon its propulsion behavior. The ability of the RBC micromotors to transport imaging and therapeutic agents at high speed and spatial precision through a complex microchannel network is also demonstrated. Such ability to load and transport diagnostic imaging agents and therapeutic drugs within a single cell-based motor, in addition to a lower toxicity observed once the drug is encapsulated within the multicargo RBC motor, opens the door to the development of theranostic micromotors that may simultaneously treat and monitor diseases.Red blood cell (RBC)-based micromotors containing both therapeutic and diagnostic modalities are described as a means for potential theranostic applications. In this natural RBC-based multicargo-loaded micromotor system, quantum dots (QDs), anti-cancer drug doxorubicin (DOX), and magnetic nanoparticles (MNPs), were co-encapsulated into RBC micromotors. The fluorescent emission of both QDs and DOX provides direct visualization of their loading inside the RBC motors at two distinct wavelengths. The presence of MNPs within the RBCs allows for efficient magnetic guidance under ultrasound propulsion along with providing the potential for magnetic

  15. SAR China Land Mapping Project: Development, Production and Potential Applications

    Zhang, Lu; Guo, Huadong; Liu, Guang; Fu, Wenxue; Yan, Shiyong; Song, Rui; Ji, Peng; Wang, Xinyuan

    2014-01-01

    Large-area, seamless synthetic aperture radar (SAR) mosaics can reflect overall environmental conditions and highlight general trends in observed areas from a macroscopic standpoint, and effectively support research at the global scale, which is in high demand now across scientific fields. The SAR China Land Mapping Project (SCLM), supported by the Digital Earth Science Platform Project initiated and managed by the Center for Earth Observation and Digital Earth, Chinese Academy of Sciences (CEODE), is introduced in this paper. This project produced a large-area SAR mosaic dataset and generated the first complete seamless SAR map covering the entire land area of China using EnviSat-ASAR images. The value of the mosaic map is demonstrated by some potential applications in studies of urban distribution, rivers and lakes, geologic structures, geomorphology and paleoenvironmental change

  16. Fenugreek: Potential Applications as a Functional Food and Nutraceutical

    Nasim Khorshidian

    2016-02-01

    Full Text Available Fenugreek (Trigonella  foenum graecum, native to southern Europe and Asia, is an annual herb with white flowers and hard, yellowish brown and angular seeds, known from ancient times, for nutritional value beside of its medicinal effects. Fenugreek seeds are rich source of gum, fiber, alkaloids, flavonoids, saponins and volatile content. Due to its high content of fiber, fenugreek could be used as food stabilizer, adhesive and emulsifying agent to change food texture for some special purposes. Some evidence suggests that fenugreek may also be regarded as antidiabetic, anticarcinogenic, antioxidant, antibacterial agent, antianorexia agent, and gastric stimulant, as well as remedy for hypocholesterolemia and hypoglycemia. The present article is aimed to review the potential applications of fenugreek as a functional food and nutraceutical agent.

  17. Potential applications of optical coherence tomography angiography in glaucoma.

    Dastiridou, Anna; Chopra, Vikas

    2018-05-01

    Optical coherence tomography angiography (OCTA) is a novel, noninvasive imaging modality that allows assessment of the retinal and choroidal vasculature. The scope of this review is to summarize recent studies using OCTA in glaucoma and highlight potential applications of this new technology in the field of glaucoma. OCTA studies have shown that retinal vascular changes may not develop solely as a result of advanced glaucoma damage. OCTA-derived measurements have provided evidence for lower retinal vascular densities at the optic nerve head, peripapillary and macula in preperimetric-glaucoma and early-glaucoma, as well as, in more advanced glaucoma, in comparison to with normal eyes. OCTA is a novel imaging modality that has already started to expand our knowledge base regarding the role of ocular blood flow in glaucoma. Future studies will better elucidate the role of OCTA-derived measurements in clinical practice, research, and clinical trials in glaucoma.

  18. Recombinant Protein Production of Earthworm Lumbrokinase for Potential Antithrombotic Application

    Kevin Yueju Wang

    2013-01-01

    Full Text Available Earthworms have been used as a traditional medicine in China, Japan, and other Far East countries for thousands of years. Oral administration of dry earthworm powder is considered as a potent and effective supplement for supporting healthy blood circulation. Lumbrokinases are a group of enzymes that were isolated and purified from different species of earthworms. These enzymes are recognized as fibrinolytic agents that can be used to treat various conditions associated with thrombosis. Many lumbrokinase (LK genes have been cloned and characterized. Advances in genetic technology have provided the ability to produce recombinant LK and have made it feasible to purify a single lumbrokinase enzyme for potential antithrombotic application. In this review, we focus on expression systems that can be used for lumbrokinase production. In particular, the advantages of using a transgenic plant system to produce edible lumbrokinase are described.

  19. An introduction to metabolomics and its potential application in veterinary science.

    Jones, Oliver A H; Cheung, Victoria L

    2007-10-01

    Metabolomics has been found to be applicable to a wide range of fields, including the study of gene function, toxicology, plant sciences, environmental analysis, clinical diagnostics, nutrition, and the discrimination of organism genotypes. This approach combines high-throughput sample analysis with computer-assisted multivariate pattern-recognition techniques. It is increasingly being deployed in toxico- and pharmacokinetic studies in the pharmaceutical industry, especially during the safety assessment of candidate drugs in human medicine. However, despite the potential of this technique to reduce both costs and the numbers of animals used for research, examples of the application of metabolomics in veterinary research are, thus far, rare. Here we give an introduction to metabolomics and discuss its potential in the field of veterinary science.

  20. β-pyrophosphate: A potential biomaterial for dental applications

    Anastasiou, A.D., E-mail: a.anastasiou@leeds.ac.uk [School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Strafford, S. [Leeds Dental School, Worsley Building, University of Leeds, Leeds LS2 9JT (United Kingdom); Posada-Estefan, O. [Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, LS2 9JT (United Kingdom); Thomson, C.L. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom); Hussain, S.A. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom); Cambridge Graphene Centre, Engineering Department, University of Cambridge, 9, JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Edwards, T.J. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom); Malinowski, M. [Leeds Dental School, Worsley Building, University of Leeds, Leeds LS2 9JT (United Kingdom); Hondow, N. [School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Metzger, N.K.; Brown, C.T.A. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom); Routledge, M.N. [Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, LS2 9JT (United Kingdom); Brown, A.P. [School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Duggal, M.S. [Leeds Dental School, Worsley Building, University of Leeds, Leeds LS2 9JT (United Kingdom); Jha, A. [School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2017-06-01

    Tooth hypersensitivity is a growing problem affecting both the young and ageing population worldwide. Since an effective and permanent solution is not yet available, we propose a new methodology for the restoration of dental enamel using femtosecond lasers and novel calcium phosphate biomaterials. During this procedure the irradiated mineral transforms into a densified layer of acid resistant iron doped β-pyrophosphate, bonded with the surface of eroded enamel. Our aim therefore is to evaluate this densified mineral as a potential replacement material for dental hard tissue. To this end, we have tested the hardness of β-pyrophosphate pellets (sintered at 1000 °C) and its mineral precursor (brushite), the wear rate during simulated tooth-brushing trials and the cytocompatibility of these minerals in powder form. It was found that the hardness of the β-pyrophosphate pellets is comparable with that of dental enamel and significantly higher than dentine while, the brushing trials prove that the wear rate of β-pyrophosphate is much slower than that of natural enamel. Finally, cytotoxicity and genotoxicity tests suggest that iron doped β-pyrophosphate is cytocompatible and therefore could be used in dental applications. Taken together and with the previously reported results on laser irradiation of these materials we conclude that iron doped β-pyrophosphate may be a promising material for restoring acid eroded and worn enamel. - Highlights: • A novel procedure for the restoration of dental enamel is introduced. • Fe-doped ß-pyrophosphate is evaluated as potential biomaterial for enamel restoration. • Fe-doped ß-pyrophosphate found to have the same hardness as natural enamel and dramatically lower wear rate. • Cytotoxicity and genotoxicity tests suggest that Fe-doped ß-pyrophosphate is safe for dental applications.

  1. β-pyrophosphate: A potential biomaterial for dental applications

    Anastasiou, A.D.; Strafford, S.; Posada-Estefan, O.; Thomson, C.L.; Hussain, S.A.; Edwards, T.J.; Malinowski, M.; Hondow, N.; Metzger, N.K.; Brown, C.T.A.; Routledge, M.N.; Brown, A.P.; Duggal, M.S.; Jha, A.

    2017-01-01

    Tooth hypersensitivity is a growing problem affecting both the young and ageing population worldwide. Since an effective and permanent solution is not yet available, we propose a new methodology for the restoration of dental enamel using femtosecond lasers and novel calcium phosphate biomaterials. During this procedure the irradiated mineral transforms into a densified layer of acid resistant iron doped β-pyrophosphate, bonded with the surface of eroded enamel. Our aim therefore is to evaluate this densified mineral as a potential replacement material for dental hard tissue. To this end, we have tested the hardness of β-pyrophosphate pellets (sintered at 1000 °C) and its mineral precursor (brushite), the wear rate during simulated tooth-brushing trials and the cytocompatibility of these minerals in powder form. It was found that the hardness of the β-pyrophosphate pellets is comparable with that of dental enamel and significantly higher than dentine while, the brushing trials prove that the wear rate of β-pyrophosphate is much slower than that of natural enamel. Finally, cytotoxicity and genotoxicity tests suggest that iron doped β-pyrophosphate is cytocompatible and therefore could be used in dental applications. Taken together and with the previously reported results on laser irradiation of these materials we conclude that iron doped β-pyrophosphate may be a promising material for restoring acid eroded and worn enamel. - Highlights: • A novel procedure for the restoration of dental enamel is introduced. • Fe-doped ß-pyrophosphate is evaluated as potential biomaterial for enamel restoration. • Fe-doped ß-pyrophosphate found to have the same hardness as natural enamel and dramatically lower wear rate. • Cytotoxicity and genotoxicity tests suggest that Fe-doped ß-pyrophosphate is safe for dental applications.

  2. The use and potential application of electron accelerator in Indonesia

    Danu, Sugiarto

    2003-01-01

    The use of electron accelerator in Indonesia for research and development, radiation services, commercial purposes and potential application in the future is described. A pilot plant for radiation curing technology particularly for wood surface coating using low energy electron accelerator (300 keV, 50 mA; installed in 1984) and a EBM GJ 2 (2 MeV, 10 mA, installed in 1994) for R and D of crosslinking process such as wire and cable and heat shrinkable tube and sheets in Center for Research and Development of Isotopes and Radiation Technology, Jakarta, and also a low energy electron accelerator (installed in 1998) in a private company, PT Gajah Tunggai, are being mainly used. Their performances are presented with activities achieved in the fields of wood surface coating, vulcanization of natural rubber latex, grafting of polyethylene terephthalate (PET), radiation sterilization, degradation of cellulose and, as promising applications, radiation curing for composite production and uses for environmental preservation are introduced. (S. Ohno)

  3. The use and potential application of electron accelerator in Indonesia

    Danu, Sugiarto [National Nuclear Energy Agency, Center for Research and Development of Isotopes and Radiation Technology, Jakarta (Indonesia)

    2003-02-01

    The use of electron accelerator in Indonesia for research and development, radiation services, commercial purposes and potential application in the future is described. A pilot plant for radiation curing technology particularly for wood surface coating using low energy electron accelerator (300 keV, 50 mA; installed in 1984) and a EBM GJ 2 (2 MeV, 10 mA, installed in 1994) for R and D of crosslinking process such as wire and cable and heat shrinkable tube and sheets in Center for Research and Development of Isotopes and Radiation Technology, Jakarta, and also a low energy electron accelerator (installed in 1998) in a private company, PT Gajah Tunggai, are being mainly used. Their performances are presented with activities achieved in the fields of wood surface coating, vulcanization of natural rubber latex, grafting of polyethylene terephthalate (PET), radiation sterilization, degradation of cellulose and, as promising applications, radiation curing for composite production and uses for environmental preservation are introduced. (S. Ohno)

  4. Potential application of biodrying to treat solid waste

    Zaman, Badrus; Oktiawan, Wiharyanto; Hadiwidodo, Mochtar; Sutrisno, Endro; Purwono; Wardana, Irawan Wisnu

    2018-02-01

    The generation of solid waste around the world creates problems if not properly managed. The method of processing solid waste by burning or landfill is currently not optimal. The availability of land where the final processing (TPA) is critical, looking for a new TPA alternative will be difficult and expensive, especially in big cities. The processing of solid waste using bio drying technology has the potential to produce renewable energy and prevention of climate change. Solid waste processing products can serve as Refuse Derived Fuel (RDF), reduce water content of solid waste, meningkatkan kualitas lindi and increase the amount of recycled solid waste that is not completely separated from home. Biodrying technology is capable of enhancing the partial disintegration and hydrolysis of macromolecule organic compounds (such as C-Organic, cellulose, hemicellulose, lignin, total nitrogen). The application of biodrying has the potential to reduce greenhouse gas emissions such as carbon dioxide (CO2), methane (CH4), and dinitrooksida (N2O). These gases cause global warming.

  5. RBC micromotors carrying multiple cargos towards potential theranostic applications.

    Wu, Zhiguang; Esteban-Fernández de Ávila, Berta; Martín, Aída; Christianson, Caleb; Gao, Weiwei; Thamphiwatana, Soracha Kun; Escarpa, Alberto; He, Qiang; Zhang, Liangfang; Wang, Joseph

    2015-08-28

    Red blood cell (RBC)-based micromotors containing both therapeutic and diagnostic modalities are described as a means for potential theranostic applications. In this natural RBC-based multicargo-loaded micromotor system, quantum dots (QDs), anti-cancer drug doxorubicin (DOX), and magnetic nanoparticles (MNPs), were co-encapsulated into RBC micromotors. The fluorescent emission of both QDs and DOX provides direct visualization of their loading inside the RBC motors at two distinct wavelengths. The presence of MNPs within the RBCs allows for efficient magnetic guidance under ultrasound propulsion along with providing the potential for magnetic resonance imaging. The simultaneous encapsulation of the imaging nanoparticles and therapeutic payloads within the same RBC micromotor has a minimal effect upon its propulsion behavior. The ability of the RBC micromotors to transport imaging and therapeutic agents at high speed and spatial precision through a complex microchannel network is also demonstrated. Such ability to load and transport diagnostic imaging agents and therapeutic drugs within a single cell-based motor, in addition to a lower toxicity observed once the drug is encapsulated within the multicargo RBC motor, opens the door to the development of theranostic micromotors that may simultaneously treat and monitor diseases.

  6. Novel and potential application of cryopreservation to plant genetic transformation.

    Wang, Biao; Zhang, Zhibo; Yin, Zhenfang; Feng, Chaohong; Wang, Qiaochun

    2012-01-01

    The world population now is 6.7 billion and is predicted to reach 9 billion by 2050. Such a rapid growing population has tremendously increased the challenge for food security. Obviously, it is impossible for traditional agriculture to ensure the food security, while plant biotechnology offers considerable potential to realize this goal. Over the last 15 years, great benefits have been brought to sustainable agriculture by commercial cultivation of genetically modified (GM) crops. Further development of new GM crops will with no doubt contribute to meeting the requirements for food by the increasing population. The present article provides updated comprehensive information on novel and potential application of cryopreservation to genetic transformation. The major progresses that have been achieved in this subject include (1), long-term storage of a large number of valuable plant genes, which offers a good potential for further development of novel cultivars by genetic transformation; (2), retention of regenerative capacity of embryogenic tissues and protoplasts, which ensures efficient plant regeneration system for genetic transformation; (3), improvement of transformation efficiency and plant regeneration of transformed cells; (4), long-term preservation of transgenic materials with stable expression of transgenes and productive ability of recombinant proteins, which allows transgenic materials to be stored in a safe manner before being analyzed and evaluated, and allows establishment of stable seed stocks for commercial production of homologous proteins. Data provided in this article clearly demonstrate that cryo-technique has an important role to play in the whole chain of genetic transformation. Further studies coupling cryotechnique and genetic transformation are expected to significantly improve development of new GM crops. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Insights into lignin degradation and its potential industrial applications.

    Abdel-Hamid, Ahmed M; Solbiati, Jose O; Cann, Isaac K O

    2013-01-01

    Lignocellulose is an abundant biomass that provides an alternative source for the production of renewable fuels and chemicals. The depolymerization of the carbohydrate polymers in lignocellulosic biomass is hindered by lignin, which is recalcitrant to chemical and biological degradation due to its complex chemical structure and linkage heterogeneity. The role of fungi in delignification due to the production of extracellular oxidative enzymes has been studied more extensively than that of bacteria. The two major groups of enzymes that are involved in lignin degradation are heme peroxidases and laccases. Lignin-degrading peroxidases include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), and dye-decolorizing peroxidase (DyP). LiP, MnP, and VP are class II extracellular fungal peroxidases that belong to the plant and microbial peroxidases superfamily. LiPs are strong oxidants with high-redox potential that oxidize the major non-phenolic structures of lignin. MnP is an Mn-dependent enzyme that catalyzes the oxidation of various phenolic substrates but is not capable of oxidizing the more recalcitrant non-phenolic lignin. VP enzymes combine the catalytic activities of both MnP and LiP and are able to oxidize Mn(2+) like MnP, and non-phenolic compounds like LiP. DyPs occur in both fungi and bacteria and are members of a new superfamily of heme peroxidases called DyPs. DyP enzymes oxidize high-redox potential anthraquinone dyes and were recently reported to oxidize lignin model compounds. The second major group of lignin-degrading enzymes, laccases, are found in plants, fungi, and bacteria and belong to the multicopper oxidase superfamily. They catalyze a one-electron oxidation with the concomitant four-electron reduction of molecular oxygen to water. Fungal laccases can oxidize phenolic lignin model compounds and have higher redox potential than bacterial laccases. In the presence of redox mediators, fungal laccases can oxidize non

  8. Stratospheric changes caused by geoengineering applications: potential repercussions and uncertainties

    Kenzelmann, P.; Weisenstein, D.; Peter, T.; Luo, B. P.; Rozanov, E.; Fueglistaler, S.; Thomason, L. W.

    2009-04-01

    Anthropogenic greenhouse gas emissions tend to warm the global climate, calling for significant rapid emission reductions. As potential support measures various ideas for geoengineering are currently being discussed. The assessment of the possible manifold and as yet substantially unexplored repercussions of implementing geoengineering ideas to ameliorate climate change poses enormous challenges not least in the realm of aerosol-cloud-climate interactions. Sulphur aerosols cool the Earth's surface by reflecting short wave radiation. By increasing the amount of sulphur aerosols in the stratosphere, for example by sulphur dioxide injections, part of the anthropogenic climate warming might be compensated due to enhanced albedo. However, we are only at the beginning of understanding possible side effects. One such effect that such aerosol might have is the warming of the tropical tropopause and consequently the increase of the amount of stratospheric water vapour. Using the 2D AER Aerosol Model we calculated the aerosol distributions for yearly injections of 1, 2, 5 and 10 Mt sulphur into the lower tropical stratosphere. The results serve as input for the 3D chemistry-climate model SOCOL, which allows calculating the aerosol effect on stratospheric temperatures and chemistry. In the injection region the continuously formed sulphuric acid condensates rapidly on sulphate aerosol, which eventually grow to such extent that they sediment down to the tropical tropopause region. The growth of the aerosol particles depends on non-linear processes: the more sulphur is emitted the faster the particles grow. As a consequence for the scenario with continuous sulphur injection of totally 10 Mt per year, only 6 Mt sulphur are in the stratosphere if equilibrium is reached. According to our model calculations this amount of sulphate aerosols leads to a net surface forcing of -3.4 W/m2, which is less then expected radiative forcing by doubling of carbon dioxide concentration. Hence

  9. Session 1 - discussion

    Wells, C.; Richards, K.M.; McKerrow, J.F.

    1991-01-01

    This discussion session of the Landfill Gas-Energy and Environment 90 Conference covered the landfill gas potential, the setting up of the Non-Fossil Fuel Obligation; anticipated developments in the post 1998 period, the problem of smell for those who live near a landfill, and the length of time a landfill site is productive in terms of gas evolution. Relevant regulations in California are briefly discussed. (author)

  10. Potential applications of plasma science techniques for water treatment systems

    Pavlik, D.

    1994-01-01

    The historical evolution of water treatment techniques and their impact on man and his environment are presented. Ancient man recognized the relationship between good water and good health. However, it was not until the late 1800's that man's own contribution to the pollution of water via biological and chemical contamination of the water stream was recognized as having adverse affects on water quality. Since that time virtually every nation has adopted laws and regulations to ensure that safe sources of unpolluted water are available to its citizens. In the United States, water quality is governed by the Clean Water Act of 1972 administered at the federal level by the Environmental Protection Agency (EPA). Further, each state has established its equivalent agency which administers its own laws and regulations. Different biological and chemical biohazards present in the water system are discussed. Biological contaminants include various types of viruses, bacteria, fungii, molds, yeasts, algae, amoebas, and parasites. Chemical contaminates include elemental heavy metals and other organic and inorganic compounds which interfere with normal biological functions. Conventional water treatments for both consumption and sewage effluent commonly employ four different principals: mechanical filtration, quiescent gravity settling, biological oxidation, and chemical treatment. Although these techniques have greatly reduced the incidence of water-borne disease recent studies suggest that more effective means of eliminating biohazards are needed. Regulatory requirements for more aggressive treatment and elimination of residual contaminants present a significant opportunity for the application of various forms of electromagnetic radiation techniques. A comparison between conventional techniques and more advanced methods using various forms of electromagnetic radiation is discussed

  11. Discussion on the applicability of entropy generation minimization and entransy theory to the evaluation of thermodynamic performance for heat pump systems

    Cheng, XueTao; Liang, XinGang

    2014-01-01

    Highlights: • Seven parameters are applied to the analyses of heat pump systems. • Applicability of entropy generation minimization and entransy theory is discussed. • All concepts except for entransy increase rate (EI) decreases with increasing COP. • Only EI increases with increasing heat flow into the high temperature heat sink. • Applicability of both theories is conditional, depending on the objectives. - Abstract: Based on the entropy generation minimization and entransy theory, we discuss the applicability of the concepts of entropy generation rate, entropy generation number, revised entropy generation number, exergy efficiency, entransy increase rate, entransy increase coefficient and entransy efficiency to the analyses of heat pump systems in this paper. The theoretical analyses show that all the concepts except for the entransy increase rate decrease monotonically with increasing COP, while only the entransy increase rate increases monotonically with increasing heat flow pumped into the high temperature heat sink. It is shown that the entransy increase rate is not as convenient as the other concepts for the COP analyses, while it is suitable for the analyses of the heat flow into the high temperature heat sources. Some numerical examples are also presented, and the results have verified the theoretical analyses. Therefore, the applicability of entropy generation minimization and entransy theory to the analyses of heat pump systems is conditional, depending on the design objectives

  12. MAGNETIC BACTERIA AND THEIR POTENTIAL APPLICATIONS: A REVIEW ARTICLE

    Sara Rajab Eljmeli

    2017-03-01

    Full Text Available Introduction: This outline explores the scientific discovery concerning the magnetotactic bacteria (MTB. The results of the discovery are used in microbiology, mineralogy, limnology, physics, biophysics, chemistry, biochemistry, geology, crystallography, and astrobiology. Magnetosomes of the MTB are organized in linear chains and orient the cell body along geomagnetic field lines while flagella actively propel the cells, resulting in so-called magnetotaxis. Materials and Methods: The review article about the magnetotactic bacteria is a collection of many research papers from different institutes. The emerging important points about this review lie in: (1 any biological system is capable of producing magnetic biomaterials such as magnetite (Fe3O4 and gregite (Fe3S4; (2 the navigation of these nano-crystals in the biological system is interconnected with the Earth’s magnetic field. Results: The researchers involved in the study have shown that the magnetotactic bacteria do respond to a magnetic field. This makes them attractive for biomedical and industrial applications because of the availability of superior electromagnets, superconducting magnets and permanent magnet. Magnetic bacteria can also be used as a diagnostic tool in the detection of imperfections even at the nanoscale. Discussion and Conclusions: Although the importance of this issue is still limitedly used in medical area, more performance is necessary to explore the world of these bacteria that are candidate for new industry and new therapy strategies in biotechnology and medical fields.

  13. Preparation of Laponite Bioceramics for Potential Bone Tissue Engineering Applications

    Li, Kai; Ju, Yaping; Li, Jipeng; Zhang, Yongxing; Li, Jinhua; Liu, Xuanyong; Shi, Xiangyang; Zhao, Qinghua

    2014-01-01

    We report a facile approach to preparing laponite (LAP) bioceramics via sintering LAP powder compacts for bone tissue engineering applications. The sintering behavior and mechanical properties of LAP compacts under different temperatures, heating rates, and soaking times were investigated. We show that LAP bioceramic with a smooth and porous surface can be formed at 800°C with a heating rate of 5°C/h for 6 h under air. The formed LAP bioceramic was systematically characterized via different methods. Our results reveal that the LAP bioceramic possesses an excellent surface hydrophilicity and serum absorption capacity, and good cytocompatibility and hemocompatibility as demonstrated by resazurin reduction assay of rat mesenchymal stem cells (rMSCs) and hemolytic assay of pig red blood cells, respectively. The potential bone tissue engineering applicability of LAP bioceramic was explored by studying the surface mineralization behavior via soaking in simulated body fluid (SBF), as well as the surface cellular response of rMSCs. Our results suggest that LAP bioceramic is able to induce hydroxyapatite deposition on its surface when soaked in SBF and rMSCs can proliferate well on the LAP bioceramic surface. Most strikingly, alkaline phosphatase activity together with alizarin red staining results reveal that the produced LAP bioceramic is able to induce osteoblast differentiation of rMSCs in growth medium without any inducing factors. Finally, in vivo animal implantation, acute systemic toxicity test and hematoxylin and eosin (H&E)-staining data demonstrate that the prepared LAP bioceramic displays an excellent biosafety and is able to heal the bone defect. Findings from this study suggest that the developed LAP bioceramic holds a great promise for treating bone defects in bone tissue engineering. PMID:24955961

  14. The pectinases from Sphenophorus levis: Potential for biotechnological applications.

    Habrylo, Olivier; Evangelista, Danilo Elton; Castilho, Priscila Vasques; Pelloux, Jérôme; Henrique-Silva, Flávio

    2018-06-01

    Pectinases represent about one fifth of the enzyme worldwide market due their wide range of biotechnological applications. Current commercial pectinases are exclusively obtained from microbial sources, but here we report a pectin methylesterase (Sl-PME) and an endo-polygalacturonase (Sl-EPG) bioprospected from the sugarcane weevil, Sphenophorus levis, which revealed good potential for industrial applications. Sl-PME and Sl-EPG were overexpressed in Pichia pastoris, purified and enzymatically characterized. Sl-EPG presents optimal activity at pH 4-5 and 50 °C, showing that it can be used for juice extraction and clarification. On the other hand, Sl-PME presents optimal activity at pH 6-8 and 40 °C, and thus, suitable for both acidic and alkaline processing, such as coffee and tea fermentation. Sl-EPG shows V max  = 3.23 mM/min, K M  = 2.4 g/L and k cat  = 418.6 s -1 . While Sl-PME shows V max  = 0.14 mM/min, K M  = 4.1 g/L and k cat  = 1.7 s -1 . A PG inhibitor (PGIP2) weakly interfered in the Sl-EPG activity and Sl-PME was not affected by a usual PME inhibitor. Moreover, these enzymes manifested synergistic action towards methylesterified pectin. Here, we propose these enzymes as novel alternative tools for the current commercial pectinases. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Mechanically Reconfigurable Microstrip Lines Loaded with Stepped Impedance Resonators and Potential Applications

    J. Naqui

    2014-01-01

    Full Text Available This paper is focused on exploring the possibilities and potential applications of microstrip transmission lines loaded with stepped impedance resonators (SIRs etched on top of the signal strip, in a separated substrate. It is shown that if the symmetry plane of the line (a magnetic wall is perfectly aligned with the electric wall of the SIR at the fundamental resonance, the line is transparent. However, if symmetry is somehow ruptured, a notch in the transmission coefficient appears. The notch frequency and depth can thus be mechanically controlled, and this property can be of interest for the implementation of sensors and barcodes, as it is discussed.

  16. A review of the industrial and recent potential applications of trioctylphosphine oxide

    Watson, E.K.; Rickelton, W.A.

    1992-01-01

    The industrial applications of trioctylphosphine oxide, more commonly known as TOPO, make use of its complexing powers with metals and with hydrogen donor organic compounds. Commercial uses as a solvent extraction reagent are in the recovery of uranium from wet process phosphoric acid and in the recovery of byproduct acetic acid and furfural generated during sulphite wood pulping. Recently investigated potential uses include the separation of niobium from tantalum and the extraction of organic compounds, such as citric acid, from fermentation broths. Each process is discussed briefly. 29 refs., 2 figs

  17. Potential applications for halloysite nanotubes based drug delivery systems

    Sun, Lin

    could be released in a sustained manner; (2) cytotoxicity test confirmed the biocompatibility of HNTs and methotrexate coated HNTs; (3) proliferation test confirmed the growth inhibition of released methotrexate on osteosarcoma cells; and (4) nylon-6 could prolong the sustained release of methotrexate from polyelectrolytes coated HNTs. Another application comes from the prevention of surgical site infection. It is a common complication in surgery, which may prolong hospital stay, increase mortality rate, and cause additional financial burden for patients. By directly releasing antibiotics at the surgical site, it is supposed to enhance the drug efficacy and improve the treatment outcome. Therefore, the same HNTs based system was tested with E. coli in vitro to show the potential of delivering antibiotics to enhance the prevention of surgical site infection. Nitrofurantoin was incorporated within HNTs using the layer-by-layer coating technique, and the drug coated HNTs were filled into nylon-6 again. Results showed that (1) nitrofurantoin could be incorporated with this HNTs based drug delivery system, and released in a sustained manner; (2) nylon-6 could prolong the sustained release of nitrofurantoin from polyelectrolytes coated HNTs; and (3) released nitrofurantoin could severely inhibit E. coil growth. Therefore, a tunable drug delivery system based on HNTs was developed, and a great potential of medical application in drug delivery was shown.

  18. Configuration and technology implications of potential nuclear hydrogen system applications.

    Conzelmann, G.; Petri, M.; Forsberg, C.; Yildiz, B.; ORNL

    2005-11-05

    Nuclear technologies have important distinctions and potential advantages for large-scale generation of hydrogen for U.S. energy services. Nuclear hydrogen requires no imported fossil fuels, results in lower greenhouse-gas emissions and other pollutants, lends itself to large-scale production, and is sustainable. The technical uncertainties in nuclear hydrogen processes and the reactor technologies needed to enable these processes, as well waste, proliferation, and economic issues must be successfully addressed before nuclear energy can be a major contributor to the nation's energy future. In order to address technical issues in the time frame needed to provide optimized hydrogen production choices, the Nuclear Hydrogen Initiative (NHI) must examine a wide range of new technologies, make the best use of research funding, and make early decisions on which technology options to pursue. For these reasons, it is important that system integration studies be performed to help guide the decisions made in the NHI. In framing the scope of system integration analyses, there is a hierarchy of questions that should be addressed: What hydrogen markets will exist and what are their characteristics? Which markets are most consistent with nuclear hydrogen? What nuclear power and production process configurations are optimal? What requirements are placed on the nuclear hydrogen system? The intent of the NHI system studies is to gain a better understanding of nuclear power's potential role in a hydrogen economy and what hydrogen production technologies show the most promise. This work couples with system studies sponsored by DOE-EE and other agencies that provide a basis for evaluating and selecting future hydrogen production technologies. This assessment includes identifying commercial hydrogen applications and their requirements, comparing the characteristics of nuclear hydrogen systems to those market requirements, evaluating nuclear hydrogen configuration options

  19. On the potential and economic feasibility of solar industrial process-heat applications in selected Turkish industries

    Ozdogan, S.; Arikol, M.

    1992-01-01

    We discuss the potential and economic feasibility of solar, industrial process-heat applications in the Turkish food, textile and chemical industries. The study covers 18 sites and end-use temperatures up to 120 and 150 o C. A solar system composed of parabolic troughs without thermal storage is chosen. The system size investigated is 500 to 20,000m 2 . (author)

  20. A comparison of propulsion systems for potential space mission applications

    Harvego, E.A.; Sulmeisters, T.K.

    1987-01-01

    A derivative of the NERVA nuclear rocket engine was compared with a chemical propulsion system and a nuclear electric propulsion system to assess the relative capabilities of the different propulsion system options for three potential space missions. The missions considered were (1) orbital transfer from low earth orbit (LEO) to geosynchronous earth orbit (GEO), (2) LEO to a lunar base, and (3) LEO to Mars. The results of this comparison indicate that the direct-thrust NERVA-derivative nuclear rocket engine has the best performance characteristics for the missions considered. The combined high thrust and high specific impulse achievable with a direct-thrust nuclear stage permits short operating times (transfer times) comparable to chemical propulsion systems, but with considerably less required propellant. While nuclear-electric propulsion systems are more fuel efficient than either direct-nuclear or chemical propulsion, they are not stand-alone systems, since their relatively low thrust levels require the use of high-thrust ferry or lander stages in high gravity applications such as surface-to-orbit propulsion. The extremely long transfer times and inefficient trajectories associated with electric propulsion systems were also found to be a significant drawback

  1. Potential application of combisystem for an Australian climatic region

    Halawa, E.; Bruno, F.; Saman, W. [Sustainable Energy Centre, Univ. of South Australia, Mawson Lakes, Adelaide (Australia)

    2008-07-01

    Australian climate is characterised by its more sunny days with mild winter condition compared to Europe. Solar water heating systems have been in the market for many years to provide domestic hot water to main cities in Australia. The market for these systems have been constantly growing and relevant Australian Standards have been developed. This trend is expected to remain in the near future. The paper reports on the results of a recent numerical study on the potential application of a solar combisystem to provide both space heating and domestic hot water (DHW) for a two storey house in Adelaide, Australia. The house space heating requirement was estimated using AccuRate, a building energy rating software developed in Australia, whilst the domestic hot water requirement is based on the Australian Standard AS 4234. The system modelling was carried out using the TRNSYS simulation package. In the study, the thermal performance of flat plate and evacuated type collectors are compared. A number of factors such as effects of tank size, collector slopes and system configuration are investigated. (orig.)

  2. Fungal Ribotoxins: A Review of Potential Biotechnological Applications

    Miriam Olombrada

    2017-02-01

    Full Text Available Fungi establish a complex network of biological interactions with other organisms in nature. In many cases, these involve the production of toxins for survival or colonization purposes. Among these toxins, ribotoxins stand out as promising candidates for their use in biotechnological applications. They constitute a group of highly specific extracellular ribonucleases that target a universally conserved sequence of RNA in the ribosome, the sarcin-ricin loop. The detailed molecular study of this family of toxic proteins over the past decades has highlighted their potential in applied research. Remarkable examples would be the recent studies in the field of cancer research with promising results involving ribotoxin-based immunotoxins. On the other hand, some ribotoxin-producer fungi have already been studied in the control of insect pests. The recent role of ribotoxins as insecticides could allow their employment in formulas and even as baculovirus-based biopesticides. Moreover, considering the important role of their target in the ribosome, they can be used as tools to study how ribosome biogenesis is regulated and, eventually, may contribute to a better understanding of some ribosomopathies.

  3. Industrial potential for application of radiation curing in Pakistan

    Ahmed, S.

    1991-01-01

    Potential applications of radiation curing of coating are in the field of wood and wood products, drying of printing inks, ceramics (roof and floor tiles) and textiles. Pakistan a 'timber deficit' country needs to improve her wood, plywood, hardboard and particle board to make for shortage of quality wood. Imports of wood and wood products are in excess of 3000 million rupees. Radiation curing can be applied and itexcels over heat treatment. Whereas costs of high energy units (500 KeV) with scanning type are rather high, low energy (100-175 KeV) flat beam self-shielded units costing 200,000 US$ are available. For developing countries ultraviolet (UV) curing is ideally suited because of its low price, flexibility and simplicity in handling. Alternately, multipurpose bunker type facility such as 500 KeV current mA can be utilized in carrying out heat-shrinkables production, irradiation of cable and wire and curing of coatings on wood and wood products. (author)

  4. The ATLAS multi-user upgrade and potential applications

    Mustapha, B.; Nolen, J. A.; Savard, G.; Ostroumov, P. N.

    2017-12-01

    With the recent integration of the CARIBU-EBIS charge breeder into the ATLAS accelerator system to provide for more pure and efficient charge breeding of radioactive beams, a multi-user upgrade of the ATLAS facility is being proposed to serve multiple users simultaneously. ATLAS was the first superconducting ion linac in the world and is the US DOE low-energy Nuclear Physics National User Facility. The proposed upgrade will take advantage of the continuous-wave nature of ATLAS and the pulsed nature of the EBIS charge breeder in order to simultaneously accelerate two beams with very close mass-to-charge ratios; one stable from the existing ECR ion source and one radioactive from the newly commissioned EBIS charge breeder. In addition to enhancing the nuclear physics program, beam extraction at different points along the linac will open up the opportunity for other potential applications; for instance, material irradiation studies at ~ 1 MeV/u and isotope production at ~ 6 MeV/u or at the full ATLAS energy of ~ 15 MeV/u. The concept and proposed implementation of the ATLAS multi-user upgrade will be presented. Future plans to enhance the flexibility of this upgrade will also be presented.

  5. Potential applications of advanced information technology in emergency management

    Andersson, H.; Holmstrom, C.

    1987-01-01

    Within nuclear-, offshore- and petrochemical industries there is always a potential risk for severe incidents and accidents. It is a commonly shared belief that timely and correct decisions in these situations could either prevent an incident to develop into a severe accident or to mitigate the negative consequences of an accident. It is also a common belief that in those cases where poor decisions have been taken it has been because of insufficient access to information and expert knowledge when the decisions were taken. These are the background experiences for the joint Nordic research program on the use of advanced information technology in emergency preparedness organizations. Important initial research tasks in the program have been to identify and specify the needs for advanced information technology applications in emergency preparedness organizations. So far a couple of studies aiming for a needs assessment of advanced information technologies in nuclear power emergency preparedness organizations in Sweden and Finland have been completed. The conclusions from these studies are presented in this paper

  6. Applications of electron linacs to ADS: one potential path forward

    Wells, D.P.; Harmon, J.F.

    2011-01-01

    The application of electron linac accelerators to ADS systems offers a number of advantages for ADS applications. We propose a path forward with electron linac-driven ADS that takes advantage of those important ADS applications that are most easily achieved at relatively low cost, and then building on those successes to enable the more difficult applications with larger impact. We argue that the applications that are most easily achieved are medical isotope production, materials irradiation and environmental applications. The accelerator and target demands for each of these applications are essentially the same as for the ADS needs in energy production and the transmutation of waste. The successful demonstration of these important and highly-visible applications will, in turn, lead to greater visibility and funding to further major advances of ADS systems in energy production, nuclear waste transmutation, and applications to the thorium fuel cycle. (author)

  7. Development and potential applications of CRISPR-Cas9 genome editing technology in sarcoma.

    Liu, Tang; Shen, Jacson K; Li, Zhihong; Choy, Edwin; Hornicek, Francis J; Duan, Zhenfeng

    2016-04-01

    Sarcomas include some of the most aggressive tumors and typically respond poorly to chemotherapy. In recent years, specific gene fusion/mutations and gene over-expression/activation have been shown to drive sarcoma pathogenesis and development. These emerging genomic alterations may provide targets for novel therapeutic strategies and have the potential to transform sarcoma patient care. The RNA-guided nuclease CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein-9 nuclease) is a convenient and versatile platform for site-specific genome editing and epigenome targeted modulation. Given that sarcoma is believed to develop as a result of genetic alterations in mesenchymal progenitor/stem cells, CRISPR-Cas9 genome editing technologies hold extensive application potentials in sarcoma models and therapies. We review the development and mechanisms of the CRISPR-Cas9 system in genome editing and introduce its application in sarcoma research and potential therapy in clinic. Additionally, we propose future directions and discuss the challenges faced with these applications, providing concise and enlightening information for readers interested in this area. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. The applications of nanotechnology in cosmetic products – growth potential or potential hazard?

    Zh. N. Polova

    2013-10-01

    Full Text Available Introduction. Nanotechnology is the science of manipulating atoms and molecules in the nanoscale. Applications of nanotechnology are widely used in electronics and medicine and now are founded in the field of cosmetics (nanocosmetics. Nowadays cosmetology became science. Progress in the study of the physiology of the skin, the mechanisms of aging and skin diseases pathogenesis, allowed developers to create cosmetic products consciously based on the needs of the skin and the mechanisms of action of active components. However, there are debates over their toxicity. The aim. The aim of our study was to analyze scientific literature about types of nanomaterials used in cosmetics and the potential risks of nanoparticles. Materials and methods. Informational search about: different types of nanomaterials in cosmetics including nanosomes, liposomes, fullerenes, solid lipid nanoparticles and also toxicity and safety; in scientific editions, medical and pharmaceutical databases, and other web-resources was carried out. Results. There are currently exist two main uses for nanotechnology in cosmetics. First of all - use of nanoparticles as UV filters. Titanium dioxide and zinc oxide are the main compounds used in these applications. The second use is nanotechnology for delivery. Liposomes and nanosomes are used in the cosmetic industry as delivery vehicles. Scientists currently believe that these nanomaterials are unlikely to have a toxic effect on humans or ecosystems that differ them from the effect of the larger particles of other substances. However, these carrier systems can change the bioavailability and the toxicological behaviour of the agents that they transport. For several years, many studies assess the health risks of the nanomaterials. Toxicologists’ thoughts about approach to the safety assessment of nanomaterials vary greatly: some scientists suggest that nanomaterials should be considered as new substances and therefore careful study of

  9. In-Space Assembly Capability Assessment for Potential Human Exploration and Science Applications

    Jefferies, Sharon A.; Jones, Christopher A.; Arney, Dale C.; Stillwagen, Frederic H.; Chai, Patrick R.; Hutchinson, Craig D.; Stafford, Matthew A.; Moses, Robert W.; Dempsey, James A.; Rodgers, Erica M.; hide

    2017-01-01

    Human missions to Mars present several major challenges that must be overcome, including delivering multiple large mass and volume elements, keeping the crew safe and productive, meeting cost constraints, and ensuring a sustainable campaign. Traditional methods for executing human Mars missions minimize or eliminate in-space assembly, which provides a narrow range of options for addressing these challenges and limits the types of missions that can be performed. This paper discusses recent work to evaluate how the inclusion of in-space assembly in space mission architectural concepts could provide novel solutions to address these challenges by increasing operational flexibility, robustness, risk reduction, crew health and safety, and sustainability. A hierarchical framework is presented to characterize assembly strategies, assembly tasks, and the required capabilities to assemble mission systems in space. The framework is used to identify general mission system design considerations and assembly system characteristics by assembly strategy. These general approaches are then applied to identify potential in-space assembly applications to address each challenge. Through this process, several focus areas were identified where applications of in-space assembly could affect multiple challenges. Each focus area was developed to identify functions, potential assembly solutions and operations, key architectural trades, and potential considerations and implications of implementation. This paper helps to identify key areas to investigate were potentially significant gains in addressing the challenges with human missions to Mars may be realized, and creates a foundation on which to further develop and analyze in-space assembly concepts and assembly-based architectures.

  10. Discussion on the Application of Surround Sound in Television Music%浅析环绕声在电视音乐中的运用

    武咪咪

    2016-01-01

    This paper analyzes development and application of surround sound in television sound, and basic types and features of surround sound. Based on the features of television sound, this paper discusses the application of surround sound in different situations, and proposes that surround sound should be used properly.%分析目前环绕声技术在电视声音中的发展与应用状况、环绕声音乐的基本类型与特征,根据电视节目的音乐特点阐述环绕声在不同电视音乐中的运用,提出应恰当运用环绕声的观点。

  11. Flavonoid engineering of flax potentiate its biotechnological application

    Prescha Anna

    2011-01-01

    Full Text Available Abstract Background Flavonoids are a group of secondary plant metabolites important for plant growth and development. They show also a protective effect against colon and breast cancer, diabetes, hypercholesterolemic atherosclerosis, lupus nephritis, and immune and inflammatory reactions. Thus, overproduction of these compounds in flax by genetic engineering method might potentiate biotechnological application of these plant products. Results Flax plants of third generation overexpressing key genes of flavonoid pathway cultivated in field were used as plant material throughout this study. The biochemical properties of seed, oil and seedcake extracts and fibre from natural and transgenic flax plants were compared. The data obtained suggests that the introduced genes were stably inherited and expressed through plant generations. Overproduction of flavonoid compounds resulted in increase of fatty acids accumulation in oil from transgenic seeds due to protection from oxidation offered during synthesis and seed maturation. The biochemical analysis of seedcake extracts from seeds of transgenic flax revealed significant increase in flavonoids (kaempferol, phenolic acids (coumaric, ferulic, synapic acids and lignan content. Fibres, another product of flax plant showed increase in the level of catechine and acetylvanillone and decrease in phenolic acids upon flax modification. Biochemical analysis results were confirmed using IR spectroscopy. The integral intensities of IR bands have been used for identification of the component of phenylpropanoid pathway in oil, seedcake extract and fibre from control and transgenic flax. It was shown that levels of flavonoids, phenolic acids and lignans in oil and seedcake extract was higher in transgenic flax products compared to control. An FT-IR study of fibres confirmed the biochemical data and revealed that the arrangement of the cellulose polymer in the transgenic fibres differs from the control; in particular a

  12. Silicon coupled-ring resonator structures for slow light applications: potential, impairments and ultimate limits

    Canciamilla, A; Torregiani, M; Ferrari, C; Morichetti, F; Melloni, A; De La Rue, R M; Samarelli, A; Sorel, M

    2010-01-01

    Coupled-ring resonator-based slow light structures are reported and discussed. By combining the advantages of high index contrast silicon-on-insulator technology with an efficient thermo-optical activation, they provide an on-chip solution with a bandwidth of up to 100 GHz and a slowdown factor of up to 16, as well as a continuous reconfiguration scheme and a fine tunability. The performance of these devices is investigated in detail for both static and dynamic operation, in order to evaluate their potential in optical signal processing applications at high bit rate. The main impairments imposed by fabrication imperfections are also discussed in relation to the slowdown factor. In particular, the analysis of the impact of backscatter, disorder and two-photon absorption on the device transfer function reveals the ultimate limits of these structures and provides valuable design rules for their optimization

  13. Eichrom's ABEC trademark resins: Alkaline radioactive waste treatment, radiopharmaceutical, and potential hydrometallurgical applications

    Bond, A.H.; Gula, M.J.; Chang, F.; Rogers, R.D.

    1997-01-01

    Eichrom's ABEC trademark resins selectivity extract certain anions from high ionic strength acidic, neutral, or strongly alkaline media, and solute stripping can be accomplished by eluting with water. ABEC resins are stable to pH extreme and radiolysis and operate in high ionic strength and/or alkaline solutions where anion-exchange is often ineffective. Potential applications of the ABEC materials include heavy metal and ReO 4 - separations in hydrometallurgy and purification of perrhenate iodide, and iodate in radiopharmaceutical production. Separation of 99m TcO 4 - from its 99 MoO 4 2- parent and stripping with water or physiological saline solution have been demonstrated for radiopharmaceutical applications. Removal of 99 TcO 4 - and 129 I - from alkaline tank wastes has also been successfully demonstrated. The authors will discuss the scale-up studies, process-scale testing, and market development of this new extraction material

  14. Potential applications of skip SMV with thrust engine

    Wang, Weilin; Savvaris, Al

    2016-11-01

    This paper investigates the potential applications of Space Maneuver Vehicles (SMV) with skip trajectory. Due to soaring space operations over the past decades, the risk of space debris has considerably increased such as collision risks with space asset, human property on ground and even aviation. Many active debris removal methods have been investigated and in this paper, a debris remediation method is first proposed based on skip SMV. The key point is to perform controlled re-entry. These vehicles are expected to achieve a trans-atmospheric maneuver with thrust engine. If debris is released at altitude below 80 km, debris could be captured by the atmosphere drag force and re-entry interface prediction accuracy is improved. Moreover if the debris is released in a cargo at a much lower altitude, this technique protects high value space asset from break up by the atmosphere and improves landing accuracy. To demonstrate the feasibility of this concept, the present paper presents the simulation results for two specific mission profiles: (1) descent to predetermined altitude; (2) descent to predetermined point (altitude, longitude and latitude). The evolutionary collocation method is adopted for skip trajectory optimization due to its global optimality and high-accuracy. This method is actually a two-step optimization approach based on the heuristic algorithm and the collocation method. The optimal-control problem is transformed into a nonlinear programming problem (NLP) which can be efficiently and accurately solved by the sequential quadratic programming (SQP) procedure. However, such a method is sensitive to initial values. To reduce the sensitivity problem, genetic algorithm (GA) is adopted to refine the grids and provide near optimum initial values. By comparing the simulation data from different scenarios, it is found that skip SMV is feasible in active debris removal and the evolutionary collocation method gives a truthful re-entry trajectory that satisfies the

  15. Computer technology: its potential for industrial energy conservation. A technology applications manual

    None

    1979-01-01

    Today, computer technology is within the reach of practically any industrial corporation regardless of product size. This manual highlights a few of the many applications of computers in the process industry and provides the technical reader with a basic understanding of computer technology, terminology, and the interactions among the various elements of a process computer system. The manual has been organized to separate process applications and economics from computer technology. Chapter 1 introduces the present status of process computer technology and describes the four major applications - monitoring, analysis, control, and optimization. The basic components of a process computer system also are defined. Energy-saving applications in the four major categories defined in Chapter 1 are discussed in Chapter 2. The economics of process computer systems is the topic of Chapter 3, where the historical trend of process computer system costs is presented. Evaluating a process for the possible implementation of a computer system requires a basic understanding of computer technology as well as familiarity with the potential applications; Chapter 4 provides enough technical information for an evaluation. Computer and associated peripheral costs and the logical sequence of steps in the development of a microprocessor-based process control system are covered in Chapter 5.

  16. Cost management and potential savings in composting. 56th information discussion, Magdeburg, November 1997; Kostenmanagement und Einsparpotentiale bei der Kompostierung. 56. Informationsgespraech in Magdeburg im November 1997

    Hangen, H.O. [comp.

    1997-12-31

    This workshop focussed on economic aspects of composting and danaerobic digestion of biological waste. Cost optimisation, methods, and ecological aspects are discussed for several facilities in the Federal Republic of Germany. (SR) [Deutsch] Thema dieses Workshops waren Wirtschaftlichkeitsbetrachtungen auf dem Sektor der Kompostierung und Vergaerung von Bioabfall. Hierbei werden die Kostenoptimierung, verschiedene Verfahren und oekologische Gesichtpunkte am Beispiel verschiedener Anlagen in der Bundesrepublik Deutschland betrachtet. (SR)

  17. Fully depleted CMOS pixel sensor development and potential applications

    Baudot, J.; Kachel, M. [Universite de Strasbourg, IPHC, 23 rue du Loess 67037 Strasbourg (France); CNRS, UMR7178, 67037 Strasbourg (France)

    2015-07-01

    CMOS pixel sensors are often opposed to hybrid pixel sensors due to their very different sensitive layer. In standard CMOS imaging processes, a thin (about 20 μm) low resistivity epitaxial layer acts as the sensitive volume and charge collection is mostly driven by thermal agitation. In contrast, the so-called hybrid pixel technology exploits a thick (typically 300 μm) silicon sensor with high resistivity allowing for the depletion of this volume, hence charges drift toward collecting electrodes. But this difference is fading away with the recent availability of some CMOS imaging processes based on a relatively thick (about 50 μm) high resistivity epitaxial layer which allows for full depletion. This evolution extents the range of applications for CMOS pixel sensors where their known assets, high sensitivity and granularity combined with embedded signal treatment, could potentially foster breakthrough in detection performances for specific scientific instruments. One such domain is the Xray detection for soft energies, typically below 10 keV, where the thin sensitive layer was previously severely impeding CMOS sensor usage. Another application becoming realistic for CMOS sensors, is the detection in environment with a high fluence of non-ionizing radiation, such as hadron colliders. However, when considering highly demanding applications, it is still to be proven that micro-circuits required to uniformly deplete the sensor at the pixel level, do not mitigate the sensitivity and efficiency required. Prototype sensors in two different technologies with resistivity higher than 1 kΩ, sensitive layer between 40 and 50 μm and featuring pixel pitch in the range 25 to 50 μm, have been designed and fabricated. Various biasing architectures were adopted to reach full depletion with only a few volts. Laboratory investigations with three types of sources (X-rays, β-rays and infrared light) demonstrated the validity of the approach with respect to depletion, keeping a

  18. Application of potential harmonic expansion method to BEC ...

    We adopt the potential harmonics expansion method for an ab initio solu- ... commonly adopted mean-field theories, our method is capable of handling ..... potentials in self-consistent mean-field calculation [7] gives wrong results as the.

  19. Advanced Sensors and Controls for Building Applications: Market Assessment and Potential R&D Pathways

    Brambley, Michael R.; Haves, Philip; McDonald, Sean C.; Torcellini, Paul; Hansen, David G.; Holmberg, David; Roth, Kurt

    2005-04-13

    Significant energy savings can be achieved in commercial building operation, along with increased comfort and control for occupants, through the implementation of advanced technologies. This document provides a market assessment of existing building sensors and controls and presents a range of technology pathways (R&D options) for pursuing advanced sensors and building control strategies. This paper is actually a synthesis of five other white papers: the first describes the market assessment including estimates of market potential and energy savings for sensors and control strategies currently on the market as well as a discussion of market barriers to these technologies. The other four cover technology pathways: (1) current applications and strategies for new applications, (2) sensors and controls, (3) networking, security, and protocols and standards, and (4) automated diagnostics, performance monitoring, commissioning, optimal control and tools. Each technology pathway chapter gives an overview of the technology or application. This is followed by a discussion of needs and the current status of the technology. Finally, a series of research topics is proposed.

  20. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications

    Randy Chi Fai Cheung

    2015-08-01

    Full Text Available Chitosan is a natural polycationic linear polysaccharide derived from chitin. The low solubility of chitosan in neutral and alkaline solution limits its application. Nevertheless, chemical modification into composites or hydrogels brings to it new functional properties for different applications. Chitosans are recognized as versatile biomaterials because of their non-toxicity, low allergenicity, biocompatibility and biodegradability. This review presents the recent research, trends and prospects in chitosan. Some special pharmaceutical and biomedical applications are also highlighted.

  1. A new water-based liquid scintillator and potential applications

    Yeh, M., E-mail: yeh@bnl.gov [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Hans, S.; Beriguete, W.; Rosero, R.; Hu, L.; Hahn, R.L. [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Diwan, M.V.; Jaffe, D.E.; Kettell, S.H.; Littenberg, L. [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2011-12-21

    In this paper we describe a new type of scintillating liquid based on water. We describe the concept, preparation, and properties of this liquid, and how it could be used for a very large, but economical detector. The applications of such a detector range from fundamental physics such as nucleon decay and neutrino physics to physics with broader application such as neutron detection. We briefly describe the scientific requirements of these applications, and how they can be satisfied by the new material.

  2. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications

    Cheung, Randy Chi Fai; Ng, Tzi Bun; Wong, Jack Ho; Chan, Wai Yee

    2015-01-01

    Chitosan is a natural polycationic linear polysaccharide derived from chitin. The low solubility of chitosan in neutral and alkaline solution limits its application. Nevertheless, chemical modification into composites or hydrogels brings to it new functional properties for different applications. Chitosans are recognized as versatile biomaterials because of their non-toxicity, low allergenicity, biocompatibility and biodegradability. This review presents the recent research, trends and prospects in chitosan. Some special pharmaceutical and biomedical applications are also highlighted. PMID:26287217

  3. Estimating the potential for solar thermal applications in the industrial process heat market 1990-2030

    Demeter, C.P.; Gray, E.E.; Carwile, C.

    1991-01-01

    This paper reports the results of a preliminary evaluation of the potential domestic market for solar thermal energy supply technologies matched to industrial process heat applications. The study estimates current and projects future industrial process heat demand to the year 2030 by two-digit standard industrial classification code for the manufacturing industrial sector and discusses the potential to displace conventional fossil fuel sources such as natural gas with alternative sources of supply. The PC Industrial Model, used by DOE's Energy Information Administration in support of the National Energy Strategy (NES) is used for forecast industrial energy demand. Demand is disaggregated by census region to account for geographic variations in solar insolation, and by heat medium and temperature to facilitate end-use matching with appropriate solar energy supply technologies. Levelized energy costs (LEC) are calculated for flat plate collectors for low- temperature preheat applications, parabolic troughs for intermediate temperature process steam and direct heat, and parabolic dish technologies for high-temperature, direct heat applications. LEC is also developed for a conventional natural gas-fueled Industrial Process Heat (IPH) supply source assuming natural gas price escalation consistent with NES forecasts to develop a relative figure of merit used in a market penetration model

  4. Effects of Neuropeptide Y on Stem Cells and Their Potential Applications in Disease Therapy

    Song Peng

    2017-01-01

    Full Text Available Neuropeptide Y (NPY, a 36-amino acid peptide, is widely distributed in the central and peripheral nervous systems and other peripheral tissues. It takes part in regulating various biological processes including food intake, circadian rhythm, energy metabolism, and neuroendocrine secretion. Increasing evidence indicates that NPY exerts multiple regulatory effects on stem cells. As a kind of primitive and undifferentiated cells, stem cells have the therapeutic potential to replace damaged cells, secret paracrine molecules, promote angiogenesis, and modulate immunity. Stem cell-based therapy has been demonstrated effective and considered as one of the most promising treatments for specific diseases. However, several limitations still hamper its application, such as poor survival and low differentiation and integration rates of transplanted stem cells. The regulatory effects of NPY on stem cell survival, proliferation, and differentiation may be helpful to overcome these limitations and facilitate the application of stem cell-based therapy. In this review, we summarized the regulatory effects of NPY on stem cells and discussed their potential applications in disease therapy.

  5. Recent advances and potential applications of modulated differential scanning calorimetry (mDSC) in drug development.

    Knopp, Matthias Manne; Löbmann, Korbinian; Elder, David P; Rades, Thomas; Holm, René

    2016-05-25

    Differential scanning calorimetry (DSC) is frequently the thermal analysis technique of choice within preformulation and formulation sciences because of its ability to provide detailed information about both the physical and energetic properties of a substance and/or formulation. However, conventional DSC has shortcomings with respect to weak transitions and overlapping events, which could be solved by the use of the more sophisticated modulated DSC (mDSC). mDSC has multiple potential applications within the pharmaceutical field and the present review provides an up-to-date overview of these applications. It is aimed to serve as a broad introduction to newcomers, and also as a valuable reference for those already practising in the field. Complex mDSC was introduced more than two decades ago and has been an important tool for the quantification of amorphous materials and development of freeze-dried formulations. However, as discussed in the present review, a number of other potential applications could also be relevant for the pharmaceutical scientist. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Potential applications of radiation formed PVA/PVP hydrogel patches

    Zein, Z.; Hill, D.J.T.; Whittaker, A.K.

    2003-01-01

    It has been shown that radiation induced-polymerization and crosslinking is a very convenient method to produce hydrogels. The process is free of catalyst or initiator, which are mostly toxic, easy to control and allows sterilization simultaneously. In this sense, poly(vinyl alcohol) (PVA)/polyvinylpyrrolidone (PVP) hydrogel patches have been prepared by subjecting the polymer aqueous solutions to γ -irradiation. Under the action of ionizing radiation, the mechanism of hydrogel formation may be simplified into two main stages; formation of free radicals and their intermolecular combination. The five-line ESR spectra found following irradiation of PVP (powder) at 77 K and annealing up to 250 K suggests that free-radicals are mainly localized at tertiary carbon atoms. While for PVA, as the major component of the four-line ESR spectra at 77 K was a triplet and this was the only species observed at 298 K, so most radicals were formed through hydrogen abstraction from tertiary carbon atoms. If radicals localized on different molecular chains combine, new covalent bonds are formed. When a sufficiently high number of crosslinks form, an insoluble network (gel) appears. It was observed that the gel fraction for PVA/PVP hydrogels increased with increasing irradiation dose and it seems that the gel fraction never reaches 100%. This implies that upon irradiation of PVA/PVP aqueous solutions, chain scission also accompanies crosslinking. Based on a toxicity test, it was found that none of this chain scission products produce detectable toxicity. The physico-chemical and mechanical properties of the PVA/PVP hydrogel obtained by irradiation of PVA/PVP (8.0 %wt / 4.8 %wt) solution with a crosslinking dose of 25 kGy were shown to yield properties most suitable for ideal wound covering. Additionally, as the hydrogel has a high water content and a relatively moderate water diffusion coefficient, it offers potential for transdermal drug delivery systems as well as for cosmetic

  7. Worldwide wind/diesel hybrid power system study: Potential applications and technical issues

    King, W.R.; Johnson, B.L. III (Science Applications International Corp., McLean, VA (USA))

    1991-04-01

    The world market potential for wind/diesel hybrid technology is a function of the need for electric power, the availability of sufficient wind resource to support wind/diesel power, and the existence of buyers with the financial means to invest in the technology. This study includes data related to each of these three factors. This study does not address market penetration, which would require analysis of application specific wind/diesel economics. Buyer purchase criteria, which are vital to assessing market penetration, are discussed only generally. Countries were screened for a country-specific market analysis based on indicators of need and wind resource. Both developed countries and less developed countries'' (LDCs) were screened for wind/diesel market potential. Based on the results of the screening, ten countries showing high market potential were selected for more extensive market analyses. These analyses provide country-specific market data to guide wind/diesel technology developers in making design decisions that will lead to a competitive product. Section 4 presents the country-specific data developed for these analyses, including more extensive wind resource characterization, application-specific market opportunities, business conditions, and energy market characterizations. An attempt was made to identify the potential buyers with ability to pay for wind/diesel technology required to meet the application-specific market opportunities identified for each country. Additionally, the country-specific data are extended to corollary opportunities in countries not covered by the study. Section 2 gives recommendations for wind/diesel research based on the findings of the study. 86 refs.

  8. Worldwide wind/diesel hybrid power system study: Potential applications and technical issues

    King, W. R.; Johnson, B. L., III

    1991-04-01

    The world market potential for wind/diesel hybrid technology is a function of the need for electric power, the availability of sufficient wind resource to support wind/diesel power, and the existence of buyers with the financial means to invest in the technology. This study includes data related to each of these three factors. This study does not address market penetration, which would require analysis of application specific wind/diesel economics. Buyer purchase criteria, which are vital to assessing market penetration, are discussed only generally. Countries were screened for a country-specific market analysis based on indicators of need and wind resource. Both developed countries and less developed countries (LDCs) were screened for wind/diesel market potential. Based on the results of the screening, ten countries showing high market potential were selected for more extensive market analyses. These analyses provide country-specific market data to guide wind/diesel technology developers in making design decisions that will lead to a competitive product. Section 4 presents the country-specific data developed for these analyses, including more extensive wind resource characterization, application-specific market opportunities, business conditions, and energy market characterizations. An attempt was made to identify the potential buyers with ability to pay for wind/diesel technology required to meet the application-specific market opportunities identified for each country. Additionally, the country-specific data are extended to corollary opportunities in countries not covered by the study. Section 2 gives recommendations for wind/diesel research based on the findings of the study.

  9. Potential refractory alloy requirements for space nuclear power applications

    Cooper, R.H. Jr.

    1984-01-01

    In reviewing design requirements for refractory alloys for space nuclear applications, several key points are identified. First, the successful utilization of refractory alloys is considered an enabling requirement for the successful deployment of high efficiency, lightweight, and small space nuclear systems. Second, the recapture of refractory alloy nuclear technology developed in the 1960s and early 1970s appears to be a pacing activity in the successful utilization of refractory alloys. Third, the successful application of refractory alloys for space nuclear applications will present a significant challenge to both the materials and the systems design communities

  10. Multipurpose Electric Potential Sensor for Spacecraft Applications, Phase II

    National Aeronautics and Space Administration — The original goal of Phase I was to study the feasibility of developing an electric sensor that can be used for as many NASA sensing applications as possible. During...

  11. Potential Nano-Enabled Environmental Applications for Radionuclides

    This document provides information about nanotechnology materials and processes that may be applicable when cleaning up radioactively contaminated sites or materials, and presents a snapshot of lessons learned in nano-science and engineering.

  12. Predicting Customer Potential Value: an application in the insurance industry

    P.C. Verhoef (Peter); A.C.D. Donkers (Bas)

    2001-01-01

    textabstractFor effective Customer Relationship Management (CRM), it is essential to have information on the potential value of customers. Based on the interplay between potential value and realized value, managers can devise customer specific strategies. In this article we introduce a model for

  13. Controlled-potential coulometry. Application to U determination

    Molina, R.; Audouin, P.

    The controlled-potential coulometric titration of U is investigated. The reduction reaction of U(VI), the electrode potential, the electrolysis time-duration and the residual electricity quantity are studied. The device developed for this study is described [fr

  14. Laser colouring on titanium alloys: characterisation and potential applications

    Franceschini, Federica; Demir, Ali Gökhan; Dowding, Colin; Previtali, Barbara; Griffiths, Jonathan David

    2014-01-01

    Oxides of titanium exhibit vivid colours that can be generated naturally or manipulated through controlled oxidation processes. The application of a laser beam for colouring titanium permits flexible manipulation of the oxidized geometry with high spatial resolution. The laser-based procedure can be applied in an ambient atmosphere to generate long-lasting coloured marks. Today, these properties are largely exploited in artistic applications such as jewellery, eyewear frames, watch components...

  15. Electric Potential and Electric Field Imaging with Dynamic Applications: 2017 Research Award Innovation

    Generazio, Ed

    2017-01-01

    The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for illuminating volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Initial results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of structures, tether integrity, organic molecular memory, atmospheric science, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  16. The medicinal chemistry and neuropharmacology of kratom: A preliminary discussion of a promising medicinal plant and analysis of its potential for abuse.

    Kruegel, Andrew C; Grundmann, Oliver

    2017-08-19

    The leaves of Mitragyna speciosa (commonly known as kratom), a tree endogenous to parts of Southeast Asia, have been used traditionally for their stimulant, mood-elevating, and analgesic effects and have recently attracted significant attention due to increased use in Western cultures as an alternative medicine. The plant's active alkaloid constituents, mitragynine and 7-hydroxymitragynine, have been shown to modulate opioid receptors, acting as partial agonists at mu-opioid receptors and competitive antagonists at kappa- and delta-opioid receptors. Furthermore, both alkaloids are G protein-biased agonists of the mu-opioid receptor and therefore, may induce less respiratory depression than classical opioid agonists. The Mitragyna alkaloids also appear to exert diverse activities at other brain receptors (including adrenergic, serotonergic, and dopaminergic receptors), which may explain the complex pharmacological profile of raw kratom extracts, although characterization of effects at these other targets remains extremely limited. Through allometric scaling, doses of pure mitragynine and 7-hydroxymitragynine used in animal studies can be related to single doses of raw kratom plant commonly consumed by humans, permitting preliminary interpretation of expected behavioral and physiological effects in man based on this preclinical data and comparison to both anecdotal human experience and multiple epidemiological surveys. Kratom exposure alone has not been causally associated with human fatalities to date. However, further research is needed to clarify the complex mechanism of action of the Mitragyna alkaloids and unlock their full therapeutic potential. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Potential applications of the Internet of Things in sustainable rural development in South Africa

    Dlodlo, N

    2012-05-01

    Full Text Available Conference of Information Science and Computer Applications (ICISCA), Bali, Indonesia, 19-20 November 2012 Potential applications of the Internet of Things in sustainable rural development in South Africa Nomusa Dlodlo and Mofolo Mofolo CSIR...

  18. BASINs and WEPP Climate Assessment Tools (CAT): Case Study Guide to Potential Applications (Final Report)

    EPA announced the release of the final report, BASINs and WEPP Climate Assessment Tools (CAT): Case Study Guide to Potential Applications. This report supports application of two recently developed water modeling tools, the Better Assessment Science Integrating point & ...

  19. Application of Tietz potential to study optical properties of spherical ...

    c Indian Academy of Sciences. Vol. 85, No. 4. — journal of. October 2015 ... The physical properties of semiconductors such as optical, electronic, and thermodynamic .... can be used to reproduce the interaction potential energy curve of the A1.

  20. Application of Statistical Potential Techniques to Runaway Transport Studies

    Eguilior, S.; Castejon, F.; Parrondo, J. M.

    2001-01-01

    A method is presented for computing runaway production rate based on techniques of noise-activated escape in a potential is presented in this work. A generalised potential in 2D momentum space is obtained from the deterministic or drift terms of Langevin equations. The diffusive or stochastic terms that arise directly from the stochastic nature of collisions, play the role of the noise that activates barrier crossings. The runaway electron source is given by the escape rate in such a potential which is obtained from an Arrenius-like relation. Runaway electrons are those skip the potential barrier due to the effect of stochastic collisions. In terms of computation time, this method allows one to quickly obtain the source term for a runway electron transport code.(Author) 11 refs

  1. Multipurpose Electric Potential Sensor for Spacecraft Applications, Phase I

    National Aeronautics and Space Administration — This proposal is based on a new, compact, solid-state electric potential sensor that has over an order of magnitude lower voltage noise than the prior...

  2. Current research and potential applications of the Concealed Information Test: An overview

    Gershon eBen-Shakhar

    2012-09-01

    Full Text Available Research interest in psychophysiological detection of deception has significantly increased since the September 11 terror attack in the USA. In particular, the Concealed Information Test (CIT, designed to detect memory traces that can connect suspects to a certain crime, has been extensively studied. In this paper I will briefly review several psychophysiological detection paradigms that have been studied, with a focus on the CIT. The theoretical background of the CIT, its strength and weaknesses, its potential applications as well as research finings related to its validity, (based on a recent mata-analytic study, will be discussed. Several novel research directions, with a focus on factors that may affect CIT detection in realistic settings (e.g., memory for crime details; the effect of emotional stress during crime execution will be described. Additionally, research focusing on mal-intentions and attempts to detect terror networks using information gathered from groups of suspects using both the standard CIT and the searching CIT will be reviewed. Finally, implications of current research to the actual application of the CIT will be discussed and several recommendations that can enhance the use of the CIT will be made.

  3. Regenerative medicine using adult neural stem cells: the potential for diabetes therapy and other pharmaceutical applications

    Tomoko Kuwabara; Makoto Asashima

    2012-01-01

    Neural stem cells (NSCs),which are responsible for continuous neurogenesis during the adult stage,are present in human adults.The typical neurogenic regions are the hippocampus and the subventricular zone; recent studies have revealed that NSCs also exist in the olfactory bulb.Olfactory bulb-derived neural stem cells (OB NSCs) have the potential to be used in therapeutic applications and can be easily harvested without harm to the patient.Through the combined influence of extrinsic cues and innate programming,adult neurogenesis is a finely regulated process occurring in a specialized cellular environment,a niche.Understanding the regulatory mechanisms of adult NSCs and their cellular niche is not only important to understand the physiological roles of neurogenesis in adulthood,but also to provide the knowledge necessary for developing new therapeutic applications using adult NSCs in other organs with similar regulatory environments.Diabetes is a devastating disease affecting more than 200 million people worldwide.Numerous diabetic patients suffer increased symptom severity after the onset,involving complications such as retinopathy and nephropathy.Therefore,the development of treatments for fundamental diabetes is important.The utilization of autologous cells from patients with diabetes may address challenges regarding the compatibility of donor tissues as well as provide the means to naturally and safely restore function,reducing future risks while also providing a long-term cure.Here,we review recent findings regarding the use of adult OB NSCs as a potential diabetes cure,and discuss the potential of OB NSC-based pharmaceutical applications for neuronal diseases and mental disorders.

  4. Plant metabolomics and its potential application for human nutrition

    Hall, R.D.; Brouwer, I.D.; Fitzgerald, M.A.

    2008-01-01

    With the growing interest in the use of metabolomic technologies for a wide range of biological targets, food applications related to nutrition and quality are rapidly emerging. Metabolomics offers us the opportunity to gain deeper insights into, and have better control of, the fundamental

  5. Potential energy savings by using direct current for residential applications

    Diaz, Enrique Rodriguez; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.

    2017-01-01

    improvement in the power converter units. However, for residential applications, the efficiency is not always improved. A grid connected residential microgrid, with renewable energy sources (RES), energy storage systems (ESS) and local loads, is presented in this work. The microgrid has been modelled...

  6. Electromagnetic Lead Screw for Potential Wave Energy Application

    Lu, Kaiyuan; Wu, Weimin

    2014-01-01

    This paper presents a new type electromagnetic lead screw (EMLS) intended for wave energy application. Similar to the mechanical lead screw, this electromagnetic version can transfer slow linear motion to high-rotational motion, offering gearing effects. Compared with the existing pure magnetic...

  7. Application of Volta potential mapping to determine metal surface defects

    Nazarov, A.; Thierry, D.

    2007-01-01

    As a rule, stress or fatigue cracks originate from various surface imperfections, such as pits, inclusions or locations showing a residual stress. It would be very helpful for material selection to be able to predict the likelihood of environment-assisted cracking or pitting corrosion. By using Scanning Kelvin Probe (the vibrating capacitor with a spatial resolution of 80 μm) the profiling of metal electron work function (Volta potential) in air is applied to the metal surfaces showing residual stress, MnS inclusions and wearing. The Volta potential is influenced by the energy of electrons at the Fermi level and drops generally across the metal/oxide/air interfaces. Inclusions (e.g. MnS) impair continuity of the passive film that locally decreases Volta potential. The stress applied gives rise to dislocations, microcracks and vacancies in the metal and the surface oxide. The defects decrease Volta and corrosion potentials; reduce the overvoltage for processes of passivity breakdown and anodic metal dissolution. These 'anodic' defects can be visualized in potential mapping that can help us to predict locations with higher risk of pitting corrosion or cracking

  8. The identification of potential applications for robotics and remote control systems in Canadian mining. 2 Volumes

    1982-01-01

    This report presents a preliminary overview of potential applications for robotics and remote control in the Canadian mining industry. The first of two volumes, summarizes the industry awareness and interest in using these technologies. Also included is a look at factors playing a major role in the development of the mining robotics industry, such as safety, productivity, labour and the economic climate. The role of Energy, Mines and Resources Canada (EMR)/CANMET is also discussed. Finally, recommendations are made as to how Canada, through EMR, can ensure Canada's participation in the development of robotics in the mining industry. Volume two is comprised of the contact records. These are abbreviated notes of conversations which took place between the interviewers and their contacts in a number of Canadian and US mines and associated government and private agencies. (The interviews represent the opinions of the respondents, not necessarily that of their companies). The survey indicated that the industry is essentially negative to the idea of robotics in mining, but they were able to suggest many potential areas of application, especially at the short term level.

  9. Two Years of ePrescription in Slovenia - Applications and Potentials.

    Stanimirovic, Dalibor; Savic, Dusan

    2018-01-01

    ePrescription is one of the most successful eHealth solutions in Slovenia. Since its national roll-out in early 2016, the quality of its operations has been constantly improving, and the number of users has been growing ever since to reach today's 90% of all healthcare providers. ePrescription facilitates more transparent and safer prescribing of medications, an overview of possible medication interactions, and reduction of administrative and opportunity costs. This paper initially explores the current state of ePrescription in Slovenia and different aspects of its application. Based on the research findings, the paper finally outlines potentials of ePrescription, which could be transformed into tangible benefits with particular implications for healthcare system. The research is based on focus group methodology. Structured discussions were conducted with eminent experts currently in charge of ePrescription (and other eHealth solutions) development and implementation in Slovenia. Research results imply that certain application aspects are relatively easy to define and evaluate, while the overall potentials of ePrescription are difficult to determine in many cases, and relatively unexplored in terms of their implications and operational feasibility.

  10. Applications of potential theory computations to transonic aeroelasticity

    Edwards, J. W.

    1986-01-01

    Unsteady aerodynamic and aeroelastic stability calculations based upon transonic small disturbance (TSD) potential theory are presented. Results from the two-dimensional XTRAN2L code and the three-dimensional XTRAN3S code are compared with experiment to demonstrate the ability of TSD codes to treat transonic effects. The necessity of nonisentropic corrections to transonic potential theory is demonstrated. Dynamic computational effects resulting from the choice of grid and boundary conditions are illustrated. Unsteady airloads for a number of parameter variations including airfoil shape and thickness, Mach number, frequency, and amplitude are given. Finally, samples of transonic aeroelastic calculations are given. A key observation is the extent to which unsteady transonic airloads calculated by inviscid potential theory may be treated in a locally linear manner.

  11. A superconductor electromechanical oscillator and its potential application in energy storage

    Schilling, Osvaldo F

    2004-01-01

    We discuss theoretically the properties of an electromechanical oscillating system whose operation is based upon the cyclic conservative conversion between gravitational potential, kinetic and magnetic energies. The system consists of a superconducting coil subjected to a constant external force and to magnetic fields. The coil oscillates and has induced in it a rectified electrical current whose magnitude may reach hundreds of amperes. The design differs from that of most conventional superconductor machines since the motion is linear (and practically unnoticeable depending on frequency) rather than rotatory and it does not involve high speeds. Furthermore, there is no need for an external electrical power source to start up the system. We also show that the losses for such a system can be made extremely small for certain operational conditions, so that by reaching and keeping resonance the system's main application should be in the generation and storage of electromagnetic energy. (rapid communication)

  12. Application of self-potential method in uranium exploration - a case study from Arbail, Karnataka, India

    Anantharaman, K.B.; Narasimha Rao, B.; Sethuram, S.; Rao, K.K.

    1986-01-01

    The application of non-radiometric geophysical methods like magnetic, electrical resistivity, induced polarisation, electromagnetic and seismic for uranium exploration has been discussed by many workers. In thispaper it has been demonstrated that the self-potential technique which is simple, fast and cheap can also be effectively and meaningfully employed. For this purpose, a case study from Arbail (Lat 14 0 , 50' 40'', Long 74 0 38' 25''), India where uranium mineralisation is known to occur in association with sulphides, is presented. The method of downward continuation is used to estimate the depth to the top of the target and the results thus obtained are correlated with the data obtained from subsequent borehole drilling. (author)

  13. Conditions and requirements for a potential application of solar power satellites /SPS/ for Europe

    Westphal, W. (Berlin, Technische Universitaet, Berlin, West Germany); Ruth, J. (ESA, European Space Research and Technology Centre, Noordwijk, Netherlands)

    1980-12-01

    The potential problems of a future introduction of Solar Power Satellites (SPS) as baseload power plants for Western European countries are considered, emphasizing the differences of SPS utilization in Europe compared with that in the USA as a result of geographical, orbital organizational, and industrial conditions. If estimated SPS safety zone areas are required, then the SPS system incorporating the 2.45 GHz microwave power transmission appears crucial for utilization in Western Europe in order to eliminate the large rectenna area requirements of an SPS 5 GW power system. A frequency variation of up to 5 or 10 GHz, and the application of either laser power transmission or solid state devices which could alleviate rectenna siting problems and restrictions on the use of the geosynchronous orbit are discussed.

  14. Values and potentials of grid-connected solar photovoltaic applications in Malaysia

    Ahmad Hadri Haris; Iszuan Shah Syed Ismail

    2006-01-01

    Since early 1998, TNB Research Sdn Bhd has been conducting a pilot project to evaluate the performance and economics of grid-connected solar photovoltaic (PV) applications in Malaysia. The project is co-funded by Tenaga Nasional Berhad (TNB) and Malaysia Electricity Supply Industry Trust Account (MESITA). Currently, research project is being concluded with many valuable findings that would be able to provide the direction for the next solar PV development in Malaysia. In total, six pilot grid-connected solar PV systems were installed, where five are located within Klang Valley area and one in Port Dickson. The systems installation and commissioning were staggered between August 1998 to November 2001. A variety of building type was also selected for the system installation. In addition, various PV systems technologies and configurations were applied with average PV power capacity of 3 kW. These variances provide a good opportunity to assess the actual performances and economics of the solar PV applications under the Malaysian environment. This paper would discuss some of the findings, but with a focus on the values and potentials of the grid-connected solar PV applications in Malaysia

  15. Metabonomics approaches and the potential application in foodsafety evaluation.

    Kuang, Hua; Li, Zhe; Peng, Chifang; Liu, Liqiang; Xu, Liguang; Zhu, Yingyue; Wang, Libing; Xu, Chuanlai

    2012-01-01

    It is essential that the novel biomarkers discovered by means of advanced detection tools based on metabonomics could be used for long-term monitoring in food safety. By summarizing the common biomarkers discovery flowsheet based on metabonomics, this review evaluates the possible application of metabonomics in new biomarker discovery, especially in relation to food safety issues. Metabonomics have the advantages of decreasing detection limits and constant monitoring. Although metabonomics is still in the developmental stage, we believe that, based on its properties, such as noninvasiveness, sensitivity, and persistence, together with rigorous experimental designs, new and novel technologies, as well as increasingly accurate chemometrics and a relational database, metabonomics can demonstrate extensive application in food safety in the postgenome period.

  16. Basic Potential of Carbon Nanotubes in Tissue Engineering Applications

    Hisao Haniu

    2012-01-01

    Full Text Available Carbon nanotubes (CNTs are attracting interest in various fields of science because they possess a high surface area-to-volume ratio and excellent electronic, mechanical, and thermal properties. Various medical applications of CNTs are expected, and the properties of CNTs have been greatly improved for use in biomaterials. However, the safety of CNTs remains unclear, which impedes their medical application. Our group is evaluating the biological responses of multiwall CNTs (MWCNTs in vivo and in vitro for the promotion of tissue regeneration as safe scaffold materials. We recently showed that intracellular accumulation is important for the cytotoxicity of CNTs, and we reported the active physiological functions CNTs in cells. In this review, we describe the effects of CNTs in vivo and in vitro observed by our group from the standpoint of tissue engineering, and we introduce the findings of other research groups.

  17. TOWARDS PHASE TRANSFERABLE POTENTIAL FUNCTIONS - METHODOLOGY AND APPLICATION TO NITROGEN

    JORDAN, PC; VAN MAAREN, PJ; MAVRI, J; VAN DER SPOEL, D; BERENDSEN, HJC

    1995-01-01

    We describe a generalizable approach to the development of phase transferable effective intermolecular potentials and apply the method to the study of N-2 The method is based on a polarizable shell model description of the isolated molecule and uses experimental data to establish the parameters.

  18. Antibacterial activity of essential oils: potential applications in food

    Burt, S.A.

    2007-01-01

    Due to its antibacterial activity, oregano oil has lately become interesting as a potential 'natural' food preservative. Oregano oil was found to be a fast acting and effective inhibitor of a strain of Escherichia coli O157:H7, the causative agent of a serious gastro-enteritis, and was lethal to

  19. Application of potential harmonic expansion method to BEC

    We adopt the potential harmonics expansion method for an ab initio solution of the many-body system in a Bose condensate containing interacting bosons. Unlike commonly adopted mean-field theories, our method is capable of handling two-body correlation properly. We disregard three- and higher-body correlations.

  20. Preliminary investigations of potential light weight metallic armour applications

    Voorde, M.J. van de; Diederen, A.M.; Herlaar, K.

    2005-01-01

    Now that an industrial-scale low-cost production route for ballistic-grade titanium is within reach, the potential use of titanium armour could depend on a solution for the spalling of high strength titanium. This paper addresses a titanium based metal laminate as being a possible solution for the

  1. Potential application of urea-derived herbicides as cytokinins in ...

    ... the frequency of regeneration was 90% with a mean number of 6 shoots. Diuron with two chloride groups in the phenyl ring showed significantly higher cytokinin-like activity than single chloride substitution monuron. This study demonstrates the potential use of monuron and diuron as cytokinins in plant tissue culture.

  2. Radiation Synthesis of Some Copolymers and their Potential Industrial Applications

    Hegazy, N.R.

    2015-01-01

    The field of biomaterials has advanced rapidly in the recent years. Much attention has been focused on the research and developments of polymer for biomedical applications. One of the most promising classes of materials for biomedical applications seems to be the hydrogels. In this connection, the first part concern with preparation of various types of hydrogels by using gamma irradiation for possible Industrial uses. Novel super absorbent hydrogels were prepared successfully from carboxymethylcellulose sodium (CMC) and acrylamide (AAm) due to their good biocompatibility. The structure of the hydrogels was characterized by FT-IR and thermogravimetric analysis. Scanning electron microscopy was also carried out to study the surface morphology of the hydrogel and it verifies that the synthesized hydrogels have a porous structure then the synthesis of silver (AAm/CMC) nano composite hydrogel from the prepared (AAm/CMC) hydrogel has done and characterized using UV-visible, XRD, EDX, SEM and TEM which confirmed the formation of silver nanoparticles and determined its particle size. Their equilibrium swelling ratio in distilled water and different physiological fluids were evaluated. Moreover, the hydrogels exhibited smart swelling and shrinking in different aqueous solutions that could be controlled by changing CMC content. The second part concern with the synthesis of grafting polymers using γ-rays and the factors affect on the grafting process onto LDPE, HDPE and PP films by binary comonomer GMA:NVIm such as solvent, concentration, composition and dose were investigated. The grafted films were characterized by enough number of techniques. Afterwards, the grafted films were treated by many chemical reagents such as Isonicotinamide, 4(6) Aminouracil, Sulpha methoxy di azine and Guanidine hydrochloride at different interval times, respectively. The prepared hydrogels are promising for the applications in the biomaterials area and the applicability of grafted films to be

  3. Strain Engineering for Phosphorene: The Potential Application as a Photocatalyst

    Sa, Baisheng; Li, Yan-Ling; Qi, Jingshan; Ahuja, Rajeev; Sun, Zhimei

    2014-01-01

    Phosphorene has been attracted intense interest due to its unexpected high carrier mobility and distinguished anisotropic optoelectronic and electronic properties. In this work, we unraveled strain engineered phosphorene as a photocatalyst in the application of water splitting hydrogen production based on density functional theory calculations. Lattice dynamic calculations demonstrated the stability for such kind of artificial materials under different strains. The phosphorene lattice is unst...

  4. Calcium aluminates potential for endodontics and orthopedics applications

    Santos, G.L. dos; Andrade, T.L.; Oliveira, I.R.; Pandolfelli, V.C.

    2011-01-01

    The mostly used material in the areas of endodontics (MTA, mineral trioxide aggregate) and bone reconstruction (PMMA, polymethyl methacrylate) present some limiting properties requiring thus changes in their compositions as well as the development of alternative materials. In this context, a novel biomaterial-based calcium aluminate cement (CAC) has been studied in order to keep the positive properties and clinical applications of MTA and PMMA, overcoming some their disadvantages. Recent studies involving the use of CAC are based on commercial products consisting of a mixture of phases. Improvements can be attained by searching the synthesis routes of CAC aiming the proper balance between the phases and the control of impurities that may impair its performance in applications in the areas of health. By the optimization of the CAC phases production, this article aims to present their characterization based on hydration temperature; working time and setting time; pH, ions solubilization and dissolution in contact with water and different solutions of simulated body fluid. The results indicated the CA phase as the most suitable for application in the areas of health. (author)

  5. Nanotechnology: the scope and potential applications in orthopedic surgery.

    Gavaskar, Ashok; Rojas, D; Videla, F

    2018-03-30

    Nanotechnology involves manipulation of matter measuring 1-100 nm in at least one of its dimensions at the molecular level. Engineering and manipulation of matter at the molecular level has several advantages in the field of medicine (nanomedicine) since most of the biological molecules exist and function at a nanoscale. Though promising, questions still remain on how much of this will ultimately translate into achieving better patient care. Concerns of cost-effectiveness and nanotechnology safety still remain unclear. Orthopedics is an attractive area for the application of nanotechnology since the bone, and its constituents such as hydroxyapatite, Haversian systems, and the collagen fibrils are nanocompounds. The major orthopedic applications of nanotechnology involve around (i) effective drug delivery systems for antibiotics and chemotherapeutic agents, (ii) surface preparation of implants and prosthesis to improve osteointegration and reduce biofilm formation, (iii) controlled drug eluting systems to combat implant-related infections, (iv) tissue engineering for scaffolds preparation to deal with bone and cartilage defects, and (v) diagnostic applications in the field of oncology and musculoskeletal infections.

  6. An Investigation of Applications for Thermodynamic Work Potential Methods: Working Tables and Charts for Estimation of Thermodynamic Work Potential in Equilibrium Mixtures of Jet-A and Air

    Mavris, Dimitri; Roth, Bryce; McDonald, Rob

    2002-01-01

    The objective of this report is to provide a tool to facilitate the application of thermodynamic work potential methods to aircraft and engine analysis. This starts with a discussion of the theoretical background underlying these methods, which is then used to derive various equations useful for thermodynamic analysis of aircraft engines. The work potential analysis method is implemented in the form of a set of working charts and tables that can be used to graphically evaluate work potential stored in high-enthalpy gas. The range of validity for these tables is 300 to 36,000 R, pressures between between 0.01 atm and 100 atm, and fuel-air ratios from zero to stoichiometric. The derivations and charts assume mixtures of Jet-A and air as the working fluid. The thermodynamic properties presented in these charts were calculated based upon standard thermodynamic curve fits.

  7. Nanotechnology and HIV: potential applications for treatment and prevention.

    Kim, Peter S; Read, Sarah W

    2010-01-01

    HIV/AIDS is a global pandemic and is the leading infectious cause of death among adults. Although antiretroviral (ARV) therapy has dramatically improved the quality of life and increased the life expectancy of those infected with HIV, life-long suppressive treatment is required and a cure for HIV infection remains elusive; frequency of dosing and drug toxicity as well as the development of viral resistance pose additional limitations. Furthermore, preventative measures such as a vaccine or microbicide are urgently needed to curb the rate of new infections. The capabilities inherent to nanotechnology hold much potential for impact in the field of HIV treatment and prevention. This article reviews the potential for the multidisciplinary field of nanotechnology to advance the fields of HIV treatment and prevention. © 2010 John Wiley & Sons, Inc.

  8. Energy Savings Potential of SSL in Horticultural Applications

    Stober, Kelsey [Navigant Consulting, Inc., Washington DC (United States); Lee, Kyung [Navigant Consulting, Inc., Washington DC (United States); Yamada, Mary [Navigant Consulting, Inc., Washington DC (United States); Pattison, Morgan [Solid State Lighting Services, Inc. (SSLS), Phoenix, AZ (United States)

    2017-12-29

    Report that presents the findings for horticultural lighting applications where light-emitting diode (LED) products are now competing with traditional light sources. The three main categories of indoor horticulture were investigated: supplemented greenhouses, which use electric lighting to extend the hours of daylight, supplement low levels of sunlight on cloudy days, or disrupt periods of darkness to alter plant growth; non-stacked indoor farms, where plants are grown in a single layer on the floor under ceiling-mounted lighting; and vertical farms, where plants are stacked along vertical shelving to maximize grow space, and the lighting is typically mounted within the shelving units.

  9. Light-emitting diodes - Their potential in biomedical applications

    Yeh, Naichia Gary; Wu, Chia-Hao [College of Applied Sciences, MingDao University, 369 Wen-Hua Road, Peetou, Changhua 52345 (China); Cheng, Ta Chih [Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, 1 Hseuh-Fu Rd., Nei-Pu Hsiang, Pingtung 91201 (China)

    2010-10-15

    The rapid development of high brightness light-emitting diodes (LEDs) makes feasible the use of LEDs, among other light sources (such as laser, intense pulse light and other incoherent light systems), for medical treatment and light therapy. This paper provides a general review on red, green, blue, ultraviolet LED applications in photo rejuvenation and medical treatments of a variety of physical abnormalities, as well as the relief of stress, circadian rhythm disorders, and seasonal affective disorder. The review, concentrated in the papers published after 1990, intends to show that LEDs are well qualified to succeed its more energy demanding counterparts in the named areas and beyond. (author)

  10. Nano technologies, technologies converging and potential biomedical applications

    Capuano, V.

    2005-01-01

    The applications of nano technology to biology and medicine appear really promising for diagnostics, for various therapeutic approaches and in medical instrumentations. The growing synergism among nano technology, biotechnology, information technology and cognitive sciences, their convergence (NBIC) from the nano scale, could involve on next decades great changes in medicine, from a reactive to a predictive and preventive approach. It is expected that NBIC converging technologies could achieve tremendous improvements in human abilities and enhance societal achievement of related social and ethical implications, in the framework of a constant dialogue between science and society [it

  11. Tuned apatitic materials: Synthesis, characterization and potential antimicrobial applications

    Fierascu, Irina; Fierascu, Radu Claudiu; Somoghi, Raluca; Ion, Rodica Mariana; Moanta, Adriana; Avramescu, Sorin Marius; Damian, Celina Maria; Ditu, Lia Mara

    2018-04-01

    Inorganic antimicrobial materials can be viable for multiple applications (related to its use for new buildings with special requirements related to microbiological loading, such as hospital buildings and for consolidation of cultural heritage constructions); also the use of substituted hydroxyapatites for protection of stone artefacts against environmental factors (acidic rain) and biodeterioration it's an option to no longer use of toxic substances. This paper presents methods of synthesis and characterization of the material from the point of view of the obtained structures and final applications. The materials were characterized in terms of composition and morphology (using X-ray Diffraction, X-ray Fluorescence, Inductively coupled plasma-atomic emission spectrometry, Fourier Transform Infrared Spectroscopy, X-ray Photoelectron Spectroscopy, Surface area and pore size determination). Antimicrobial activity was tested against filamentous fungi strains and pathogenic bacteria strains, using both spot on lawn qualitative method (on agar medium) and serial microdilution quantitative method (in broth medium). Further, it was evaluated the anti-biofilm activity of the tested samples toward the most important microbial strains implicated in biofilm development, using crystal violet stained biofilms microtiter assay, followed by spectrophotometric quantitative evaluation.

  12. Laccase: microbial sources, production, purification, and potential biotechnological applications.

    Shraddha; Shekher, Ravi; Sehgal, Simran; Kamthania, Mohit; Kumar, Ajay

    2011-01-01

    Laccase belongs to the blue multicopper oxidases and participates in cross-linking of monomers, degradation of polymers, and ring cleavage of aromatic compounds. It is widely distributed in higher plants and fungi. It is present in Ascomycetes, Deuteromycetes and Basidiomycetes and abundant in lignin-degrading white-rot fungi. It is also used in the synthesis of organic substance, where typical substrates are amines and phenols, the reaction products are dimers and oligomers derived from the coupling of reactive radical intermediates. In the recent years, these enzymes have gained application in the field of textile, pulp and paper, and food industry. Recently, it is also used in the design of biosensors, biofuel cells, as a medical diagnostics tool and bioremediation agent to clean up herbicides, pesticides and certain explosives in soil. Laccases have received attention of researchers in the last few decades due to their ability to oxidize both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants. It has been identified as the principal enzyme associated with cuticular hardening in insects. Two main forms have been found: laccase-1 and laccase-2. This paper reviews the occurrence, mode of action, general properties, production, applications, and immobilization of laccases within different industrial fields.

  13. New Functions and Potential Applications of Amino Acids.

    Uneyama, Hisayuki; Kobayashi, Hisamine; Tonouchi, Naoto

    Currently, several types of amino acids are being produced and used worldwide. Nevertheless, several new functions of amino acids have been recently discovered that could result in other applications. For example, oral stimulation by glutamate triggers the cephalic phase response to prepare for food digestion. Further, the stomach and intestines have specific glutamate-recognizing systems in their epithelial mucosa. Regarding clinical applications, addition of monosodium glutamate to the medicinal diet has been shown to markedly enhance gastric secretion in a vagus-dependent manner. Branched-chain amino acids (BCAAs) are the major components of muscles, and ingestion of BCAAs has been found to be effective for decreasing muscle pain. BCAAs are expected to be a solution for the serious issue of aging. Further, ingestion of specific amino acids could be beneficial. Glycine can be ingested for good night's sleep: glycine ingestion before bedtime significantly improved subjective sleep quality. Ingestion of alanine and glutamine effectively accelerates alcohol metabolism, and ingestion of cystine and theanine effectively prevents colds. Finally, amino acids could be used in a novel clinical diagnostic method: the balance of amino acids in the blood could be an indicator of the risk of diseases such as cancer. These newly discovered functions of amino acids are expected to contribute to the resolution of various issues.

  14. Centipede Venoms and Their Components: Resources for Potential Therapeutic Applications

    Md Abdul Hakim

    2015-11-01

    Full Text Available Venomous animals have evolved with sophisticated bio-chemical strategies to arrest prey and defend themselves from natural predators. In recent years, peptide toxins from venomous animals have drawn considerable attention from researchers due to their surprising chemical, biochemical, and pharmacological diversity. Similar to other venomous animals, centipedes are one of the crucial venomous arthropods that have been used in traditional medicine for hundreds of years in China. Despite signifying pharmacological importance, very little is known about the active components of centipede venoms. More than 500 peptide sequences have been reported in centipede venomous glands by transcriptome analysis, but only a small number of peptide toxins from centipede has been functionally described. Like other venomous animals such as snakes, scorpions, and spiders, the venom of centipedes could be an excellent source of peptides for developing drugs for treatments as well as bio-insecticides for agrochemical applications. Although centipede venoms are yet to be adequately studied, the venom of centipedes as well as their components described to date, should be compiled to help further research. Therefore, based on previous reports, this review focusses on findings and possible therapeutic applications of centipede venoms as well as their components.

  15. Stigma and intellectual disability: potential application of mental illness research.

    Ditchman, Nicole; Werner, Shirli; Kosyluk, Kristin; Jones, Nev; Elg, Brianna; Corrigan, Patrick W

    2013-05-01

    Individuals with intellectual disabilities (ID) and individuals with mental illness are consistently found to be among the most socially excluded populations and continue to face substantial health, housing, and employment disparities due to stigma. Although this has spurred extensive research efforts and theoretical advancements in the study of stigma toward mental illness, the stigma of ID has received only limited attention. In this article we explore the application of mental illness stigma research for ID. We carefully reviewed the existing research on mental illness stigma as a foundation for a parallel summary of the empirical literature on attitudes and stigma related to ID. Based on our review, there has not been a systematic approach to the study of stigma toward ID. However, multilevel conceptual models of stigma have received much attention in the mental illness literature. These models have been used to inform targeted interventions and have application to the study of the stigma process for individuals with ID. Nonetheless, there are indeed key differences between-as well as substantial variability within-the ID and mental illness populations that must be considered. Stigma is an issue of social justice impacting the lives of individuals with ID, yet there remains virtually no systematic framework applied to the understanding of the stigma process for this group. Future research can draw on the stigma models developed in the mental illness literature to guide more rigorous research efforts and ultimately the development of effective, multilevel stigma-change strategies for ID.

  16. Laccase: Microbial Sources, Production, Purification, and Potential Biotechnological Applications

    Shraddha

    2011-01-01

    Full Text Available Laccase belongs to the blue multicopper oxidases and participates in cross-linking of monomers, degradation of polymers, and ring cleavage of aromatic compounds. It is widely distributed in higher plants and fungi. It is present in Ascomycetes, Deuteromycetes and Basidiomycetes and abundant in lignin-degrading white-rot fungi. It is also used in the synthesis of organic substance, where typical substrates are amines and phenols, the reaction products are dimers and oligomers derived from the coupling of reactive radical intermediates. In the recent years, these enzymes have gained application in the field of textile, pulp and paper, and food industry. Recently, it is also used in the design of biosensors, biofuel cells, as a medical diagnostics tool and bioremediation agent to clean up herbicides, pesticides and certain explosives in soil. Laccases have received attention of researchers in the last few decades due to their ability to oxidize both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants. It has been identified as the principal enzyme associated with cuticular hardening in insects. Two main forms have been found: laccase-1 and laccase-2. This paper reviews the occurrence, mode of action, general properties, production, applications, and immobilization of laccases within different industrial fields.

  17. 76 FR 71341 - BASINS and WEPP Climate Assessment Tools: Case Study Guide to Potential Applications

    2011-11-17

    ... Climate Assessment Tools: Case Study Guide to Potential Applications AGENCY: Environmental Protection... Tools (CAT): Case Study Guide to Potential Applications (EPA/600/R-11/123A). EPA also is announcing that... report presents a series of short case studies designed to illustrate the capabilities of these tools for...

  18. Potential consequences of clinical application of artificial gametes: a systematic review of stakeholder views.

    Hendriks, Saskia; Dondorp, Wybo; de Wert, Guido; Hamer, Geert; Repping, Sjoerd; Dancet, Eline A F

    2015-01-01

    Recent progress in the formation of artificial gametes, i.e. gametes generated from progenitors or somatic cells, has led to scientific and societal discussion about their use in medically assisted reproduction. In animals, live births have already been achieved using artificial gametes of varying (cell type) sources and biological research seems to be progressing steadily toward clinical application in humans. Artificial gametes could potentially help not only infertile heterosexual couples of reproductive age of which one or both partners lacks functional gametes, but also post-menopausal women and same-sex couples, to conceive a child who will be genetically related to them. But as clinical application of these new technologies may have wider societal consequences, a proactive consideration of the possible impact seems timely and important. This review aims to contribute to this by providing a systematic overview of the potential consequences of clinical application of artificial gametes anticipated by different stakeholders. The electronic database 'Medline/Pubmed' was systematically searched with medical subject heading terms (MesH) for articles published in English between January 1970 and December 2013. Articles were selected based on eligibility and reference lists of eligible studies were hand searched. The reported potential consequences of clinical application of artificial gametes were extracted from the articles and were grouped into categories by content analysis. Per category, we noted which stakeholders referred to which potential consequences, based on author affiliations and, if applicable, study participants. The systematic search yielded 2424 articles, and 84 studies were included after screening. Nine positive consequences, 21 specific consequences requiring consideration and 22 recommendations referring to clinical application of artificial gametes were documented. All positive consequences, consequences requiring consideration and

  19. Potential application of garlic on heavy ion radiotherapy

    Xu Shuai; Zhang Hong; Liu Yang

    2012-01-01

    Garlic has beneficial effects to protect against many diseases. It can not only protect normal cells from lesion, but also prevent tumorigenesis, proliferation, adhesion, invasion and metastasis. In this paper, the mechanisms of these functions of garlic were summarized and compared with radioprotector and radiosensitizer. We presented that garlic has both radioprotective effect on normal cells and radiosensitive effect on tumor cells. By right of its superiority, garlic can improve biological effect in the therapy of heavy ion. Therefore, it has potential value in clinical practice. That is worth for us to explore whether garlic has radioprotective and radiosensitive effect or not. (authors)

  20. Potential applications of process irradiation in Irish industry

    Upton, Mary

    1985-01-01

    Dr. Mary Upton draws attention to the U.S.A. Food and Drugs Administration agreement to allow irradiation for fresh fruit and vegetables of up to one kilogray and of spices up to 30 kilograys. There is also the likelihood of favourable legislation in the U.K. later this year. The potential for Irish industry may well lie in the extension of shelf-life of poultry, fish, fruit and vegetables; salmonella eradication; control of sprouting in potatoes and onions; treatment of food additives such as spices and enzymes; the replacement of ethylene oxide or of ethylene dibromide as preservatives, residues of which are currently considered somewhat suspect for health reasons

  1. Magnetic materials in Japan research, applications and potential

    2013-01-01

    Please note this is a Short Discount publication. This, the third report in Elsevier's Materials Technology in Japan series, concentrates on magnetic materials as a topic gaining worldwide attention, and each chapter looks not only at current research, but also describes the technology as it is being applied and its future potential. Magnetic-related research is the second largest field of research in Japan after semiconductors, with the estimated number of researchers and engineers engaged in magnetics-related activities currently at 20,000. This research report serves as both a review of

  2. The objected oriented programming: application to potential well system

    Franco Garcia, A.

    1995-01-01

    The Objected Oriented Programming is a new methodology which allows us to organize the code in a different way than the structured languages. This article describes the main characteristics of the Language C++, and advantages in physics computing and in building a graphic user interface. The solution of a classical exercise in one-dimensional Quantum Mechanics: to find out the energy levels and the wave functions of a potential well system, allows us to set a class hierarchy, use the concepts of overloading and polymorphism, and read or write data to disk through the input/output streams. (Author) 4 refs

  3. Application of the Asymptotic Taylor Expansion Method to Bistable Potentials

    Okan Ozer

    2013-01-01

    Full Text Available A recent method called asymptotic Taylor expansion (ATEM is applied to determine the analytical expression for eigenfunctions and numerical results for eigenvalues of the Schrödinger equation for the bistable potentials. Optimal truncation of the Taylor series gives a best possible analytical expression for eigenfunctions and numerical results for eigenvalues. It is shown that the results are obtained by a simple algorithm constructed for a computer system using symbolic or numerical calculation. It is observed that ATEM produces excellent results consistent with the existing literature.

  4. Genomics of lactic acid bacteria: Current status and potential applications.

    Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2017-08-01

    Lactic acid bacteria (LAB) are widely used for the production of a variety of foods and feed raw materials where they contribute to flavor and texture of the fermented products. In addition, specific LAB strains are considered as probiotic due to their health-promoting effects in consumers. Recently, the genome sequencing of LAB is booming and the increased amount of published genomics data brings unprecedented opportunity for us to reveal the important traits of LAB. This review describes the recent progress on LAB genomics and special emphasis is placed on understanding the industry-related physiological features based on genomics analysis. Moreover, strategies to engineer metabolic capacity and stress tolerance of LAB with improved industrial performance are also discussed.

  5. Novel Materials, Processing, and Device Technologies for Space Exploration with Potential Dual-Use Applications

    Hepp, A. F.; Bailey, S. G.; McNatt, J. S.; Chandrashekhar, M. V. S.; Harris, J. D.; Rusch, A. W.; Nogales, K. A.; Goettsche, K. V.; Hanson, W.; Amos, D.; hide

    2015-01-01

    We highlight results of a broad spectrum of efforts on lower-temperature processing of nanomaterials, novel approaches to energy conversion, and environmentally rugged devices. Solution-processed quantum dots of copper indium chalcogenide semiconductors and multi-walled carbon nanotubes from lower-temperature spray pyrolysis are enabled by novel (precursor) chemistry. Metal-doped zinc oxide (ZnO) nanostructured components of photovoltaic cells have been grown in solution at low temperature on a conductive indium tin oxide substrate. Arrays of ZnO nanorods can be templated and decorated with various semiconductor and metallic nanoparticles. Utilizing ZnO in a more broadly defined energy conversion sense as photocatalysts, unwanted organic waste materials can potentially be re-purposed. Current efforts on charge carrier dynamics in nanoscale electrode architectures used in photoelectrochemical cells for generating solar electricity and fuels are described. The objective is to develop oxide nanowire-based electrode architectures that exhibit improved charge separation, charge collection and allow for efficient light absorption. Investigation of the charge carrier transport and recombination properties of the electrodes will aid in the understanding of how nanowire architectures improve performance of electrodes for dye-sensitized solar cells. Nanomaterials can be incorporated in a number of advanced higher-performance (i.e. mass specific power) photovoltaic arrays. Advanced technologies for the deposition of 4H-silicon carbide are described. The use of novel precursors, advanced processing, and process studies, including modeling are discussed from the perspective of enhancing the performance of this promising material for enabling technologies such as solar electric propulsion. Potential impact(s) of these technologies for a variety of aerospace applications are highlighted throughout. Finally, examples are given of technologies with potential spin-offs for dual

  6. Potential application of palladium nanoparticles as selective recyclable hydrogenation catalysts

    Mukherjee, DebKumar

    2008-01-01

    The search for more efficient catalytic systems that might combine the advantages of both homogeneous (catalyst modulation) and heterogeneous (catalyst recycling) catalysis is one of the most exciting challenges of modern chemistry. More recently with the advances of nanochemistry, it has been possible to prepare soluble analogues of heterogeneous catalysts. These nanoparticles are generally stabilized against aggregation into larger particles by electrostatic or steric protection. Herein we demonstrate the use of room temperature ionic liquid for the stabilization of palladium nanoparticles that are recyclable catalysts for the hydrogenation of carbon-carbon double bonds and application of these catalysts to the selective hydrogenation of internal or terminal C=C bonds in unsaturated primary alcohols. The particles suspended in room temperature ionic liquid show no metal aggregation or loss of catalytic activity even on prolonged use

  7. Potential applications of neural networks to nuclear power plants

    Uhrig, R.E.

    1991-01-01

    Application of neural networks to the operation of nuclear power plants is being investigated under a US Department of Energy sponsored program at the University of Tennessee. Projects include the feasibility of using neural networks for the following tasks: diagnosing specific abnormal conditions, detection of the change of mode of operation, signal validation, monitoring of check valves, plant-wide monitoring using autoassociative neural networks, modeling of the plant thermodynamics, emulation of core reload calculations, monitoring of plant parameters, and analysis of plant vibrations. Each of these projects and its status are described briefly in this article. The objective of each of these projects is to enhance the safety and performance of nuclear plants through the use of neural networks

  8. A novel plasmonic interferometry and the potential applications

    Ali, J.; Pornsuwancharoen, N.; Youplao, P.; Aziz, M. S.; Chiangga, S.; Jaglan, J.; Amiri, I. S.; Yupapin, P.

    2018-03-01

    In this article, we have proposed the plasmonic interferometry concept and analytical details given. By using the conventional optical interferometry, which can be simply calculated by using the relationship between the electric field and electron mobility, the interference mobility visibility (fringe visibility) can be observed. The surface plasmons in the sensing arm of the Michelson interferometer is constructed by the stacked layers of the silicon-graphene-gold, allows to characterize the spatial resolution of light beams in terms of the electron mobility down to 100-nm scales, with measured coherence lengths as low as ∼100 nm for an incident wavelength of 1550 nm. We have demonstrated a compact plasmonic interferometer that can apply to the electron mean free paths measurement, from which the precise determination can be used for the high-resolution mean free path measurement and sensing applications. This system provides the practical simulation device parameters that can be fabricated and tested by the experimental platform.

  9. Extremozymes from metagenome: Potential applications in food processing.

    Khan, Mahejibin; Sathya, T A

    2017-06-12

    The long-established use of enzymes for food processing and product formulation has resulted in an increased enzyme market compounding to 7.0% annual growth rate. Advancements in molecular biology and recognition that enzymes with specific properties have application for industrial production of infant, baby and functional foods boosted research toward sourcing the genes of microorganisms for enzymes with distinctive properties. In this regard, functional metagenomics for extremozymes has gained attention on the premise that such enzymes can catalyze specific reactions. Hence, metagenomics that can isolate functional genes of unculturable extremophilic microorganisms has expanded attention as a promising tool. Developments in this field of research in relation to food sector are reviewed.

  10. Application of differential evolution algorithm on self-potential data.

    Li, Xiangtao; Yin, Minghao

    2012-01-01

    Differential evolution (DE) is a population based evolutionary algorithm widely used for solving multidimensional global optimization problems over continuous spaces, and has been successfully used to solve several kinds of problems. In this paper, differential evolution is used for quantitative interpretation of self-potential data in geophysics. Six parameters are estimated including the electrical dipole moment, the depth of the source, the distance from the origin, the polarization angle and the regional coefficients. This study considers three kinds of data from Turkey: noise-free data, contaminated synthetic data, and Field example. The differential evolution and the corresponding model parameters are constructed as regards the number of the generations. Then, we show the vibration of the parameters at the vicinity of the low misfit area. Moreover, we show how the frequency distribution of each parameter is related to the number of the DE iteration. Experimental results show the DE can be used for solving the quantitative interpretation of self-potential data efficiently compared with previous methods.

  11. Application of differential evolution algorithm on self-potential data.

    Xiangtao Li

    Full Text Available Differential evolution (DE is a population based evolutionary algorithm widely used for solving multidimensional global optimization problems over continuous spaces, and has been successfully used to solve several kinds of problems. In this paper, differential evolution is used for quantitative interpretation of self-potential data in geophysics. Six parameters are estimated including the electrical dipole moment, the depth of the source, the distance from the origin, the polarization angle and the regional coefficients. This study considers three kinds of data from Turkey: noise-free data, contaminated synthetic data, and Field example. The differential evolution and the corresponding model parameters are constructed as regards the number of the generations. Then, we show the vibration of the parameters at the vicinity of the low misfit area. Moreover, we show how the frequency distribution of each parameter is related to the number of the DE iteration. Experimental results show the DE can be used for solving the quantitative interpretation of self-potential data efficiently compared with previous methods.

  12. Fish trypsins: potential applications in biomedicine and prospects for production.

    Jesús-de la Cruz, Kristal; Álvarez-González, Carlos Alfonso; Peña, Emyr; Morales-Contreras, José Antonio; Ávila-Fernández, Ángela

    2018-04-01

    In fishes, trypsins are adapted to different environmental conditions, and the biochemical and kinetic properties of a broad variety of native isoforms have been studied. Proteolytic enzymes remain in high demand in the detergent, food, and feed industries; however, our analysis of the literature showed that, in the last decade, some fish trypsins have been studied for the synthesis of industrial peptides and for specific biomedical uses as antipathogenic agents against viruses and bacteria, which have been recently patented. In addition, innovative strategies of trypsin administration have been studied to ensure that trypsins retain their properties until they exert their action. Biomedical uses require the production of high-quality enzymes. In this context, the production of recombinant trypsins is an alternative. For this purpose, E. coli -based systems have been tested for the production of fish trypsins; however, P. pastoris -based systems also seem to show great potential in the production of fish trypsins with higher production quality. On the other hand, there is a lack of information regarding the specific structures, biochemical and kinetic properties, and characteristics of trypsins produced using heterologous systems. This review describes the potential uses of fish trypsins in biomedicine and the enzymatic and structural properties of native and recombinant fish trypsins obtained to date, outlining some prospects for their study.

  13. Distillery spent wash: Treatment technologies and potential applications

    Mohana, Sarayu; Acharya, Bhavik K.; Madamwar, Datta

    2009-01-01

    Distillery spent wash is the unwanted residual liquid waste generated during alcohol production and pollution caused by it is one of the most critical environmental issue. Despite standards imposed on effluent quality, untreated or partially treated effluent very often finds access to watercourses. The distillery wastewater with its characteristic unpleasant odor poses a serious threat to the water quality in several regions around the globe. The ever-increasing generation of distillery spent wash on the one hand and stringent legislative regulations of its disposal on the other has stimulated the need for developing new technologies to process this effluent efficiently and economically. A number of clean up technologies have been put into practice and novel bioremediation approaches for treatment of distillery spent wash are being worked out. Potential microbial (anaerobic and aerobic) as well as physicochemical processes as feasible remediation technologies to combat environmental pollution are being explored. An emerging field in distillery waste management is exploiting its nutritive potential for production of various high value compounds. This review presents an overview of the pollution problems caused by distillery spent wash, the technologies employed globally for its treatment and its alternative use in various biotechnological sectors

  14. Potential applications of plant probiotic microorganisms in agriculture and forestry

    Luciana Porto de Souza Vandenberghe

    2017-07-01

    Full Text Available Agriculture producers, pushed by the need for high productivity, have stimulated the intensive use of pesticides and fertilizers. Unfortunately, negative effects on water, soil, and human and animal health have appeared as a consequence of this indiscriminate practice. Plant probiotic microorganisms (PPM, also known as bioprotectants, biocontrollers, biofertilizers, or biostimulants, are beneficial microorganisms that offer a promising alternative and reduce health and environmental problems. These microorganisms are involved in either a symbiotic or free-living association with plants and act in different ways, sometimes with specific functions, to achieve satisfactory plant development. This review deals with PPM presentation and their description and function in different applications. PPM includes the plant growth promoters (PGP group, which contain bacteria and fungi that stimulate plant growth through different mechanisms. Soil microflora mediate many biogeochemical processes. The use of plant probiotics as an alternative soil fertilization source has been the focus of several studies; their use in agriculture improves nutrient supply and conserves field management and causes no adverse effects. The species related to organic matter and pollutant biodegradation in soil and abiotic stress tolerance are then presented. As an important way to understand not only the ecological role of PPM and their interaction with plants but also the biotechnological application of these cultures to crop management, two main approaches are elucidated: the culture-dependent approach where the microorganisms contained in the plant material are isolated by culturing and are identified by a combination of phenotypic and molecular methods; and the culture-independent approach where microorganisms are detected without cultivating them, based on extraction and analyses of DNA. These methods combine to give a thorough knowledge of the microbiology of the studied

  15. Potential Applications of Scanning Probe Microscopy in Forensic Science

    Watson, G S [Nanoscale Science and Technology Centre, School of Science, Griffith University, Kessels Rd, Nathan, QLD, 4111 (Australia); Watson, J A [Nanoscale Science and Technology Centre, School of Science, Griffith University, Kessels Rd, Nathan, QLD, 4111 (Australia)

    2007-04-15

    The forensic community utilises a myriad of techniques to investigate a wide range of materials, from paint flakes to DNA. The various microscopic techniques have provided some of the greatest contributions, e.g., FT-IR (Fourier-transform infrared) microspectroscopy utilised in copy toner discrimination, multi-layer automobile paint fragment examination, etc, SEM-EDA (scanning electron microscopy with energy dispersive analysis) used to investigate glass fragments, fibers, and explosives, and SEM in microsampling for elemental analysis, just to name a few. This study demonstrates the ability of the Scanning Probe Microscope (SPM) to analyse human fingerprints on surfaces utilising a step-and-scan feature, enabling analysis of a larger field-of-view. We also extend a line crossings study by incorporating height analysis and surface roughness measurements. The study demonstrates the potential for SPM techniques to be utilised for forensic analysis which could complement the more traditional methodologies used in such investigations.

  16. Mesenchymal stem cells: biological characteristics and potential clinical applications

    Kassem, Moustapha

    2004-01-01

    are among the first stem cell types to be introduced in the clinic. Several studies have demonstrated the possible use of MSC in systemic transplantation for systemic diseases, local implantation for local tissue defects, as a vehicle for genes in gene therapy protocols or to generate transplantable tissues...... and organs in tissue engineering protocols. Before their widespread use in therapy, methods allowing the generation of large number of cells without affecting their differentiation potential as well as technologies that overcome immunological rejection (in case allogenic transplantation) must be developed.......Mesenchymal stem cells (MSC) are clonogenic, non-hematpoietic stem cells present in the bone marrow and are able to differentiate into multiple mesoderm-type cell lineages, for example, osteoblasts, chondrocytes, endothelial-cells and also non-mesoderm-type lineages, for example, neuronal...

  17. Potential Applications of Scanning Probe Microscopy in Forensic Science

    Watson, G S; Watson, J A

    2007-01-01

    The forensic community utilises a myriad of techniques to investigate a wide range of materials, from paint flakes to DNA. The various microscopic techniques have provided some of the greatest contributions, e.g., FT-IR (Fourier-transform infrared) microspectroscopy utilised in copy toner discrimination, multi-layer automobile paint fragment examination, etc, SEM-EDA (scanning electron microscopy with energy dispersive analysis) used to investigate glass fragments, fibers, and explosives, and SEM in microsampling for elemental analysis, just to name a few. This study demonstrates the ability of the Scanning Probe Microscope (SPM) to analyse human fingerprints on surfaces utilising a step-and-scan feature, enabling analysis of a larger field-of-view. We also extend a line crossings study by incorporating height analysis and surface roughness measurements. The study demonstrates the potential for SPM techniques to be utilised for forensic analysis which could complement the more traditional methodologies used in such investigations

  18. Potential application of SERS for arsenic speciation in biological matrices.

    Yang, Mingwei; Matulis, Shannon; Boise, Lawrence H; McGoron, Anthony J; Cai, Yong

    2017-08-01

    Speciation of arsenic is usually carried out using chromatography-based methods coupled with spectroscopic determination; however, the inevitable procedures involving sample preparation and separation could potentially alter the integrity of the arsenic metabolites present in biological samples. Surface-enhanced Raman spectroscopy (SERS) could be a promising alternative for providing a reliable arsenic analysis under the influence of a cellular matrix. A method for arsenic speciation using SERS in cellular matrix was developed in this study and four arsenicals were selected, including arsenite (As III ), arsenate (As V ), monomethylarsonic acid (MMA V ) and dimethylarsinic acid (DMA V ). Silver nanoparticles in the form of colliodal suspension with different surface charges, i.e., coated with citrate (AgNPs-Citrate) and spermine (AgNPs-Spermine) were employed as SERS substrates. Adsorption of arsenicals on nanoparticles in colloidal suspensions and the cellular matrix and the pH, size, and zeta potential of the colloidal suspensions were investigated for a better understanding of the SERS signal response of arsenicals in the colloidal suspensions or under the influence of cellular matrix. Arsenicals showed substantially different SERS responses in the two colloidal suspensions, mainly because of the distinct difference in the interaction between the arsenicals and the nanoparticles. Arsenic speciation in cell lysate could be successfully carried out in AgNPs-Spermine suspension, while AgNPs-Citrate could not yield significant SERS signals under the experimental conditions. This study proved that AgNPs-Spermine colloidal suspension could be a promising SERS substrate for studying arsenic metabolism in a biological matrix, reducing the bias caused by traditional techniques that involve sample extraction and pretreatment.

  19. Biogenic methane potential of marine sediments. Application of chemical thermodynamics

    Arning, E.T.; Schulz, H.M. [Helmholtz Centre Potsdam GFZ, Potsdam (Germany); Berk, W. van [Technical Univ. of Clausthal (Germany). Dept. of Hydrogeology

    2013-08-01

    Accumulations of biogenic methane-dominated gas are widespread and occur in a variety of depositional settings and rock types. However, the potential of biogenic methane remains underexplored. This is mainly due to the fact that quantitative assessments applying numerical modeling techniques for exploration purposes are generally lacking to date. Biogenic methane formation starts in relatively shallow marine sediments below the sulfate reduction zone. When sulfate is exhausted, methanogenesis via the CO{sub 2} reduction pathway is often the dominant biogenic methane formation process in marine sediments (Claypool and Kaplan, 1974). The process can be simplified by the reaction: 2CH{sub 2}O + Ca{sup 2+} + H{sub 2}O {yields} CH{sub 4} + CaCO{sub 3} + 2H{sup +}. The products of early diagenetic reactions initiate coupled equilibrium reactions that induce a new state of chemical equilibrium among minerals, pore water and gas. The driving force of the complex biogeochemical reactions in sedimentary environments during early diagenesis is the irreversible redox-conversion of organic matter. Early diagenetic formation of biogenic methane shortly after deposition ('early diagenesis') was retraced using PHREEQC computer code that is applied to calculate homogenous and heterogeneous mass-action equations in combination with one-dimensional diffusion driven transport (Parkhurst and Appelo, 1999). Our modeling approach incorporates interdependent diagenetic reactions evolving into a diffusive multi-component and multiphase system by means of thermodynamic equilibrium calculations of species distribution (Arning et al., 2011, 2012, 2013). Reaction kinetics of organic carbon conversion is integrated into the set of equilibrium reactions by defining type and amount of converted organic matter in a certain time step. It is the aim (1) to calculate quantitatively thermodynamic equilibrium conditions (composition of pore water, mineral phase and gas phase assemblage) in

  20. Anodal sensory nerve action potentials: From physiological understanding to potential clinical applicability.

    Leote, Joao; Pereira, Pedro; Cabib, Christopher; Cipullo, Federica; Valls-Sole, Josep

    2016-06-01

    Low-intensity electrical stimuli of digital nerves may generate a double peak potential (DPp), composed of a cathodal (caAP) and an anodal (anAP) potential in orthodromic recordings. We studied the effects on caAP and anAP of stimuli of variable intensity, duration, and frequency. We also applied a conditioning stimulus to study potential differences in recovery time. The anAP was obtained in 33 of 40 healthy subjects (82.5%) and 4 of 20 patients with various types of sensory neuropathies (20%). Changes in stimulus duration and intensity had reciprocal effects on the amplitude of the anAP and the caAP. There were significant differences in recovery time between caAP and anAP after a conditioning stimulus. The caAP and anAP are 2 interdependent waveforms generated by different effects of the same stimulus over axons at the verge of depolarization. Muscle Nerve 53: 897-905, 2016. © 2015 Wiley Periodicals, Inc.

  1. Potential Applications for Nuclear Energy besides Electricity Generation: AREVA Global Perspective of HTR Potential Market

    Soutworth, Finis; Gauthier, Jean-Claude; Lecomte, Michel; Carre, Franck

    2007-01-01

    Energy supply is increasingly showing up as a major issue for electricity supply, transportation, settlement, and process heat industrial supply including hydrogen production. Nuclear power is part of the solution. For electricity supply, as exemplified in Finland and France, the EPR brings an immediate answer; HTR could bring another solution in some specific cases. For other supply, mostly heat, the HTR brings a solution inaccessible to conventional nuclear power plants for very high or even high temperature. As fossil fuels costs increase and efforts to avoid generation of Greenhouse gases are implemented, a market for nuclear generated process heat will develop. Following active developments in the 80's, HTR have been put on the back burner up to 5 years ago. Light water reactors are widely dominating the nuclear production field today. However, interest in the HTR technology was renewed in the past few years. Several commercial projects are actively promoted, most of them aiming at electricity production. ANTARES is today AREVA's response to the cogeneration market. It distinguishes itself from other concepts with its indirect cycle design powering a combined cycle power plant. Several reasons support this design choice, one of the most important of which is the design flexibility to adapt readily to combined heat and power applications. From the start, AREVA made the choice of such flexibility with the belief that the HTR market is not so much in competition with LWR in the sole electricity market but in the specific added value market of cogeneration and process heat. In view of the volatility of the costs of fossil fuels, AREVA's choice brings to the large industrial heat applications the fuel cost predictability of nuclear fuel with the efficiency of a high temperature heat source free of greenhouse gases emissions. The ANTARES module produces 600 MWth which can be split into the required process heat, the remaining power drives an adapted prorated

  2. Nonthermal Argon Plasma Generator and Some Potential Applications

    Bunoiu M.

    2015-12-01

    Full Text Available A laboratory - made nonthermal plasma generator is presented. It has a diameter of 0.020 m and length of 0.155 m and contains two electrodes. The first electrode is a 2% Th-W alloy, 0.002 m in diameter bar, centred inside the generator’s body by means of a four channel teflon piece; the other three channels, 0.003 m in diameter, are used for Ar supply. The second electrode is a nozzle of 0.002 m - 0.008 m diameter and 0.005m length. A ~500 kV/m electric field is generated between the two electrodes by a high frequency source (13.56 MHz ±5%, equipped with a OT-1000 (Tungsram power triode. For Ar flows ranging from 0.00008 m3/s to 0.00056 m3/s, a plasma jet of length not exceeding 0.015 m and temperature below 315 K is obtained. Anthurium andraeanumis sample , blood matrix, human hair and textile fibers may be introduced in the plasma jet. For time periods of 30 s and 60 s, various effects like, cell detexturization, fast blood coagulation or textile fiber or hair cleaning and smoothing are obtained. These effects are presented and discussed in the paper.

  3. Potential applications of biphosphonates in dental surgical implants.

    Berardi, D; Carlesi, T; Rossi, F; Calderini, M; Volpi, R; Perfetti, G

    2007-01-01

    Biphosphonates are largely used for their unquestionable properties of inhibiting bone resorption by osteoclasts in the treatment of various osteometabolic illnesses such as osteoporosis, multiple myeloma, tumors which metastasize to the bone and malignant hypercalcemia. In this literature review the physico-chemical properties, biologic activities and the mechanisms of action of biphosphonates are described. The use of these drugs is discussed, analyzing the quantity of results which have emerged through in vitro and in vivo experiments on animal models. In this study the efficiency of these drugs is demonstrated in contrasting the osteolitic processes of the alveolar bone, in promoting the neoformation and in bettering the quality of bone implants. However, it is important to draw attention to a worrying correlation which has emerged during the last 3-4 years, between osteonecrosis of the jaw (ONJ) and the systemic administration of aminobiphosphonates. This collateral effect did not emerge following the use of non-aminobiphosphonates. The aim of this review is to identify the guidelines for the use of biphosphonates in oral implant surgery.

  4. The processing and potential applications of porous silicon

    Syyuan Shieh.

    1992-07-01

    Stability of a cylindrical pore under the influence of surface energy is important for porous silicon (PS) processing in the integrated circuit industry. Once the zig-zag cylindrical pores of porous silicon or oxidized porous silicon (OPS) are unstable and breakup into rows of isolated spherical pores, oxidation of PS and densification/nitridation of OPS become difficult. Swing to difficulty transport of reactant gas (O{sub 2}, NH{sub 3}) or the trapped gas (for densification of OPS). A first order analysis of the stability of a cylindrical pore or cylinder is considered first. Growth of small sinusoidal perturbations by viscous flow or evaporation/condensation result in dependence of perturbation growth rate on perturbation wavelength. Rapid thermal oxidation (RTO) of porous silicon is proposed as an alternative for the tedious two-step 300 and 800C oxidation process. Transmission electron microscopy, energy dispersive spectroscopy ESCA are used for quality control. Also, rapid thermal nitridation of oxidized porous silicon in ammonia is proposed to enhance OPS resistance to HF solution. Pores breakup of OPS results in a trapped gas problem during densification. Wet helium is proposed as OPS densification ambient gas to shorten densification time. Finally, PS is proposed to be an extrinsic gettering center in silicon wafers. The suppression of oxidation-induced stacking faults is used to demonstrate the gettering ability. Possible mechanism is discussed.

  5. The processing and potential applications of porous silicon

    Shieh, Syyuan [Univ. of California, Berkeley, CA (United States)

    1992-07-01

    Stability of a cylindrical pore under the influence of surface energy is important for porous silicon (PS) processing in the integrated circuit industry. Once the zig-zag cylindrical pores of porous silicon or oxidized porous silicon (OPS) are unstable and breakup into rows of isolated spherical pores, oxidation of PS and densification/nitridation of OPS become difficult. Swing to difficulty transport of reactant gas (O2, NH3) or the trapped gas (for densification of OPS). A first order analysis of the stability of a cylindrical pore or cylinder is considered first. Growth of small sinusoidal perturbations by viscous flow or evaporation/condensation result in dependence of perturbation growth rate on perturbation wavelength. Rapid thermal oxidation (RTO) of porous silicon is proposed as an alternative for the tedious two-step 300 and 800C oxidation process. Transmission electron microscopy, energy dispersive spectroscopy ESCA are used for quality control. Also, rapid thermal nitridation of oxidized porous silicon in ammonia is proposed to enhance OPS resistance to HF solution. Pores breakup of OPS results in a trapped gas problem during densification. Wet helium is proposed as OPS densification ambient gas to shorten densification time. Finally, PS is proposed to be an extrinsic gettering center in silicon wafers. The suppression of oxidation-induced stacking faults is used to demonstrate the gettering ability. Possible mechanism is discussed.

  6. New technology innovations with potential for space applications

    Krishen, Kumar

    2008-07-01

    Human exploration and development of space is being pursued by spacefaring nations to explore, use, and enable the development of space and expand the human experience there. The goals include: increasing human knowledge of nature's processes using the space environment; exploring and settling the solar system; achieving routine space travel; and enriching life on Earth through living and working in space. A crucial aspect of future space missions is the development of infrastructure to optimize safety, productivity, and costs. A major component of mission execution is operations management. NASA's International Space Station is providing extensive experience in both infrastructure and operations. In view of this, a vigorously organized approach is needed to implement successful space-, planet-, and ground-based research and operations that entails wise and efficient use of technical and human resources. Many revolutionary technologies being pursued by researchers and technologists may be vital in making space missions safe, reliable, cost-effective, and productive. These include: ionic polymer-metal composite technology; solid-state lasers; time-domain sensors and communication systems; high-temperature superconductivity; nanotechnology; variable specific impulse magneto plasma rocket; fuzzy logic; wavelet technology; and neural networks. An overview of some of these will be presented, along with their application to space missions.

  7. An innovative liquid metal design with worldwide application potential

    Quinn, J.E.; Berglund, R.C.

    1989-01-01

    This paper reports that the United States nuclear program has been faced with major political, economic and technical challenges in recent years. One US program element, the Liquid Metal Reactor, has addressed these challenges in a systematic, focused manner. The result is an innovative modular design incorporating safety features that utilize inherent characteristics. This Advanced Liquid Metal Reactor (ALMR) is based on the PRISM concept, originated by the General Electric Company in 1981. This design should also be attractive in other developed countries that have deployed, and/or are deploying, nuclear power. The design's safety features can achieve neutronic shutdown and decay heat removal without relying on operator action or engineered active safety features. The ALMR utilizes many innovations including: a passive reactor vessel air cooling system for decay heat removal; the use of a sealed reactor assembly; seismic isolation; electromagnetic primary pumps; and an in-vessel fuel transfer machine. The US ALMR design incorporates a metal fuel core as its reference, however, the required safety performance can also be achieved with an oxide core having similar safety features. This flexibility is particularly important when addressing world wide ALMR applications. The reference ALMR reactor module, of which there are nine in a typical 1395 MW e plant, has a -6 meter by -20 meter vessel and a 471 MW thermal output, with a reactor outlet temperature of 485 degrees C and an overall conversion efficiency of 33%. This plant uses a saturated steam cycle and a non-safety grade secondary sodium system

  8. Potential Positive Effects of Pesticides Application on (Walker (Lepidoptera: Insecta

    Guo-Qing Yang

    2014-01-01

    Full Text Available In China, the pink stem borer (PSB Sesamia inferens (Walker (Lepidoptera: Noctuidae has become a rice pest in some rice-producing regions. The cause of this shift from secondary to major pest is unknown. The major purpose of this study was to examine the effect of five commonly used pesticides in rice fields on reproduction of PSB and on biochemical substances of rice plants. The results showed that the weight of pupae developed from 1st instar larvae treated with 2 mg/L triazophos and the number of eggs laid by emerged females from the treatment were significantly greater than those of the control, increasing by 26.2% and 47%, respectively. In addition, a nontarget insecticide, pymetrozine 100 mg/L, and a target insecticide, chlorantraniliprole 2 mg/L, stimulated reproduction of PSB. Biochemical measurement showed that foliar sprays of these pesticides resulted in significant reductions of contents of resistant substances, flavonoids and phenolic acids, in rice plants. For example, flavonoids and phenolic acids of rice plants treated with triazophos reduced by 48.5% and 22.4%, respectively, compared to the control. Therefore, we predicted that the application of some pesticides, eg triazophos and chlorantraniliprole, may be the cause of the increase in the population numbers of PSB in rice fields.

  9. A novel plasmonic interferometry and the potential applications

    J. Ali

    2018-03-01

    Full Text Available In this article, we have proposed the plasmonic interferometry concept and analytical details given. By using the conventional optical interferometry, which can be simply calculated by using the relationship between the electric field and electron mobility, the interference mobility visibility (fringe visibility can be observed. The surface plasmons in the sensing arm of the Michelson interferometer is constructed by the stacked layers of the silicon-graphene-gold, allows to characterize the spatial resolution of light beams in terms of the electron mobility down to 100-nm scales, with measured coherence lengths as low as ∼100 nm for an incident wavelength of 1550 nm. We have demonstrated a compact plasmonic interferometer that can apply to the electron mean free paths measurement, from which the precise determination can be used for the high-resolution mean free path measurement and sensing applications. This system provides the practical simulation device parameters that can be fabricated and tested by the experimental platform.

  10. Potential application of Candida melibiosica in biofuel cells.

    Hubenova, Yolina; Mitov, Mario

    2010-04-01

    Various prokaryote species have been widely studied for microbial fuel cell (MFC) application. However, the information about yeast utilization into biofuel cells is still scanty. The aim of this investigation is to verify if Candida melibiosica 2491, a yeast strain, possessing high phytase activity, could be applied as a biocatalyst in a yeast biofuel cell. The microbiological requirements were coupled with the electrochemical ones tracing main biochemical pathway metabolites such as different carbohydrate and inorganic phosphates and their assimilation with time. The obtained results show that from the three carbohydrates investigated - glucose, fructose and sucrose, fructose is the most suitable for the yeast cultivation. The presence of yeast extract and peptone improves the performance into the biofuel cell. The relationship between the yeast cell amount and the biofuel cell characteristics was determined. Analyses showed that electricity was generated by the yeast culture even in the absence of an artificial mediator. The addition of methylene blue at concentrations higher than 0.1 mM improves the current and power density output. The obtained experimental results proved that C. melibiosica 2491 belongs to the electrogenic strains. 2009 Elsevier B.V. All rights reserved.

  11. Luminescence imaging using radionuclides: a potential application in molecular imaging

    Park, Jeong Chan; Il An, Gwang; Park, Se-Il; Oh, Jungmin; Kim, Hong Joo; Su Ha, Yeong; Wang, Eun Kyung; Min Kim, Kyeong; Kim, Jung Young; Lee, Jaetae; Welch, Michael J.; Yoo, Jeongsoo

    2011-01-01

    Introduction: Nuclear and optical imaging are complementary in many aspects and there would be many advantages when optical imaging probes are prepared using radionuclides rather than classic fluorophores, and when nuclear and optical dual images are obtained using single imaging probe. Methods: The luminescence intensities of various radionuclides having different decay modes have been assayed using luminescence imaging and in vitro luminometer. Radioiodinated Herceptin was injected into a tumor-bearing mouse, and luminescence and microPET images were obtained. The plant dipped in [ 32 P]phosphate solution was scanned in luminescence mode. Radio-TLC plate was also imaged in the same imaging mode. Results: Radionuclides emitting high energy β + /β - particles showed higher luminescence signals. NIH3T6.7 tumors were detected in both optical and nuclear imaging. The uptake of [ 32 P]phosphate in plant was easily followed by luminescence imaging. Radio-TLC plate was visualized and radiochemical purity was quantified using luminescence imaging. Conclusion: Many radionuclides with high energetic β + or β - particles during decay were found to be imaged in luminescence mode due mainly to Cerenkov radiation. 'Cerenkov imaging' provides a new optical imaging platform and an invaluable bridge between optical and nuclear imaging. New optical imaging probes could be easily prepared using well-established radioiodination methods. Cerenkov imaging will have more applications in the research field of plant science and autoradiography.

  12. A High Redox Potential Laccase from Pycnoporus sanguineus RP15: Potential Application for Dye Decolorization

    Ana L. R. L. Zimbardi

    2016-05-01

    Full Text Available Laccase production by Pycnoporus sanguineus RP15 grown in wheat bran and corncob under solid-state fermentation was optimized by response surface methodology using a Central Composite Rotational Design. A laccase (Lacps1 was purified and characterized and the potential of the pure Lacps1 and the crude culture extract for synthetic dye decolorization was evaluated. At optimal conditions (eight days, 26 °C, 18% (w/w milled corncob, 0.8% (w/w NH4Cl and 50 mmol·L−1 CuSO4, initial moisture 4.1 mL·g−1, the laccase activity reached 138.6 ± 13.2 U·g−1. Lacps1 was a monomeric glycoprotein (67 kDa, 24% carbohydrate. Optimum pH and temperature for the oxidation of 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonate (ABTS were 4.4 and 74.4 °C, respectively. Lacps1 was stable at pH 3.0–8.0, and after two hours at 55–60 °C, presenting high redox potential (0.747 V vs. NHE. ABTS was oxidized with an apparent affinity constant of 147.0 ± 6.4 μmol·L−1, maximum velocity of 413.4 ± 21.2 U·mg−1 and catalytic efficiency of 3140.1 ± 149.6 L·mmol−1·s−1. The maximum decolorization percentages of bromophenol blue (BPB, remazol brilliant blue R and reactive blue 4 (RB4, at 25 or 40 °C without redox mediators, reached 90%, 80% and 60%, respectively, using either pure Lacps1 or the crude extract. This is the first study of the decolorization of BPB and RB4 by a P. sanguineus laccase. The data suggested good potential for treatment of industrial dye-containing effluents.

  13. Advanced biomaterials and their potential applications in the treatment of periodontal disease.

    Chen, Xi; Wu, Guofeng; Feng, Zhihong; Dong, Yan; Zhou, Wei; Li, Bei; Bai, Shizhu; Zhao, Yimin

    2016-08-01

    Periodontal disease is considered as a widespread infectious disease and the most common cause of tooth loss in adults. Attempts for developing periodontal disease treatment strategies, including drug delivery and regeneration approaches, provide a useful experimental model for the evaluation of future periodontal therapies. Recently, emerging advanced biomaterials including hydrogels, films, micro/nanofibers and particles, hold great potential to be utilized as cell/drug carriers for local drug delivery and biomimetic scaffolds for future regeneration therapies. In this review, first, we describe the pathogenesis of periodontal disease, including plaque formation, immune response and inflammatory reactions caused by bacteria. Second, periodontal therapy and an overview of current biomaterials in periodontal regenerative medicine have been discussed. Third, the roles of state-of-the-art biomaterials, including hydrogels, films, micro/nanofibers and micro/nanoparticles, developed for periodontal disease treatment and periodontal tissue regeneration, and their fabrication methods, have been presented. Finally, biological properties, including biocompatibility, biodegradability and immunogenicity of the biomaterials, together with their current applications strategies are given. Conclusive remarks and future perspectives for such advanced biomaterials are discussed.

  14. A discussion on assessing climate-related hazards and uncertainties considering scenarios of climate-change: Examples and applications to some African areas

    Garcia-Aristizabal, Alexander; Bucchignani, Edoardo; Marzocchi, Warner; Uhinga, Guido

    2013-04-01

    Extreme meteorological phenomena such as heavy precipitation, extreme temperature, or strong winds, may have considerable impacts on the economy, infrastructure, health, as well as may represent a non-negligible threat for human life. A changing climate may lead to changes in the frequency, intensity, spatial extent, duration, and timing of weather and climate extremes, and can result in unprecedented extreme events. Climatological parameters, that are reference variables for the assessment of climate-related hazards, can be generally obtained from data catalogues; nevertheless, it is often the case that the time window of the observations, if available at all, is too short for a correct analysis of the most extreme and less frequent events. For this reason there is a growing interest on the use of 'synthetic' data derived from climatological models which in addition, allow the possibility to perform climate projections considering different plausible emission/concentration scenarios in the modelling. Within this context, the scenario-based climate projections can be useful to assess possible temporal variations on climatological parameters (and hence in climate-related hazards) under climate change conditions. Here we discuss the characterization of some climate-related hazards based on the analysis of climatological parameters, debating relevant issues in the use of both observed and synthetic data, the consideration of climate-change scenarios, and the quantification and communication of uncertainties. In particular, to account for possible non-stationary conditions in the analysis of extremes under climate-change conditions, we have adopted a practical covariate approach recently used in different hydrological and meteorological applications, and used a Bayesian framework for the parameter estimation and uncertainty propagation.

  15. Radiation Modification of Some Natural Polymers and Their Potential Applications

    Refaee, A.M.E.A.

    2012-01-01

    In recent years, antioxidants received remarkable attention due to the ability to preserve foodstuffs by retarding deterioration, rancidity and/or discoloration caused by oxidation of fats and oils in foods. In addition, they have the ability to protect against detrimental change of oxidizable nutrients and extend shelf life of foods. Nowadays, polysaccharides have been demonstrated to scavenge free radicals in vitro and to be used as antioxidants for the prevention of oxidative damage in foods. The antioxidant activity of polysaccharides depends upon several structural parameters, such as the molecular weight, amount, type and position of functional groups. For these applications, specific molecular weights are required. Thus, modification and preparation of low molecular weight fractions or oligosaccharides from chitosan, Na-alginate and carrageenan using ionizing radiation will be carried out and their antioxidant properties will be determined. The molecular weights and structure changes upon the radiation degradation process of these natural polymers in solid and solution form will be investigated using GPC, FT-IR, UV-Vis spectrophotometers. In an attempt to improve the functionality and water solubility of chitosan, chemical modifications will be done to introduce hydrophilic groups and enhance its antioxidant activity. Radical mediated lipid peroxidation inhibition, scavenging effect on DPPH radicals, reducing power and the ferrous ion chelating activity assays will be used to evaluate the antioxidant activity of oligosaccharides. Effectiveness of irradiated chitosan derivatives in reducing the lipid peroxidation in minced chicken will be investigated for improving the oxidative deterioration of minced chicken during refrigerated storage. On the other hand, there is a strong need for new plant growth media with increased water and nutrient holding capacity. Hydrogels have the ability to absorb large quantities of water. Among of these hydrogels polyacrylamide

  16. Zirconium Phosphate Nanoplatelet Potential for Anticancer Drug Delivery Applications.

    González, Millie L; Ortiz, Mayra; Hernández, Carmen; Cabán, Jennifer; Rodríguez, Axel; Colón, Jorge L; Báez, Adriana

    2016-01-01

    Zirconium phosphate (ZrP) nanoplatelets can intercalate anticancer agents via an ion exchange reaction creating an inorganic delivery system with potential for cancer treatment. ZrP delivery of anticancer agents inside tumor cells was explored in vitro. Internalization and cytotoxicity of ZrP nanoplatelets were studied in MCF-7 and MCF-10A cells. DOX-loaded ZrP nanoplatelets (DOX@ZrP) uptake was assessed by confocal (CLSM) and transmission electron microscopy (TEM). Cytotoxicity to MCF-7 and MCF-10A cells was determined by the MTT assay. Reactive Oxy- gen Species (ROS) production was analyzed by fluorometric assay, and cell cycle alterations and induction of apoptosis were analyzed by flow cytometry. ZrP nanoplatelets were localized in the endosomes of MCF-7 cells. DOX and ZrP nanoplatelets were co-internalized into MCF-7 cells as detected by CLSM. While ZrP showed limited toxicity to MCF-7 cells, DOX@ZrP was cytotoxic at an IC₅₀ similar to that of free DOX. Meanwhile, DOX lC₅₀ was significantly lower than the equivalent concentration of DOX@ZrP in MCF-10A cells. ZrP did not induce apoptosis in both cell lines. DOX and DOX@ZrP induced significant oxidative stress in both cell models. Results suggest that ZrP nanoplatelets are promising as carriers of anticancer agents into cancer cells.

  17. Evaluation of alkali bromide salts for potential pyrochemical applications

    Tripathy, P.K.; Gutknecht, T.Y.; Herrmann, S.D.; Fredrickson, G.L.; Lister, T.E.

    2013-01-01

    Transient techniques were employed to study the electrochemical behavior, reduction mechanism and transport properties of REBr 3 (RE - La, Nd and Gd) in pure LiBr, LiBr-KBr (eutectic) and LiBr-KBr-CsBr (eutectic) melts. Gd(III) showed a reversible single step soluble-insoluble exchange phenomenon in LiBr melt at 973 K. Although La (III), Nd(III) and Gd(III) ions showed reversible behavior in eutectic LiBr-KBr melts, these ions showed a combination of temperature dependent reversible and pseudo-reversible behavior. While both La(III) and Gd(III) showed one step reduction, the reduction of Nd(III) was observed to be a two step process. La metal could be electrodeposited from the ternary electrolyte at a temperature of 673 K. Various electrochemical measurements suggest that both binary and ternary bromide melts can potentially be used to electro-deposit high purity RE metals at comparatively lower operating temperatures. (authors)

  18. [Mesenchymal stem cells: definitions, culture and potential applications].

    Ceron, Willy; Lozada-Requena, Iván; Ventocilla, Kiomi; Jara, Sandra; Pinto, Milagros; Cabello, Marco; Aguilar, José L

    2016-01-01

    In recent years, mesenchymal stem cells (MSC) have become very important due to their high plasticity and their ability to release paracrine factors able to interact with various cell types, tissues and organs. The use of MSC in regenerative medicine became of vital importance, since they do not express histocompatibility MHC molecules class II nor costimulant molecules, and low expression of MHC class I, will not be rejected by individuals of same species, they could be used in an autologous, and eventually, allogeneic manner. However, it is important to scientifically demonstrate many properties, including immunomodulatory ones. Having several sources of obtaining, it should be standardized the best one to ensure the purity and quality of these cells. Finally, it is important when working with these cells, that characteristics of cell culture, immunophenotyping and differentiation capacity are fully demonstrated. MSC have been applied in several clinical uses. Among them, their ability to improve, and even heal chronic ulcers, as diabetic, has attracted attention for its potential therapeutic impact.

  19. Evaluation of Alkali Bromide Salts for Potential Pyrochemical Applications

    Prabhat K. Tripathy; Steven D. Herrmann; Guy L. Fredrickson; Tedd E. Lister; Toni Y. Gutknecht

    2013-10-01

    Transient techniques were employed to study the electrochemical behavior, reduction mechanism and transport properties of REBr3 (RE - La, Nd and Gd) in pure LiBr, LiBr-KBr (eutectic) and LiBr-KBr-CsBr (eutectic) melts. Gd(III) showed a reversible single step soluble-insoluble exchange phenomenon in LiBr melt at 973K. Although La (III), Nd(III) and Gd(III) ions showed reversible behavior in eutectic LiBr-KBr melts, these ions showed a combination of temperature dependent reversible and pseudo-reversible behavior. While both La(III) and Gd(III) showed one step reduction, the reduction of Nd(III) was observed to be a two step process. La metal could be electrodeposited from the ternary electrolyte at a temperature of 673K. Various electrochemical measurements suggest that both binary and ternary bromide melts can potentially be used to electrodeposit high purity RE metals at comparatively lower operating temperatures.

  20. Building better optical model potentials for nuclear astrophysics applications

    Bauge, Eric; Dupuis, Marc

    2004-01-01

    In nuclear astrophysics, optical model potentials play an important role, both in the nucleosynthesis models, and in the interpretation of astrophysics related nuclear physics measurements. The challenge of nuclear astrophysics resides in the fact that it involves many nuclei far from the stability line, implying than very few (if any) experimental results are available for these nuclei. The answer to this challenge is a heavy reliance on microscopic optical models with solid microscopic physics foundations that can predict the relevant physical quantities with good accuracy. This use of microscopic information limits the likelihood of the model failing spectacularly (except if some essential physics was omitted in the modeling) when extrapolating away from the stability line, in opposition to phenomenological models which are only suited for interpolation between measured data points and not for extrapolating towards unexplored areas of the chart of the nuclides.We will show how these microscopic optical models are built, how they link to our present knowledge of nuclear structure, and how they affect predictions of nuclear astrophysics models and the interpretation of some key nuclear physics measurements for astrophysics

  1. Collagen: A review on its sources and potential cosmetic applications.

    Avila Rodríguez, María Isabela; Rodríguez Barroso, Laura G; Sánchez, Mirna Lorena

    2018-02-01

    Collagen is a fibrillar protein that conforms the conjunctive and connective tissues in the human body, essentially skin, joints, and bones. This molecule is one of the most abundant in many of the living organisms due to its connective role in biological structures. Due to its abundance, strength and its directly proportional relation with skin aging, collagen has gained great interest in the cosmetic industry. It has been established that the collagen fibers are damaged with the pass of time, losing thickness and strength which has been strongly related with skin aging phenomena [Colágeno para todo. 60 y más. 2016. http://www.revista60ymas.es/InterPresent1/groups/revistas/documents/binario/ses330informe.pdf.]. As a solution, the cosmetic industry incorporated collagen as an ingredient of different treatments to enhance the user youth and well-being, and some common presentations are creams, nutritional supplement for bone and cartilage regeneration, vascular and cardiac reconstruction, skin replacement, and augmentation of soft skin among others [J App Pharm Sci. 2015;5:123-127]. Nowadays, the biomolecule can be obtained by extraction from natural sources such as plants and animals or by recombinant protein production systems including yeast, bacteria, mammalian cells, insects or plants, or artificial fibrils that mimic collagen characteristics like the artificial polymer commercially named as KOD. Because of its increased use, its market size is valued over USD 6.63 billion by 2025 [Collagen Market By Source (Bovine, Porcine, Poultry, Marine), Product (Gelatin, Hydrolyzed Collagen), Application (Food & Beverages, Healthcare, Cosmetics), By Region, And Segment Forecasts, 2014 - 2025. Grand View Research. http://www.grandviewresearch.com/industry-analysis/collagen-market. Published 2017.]. Nevertheless, there has been little effort on identifying which collagen types are the most suitable for cosmetic purposes, for which the present review will try to enlighten

  2. Clinical impact of Positron Emission Tomography (PET) on oncological patients and their potentially application context

    Alonso, O.

    2006-01-01

    (PET) Positron Emission Tomography is a technique of nuclear medicine that has ability of detecting cancer through mechanisms based on molecular alterations of neoplastic processes. This review describes the PET Oncology applications and discusses the potential application of this technology in the sanitary and national academic framework . The most widely used in Oncology plotter is an analogue of laglucosa labelled with fluo: 18F-2-fluoro-2-Deoxy-D-glucose (FDG). In this way, the PET detects tumour retention of FDG, due to the highest glycolytic of cancer cells. In addition, the PET allow the study of the entire body at the same exploratory and some teams are coupled to systems of axial tomography (PET-CT). By ET-FDG, it is possible to diagnose, staging and restaged the majority of cancers, with diagnostic accuracy close to 90 per cent higher than the values provided by the conventional imaging techniques such. It is also possible to know early response to cancer treatments and obtain relevant medical prognosis information. (author) [es

  3. Accuracy Potential and Applications of MIDAS Aerial Oblique Camera System

    Madani, M.

    2012-07-01

    Airborne oblique cameras such as Fairchild T-3A were initially used for military reconnaissance in 30s. A modern professional digital oblique camera such as MIDAS (Multi-camera Integrated Digital Acquisition System) is used to generate lifelike three dimensional to the users for visualizations, GIS applications, architectural modeling, city modeling, games, simulators, etc. Oblique imagery provide the best vantage for accessing and reviewing changes to the local government tax base, property valuation assessment, buying & selling of residential/commercial for better decisions in a more timely manner. Oblique imagery is also used for infrastructure monitoring making sure safe operations of transportation, utilities, and facilities. Sanborn Mapping Company acquired one MIDAS from TrackAir in 2011. This system consists of four tilted (45 degrees) cameras and one vertical camera connected to a dedicated data acquisition computer system. The 5 digital cameras are based on the Canon EOS 1DS Mark3 with Zeiss lenses. The CCD size is 5,616 by 3,744 (21 MPixels) with the pixel size of 6.4 microns. Multiple flights using different camera configurations (nadir/oblique (28 mm/50 mm) and (50 mm/50 mm)) were flown over downtown Colorado Springs, Colorado. Boresight fights for 28 mm nadir camera were flown at 600 m and 1,200 m and for 50 mm nadir camera at 750 m and 1500 m. Cameras were calibrated by using a 3D cage and multiple convergent images utilizing Australis model. In this paper, the MIDAS system is described, a number of real data sets collected during the aforementioned flights are presented together with their associated flight configurations, data processing workflow, system calibration and quality control workflows are highlighted and the achievable accuracy is presented in some detail. This study revealed that the expected accuracy of about 1 to 1.5 GSD (Ground Sample Distance) for planimetry and about 2 to 2.5 GSD for vertical can be achieved. Remaining systematic

  4. ACCURACY POTENTIAL AND APPLICATIONS OF MIDAS AERIAL OBLIQUE CAMERA SYSTEM

    M. Madani

    2012-07-01

    Full Text Available Airborne oblique cameras such as Fairchild T-3A were initially used for military reconnaissance in 30s. A modern professional digital oblique camera such as MIDAS (Multi-camera Integrated Digital Acquisition System is used to generate lifelike three dimensional to the users for visualizations, GIS applications, architectural modeling, city modeling, games, simulators, etc. Oblique imagery provide the best vantage for accessing and reviewing changes to the local government tax base, property valuation assessment, buying & selling of residential/commercial for better decisions in a more timely manner. Oblique imagery is also used for infrastructure monitoring making sure safe operations of transportation, utilities, and facilities. Sanborn Mapping Company acquired one MIDAS from TrackAir in 2011. This system consists of four tilted (45 degrees cameras and one vertical camera connected to a dedicated data acquisition computer system. The 5 digital cameras are based on the Canon EOS 1DS Mark3 with Zeiss lenses. The CCD size is 5,616 by 3,744 (21 MPixels with the pixel size of 6.4 microns. Multiple flights using different camera configurations (nadir/oblique (28 mm/50 mm and (50 mm/50 mm were flown over downtown Colorado Springs, Colorado. Boresight fights for 28 mm nadir camera were flown at 600 m and 1,200 m and for 50 mm nadir camera at 750 m and 1500 m. Cameras were calibrated by using a 3D cage and multiple convergent images utilizing Australis model. In this paper, the MIDAS system is described, a number of real data sets collected during the aforementioned flights are presented together with their associated flight configurations, data processing workflow, system calibration and quality control workflows are highlighted and the achievable accuracy is presented in some detail. This study revealed that the expected accuracy of about 1 to 1.5 GSD (Ground Sample Distance for planimetry and about 2 to 2.5 GSD for vertical can be achieved. Remaining

  5. Immunoassay: Principles, development and potential applications in the applied plant sciences

    Hofman, P J

    1986-02-01

    The article briefly discusses the general principles of, and the methods involved in, immunoassay, and their development. Emplasis is placed on radioimmunoassay (RIA) and to a lesser extent, enzyme-linked immunosorbent assay (ELISA). The practical applications, with special reference to the citrus and subtropical fruit industries are discussed.

  6. Three-Dimensional Bioprinting Materials with Potential Application in Preprosthetic Surgery.

    Fahmy, Mina D; Jazayeri, Hossein E; Razavi, Mehdi; Masri, Radi; Tayebi, Lobat

    2016-06-01

    Current methods in handling maxillofacial defects are not robust and are highly dependent on the surgeon's skills and the inherent potential in the patients' bodies for regenerating lost tissues. Employing custom-designed 3D printed scaffolds that securely and effectively reconstruct the defects by using tissue engineering and regenerative medicine techniques can revolutionize preprosthetic surgeries. Various polymers, ceramics, natural and synthetic bioplastics, proteins, biomolecules, living cells, and growth factors as well as their hybrid structures can be used in 3D printing of scaffolds, which are still under development by scientists. These scaffolds not only are beneficial due to their patient-specific design, but also may be able to prevent micromobility, make tension free soft tissue closure, and improve vascularity. In this manuscript, a review of materials employed in 3D bioprinting including bioceramics, biopolymers, composites, and metals is conducted. A discussion of the relevance of 3D bioprinting using these materials for craniofacial interventions is included as well as their potential to create analogs to craniofacial tissues, their benefits, limitations, and their application. © 2016 by the American College of Prosthodontists.

  7. Microbial redox processes in deep subsurface environments and the potential application of (perchlorate in oil reservoirs

    Martin G Liebensteiner

    2014-09-01

    Full Text Available The ability of microorganisms to thrive under oxygen-free conditions in subsurface environments relies on the enzymatic reduction of oxidized elements, such as sulfate, ferric iron or CO2, coupled to the oxidation of inorganic or organic compounds. A broad phylogenetic and functional diversity of microorganisms from subsurface environments has been described using isolation-based and advanced molecular ecological techniques. The physiological groups reviewed here comprise iron-, manganese- and nitrate-reducing microorganisms. In the context of recent findings also the potential of chlorate and perchlorate [jointly termed (perchlorate] reduction in oil reservoirs will be discussed. Special attention is given to elevated temperatures that are predominant in the deep subsurface. Microbial reduction of (perchlorate is a thermodynamically favorable redox process, also at high temperature. However, knowledge about (perchlorate reduction at elevated temperatures is still scarce and restricted to members of the Firmicutes and the archaeon Archaeoglobus fulgidus. By analyzing the diversity and phylogenetic distribution of functional genes in (metagenome databases and combining this knowledge with extrapolations to earlier-made physiological observations we speculate on the potential of (perchlorate reduction in the subsurface and more precisely oil fields. In addition, the application of (perchlorate for bioremediation, souring control and microbial enhanced oil recovery are addressed.

  8. Chemically treated carbon black waste and its potential applications

    Dong, Pengwei; Maneerung, Thawatchai; Ng, Wei Cheng; Zhen, Xu [NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602 (Singapore); Dai, Yanjun [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Tong, Yen Wah [NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602 (Singapore); Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore); Ting, Yen-Peng [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore); Koh, Shin Nuo [Sembcorp Industries Ltd., 30 Hill Street #05-04, 179360 (Singapore); Wang, Chi-Hwa, E-mail: chewch@nus.edu.sg [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore); Neoh, Koon Gee, E-mail: chenkg@nus.edu.sg [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore)

    2017-01-05

    /cm), making it a potentially valuable source of conductive material.

  9. Invertebrate Trehalose-6-Phosphate Synthase Gene: Genetic Architecture, Biochemistry, Physiological Function, and Potential Applications

    Bin Tang

    2018-01-01

    Full Text Available The non-reducing disaccharide trehalose is widely distributed among various organisms. It plays a crucial role as an instant source of energy, being the major blood sugar in insects. In addition, it helps countering abiotic stresses. Trehalose synthesis in insects and other invertebrates is thought to occur via the trehalose-6-phosphate synthase (TPS and trehalose-6-phosphate phosphatase (TPP pathways. In many insects, the TPP gene has not been identified, whereas multiple TPS genes that encode proteins harboring TPS/OtsA and TPP/OtsB conserved domains have been found and cloned in the same species. The function of the TPS gene in insects and other invertebrates has not been reviewed in depth, and the available information is quite fragmented. The present review discusses the current understanding of the trehalose synthesis pathway, TPS genetic architecture, biochemistry, physiological function, and potential sensitivity to insecticides. We note the variability in the number of TPS genes in different invertebrate species, consider whether trehalose synthesis may rely only on the TPS gene, and discuss the results of in vitro TPS overexpression experiment. Tissue expression profile and developmental characteristics of the TPS gene indicate that it is important in energy production, growth and development, metamorphosis, stress recovery, chitin synthesis, insect flight, and other biological processes. We highlight the molecular and biochemical properties of insect TPS that make it a suitable target of potential pest control inhibitors. The application of trehalose synthesis inhibitors is a promising direction in insect pest control because vertebrates do not synthesize trehalose; therefore, TPS inhibitors would be relatively safe for humans and higher animals, making them ideal insecticidal agents without off-target effects.

  10. On the Potential of MAX phases for Nuclear Applications

    Tallman, Darin Joseph

    appeared more prone to microcracking that Ti3SiC2. Additionally, exceptionally large denuded zones, up to 1 mum in width after 9 dpa irradiations at 500°C, were observed in Ti3SiC2, indicating that point defects readily diffuse to the grain boundaries. Denuded zones of this width, to our knowledge, have never been observed. In comparison, TiC impurity particles were highly damaged with various dislocation loops and defect clusters after irradiation. It is thus apparent that the A-layer, interleaved between MX blocks in the MAX phase nanolayered structure, readily accommodates and/or annihilates point defects, providing significant irradiation damage tolerance. Comparison of defect densities, post-irradiation microstructure, and electrical resistivity showed Ti3SiC2 to have the highest irradiation tolerance. Diffusion bonding of MAX phases to Zircaloy-4 was studied in the 1100 to 1300°C temperature range. The out diffusion of the A-group element into Zircaloy-4 formed Zr-intermetallic compounds that were roughly an order of magnitude thicker in Ti2AlC than Ti3SiC 2. Helium permeability results suggest that the MAX phases behave similarly to other sintered ceramics. Based on the totality of our results, Ti 3SiC2 remains a promising candidate for high temperature nuclear applications, and warrants future exploration. This work provides the foundation for understanding the response of the MAX phases to neutron irradiation, and can now be used to finely tune ion irradiation studies to accurately simulate reactor conditions.

  11. Recent progress in OLED and flexible displays and their potential for application to aerospace and military display systems

    Sarma, Kalluri

    2015-05-01

    Organic light emitting diode (OLED) display technology has advanced significantly in recent years and it is increasingly being adapted in consumer electronics products with premium performance, such as high resolution smart phones, Tablet PCs and TVs. Even flexible OLED displays are beginning to be commercialized in consumer electronic devices such as smart phones and smart watches. In addition to the advances in OLED emitters, successful development and adoption of OLED displays for premium performance applications relies on the advances in several enabling technologies including TFT backplanes, pixel drive electronics, pixel patterning technologies, encapsulation technologies and system level engineering. In this paper we will discuss the impact of the recent advances in LTPS and AOS TFTs, R, G, B and White OLED with color filter pixel architectures, and encapsulation, on the success of the OLEDs in consumer electronic devices. We will then discuss potential of these advances in addressing the requirements of OLED and flexible displays for the military and avionics applications.

  12. V-amylose structural characteristics, methods of preparation, significance, and potential applications

    Obiro, WC

    2012-02-01

    Full Text Available , and postprandial hyperglycaemia in diabetics. Various aspects of V-amylose structure, methods of preparation, factors that affect its formation, and the significance and potential applications of the V-amylose complexes are reviewed....

  13. Offense-defense aspects of nanotechnologies: a forecast of potential military applications.

    Shipbaugh, Calvin

    2006-01-01

    Potential military applications of nanotechnology will evolve in the next few decades. The implications for both defense and offense should be carefully assessed. Nanotechnology can push major changes in stability, and shape the consequences of future conflict.

  14. Efficient and Adaptive Methods for Computing Accurate Potential Surfaces for Quantum Nuclear Effects: Applications to Hydrogen-Transfer Reactions.

    DeGregorio, Nicole; Iyengar, Srinivasan S

    2018-01-09

    We present two sampling measures to gauge critical regions of potential energy surfaces. These sampling measures employ (a) the instantaneous quantum wavepacket density, an approximation to the (b) potential surface, its (c) gradients, and (d) a Shannon information theory based expression that estimates the local entropy associated with the quantum wavepacket. These four criteria together enable a directed sampling of potential surfaces that appears to correctly describe the local oscillation frequencies, or the local Nyquist frequency, of a potential surface. The sampling functions are then utilized to derive a tessellation scheme that discretizes the multidimensional space to enable efficient sampling of potential surfaces. The sampled potential surface is then combined with four different interpolation procedures, namely, (a) local Hermite curve interpolation, (b) low-pass filtered Lagrange interpolation, (c) the monomial symmetrization approximation (MSA) developed by Bowman and co-workers, and (d) a modified Shepard algorithm. The sampling procedure and the fitting schemes are used to compute (a) potential surfaces in highly anharmonic hydrogen-bonded systems and (b) study hydrogen-transfer reactions in biogenic volatile organic compounds (isoprene) where the transferring hydrogen atom is found to demonstrate critical quantum nuclear effects. In the case of isoprene, the algorithm discussed here is used to derive multidimensional potential surfaces along a hydrogen-transfer reaction path to gauge the effect of quantum-nuclear degrees of freedom on the hydrogen-transfer process. Based on the decreased computational effort, facilitated by the optimal sampling of the potential surfaces through the use of sampling functions discussed here, and the accuracy of the associated potential surfaces, we believe the method will find great utility in the study of quantum nuclear dynamics problems, of which application to hydrogen-transfer reactions and hydrogen

  15. Application of quasiexactly solvable potential method to the N-body ...

    physics pp. 985–996. Application of quasiexactly solvable potential method to the N-body ... Application of QES method to N-particle quantum model interacting via an ... Now, if we choose the centre of mass R as the origin of the coordinates,.

  16. Microencapsulation of indocyanine green for potential applications in image-guided drug delivery.

    Zhu, Zhiqiang; Si, Ting; Xu, Ronald X

    2015-02-07

    We present a novel process to encapsulate indocyanine green (ICG) in liposomal droplets at high concentration for potential applications in image-guided drug delivery. The microencapsulation process follows two consecutive steps of droplet formation by liquid-driven coaxial flow focusing (LDCFF) and solvent removal by oil phase dewetting. These biocompatible lipid vesicles may have important applications in drug delivery and fluorescence imaging.

  17. Fuel ethanol discussion paper

    1992-01-01

    In recognition of the potential benefits of ethanol and the merits of encouraging value-added agricultural development, a committee was formed to develop options for the role of the Ontario Ministry of Agriculture and Food in the further development of the ethanol industry in Ontario. A consultation with interested parties produced a discussion paper which begins with an outline of the role of ethanol as an alternative fuel. Ethanol issues which require industry consideration are presented, including the function of ethanol as a gasoline oxygenate or octane enhancer, environmental impacts, energy impacts, agricultural impacts, trade and fiscal implications, and regulation. The ethanol industry and distribution systems in Ontario are then described. The current industry consists of one ethanol plant and over 30 retail stations. The key issue for expanding the industry is the economics of producing ethanol. At present, production of ethanol in the short term depends on tax incentives amounting to 23.2 cents/l. In the longer term, a significant reduction in feedstock costs and a significant improvement in processing technology, or equally significant gasoline price increases, will be needed to create a sustainable ethanol industry that does not need incentives. Possible roles for the Ministry are identified, such as support for ethanol research and development, financial support for construction of ethanol plants, and active encouragement of market demand for ethanol-blended gasolines

  18. Dynamic Eye gaze and its Potential in Virtual Reality Based Applications for Children with Autism Spectrum Disorders.

    Lahiri, Uttama; Trewyn, Adam; Warren, Zachary; Sarkar, Nilanjan

    2011-01-01

    Children with Autism Spectrum Disorder are often characterized by deficits in social communication skills. While evidence suggests that intensive individualized interventions can improve aspects of core deficits in Autism Spectrum Disorder, at present numerous potent barriers exist related to accessing and implementing such interventions. Researchers are increasingly employing technology to develop more accessible, quantifiable, and individualized intervention tools to address core vulnerabilities related to autism. The present study describes the development and preliminary application of a Virtual Reality technology aimed at facilitating improvements in social communication skills for adolescents with autism. We present preliminary data from the usability study of this technological application for six adolescents with autism and discuss potential future development and application of adaptive Virtual Reality technology within an intervention framework.

  19. Assessment of renewable energy resources potential for large scale and standalone applications in Ethiopia

    Tucho, Gudina Terefe; Weesie, Peter D.M.; Nonhebel, Sanderine

    2014-01-01

    This study aims to determine the contribution of renewable energy to large scale and standalone application in Ethiopia. The assessment starts by determining the present energy system and the available potentials. Subsequently, the contribution of the available potentials for large scale and

  20. Final plenary discussion

    Federline, M.

    2004-01-01

    The subject of this seminar was 'Strategy Selection for Decommissioning of Nuclear Facilities' and it was clear throughout that safety of D and D operations continues to be of importance in that selection, particularly in regard to the condition of the site and the risk it represents. In this context, it was specifically noted that a safety case for D and D needs to be kept under continuous review and needs to be flexible enough to accommodate appropriate modification as the work progresses and the nature of the risk changes. It was also noted that the hazard presented by a facility in decommissioning is normally significantly less than during the operating phase (for a reactor, for example, the fuel has been removed, there are no pressurised systems and no high operating temperatures). The changing plant configuration and the reduced hazard potential lead to the observation that the safety management arrangements also need appropriate adjustment from those employed during the operating phase. It was recalled that a Task Group of the WPDD is addressing safety issues on an ongoing basis. It was also clear from the detailed presentations that techniques for D and D are already available and that they have been successfully demonstrated in practice. Nevertheless, because the costs of dismantling nuclear facilities make up at least a third of the overall D and D costs, there seemed to be a strong case for continuing R and D in this area in order to improve the cost effectiveness of such techniques. It was noted, however, that the extent of such R and D is now somewhat limited and that further work is first required to identify the most effective areas for future R and D projects. Also, throughout the seminar, it was emphasised that strategy selection must remain flexible since it is highly dependent on financing, societal input, technical feasibility, waste management options, and regulatory processes. Against this well-established background, Allan Duncan, as

  1. Development of Optically Active Nanostructures for Potential Applications in Sensing, Therapeutics and Imaging

    Joshi, Padmanabh

    Materials at nanoscale are finding manifold applications in the various fields like sensing, plasmonics, therapeutics, to mention a few. Large amount of development has taken place regarding synthesis and exploring the novel applications of the various types of nanomaterials like organic, inorganic and hybrid of both. Yet, it is believed that the full potential of different nanomaterials is yet to be fully established stimulating researchers to explore more in the field of nanotechnology. Building on the same premise, in the following studies we have developed the nanomaterials in the class of optically active nanoparticles. First part of the study we have successfully designed, synthesized, and characterized Ag-Fe3O4 nanocomposite substrate for potential applications in quantitative Surface Enhanced Raman Scattering (SERS) measurements. Quantitative SERS-based detection of dopamine was performed successfully. In subsequent study, facile, single-step synthesis of polyethyleneimine (PEI) coated lanthanide based NaYF4 (Yb, Er) nanoparticles was developed and their application as potential photodynamic therapy agent was studied using excitations by light in near infra-red and visible region. In the following and last study, synthesis and characterization of the conjugated polymer nanoparticles was attempted successfully. Functionalization of the conjugated nanoparticles, which is a bottleneck for their potential applications, was successfully performed by encapsulating them in the silica nanoparticles, surface of which was then functionalized by amine group. Three types of optically active nanoparticles were developed for potential applications in sensing, therapeutics and imaging.

  2. A REVIEW OF OIL PALM BIOCOMPOSITES FOR FURNITURE DESIGN AND APPLICATIONS: POTENTIAL AND CHALLENGES

    Siti Suhaily,

    2012-07-01

    Full Text Available This review considers the potential and challenges of using agro-based oil palm biomasses, including the trunk, frond, empty fruit bunch, and palm press fiber biocomposites, for furniture applications. Currently, design and quality rather than price are becoming the primary concern for consumers when buying new furniture. Within this context, this paper focuses on the design of innovative, sustainable furniture from agro-based biocomposites to meet the needs of future population growth and technology. This research also discusses the need for biocomposite materials that do not depend on the growth of populations, but on the growth and development of the economy. This study focuses on globally available agro-based biocomposites, especially those from oil palm biomass: plywood, medium density fiberboard (MDF, wood plastic composite (WPC, laminated veneer lumber (LVL, oriented strand board (OSB, hardboards, and particleboard. Additional positive aspects of biocomposites are their environmentally friendly character, high quality, competitive design, and capacity to improve the value proposition of high-end products. These attributes increase the demand for agro-based biocomposite furniture on the international market.

  3. Application of dental nanomaterials: potential toxicity to the central nervous system.

    Feng, Xiaoli; Chen, Aijie; Zhang, Yanli; Wang, Jianfeng; Shao, Longquan; Wei, Limin

    2015-01-01

    Nanomaterials are defined as materials with one or more external dimensions with a size of 1-100 nm. Such materials possess typical nanostructure-dependent properties (eg, chemical, biological, optical, mechanical, and magnetic), which may differ greatly from the properties of their bulk counterparts. In recent years, nanomaterials have been widely used in the production of dental materials, particularly in light polymerization composite resins and bonding systems, coating materials for dental implants, bioceramics, endodontic sealers, and mouthwashes. However, the dental applications of nanomaterials yield not only a significant improvement in clinical treatments but also growing concerns regarding their biosecurity. The brain is well protected by the blood-brain barrier (BBB), which separates the blood from the cerebral parenchyma. However, in recent years, many studies have found that nanoparticles (NPs), including nanocarriers, can transport through the BBB and locate in the central nervous system (CNS). Because the CNS may be a potential target organ of the nanomaterials, it is essential to determine the neurotoxic effects of NPs. In this review, possible dental nanomaterials and their pathways into the CNS are discussed, as well as related neurotoxicity effects underlying the in vitro and in vivo studies. Finally, we analyze the limitations of the current testing methods on the toxicological effects of nanomaterials. This review contributes to a better understanding of the nano-related risks to the CNS as well as the further development of safety assessment systems.

  4. Surface modification of zinc oxide nanorods for potential applications in organic materials

    Zhang Lei; Zhong Min; Ge Hongliang

    2011-01-01

    A facile and simple modification method towards changing surface property of ZnO nanorods from a hydrophilic one to a hydrophobic one have been developed by refluxing precursor in three-necked flask. Comparing with the other modifiers discussed in the paper, NDZ-311w titanate coupling agent was selected as the best one not only because of the good lipophilic modification effect, but also for its multifunctional groups could play a crucial part in further composite with organic materials. Moreover, transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR), respectively, were used to evaluate the morphology, structure and combinative way before and after surface modification. The TEM result showed, after modifying process, there was a thin layer capping on the surface of ZnO nanorods which could be considered as NDZ-311w titanate coupling agent. Through the structure analysis by XRD, it was found that the surface modification had not substantially altered crystalline structure. Besides, the FT-IR test proved that NDZ-311w titanate coupling agent was rather covalently bonded to the surface of ZnO nanorods than physically capping. More practically speaking, the NDZ-311w titanate coupling agent modified ZnO nanorods have much more potential applications in organic materials than unmodified ones.

  5. Discussion in Postsecondary Classrooms

    Curt Dudley-Marling

    2013-11-01

    Full Text Available Spoken language is, arguably, the primary means by which teachers teach and students learn. Much of the literature on language in classrooms has focused on discussion that is seen as both a method of instruction and a curricular outcome. While much of the research on discussion has focused on K-12 classrooms, there is also a body of research examining the efficacy of discussion in postsecondary settings. This article provides a review of this literature in order to consider the effect of discussion on student learning in college and university classrooms, the prevalence of discussion in postsecondary settings, and the quality of discussion in these settings. In general, the results of research on the efficacy of discussion in postsecondary settings are mixed. More seriously, researchers have not been explicit about the meaning of discussion and much of what is called discussion in this body of research is merely recitation with minimal levels of student participation. Although the research on discussion in college and university classrooms is inconclusive, some implications can be drawn from this review of the research including the need for future researchers to clearly define what they mean by “discussion.”

  6. ATLes: the strategic application of Web-based technology to address learning objectives and enhance classroom discussion in a veterinary pathology course.

    Hines, Stephen A; Collins, Peggy L; Quitadamo, Ian J; Brahler, C Jayne; Knudson, Cameron D; Crouch, Gregory J

    2005-01-01

    A case-based program called ATLes (Adaptive Teaching and Learning Environments) was designed for use in a systemic pathology course and implemented over a four-year period. Second-year veterinary students working in small collaborative learning groups used the program prior to their weekly pathology laboratory. The goals of ATLes were to better address specific learning objectives in the course (notably the appreciation of pathophysiology), to solve previously identified problems associated with information overload and information sorting that commonly occur as part of discovery-based processes, and to enhance classroom discussion. The program was also designed to model and allow students to practice the problem-oriented approach to clinical cases, thereby enabling them to study pathology in a relevant clinical context. Features included opportunities for students to obtain additional information on the case by requesting specific laboratory tests and/or diagnostic procedures. However, students were also required to justify their diagnostic plans and to provide mechanistic analyses. The use of ATLes met most of these objectives. Student acceptance was high, and students favorably reviewed the online ''Content Links'' that made useful information more readily accessible and level appropriate. Students came to the lab better prepared to engage in an in-depth and high-quality discussion and were better able to connect clinical problems to underlying changes in tissue (lesions). However, many students indicated that the required time on task prior to lab might have been excessive relative to what they thought they learned. The classroom discussion, although improved, was not elevated to the expected level-most likely reflecting other missing elements of the learning environment, including the existing student culture and the students' current discussion skills. This article briefly discusses the lessons learned from ATLes and how similar case-based exercises might be

  7. Combining novel monitoring tools and precision application technologies for integrated high-tech crop protection in the future (a discussion document)

    Zijlstra, C.; Lund, I.; Justesen, A.; Nicolaisen, M.; Bianciotto, V.; Posta, K.; Balestrini, R.; Przetakiewicz, A.; Czembor, E.; Zande, van de J.

    2011-01-01

    The possibility of combining novel monitoring techniques and precision spraying for crop protection in the future is discussed. A generic model for an innovative crop protection system has been used as a framework. This system will be able to monitor the entire cropping system and identify the

  8. Discussion on the Scope of Legal Fictions to Assume Executives and Employees of Entrusted Agencies Are Civil Servants in the Application of Punishments

    Kim, Sang-won; Jang, Gun-hyeon; Kim, Chang-beom; Go, Jae-dong; Ahn, Hyeong-jun; Rhyu, Jung; Chung, Sang-ki

    2008-01-01

    Article 122 of the Atomic Energy Act sets forth that 'executives and employees of an agency engaged in an entrusted work or its associated specialized agency, in the application of any punishment as per the Criminal Act or other laws, shall be regarded as civil servants,' stipulating that the scope of legal fictions to assume such persons are civil servants should be applicable to any punishment as per the Criminal Act or other laws. Accordingly, the executives and employees of an entrusted agency or its associated specialized agency are subject to the punishments not only for acceptance of graft but also for dereliction of duty or divulgence of classified information. In addition, they are also subject to increased punishment in accordance with other laws, for example, such special laws as Law Concerning Increased Punishment for Specified Crimes and Law Concerning Increased Punishment for Specified Economic Crimes

  9. Discussion on the Scope of Legal Fictions to Assume Executives and Employees of Entrusted Agencies Are Civil Servants in the Application of Punishments

    Kim, Sang-won; Jang, Gun-hyeon; Kim, Chang-beom; Go, Jae-dong; Ahn, Hyeong-jun; Rhyu, Jung; Chung, Sang-ki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-05-15

    Article 122 of the Atomic Energy Act sets forth that 'executives and employees of an agency engaged in an entrusted work or its associated specialized agency, in the application of any punishment as per the Criminal Act or other laws, shall be regarded as civil servants,' stipulating that the scope of legal fictions to assume such persons are civil servants should be applicable to any punishment as per the Criminal Act or other laws. Accordingly, the executives and employees of an entrusted agency or its associated specialized agency are subject to the punishments not only for acceptance of graft but also for dereliction of duty or divulgence of classified information. In addition, they are also subject to increased punishment in accordance with other laws, for example, such special laws as Law Concerning Increased Punishment for Specified Crimes and Law Concerning Increased Punishment for Specified Economic Crimes.

  10. Learning through Discussions

    Ellis, Robert A.; Calvo, Rafael; Levy, David; Tan, Kelvin

    2004-01-01

    Students studying a third-year e-commerce subject experienced face-to-face and online discussions as an important part of their learning experience. The quality of the students' experiences of learning through those discussions is investigated in this study. This study uses qualitative approaches to investigate the variation in the students'…

  11. Morphology design of microporous organic polymers and their potential applications: an overview

    Qingyin Li; Shumaila Razzaque; Shangbin Jin; Bien Tan

    2017-01-01

    Microporous organic polymers (MOPs) have attracted considerable research interest because of their well-defined porosity,high surface area,lightweight nature,and tunable surface chemistry.The morphology of MOPs are demonstrated to play a significant role in various applications although limited examples manifesting the importance of the MOP morphology in numerous applications have been reported.This review summarizes the recent progress in the design of MOPs using different techniques,including hard and soft template and direct synthesis methods.In addition,their applications,which possibly attribute to their shape,are discussed.Furthermore,the advantages and disadvantages of different methods are discussed,as well as their development and future challenges.

  12. Graphene-plasmon polaritons: from fundamental properties to potential applications [arXiv

    Xiao, Sanshui; Zhu, Xiaolong; Li, Bo-Hong

    2016-01-01

    With the unique possibilities for controlling light in nanoscale devices, graphene plasmonics has opened new perspectives to the nanophotonics community with potential applications in metamaterials, modulators, photodetectors, and sensors. This paper briefly reviews the recent exciting progress i...... plasmonics with applications in modulators and sensors. Finally, we seek to address some of the apparent challenges and promising perspectives of graphene plasmonics. [Front. Phys. 11(2), 117801 (2016) doi:10.1007/s11467-016-0551-z]....

  13. 9. university discussion meeting on energy

    1988-01-01

    Eight conference papers are presented which discussed the following topics: 1. Energy and environment - conflict or harmony; 2. A common electricity market within the European Community - from the point of view of the German electricity industry; 3. Radioactive waste in nuclear engineering; 4. Effects of electric and magnetic fields on humans; 5. Classroom ventilation; 6. The polluted atmosphere - potential effects on the global climate; 7. Environment-centered marketing, a challenge to a household appliances supplier; 8. High-temperature superconductors - perspectives for application. (UA) [de

  14. Exploiting biological activities of brown seaweed Ecklonia cava for potential industrial applications: a review.

    Wijesinghe, W A J P; Jeon, You-Jin

    2012-03-01

    Seaweeds are rich in vitamins, minerals, dietary fibres, proteins, polysaccharides and various functional polyphenols. Many researchers have focused on brown algae as a potential source of bioactive materials in the past few decades. Ecklonia cava is a brown seaweed that is abundant in the subtidal regions of Jeju Island in the Republic of Korea. This seaweed attracted extensive interest due to its multiple biological activities. E. cava has been identified as a potential producer of wide spectrum of natural substances such as carotenoids, fucoidans and phlorotannins showing different biological activities in vital industrial applications including pharmaceutical, nutraceutical, cosmeceutical and functional food. This review focuses on biological activities of the brown seaweed E. cava based on latest research results, including antioxidant, anticoagulative, antimicrobial, antihuman immunodeficiency virus, anti-inflammatory, immunomodulatory, antimutagenic, antitumour and anticancer effects. The facts summarized here may provide novel insights into the functions of E. cava and its derivatives and potentially enable their use as functional ingredients in potential industrial applications.

  15. Numerical implementation and oceanographic application of the Gibbs thermodynamic potential of seawater

    R. Feistel

    2005-01-01

    Full Text Available The 2003 Gibbs thermodynamic potential function represents a very accurate, compact, consistent and comprehensive formulation of equilibrium properties of seawater. It is expressed in the International Temperature Scale ITS-90 and is fully consistent with the current scientific pure water standard, IAPWS-95. Source code examples in FORTRAN, C++ and Visual Basic are presented for the numerical implementation of the potential function and its partial derivatives, as well as for potential temperature. A collection of thermodynamic formulas and relations is given for possible applications in oceanography, from density and chemical potential over entropy and potential density to mixing heat and entropy production. For colligative properties like vapour pressure, freezing points, and for a Gibbs potential of sea ice, the equations relating the Gibbs function of seawater to those of vapour and ice are presented.

  16. SWAT Check: A Screening Tool to Assist Users in the Identification of Potential Model Application Problems.

    White, Michael J; Harmel, R Daren; Arnold, Jeff G; Williams, Jimmy R

    2014-01-01

    The Soil and Water Assessment Tool (SWAT) is a basin-scale hydrologic model developed by the United States Department of Agriculture Agricultural Research Service. SWAT's broad applicability, user-friendly model interfaces, and automatic calibration software have led to a rapid increase in the number of new users. These advancements also allow less experienced users to conduct SWAT modeling applications. In particular, the use of automated calibration software may produce simulated values that appear appropriate because they adequately mimic measured data used in calibration and validation. Autocalibrated model applications (and often those of unexperienced modelers) may contain input data errors and inappropriate parameter adjustments not readily identified by users or the autocalibration software. The objective of this research was to develop a program to assist users in the identification of potential model application problems. The resulting "SWAT Check" is a stand-alone Microsoft Windows program that (i) reads selected SWAT output and alerts users of values outside the typical range; (ii) creates process-based figures for visualization of the appropriateness of output values, including important outputs that are commonly ignored; and (iii) detects and alerts users of common model application errors. By alerting users to potential model application problems, this software should assist the SWAT community in developing more reliable modeling applications. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. 通信公司全面预算管理的应用探讨%Discussion on the application of comprehensive budget management in communication company

    李洁红

    2017-01-01

    本文首先介绍了全面预算管理的概念与组织体系构成情况,据此以某通信公司为例,对该公司对全面预算管理的应用情况进行了分析,并提出了其中存在的问题,给出了具体的发展建议,仅供有关人员参考.%This paper firstly introduces the concept and composition of the overall budget management organization system, according to a communications company as an example, the application of the comprehensive budget management are analyzed, and puts forward the existing problems and gives concrete development suggestions, for reference.

  18. Potentially Prescriptions Inappropriate (PPIs in elderly patients in polytherapy: structured discussion on the effect of medication therapy review using evaluation criteria listed in literature on the administrative health care database

    Lorella Magnani

    2018-01-01

    Full Text Available In the last few years numerous evidences have shown an increased prevalence of “Potential Inappropriate Prescriptions (PPIs” in the elderly (>/=65 years and have estimated that more than 10% of all hospitalizations in this population are hospitalized for problems consequent to drugs given. The predictive factors more strongly related to the inappropriate use of drugs are polytherapy (>/= 5 drugs contemporary, uncritical application of guidelines in many cases inadequate and built with data from young subjects-adults affected by a single pathology, recommend drug regimens that do not consider the changes in the pharmacokinetics and pharmacodynamics parameters, exposing to significant risks. Considering that polytherapy is any case necessary (due to the effect of comorbidity and longer life expectancy, is unavoidable not acknowledge the impossibility, as much for clinicians as for any guideline all interactions: in this perspective the application of evaluation scientifically based criteria and information technology tools could represent a resource for to tend to prescriptive appropriateness, still a challenge for researchers, clinicians, manager, third-payers. The application of explicit criteria (ex. Beers and STOPP & START to the administrative data base of pharmaceutical prescriptions could represent a screening too, not only to qualitatively and quantitatively asses PPIs, given immediate availability of information, but above all to create practical support for the clinician’s work by crating “adaptive database” for interactive research for specific conditions. However, regardless of more or less functional software applications, more multidimensional and multidisciplinary efforts (ex. geriatric counseling are needed to take on problems related to polypharmacy in elderly patients: the most appropriate therapeutic regimen should combine guidelines, geriatric assessment, social and economic considerations, the patient’s will and

  19. The industrial application of fracture mechanics concepts discussed at the background of international standards and guidelines; Die industrielle Anwendung bruchmechanischer Konzepte vor dem Hintergrund internationaler Bewertungsvorschriften und Regelwerke

    Zerbst, U. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung; Langenberg, P. [Ingenieurbuero fuer Werkstofftechnik, Aachen (Germany)

    2000-07-01

    Many features from the background for an intensified application of fracture mechanics concepts in many industries world-wide. These include requirements for a permanent increase of the level of performance of technical components and structures by the introduction of new materials, joining technologies and design principles, the problem of ageing components and life extension, an increased emphasis on non-destructive in-service inspection combined with improved NDT techniques, and also a number of failure events caused by fatigue and fracture The aim of the present paper is to give a brief state-of-the-art review on how fracture mechanics is applied in different industrial branches today. This is based on standards and guidelines in the aerospace industry, in the nuclear and fossil power generation, in the chemical and petrochemical and the pipeline industry, in civil engineering, offshore technique and other fields. Based on the review an outlook is given on a future development that would be reasonable and desirable from the point of view of a basically unified philosophy of fracture mechanics application. (orig.) [German] Die Erhoehung der Leistungsparameter vieler Maschinen und Anlagen verbunden mit dem Einsatz neuer Werkstoffe, Fuegeverfahren und Konstruktionsprinzipien, der Betrieb vieler Strukturen ueber ihre projektierte Lebensdauer hinaus, technische Verbesserungen und ein durchgaengigerer Einsatz zerstoerungsfreier Defektpruefverfahren, aber auch immer wieder einmal auftretende Schadensfaelle bilden den Hintergrund fuer die zunehmende Nutzung bruchmechanischer Bewertungsvorschriften in der industriellen Praxis. Die vorliegende Studie zieht eine momentane Bilanz dieser Entwicklung am Beispiel von Fachbereichsstandards der Luft- und Raumfahrtindustrie, der konventionellen und Kernkrafttechnik, der Chemie und Petrochemie, der Pipelineindustrie, des Stahlbaus, der Offshore-Technik und anderer Bereiche. Ausgehend von dieser Bestandsaufnahme wird ein Ausblick

  20. Potential in hot and tepid waters in the department of Landes - Present and future applications

    Hauquin, J.P.; Godard, J.M.; Tronel, F.; Pouchan, P.

    1994-12-31

    This study of the geothermal waters potentialities in the Landes department has selectively reviewed the areas of interest in respect of geology and hydrogeology and gives a picture of their potential valorizations. In the Landes, the exploitation of geothermal fields outside of the use for spa bathing was mainly geared to conventional applications (flats heating, swimming pools). Today geothermal potentialities can be extended to balneotherapy, horticultural and market garden greenhouses, fish farming and wood drying. The study performed delivers a data base to be used by the investor to define and to accurately devise their projects of hot and tepid waters utilization. (Authors). 12 refs., 1 fig., 1 tab.

  1. Summary of group discussions

    2009-01-01

    A key aspect of the workshop was the interaction and exchange of ideas and information among the 40 participants. To facilitate this activity the workshop participants were divided into five discussions groups. These groups reviewed selected subjects and reported back to the main body with summaries of their considerations. Over the 3 days the 5 discussion groups were requested to focus on the following subjects: the characteristics and capabilities of 'good' organisations; how to ensure sufficient resources; how to ensure competence within the organisation; how to demonstrate organisational suitability; the regulatory oversight processes - including their strengths and weaknesses. A list of the related questions that were provided to the discussion groups can be found in Appendix 3. Also included in Appendix 3 are copies of the slides the groups prepared that summarised their considerations

  2. Focus group discussions

    Hennink, Monique M

    2014-01-01

    The Understanding Research series focuses on the process of writing up social research. The series is broken down into three categories: Understanding Statistics, Understanding Measurement, and Understanding Qualitative Research. The books provide researchers with guides to understanding, writing, and evaluating social research. Each volume demonstrates how research should be represented, including how to write up the methodology as well as the research findings. Each volume also reviews how to appropriately evaluate published research. Focus Group Discussions addresses the challenges associated with conducting and writing focus group research. It provides detailed guidance on the practical and theoretical considerations in conducting focus group discussions including: designing the discussion guide, recruiting participants, training a field team, moderating techniques and ethical considerations. Monique Hennink describes how a methodology section is read and evaluated by others, such as journal reviewers or ...

  3. Plutonium roundtable discussion

    Penneman, R.A.

    1982-01-01

    The roundtable discussion began with remarks by the chairman who pointed out the complicated nature of plutonium chemistry. Judging from the papers presented at this symposium, he noticed a pattern which indicated to him the result of diminished funding for investigation of basic plutonium chemistry and funding focused on certain problem areas. Dr. G.L. silver pointed to plutonium chemists' erroneous use of a simplified summary equation involving the disproportionation of Pu(EV) and their each of appreciation of alpha coefficients. To his appreciation of alpha coefficients. To his charges, Dr. J.T. Bell spoke in defense of the chemists. This discussion was followed by W.W. Schulz's comments on the need for experimental work to determine solubility data for plutonium in its various oxidation states under geologic repository conditions. Discussion then turned to plutonium pyrachemical process with Dana C. Christensen as the main speaker. This paper presents edited versions of participants' written version

  4. Application of deep geophysical data to the discussion on the relationship between deep faults, concealed over thrust napped structure and uranium metallogenesis in central-southern Jiangxi

    Jiang Jinyuan; Qi Liang

    1999-01-01

    Based on the comparative analysis and study on 10 profiles of telluric electromagnetic sounding (MT) and regional gravimetric, magnetic data and Moho surface, the deep geological-tectonic pattern of the central-southern Jiangxi is discussed. It is suggested that: the studied region belongs to the Soyth-China block; in the area along Pingxiang-Guangfeng, at the border with Yangzi block an approximately EW-trending mantle concave-mantle slope zone occurs; the NNE-NE trending mantle uplift-mantle slope-mantle concave structure is developed within the South-China block; deep fault zones are represented by variation sites of Moho surface. Then, a series of deep structures is inferred including the approximately EW-striking Pingxian-Guangfeng deep fault zone, the NNE-striking Fuzhou-Anyuan deep fault zone, the NNE-trending Fengcheng-Dayu deep fault zone, as well as the NE-striking Yudu-Ningdu over thrust napped and sliding thrust structural systems, the approximately E W-trending Le'an-Nancheng over thrust napped structural systems etc. According to the distribution of known uranium mineralizations it is confirmed that close time-space relation exists between the uranium metallogenesis and variations of Moho surface, and over thrust napped structures, providing clues for locating concealed uranium deposits

  5. Combining novel monitoring tools and precision application technologies for integrated high-tech crop protection in the future (a discussion document).

    Zijlstra, Carolien; Lund, Ivar; Justesen, Annemarie F; Nicolaisen, Mogens; Jensen, Peter Kryger; Bianciotto, Valeria; Posta, Katalin; Balestrini, Raffaella; Przetakiewicz, Anna; Czembor, Elzbieta; van de Zande, Jan

    2011-06-01

    The possibility of combining novel monitoring techniques and precision spraying for crop protection in the future is discussed. A generic model for an innovative crop protection system has been used as a framework. This system will be able to monitor the entire cropping system and identify the presence of relevant pests, diseases and weeds online, and will be location specific. The system will offer prevention, monitoring, interpretation and action which will be performed in a continuous way. The monitoring is divided into several parts. Planting material, seeds and soil should be monitored for prevention purposes before the growing period to avoid, for example, the introduction of disease into the field and to ensure optimal growth conditions. Data from previous growing seasons, such as the location of weeds and previous diseases, should also be included. During the growing season, the crop will be monitored at a macroscale level until a location that needs special attention is identified. If relevant, this area will be monitored more intensively at a microscale level. A decision engine will analyse the data and offer advice on how to control the detected diseases, pests and weeds, using precision spray techniques or alternative measures. The goal is to provide tools that are able to produce high-quality products with the minimal use of conventional plant protection products. This review describes the technologies that can be used or that need further development in order to achieve this goal. Copyright © 2011 Society of Chemical Industry.

  6. Biosynthesis and derivatization of microbial glycolipids and their potential application in tribology

    Microbial-produced glycolipids are biobased products with immense potential for commercial applications. Advances in the production process have led to the lowering of production cost and the appearance of commercial products in niche markets. The ability to manipulate the molecular structure by f...

  7. From the printer: Potential of three-dimensional printing for orthopaedic applications

    Mok, Sze-Wing; Nizak, Razmara; Fu, Sai-Chuen; Ho, Ki-Wai Kevin; Qin, Ling; Saris, Daniel B. F.; Chan, Kai-Ming; Malda, J

    Three-dimensional (3D) printers can create complex structures based on digital models. The combination of medical diagnostic imaging with 3D printing has great potential in day-to-day clinics for patient-specific solutions and applications. In the musculoskeletal system, 3D printing is used to

  8. ANAEROBIC DDT BIOTRANSFORMATION: ENHANCEMENT BY APPLICATION OF SURFACTANTS AND LOW OXIDATION REDUCTION POTENTIAL

    Enhancement of anaerobic DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane) biotransformation by mixed cultures was studied with application of surfactants and oxidation reduction potential reducing agents. Without amendments, DDT transformation resulted mainly in the pr...

  9. From the printer: Potential of three-dimensional printing for orthopaedic applications

    Mok, S.; Nizak, R.; Fu, S.C.; Ho, K.K.; Qin, L.; Saris, Daniël B.F.; Chan, K.; Malda, J.

    2016-01-01

    Three-dimensional (3D) printers can create complex structures based on digital models. The combination of medical diagnostic imaging with 3D printing has great potential in day-to-day clinics for patient-specific solutions and applications. In the musculoskeletal system, 3D printing is used to

  10. Potential applications of biotechnology in the energy and the environment sectors

    Chakrabarty, A.M.

    1988-06-01

    Biotechnological approaches to solving some of the problems of environmental pollution or developing better or alternate sources of energy are considered realistic and technically feasible within the near future. Some of the potential applications of biotechnology of interest to chemists in the energy and the environment sectors are considered briefly in this article.

  11. Wind erosion potential of a winter wheat–summer fallow rotation after land application of biosolids

    While land application of biosolids is recognized as a sustainable management practice for enhancing soil health, no studies have determined the effects of biosolids on soil wind erosion. Wind erosion potential of a silt loam was assessed using a portable wind tunnel after applying synthetic and bio...

  12. Progress toward determining the potential of ODS alloys for gas turbine applications

    Dreshfield, R. L.; Hoppin, G., III; Sheffler, K.

    1983-01-01

    The Materials for Advanced Turbine Engine (MATE) Program managed by the NASA Lewis Research Center is supporting two projects to evaluate the potential of oxide dispersion strengthened (ODS) alloys for aircraft gas turbine applications. One project involves the evaluation of Incoloy (TM) MA-956 for application as a combustor liner material. An assessment of advanced engine potential will be conducted by means of a test in a P&WA 2037 turbofan engine. The other project involves the evaluation of Inconel (TM) MA 6000 for application as a high pressure turbine blade material and includes a test in a Garrett TFE 731 turbofan engine. Both projects are progressing toward these engine tests in 1984.

  13. Survey and discussion of models applicable to the transport and fate thrust area of the Department of Energy Chemical and Biological Nonproliferation Program

    NONE

    1997-09-01

    The availability and easy production of toxic chemical and biological agents by domestic and international terrorists pose a serious threat to US national security, especially to civilian populations in and around urban areas. To address this threat, the Department of Energy (DOE) has established the Chemical and Biological Nonproliferation Program (CBNP) with the goal of focusing the DOE`s technical resources and expertise on capabilities to deny, deter, mitigate and respond to clandestine releases of chemical and biological agents. With the intent to build on DOE core competencies, the DOE has established six technology thrust areas within the CBNP Program: Biological Information Resources; Point Sensor Systems; Stand-off Detection; Transport and Fate; Decontamination; and Systems Analysis and Integration. The purpose of the Transport and Fate Thrust is to accurately predict the dispersion, concentration and ultimate fate of chemical and biological agents released into the urban and suburban environments and has two major goals: (1) to develop an integrated and validated state-of-the-art atmospheric transport and fate modeling capability for chemical and biological agent releases within the complex urban environment from the regional scale down to building and subway interiors, and (2) to apply this modeling capability in a broad range of simulation case studies of chemical and biological agent release scenarios in suburban, urban and confined (buildings and subways) environments and provide analysis for the incident response user community. Sections of this report discuss subway transport and fate models; buildings interior transport and fate modeling; models for flow and transport around buildings; and local-regional meteorology and dispersion models.

  14. Summary of panel discussion

    Alang Md Rashid, Nahrul Khair [Malaysian Inst. for Nuclear Technology Research (MINT), Bangi, Selangor (Malaysia); Durante, R W [American Nuclear Society (United States); Hagiwara, Miyuki [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Gupta, M; Nitschke, R L [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Basfar, A A [Inst. of Atomic Energy Research, Riyadh (Saudi Arabia); Osman, Mohamad [National Univ. of Malaysia, Bangi, Selangor (Malaysia). Dept. of Genetics

    1997-12-01

    The chairman noted that the main item raised is still public acceptance. other items being safety, financial, and the economics of technology. On public acceptance the chairman commented that the weight of the `displeasure` of the public is not uniform across the spectrum of applications of nuclear science and technology thus the nuclear science and technology should capitalise on the areas in which the public has little apprehension. Further, since public acceptance is a crucial factor, then it must be strengthened. One of the means by which this could be achieved is by exploiting the non-power applications of the technology in various other sectors. sectors.

  15. Summary of panel discussion

    Nahrul Khair Alang Md Rashid; Durante, R.W.; Miyuki Hagiwara; Basfar, A. A.; Mohamad Osman

    1997-01-01

    The chairman noted that the main item raised is still public acceptance. other items being safety, financial, and the economics of technology. On public acceptance the chairman commented that the weight of the 'displeasure' of the public is not uniform across the spectrum of applications of nuclear science and technology thus the nuclear science and technology should capitalise on the areas in which the public has little apprehension. Further, since public acceptance is a crucial factor, then it must be strengthened. One of the means by which this could be achieved is by exploiting the non-power applications of the technology in various other sectors. sectors

  16. Discussion on nuclear issues

    Andrlova, Z.

    2012-01-01

    Treatment of the radioactive waste and utilisation of the ionisation radiation. Interesting contributions to two topics appeared in conference of Slovak Nuclear Society in Casta-Papiernicka in May 2012. The members from the female section 'Women in nuclear sector; were discussing in particular of the mind-set of Europeans to radioactive waste and novelties in nuclear medicine. (author)

  17. Summary of discussion

    2006-01-01

    This document provides summaries of the discussions occurred during the second international workshop on the indemnification of nuclear damage. It concerns the second accident scenario: a fire on board of a ship transporting enriched uranium hexafluoride along the Danube River. (A.L.B.)

  18. Discussion 2: David Dobbs

    Dobbs, David; Murray-Rust, Peter; Hatcher, Jordan; Pollock, Rufus

    2010-01-01

    David Dobbs writes on science, medicine and culture. He has contributed to a diversity of publications, including Scientific American, Slate magazine, Wired, Audubon, Atlantic Monthly, and the New York Times magazine. He has also authored a number of books. Other participants in this discussion were Peter Murray-Rust, Jordan Hatcher, and Rufus Pollock.

  19. Summary and Discussion.

    Hetherington, E. Mavis

    1992-01-01

    Summarizes and discusses results of the longitudinal study that comprises this monograph issue. Results concern: (1) marital, parent-child, and sibling relationships in families with single and remarried mothers; (2) the relationship between parenting style and adolescent adjustment; and (3) the relationship between marital transitions and…

  20. WORKSHOP: Discussion, debate, deliberation

    Jeliazkova, Margarita I.

    2014-01-01

    Discussing, deliberating and debating are a core part of any democratic process. To organise these processes well, a great deal of knowledge and skill is required. It is not simple to find a good balance between a number of elements: appropriate language and terminology; paying attention to solid

  1. Measurement of Streaming Potential in Downhole Application: An Insight for Enhanced Oil Recovery Monitoring

    Tengku Mohd Tengku Amran

    2017-01-01

    Full Text Available Downhole monitoring using streaming potential measurement has been developing in order to respond to actual reservoir condition. Most studies have emphasized on monitoring water flooding at various reservoir condition and improving the approaches of measurement. Enhanced Oil Recovery (EOR could significantly improve oil recovery and the efficiency of the process should be well-monitored. Alkaline-surfactant-polymer (ASP flooding is the most promising chemical EOR method due to its synergy of alkaline, surfactant and polymer, which could enhance the extraction of residual oil. However, limited studies have been focused on the application of streaming potential in EOR processes, particularly ASP. Thus, this paper aims to review the streaming potential measurement in downhole monitoring with an insight for EOR application and propose the potential measurement in monitoring ASP flooding. It is important for a preliminary study to investigate the synergy in ASP and the effects on oil recovery. The behaviour of streaming potential should be investigated when the environment of porous media changes with respect to ASP flooding. Numerical model can be generated from the experimental data to forecast the measured streaming potential signal during production associated with ASP flooding. Based on the streaming potential behaviour on foam assisted water alternate gas (FAWAG and water alternate gas (WAG processes, it is expected that the streaming potential could change significantly when ASP flooding alters the environment and surface properties of porous media. The findings could provide new prospect and knowledge in the relationship between streaming potential and ASP mechanisms, which could be a potential approach in monitoring the efficiency of the process.

  2. Cannabis, Cannabinoids, and Cerebral Metabolism: Potential Applications in Stroke and Disorders of the Central Nervous System.

    Latorre, Julius Gene S; Schmidt, Elena B

    2015-09-01

    No compound has generated more attention in both the scientific and recently in the political arena as much as cannabinoids. These diverse groups of compounds referred collectively as cannabinoids have both been vilified due to its dramatic and potentially harmful psychotropic effects and glorified due to its equally dramatic and potential application in a number of acute and chronic neurological conditions. Previously illegal to possess, cannabis, the plant where natural form of cannabinoids are derived, is now accepted in a growing number of states for medicinal purpose, and some even for recreational use, increasing opportunities for more scientific experimentation. The purpose of this review is to summarize the growing body of literature on cannabinoids and to present an overview of our current state of knowledge of the human endocannabinoid system in the hope of defining the future of cannabinoids and its potential applications in disorders of the central nervous system, focusing on stroke.

  3. Discussion on Application of Micro-blog in Tourism Marketing%运用微博进行旅游营销的探讨

    吉银翔; 单鹏飞; 石海洋; 王立新

    2012-01-01

    Change the background of the age of the Internet to the mobile Internet era, is bound to bring changes in tourism marketing thinking. Microblogging as a product of the mobile Internet era, it has gathered popularity, advertising effectiveness and low cost typical characteristics. Tourism marketing, pointed out that the "potential tourism market," the popular will, so the use of microblogging as a tool for tourism marketing is a new perspective and ideas. Analysis of the feasibility and necessity of microblogging marketing of urban tourism based on tourist towns, this paper presents the implementation of a tourist town travel microblogging marketing channels.%在互联网时代向移动互联网时代转变的背景下,势必带来旅游营销思维的改变。微博作为移动互联网时代的产物,其具有聚集人气高、广告效果好及成本低的典型特点。旅游营销学中指出“有人气的地方就会有潜在的旅游市场”,故利用微博作为工具进行旅游营销是目前的一种新视角与思路。基于旅游城镇利用微博营销城镇旅游可行性与必要性的分析,本文提出了旅游城镇旅游微博营销途径的实现方法。

  4. Potential food applications of biobased materials. An EU- concerted action project

    Haugaard, V.K.; Udsen, A.M.; Mortensen, G.

    2001-01-01

    and coatings to food but novel commercial applications of these are scarce. Based on information currently available on the properties of biobased packaging materials the study identified products in the fresh meat, dairy, ready meal, beverage, fruit and vegetable, snack, frozen food and dry food categories......The objective of the study was to ascertain the state of the art with regard to the applicability of biobased packaging materials to foods and to identify potential food applications for biobased materials. The study revealed relatively few examples of biobased materials used as primary, secondary...... or tertiary packaging materials for foods. This is due to the fact that published investigations on the use of biobased materials are still scarce, and results obtained remain unpublished because of commercial pressures. The scientific literature contains numerous reports on applications of edible films...

  5. Panel discussion : contract design

    Vallas, A. [Sempra Energy Trading, Toronto, ON (Canada); Vegh, G. [MacLeod Dixon, Toronto, ON (Canada); McGee, M. [Energy Profiles Ltd., Etobicoke, ON (Canada); Zaremba, T. [Direct Energy Marketing, Calgary, AB (Canada); Seshan, A. [Larson and Toubro Information Technology, Toronto, ON (Canada); Harricks, P. [Gowlings, Toronto, ON (Canada); Bertoldi, L. [Borden Ladner Gervais, Toronto, ON (Canada); Taylor, R. [Hydro One Networks Inc., Markham, ON (Canada)

    2003-05-01

    This session presented highlights of the comments of 8 panelists who discussed the issue of contract design. The new electricity market in Ontario has introduced the energy trader, who enters into a contract with the consumer, based on the spot price set by the Independent Electricity Market Operator. Every contract has a fixed price payer as well as floating-price payers. If the floating price for a given amount of energy is higher than the fixed price, then the consumer gets the difference. Confusion, however, arises with the purchase of retail physical power in the market, particularly in deciding a fixed rate that the consumer will be paying. Different billing options were also discussed with emphasis on mid to large retail customers that have portfolios in the tens of MW and up to 100 MW or more. figs.

  6. Panel discussion : contract design

    Vallas, A.; Vegh, G.; McGee, M.; Zaremba, T.; Seshan, A.; Harricks, P.; Bertoldi, L.; Taylor, R.

    2003-01-01

    This session presented highlights of the comments of 8 panelists who discussed the issue of contract design. The new electricity market in Ontario has introduced the energy trader, who enters into a contract with the consumer, based on the spot price set by the Independent Electricity Market Operator. Every contract has a fixed price payer as well as floating-price payers. If the floating price for a given amount of energy is higher than the fixed price, then the consumer gets the difference. Confusion, however, arises with the purchase of retail physical power in the market, particularly in deciding a fixed rate that the consumer will be paying. Different billing options were also discussed with emphasis on mid to large retail customers that have portfolios in the tens of MW and up to 100 MW or more. figs

  7. Discussion with CERN Directorate

    CERN. Geneva

    2017-01-01

    Please note that the Discussion with CERN Directorate will be transmitted also in the following rooms: Council Chamber - 503-1-001 IT Amphitheatre - 31-3-004 Prevessin 774-R-013 Simultaneous interpreting into French and English will be available in the Main Auditorium. Une interprétation simultanée en français et en anglais sera disponible dans l'amphithéâtre principal.

  8. Formation mechanism of self-potential at ISL-amenable interlayer oxidation zone sandstone-type uranium deposit and the simulation and application of self-potential anomalies

    Tang Hongzhi; Liu Qingcheng; Su Zhaofeng; Gong Yuling

    2006-01-01

    Based on the analysis of geochemical characteristics and metallogenic physico-chemical conditions of ISL-amenable sandstone-type uranium deposits, the formation mechanism of self-potential field is discussed, a mathematic calculation model has been set up, and the simulation calculation has been performed for self-potential anomalies above uranium ore bodies of ordinary form, features of survey curve are analysed and methods for correcting topography at self-potential anomalies are discussed, and a simulation curve of self-potential in the area of slope topography has been presented. Finally, the availability of the method is demonstrated by an example. (authors)

  9. THE TONOPLAST TRANSPORT SYSTEMS OF PLANT VACUOLES AND THEIR POTENTIAL APPLICATION IN BIOTECHNOLOGY

    S. V. Isayenkov

    2013-06-01

    Full Text Available The pivotal role of plant vacuoles in plant survival was discussed in the review. Particularly, the providing of cellular turgor, accumulation of inorganic osmolytes and nutrients are the primary tasks of these cellular organelles. The main mechanisms of tonoplast transport systems were described. The known transport pathways of minerals, heavy metals, vitamins and other organic compounds were classified and outlined. The main systems of membrane vacuolar transport were reviewed. The outline of the physiological functions and features of vacuolar membrane transport proteins were performed. The physiological role of transport of minerals, nutrients and other compounds into vacuoles were discussed. This article reviews the main types of plant vacuoles and their functional role in plant cell. Current state and progress in vacuolar transport research was outlined. The examples of application for rinciples and mechanisms of vacuolar membrane transport in plant biotechnology were iven. The perspectives and approaches in plant and food biotechnology concerning transport and physiology of vacuoles are discussed.

  10. Pain management discussion forum.

    Breivik, Harald

    2013-08-01

    A 23-year-old hemophilia patient with severe pain from bleeding into his joints who developed problematic opioid use is described. The potential value of methadone in such a patient is described, as are the risks of drug interactions leading to toxicity and cardiac arrhythmias.

  11. Fly ashes from coal and petroleum coke combustion: current and innovative potential applications.

    González, Aixa; Navia, Rodrigo; Moreno, Natalia

    2009-12-01

    Coal fly ashes (CFA) are generated in large amounts worldwide. Current combustion technologies allow the burning of fuels with high sulfur content such as petroleum coke, generating non-CFA, such as petroleum coke fly ash (PCFA), mainly from fluidized bed combustion processes. The disposal of CFA and PCFA fly ashes can have severe impacts in the environment such as a potential groundwater contamination by the leaching of heavy metals and/or particulate matter emissions; making it necessary to treat or reuse them. At present CFA are utilized in several applications fields such as cement and concrete production, agriculture and soil stabilization. However, their reuse is restricted by the quality parameters of the end-product or requirements defined by the production process. Therefore, secondary material markets can use a limited amount of CFA, which implies the necessity of new markets for the unused CFA. Some potential future utilization options reviewed herein are zeolite synthesis and valuable metals extraction. In comparison to CFA, PCFA are characterized by a high Ca content, suggesting a possible use as neutralizers of acid wastewaters from mining operations, opening a new potential application area for PCFA that could solve contamination problems in emergent and mining countries such as Chile. However, this potential application may be limited by PCFA heavy metals leaching, mainly V and Ni, which are present in PCFA in high concentrations.

  12. A new empirical potential function and its application to hydrogen bonding

    Kang, Y.K.; Jhon, M.S.

    1981-01-01

    A new potential function based on spectroscopic results for diatomic molecules is presented and applied to the hydrogen bonding systems. The potential energy of interaction is supposed to have electrostatic, polarization, dispersion, repulsion and effective charge-transfer contributions. Estimates of the effective charge-transfer quantity have been made based on the average charge of the proton donor and the acceptor atoms. For dimers such as water, methanol, acetic acid and formic acid, the vibrational stretching frequencies and dimerization energies are calculated and discussed in connection with Badger-Bauer rule. (author)

  13. Free-piston Stirling component test power converter test results and potential Stirling applications

    Dochat, G. R.

    1992-01-01

    As the principal contractor to NASA-Lewis Research Center, Mechanical Technology Incorporated is under contract to develop free-piston Stirling power converters in the context of the competitive multiyear Space Stirling Technology Program. The first generation Stirling power converter, the component test power converter (CTPC) initiated cold end testing in 1991, with hot testing scheduled for summer of 1992. This paper reviews the test progress of the CTPC and discusses the potential of Stirling technology for various potential missions at given point designs of 250 watts, 2500 watts, and 25,000 watts.

  14. Discussion Club "Profitable Heritage"

    Marina Tkacheva

    2017-09-01

    Full Text Available The authors and participants of the project and the expert community analyze the problems related to the realization of a big-scale concept of renovation of the historical center “Irkutsk Quarters”. They discuss preservation of wooden architecture of the city, changes in social functions of the territory, inclusion of the new facilities in the fabric of the area, as well as the problems of the territory’s tourist function and preservation of the identity of Irkutsk downtown.

  15. Panel discussion: Nuclear cardiology

    Schwaiger, M.

    1991-01-01

    The panel discussion opened with a question concerning whether true quantification of myocardial sympathetic presynaptic function or receptor density can be obtained with currently available radiopharmaceuticals. What are the relative advantages of the two general approaches that have been proposed for quantification: (1) The assessment of tracer distribution volume in tissue following bolus injection and (2) quantification based on tracer displacement kinetics following administration of excess unlabeled tracer. It was pointed out that tracer kinetics for the delineation of presynaptic and postsynaptic binding sites by radiopharmaceuticals or radiolabeled receptor antagonists are rather complex, reflecting several physiologic processes that are difficult to separate. Several approaches were examined. The possibility of regional definition of receptor density by PET was questioned and it was noted that regions of interest can be applied to calculate regional receptor kinetics. However, due to the limited spatial resolution of PET, only average transmural values can be determined. The discussion then turned to the discrepancy between the known sparse parasympathetic innervation of the heart and the high density of muscarinic receptors observed with PET. Experiences with MIBG imaging were reported, including uptake in the transplanted heart and interaction of drugs with MIBG uptake

  16. Empowerment: a conceptual discussion.

    Tengland, Per-Anders

    2008-06-01

    The concept of 'empowerment' is used frequently in a number of professional areas, from psychotherapy to social work. But even if the same term is used, it is not always clear if the concept denotes the same goals or the same practice in these various fields. The purpose of this paper is to clarify the discussion and to find a plausible and useful definition of the concept that is suitable for work in various professions. Several suggestions are discussed in the paper, for example control over life or health, autonomy, ability, self-efficacy, self-esteem, and freedom, and it is concluded that there are two plausible complementary uses, one as a goal and one as a process or approach. Empowerment as a goal is to have control over the determinants of one's quality of life, and empowerment as a process is to create a professional relation where the client or community takes control over the change process, determining both the goals of this process and the means to use.

  17. Identification of New Potential Scientific and Technology Areas for DoD Application. Summary of Activities

    1983-08-02

    of Southern California (USC). Following Dr. Bass’s briefing, Dr. Elsa Garmire, also of USC, discussed the use of high-power laser diodes as pumps for...remaining portion of the light is imaged with a lens (not snown). 26 LJI-R-82-217 -vPOTENTIAL OF VERY LARGE ARRAYS OF SEMICONDUCTOR LASER SOURCES ELSA ...semiconductors, surface physics, and the action of catalysts which are not accessible to synchrotron light sources. Such a promising new development certainly

  18. Out-of-equilibrium body potential measurements in pseudo-MOSFET for sensing applications

    Benea, Licinius; Bawedin, Maryline; Delacour, Cécile; Ionica, Irina

    2018-05-01

    The aim of this paper is to present the out-of-equilibrium body potential behaviour in the Ψ-MOSFET configuration. Consistent measurements in this experimental setup succeeded in providing a substantial understanding of its characteristics in the depletion region. The final objective of this work is to envision this new measurement technique for biochemical sensor applications. Among its advantages, the most important are its simplicity, the good sensitivity, the measurement of a potential instead of a current and the low bias needed for detection compared to the conventional drain current measurements.

  19. Application of Solar Chimney Concept to Solve Potential Safety Issues of Nuclear Power Plants

    Khasawneh, Khalid; PARK, Youn Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    In this paper two main events and their causes have been investigated and a potential alternative supporting system will be provided. The first event to be addressed is the Station Blackout (SBO) caused by the inherent unreliability of the Emergency Diesel Generators (EDGs) and Alternative AC (AAC) power sources. Different parameters affect The EDG unreliability; for instance, mechanical, operational, maintenance and surveillance. Those parameters will be analyzed and linked to plant safety and Core Damage Frequency (CDF). Also the AACs, the SBO diesel generators, will be studied and their operational requirements similarity with the EDGs will be discussed. The second event to be addressed is the Loss of Ultimate Heat Sink (LUHS) caused by the degradation of heat exchange effectiveness, that is, the poor heat transfer to the Ultimate Heat Sink (UHS). Different causes to such case were observed; intake lines blockages due to ice and foreign biological matters formation and oil spill near the heat sink causing the oil leakage to the heat exchangers tubes. The later cause, oil spill, has been given a special attention here due its potential effects for different nuclear power plants (NPPs) around the world; for example, Finland and the United Arab Emirates (UAE). For the Finnish case, the Finnish nuclear regulator (STUK) took already countermeasures for such scenario by introducing alternative heat sink, cooling towers, for the primary used heat sink, sea water, for one of its nuclear power plants. The abundance of the solar irradiation in the UAE region provides a perfect condition for the implementation of solar power applications. Utilizing this unique characteristic of that region may provide promising alternative and diverse options for solving potential safety related issues of their NPPs. The Solar Chimney Power Plant (SCPP) could be employed to serve as a supporting system to provide emergency power, in the case of SBO, and emergency cooling, in the case of

  20. Application of Solar Chimney Concept to Solve Potential Safety Issues of Nuclear Power Plants

    Khasawneh, Khalid; PARK, Youn Won

    2014-01-01

    In this paper two main events and their causes have been investigated and a potential alternative supporting system will be provided. The first event to be addressed is the Station Blackout (SBO) caused by the inherent unreliability of the Emergency Diesel Generators (EDGs) and Alternative AC (AAC) power sources. Different parameters affect The EDG unreliability; for instance, mechanical, operational, maintenance and surveillance. Those parameters will be analyzed and linked to plant safety and Core Damage Frequency (CDF). Also the AACs, the SBO diesel generators, will be studied and their operational requirements similarity with the EDGs will be discussed. The second event to be addressed is the Loss of Ultimate Heat Sink (LUHS) caused by the degradation of heat exchange effectiveness, that is, the poor heat transfer to the Ultimate Heat Sink (UHS). Different causes to such case were observed; intake lines blockages due to ice and foreign biological matters formation and oil spill near the heat sink causing the oil leakage to the heat exchangers tubes. The later cause, oil spill, has been given a special attention here due its potential effects for different nuclear power plants (NPPs) around the world; for example, Finland and the United Arab Emirates (UAE). For the Finnish case, the Finnish nuclear regulator (STUK) took already countermeasures for such scenario by introducing alternative heat sink, cooling towers, for the primary used heat sink, sea water, for one of its nuclear power plants. The abundance of the solar irradiation in the UAE region provides a perfect condition for the implementation of solar power applications. Utilizing this unique characteristic of that region may provide promising alternative and diverse options for solving potential safety related issues of their NPPs. The Solar Chimney Power Plant (SCPP) could be employed to serve as a supporting system to provide emergency power, in the case of SBO, and emergency cooling, in the case of

  1. Discussion on the correlation between geophysical and remote sensing information. Primary study on information correlation of research content and concept of post-remote sensing application technology for uranium exploration

    Ye Fawang; Liu Dechang

    2005-01-01

    Based on the research content of post-remote sensing application technology for uranium exploration, a preliminary discussion on the correlation between RS information and geophysical information from gravity, aero-magnetics, aero-radioactivity is made on five aspects: physical meaning, depth of geological rule meaning, time and phase, planar pattern and inter-reaction mechanism. It creates a good beginner for deeply studying the correlation in quality and quantity between RS information from post-remote sensing application technology and other geologic information. (authors)

  2. Analysis of Wind Data, Calculation of Energy Yield Potential, and Micrositing Application with WAsP

    Fatih Topaloğlu

    2018-01-01

    Full Text Available The parameters required for building a wind power plant have been calculated using the fuzzy logic method by means of Wind Atlas Analysis and Application Program (WAsP in this study. Overall objectives of the program include analysis of raw data, evaluation of wind and climate, construction of a wind atlas, and estimation of wind power potential. With the analysis performed in the application, the average wind velocity, average power density, energy potential from micrositing, capacity factor, unit cost price, and period of redemption have been calculated, which are needed by the project developer during the decision-making stage and intended to be used as the input unit in the fuzzy logic-based system designed. It is aimed at processing the parameters calculated by the designed fuzzy logic-based decision-making system at the rule base and generating a compatibility factor that will allow for making the final decision in building wind power plants.

  3. Heterostructures based on two-dimensional layered materials and their potential applications

    Li, Ming-yang; Chen, Chang-Hsiao; Shi, Yumeng; Li, Lain-Jong

    2015-01-01

    The development of two-dimensional (2D) layered materials is driven by fundamental interest and their potential applications. Atomically thin 2D materials provide a wide range of basic building blocks with unique electrical, optical, and thermal properties which do not exist in their bulk counterparts. The van der Waals interlayer interaction enables the possibility to exfoliate and reassemble different 2D materials into arbitrarily and vertically stacked heterostructures. Recently developed vapor phase growth of 2D materials further paves the way of directly synthesizing vertical and lateral heterojunctions. This review provides insights into the layered 2D heterostructures, with a concise introduction to preparative approaches for 2D materials and heterostructures. These unique 2D heterostructures have abundant implications for many potential applications.

  4. Heterostructures based on two-dimensional layered materials and their potential applications

    Li, Ming-yang

    2015-12-04

    The development of two-dimensional (2D) layered materials is driven by fundamental interest and their potential applications. Atomically thin 2D materials provide a wide range of basic building blocks with unique electrical, optical, and thermal properties which do not exist in their bulk counterparts. The van der Waals interlayer interaction enables the possibility to exfoliate and reassemble different 2D materials into arbitrarily and vertically stacked heterostructures. Recently developed vapor phase growth of 2D materials further paves the way of directly synthesizing vertical and lateral heterojunctions. This review provides insights into the layered 2D heterostructures, with a concise introduction to preparative approaches for 2D materials and heterostructures. These unique 2D heterostructures have abundant implications for many potential applications.

  5. Geopolymers and their potential applications in the nuclear waste management field. A bibliographical study

    Cantarel, Vincent; Motooka, Takafumi; Yamagishi, Isao

    2017-06-01

    After a necessary decay time, the zeolites used for the water decontamination will eventually be conditioned for their long-term storage. Geopolymer is considered as a potential matrix to manage radioactive cesium and strontium containing waste. For such applications, a correct comprehension of the binder structure, its macroscopic properties, its interactions with the waste and the physico-chemical phenomena occurring in the wasteform is needed to be able to judge of the soundness and viability of the material. Although the geopolymer is a young binder, a lot of research has been carried out over the last fifty years and our understanding of this matrix and its potential applications is progressing fast. This review aims at gathering the actual knowledge on geopolymer studies about geopolymer composites, geopolymer as a confinement matrix for nuclear wastes and geopolymer under irradiation. This information will finally provide guidance for the future studies and experiments. (author)

  6. capital. A discussion paper

    Ewa Chojnacka

    2015-04-01

    Full Text Available The purpose of this study is to confront certain propositions presented in Lesław Niemczyk’s publication Rachunkowość finansowa aktywów kompetencyjnych i kapitału intelektualnego. Nowy dział rachunkowości(Accounting for Competence Assets and Intellectual Capital. A New Area in Accounting with ideas published in other studies. The authors discuss issues concerning firm value, selected definitions of intellectual capital, as well as certain methods of intellectual capital measurement and valuation. Other problems analysed include accounting for and reporting of intellectual capital and similarities and differences between the way those issues are presented in Polish and in international studies as well as in existing legal regulations and standards.

  7. Results and discussion

    1998-01-01

    The author deals with the experimental study of sorption, desorption and vertical migration of radionuclides in Sr-85 and Cs-137 in selected soil samples from around of NPP Bohunice and NPP Mochovce and other localities of the Slovakia. The influence of different materials [concurrent ions (K + , Ca 2+ , NH 4 + , pH), organic matter (peat) and zeolite, humidity] on kinetic of sorption and desorption of strontium and cesium as well as distribution coefficient (K D ) and transfer coefficients in followed samples of soils were followed. Obtained adsorption isotherm are presented and discussed. Using the Tessiere's sequential extraction analysis a gross variability in binding of radionuclides on soils was found. The obtained results were processed with the correlation analysis and the compartment model

  8. A REVIEW OF OIL PALM BIOCOMPOSITES FOR FURNITURE DESIGN AND APPLICATIONS: POTENTIAL AND CHALLENGES

    Siti Suhaily,; Mohammad Jawaid,; H. P. S. Abdul Khalil,; A. Rahman Mohamed; , F. Ibrahim

    2012-01-01

    This review considers the potential and challenges of using agro-based oil palm biomasses, including the trunk, frond, empty fruit bunch, and palm press fiber biocomposites, for furniture applications. Currently, design and quality rather than price are becoming the primary concern for consumers when buying new furniture. Within this context, this paper focuses on the design of innovative, sustainable furniture from agro-based biocomposites to meet the needs of future population growth and te...

  9. Impact of Saw Dust Application on the Distribution of Potentially Toxic Metals in Contaminated Soil.

    Awokunmi, Emmmanuel E

    2017-12-01

    The need to develop an approach for the reclamation of contaminated site using locally available agricultural waste has been considered. The present study investigated the application of sawdust as an effective amendment in the immobilization of potentially toxic metals (PTMs) by conducting a greenhouse experiment on soil collected from an automobile dumpsite. The amended and non-amended soil samples were analyzed for their physicochemical parameters and sequential extraction of PTMs. The results revealed that application of amendment had positive impact on the physicochemical parameters as organic matter content and cation exchange capacity increased from 12.1% to 12.8% and 16.4 to 16.8 meq/100 g respectively. However, the mobility and bioavalability of these metals was reduced as they were found to be distributed mostly in the non-exchangeable phase of soil. Therefore, application of sawdust successfully immobilized PTMs and could be applied for future studies in agricultural soil reclamation.

  10. Glass and Glass-Ceramic Materials from Simulated Composition of Lunar and Martian Soils: Selected Properties and Potential Applications

    Ray, C. S.; Sen, S.; Reis, S. T.; Kim, C. W.

    2005-01-01

    In-situ resource processing and utilization on planetary bodies is an important and integral part of NASA's space exploration program. Within this scope and context, our general effort is primarily aimed at developing glass and glass-ceramic type materials using lunar and martian soils, and exploring various applications of these materials for planetary surface operations. Our preliminary work to date have demonstrated that glasses can be successfully prepared from melts of the simulated composition of both lunar and martian soils, and the melts have a viscosity-temperature window appropriate for drawing continuous glass fibers. The glasses are shown to have the potential for immobilizing certain types of nuclear wastes without deteriorating their chemical durability and thermal stability. This has a direct impact on successfully and economically disposing nuclear waste generated from a nuclear power plant on a planetary surface. In addition, these materials display characteristics that can be manipulated using appropriate processing protocols to develop glassy or glass-ceramic magnets. Also discussed in this presentation are other potential applications along with a few selected thermal, chemical, and structural properties as evaluated up to this time for these materials.

  11. Discussion on Benford's Law and its Application

    Li, Zhipeng; Cong, Lin; Wang, Huajia

    2004-01-01

    The probability that a number in many naturally occurring tables of numerical data has first significant digit $d$ is predicted by Benford's Law ${\\rm Prob} (d) = \\log_{10} (1 + {\\displaystyle{1\\over d}}), d = 1, 2 >..., 9$. Illustrations of Benford's Law from both theoretical and real-life sources on both science and social science areas are shown in detail with some novel ideas and generalizations developed solely by the authors of this paper. Three tests, Chi-Square test, total variation d...

  12. Potential for beneficial application of sulfate reducing bacteria in sulfate containing domestic wastewater treatment.

    van den Brand, T P H; Roest, K; Chen, G H; Brdjanovic, D; van Loosdrecht, M C M

    2015-11-01

    The activity of sulfate reducing bacteria (SRB) in domestic wastewater treatment plants (WWTP) is often considered as a problem due to H2S formation and potential related odour and corrosion of materials. However, when controlled well, these bacteria can be effectively used in a positive manner for the treatment of wastewater. The main advantages of using SRB in wastewater treatment are: (1) minimal sludge production, (2) reduction of potential pathogens presence, (3) removal of heavy metals and (4) as pre-treatment of anaerobic digestion. These advantages are accessory to efficient and stable COD removal by SRB. Though only a few studies have been conducted on SRB treatment of domestic wastewater, the many studies performed on industrial wastewater provide information on the potential of SRB in domestic wastewater treatment. A key-parameter analyses literature study comprising pH, organic substrates, sulfate, salt, temperature and oxygen revealed that the conditions are well suited for the application of SRB in domestic wastewater treatment. Since the application of SRB in WWTP has environmental benefits its application is worth considering for wastewater treatment, when sulfate is present in the influent.

  13. Use and application of gelatin as potential biodegradable packaging materials for food products.

    Nur Hanani, Z A; Roos, Y H; Kerry, J P

    2014-11-01

    The manufacture and potential application of biodegradable films for food application has gained increased interest as alternatives to conventional food packaging polymers due to the sustainable nature associated with their availability, broad and abundant source range, compostability, environmentally-friendly image, compatibility with foodstuffs and food application, etc. Gelatin is one such material and is a unique and popularly used hydrocolloid by the food industry today due to its inherent characteristics, thereby potentially offering a wide range of further and unique industrial applications. Gelatin from different sources have different physical and chemical properties as they contain different amino acid contents which are responsible for the varying characteristics observed upon utilization in food systems and when being utilized more specifically, in the manufacture of films. Packaging films can be successfully produced from all gelatin sources and the behaviour and characteristics of gelatin-based films can be altered through the incorporation of other food ingredients to produce composite films possessing enhanced physical and mechanical properties. This review will present the current situation with respect to gelatin usage as a packaging source material and the challenges that remain in order to move the manufacture of gelatin-based films nearer to commercial reality. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Potential nanotechnology applications for reducing freshwater consumption at coal fired power plants : an early view.

    Elcock, D. (Environmental Science Division)

    2010-09-17

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the overall research effort of the Existing Plants Research Program by evaluating water issues that could impact power plants. A growing challenge to the economic production of electricity from coal-fired power plants is the demand for freshwater, particularly in light of the projected trends for increasing demands and decreasing supplies of freshwater. Nanotechnology uses the unique chemical, physical, and biological properties that are associated with materials at the nanoscale to create and use materials, devices, and systems with new functions and properties. It is possible that nanotechnology may open the door to a variety of potentially interesting ways to reduce freshwater consumption at power plants. This report provides an overview of how applications of nanotechnology could potentially help reduce freshwater use at coal-fired power plants. It was developed by (1) identifying areas within a coal-fired power plant's operations where freshwater use occurs and could possibly be reduced, (2) conducting a literature review to identify potential applications of nanotechnology for facilitating such reductions, and (3) collecting additional information on potential applications from researchers and companies to clarify or expand on information obtained from the literature. Opportunities, areas, and processes for reducing freshwater use in coal-fired power plants considered in this report include the use of nontraditional waters in process and cooling water systems, carbon capture alternatives, more efficient processes for removing sulfur dioxide and nitrogen oxides, coolants that have higher thermal conductivities than water alone, energy storage options, and a variety of plant inefficiencies, which

  15. Effect of initialization time on application potentiality of a ZnO thin film based LPG sensor

    Parta Mitra

    2009-09-01

    Full Text Available A prototype electronic LPG (Liquid Petroleum Gas sensor based on zinc oxide (ZnO film has been fabricated. The objective of the present work was to investigate the importance of initialization time (also called warm-up time on the application potentiality of the ZnO based alarm. The role of sensor geometry on initialization time is presented. The electronic circuitry of the prototype LPG device alarm is discussed. It is shown that that the initialization time depends on the switch off time (or the time for which the sensor was kept idle. The resistive mode sensors can be fixed at 40% LEL (Lower Explosive Limit of LPG for safe operation.

  16. Concise Review: Amniotic Fluid Stem Cells: The Known, the Unknown, and Potential Regenerative Medicine Applications.

    Loukogeorgakis, Stavros P; De Coppi, Paolo

    2017-07-01

    The amniotic fluid has been identified as an untapped source of cells with broad potential, which possess immunomodulatory properties and do not have the ethical and legal limitations of embryonic stem cells. CD117(c-Kit)+ cells selected from amniotic fluid have been shown to differentiate into cell lineages representing all three embryonic germ layers without generating tumors, making them ideal candidates for regenerative medicine applications. Moreover, their ability to engraft in injured organs and modulate immune and repair responses of host tissues, suggest that transplantation of such cells may be useful for the treatment of various degenerative and inflammatory diseases. Although significant questions remain regarding the origin, heterogeneous phenotype, and expansion potential of amniotic fluid stem cells, evidence to date supports their potential role as a valuable stem cell source for the field of regenerative medicine. Stem Cells 2017;35:1663-1673. © 2016 AlphaMed Press.

  17. Assessment of foreign decommissioning technology with potential application to US decommissioning needs

    Allen, R.P.; Konzek, G.J.; Schneider, K.J.; Smith, R.I.

    1987-09-01

    This study was conducted by the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) to identify and technically assess foreign decommissioning technology developments that may represent significant improvements over decommissioning technology currently available or under development in the United States. Technology need areas for nuclear power reactor decommissioning operations were identified and prioritized using the results of past light water reactor (LWR) decommissioning studies to quantitatively evaluate the potential for reducing cost and decommissioning worker radiation dose for each major decommissioning activity. Based on these identified needs, current foreign decommissioning technologies of potential interest to the US were identified through personal contacts and the collection and review of an extensive body of decommissioning literature. These technologies were then assessed qualitatively to evaluate their uniqueness, potential for a significant reduction in decommissioning costs and/or worker radiation dose, development status, and other factors affecting their value and applicability to US needs

  18. A Review on Graphene-Based Gas/Vapor Sensors with Unique Properties and Potential Applications

    Tao Wang; Da Huang; Zhi Yang; Shusheng Xu; Guili He; Xiaolin Li; Nantao Hu; Guilin Yin; Dannong He; Liying Zhang

    2016-01-01

    Graphene-based gas/vapor sensors have attracted much attention in recent years due to their variety of structures, unique sensing performances, room-temperature working conditions, and tremendous application prospects, etc.Herein, we summarize recent advantages in graphene preparation, sensor construction, and sensing properties of various graphene-based gas/vapor sensors, such as NH3, NO2, H2, CO, SO2, H2S, as well as vapor of volatile organic compounds.The detection mechanisms pertaining to various gases are also discussed. In conclusion part, some existing problems which may hinder the sensor applications are presented. Several possible methods to solve these problems are proposed, for example, conceived solutions, hybrid nanostructures, multiple sensor arrays, and new recognition algorithm.

  19. Potential Dermal Exposure to Flonicamid and Risk Assessment of Applicators During Treatment in Apple Orchards.

    Zhao, Mei-Ai; Yu, Aili; Zhu, Yong-Zhe; Kim, Jeong-Han

    2015-01-01

    Exposure and risk assessments of flonicamid for applicators were performed in apple orchards in Korea. Fifteen experiments were done with two experienced applicators under typical field conditions using a speed sprayer. In this study, cotton gloves, socks, masks, and dermal patches were used to monitor potential dermal exposure to flonicamid, and personal air samplers with XAD-2 resin and glass fiber filter were used to monitor potential inhalation exposure. The analytical methods were validated for the limit of detection, limit of quantitation, reproducibility, linearity of the calibration curve, and recovery of flonicamid from various exposure matrices. The results were encouraging and acceptable for an exposure study. The applicability of XAD-2 resin was evaluated via a trapping efficiency and breakthrough test. During the mixing/loading, the average total dermal exposure was 22.6 μg of flonicamid, corresponding to 4.5×10(-5)% of the prepared amount. For the spraying, the potential dermal exposure was 9.32 mg, and the ratio to applied amount was 1.9 × 10(-2%). The primary exposed body parts were the thigh (2.90 mg), upper arm (1.75 mg), and lower leg (1.66 mg). By comparison, absorbable quantity of exposure was small, only 1.62 μg (3.2×10(-6)%). The margin of safety (MOS) were calculated for risk assessment, in all sets of trials, MOS > 1, indicating the exposure level of flonicamid was considered to be safe in apple orchards. Although this was a limited study, it provided a good estimate of flonicamid exposure for orchard applicators.

  20. Status of solid polymer electrolyte fuel cell technology and potential for transportation applications

    McElroy, J. F.; Nuttall, L. J.

    The solid polymer electrolyte (SPE) fuel cell represents the first fuel cell technology known to be used operationally. Current activities are mainly related to the development of a space regenerative fuel cell system for energy storage on board space stations, or other large orbiting vehicles and platforms. During 1981, a study was performed to determine the feasibility of using SPE fuel cells for automotive or other vehicular applications, using methanol as the fuel. The results of this study were very encouraging. Details concerning a conceptual automotive fuel cell power plant study are discussed, taking into account also a layout of major components for compact passenger car installation.

  1. The potential application of military fleet scheduling tools to the Federal Waste Management System Transportation System

    Harrison, I.G.; Pope, R.B.; Kraemer, R.D.; Hilliard, M.R.

    1991-01-01

    This paper discusses the feasibility of adapting concepts and tools that were developed for the US military's transportation management systems to the management of the Federal Waste Management System's (FWMS) Transportation System. Many of the lessons in the development of the planning and scheduling software for the US military are applicable to the development of similar software for the FWMS Transportation System. The resulting system would be invaluable to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM), both initially, for long-range planning, and later, in day-to-day scheduling and management activities

  2. Human Induced Pluripotent Stem Cells from Basic Research to Potential Clinical Applications in Cancer

    Teresa de Souza Fernandez

    2013-01-01

    Full Text Available The human induced pluripotent stem cells (hiPSCs are derived from a direct reprogramming of human somatic cells to a pluripotent stage through ectopic expression of specific transcription factors. These cells have two important properties, which are the self-renewal capacity and the ability to differentiate into any cell type of the human body. So, the discovery of hiPSCs opens new opportunities in biomedical sciences, since these cells may be useful for understanding the mechanisms of diseases in the production of new diseases models, in drug development/drug toxicity tests, gene therapies, and cell replacement therapies. However, the hiPSCs technology has limitations including the potential for the development of genetic and epigenetic abnormalities leading to tumorigenicity. Nowadays, basic research in the hiPSCs field has made progress in the application of new strategies with the aim to enable an efficient production of high-quality of hiPSCs for safety and efficacy, necessary to the future application for clinical practice. In this review, we show the recent advances in hiPSCs’ basic research and some potential clinical applications focusing on cancer. We also present the importance of the use of statistical methods to evaluate the possible validation for the hiPSCs for future therapeutic use toward personalized cell therapies.

  3. Synthesis, characterization, bioactivity and potential application of phenolic acid grafted chitosan: A review.

    Liu, Jun; Pu, Huimin; Liu, Shuang; Kan, Juan; Jin, Changhai

    2017-10-15

    In recent years, increasing attention has been paid to the grafting of phenolic acid onto chitosan in order to enhance the bioactivity and widen the application of chitosan. Here, we present a comprehensive overview on the recent advances of phenolic acid grafted chitosan (phenolic acid-g-chitosan) in many aspects, including the synthetic method, structural characterization, biological activity, physicochemical property and potential application. In general, four kinds of techniques including carbodiimide based coupling, enzyme catalyzed grafting, free radical mediated grafting and electrochemical methods are frequently used for the synthesis of phenolic acid-g-chitosan. The structural characterization of phenolic acid-g-chitosan can be determined by several instrumental methods. The physicochemical properties of chitosan are greatly altered after grafting. As compared with chitosan, phenolic acid-g-chitosan exhibits enhanced antioxidant, antimicrobial, antitumor, anti-allergic, anti-inflammatory, anti-diabetic and acetylcholinesterase inhibitory activities. Notably, phenolic acid-g-chitosan shows potential applications in many fields as coating agent, packing material, encapsulation agent and bioadsorbent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Antimicrobial Activity of TiO2 Nanoparticle-Coated Film for Potential Food Packaging Applications

    Siti Hajar Othman

    2014-01-01

    Full Text Available Recent uses of titanium dioxide (TiO2 have involved various applications which include the food industry. This study aims to develop TiO2 nanoparticle-coated film for potential food packaging applications due to the photocatalytic antimicrobial property of TiO2. The TiO2 nanoparticles with varying concentrations (0–0.11 g/ 100 mL organic solvent were coated on food packaging film, particularly low density polyethylene (LDPE film. The antimicrobial activity of the films was investigated by their capability to inactivate Escherichia coli (E. coli in an actual food packaging application test under various conditions, including types of light (fluorescent and ultraviolet (UV and the length of time the film was exposed to light (one–three days. The antimicrobial activity of the TiO2 nanoparticle-coated films exposed under both types of lighting was found to increase with an increase in the TiO2 nanoparticle concentration and the light exposure time. It was also found that the antimicrobial activity of the films exposed under UV light was higher than that under fluorescent light. The developed film has the potential to be used as a food packaging film that can extend the shelf life, maintain the quality, and assure the safety of food.

  5. Polyhydroxyalkanoate (PHA: Review of synthesis, characteristics, processing and potential applications in packaging

    E. Bugnicourt

    2014-11-01

    Full Text Available Polyhydroxyalkanoates (PHAs are gaining increasing attention in the biodegradable polymer market due to their promising properties such as high biodegradability in different environments, not just in composting plants, and processing versatility. Indeed among biopolymers, these biogenic polyesters represent a potential sustainable replacement for fossil fuel-based thermoplastics. Most commercially available PHAs are obtained with pure microbial cultures grown on renewable feedstocks (i.e. glucose under sterile conditions but recent research studies focus on the use of wastes as growth media. PHA can be extracted from the bacteria cell and then formulated and processed by extrusion for production of rigid and flexible plastic suitable not just for the most assessed medical applications but also considered for applications including packaging, moulded goods, paper coatings, non-woven fabrics, adhesives, films and performance additives. The present paper reviews the different classes of PHAs, their main properties, processing aspects, commercially available ones, as well as limitations and related improvements being researched, with specific focus on potential applications of PHAs in packaging.

  6. Microbial processes in the Athabasca Oil Sands and their potential applications in microbial enhanced oil recovery.

    Harner, N K; Richardson, T L; Thompson, K A; Best, R J; Best, A S; Trevors, J T

    2011-11-01

    The Athabasca Oil Sands are located within the Western Canadian Sedimentary Basin, which covers over 140,200 km(2) of land in Alberta, Canada. The oil sands provide a unique environment for bacteria as a result of the stressors of low water availability and high hydrocarbon concentrations. Understanding the mechanisms bacteria use to tolerate these stresses may aid in our understanding of how hydrocarbon degradation has occurred over geological time, and how these processes and related tolerance mechanisms may be used in biotechnology applications such as microbial enhanced oil recovery (MEOR). The majority of research has focused on microbiology processes in oil reservoirs and oilfields; as such there is a paucity of information specific to oil sands. By studying microbial processes in oil sands there is the potential to use microbes in MEOR applications. This article reviews the microbiology of the Athabasca Oil Sands and the mechanisms bacteria use to tolerate low water and high hydrocarbon availability in oil reservoirs and oilfields, and potential applications in MEOR.

  7. Potential Use of Plant Fibres and their Composites for Biomedical Applications

    Farideh Namvar

    2014-05-01

    Full Text Available Plant-based fibers such as flax, jute, sisal, hemp, and kenaf have been frequently used in the manufacturing of biocomposites. Natural fibres possess a high strength to weight ratio, non-corrosive nature, high fracture toughness, renewability, and sustainability, which give them unique advantages over other materials. The development of biocomposites by reinforcing natural fibres has attracted attention of scientists and researchers due to environmental benefits and improved mechanical performance. Manufacturing of biocomposites from renewable sources is a challenging task, involving metals, polymers, and ceramics. Biocomposites are already utilized in biomedical applications such as drug/gene delivery, tissue engineering, orthopedics, and cosmetic orthodontics. The first essential requirement of materials to be used as biomaterial is its acceptability by the human body. A biomaterial should obtain some important common properties in order to be applied in the human body either for use alone or in combination. Biocomposites have potential to replace or serve as a framework allowing the regeneration of traumatized or degenerated tissues or organs, thus improving the patients’ quality of life. This review paper addresses the utilization of plant fibres and its composites in biomedical applications and considers potential future research directed at environment-friendly biodegradable composites for biomedical applications.

  8. An Overview of Food Emulsions: Description, Classification and Recent Potential Applications

    Meltem Serdaroğlu

    2015-03-01

    Full Text Available Emulsions take place partially or completely in the structures of many natural and processed foods or some foods are already emulsified in certain stages of production. In general “emulsion” is described as a structure created through the dispersion of one of two immiscible liquids within the other one in form of little droplets. Many terms are available to describe different emulsion types and it is very important to define and clarify these terms like “macro emulsion”, “nanoemulsion” and “multiple emulsion”. Nanoemulsions become increasingly important in food industry as an innovative approach in carrying functional agents. Application potential of multiple emulsions (W/O/W is also stated to be very high in food industry. The two main strategic purposes of utilization of multiple emulsions in food applications are to encapsulate various aromas, bioactive compounds or sensitive food compounds and to allow the production of the low-fat products. This review provides an overview to the general terms of emulsion types, the role of various emulsifying agents, and the application potential of emulsions in food industry.

  9. Nanotechnology in Meat Processing and Packaging: Potential Applications — A Review

    Karna Ramachandraiah

    2015-02-01

    Full Text Available Growing demand for sustainable production, increasing competition and consideration of health concerns have led the meat industries on a path to innovation. Meat industries across the world are focusing on the development of novel meat products and processes to meet consumer demand. Hence, a process innovation, like nanotechnology, can have a significant impact on the meat processing industry through the development of not only novel functional meat products, but also novel packaging for the products. The potential benefits of utilizing nanomaterials in food are improved bioavailability, antimicrobial effects, enhanced sensory acceptance and targeted delivery of bioactive compounds. However, challenges exist in the application of nanomaterials due to knowledge gaps in the production of ingredients such as nanopowders, stability of delivery systems in meat products and health risks caused by the same properties which also offer the benefits. For the success of nanotechnology in meat products, challenges in public acceptance, economics and the regulation of food processed with nanomaterials which may have the potential to persist, accumulate and lead to toxicity need to be addressed. So far, the most promising area for nanotechnology application seems to be in meat packaging, but the long term effects on human health and environment due to migration of the nanomaterials from the packaging needs to be studied further. The future of nanotechnology in meat products depends on the roles played by governments, regulatory agencies and manufacturers in addressing the challenges related to the application of nanomaterials in food.

  10. Discussion on Papers 14 - 16

    Charles-Jones, S.; Muirhead, S.; Wilson, E.A.; Jefferson, M.; Binnie, C.J.A.; O'Connor, B.A.; Rothwell, P.; Cowie, D.

    1992-01-01

    Further observations were made on the great potential for tidal power developments in NW Australia. Discussion on the Severn Barrage paper and environmental effects of tidal power plants centred mainly around the impact on bird populations. The topics covered were: the adaptability of birds to changes in their environment with particular reference to the importance of inter-tidal areas for wildfowl and wading birds in the United Kingdom; the creation of mudflats as replacement feeding areas for wading birds; whether there is a danger that pressure from the construction industry might result in a barrage being built before the uncertainties in the environmental impact assessment are removed. Separate abstracts have been prepared for the three papers under discussion. (UK)

  11. Resistor mesh model of a spherical head: part 1: applications to scalp potential interpolation.

    Chauveau, N; Morucci, J P; Franceries, X; Celsis, P; Rigaud, B

    2005-11-01

    A resistor mesh model (RMM) has been implemented to describe the electrical properties of the head and the configuration of the intracerebral current sources by simulation of forward and inverse problems in electroencephalogram/event related potential (EEG/ERP) studies. For this study, the RMM representing the three basic tissues of the human head (brain, skull and scalp) was superimposed on a spherical volume mimicking the head volume: it included 43 102 resistances and 14 123 nodes. The validation was performed with reference to the analytical model by consideration of a set of four dipoles close to the cortex. Using the RMM and the chosen dipoles, four distinct families of interpolation technique (nearest neighbour, polynomial, splines and lead fields) were tested and compared so that the scalp potentials could be recovered from the electrode potentials. The 3D spline interpolation and the inverse forward technique (IFT) gave the best results. The IFT is very easy to use when the lead-field matrix between scalp electrodes and cortex nodes has been calculated. By simple application of the Moore-Penrose pseudo inverse matrix to the electrode cap potentials, a set of current sources on the cortex is obtained. Then, the forward problem using these cortex sources renders all the scalp potentials.

  12. Some applications of mirror-generated electric potentials to alternative fusion concepts

    Post, R.F.

    1990-01-01

    Transient electrical potentials can be generated in plasmas by utilizing impulsive mirror-generated forces acting on the plasma electrons together with ion inertia to cause momentary charge imbalance. In the Mirrortron such potentials are generated by applying a rapidly rising (tens of nanoseconds) localized mirror field to the central region of a hot-electron plasma confined between static mirrors. Because of the loss-cone nature of the electron distribution the sudden appearance of the pulsed mirror tends to expel electrons, whereas the ion density remains nearly constant. The quasi-neutrality condition then operates to create an electrical potential the equipotential surfaces of which can be shown theoretically to be congruent with surfaces of constant B. An alternative way of generating transient potentials is to apply a pulse of high-power microwaves to a plasma residing on a magnetic field with a longitudinal gradient. This technique resembles one employed in the Pleiade experiments. At gigawatt power levels, such as those produced by a Free Electron Laser, the production of very high transient potentials is predicted. Fusion-relevant applications of these ideas include heavy-ion drivers for inertial fusion, and the possibility of employing these techniques to enhance the longitudinal confinement of fusion plasmas in multiple-mirror systems. 23 refs., 3 figs

  13. The role of oxytocin in relationships between dogs and humans and potential applications for the treatment of separation anxiety in dogs.

    Thielke, Lauren E; Udell, Monique A R

    2017-02-01

    The hormone oxytocin plays an important role in attachment formation and bonding between humans and domestic dogs. Recent research has led to increased interest in potential applications for intranasal oxytocin to aid with the treatment of psychological disorders in humans. While a few studies have explored the effects of intranasally administered oxytocin on social cognition and social bonding in dogs, alternative applications have not yet been explored for the treatment of behavioural problems in this species. One potentially important application for intranasal oxytocin in dogs could be the treatment of separation anxiety, a common attachment disorder in dogs. Here we provide an overview of what is known about the role of oxytocin in the human-dog bond and canine separation anxiety, and discuss considerations for future research looking to integrate oxytocin into behavioural treatment based on recent findings from both the human and dog literature. © 2015 Cambridge Philosophical Society.

  14. Impacts of sand and dust storms on agriculture and potential agricultural applications of a SDSWS

    Stefanski, R; Sivakumar, M V K

    2009-01-01

    This paper will give an overview of the various impacts of sand and dust storms on agriculture and then address the potential applications of a Sand and Dust Storm Warning System (SDSWS) for agricultural users. Sand and dust storms have many negative impacts on the agricultural sector including: reducing crop yields by burial of seedlings under sand deposits, the loss of plant tissue and reduced photosynthetic activity as a result of sandblasting, delaying plant development, increasing end-of-season drought risk, causing injury and reduced productivity of livestock, increasing soil erosion and accelerating the process of land degradation and desertification, filling up irrigation canals with sediments, covering transportation routes, affecting water quality of rivers and streams, and affecting air quality. One positive impact is the fertilization of soil minerals to terrestrial ecosystems. There are several potential agricultural applications of a SDSWS. The first is to alert agricultural communities farmers to take preventive action in the near-term such as harvesting maturing crops (vegetables, grain), sheltering livestock, and strengthening infrastructure (houses, roads, grain storage) for the storm. Also, the products of a SDSWS could be used in for monitoring potential locust movement and post-storm crop damage assessments. An archive of SDSWS products (movement, amount of sand and dust) could be used in researching plant and animal pathogen movement and the relationship of sand and dust storms to disease outbreaks and in developing improved soil erosion and land degradation models.

  15. Sophorolipids Production by Candida bombicola ATCC 22214 and its Potential Application in Microbial Enhanced Oil Recovery.

    Elshafie, Abdulkadir E; Joshi, Sanket J; Al-Wahaibi, Yahya M; Al-Bemani, Ali S; Al-Bahry, Saif N; Al-Maqbali, Dua'a; Banat, Ibrahim M

    2015-01-01

    Biosurfactant production using Candida bombicola ATCC 22214, its characterization and potential applications in enhancing oil recovery were studied at laboratory scale. The seed media and the production media were standardized for optimal growth and biosurfactant production. The production media were tested with different carbon sources: glucose (2%w/v) and corn oil (10%v/v) added separately or concurrently. The samples were collected at 24 h interval up to 120 h and checked for growth (OD660), and biosurfactant production [surface tension (ST) and interfacial tension (IFT)]. The medium with both glucose and corn oil gave better biosurfactant production and reduced both ST and IFT to 28.56 + 0.42mN/m and 2.13 + 0.09mN/m, respectively within 72 h. The produced biosurfactant was quite stable at 13-15% salinity, pH range of 2-12, and at temperature up to 100°C. It also produced stable emulsions (%E24) with different hydrocarbons (pentane, hexane, heptane, tridecane, tetradecane, hexadecane, 1-methylnaphthalene, 2,2,4,4,6,8-heptamethylnonane, light and heavy crude oil). The produced biosurfactant was extracted using ethyl acetate and characterized as a mixture of sophorolipids (SPLs). The potential of SPLs in enhancing oil recovery was tested using core-flooding experiments under reservoir conditions, where additional 27.27% of residual oil (Sor) was recovered. This confirmed the potential of SPLs for applications in microbial enhanced oil recovery.

  16. Beam-induced magnetic property modifications: Basics, nanostructure fabrication and potential applications

    Devolder, T.; Bernas, H.; Ravelosona, D.; Chappert, C.; Pizzini, S.; Vogel, J.; Ferre, J.; Jamet, J.-P.; Chen, Y.; Mathet, V.

    2001-01-01

    We have developed an irradiation technique that allows us to tune the magnetic properties of thin films without affecting their roughness. We discuss the mechanisms involved and the applications. He + ion irradiation of Co/Pt multilayers lowers their magnetic anisotropy in a controlled way, reducing the coercive force and then leading to in-plane magnetization. By X-ray reflectometry, we study how irradiation-induced structural modifications correlate with magnetic properties. We also report the L1 0 chemical ordering of FePt by irradiation at 280 deg. C, and the consequent increase of magnetic anisotropy. Planar magnetic patterning at the sub 50 nm scale can be achieved when the irradiation is performed through a mask. New magnetic behaviors result from the fabrication process. They appear to arise from collateral damage. We model these effects in the case of SiO 2 and W masks. The planarity of irradiation-induced patterning and its ability to independently control nanostructure size and coercivity make it very appealing for magnetic recording on nanostructured media. Finally, possible applications to the granular media used in current hard disk drive storage technology are discussed

  17. Application of potential relaxation transient measurements to corrosion of steel in concrete

    Benjamin, S.E.; Skyes, J.M.

    1993-01-01

    Corrosion of steel in concrete is an electrochemical process that involves the process occurring at the interface and also in the bulk diffusion of species. This paper present studies on corrosion of Swedish Iron in concrete utilizing potential relaxation transients. This rapid new D.C. technique (developed at Oxford University, U.K.) analyzes the decay in terms of different resistor (R) - capacitor(c) combinations, thus identifying the individual processes as their time constants(tau). The resistance of the concrete is also separated. The merits and demerits of the technique are discussed. (author)

  18. A variational approach to operator and matrix Pade approximation. Applications to potential scattering and field theory

    Mery, P.

    1977-01-01

    The operator and matrix Pade approximation are defined. The fact that these approximants can be derived from the Schwinger variational principle is emphasized. In potential theory, using this variational aspect it is shown that the matrix Pade approximation allow to reproduce the exact solution of the Lippman-Schwinger equation with any required accuracy taking only into account the knowledge of the first two coefficients in the Born expansion. The deep analytic structure of this variational matrix Pade approximation (hyper Pade approximation) is discussed

  19. Industrial Waste Heat Recovery - Potential Applications, Available Technologies and Crosscutting R&D Opportunities

    Thekdi, Arvind [E3M Inc, North Potomac, MD (United States); Nimbalkar, Sachin U. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    The purpose of this report was to explore key areas and characteristics of industrial waste heat and its generation, barriers to waste heat recovery and use, and potential research and development (R&D) opportunities. The report also provides an overview of technologies and systems currently available for waste heat recovery and discusses the issues or barriers for each. Also included is information on emerging technologies under development or at various stages of demonstrations, and R&D opportunities cross-walked by various temperature ranges, technology areas, and energy-intensive process industries.

  20. Computational Redox Potential Predictions: Applications to Inorganic and Organic Aqueous Complexes, and Complexes Adsorbed to Mineral Surfaces

    Krishnamoorthy Arumugam

    2014-04-01

    Full Text Available Applications of redox processes range over a number of scientific fields. This review article summarizes the theory behind the calculation of redox potentials in solution for species such as organic compounds, inorganic complexes, actinides, battery materials, and mineral surface-bound-species. Different computational approaches to predict and determine redox potentials of electron transitions are discussed along with their respective pros and cons for the prediction of redox potentials. Subsequently, recommendations are made for certain necessary computational settings required for accurate calculation of redox potentials. This article reviews the importance of computational parameters, such as basis sets, density functional theory (DFT functionals, and relativistic approaches and the role that physicochemical processes play on the shift of redox potentials, such as hydration or spin orbit coupling, and will aid in finding suitable combinations of approaches for different chemical and geochemical applications. Identifying cost-effective and credible computational approaches is essential to benchmark redox potential calculations against experiments. Once a good theoretical approach is found to model the chemistry and thermodynamics of the redox and electron transfer process, this knowledge can be incorporated into models of more complex reaction mechanisms that include diffusion in the solute, surface diffusion, and dehydration, to name a few. This knowledge is important to fully understand the nature of redox processes be it a geochemical process that dictates natural redox reactions or one that is being used for the optimization of a chemical process in industry. In addition, it will help identify materials that will be useful to design catalytic redox agents, to come up with materials to be used for batteries and photovoltaic processes, and to identify new and improved remediation strategies in environmental engineering, for example the

  1. Potential applications of luminescent molecular rotors in food science and engineering.

    Alhassawi, Fatemah M; Corradini, Maria G; Rogers, Michael A; Ludescher, Richard D

    2017-06-29

    Fluorescent molecular rotors (MRs) are compounds whose emission is modulated by segmental mobility; photoexcitation generates a locally excited (LE), planar state that can relax either by radiative decay (emission of a photon) or by formation of a twisted intramolecular charge transfer (TICT) state that can relax nonradiatively due to internal rotation. If the local environment around the probe allows for rapid internal rotation in the excited state, fast non-radiative decay can either effectively quench the fluorescence or generate a second, red-shifted emission band. Conversely, any environmental restriction to twisting in the excited state due to free volume, crowding or viscosity, slows rotational relaxation and promotes fluorescence emission from the LE state. The environmental sensitivity of MRs has been exploited extensively in biological applications to sense microviscosity in biofluids, the stability and physical state of biomembranes, and conformational changes in macromolecules. The application of MRs in food research, however, has been only marginally explored. In this review, we summarize the main characteristics of fluorescent MRs, their current applications in biological research and their current and potential applications as sensors of physical properties in food science and engineering.

  2. Development and application of modern agricultural biotechnology in Botswana: the potentials, opportunities and challenges.

    Batlang, Utlwang; Tsurupe, Gorata; Segwagwe, Amogelang; Obopile, Motshwari

    2014-07-03

    In Botswana, approximately 40% of the population live in rural areas and derive most of their livelihood from agriculture by keeping livestock and practising arable farming. Due to the nature of their farming practises livestock and crops are exposed to diseases and environmental stresses. These challenges offer opportunities for application of biotechnology to develop adaptable materials to the country's environment. On the other hand, the perceived risk of genetically modified organisms (GMOs) has dimmed the promise of the technology for its application in agriculture. This calls for a holistic approach to the application of biotechnology to address issues of biosafety of GMOs. We have therefore assessed the potentials, challenges and opportunities to apply biotechnology with specific emphasis on agriculture, taking cognisance of requirement for its research, development and application in research and teaching institutions. In order to achieve this, resource availability, infrastructure, human and laboratory requirements were analyzed. The analysis revealed that the country has the capacity to carry out research in biotechnology in the development and production of genetically modified crops for food and fodder crops. These will include gene discovery, genetic transformation and development of systems to comply with the world regulatory framework on biosafety. In view of the challenges facing the country in agriculture, first generation biotech crops could be released for production. Novel GM products for development may include disease diagnosis kits, animal disease vaccines, and nutrient use efficiency, drought, and pest and disease resistant food and fodder crops.

  3. Potential applications of helium-cooled high-temperature reactors to process heat use

    Gambill, W.R.; Kasten, P.R.

    1981-01-01

    High-Temperature Gas-Cooled Reactors (HTRs) permit nuclear energy to be applied to a number of processes presently utilizing fossil fuels. Promising applications of HTRs involve cogeneration, thermal energy transport using molten salt systems, steam reforming of methane for production of chemicals, coal and oil shale liquefaction or gasification, and - in the longer term - energy transport using a chemical heat pipe. Further, HTRs might be used in the more distant future as the energy source for thermochemical hydrogen production from water. Preliminary results of ongoing studies indicate that the potential market for Process Heat HTRs by the year 2020 is about 150 to 250 GW(t) for process heat/cogeneration application, plus approximately 150 to 300 GW(t) for application to fossil conversion processes. HTR cogeneration plants appear attractive in the near term for new industrial plants using large amounts of process heat, possibly for present industrial plants in conjunction with molten-salt energy distribution systems, and also for some fossil conversion processes. HTR reformer systems will take longer to develop, but are applicable to chemicals production, a larger number of fossil conversion processes, and to chemical heat pipes

  4. An assessment of potential applications with pulsed electric field in wines

    Drosou Foteini

    2017-01-01

    Full Text Available Pulsed electric fields (PEF is a non-thermal processing technology that uses instantaneous, pulses of high voltage for a short period in the range of milliseconds to microseconds; the application of high intensity electric field on toasted wood chips leads to a quick diffusion of extractable molecules. Currently most PEF studies, in the field of oenology, have been focusing on the application of PEF as a pretreatment of grape musts by examining the microbial inactivation and the enhancement of polyphenol extraction. In this study a post-treatment of wine is introduced as method to enhance the wood flavor in the wine with a green noninvasive technology. Major phenolic aldehydes that have been identified as the characteristic compounds of oak volatile compounds were selected as markers and were analyzed instrumentally to compare the influence of PEF processing to non-treated samples. PEF treated samples brought about higher concentrations of the examined oak compounds in the samples treated with PEF, which may explain the advantages of its application. The modulation of the intensity of the electric field and the period of pulses influenced the concentrations of the volatile phenols that were leached out. Differences found between the assayed treatments indicate that PEF application could be a potential practice for a rapid extraction of volatile compounds from oak.

  5. Current knowledge and potential applications of cavitation technologies for the petroleum industry.

    Avvaru, Balasubrahmanyam; Venkateswaran, Natarajan; Uppara, Parasuveera; Iyengar, Suresh B; Katti, Sanjeev S

    2018-04-01

    Technologies based on cavitation, produced by either ultrasound or hydrodynamic means, are part of growing literature for individual refinery unit processes. In this review, we have explained the mechanism through which these cavitation technologies intensify individual unit processes such as enhanced oil recovery, demulsification of water in oil emulsions during desalting stage, crude oil viscosity reduction, oxidative desulphurisation/demetallization, and crude oil upgrading. Apart from these refinery processes, applications of this technology are also mentioned for other potential crude oil sources such as oil shale and oil sand extraction. The relative advantages and current situation of each application/process at commercial scale is explained. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Wind erosion potential of a winter wheat-summer fallow rotation after land application of biosolids

    Pi, Huawei; Sharratt, Brenton; Schillinger, William F.; Bary, Andrew I.; Cogger, Craig G.

    2018-06-01

    Conservation tillage is a viable management strategy to control soil wind erosion, but other strategies such as land application of biosolids that enhance soil quality may also reduce wind erosion. No studies have determined the effects of biosolids on wind erosion. Wind erosion potential of a silt loam was assessed using a portable wind tunnel after applying synthetic and biosolids fertilizer to traditional (disk) and conservation (undercutter) tillage practices during the summer fallow phase of a winter wheat-summer fallow (WW-SF) rotation in 2015 and 2016 in east-central Washington. Soil loss ranged from 12 to 61% lower for undercutter than disk tillage, possibly due to retention of more biomass on the soil surface of the undercutter versus disk tillage treatment. In contrast, soil loss was similar to or lower for biosolids as compared with synthetic fertilizer treatment. Our results suggest that biosolids applications to agricultural lands will have minimal impact on wind erosion.

  7. Potential Applications of Immobilized β-Galactosidase in Food Processing Industries

    Parmjit S. Panesar

    2010-01-01

    Full Text Available The enzyme β-galactosidase can be obtained from a wide variety of sources such as microorganisms, plants, and animals. The use of β-galactosidase for the hydrolysis of lactose in milk and whey is one of the promising enzymatic applications in food and dairy processing industries. The enzyme can be used in either soluble or immobilized forms but the soluble enzyme can be used only for batch processes and the immobilized form has the advantage of being used in batch wise as well as in continuous operation. Immobilization has been found to be convenient method to make enzyme thermostable and to prevent the loss of enzyme activity. This review has been focused on the different types of techniques used for the immobilization of β-galactosidase and its potential applications in food industry.

  8. Microfluidic 3D cell culture: potential application for tissue-based bioassays

    Li, XiuJun (James); Valadez, Alejandra V.; Zuo, Peng; Nie, Zhihong

    2014-01-01

    Current fundamental investigations of human biology and the development of therapeutic drugs, commonly rely on two-dimensional (2D) monolayer cell culture systems. However, 2D cell culture systems do not accurately recapitulate the structure, function, physiology of living tissues, as well as highly complex and dynamic three-dimensional (3D) environments in vivo. The microfluidic technology can provide micro-scale complex structures and well-controlled parameters to mimic the in vivo environment of cells. The combination of microfluidic technology with 3D cell culture offers great potential for in vivo-like tissue-based applications, such as the emerging organ-on-a-chip system. This article will review recent advances in microfluidic technology for 3D cell culture and their biological applications. PMID:22793034

  9. From the printer: Potential of three-dimensional printing for orthopaedic applications

    Sze-Wing Mok

    2016-07-01

    Full Text Available Three-dimensional (3D printers can create complex structures based on digital models. The combination of medical diagnostic imaging with 3D printing has great potential in day-to-day clinics for patient-specific solutions and applications. In the musculoskeletal system, 3D printing is used to create custom-made implants, patient-specific instrumentation, and to regenerate tissues, in particular bone and cartilage. The major limiting factors for bioprinting include the lack of printing techniques with optimal printing resolution and materials with ideal mechanical strengths while maintaining cellular functionality. Before “tissues from the printer” can be widely applied, further research and development on improving and optimising printing techniques and biomaterials, and knowledge on the development of printed constructs into living tissues, is essential for future clinical application of this technology.

  10. Hybrid sequencing approach applied to human fecal metagenomic clone libraries revealed clones with potential biotechnological applications.

    Džunková, Mária; D'Auria, Giuseppe; Pérez-Villarroya, David; Moya, Andrés

    2012-01-01

    Natural environments represent an incredible source of microbial genetic diversity. Discovery of novel biomolecules involves biotechnological methods that often require the design and implementation of biochemical assays to screen clone libraries. However, when an assay is applied to thousands of clones, one may eventually end up with very few positive clones which, in most of the cases, have to be "domesticated" for downstream characterization and application, and this makes screening both laborious and expensive. The negative clones, which are not considered by the selected assay, may also have biotechnological potential; however, unfortunately they would remain unexplored. Knowledge of the clone sequences provides important clues about potential biotechnological application of the clones in the library; however, the sequencing of clones one-by-one would be very time-consuming and expensive. In this study, we characterized the first metagenomic clone library from the feces of a healthy human volunteer, using a method based on 454 pyrosequencing coupled with a clone-by-clone Sanger end-sequencing. Instead of whole individual clone sequencing, we sequenced 358 clones in a pool. The medium-large insert (7-15 kb) cloning strategy allowed us to assemble these clones correctly, and to assign the clone ends to maintain the link between the position of a living clone in the library and the annotated contig from the 454 assembly. Finally, we found several open reading frames (ORFs) with previously described potential medical application. The proposed approach allows planning ad-hoc biochemical assays for the clones of interest, and the appropriate sub-cloning strategy for gene expression in suitable vectors/hosts.

  11. Hybrid sequencing approach applied to human fecal metagenomic clone libraries revealed clones with potential biotechnological applications.

    Mária Džunková

    Full Text Available Natural environments represent an incredible source of microbial genetic diversity. Discovery of novel biomolecules involves biotechnological methods that often require the design and implementation of biochemical assays to screen clone libraries. However, when an assay is applied to thousands of clones, one may eventually end up with very few positive clones which, in most of the cases, have to be "domesticated" for downstream characterization and application, and this makes screening both laborious and expensive. The negative clones, which are not considered by the selected assay, may also have biotechnological potential; however, unfortunately they would remain unexplored. Knowledge of the clone sequences provides important clues about potential biotechnological application of the clones in the library; however, the sequencing of clones one-by-one would be very time-consuming and expensive. In this study, we characterized the first metagenomic clone library from the feces of a healthy human volunteer, using a method based on 454 pyrosequencing coupled with a clone-by-clone Sanger end-sequencing. Instead of whole individual clone sequencing, we sequenced 358 clones in a pool. The medium-large insert (7-15 kb cloning strategy allowed us to assemble these clones correctly, and to assign the clone ends to maintain the link between the position of a living clone in the library and the annotated contig from the 454 assembly. Finally, we found several open reading frames (ORFs with previously described potential medical application. The proposed approach allows planning ad-hoc biochemical assays for the clones of interest, and the appropriate sub-cloning strategy for gene expression in suitable vectors/hosts.

  12. Amnion and Chorion Membranes: Potential Stem Cell Reservoir with Wide Applications in Periodontics.

    Gupta, Akanksha; Kedige, Suresh D; Jain, Kanu

    2015-01-01

    The periodontal therapy usually aims at elimination of disease causing bacteria and resolution of inflammation. It involves either resective or regenerative surgery to resolve the inflammation associated defects. Over the years, several methods have been used for achievement of periodontal regeneration. One of the oldest biomaterials used for scaffolds is the fetal membrane. The amniotic membranes of developing embryo, that is, amnion (innermost lining) and chorion (a layer next to it), have the properties with significant potential uses in dentistry. This paper reviews the properties, mechanism of action, and various applications of these placental membranes in general and specifically in Periodontics.

  13. Two-photon polarization data storage in bacteriorhodopsin films and its potential use in security applications

    Imhof, Martin; Hampp, Norbert, E-mail: hampp@staff.uni-marburg.de [Department of Chemistry, Material Sciences Center, University of Marburg, Hans-Meerwein-Str., D-35032 Marburg (Germany); Rhinow, Daniel [Max-Planck-Institute of Biophysics, Max-von-Laue-Straße 3, D-60438 Frankfurt (Germany)

    2014-02-24

    Bacteriorhodopsin (BR) films allow write-once-read-many recording of polarization data by a two-photon-absorption (TPA) process. The optical changes in BR films induced by the TPA recording were measured and the Müller matrix of a BR film was determined. A potential application of BR films in security technology is shown. Polarization data can be angle-selective retrieved with high signal-to-noise ratio. The BR film does not only carry optical information but serves also as a linear polarizer. This enables that polarization features recorded in BR films may be retrieved by merely using polarized light from a mobile phone display.

  14. Potential medical applications of the plasma focus in the radioisotope production for PET imaging

    Roshan, M.V.; Razaghi, S.; Asghari, F.; Rawat, R.S.; Springham, S.V.; Lee, P.; Lee, S.; Tan, T.L.

    2014-01-01

    Devices other than the accelerators are desired to be investigated for generating high energy particles to induce nuclear reaction and positron emission tomography (PET) producing radioisotopes. The experimental data of plasma focus devices (PF) are studied and the activity scaling law for External Solid Target (EST) activation is established. Based on the scaling law and the techniques to enhance the radioisotopes production, the feasibility of generating the required activity for PET imaging is studied. - Highlights: • Short lived radioisotopes for PET imaging are produced in plasma focus device. • The scaling law of the activity induced with plasma focus energy is established. • The potential medical applications of plasma focus are studied

  15. The application of X-ray fluorescence spectrometry to prospecting potential gold deposits

    Shang Fengjun; Wang Haixia; Zhou Rongsheng

    2001-01-01

    The fieldwork high-sensitivity X-ray fluorescence analysis (FXFA) adopting miniaturized X-ray tube, Si-PIN detector with peltier cooler and notebook PC spectrometry is presented. Using this system, the authors carried out a preliminary research of its application to some gold mine in Sichuan. According to the close relationship between the high-grade element arsenic and gold in ore-forming components, X-ray fluorescence spectrometry can be used to reveal the existence of potential gold mineralization in fields rapidly. This is of great significance in guiding the field geological collection

  16. Cellular concrete: a potential load-bearing insulation for cryogenic applications

    Richard, T.G.; Dobogai, J.A.; Gerhardt, T.D.; Young, W.C.

    1975-01-01

    The need for low cost, low thermal conductivity, high strength insulation suitable for cryogenic applications is becoming more evident. An investigation of the potential of cellular concretes to fulfill this function was initiated. A review of the thermal and mechanical characteristics of foamed plastics and cellular concrete is presented along with relative cost comparisons. Test data from preliminary investigations is presented to define the influence of material constituents, density, and temperature on the mechanical and thermal response of cellular concrete. Specimen densities range from 0.64 to 1.44 gr/cc. The influence of temperature variations from 22 0 C to -196 0 C is reported for selected densities

  17. Experimental Investigation of the Properties of Electrospun Nanofibers for Potential Medical Application

    Anhui Wang

    2015-01-01

    Full Text Available Polymer based nanofibers using ethylene-co-vinyl alcohol (EVOH were fabricated by electrospinning technology. The nanofibers were studied for potential use as dressing materials for skin wounds treatment. Properties closely related to the clinical requirements for wound dressing were investigated, including the fluid uptake ability (FUA, the water vapour transmission rate (WVTR, the bacteria control ability of nanofibers encapsulated with different antibacterial drugs, and Ag of various concentrations. Nanofibre degradation under different environmental conditions was also studied for the prospect of long term usage. The finding confirms the potential of EVOH nanofibers for wound dressing application, including the superior performance compared to cotton gauze and the strong germ killing capacity when Ag particles are present in the nanofibers.

  18. Sb/Mn co-doped oxyfluoride silicate glasses for potential applications in photosynthesis

    Zhu, Chaofeng [Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics of Shandong Province, Qilu University of Technology, Jinan 250353 (China); Laboratoire des Verres et Céramiques, UMR-CNRS 6226, Université de Rennes 1, Rennes 35042 (France); Zhang, Xianghua, E-mail: xiang-hua.zhang@univ-rennes1.fr [Laboratoire des Verres et Céramiques, UMR-CNRS 6226, Université de Rennes 1, Rennes 35042 (France); Ma, Hongli [Laboratoire des Verres et Céramiques, UMR-CNRS 6226, Université de Rennes 1, Rennes 35042 (France)

    2016-03-15

    A series of Sb/Mn co-doped oxyfluoride silicate glasses were prepared via the melt-quenching method to explore red luminescent materials for potential applications in photosynthesis of green plants, and these glasses are investigated by means of luminescence decay curves, absorption, emission, and excitation spectra. We find that the as-prepared glasses are transparent in the visible region and can emit strong red light under ultraviolet, purple, and green light excitations. Furthermore, energy transfer from Sb{sup 3+} to Mn{sup 2+} ions occurs in Sb/Mn co-doped glasses. The results demonstrate that the as-prepared Sb/Mn co-doped oxyfluoride silicate glasses may serve as a potential candidate for developing glass greenhouse, which can enhance the utilization of solar energy for the photosynthesis of the green plants.

  19. Catalonia-Spain political conflict and the potential application of Article 7 TEU

    Abat Ninet, Antoni

    Catalonia-Spain political conflict and the potential application of Article 7 TEU My presentation will explore the appropriateness of applying Article 7 TEU in response to potential disproportionate measures taken by a Member State as a reaction to the threat of celebration of a referendum for self...... and the rule of law; the limits of the principle of non-intervention; the definition of Nation and the principle of self-determination. The celebration of a referendum without the state´s consent also tensions and contrasts some of the EU founded values (Article 2 TEU) promoted and safeguarded by art. 7 TEU....... On the one hand we have the rule of law and on the other hand we have democracy and freedom of expression. This presentation will focus in the second section of the precedent sentence, meaning the collision of EU founded values. The presentation will follow analysing the meaning of Article 7 TEU designed...

  20. Report of the 1st RCM on ''Nanoscale radiation engineering of advanced materials for potential biomedical applications''. Working document

    NONE

    2009-07-01

    There are critical needs for advanced materials in the area of biomaterial engineering, primarily in generating biomaterials of enhanced specific functionalities, improved biocompatibility, and minimal natural rejection but with enhanced interfacial adhesion. These can be achieved by introduction of proper functionalities at the nanoscale dimensions and radiation techniques are uniquely suited for such a task, due to their favorable characteristics, and in most cases, not possible by other methods of synthesis. Accordingly, many of the developing and developed Member States have an interest in creating advanced materials for various health-care applications using a wide array of radiation sources and their broad expertise. The proposal for this CRP was formulated based on the requests and information received from the member states and the conclusions and recommendations of the Consultant’s meeting on “Advanced Materials on the Nano-scale Synthesized by Radiation-Induced Processes”, held on 10-14 December 2007, in Vienna. Based on these conclusions, this CRP aims to support MS to develop methodologies for the use of radiation in the synthesis, modification, and characterization of nanomaterials - nanogels, nanoparticles, nanovehicles, nanoporous membranes, and surfaces with enhanced biocompatibility for potential biomedical applications, such as cell-sheet engineering and artificial tissue construction; diagnostics and imaging; and drug delivery. Additionally, this CRP facilitates networking between radiation technologists and biomedical scientists for the development of such applications. The CRP generated a huge interest, but due to funding constrains, many good proposals had to be rejected. The first RCM of the CRP was convened in Vienna on 30 March - 03 April 2009. It was attended by 14 representatives and two observers. The participants presented and discussed the status of the field, the needs for further research, and various application possibilities