WorldWideScience

Sample records for discrete scan statistics

  1. Scan Statistics

    CERN Document Server

    Glaz, Joseph

    2009-01-01

    Suitable for graduate students and researchers in applied probability and statistics, as well as for scientists in biology, computer science, pharmaceutical science and medicine, this title brings together a collection of chapters illustrating the depth and diversity of theory, methods and applications in the area of scan statistics.

  2. Development of scanning micromirror with discrete steering angles

    International Nuclear Information System (INIS)

    Wang, Z F; Noell, W; Zickar, M; Rooij, N F de; Lim, S P

    2006-01-01

    This paper describes the development of a new MEMS-based optical mirror, which can perform optical switching (or scanning) function with discrete reflection angles in an outof- plane configuration. The device is fabricated through the Deep Reactive Ion Etching (DRIE) process on silicon-on-insulator (SOI) wafer, followed by wafer dicing and assembly with two metalised glass dies. The MEMS mirror can be tilted under electrostatic force between the opposite electrodes embedded on SOI and glass structures. The most outstanding feature of this MEMS mirror is the discrete and therefore, reliable tilting angles, which generated by its unique mechanical structural design and electrostatic-driven mechanism. In this paper, the concept of the new scanning mirror is presented, followed by the introduction of device design, mechanical simulation, microfabrication process, assembly solution, and some testing results. The potential applications of this new MEMS mirror include optical scanning, optical sensing (or detection), and optical switching

  3. Discrete ellipsoidal statistical BGK model and Burnett equations

    Science.gov (United States)

    Zhang, Yu-Dong; Xu, Ai-Guo; Zhang, Guang-Cai; Chen, Zhi-Hua; Wang, Pei

    2018-06-01

    A new discrete Boltzmann model, the discrete ellipsoidal statistical Bhatnagar-Gross-Krook (ESBGK) model, is proposed to simulate nonequilibrium compressible flows. Compared with the original discrete BGK model, the discrete ES-BGK has a flexible Prandtl number. For the discrete ES-BGK model in the Burnett level, two kinds of discrete velocity model are introduced and the relations between nonequilibrium quantities and the viscous stress and heat flux in the Burnett level are established. The model is verified via four benchmark tests. In addition, a new idea is introduced to recover the actual distribution function through the macroscopic quantities and their space derivatives. The recovery scheme works not only for discrete Boltzmann simulation but also for hydrodynamic ones, for example, those based on the Navier-Stokes or the Burnett equations.

  4. A nonparametric spatial scan statistic for continuous data.

    Science.gov (United States)

    Jung, Inkyung; Cho, Ho Jin

    2015-10-20

    Spatial scan statistics are widely used for spatial cluster detection, and several parametric models exist. For continuous data, a normal-based scan statistic can be used. However, the performance of the model has not been fully evaluated for non-normal data. We propose a nonparametric spatial scan statistic based on the Wilcoxon rank-sum test statistic and compared the performance of the method with parametric models via a simulation study under various scenarios. The nonparametric method outperforms the normal-based scan statistic in terms of power and accuracy in almost all cases under consideration in the simulation study. The proposed nonparametric spatial scan statistic is therefore an excellent alternative to the normal model for continuous data and is especially useful for data following skewed or heavy-tailed distributions.

  5. A study on the use of Gumbel approximation with the Bernoulli spatial scan statistic.

    Science.gov (United States)

    Read, S; Bath, P A; Willett, P; Maheswaran, R

    2013-08-30

    The Bernoulli version of the spatial scan statistic is a well established method of detecting localised spatial clusters in binary labelled point data, a typical application being the epidemiological case-control study. A recent study suggests the inferential accuracy of several versions of the spatial scan statistic (principally the Poisson version) can be improved, at little computational cost, by using the Gumbel distribution, a method now available in SaTScan(TM) (www.satscan.org). We study in detail the effect of this technique when applied to the Bernoulli version and demonstrate that it is highly effective, albeit with some increase in false alarm rates at certain significance thresholds. We explain how this increase is due to the discrete nature of the Bernoulli spatial scan statistic and demonstrate that it can affect even small p-values. Despite this, we argue that the Gumbel method is actually preferable for very small p-values. Furthermore, we extend previous research by running benchmark trials on 12 000 synthetic datasets, thus demonstrating that the overall detection capability of the Bernoulli version (i.e. ratio of power to false alarm rate) is not noticeably affected by the use of the Gumbel method. We also provide an example application of the Gumbel method using data on hospital admissions for chronic obstructive pulmonary disease. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Spatial scan statistics using elliptic windows

    DEFF Research Database (Denmark)

    Christiansen, Lasse Engbo; Andersen, Jens Strodl; Wegener, Henrik Caspar

    The spatial scan statistic is widely used to search for clusters in epidemiologic data. This paper shows that the usually applied elimination of secondary clusters as implemented in SatScan is sensitive to smooth changes in the shape of the clusters. We present an algorithm for generation of set...

  7. Spatial scan statistics using elliptic windows

    DEFF Research Database (Denmark)

    Christiansen, Lasse Engbo; Andersen, Jens Strodl; Wegener, Henrik Caspar

    2006-01-01

    The spatial scan statistic is widely used to search for clusters. This article shows that the usually applied elimination of secondary clusters as implemented in SatScan is sensitive to smooth changes in the shape of the clusters. We present an algorithm for generation of a set of confocal elliptic...

  8. Data-driven inference for the spatial scan statistic.

    Science.gov (United States)

    Almeida, Alexandre C L; Duarte, Anderson R; Duczmal, Luiz H; Oliveira, Fernando L P; Takahashi, Ricardo H C

    2011-08-02

    Kulldorff's spatial scan statistic for aggregated area maps searches for clusters of cases without specifying their size (number of areas) or geographic location in advance. Their statistical significance is tested while adjusting for the multiple testing inherent in such a procedure. However, as is shown in this work, this adjustment is not done in an even manner for all possible cluster sizes. A modification is proposed to the usual inference test of the spatial scan statistic, incorporating additional information about the size of the most likely cluster found. A new interpretation of the results of the spatial scan statistic is done, posing a modified inference question: what is the probability that the null hypothesis is rejected for the original observed cases map with a most likely cluster of size k, taking into account only those most likely clusters of size k found under null hypothesis for comparison? This question is especially important when the p-value computed by the usual inference process is near the alpha significance level, regarding the correctness of the decision based in this inference. A practical procedure is provided to make more accurate inferences about the most likely cluster found by the spatial scan statistic.

  9. Data-driven inference for the spatial scan statistic

    Directory of Open Access Journals (Sweden)

    Duczmal Luiz H

    2011-08-01

    Full Text Available Abstract Background Kulldorff's spatial scan statistic for aggregated area maps searches for clusters of cases without specifying their size (number of areas or geographic location in advance. Their statistical significance is tested while adjusting for the multiple testing inherent in such a procedure. However, as is shown in this work, this adjustment is not done in an even manner for all possible cluster sizes. Results A modification is proposed to the usual inference test of the spatial scan statistic, incorporating additional information about the size of the most likely cluster found. A new interpretation of the results of the spatial scan statistic is done, posing a modified inference question: what is the probability that the null hypothesis is rejected for the original observed cases map with a most likely cluster of size k, taking into account only those most likely clusters of size k found under null hypothesis for comparison? This question is especially important when the p-value computed by the usual inference process is near the alpha significance level, regarding the correctness of the decision based in this inference. Conclusions A practical procedure is provided to make more accurate inferences about the most likely cluster found by the spatial scan statistic.

  10. Comparative study of lesions created by high-intensity focused ultrasound using sequential discrete and continuous scanning strategies.

    Science.gov (United States)

    Fan, Tingbo; Liu, Zhenbo; Zhang, Dong; Tang, Mengxing

    2013-03-01

    Lesion formation and temperature distribution induced by high-intensity focused ultrasound (HIFU) were investigated both numerically and experimentally via two energy-delivering strategies, i.e., sequential discrete and continuous scanning modes. Simulations were presented based on the combination of Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and bioheat equation. Measurements were performed on tissue-mimicking phantoms sonicated by a 1.12-MHz single-element focused transducer working at an acoustic power of 75 W. Both the simulated and experimental results show that, in the sequential discrete mode, obvious saw-tooth-like contours could be observed for the peak temperature distribution and the lesion boundaries, with the increasing interval space between two adjacent exposure points. In the continuous scanning mode, more uniform peak temperature distributions and lesion boundaries would be produced, and the peak temperature values would decrease significantly with the increasing scanning speed. In addition, compared to the sequential discrete mode, the continuous scanning mode could achieve higher treatment efficiency (lesion area generated per second) with a lower peak temperature. The present studies suggest that the peak temperature and tissue lesion resulting from the HIFU exposure could be controlled by adjusting the transducer scanning speed, which is important for improving the HIFU treatment efficiency.

  11. Huffman and linear scanning methods with statistical language models.

    Science.gov (United States)

    Roark, Brian; Fried-Oken, Melanie; Gibbons, Chris

    2015-03-01

    Current scanning access methods for text generation in AAC devices are limited to relatively few options, most notably row/column variations within a matrix. We present Huffman scanning, a new method for applying statistical language models to binary-switch, static-grid typing AAC interfaces, and compare it to other scanning options under a variety of conditions. We present results for 16 adults without disabilities and one 36-year-old man with locked-in syndrome who presents with complex communication needs and uses AAC scanning devices for writing. Huffman scanning with a statistical language model yielded significant typing speedups for the 16 participants without disabilities versus any of the other methods tested, including two row/column scanning methods. A similar pattern of results was found with the individual with locked-in syndrome. Interestingly, faster typing speeds were obtained with Huffman scanning using a more leisurely scan rate than relatively fast individually calibrated scan rates. Overall, the results reported here demonstrate great promise for the usability of Huffman scanning as a faster alternative to row/column scanning.

  12. A flexible spatial scan statistic with a restricted likelihood ratio for detecting disease clusters.

    Science.gov (United States)

    Tango, Toshiro; Takahashi, Kunihiko

    2012-12-30

    Spatial scan statistics are widely used tools for detection of disease clusters. Especially, the circular spatial scan statistic proposed by Kulldorff (1997) has been utilized in a wide variety of epidemiological studies and disease surveillance. However, as it cannot detect noncircular, irregularly shaped clusters, many authors have proposed different spatial scan statistics, including the elliptic version of Kulldorff's scan statistic. The flexible spatial scan statistic proposed by Tango and Takahashi (2005) has also been used for detecting irregularly shaped clusters. However, this method sets a feasible limitation of a maximum of 30 nearest neighbors for searching candidate clusters because of heavy computational load. In this paper, we show a flexible spatial scan statistic implemented with a restricted likelihood ratio proposed by Tango (2008) to (1) eliminate the limitation of 30 nearest neighbors and (2) to have surprisingly much less computational time than the original flexible spatial scan statistic. As a side effect, it is shown to be able to detect clusters with any shape reasonably well as the relative risk of the cluster becomes large via Monte Carlo simulation. We illustrate the proposed spatial scan statistic with data on mortality from cerebrovascular disease in the Tokyo Metropolitan area, Japan. Copyright © 2012 John Wiley & Sons, Ltd.

  13. A log-Weibull spatial scan statistic for time to event data.

    Science.gov (United States)

    Usman, Iram; Rosychuk, Rhonda J

    2018-06-13

    Spatial scan statistics have been used for the identification of geographic clusters of elevated numbers of cases of a condition such as disease outbreaks. These statistics accompanied by the appropriate distribution can also identify geographic areas with either longer or shorter time to events. Other authors have proposed the spatial scan statistics based on the exponential and Weibull distributions. We propose the log-Weibull as an alternative distribution for the spatial scan statistic for time to events data and compare and contrast the log-Weibull and Weibull distributions through simulation studies. The effect of type I differential censoring and power have been investigated through simulated data. Methods are also illustrated on time to specialist visit data for discharged patients presenting to emergency departments for atrial fibrillation and flutter in Alberta during 2010-2011. We found northern regions of Alberta had longer times to specialist visit than other areas. We proposed the spatial scan statistic for the log-Weibull distribution as a new approach for detecting spatial clusters for time to event data. The simulation studies suggest that the test performs well for log-Weibull data.

  14. A spatial scan statistic for nonisotropic two-level risk cluster.

    Science.gov (United States)

    Li, Xiao-Zhou; Wang, Jin-Feng; Yang, Wei-Zhong; Li, Zhong-Jie; Lai, Sheng-Jie

    2012-01-30

    Spatial scan statistic methods are commonly used for geographical disease surveillance and cluster detection. The standard spatial scan statistic does not model any variability in the underlying risks of subregions belonging to a detected cluster. For a multilevel risk cluster, the isotonic spatial scan statistic could model a centralized high-risk kernel in the cluster. Because variations in disease risks are anisotropic owing to different social, economical, or transport factors, the real high-risk kernel will not necessarily take the central place in a whole cluster area. We propose a spatial scan statistic for a nonisotropic two-level risk cluster, which could be used to detect a whole cluster and a noncentralized high-risk kernel within the cluster simultaneously. The performance of the three methods was evaluated through an intensive simulation study. Our proposed nonisotropic two-level method showed better power and geographical precision with two-level risk cluster scenarios, especially for a noncentralized high-risk kernel. Our proposed method is illustrated using the hand-foot-mouth disease data in Pingdu City, Shandong, China in May 2009, compared with two other methods. In this practical study, the nonisotropic two-level method is the only way to precisely detect a high-risk area in a detected whole cluster. Copyright © 2011 John Wiley & Sons, Ltd.

  15. Statistical inference for discrete-time samples from affine stochastic delay differential equations

    DEFF Research Database (Denmark)

    Küchler, Uwe; Sørensen, Michael

    2013-01-01

    Statistical inference for discrete time observations of an affine stochastic delay differential equation is considered. The main focus is on maximum pseudo-likelihood estimators, which are easy to calculate in practice. A more general class of prediction-based estimating functions is investigated...

  16. IDENTIFIKASI PROFIL DASAR LAUT MENGGUNAKAN INSTRUMEN SIDE SCAN SONAR DENGAN METODE BEAM PATTERN DISCRETE-EQUI-SPACED UNSHADED LINE ARRAY

    Directory of Open Access Journals (Sweden)

    Muhammad Zainuddin Lubis

    2017-05-01

    Full Text Available Laut Punggur merupakan laut yang terletak di Batam, Kepulauan Riau yang mempunyai beragam habitat objek,dan bentuk struktur bawah laut yang memiliki dinamika laut yang sangat tinggi. Side scan sonar (SSS merupakan instrumen pengembangan sistem sonar yang mampu menunjukkan dalam gambar dua dimensional permukaan dasar laut dengan kondisi kontur, topografi, dan target secara bersamaan. Metode Beam Pattern Discrete-Equi-Spaced Unshaded Line Array digunakan untuk menghitung beam pattern dua dimensi yang tergantung pada sudut dari gelombang suara yang masuk dari sumbu array yang diterima tergantung pada sudut di mana sinar suara pada array. Penelitian ini dilakukan pada Desember 2016 di laut Punggur,Batam, Kepulauan Riau-Indonesia, dengan koordinat 104 ° 08,7102 E dan 1° 03,2448 N sampai 1 ° 03.3977 N dan 104 ° 08,8133 E, menggunakan instrumen Side Scan Sonar C-Max CM2 Tow fish dengan frekuensi 325 kHz. Hasil yang diperoleh dari perekaman terdapat 7 target, dan Beam pattern dari metode Beam Discrete-Equi-Spaced Unshaded Line Array target 4 memiliki nilai tertinggi pada directivity Pattern yaitu 21.08 dB. Hasil model beam pattern ini memiliki nilai pusat pada incidence angle (o terhadap Directivity pattern (dB tidak berada di nilai 0 ataupun pada pusat beam pattern yang dihasilkan pada target 6 dengan nilai incident angle -1.5 o dan 1.5o mengalami penurunan hingga -40 dB. Karakteristik sedimen dasar perairan di laut punggur ditemukan lebih banyak pasir. Hasil metode Beam Discrete-Equi-Spaced Unshaded Line Array ditemukan bangkai kapal tenggelam.Kata Kunci: Side Scan Sonar, Beam Pattern Discrete-Equi-Spaced Unshaded Line Array, Incidence angle, Directivity pattern IDENTIFICATION OF SEABED PROFILE USING SIDE SCAN SONAR INSTRUMENT WITH PATTERN DISCRETE-EQUI-SPACED UNSHADED LINE ARRAY METHODRiau Islands is an island that has a variety of habitat objects, and forms of submarine structures that have a very high ocean dynamics, Punggur Sea is the sea

  17. Small nodule detectability evaluation using a generalized scan-statistic model

    International Nuclear Information System (INIS)

    Popescu, Lucretiu M; Lewitt, Robert M

    2006-01-01

    In this paper is investigated the use of the scan statistic for evaluating the detectability of small nodules in medical images. The scan-statistic method is often used in applications in which random fields must be searched for abnormal local features. Several results of the detection with localization theory are reviewed and a generalization is presented using the noise nodule distribution obtained by scanning arbitrary areas. One benefit of the noise nodule model is that it enables determination of the scan-statistic distribution by using only a few image samples in a way suitable both for simulation and experimental setups. Also, based on the noise nodule model, the case of multiple targets per image is addressed and an image abnormality test using the likelihood ratio and an alternative test using multiple decision thresholds are derived. The results obtained reveal that in the case of low contrast nodules or multiple nodules the usual test strategy based on a single decision threshold underperforms compared with the alternative tests. That is a consequence of the fact that not only the contrast or the size, but also the number of suspicious nodules is a clue indicating the image abnormality. In the case of the likelihood ratio test, the multiple clues are unified in a single decision variable. Other tests that process multiple clues differently do not necessarily produce a unique ROC curve, as shown in examples using a test involving two decision thresholds. We present examples with two-dimensional time-of-flight (TOF) and non-TOF PET image sets analysed using the scan statistic for different search areas, as well as the fixed position observer

  18. Preferences for a third-trimester ultrasound scan in a low-risk obstetric population: a discrete choice experiment.

    Science.gov (United States)

    Lynn, Fiona A; Crealey, Grainne E; Alderdice, Fiona A; McElnay, James C

    2015-10-01

    Establish maternal preferences for a third-trimester ultrasound scan in a healthy, low-risk pregnant population. Cross-sectional study incorporating a discrete choice experiment. A large, urban maternity hospital in Northern Ireland. One hundred and forty-six women in their second trimester of pregnancy. A discrete choice experiment was designed to elicit preferences for four attributes of a third-trimester ultrasound scan: health-care professional conducting the scan, detection rate for abnormal foetal growth, provision of non-medical information, cost. Additional data collected included age, marital status, socio-economic status, obstetric history, pregnancy-specific stress levels, perceived health and whether pregnancy was planned. Analysis was undertaken using a mixed logit model with interaction effects. Women's preferences for, and trade-offs between, the attributes of a hypothetical scan and indirect willingness-to-pay estimates. Women had significant positive preference for higher rate of detection, lower cost and provision of non-medical information, with no significant value placed on scan operator. Interaction effects revealed subgroups that valued the scan most: women experiencing their first pregnancy, women reporting higher levels of stress, an adverse obstetric history and older women. Women were able to trade on aspects of care and place relative importance on clinical, non-clinical outcomes and processes of service delivery, thus highlighting the potential of using health utilities in the development of services from a clinical, economic and social perspective. Specifically, maternal preferences exhibited provide valuable information for designing a randomized trial of effectiveness and insight for clinical and policy decision makers to inform woman-centred care. © 2013 Blackwell Publishing Ltd.

  19. A critical look at prospective surveillance using a scan statistic.

    Science.gov (United States)

    Correa, Thais R; Assunção, Renato M; Costa, Marcelo A

    2015-03-30

    The scan statistic is a very popular surveillance technique for purely spatial, purely temporal, and spatial-temporal disease data. It was extended to the prospective surveillance case, and it has been applied quite extensively in this situation. When the usual signal rules, as those implemented in SaTScan(TM) (Boston, MA, USA) software, are used, we show that the scan statistic method is not appropriate for the prospective case. The reason is that it does not adjust properly for the sequential and repeated tests carried out during the surveillance. We demonstrate that the nominal significance level α is not meaningful and there is no relationship between α and the recurrence interval or the average run length (ARL). In some cases, the ARL may be equal to ∞, which makes the method ineffective. This lack of control of the type-I error probability and of the ARL leads us to strongly oppose the use of the scan statistic with the usual signal rules in the prospective context. Copyright © 2014 John Wiley & Sons, Ltd.

  20. A Scan Statistic for Continuous Data Based on the Normal Probability Model

    OpenAIRE

    Konty, Kevin; Kulldorff, Martin; Huang, Lan

    2009-01-01

    Abstract Temporal, spatial and space-time scan statistics are commonly used to detect and evaluate the statistical significance of temporal and/or geographical disease clusters, without any prior assumptions on the location, time period or size of those clusters. Scan statistics are mostly used for count data, such as disease incidence or mortality. Sometimes there is an interest in looking for clusters with respect to a continuous variable, such as lead levels in children or low birth weight...

  1. Local multiplicity adjustment for the spatial scan statistic using the Gumbel distribution.

    Science.gov (United States)

    Gangnon, Ronald E

    2012-03-01

    The spatial scan statistic is an important and widely used tool for cluster detection. It is based on the simultaneous evaluation of the statistical significance of the maximum likelihood ratio test statistic over a large collection of potential clusters. In most cluster detection problems, there is variation in the extent of local multiplicity across the study region. For example, using a fixed maximum geographic radius for clusters, urban areas typically have many overlapping potential clusters, whereas rural areas have relatively few. The spatial scan statistic does not account for local multiplicity variation. We describe a previously proposed local multiplicity adjustment based on a nested Bonferroni correction and propose a novel adjustment based on a Gumbel distribution approximation to the distribution of a local scan statistic. We compare the performance of all three statistics in terms of power and a novel unbiased cluster detection criterion. These methods are then applied to the well-known New York leukemia dataset and a Wisconsin breast cancer incidence dataset. © 2011, The International Biometric Society.

  2. A scan statistic for continuous data based on the normal probability model

    Directory of Open Access Journals (Sweden)

    Huang Lan

    2009-10-01

    Full Text Available Abstract Temporal, spatial and space-time scan statistics are commonly used to detect and evaluate the statistical significance of temporal and/or geographical disease clusters, without any prior assumptions on the location, time period or size of those clusters. Scan statistics are mostly used for count data, such as disease incidence or mortality. Sometimes there is an interest in looking for clusters with respect to a continuous variable, such as lead levels in children or low birth weight. For such continuous data, we present a scan statistic where the likelihood is calculated using the the normal probability model. It may also be used for other distributions, while still maintaining the correct alpha level. In an application of the new method, we look for geographical clusters of low birth weight in New York City.

  3. Drug safety data mining with a tree-based scan statistic.

    Science.gov (United States)

    Kulldorff, Martin; Dashevsky, Inna; Avery, Taliser R; Chan, Arnold K; Davis, Robert L; Graham, David; Platt, Richard; Andrade, Susan E; Boudreau, Denise; Gunter, Margaret J; Herrinton, Lisa J; Pawloski, Pamala A; Raebel, Marsha A; Roblin, Douglas; Brown, Jeffrey S

    2013-05-01

    In post-marketing drug safety surveillance, data mining can potentially detect rare but serious adverse events. Assessing an entire collection of drug-event pairs is traditionally performed on a predefined level of granularity. It is unknown a priori whether a drug causes a very specific or a set of related adverse events, such as mitral valve disorders, all valve disorders, or different types of heart disease. This methodological paper evaluates the tree-based scan statistic data mining method to enhance drug safety surveillance. We use a three-million-member electronic health records database from the HMO Research Network. Using the tree-based scan statistic, we assess the safety of selected antifungal and diabetes drugs, simultaneously evaluating overlapping diagnosis groups at different granularity levels, adjusting for multiple testing. Expected and observed adverse event counts were adjusted for age, sex, and health plan, producing a log likelihood ratio test statistic. Out of 732 evaluated disease groupings, 24 were statistically significant, divided among 10 non-overlapping disease categories. Five of the 10 signals are known adverse effects, four are likely due to confounding by indication, while one may warrant further investigation. The tree-based scan statistic can be successfully applied as a data mining tool in drug safety surveillance using observational data. The total number of statistical signals was modest and does not imply a causal relationship. Rather, data mining results should be used to generate candidate drug-event pairs for rigorous epidemiological studies to evaluate the individual and comparative safety profiles of drugs. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Statistical image reconstruction methods for simultaneous emission/transmission PET scans

    International Nuclear Information System (INIS)

    Erdogan, H.; Fessler, J.A.

    1996-01-01

    Transmission scans are necessary for estimating the attenuation correction factors (ACFs) to yield quantitatively accurate PET emission images. To reduce the total scan time, post-injection transmission scans have been proposed in which one can simultaneously acquire emission and transmission data using rod sources and sinogram windowing. However, since the post-injection transmission scans are corrupted by emission coincidences, accurate correction for attenuation becomes more challenging. Conventional methods (emission subtraction) for ACF computation from post-injection scans are suboptimal and require relatively long scan times. We introduce statistical methods based on penalized-likelihood objectives to compute ACFs and then use them to reconstruct lower noise PET emission images from simultaneous transmission/emission scans. Simulations show the efficacy of the proposed methods. These methods improve image quality and SNR of the estimates as compared to conventional methods

  5. A spatial scan statistic for survival data based on Weibull distribution.

    Science.gov (United States)

    Bhatt, Vijaya; Tiwari, Neeraj

    2014-05-20

    The spatial scan statistic has been developed as a geographical cluster detection analysis tool for different types of data sets such as Bernoulli, Poisson, ordinal, normal and exponential. We propose a scan statistic for survival data based on Weibull distribution. It may also be used for other survival distributions, such as exponential, gamma, and log normal. The proposed method is applied on the survival data of tuberculosis patients for the years 2004-2005 in Nainital district of Uttarakhand, India. Simulation studies reveal that the proposed method performs well for different survival distribution functions. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Use of a spatial scan statistic to identify clusters of births occurring outside Ghanaian health facilities for targeted intervention.

    Science.gov (United States)

    Bosomprah, Samuel; Dotse-Gborgbortsi, Winfred; Aboagye, Patrick; Matthews, Zoe

    2016-11-01

    To identify and evaluate clusters of births that occurred outside health facilities in Ghana for targeted intervention. A retrospective study was conducted using a convenience sample of live births registered in Ghanaian health facilities from January 1 to December 31, 2014. Data were extracted from the district health information system. A spatial scan statistic was used to investigate clusters of home births through a discrete Poisson probability model. Scanning with a circular spatial window was conducted only for clusters with high rates of such deliveries. The district was used as the geographic unit of analysis. The likelihood P value was estimated using Monte Carlo simulations. Ten statistically significant clusters with a high rate of home birth were identified. The relative risks ranged from 1.43 ("least likely" cluster; P=0.001) to 1.95 ("most likely" cluster; P=0.001). The relative risks of the top five "most likely" clusters ranged from 1.68 to 1.95; these clusters were located in Ashanti, Brong Ahafo, and the Western, Eastern, and Greater regions of Accra. Health facility records, geospatial techniques, and geographic information systems provided locally relevant information to assist policy makers in delivering targeted interventions to small geographic areas. Copyright © 2016 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  7. The Role of Discrete Global Grid Systems in the Global Statistical Geospatial Framework

    Science.gov (United States)

    Purss, M. B. J.; Peterson, P.; Minchin, S. A.; Bermudez, L. E.

    2016-12-01

    The United Nations Committee of Experts on Global Geospatial Information Management (UN-GGIM) has proposed the development of a Global Statistical Geospatial Framework (GSGF) as a mechanism for the establishment of common analytical systems that enable the integration of statistical and geospatial information. Conventional coordinate reference systems address the globe with a continuous field of points suitable for repeatable navigation and analytical geometry. While this continuous field is represented on a computer in a digitized and discrete fashion by tuples of fixed-precision floating point values, it is a non-trivial exercise to relate point observations spatially referenced in this way to areal coverages on the surface of the Earth. The GSGF states the need to move to gridded data delivery and the importance of using common geographies and geocoding. The challenges associated with meeting these goals are not new and there has been a significant effort within the geospatial community to develop nested gridding standards to tackle these issues over many years. These efforts have recently culminated in the development of a Discrete Global Grid Systems (DGGS) standard which has been developed under the auspices of Open Geospatial Consortium (OGC). DGGS provide a fixed areal based geospatial reference frame for the persistent location of measured Earth observations, feature interpretations, and modelled predictions. DGGS address the entire planet by partitioning it into a discrete hierarchical tessellation of progressively finer resolution cells, which are referenced by a unique index that facilitates rapid computation, query and analysis. The geometry and location of the cell is the principle aspect of a DGGS. Data integration, decomposition, and aggregation is optimised in the DGGS hierarchical structure and can be exploited for efficient multi-source data processing, storage, discovery, transmission, visualization, computation, analysis, and modelling. During

  8. Selection of the Maximum Spatial Cluster Size of the Spatial Scan Statistic by Using the Maximum Clustering Set-Proportion Statistic.

    Science.gov (United States)

    Ma, Yue; Yin, Fei; Zhang, Tao; Zhou, Xiaohua Andrew; Li, Xiaosong

    2016-01-01

    Spatial scan statistics are widely used in various fields. The performance of these statistics is influenced by parameters, such as maximum spatial cluster size, and can be improved by parameter selection using performance measures. Current performance measures are based on the presence of clusters and are thus inapplicable to data sets without known clusters. In this work, we propose a novel overall performance measure called maximum clustering set-proportion (MCS-P), which is based on the likelihood of the union of detected clusters and the applied dataset. MCS-P was compared with existing performance measures in a simulation study to select the maximum spatial cluster size. Results of other performance measures, such as sensitivity and misclassification, suggest that the spatial scan statistic achieves accurate results in most scenarios with the maximum spatial cluster sizes selected using MCS-P. Given that previously known clusters are not required in the proposed strategy, selection of the optimal maximum cluster size with MCS-P can improve the performance of the scan statistic in applications without identified clusters.

  9. Data precision of X-ray fluorescence (XRF) scanning of discrete samples with the ITRAX XRF core-scanner exemplified on loess-paleosol samples

    Science.gov (United States)

    Profe, Jörn; Ohlendorf, Christian

    2017-04-01

    XRF-scanning is the state-of-the-art technique for geochemical analyses in marine and lacustrine sedimentology for more than a decade. However, little attention has been paid to data precision and technical limitations so far. Using homogenized, dried and powdered samples (certified geochemical reference standards and samples from a lithologically-contrasting loess-paleosol sequence) minimizes many adverse effects that influence the XRF-signal when analyzing wet sediment cores. This allows the investigation of data precision under ideal conditions and documents a new application of the XRF core-scanner technology at the same time. Reliable interpretations of XRF results require data precision evaluation of single elements as a function of X-ray tube, measurement time, sample compaction and quality of peak fitting. Ten-fold measurement of each sample constitutes data precision. Data precision of XRF measurements theoretically obeys Poisson statistics. Fe and Ca exhibit largest deviations from Poisson statistics. The same elements show the least mean relative standard deviations in the range from 0.5% to 1%. This represents the technical limit of data precision achievable by the installed detector. Measurement times ≥ 30 s reveal mean relative standard deviations below 4% for most elements. The quality of peak fitting is only relevant for elements with overlapping fluorescence lines such as Ba, Ti and Mn or for elements with low concentrations such as Y, for example. Differences in sample compaction are marginal and do not change mean relative standard deviation considerably. Data precision is in the range reported for geochemical reference standards measured by conventional techniques. Therefore, XRF scanning of discrete samples provide a cost- and time-efficient alternative to conventional multi-element analyses. As best trade-off between economical operation and data quality, we recommend a measurement time of 30 s resulting in a total scan time of 30 minutes

  10. CROSAT: A digital computer program for statistical-spectral analysis of two discrete time series

    International Nuclear Information System (INIS)

    Antonopoulos Domis, M.

    1978-03-01

    The program CROSAT computes directly from two discrete time series auto- and cross-spectra, transfer and coherence functions, using a Fast Fourier Transform subroutine. Statistical analysis of the time series is optional. While of general use the program is constructed to be immediately compatible with the ICL 4-70 and H316 computers at AEE Winfrith, and perhaps with minor modifications, with any other hardware system. (author)

  11. Online platform for applying space–time scan statistics for prospectively detecting emerging hot spots of dengue fever

    Directory of Open Access Journals (Sweden)

    Chien-Chou Chen

    2016-11-01

    Full Text Available Abstract Background Cases of dengue fever have increased in areas of Southeast Asia in recent years. Taiwan hit a record-high 42,856 cases in 2015, with the majority in southern Tainan and Kaohsiung Cities. Leveraging spatial statistics and geo-visualization techniques, we aim to design an online analytical tool for local public health workers to prospectively identify ongoing hot spots of dengue fever weekly at the village level. Methods A total of 57,516 confirmed cases of dengue fever in 2014 and 2015 were obtained from the Taiwan Centers for Disease Control (TCDC. Incorporating demographic information as covariates with cumulative cases (365 days in a discrete Poisson model, we iteratively applied space–time scan statistics by SaTScan software to detect the currently active cluster of dengue fever (reported as relative risk in each village of Tainan and Kaohsiung every week. A village with a relative risk >1 and p value <0.05 was identified as a dengue-epidemic area. Assuming an ongoing transmission might continuously spread for two consecutive weeks, we estimated the sensitivity and specificity for detecting outbreaks by comparing the scan-based classification (dengue-epidemic vs. dengue-free village with the true cumulative case numbers from the TCDC’s surveillance statistics. Results Among the 1648 villages in Tainan and Kaohsiung, the overall sensitivity for detecting outbreaks increases as case numbers grow in a total of 92 weekly simulations. The specificity for detecting outbreaks behaves inversely, compared to the sensitivity. On average, the mean sensitivity and specificity of 2-week hot spot detection were 0.615 and 0.891 respectively (p value <0.001 for the covariate adjustment model, as the maximum spatial and temporal windows were specified as 50% of the total population at risk and 28 days. Dengue-epidemic villages were visualized and explored in an interactive map. Conclusions We designed an online analytical tool for

  12. Computational and analytical comparison of flux discretizations for the semiconductor device equations beyond Boltzmann statistics

    International Nuclear Information System (INIS)

    Farrell, Patricio; Koprucki, Thomas; Fuhrmann, Jürgen

    2017-01-01

    We compare three thermodynamically consistent numerical fluxes known in the literature, appearing in a Voronoï finite volume discretization of the van Roosbroeck system with general charge carrier statistics. Our discussion includes an extension of the Scharfetter–Gummel scheme to non-Boltzmann (e.g. Fermi–Dirac) statistics. It is based on the analytical solution of a two-point boundary value problem obtained by projecting the continuous differential equation onto the interval between neighboring collocation points. Hence, it serves as a reference flux. The exact solution of the boundary value problem can be approximated by computationally cheaper fluxes which modify certain physical quantities. One alternative scheme averages the nonlinear diffusion (caused by the non-Boltzmann nature of the problem), another one modifies the effective density of states. To study the differences between these three schemes, we analyze the Taylor expansions, derive an error estimate, visualize the flux error and show how the schemes perform for a carefully designed p-i-n benchmark simulation. We present strong evidence that the flux discretization based on averaging the nonlinear diffusion has an edge over the scheme based on modifying the effective density of states.

  13. Computational and analytical comparison of flux discretizations for the semiconductor device equations beyond Boltzmann statistics

    Science.gov (United States)

    Farrell, Patricio; Koprucki, Thomas; Fuhrmann, Jürgen

    2017-10-01

    We compare three thermodynamically consistent numerical fluxes known in the literature, appearing in a Voronoï finite volume discretization of the van Roosbroeck system with general charge carrier statistics. Our discussion includes an extension of the Scharfetter-Gummel scheme to non-Boltzmann (e.g. Fermi-Dirac) statistics. It is based on the analytical solution of a two-point boundary value problem obtained by projecting the continuous differential equation onto the interval between neighboring collocation points. Hence, it serves as a reference flux. The exact solution of the boundary value problem can be approximated by computationally cheaper fluxes which modify certain physical quantities. One alternative scheme averages the nonlinear diffusion (caused by the non-Boltzmann nature of the problem), another one modifies the effective density of states. To study the differences between these three schemes, we analyze the Taylor expansions, derive an error estimate, visualize the flux error and show how the schemes perform for a carefully designed p-i-n benchmark simulation. We present strong evidence that the flux discretization based on averaging the nonlinear diffusion has an edge over the scheme based on modifying the effective density of states.

  14. A power comparison of generalized additive models and the spatial scan statistic in a case-control setting

    Directory of Open Access Journals (Sweden)

    Ozonoff Al

    2010-07-01

    Full Text Available Abstract Background A common, important problem in spatial epidemiology is measuring and identifying variation in disease risk across a study region. In application of statistical methods, the problem has two parts. First, spatial variation in risk must be detected across the study region and, second, areas of increased or decreased risk must be correctly identified. The location of such areas may give clues to environmental sources of exposure and disease etiology. One statistical method applicable in spatial epidemiologic settings is a generalized additive model (GAM which can be applied with a bivariate LOESS smoother to account for geographic location as a possible predictor of disease status. A natural hypothesis when applying this method is whether residential location of subjects is associated with the outcome, i.e. is the smoothing term necessary? Permutation tests are a reasonable hypothesis testing method and provide adequate power under a simple alternative hypothesis. These tests have yet to be compared to other spatial statistics. Results This research uses simulated point data generated under three alternative hypotheses to evaluate the properties of the permutation methods and compare them to the popular spatial scan statistic in a case-control setting. Case 1 was a single circular cluster centered in a circular study region. The spatial scan statistic had the highest power though the GAM method estimates did not fall far behind. Case 2 was a single point source located at the center of a circular cluster and Case 3 was a line source at the center of the horizontal axis of a square study region. Each had linearly decreasing logodds with distance from the point. The GAM methods outperformed the scan statistic in Cases 2 and 3. Comparing sensitivity, measured as the proportion of the exposure source correctly identified as high or low risk, the GAM methods outperformed the scan statistic in all three Cases. Conclusions The GAM

  15. A power comparison of generalized additive models and the spatial scan statistic in a case-control setting.

    Science.gov (United States)

    Young, Robin L; Weinberg, Janice; Vieira, Verónica; Ozonoff, Al; Webster, Thomas F

    2010-07-19

    A common, important problem in spatial epidemiology is measuring and identifying variation in disease risk across a study region. In application of statistical methods, the problem has two parts. First, spatial variation in risk must be detected across the study region and, second, areas of increased or decreased risk must be correctly identified. The location of such areas may give clues to environmental sources of exposure and disease etiology. One statistical method applicable in spatial epidemiologic settings is a generalized additive model (GAM) which can be applied with a bivariate LOESS smoother to account for geographic location as a possible predictor of disease status. A natural hypothesis when applying this method is whether residential location of subjects is associated with the outcome, i.e. is the smoothing term necessary? Permutation tests are a reasonable hypothesis testing method and provide adequate power under a simple alternative hypothesis. These tests have yet to be compared to other spatial statistics. This research uses simulated point data generated under three alternative hypotheses to evaluate the properties of the permutation methods and compare them to the popular spatial scan statistic in a case-control setting. Case 1 was a single circular cluster centered in a circular study region. The spatial scan statistic had the highest power though the GAM method estimates did not fall far behind. Case 2 was a single point source located at the center of a circular cluster and Case 3 was a line source at the center of the horizontal axis of a square study region. Each had linearly decreasing logodds with distance from the point. The GAM methods outperformed the scan statistic in Cases 2 and 3. Comparing sensitivity, measured as the proportion of the exposure source correctly identified as high or low risk, the GAM methods outperformed the scan statistic in all three Cases. The GAM permutation testing methods provide a regression

  16. The Role of Preference Axioms and Respondent Behaviour in Statistical Models for Discrete Choice

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Tjur, Tue; Østerdal, Lars Peter

    Discrete choice experiments are widely used in relation to healthcare. A stream of recent literature therefore aims at testing the validityof the underlying preference axioms of completeness and transitivity,and detecting other preference phenomena such as unstability, learn-ing/tiredness effects......, ordering effects, dominance, etc. Unfortunatelythere seems to be some confusion about what is actually being tested,and the link between the statistical tests performed and the relevantunderlying model of respondent behaviour has not been explored inthis literature. The present paper tries to clarify...

  17. A scan statistic to extract causal gene clusters from case-control genome-wide rare CNV data

    Directory of Open Access Journals (Sweden)

    Scherer Stephen W

    2011-05-01

    Full Text Available Abstract Background Several statistical tests have been developed for analyzing genome-wide association data by incorporating gene pathway information in terms of gene sets. Using these methods, hundreds of gene sets are typically tested, and the tested gene sets often overlap. This overlapping greatly increases the probability of generating false positives, and the results obtained are difficult to interpret, particularly when many gene sets show statistical significance. Results We propose a flexible statistical framework to circumvent these problems. Inspired by spatial scan statistics for detecting clustering of disease occurrence in the field of epidemiology, we developed a scan statistic to extract disease-associated gene clusters from a whole gene pathway. Extracting one or a few significant gene clusters from a global pathway limits the overall false positive probability, which results in increased statistical power, and facilitates the interpretation of test results. In the present study, we applied our method to genome-wide association data for rare copy-number variations, which have been strongly implicated in common diseases. Application of our method to a simulated dataset demonstrated the high accuracy of this method in detecting disease-associated gene clusters in a whole gene pathway. Conclusions The scan statistic approach proposed here shows a high level of accuracy in detecting gene clusters in a whole gene pathway. This study has provided a sound statistical framework for analyzing genome-wide rare CNV data by incorporating topological information on the gene pathway.

  18. Brazilian Amazonia Deforestation Detection Using Spatio-Temporal Scan Statistics

    Science.gov (United States)

    Vieira, C. A. O.; Santos, N. T.; Carneiro, A. P. S.; Balieiro, A. A. S.

    2012-07-01

    The spatio-temporal models, developed for analyses of diseases, can also be used for others fields of study, including concerns about forest and deforestation. The aim of this paper is to quantitatively check priority areas in order to combat deforestation on the Amazon forest, using the space-time scan statistic. The study area location is at the south of the Amazonas State and cover around 297.183 kilometre squares, including the municipality of Boca do Acre, Labrea, Canutama, Humaita, Manicore, Novo Aripuana e Apui County on the north region of Brazil. This area has showed a significant change for land cover, which has increased the number of deforestation's alerts. Therefore this situation becomes a concern and gets more investigation, trying to stop factors that increase the number of cases in the area. The methodology includes the location and year that deforestation's alert occurred. These deforestation's alerts are mapped by the DETER (Detection System of Deforestation in Real Time in Amazonia), which is carry out by the Brazilian Space Agency (INPE). The software SatScanTM v7.0 was used in order to define space-time permutation scan statistic for detection of deforestation cases. The outcome of this experiment shows an efficient model to detect space-time clusters of deforestation's alerts. The model was efficient to detect the location, the size, the order and characteristics about activities at the end of the experiments. Two clusters were considered actives and kept actives up to the end of the study. These clusters are located in Canutama and Lábrea County. This quantitative spatial modelling of deforestation warnings allowed: firstly, identifying actives clustering of deforestation, in which the environment government official are able to concentrate their actions; secondly, identifying historic clustering of deforestation, in which the environment government official are able to monitoring in order to avoid them to became actives again; and finally

  19. BRAZILIAN AMAZONIA DEFORESTATION DETECTION USING SPATIO-TEMPORAL SCAN STATISTICS

    Directory of Open Access Journals (Sweden)

    C. A. O. Vieira

    2012-07-01

    Full Text Available The spatio-temporal models, developed for analyses of diseases, can also be used for others fields of study, including concerns about forest and deforestation. The aim of this paper is to quantitatively check priority areas in order to combat deforestation on the Amazon forest, using the space-time scan statistic. The study area location is at the south of the Amazonas State and cover around 297.183 kilometre squares, including the municipality of Boca do Acre, Labrea, Canutama, Humaita, Manicore, Novo Aripuana e Apui County on the north region of Brazil. This area has showed a significant change for land cover, which has increased the number of deforestation's alerts. Therefore this situation becomes a concern and gets more investigation, trying to stop factors that increase the number of cases in the area. The methodology includes the location and year that deforestation’s alert occurred. These deforestation's alerts are mapped by the DETER (Detection System of Deforestation in Real Time in Amazonia, which is carry out by the Brazilian Space Agency (INPE. The software SatScanTM v7.0 was used in order to define space-time permutation scan statistic for detection of deforestation cases. The outcome of this experiment shows an efficient model to detect space-time clusters of deforestation’s alerts. The model was efficient to detect the location, the size, the order and characteristics about activities at the end of the experiments. Two clusters were considered actives and kept actives up to the end of the study. These clusters are located in Canutama and Lábrea County. This quantitative spatial modelling of deforestation warnings allowed: firstly, identifying actives clustering of deforestation, in which the environment government official are able to concentrate their actions; secondly, identifying historic clustering of deforestation, in which the environment government official are able to monitoring in order to avoid them to became

  20. Local box-counting dimensions of discrete quantum eigenvalue spectra: Analytical connection to quantum spectral statistics

    Science.gov (United States)

    Sakhr, Jamal; Nieminen, John M.

    2018-03-01

    Two decades ago, Wang and Ong, [Phys. Rev. A 55, 1522 (1997)], 10.1103/PhysRevA.55.1522 hypothesized that the local box-counting dimension of a discrete quantum spectrum should depend exclusively on the nearest-neighbor spacing distribution (NNSD) of the spectrum. In this Rapid Communication, we validate their hypothesis by deriving an explicit formula for the local box-counting dimension of a countably-infinite discrete quantum spectrum. This formula expresses the local box-counting dimension of a spectrum in terms of single and double integrals of the NNSD of the spectrum. As applications, we derive an analytical formula for Poisson spectra and closed-form approximations to the local box-counting dimension for spectra having Gaussian orthogonal ensemble (GOE), Gaussian unitary ensemble (GUE), and Gaussian symplectic ensemble (GSE) spacing statistics. In the Poisson and GOE cases, we compare our theoretical formulas with the published numerical data of Wang and Ong and observe excellent agreement between their data and our theory. We also study numerically the local box-counting dimensions of the Riemann zeta function zeros and the alternate levels of GOE spectra, which are often used as numerical models of spectra possessing GUE and GSE spacing statistics, respectively. In each case, the corresponding theoretical formula is found to accurately describe the numerically computed local box-counting dimension.

  1. Distinguishability notion based on Wootters statistical distance: Application to discrete maps

    Science.gov (United States)

    Gomez, Ignacio S.; Portesi, M.; Lamberti, P. W.

    2017-08-01

    We study the distinguishability notion given by Wootters for states represented by probability density functions. This presents the particularity that it can also be used for defining a statistical distance in chaotic unidimensional maps. Based on that definition, we provide a metric d ¯ for an arbitrary discrete map. Moreover, from d ¯ , we associate a metric space with each invariant density of a given map, which results to be the set of all distinguished points when the number of iterations of the map tends to infinity. Also, we give a characterization of the wandering set of a map in terms of the metric d ¯ , which allows us to identify the dissipative regions in the phase space. We illustrate the results in the case of the logistic and the circle maps numerically and analytically, and we obtain d ¯ and the wandering set for some characteristic values of their parameters. Finally, an extension of the metric space associated for arbitrary probability distributions (not necessarily invariant densities) is given along with some consequences. The statistical properties of distributions given by histograms are characterized in terms of the cardinal of the associated metric space. For two conjugate variables, the uncertainty principle is expressed in terms of the diameters of the associated metric space with those variables.

  2. Optimizing the maximum reported cluster size in the spatial scan statistic for ordinal data.

    Science.gov (United States)

    Kim, Sehwi; Jung, Inkyung

    2017-01-01

    The spatial scan statistic is an important tool for spatial cluster detection. There have been numerous studies on scanning window shapes. However, little research has been done on the maximum scanning window size or maximum reported cluster size. Recently, Han et al. proposed to use the Gini coefficient to optimize the maximum reported cluster size. However, the method has been developed and evaluated only for the Poisson model. We adopt the Gini coefficient to be applicable to the spatial scan statistic for ordinal data to determine the optimal maximum reported cluster size. Through a simulation study and application to a real data example, we evaluate the performance of the proposed approach. With some sophisticated modification, the Gini coefficient can be effectively employed for the ordinal model. The Gini coefficient most often picked the optimal maximum reported cluster sizes that were the same as or smaller than the true cluster sizes with very high accuracy. It seems that we can obtain a more refined collection of clusters by using the Gini coefficient. The Gini coefficient developed specifically for the ordinal model can be useful for optimizing the maximum reported cluster size for ordinal data and helpful for properly and informatively discovering cluster patterns.

  3. Identifying clusters of active transportation using spatial scan statistics.

    Science.gov (United States)

    Huang, Lan; Stinchcomb, David G; Pickle, Linda W; Dill, Jennifer; Berrigan, David

    2009-08-01

    There is an intense interest in the possibility that neighborhood characteristics influence active transportation such as walking or biking. The purpose of this paper is to illustrate how a spatial cluster identification method can evaluate the geographic variation of active transportation and identify neighborhoods with unusually high/low levels of active transportation. Self-reported walking/biking prevalence, demographic characteristics, street connectivity variables, and neighborhood socioeconomic data were collected from respondents to the 2001 California Health Interview Survey (CHIS; N=10,688) in Los Angeles County (LAC) and San Diego County (SDC). Spatial scan statistics were used to identify clusters of high or low prevalence (with and without age-adjustment) and the quantity of time spent walking and biking. The data, a subset from the 2001 CHIS, were analyzed in 2007-2008. Geographic clusters of significantly high or low prevalence of walking and biking were detected in LAC and SDC. Structural variables such as street connectivity and shorter block lengths are consistently associated with higher levels of active transportation, but associations between active transportation and socioeconomic variables at the individual and neighborhood levels are mixed. Only one cluster with less time spent walking and biking among walkers/bikers was detected in LAC, and this was of borderline significance. Age-adjustment affects the clustering pattern of walking/biking prevalence in LAC, but not in SDC. The use of spatial scan statistics to identify significant clustering of health behaviors such as active transportation adds to the more traditional regression analysis that examines associations between behavior and environmental factors by identifying specific geographic areas with unusual levels of the behavior independent of predefined administrative units.

  4. Characterizing a discrete-to-discrete X-ray transform for iterative image reconstruction with limited angular-range scanning in CT

    DEFF Research Database (Denmark)

    Sidky, Emil; Jørgensen, Jakob Heide; Pan, Xiaochuan

    2012-01-01

    Iterative image reconstruction in computed tomography often employs a discrete-to-discrete (DD) linear data model, and many of the aspects of the image recovery relate directly to the properties of this linear model. While much is known about the properties of the continuous X-ray, the correspond...

  5. Discrete Morse functions for graph configuration spaces

    International Nuclear Information System (INIS)

    Sawicki, A

    2012-01-01

    We present an alternative application of discrete Morse theory for two-particle graph configuration spaces. In contrast to previous constructions, which are based on discrete Morse vector fields, our approach is through Morse functions, which have a nice physical interpretation as two-body potentials constructed from one-body potentials. We also give a brief introduction to discrete Morse theory. Our motivation comes from the problem of quantum statistics for particles on networks, for which generalized versions of anyon statistics can appear. (paper)

  6. Discrete Calculus by Analogy

    CERN Document Server

    Izadi, F A; Bagirov, G

    2009-01-01

    With its origins stretching back several centuries, discrete calculus is now an increasingly central methodology for many problems related to discrete systems and algorithms. The topics covered here usually arise in many branches of science and technology, especially in discrete mathematics, numerical analysis, statistics and probability theory as well as in electrical engineering, but our viewpoint here is that these topics belong to a much more general realm of mathematics; namely calculus and differential equations because of the remarkable analogy of the subject to this branch of mathemati

  7. A spatial scan statistic for compound Poisson data.

    Science.gov (United States)

    Rosychuk, Rhonda J; Chang, Hsing-Ming

    2013-12-20

    The topic of spatial cluster detection gained attention in statistics during the late 1980s and early 1990s. Effort has been devoted to the development of methods for detecting spatial clustering of cases and events in the biological sciences, astronomy and epidemiology. More recently, research has examined detecting clusters of correlated count data associated with health conditions of individuals. Such a method allows researchers to examine spatial relationships of disease-related events rather than just incident or prevalent cases. We introduce a spatial scan test that identifies clusters of events in a study region. Because an individual case may have multiple (repeated) events, we base the test on a compound Poisson model. We illustrate our method for cluster detection on emergency department visits, where individuals may make multiple disease-related visits. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Application of an efficient Bayesian discretization method to biomedical data

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Vanathi

    2011-07-01

    Full Text Available Abstract Background Several data mining methods require data that are discrete, and other methods often perform better with discrete data. We introduce an efficient Bayesian discretization (EBD method for optimal discretization of variables that runs efficiently on high-dimensional biomedical datasets. The EBD method consists of two components, namely, a Bayesian score to evaluate discretizations and a dynamic programming search procedure to efficiently search the space of possible discretizations. We compared the performance of EBD to Fayyad and Irani's (FI discretization method, which is commonly used for discretization. Results On 24 biomedical datasets obtained from high-throughput transcriptomic and proteomic studies, the classification performances of the C4.5 classifier and the naïve Bayes classifier were statistically significantly better when the predictor variables were discretized using EBD over FI. EBD was statistically significantly more stable to the variability of the datasets than FI. However, EBD was less robust, though not statistically significantly so, than FI and produced slightly more complex discretizations than FI. Conclusions On a range of biomedical datasets, a Bayesian discretization method (EBD yielded better classification performance and stability but was less robust than the widely used FI discretization method. The EBD discretization method is easy to implement, permits the incorporation of prior knowledge and belief, and is sufficiently fast for application to high-dimensional data.

  9. Modeling discrete time-to-event data

    CERN Document Server

    Tutz, Gerhard

    2016-01-01

    This book focuses on statistical methods for the analysis of discrete failure times. Failure time analysis is one of the most important fields in statistical research, with applications affecting a wide range of disciplines, in particular, demography, econometrics, epidemiology and clinical research. Although there are a large variety of statistical methods for failure time analysis, many techniques are designed for failure times that are measured on a continuous scale. In empirical studies, however, failure times are often discrete, either because they have been measured in intervals (e.g., quarterly or yearly) or because they have been rounded or grouped. The book covers well-established methods like life-table analysis and discrete hazard regression models, but also introduces state-of-the art techniques for model evaluation, nonparametric estimation and variable selection. Throughout, the methods are illustrated by real life applications, and relationships to survival analysis in continuous time are expla...

  10. Mouse manipulation through single-switch scanning.

    Science.gov (United States)

    Blackstien-Adler, Susie; Shein, Fraser; Quintal, Janet; Birch, Shae; Weiss, Patrice L Tamar

    2004-01-01

    Given the current extensive reliance on the graphical user interface, independent access to computer software requires that users be able to manipulate a pointing device of some type (e.g., mouse, trackball) or be able to emulate a mouse by some other means (e.g., scanning). The purpose of the present study was to identify one or more optimal single-switch scanning mouse emulation strategies. Four alternative scanning strategies (continuous Cartesian, discrete Cartesian, rotational, and hybrid quadrant/continuous Cartesian) were selected for testing based on current market availability as well as on theoretical considerations of their potential speed and accuracy. Each strategy was evaluated using a repeated measures study design by means of a test program that permitted mouse emulation via any one of four scanning strategies in a motivating environment; response speed and accuracy could be automatically recorded and considered in view of the motor, cognitive, and perceptual demands of each scanning strategy. Ten individuals whose disabilities required them to operate a computer via single-switch scanning participated in the study. Results indicated that Cartesian scanning was the preferred and most effective scanning strategy. There were no significant differences between results from the Continuous Cartesian and Discrete Cartesian scanning strategies. Rotational scanning was quite slow with respect to the other strategies, although it was equally accurate. Hybrid Quadrant scanning improved access time but at the cost of fewer correct selections. These results demonstrated the importance of testing and comparing alternate single-switch scanning strategies.

  11. The use of the temporal scan statistic to detect methicillin-resistant Staphylococcus aureus clusters in a community hospital.

    Science.gov (United States)

    Faires, Meredith C; Pearl, David L; Ciccotelli, William A; Berke, Olaf; Reid-Smith, Richard J; Weese, J Scott

    2014-07-08

    In healthcare facilities, conventional surveillance techniques using rule-based guidelines may result in under- or over-reporting of methicillin-resistant Staphylococcus aureus (MRSA) outbreaks, as these guidelines are generally unvalidated. The objectives of this study were to investigate the utility of the temporal scan statistic for detecting MRSA clusters, validate clusters using molecular techniques and hospital records, and determine significant differences in the rate of MRSA cases using regression models. Patients admitted to a community hospital between August 2006 and February 2011, and identified with MRSA>48 hours following hospital admission, were included in this study. Between March 2010 and February 2011, MRSA specimens were obtained for spa typing. MRSA clusters were investigated using a retrospective temporal scan statistic. Tests were conducted on a monthly scale and significant clusters were compared to MRSA outbreaks identified by hospital personnel. Associations between the rate of MRSA cases and the variables year, month, and season were investigated using a negative binomial regression model. During the study period, 735 MRSA cases were identified and 167 MRSA isolates were spa typed. Nine different spa types were identified with spa type 2/t002 (88.6%) the most prevalent. The temporal scan statistic identified significant MRSA clusters at the hospital (n=2), service (n=16), and ward (n=10) levels (P ≤ 0.05). Seven clusters were concordant with nine MRSA outbreaks identified by hospital staff. For the remaining clusters, seven events may have been equivalent to true outbreaks and six clusters demonstrated possible transmission events. The regression analysis indicated years 2009-2011, compared to 2006, and months March and April, compared to January, were associated with an increase in the rate of MRSA cases (P ≤ 0.05). The application of the temporal scan statistic identified several MRSA clusters that were not detected by hospital

  12. Discrete modeling considerations in multiphase fluid dynamics

    International Nuclear Information System (INIS)

    Ransom, V.H.; Ramshaw, J.D.

    1988-01-01

    The modeling of multiphase flows play a fundamental role in light water reactor safety. The main ingredients in our discrete modeling Weltanschauung are the following considerations: (1) Any physical model must be cast into discrete form for a digital computer. (2) The usual approach of formulating models in differential form and then discretizing them is potentially hazardous. It may be preferable to formulate the model in discrete terms from the outset. (3) Computer time and storage constraints limit the resolution that can be employed in practical calculations. These limits effectively define the physical phenomena, length scales, and time scales which cannot be directly represented in the calculation and therefore must be modeled. This information should be injected into the model formulation process at an early stage. (4) Practical resolution limits are generally so coarse that traditional convergence and truncation-error analyses become irrelevant. (5) A discrete model constitutes a reduced description of a physical system, from which fine-scale details are eliminated. This elimination creates a statistical closure problem. Methods from statistical physics may therefore be useful in the formulation of discrete models. In the present paper we elaborate on these themes and illustrate them with simple examples. 48 refs

  13. Statistical learning from nonrecurrent experience with discrete input variables and recursive-error-minimization equations

    Science.gov (United States)

    Carter, Jeffrey R.; Simon, Wayne E.

    1990-08-01

    Neural networks are trained using Recursive Error Minimization (REM) equations to perform statistical classification. Using REM equations with continuous input variables reduces the required number of training experiences by factors of one to two orders of magnitude over standard back propagation. Replacing the continuous input variables with discrete binary representations reduces the number of connections by a factor proportional to the number of variables reducing the required number of experiences by another order of magnitude. Undesirable effects of using recurrent experience to train neural networks for statistical classification problems are demonstrated and nonrecurrent experience used to avoid these undesirable effects. 1. THE 1-41 PROBLEM The statistical classification problem which we address is is that of assigning points in ddimensional space to one of two classes. The first class has a covariance matrix of I (the identity matrix) the covariance matrix of the second class is 41. For this reason the problem is known as the 1-41 problem. Both classes have equal probability of occurrence and samples from both classes may appear anywhere throughout the ddimensional space. Most samples near the origin of the coordinate system will be from the first class while most samples away from the origin will be from the second class. Since the two classes completely overlap it is impossible to have a classifier with zero error. The minimum possible error is known as the Bayes error and

  14. Understanding advanced statistical methods

    CERN Document Server

    Westfall, Peter

    2013-01-01

    Introduction: Probability, Statistics, and ScienceReality, Nature, Science, and ModelsStatistical Processes: Nature, Design and Measurement, and DataModelsDeterministic ModelsVariabilityParametersPurely Probabilistic Statistical ModelsStatistical Models with Both Deterministic and Probabilistic ComponentsStatistical InferenceGood and Bad ModelsUses of Probability ModelsRandom Variables and Their Probability DistributionsIntroductionTypes of Random Variables: Nominal, Ordinal, and ContinuousDiscrete Probability Distribution FunctionsContinuous Probability Distribution FunctionsSome Calculus-Derivatives and Least SquaresMore Calculus-Integrals and Cumulative Distribution FunctionsProbability Calculation and SimulationIntroductionAnalytic Calculations, Discrete and Continuous CasesSimulation-Based ApproximationGenerating Random NumbersIdentifying DistributionsIntroductionIdentifying Distributions from Theory AloneUsing Data: Estimating Distributions via the HistogramQuantiles: Theoretical and Data-Based Estimate...

  15. A voting-based statistical cylinder detection framework applied to fallen tree mapping in terrestrial laser scanning point clouds

    Science.gov (United States)

    Polewski, Przemyslaw; Yao, Wei; Heurich, Marco; Krzystek, Peter; Stilla, Uwe

    2017-07-01

    This paper introduces a statistical framework for detecting cylindrical shapes in dense point clouds. We target the application of mapping fallen trees in datasets obtained through terrestrial laser scanning. This is a challenging task due to the presence of ground vegetation, standing trees, DTM artifacts, as well as the fragmentation of dead trees into non-collinear segments. Our method shares the concept of voting in parameter space with the generalized Hough transform, however two of its significant drawbacks are improved upon. First, the need to generate samples on the shape's surface is eliminated. Instead, pairs of nearby input points lying on the surface cast a vote for the cylinder's parameters based on the intrinsic geometric properties of cylindrical shapes. Second, no discretization of the parameter space is required: the voting is carried out in continuous space by means of constructing a kernel density estimator and obtaining its local maxima, using automatic, data-driven kernel bandwidth selection. Furthermore, we show how the detected cylindrical primitives can be efficiently merged to obtain object-level (entire tree) semantic information using graph-cut segmentation and a tailored dynamic algorithm for eliminating cylinder redundancy. Experiments were performed on 3 plots from the Bavarian Forest National Park, with ground truth obtained through visual inspection of the point clouds. It was found that relative to sample consensus (SAC) cylinder fitting, the proposed voting framework can improve the detection completeness by up to 10 percentage points while maintaining the correctness rate.

  16. Precipitate statistics in an Al-Mg-Si-Cu alloy from scanning precession electron diffraction data

    Science.gov (United States)

    Sunde, J. K.; Paulsen, Ø.; Wenner, S.; Holmestad, R.

    2017-09-01

    The key microstructural feature providing strength to age-hardenable Al alloys is nanoscale precipitates. Alloy development requires a reliable statistical assessment of these precipitates, in order to link the microstructure with material properties. Here, it is demonstrated that scanning precession electron diffraction combined with computational analysis enable the semi-automated extraction of precipitate statistics in an Al-Mg-Si-Cu alloy. Among the main findings is the precipitate number density, which agrees well with a conventional method based on manual counting and measurements. By virtue of its data analysis objectivity, our methodology is therefore seen as an advantageous alternative to existing routines, offering reproducibility and efficiency in alloy statistics. Additional results include improved qualitative information on phase distributions. The developed procedure is generic and applicable to any material containing nanoscale precipitates.

  17. Preliminary assessment and diagnosis of congenital discrete subaortic stenosis by using electron beam CT

    International Nuclear Information System (INIS)

    Zhou Yuan; Dai Ruping; Cao Cheng; Jing Baolian

    2003-01-01

    Objective: To evaluate the clinical efficacy of EBCT in diagnosing the congenital discrete subaortic stenosis. Methods: Data of four patients with congenital discrete subaortic stenosis diagnosed by EBCT were retrospectively analyzed and further compared with that of surgery and histopathologic examination. Results: Contrast enhanced EBCT scanning clearly demonstrated both a direct non-opacified sign in subvalvular regions in all four patients' left ventricle and associated cardiovascular anomalies. Movie mode scanning showed the movement of aortic valve and 'discrete membrane', and revealed distinct topography of subaortic outflow tracts as well. Conclusion: EBCT is highly valuable in the diagnosis of congenital discrete subaortic stenosis and associated anomalies by clearly demonstrating the subaortic outflow tract topography and complicated cardiovascular malformations. EBCT could be a complementary examination to cardioangiography, and could replace the cineangiography in the follow-up after operation

  18. A scan statistic for binary outcome based on hypergeometric probability model, with an application to detecting spatial clusters of Japanese encephalitis.

    Science.gov (United States)

    Zhao, Xing; Zhou, Xiao-Hua; Feng, Zijian; Guo, Pengfei; He, Hongyan; Zhang, Tao; Duan, Lei; Li, Xiaosong

    2013-01-01

    As a useful tool for geographical cluster detection of events, the spatial scan statistic is widely applied in many fields and plays an increasingly important role. The classic version of the spatial scan statistic for the binary outcome is developed by Kulldorff, based on the Bernoulli or the Poisson probability model. In this paper, we apply the Hypergeometric probability model to construct the likelihood function under the null hypothesis. Compared with existing methods, the likelihood function under the null hypothesis is an alternative and indirect method to identify the potential cluster, and the test statistic is the extreme value of the likelihood function. Similar with Kulldorff's methods, we adopt Monte Carlo test for the test of significance. Both methods are applied for detecting spatial clusters of Japanese encephalitis in Sichuan province, China, in 2009, and the detected clusters are identical. Through a simulation to independent benchmark data, it is indicated that the test statistic based on the Hypergeometric model outweighs Kulldorff's statistics for clusters of high population density or large size; otherwise Kulldorff's statistics are superior.

  19. Exact analysis of discrete data

    CERN Document Server

    Hirji, Karim F

    2005-01-01

    Researchers in fields ranging from biology and medicine to the social sciences, law, and economics regularly encounter variables that are discrete or categorical in nature. While there is no dearth of books on the analysis and interpretation of such data, these generally focus on large sample methods. When sample sizes are not large or the data are otherwise sparse, exact methods--methods not based on asymptotic theory--are more accurate and therefore preferable.This book introduces the statistical theory, analysis methods, and computation techniques for exact analysis of discrete data. After reviewing the relevant discrete distributions, the author develops the exact methods from the ground up in a conceptually integrated manner. The topics covered range from univariate discrete data analysis, a single and several 2 x 2 tables, a single and several 2 x K tables, incidence density and inverse sampling designs, unmatched and matched case -control studies, paired binary and trinomial response models, and Markov...

  20. Geographic prediction of tuberculosis clusters in Fukuoka, Japan, using the space-time scan statistic

    Energy Technology Data Exchange (ETDEWEB)

    Daisuke Onozuka; Akihito Hagihara [Fukuoka Institute of Health and Environmental Sciences, Fukuoka (Japan). Department of Information Science

    2007-07-01

    Tuberculosis (TB) has reemerged as a global public health epidemic in recent years. Although evaluating local disease clusters leads to effective prevention and control of TB, there are few, if any, spatiotemporal comparisons for epidemic diseases. TB cases among residents in Fukuoka Prefecture between 1999 and 2004 (n = 9,119) were geocoded at the census tract level (n = 109) based on residence at the time of diagnosis. The spatial and space-time scan statistics were then used to identify clusters of census tracts with elevated proportions of TB cases. In the purely spatial analyses, the most likely clusters were in the Chikuho coal mining area (in 1999, 2002, 2003, 2004), the Kita-Kyushu industrial area (in 2000), and the Fukuoka urban area (in 2001). In the space-time analysis, the most likely cluster was the Kita-Kyushu industrial area (in 2000). The north part of Fukuoka Prefecture was the most likely to have a cluster with a significantly high occurrence of TB. The spatial and space-time scan statistics are effective ways of describing circular disease clusters. Since, in reality, infectious diseases might form other cluster types, the effectiveness of the method may be limited under actual practice. The sophistication of the analytical methodology, however, is a topic for future study. 48 refs., 3 figs., 3 tabs.

  1. Geographic prediction of tuberculosis clusters in Fukuoka, Japan, using the space-time scan statistic

    Directory of Open Access Journals (Sweden)

    Onozuka Daisuke

    2007-04-01

    Full Text Available Abstract Background Tuberculosis (TB has reemerged as a global public health epidemic in recent years. Although evaluating local disease clusters leads to effective prevention and control of TB, there are few, if any, spatiotemporal comparisons for epidemic diseases. Methods TB cases among residents in Fukuoka Prefecture between 1999 and 2004 (n = 9,119 were geocoded at the census tract level (n = 109 based on residence at the time of diagnosis. The spatial and space-time scan statistics were then used to identify clusters of census tracts with elevated proportions of TB cases. Results In the purely spatial analyses, the most likely clusters were in the Chikuho coal mining area (in 1999, 2002, 2003, 2004, the Kita-Kyushu industrial area (in 2000, and the Fukuoka urban area (in 2001. In the space-time analysis, the most likely cluster was the Kita-Kyushu industrial area (in 2000. The north part of Fukuoka Prefecture was the most likely to have a cluster with a significantly high occurrence of TB. Conclusion The spatial and space-time scan statistics are effective ways of describing circular disease clusters. Since, in reality, infectious diseases might form other cluster types, the effectiveness of the method may be limited under actual practice. The sophistication of the analytical methodology, however, is a topic for future study.

  2. Introduction to Bayesian statistics

    CERN Document Server

    Bolstad, William M

    2017-01-01

    There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. Bayesian statistics has many important advantages that students should learn about if they are going into fields where statistics will be used. In this Third Edition, four newly-added chapters address topics that reflect the rapid advances in the field of Bayesian staistics. The author continues to provide a Bayesian treatment of introductory statistical topics, such as scientific data gathering, discrete random variables, robust Bayesian methods, and Bayesian approaches to inferenfe cfor discrete random variables, bionomial proprotion, Poisson, normal mean, and simple linear regression. In addition, newly-developing topics in the field are presented in four new chapters: Bayesian inference with unknown mean and variance; Bayesian inference for Multivariate Normal mean vector; Bayesian inference for Multiple Linear RegressionModel; and Computati...

  3. Detection of Clostridium difficile infection clusters, using the temporal scan statistic, in a community hospital in southern Ontario, Canada, 2006-2011.

    Science.gov (United States)

    Faires, Meredith C; Pearl, David L; Ciccotelli, William A; Berke, Olaf; Reid-Smith, Richard J; Weese, J Scott

    2014-05-12

    In hospitals, Clostridium difficile infection (CDI) surveillance relies on unvalidated guidelines or threshold criteria to identify outbreaks. This can result in false-positive and -negative cluster alarms. The application of statistical methods to identify and understand CDI clusters may be a useful alternative or complement to standard surveillance techniques. The objectives of this study were to investigate the utility of the temporal scan statistic for detecting CDI clusters and determine if there are significant differences in the rate of CDI cases by month, season, and year in a community hospital. Bacteriology reports of patients identified with a CDI from August 2006 to February 2011 were collected. For patients detected with CDI from March 2010 to February 2011, stool specimens were obtained. Clostridium difficile isolates were characterized by ribotyping and investigated for the presence of toxin genes by PCR. CDI clusters were investigated using a retrospective temporal scan test statistic. Statistically significant clusters were compared to known CDI outbreaks within the hospital. A negative binomial regression model was used to identify associations between year, season, month and the rate of CDI cases. Overall, 86 CDI cases were identified. Eighteen specimens were analyzed and nine ribotypes were classified with ribotype 027 (n = 6) the most prevalent. The temporal scan statistic identified significant CDI clusters at the hospital (n = 5), service (n = 6), and ward (n = 4) levels (P ≤ 0.05). Three clusters were concordant with the one C. difficile outbreak identified by hospital personnel. Two clusters were identified as potential outbreaks. The negative binomial model indicated years 2007-2010 (P ≤ 0.05) had decreased CDI rates compared to 2006 and spring had an increased CDI rate compared to the fall (P = 0.023). Application of the temporal scan statistic identified several clusters, including potential outbreaks not detected by hospital

  4. Discrete Sparse Coding.

    Science.gov (United States)

    Exarchakis, Georgios; Lücke, Jörg

    2017-11-01

    Sparse coding algorithms with continuous latent variables have been the subject of a large number of studies. However, discrete latent spaces for sparse coding have been largely ignored. In this work, we study sparse coding with latents described by discrete instead of continuous prior distributions. We consider the general case in which the latents (while being sparse) can take on any value of a finite set of possible values and in which we learn the prior probability of any value from data. This approach can be applied to any data generated by discrete causes, and it can be applied as an approximation of continuous causes. As the prior probabilities are learned, the approach then allows for estimating the prior shape without assuming specific functional forms. To efficiently train the parameters of our probabilistic generative model, we apply a truncated expectation-maximization approach (expectation truncation) that we modify to work with a general discrete prior. We evaluate the performance of the algorithm by applying it to a variety of tasks: (1) we use artificial data to verify that the algorithm can recover the generating parameters from a random initialization, (2) use image patches of natural images and discuss the role of the prior for the extraction of image components, (3) use extracellular recordings of neurons to present a novel method of analysis for spiking neurons that includes an intuitive discretization strategy, and (4) apply the algorithm on the task of encoding audio waveforms of human speech. The diverse set of numerical experiments presented in this letter suggests that discrete sparse coding algorithms can scale efficiently to work with realistic data sets and provide novel statistical quantities to describe the structure of the data.

  5. Testing Preference Axioms in Discrete Choice experiments

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Østerdal, Lars Peter; Tjur, Tue

    Recent studies have tested the preference axioms of completeness and transitivity, and have detected other preference phenomena such as unstability, learning- and tiredness effects, ordering effects and dominance, in stated preference discrete choice experiments. However, it has not been explicitly...... of the preference axioms and other preference phenomena in the context of stated preference discrete choice experiments, and examine whether or how these can be subject to meaningful (statistical) tests...

  6. Error analysis of terrestrial laser scanning data by means of spherical statistics and 3D graphs.

    Science.gov (United States)

    Cuartero, Aurora; Armesto, Julia; Rodríguez, Pablo G; Arias, Pedro

    2010-01-01

    This paper presents a complete analysis of the positional errors of terrestrial laser scanning (TLS) data based on spherical statistics and 3D graphs. Spherical statistics are preferred because of the 3D vectorial nature of the spatial error. Error vectors have three metric elements (one module and two angles) that were analyzed by spherical statistics. A study case has been presented and discussed in detail. Errors were calculating using 53 check points (CP) and CP coordinates were measured by a digitizer with submillimetre accuracy. The positional accuracy was analyzed by both the conventional method (modular errors analysis) and the proposed method (angular errors analysis) by 3D graphics and numerical spherical statistics. Two packages in R programming language were performed to obtain graphics automatically. The results indicated that the proposed method is advantageous as it offers a more complete analysis of the positional accuracy, such as angular error component, uniformity of the vector distribution, error isotropy, and error, in addition the modular error component by linear statistics.

  7. Parametric statistical inference for discretely observed diffusion processes

    DEFF Research Database (Denmark)

    Pedersen, Asger Roer

    Part 1: Theoretical results Part 2: Statistical applications of Gaussian diffusion processes in freshwater ecology......Part 1: Theoretical results Part 2: Statistical applications of Gaussian diffusion processes in freshwater ecology...

  8. Transverse scan-field imaging apparatus

    International Nuclear Information System (INIS)

    Lyons, F.T.

    1978-01-01

    A description is given of an array of opposed pairs of radiation detectors which could be used in tomography or scintiscanning. The opposed detectors scan in opposite tangential directions in a pre-programmed fashion. The associated control system receives the detector outputs into a buffer store and also provides an address for each element of information detected. The addresses are such that information from one buffer store is read into the RAM of a central processing unit in the opposite direction to that from the store associated with the opposite detector, thus effectively reversing the scan direction of one detector of each pair. Also described are the detectors themselves with focussed collimators, the scan drive mechanism, and the method of calculating radioactive emission intensity at discrete points throughout the scan-field. (author)

  9. Statistical inference based on divergence measures

    CERN Document Server

    Pardo, Leandro

    2005-01-01

    The idea of using functionals of Information Theory, such as entropies or divergences, in statistical inference is not new. However, in spite of the fact that divergence statistics have become a very good alternative to the classical likelihood ratio test and the Pearson-type statistic in discrete models, many statisticians remain unaware of this powerful approach.Statistical Inference Based on Divergence Measures explores classical problems of statistical inference, such as estimation and hypothesis testing, on the basis of measures of entropy and divergence. The first two chapters form an overview, from a statistical perspective, of the most important measures of entropy and divergence and study their properties. The author then examines the statistical analysis of discrete multivariate data with emphasis is on problems in contingency tables and loglinear models using phi-divergence test statistics as well as minimum phi-divergence estimators. The final chapter looks at testing in general populations, prese...

  10. Handbook of Spatial Statistics

    CERN Document Server

    Gelfand, Alan E

    2010-01-01

    Offers an introduction detailing the evolution of the field of spatial statistics. This title focuses on the three main branches of spatial statistics: continuous spatial variation (point referenced data); discrete spatial variation, including lattice and areal unit data; and, spatial point patterns.

  11. Discrete gradients in discrete classical mechanics

    International Nuclear Information System (INIS)

    Renna, L.

    1987-01-01

    A simple model of discrete classical mechanics is given where, starting from the continuous Hamilton equations, discrete equations of motion are established together with a proper discrete gradient definition. The conservation laws of the total discrete momentum, angular momentum, and energy are demonstrated

  12. Topology and statistics in zero dimensions

    International Nuclear Information System (INIS)

    Aneziris, Charilaos.

    1992-05-01

    It has been suggested that space-time may be intrinsically not continuous, but discrete. Here we review some topological notions of discrete manifolds, in particular ones made out of final number of points, and discuss the possibilties for statistics in such spaces. (author)

  13. Drug Adverse Event Detection in Health Plan Data Using the Gamma Poisson Shrinker and Comparison to the Tree-based Scan Statistic

    Directory of Open Access Journals (Sweden)

    David Smith

    2013-03-01

    Full Text Available Background: Drug adverse event (AE signal detection using the Gamma Poisson Shrinker (GPS is commonly applied in spontaneous reporting. AE signal detection using large observational health plan databases can expand medication safety surveillance. Methods: Using data from nine health plans, we conducted a pilot study to evaluate the implementation and findings of the GPS approach for two antifungal drugs, terbinafine and itraconazole, and two diabetes drugs, pioglitazone and rosiglitazone. We evaluated 1676 diagnosis codes grouped into 183 different clinical concepts and four levels of granularity. Several signaling thresholds were assessed. GPS results were compared to findings from a companion study using the identical analytic dataset but an alternative statistical method—the tree-based scan statistic (TreeScan. Results: We identified 71 statistical signals across two signaling thresholds and two methods, including closely-related signals of overlapping diagnosis definitions. Initial review found that most signals represented known adverse drug reactions or confounding. About 31% of signals met the highest signaling threshold. Conclusions: The GPS method was successfully applied to observational health plan data in a distributed data environment as a drug safety data mining method. There was substantial concordance between the GPS and TreeScan approaches. Key method implementation decisions relate to defining exposures and outcomes and informed choice of signaling thresholds.

  14. Statistical and Probabilistic Extensions to Ground Operations' Discrete Event Simulation Modeling

    Science.gov (United States)

    Trocine, Linda; Cummings, Nicholas H.; Bazzana, Ashley M.; Rychlik, Nathan; LeCroy, Kenneth L.; Cates, Grant R.

    2010-01-01

    NASA's human exploration initiatives will invest in technologies, public/private partnerships, and infrastructure, paving the way for the expansion of human civilization into the solar system and beyond. As it is has been for the past half century, the Kennedy Space Center will be the embarkation point for humankind's journey into the cosmos. Functioning as a next generation space launch complex, Kennedy's launch pads, integration facilities, processing areas, launch and recovery ranges will bustle with the activities of the world's space transportation providers. In developing this complex, KSC teams work through the potential operational scenarios: conducting trade studies, planning and budgeting for expensive and limited resources, and simulating alternative operational schemes. Numerous tools, among them discrete event simulation (DES), were matured during the Constellation Program to conduct such analyses with the purpose of optimizing the launch complex for maximum efficiency, safety, and flexibility while minimizing life cycle costs. Discrete event simulation is a computer-based modeling technique for complex and dynamic systems where the state of the system changes at discrete points in time and whose inputs may include random variables. DES is used to assess timelines and throughput, and to support operability studies and contingency analyses. It is applicable to any space launch campaign and informs decision-makers of the effects of varying numbers of expensive resources and the impact of off nominal scenarios on measures of performance. In order to develop representative DES models, methods were adopted, exploited, or created to extend traditional uses of DES. The Delphi method was adopted and utilized for task duration estimation. DES software was exploited for probabilistic event variation. A roll-up process was used, which was developed to reuse models and model elements in other less - detailed models. The DES team continues to innovate and expand

  15. Hotspot detection using space-time scan statistics on children under five years of age in Depok

    Science.gov (United States)

    Verdiana, Miranti; Widyaningsih, Yekti

    2017-03-01

    Some problems that affect the health level in Depok is the high malnutrition rates from year to year and the more spread infectious and non-communicable diseases in some areas. Children under five years old is a vulnerable part of population to get the malnutrition and diseases. Based on this reason, it is important to observe the location and time, where and when, malnutrition in Depok happened in high intensity. To obtain the location and time of the hotspots of malnutrition and diseases that attack children under five years old, space-time scan statistics method can be used. Space-time scan statistic is a hotspot detection method, where the area and time of information and time are taken into account simultaneously in detecting the hotspots. This method detects a hotspot with a cylindrical scanning window: the cylindrical pedestal describes the area, and the height of cylinder describe the time. Cylinders formed is a hotspot candidate that may occur, which require testing of hypotheses, whether a cylinder can be summed up as a hotspot. Hotspot detection in this study carried out by forming a combination of several variables. Some combination of variables provides hotspot detection results that tend to be the same, so as to form groups (clusters). In the case of infant health level in Depok city, Beji health care center region in 2011-2012 is a hotspot. According to the combination of the variables used in the detection of hotspots, Beji health care center is most frequently as a hotspot. Hopefully the local government can take the right policy to improve the health level of children under five in the city of Depok.

  16. Discrete mKdV and discrete sine-Gordon flows on discrete space curves

    International Nuclear Information System (INIS)

    Inoguchi, Jun-ichi; Kajiwara, Kenji; Matsuura, Nozomu; Ohta, Yasuhiro

    2014-01-01

    In this paper, we consider the discrete deformation of the discrete space curves with constant torsion described by the discrete mKdV or the discrete sine-Gordon equations, and show that it is formulated as the torsion-preserving equidistant deformation on the osculating plane which satisfies the isoperimetric condition. The curve is reconstructed from the deformation data by using the Sym–Tafel formula. The isoperimetric equidistant deformation of the space curves does not preserve the torsion in general. However, it is possible to construct the torsion-preserving deformation by tuning the deformation parameters. Further, it is also possible to make an arbitrary choice of the deformation described by the discrete mKdV equation or by the discrete sine-Gordon equation at each step. We finally show that the discrete deformation of discrete space curves yields the discrete K-surfaces. (paper)

  17. Discrete Curvatures and Discrete Minimal Surfaces

    KAUST Repository

    Sun, Xiang

    2012-06-01

    This thesis presents an overview of some approaches to compute Gaussian and mean curvature on discrete surfaces and discusses discrete minimal surfaces. The variety of applications of differential geometry in visualization and shape design leads to great interest in studying discrete surfaces. With the rich smooth surface theory in hand, one would hope that this elegant theory can still be applied to the discrete counter part. Such a generalization, however, is not always successful. While discrete surfaces have the advantage of being finite dimensional, thus easier to treat, their geometric properties such as curvatures are not well defined in the classical sense. Furthermore, the powerful calculus tool can hardly be applied. The methods in this thesis, including angular defect formula, cotangent formula, parallel meshes, relative geometry etc. are approaches based on offset meshes or generalized offset meshes. As an important application, we discuss discrete minimal surfaces and discrete Koenigs meshes.

  18. Discrete approach to complex planar geometries

    International Nuclear Information System (INIS)

    Cupini, E.; De Matteis, A.

    1974-01-01

    Planar regions in Monte Carlo transport problems have been represented by a finite set of points with a corresponding region index for each. The simulation of particle free-flight reduces then to the simple operations necessary for scanning appropriate grid points to determine whether a region other than the starting one is encountered. When the complexity of the geometry is restricted to only some regions of the assembly examined, a mixed discrete-continuous philosophy may be adopted. By this approach, the lattice of a thermal reactor has been treated, discretizing only the central regions of the cell containing the fuel rods. Excellent agreement with experimental results has been obtained in the computation of cell parameters in the energy range from fission to thermalization through the 238 U resonance region. (U.S.)

  19. Dengue hemorrhagic fever and typhoid fever association based on spatial standpoint using scan statistics in DKI Jakarta

    Science.gov (United States)

    Hervind, Widyaningsih, Y.

    2017-07-01

    Concurrent infection with multiple infectious agents may occur in one patient, it appears frequently in dengue hemorrhagic fever (DHF) and typhoid fever. This paper depicted association between DHF and typhoid based on spatial point of view. Since paucity of data regarding dengue and typhoid co-infection, data that be used are the number of patients of those diseases in every district (kecamatan) in Jakarta in 2014 and 2015 obtained from Jakarta surveillance website. Poisson spatial scan statistics is used to detect DHF and typhoid hotspots area district in Jakarta separately. After obtain the hotspot, Fisher's exact test is applied to validate association between those two diseases' hotspot. The result exhibit hotspots of DHF and typhoid are located around central Jakarta. The further analysis used Poisson space-time scan statistics to reveal the hotspot in term of spatial and time. DHF and typhoid fever more likely occurr from January until May in the area which is relatively similar with pure spatial result. Preventive action could be done especially in the hotspot areas and it is required further study to observe the causes based on characteristics of the hotspot area.

  20. Discrete traits of the sternum and ribs: a useful contribution to identification in forensic anthropology and medicine.

    Science.gov (United States)

    Verna, Emeline; Piercecchi-Marti, Marie-Dominique; Chaumoitre, Kathia; Bartoli, Christophe; Leonetti, Georges; Adalian, Pascal

    2013-05-01

    During forensic anthropological investigation, biological profile is determined by age, sex, ancestry, and stature. However, several individuals may share the same profile. Observation of discrete traits can yield useful information and contribute to identification. This research establishes the frequency of discrete traits of the sternum and ribs in a modern population in southern France, using 500 computer tomography (CT) scans of individuals aged 15-60 years. Only discrete traits with a frequency lower than 10% according to the literature were considered, a total of eight traits. All scans examined were three-dimensional (3D) volume renderings from DICOM images. In our population, the frequency of all the discrete traits was lower than 5%. None were associated with sex or age, with the exception of a single trait, the end of the xiphoid process. Our findings can usefully be applied for identification purposes in forensic anthropology and medicine. © 2013 American Academy of Forensic Sciences.

  1. Universality of correlations of levels with discrete statistics

    OpenAIRE

    Brezin, Edouard; Kazakov, Vladimir

    1999-01-01

    We study the statistics of a system of N random levels with integer values, in the presence of a logarithmic repulsive potential of Dyson type. This probleme arises in sums over representations (Young tableaux) of GL(N) in various matrix problems and in the study of statistics of partitions for the permutation group. The model is generalized to include an external source and its correlators are found in closed form for any N. We reproduce the density of levels in the large N and double scalin...

  2. Statistical inference

    CERN Document Server

    Rohatgi, Vijay K

    2003-01-01

    Unified treatment of probability and statistics examines and analyzes the relationship between the two fields, exploring inferential issues. Numerous problems, examples, and diagrams--some with solutions--plus clear-cut, highlighted summaries of results. Advanced undergraduate to graduate level. Contents: 1. Introduction. 2. Probability Model. 3. Probability Distributions. 4. Introduction to Statistical Inference. 5. More on Mathematical Expectation. 6. Some Discrete Models. 7. Some Continuous Models. 8. Functions of Random Variables and Random Vectors. 9. Large-Sample Theory. 10. General Meth

  3. A statistical pixel intensity model for segmentation of confocal laser scanning microscopy images.

    Science.gov (United States)

    Calapez, Alexandre; Rosa, Agostinho

    2010-09-01

    Confocal laser scanning microscopy (CLSM) has been widely used in the life sciences for the characterization of cell processes because it allows the recording of the distribution of fluorescence-tagged macromolecules on a section of the living cell. It is in fact the cornerstone of many molecular transport and interaction quantification techniques where the identification of regions of interest through image segmentation is usually a required step. In many situations, because of the complexity of the recorded cellular structures or because of the amounts of data involved, image segmentation either is too difficult or inefficient to be done by hand and automated segmentation procedures have to be considered. Given the nature of CLSM images, statistical segmentation methodologies appear as natural candidates. In this work we propose a model to be used for statistical unsupervised CLSM image segmentation. The model is derived from the CLSM image formation mechanics and its performance is compared to the existing alternatives. Results show that it provides a much better description of the data on classes characterized by their mean intensity, making it suitable not only for segmentation methodologies with known number of classes but also for use with schemes aiming at the estimation of the number of classes through the application of cluster selection criteria.

  4. A Semi-Discrete Landweber-Kaczmarz Method for Cone Beam Tomography and Laminography Exploiting Geometric Prior Information

    Science.gov (United States)

    Vogelgesang, Jonas; Schorr, Christian

    2016-12-01

    We present a semi-discrete Landweber-Kaczmarz method for solving linear ill-posed problems and its application to Cone Beam tomography and laminography. Using a basis function-type discretization in the image domain, we derive a semi-discrete model of the underlying scanning system. Based on this model, the proposed method provides an approximate solution of the reconstruction problem, i.e. reconstructing the density function of a given object from its projections, in suitable subspaces equipped with basis function-dependent weights. This approach intuitively allows the incorporation of additional information about the inspected object leading to a more accurate model of the X-rays through the object. Also, physical conditions of the scanning geometry, like flat detectors in computerized tomography as used in non-destructive testing applications as well as non-regular scanning curves e.g. appearing in computed laminography (CL) applications, are directly taken into account during the modeling process. Finally, numerical experiments of a typical CL application in three dimensions are provided to verify the proposed method. The introduction of geometric prior information leads to a significantly increased image quality and superior reconstructions compared to standard iterative methods.

  5. TU-FG-BRB-12: Real-Time Visualization of Discrete Spot Scanning Proton Therapy Beam for Quality Assurance

    International Nuclear Information System (INIS)

    Matsuzaki, Y; Jenkins, C; Yang, Y; Xing, L; Yoshimura, T; Fujii, Y; Umegaki, K

    2016-01-01

    Purpose: With the growing adoption of proton beam therapy there is an increasing need for effective and user-friendly tools for performing quality assurance (QA) measurements. The speed and versatility of spot-scanning proton beam (PB) therapy systems present unique challenges for traditional QA tools. To address these challenges a proof-of-concept system was developed to visualize, in real-time, the delivery of individual spots from a spot-scanning PB in order to perform QA measurements. Methods: The PB is directed toward a custom phantom with planar faces coated with a radioluminescent phosphor (Gd2O2s:Tb). As the proton beam passes through the phantom visible light is emitted from the coating and collected by a nearby CMOS camera. The images are processed to determine the locations at which the beam impinges on each face of the phantom. By so doing, the location of each beam can be determined relative to the phantom. The cameras are also used to capture images of the laser alignment system. The phantom contains x-ray fiducials so that it can be easily located with kV imagers. Using this data several quality assurance parameters can be evaluated. Results: The proof-of-concept system was able to visualize discrete PB spots with energies ranging from 70 MeV to 220 MeV. Images were obtained with integration times ranging from 20 to 0.019 milliseconds. If not limited by data transmission, this would correspond to a frame rate of 52,000 fps. Such frame rates enabled visualization of individual spots in real time. Spot locations were found to be highly correlated (R"2=0.99) with the nozzle-mounted spot position monitor indicating excellent spot positioning accuracy Conclusion: The system was shown to be capable of imaging individual spots for all clinical beam energies. Future development will focus on extending the image processing software to provide automated results for a variety of QA tests.

  6. TU-FG-BRB-12: Real-Time Visualization of Discrete Spot Scanning Proton Therapy Beam for Quality Assurance

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, Y [Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido (Japan); Jenkins, C; Yang, Y; Xing, L [Stanford University, Stanford, California (United States); Yoshimura, T; Fujii, Y [Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido (Japan); Umegaki, K [Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido (Japan)

    2016-06-15

    Purpose: With the growing adoption of proton beam therapy there is an increasing need for effective and user-friendly tools for performing quality assurance (QA) measurements. The speed and versatility of spot-scanning proton beam (PB) therapy systems present unique challenges for traditional QA tools. To address these challenges a proof-of-concept system was developed to visualize, in real-time, the delivery of individual spots from a spot-scanning PB in order to perform QA measurements. Methods: The PB is directed toward a custom phantom with planar faces coated with a radioluminescent phosphor (Gd2O2s:Tb). As the proton beam passes through the phantom visible light is emitted from the coating and collected by a nearby CMOS camera. The images are processed to determine the locations at which the beam impinges on each face of the phantom. By so doing, the location of each beam can be determined relative to the phantom. The cameras are also used to capture images of the laser alignment system. The phantom contains x-ray fiducials so that it can be easily located with kV imagers. Using this data several quality assurance parameters can be evaluated. Results: The proof-of-concept system was able to visualize discrete PB spots with energies ranging from 70 MeV to 220 MeV. Images were obtained with integration times ranging from 20 to 0.019 milliseconds. If not limited by data transmission, this would correspond to a frame rate of 52,000 fps. Such frame rates enabled visualization of individual spots in real time. Spot locations were found to be highly correlated (R{sup 2}=0.99) with the nozzle-mounted spot position monitor indicating excellent spot positioning accuracy Conclusion: The system was shown to be capable of imaging individual spots for all clinical beam energies. Future development will focus on extending the image processing software to provide automated results for a variety of QA tests.

  7. Mathematical statistics and stochastic processes

    CERN Document Server

    Bosq, Denis

    2013-01-01

    Generally, books on mathematical statistics are restricted to the case of independent identically distributed random variables. In this book however, both this case AND the case of dependent variables, i.e. statistics for discrete and continuous time processes, are studied. This second case is very important for today's practitioners.Mathematical Statistics and Stochastic Processes is based on decision theory and asymptotic statistics and contains up-to-date information on the relevant topics of theory of probability, estimation, confidence intervals, non-parametric statistics and rob

  8. A residual Monte Carlo method for discrete thermal radiative diffusion

    International Nuclear Information System (INIS)

    Evans, T.M.; Urbatsch, T.J.; Lichtenstein, H.; Morel, J.E.

    2003-01-01

    Residual Monte Carlo methods reduce statistical error at a rate of exp(-bN), where b is a positive constant and N is the number of particle histories. Contrast this convergence rate with 1/√N, which is the rate of statistical error reduction for conventional Monte Carlo methods. Thus, residual Monte Carlo methods hold great promise for increased efficiency relative to conventional Monte Carlo methods. Previous research has shown that the application of residual Monte Carlo methods to the solution of continuum equations, such as the radiation transport equation, is problematic for all but the simplest of cases. However, the residual method readily applies to discrete systems as long as those systems are monotone, i.e., they produce positive solutions given positive sources. We develop a residual Monte Carlo method for solving a discrete 1D non-linear thermal radiative equilibrium diffusion equation, and we compare its performance with that of the discrete conventional Monte Carlo method upon which it is based. We find that the residual method provides efficiency gains of many orders of magnitude. Part of the residual gain is due to the fact that we begin each timestep with an initial guess equal to the solution from the previous timestep. Moreover, fully consistent non-linear solutions can be obtained in a reasonable amount of time because of the effective lack of statistical noise. We conclude that the residual approach has great potential and that further research into such methods should be pursued for more general discrete and continuum systems

  9. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2011-01-01

    The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics......; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...

  10. Comparative study of discretization methods of microarray data for inferring transcriptional regulatory networks

    Directory of Open Access Journals (Sweden)

    Ji Wei

    2010-10-01

    Full Text Available Abstract Background Microarray data discretization is a basic preprocess for many algorithms of gene regulatory network inference. Some common discretization methods in informatics are used to discretize microarray data. Selection of the discretization method is often arbitrary and no systematic comparison of different discretization has been conducted, in the context of gene regulatory network inference from time series gene expression data. Results In this study, we propose a new discretization method "bikmeans", and compare its performance with four other widely-used discretization methods using different datasets, modeling algorithms and number of intervals. Sensitivities, specificities and total accuracies were calculated and statistical analysis was carried out. Bikmeans method always gave high total accuracies. Conclusions Our results indicate that proper discretization methods can consistently improve gene regulatory network inference independent of network modeling algorithms and datasets. Our new method, bikmeans, resulted in significant better total accuracies than other methods.

  11. Statistical data fusion for cross-tabulation

    NARCIS (Netherlands)

    Kamakura, W.A.; Wedel, M.

    The authors address the situation in which a researcher wants to cross-tabulate two sets of discrete variables collected in independent samples, but a subset of the variables is common to both samples. The authors propose a statistical data-fusion model that allows for statistical tests of

  12. Baecklund transformations for discrete Painleve equations: Discrete PII-PV

    International Nuclear Information System (INIS)

    Sakka, A.; Mugan, U.

    2006-01-01

    Transformation properties of discrete Painleve equations are investigated by using an algorithmic method. This method yields explicit transformations which relates the solutions of discrete Painleve equations, discrete P II -P V , with different values of parameters. The particular solutions which are expressible in terms of the discrete analogue of the classical special functions of discrete Painleve equations can also be obtained from these transformations

  13. Discrete and mesoscopic regimes of finite-size wave turbulence

    International Nuclear Information System (INIS)

    L'vov, V. S.; Nazarenko, S.

    2010-01-01

    Bounding volume results in discreteness of eigenmodes in wave systems. This leads to a depletion or complete loss of wave resonances (three-wave, four-wave, etc.), which has a strong effect on wave turbulence (WT) i.e., on the statistical behavior of broadband sets of weakly nonlinear waves. This paper describes three different regimes of WT realizable for different levels of the wave excitations: discrete, mesoscopic and kinetic WT. Discrete WT comprises chaotic dynamics of interacting wave 'clusters' consisting of discrete (often finite) number of connected resonant wave triads (or quarters). Kinetic WT refers to the infinite-box theory, described by well-known wave-kinetic equations. Mesoscopic WT is a regime in which either the discrete and the kinetic evolutions alternate or when none of these two types is purely realized. We argue that in mesoscopic systems the wave spectrum experiences a sandpile behavior. Importantly, the mesoscopic regime is realized for a broad range of wave amplitudes which typically spans over several orders on magnitude, and not just for a particular intermediate level.

  14. Adaptive statistical iterative reconstruction technology in the application of PET/CT whole body scans

    International Nuclear Information System (INIS)

    Xin Jun; Zhao Zhoushe; Li Hong; Lu Zhe; Wu Wenkai; Guo Qiyong

    2013-01-01

    Objective: To improve image quality of low dose CT in whole body PET/CT using adaptive statistical iterative reconstruction (ASiR) technology. Methods: Twice CT scans were performed with GE water model,scan parameters were: 120 kV, 120 and 300 mA respectively. In addition, 30 subjects treated with PET/CT were selected randomly, whole body PET/CT were performed after 18 F-FDG injection of 3.70 MBq/kg, Sharp IR+time of flight + VUE Point HD technology were used for 1.5 min/bed in PET; CT of spiral scan was performed under 120 kV using automatic exposure control technology (30-210 mA, noise index 25). Model and patients whole body CT images were reconstructed with conventional and 40% ASiR methods respectively, and the CT attenuation value and noise index were measured. Results: Research of model and clinical showed that standard deviation of ASiR method in model CT was 33.0% lower than the conventional CT reconstruction method (t =27.76, P<0.01), standard deviation of CT in normal tissues (brain, lung, mediastinum, liver and vertebral body) and lesions (brain, lung, mediastinum, liver and vertebral body) reduced by 21.08% (t =23.35, P<0.01) and 24.43% (t =16.15, P<0.01) respectively, especially for normal liver tissue and liver lesions, standard deviations of CT were reduced by 51.33% (t=34.21, P<0.0) and 49.54% (t=15.21, P<0.01) respectively. Conclusion: ASiR reconstruction method was significantly reduced the noise of low dose CT image and improved the quality of CT image in whole body PET/CT, which seems more suitable for quantitative analysis and clinical applications. (authors)

  15. Fundamental radiological and geometric performance of two types of proton beam modulated discrete scanning systems

    Energy Technology Data Exchange (ETDEWEB)

    Farr, J. B.; Schoenenberg, D. [Westdeutsches Protonentherapiezentrum Essen, Universitaetsklinikum-Essen, Hufelandstrasse 55, 45147 Essen (Germany); Dessy, F.; De Wilde, O.; Bietzer, O. [Ion Beam Applications, Chemin du Cyclotron, 3, 1348 Louvain-la-Neuve (Belgium)

    2013-07-15

    Purpose: The purpose of this investigation was to compare and contrast the measured fundamental properties of two new types of modulated proton scanning systems. This provides a basis for clinical expectations based on the scanned beam quality and a benchmark for computational models. Because the relatively small beam and fast scanning gave challenges to the characterization, a secondary purpose was to develop and apply new approaches where necessary to do so.Methods: The following performances of the proton scanning systems were investigated: beamlet alignment, static in-air beamlet size and shape, scanned in-air penumbra, scanned fluence map accuracy, geometric alignment of scanning system to isocenter, maximum field size, lateral and longitudinal field uniformity of a 1 l cubic uniform field, output stability over time, gantry angle invariance, monitoring system linearity, and reproducibility. A range of detectors was used: film, ionization chambers, lateral multielement and longitudinal multilayer ionization chambers, and a scintillation screen combined with a digital video camera. Characterization of the scanned fluence maps was performed with a software analysis tool.Results: The resulting measurements and analysis indicated that the two types of delivery systems performed within specification for those aspects investigated. The significant differences were observed between the two types of scanning systems where one type exhibits a smaller spot size and associated penumbra than the other. The differential is minimum at maximum energy and increases inversely with decreasing energy. Additionally, the large spot system showed an increase in dose precision to a static target with layer rescanning whereas the small spot system did not.Conclusions: The measured results from the two types of modulated scanning types of system were consistent with their designs under the conditions tested. The most significant difference between the types of system was their proton

  16. Fundamental radiological and geometric performance of two types of proton beam modulated discrete scanning systems.

    Science.gov (United States)

    Farr, J B; Dessy, F; De Wilde, O; Bietzer, O; Schönenberg, D

    2013-07-01

    The purpose of this investigation was to compare and contrast the measured fundamental properties of two new types of modulated proton scanning systems. This provides a basis for clinical expectations based on the scanned beam quality and a benchmark for computational models. Because the relatively small beam and fast scanning gave challenges to the characterization, a secondary purpose was to develop and apply new approaches where necessary to do so. The following performances of the proton scanning systems were investigated: beamlet alignment, static in-air beamlet size and shape, scanned in-air penumbra, scanned fluence map accuracy, geometric alignment of scanning system to isocenter, maximum field size, lateral and longitudinal field uniformity of a 1 l cubic uniform field, output stability over time, gantry angle invariance, monitoring system linearity, and reproducibility. A range of detectors was used: film, ionization chambers, lateral multielement and longitudinal multilayer ionization chambers, and a scintillation screen combined with a digital video camera. Characterization of the scanned fluence maps was performed with a software analysis tool. The resulting measurements and analysis indicated that the two types of delivery systems performed within specification for those aspects investigated. The significant differences were observed between the two types of scanning systems where one type exhibits a smaller spot size and associated penumbra than the other. The differential is minimum at maximum energy and increases inversely with decreasing energy. Additionally, the large spot system showed an increase in dose precision to a static target with layer rescanning whereas the small spot system did not. The measured results from the two types of modulated scanning types of system were consistent with their designs under the conditions tested. The most significant difference between the types of system was their proton spot size and associated resolution

  17. Discrete Curvatures and Discrete Minimal Surfaces

    KAUST Repository

    Sun, Xiang

    2012-01-01

    This thesis presents an overview of some approaches to compute Gaussian and mean curvature on discrete surfaces and discusses discrete minimal surfaces. The variety of applications of differential geometry in visualization and shape design leads

  18. A Computationally Efficient and Robust Implementation of the Continuous-Discrete Extended Kalman Filter

    DEFF Research Database (Denmark)

    Jørgensen, John Bagterp; Thomsen, Per Grove; Madsen, Henrik

    2007-01-01

    for nonlinear stochastic continuous-discrete time systems is more than two orders of magnitude faster than a conventional implementation. This is of significance in nonlinear model predictive control applications, statistical process monitoring as well as grey-box modelling of systems described by stochastic......We present a novel numerically robust and computationally efficient extended Kalman filter for state estimation in nonlinear continuous-discrete stochastic systems. The resulting differential equations for the mean-covariance evolution of the nonlinear stochastic continuous-discrete time systems...

  19. Connection between Fourier coefficient and Discretized Cartesian path integration

    International Nuclear Information System (INIS)

    Coalson, R.D.

    1986-01-01

    The relationship between so-called Discretized and Fourier coefficient formulations of Cartesian path integration is examined. In particular, an intimate connection between the two is established by rewriting the Discretized formulation in a manifestly Fourier-like way. This leads to improved understanding of both the limit behavior and the convergence properties of computational prescriptions based on the two formalisms. The performance of various prescriptions is compared with regard to calculation of on-diagonal statistical density matrix elements for a number of prototypical 1-d potentials. A consistent convergence order among these prescriptions is established

  20. Geovisual analytics to enhance spatial scan statistic interpretation: an analysis of U.S. cervical cancer mortality.

    Science.gov (United States)

    Chen, Jin; Roth, Robert E; Naito, Adam T; Lengerich, Eugene J; Maceachren, Alan M

    2008-11-07

    Kulldorff's spatial scan statistic and its software implementation - SaTScan - are widely used for detecting and evaluating geographic clusters. However, two issues make using the method and interpreting its results non-trivial: (1) the method lacks cartographic support for understanding the clusters in geographic context and (2) results from the method are sensitive to parameter choices related to cluster scaling (abbreviated as scaling parameters), but the system provides no direct support for making these choices. We employ both established and novel geovisual analytics methods to address these issues and to enhance the interpretation of SaTScan results. We demonstrate our geovisual analytics approach in a case study analysis of cervical cancer mortality in the U.S. We address the first issue by providing an interactive visual interface to support the interpretation of SaTScan results. Our research to address the second issue prompted a broader discussion about the sensitivity of SaTScan results to parameter choices. Sensitivity has two components: (1) the method can identify clusters that, while being statistically significant, have heterogeneous contents comprised of both high-risk and low-risk locations and (2) the method can identify clusters that are unstable in location and size as the spatial scan scaling parameter is varied. To investigate cluster result stability, we conducted multiple SaTScan runs with systematically selected parameters. The results, when scanning a large spatial dataset (e.g., U.S. data aggregated by county), demonstrate that no single spatial scan scaling value is known to be optimal to identify clusters that exist at different scales; instead, multiple scans that vary the parameters are necessary. We introduce a novel method of measuring and visualizing reliability that facilitates identification of homogeneous clusters that are stable across analysis scales. Finally, we propose a logical approach to proceed through the analysis of

  1. CutL: an alternative to Kulldorff's scan statistics for cluster detection with a specified cut-off level.

    Science.gov (United States)

    Więckowska, Barbara; Marcinkowska, Justyna

    2017-11-06

    When searching for epidemiological clusters, an important tool can be to carry out one's own research with the incidence rate from the literature as the reference level. Values exceeding this level may indicate the presence of a cluster in that location. This paper presents a method of searching for clusters that have significantly higher incidence rates than those specified by the investigator. The proposed method uses the classic binomial exact test for one proportion and an algorithm that joins areas with potential clusters while reducing the number of multiple comparisons needed. The sensitivity and specificity are preserved by this new method, while avoiding the Monte Carlo approach and still delivering results comparable to the commonly used Kulldorff's scan statistics and other similar methods of localising clusters. A strong contributing factor afforded by the statistical software that makes this possible is that it allows analysis and presentation of the results cartographically.

  2. Films with discrete nano-DLC-particles as the field emission cascade

    International Nuclear Information System (INIS)

    Song Fengqi; Bu Haijun; Wan Jianguo; Wang Guanghou; Zhou Feng; He Longbing; Han Min; Zhou Jianfeng; Wang Xiaoshu

    2008-01-01

    Films with discrete diamond-like-carbon (DLC) nanoparticles were prepared by the deposition of the carbon nanoparticle beam. Their morphologies were imaged by scanning electron microscopy and atomic force microscopy (AFM). The nanoparticles were found to be distributed on the silicon (1 0 0) substrate discretely. Hemispherical shapes of the nanoparticles were demonstrated by the AFM line profile. Electron energy loss spectra were measured and an sp 3 ratio as high as 86% was found. Field-induced electron emission of the as-prepared cascade (nanoDLC/ Si) was tested and a current density of 1 mA cm -2 was achieved at 10.2 V μm -1 . (fast track communication)

  3. A combined scanning tunnelling microscope and x-ray interferometer

    Science.gov (United States)

    Yacoot, Andrew; Kuetgens, Ulrich; Koenders, Ludger; Weimann, Thomas

    2001-10-01

    A monolithic x-ray interferometer made from silicon and a scanning tunnelling microscope have been combined and used to calibrate grating structures with periodicities of 100 nm or less. The x-ray interferometer is used as a translation stage which moves in discrete steps of 0.192 nm, the lattice spacing of the silicon (220) planes. Hence, movements are traceable to the definition of the metre and the nonlinearity associated with the optical interferometers used to measure displacement in more conventional metrological scanning probe microscopes (MSPMs) removed.

  4. A goodness of fit statistic for the geometric distribution

    NARCIS (Netherlands)

    J.A. Ferreira

    2003-01-01

    textabstractWe propose a goodness of fit statistic for the geometric distribution and compare it in terms of power, via simulation, with the chi-square statistic. The statistic is based on the Lau-Rao theorem and can be seen as a discrete analogue of the total time on test statistic. The results

  5. Scanning probe recognition microscopy investigation of tissue scaffold properties

    Science.gov (United States)

    Fan, Yuan; Chen, Qian; Ayres, Virginia M; Baczewski, Andrew D; Udpa, Lalita; Kumar, Shiva

    2007-01-01

    Scanning probe recognition microscopy is a new scanning probe microscopy technique which enables selective scanning along individual nanofibers within a tissue scaffold. Statistically significant data for multiple properties can be collected by repetitively fine-scanning an identical region of interest. The results of a scanning probe recognition microscopy investigation of the surface roughness and elasticity of a series of tissue scaffolds are presented. Deconvolution and statistical methods were developed and used for data accuracy along curved nanofiber surfaces. Nanofiber features were also independently analyzed using transmission electron microscopy, with results that supported the scanning probe recognition microscopy-based analysis. PMID:18203431

  6. Statistical methods and their applications in constructional engineering

    International Nuclear Information System (INIS)

    1977-01-01

    An introduction into the basic terms of statistics is followed by a discussion of elements of the probability theory, customary discrete and continuous distributions, simulation methods, statistical supporting framework dynamics, and a cost-benefit analysis of the methods introduced. (RW) [de

  7. Mimetic discretization methods

    CERN Document Server

    Castillo, Jose E

    2013-01-01

    To help solve physical and engineering problems, mimetic or compatible algebraic discretization methods employ discrete constructs to mimic the continuous identities and theorems found in vector calculus. Mimetic Discretization Methods focuses on the recent mimetic discretization method co-developed by the first author. Based on the Castillo-Grone operators, this simple mimetic discretization method is invariably valid for spatial dimensions no greater than three. The book also presents a numerical method for obtaining corresponding discrete operators that mimic the continuum differential and

  8. 3D imaging of semiconductor components by discrete laminography

    Energy Technology Data Exchange (ETDEWEB)

    Batenburg, K. J. [Centrum Wiskunde and Informatica, P.O. Box 94079, NL-1090 GB Amsterdam, The Netherlands and iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Palenstijn, W. J.; Sijbers, J. [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium)

    2014-06-19

    X-ray laminography is a powerful technique for quality control of semiconductor components. Despite the advantages of nondestructive 3D imaging over 2D techniques based on sectioning, the acquisition time is still a major obstacle for practical use of the technique. In this paper, we consider the application of Discrete Tomography to laminography data, which can potentially reduce the scanning time while still maintaining a high reconstruction quality. By incorporating prior knowledge in the reconstruction algorithm about the materials present in the scanned object, far more accurate reconstructions can be obtained from the same measured data compared to classical reconstruction methods. We present a series of simulation experiments that illustrate the potential of the approach.

  9. Some Statistics for Measuring Large-Scale Structure

    OpenAIRE

    Brandenberger, Robert H.; Kaplan, David M.; A, Stephen; Ramsey

    1993-01-01

    Good statistics for measuring large-scale structure in the Universe must be able to distinguish between different models of structure formation. In this paper, two and three dimensional ``counts in cell" statistics and a new ``discrete genus statistic" are applied to toy versions of several popular theories of structure formation: random phase cold dark matter model, cosmic string models, and global texture scenario. All three statistics appear quite promising in terms of differentiating betw...

  10. Deterministic absorbed dose estimation in computed tomography using a discrete ordinates method

    International Nuclear Information System (INIS)

    Norris, Edward T.; Liu, Xin; Hsieh, Jiang

    2015-01-01

    Purpose: Organ dose estimation for a patient undergoing computed tomography (CT) scanning is very important. Although Monte Carlo methods are considered gold-standard in patient dose estimation, the computation time required is formidable for routine clinical calculations. Here, the authors instigate a deterministic method for estimating an absorbed dose more efficiently. Methods: Compared with current Monte Carlo methods, a more efficient approach to estimating the absorbed dose is to solve the linear Boltzmann equation numerically. In this study, an axial CT scan was modeled with a software package, Denovo, which solved the linear Boltzmann equation using the discrete ordinates method. The CT scanning configuration included 16 x-ray source positions, beam collimators, flat filters, and bowtie filters. The phantom was the standard 32 cm CT dose index (CTDI) phantom. Four different Denovo simulations were performed with different simulation parameters, including the number of quadrature sets and the order of Legendre polynomial expansions. A Monte Carlo simulation was also performed for benchmarking the Denovo simulations. A quantitative comparison was made of the simulation results obtained by the Denovo and the Monte Carlo methods. Results: The difference in the simulation results of the discrete ordinates method and those of the Monte Carlo methods was found to be small, with a root-mean-square difference of around 2.4%. It was found that the discrete ordinates method, with a higher order of Legendre polynomial expansions, underestimated the absorbed dose near the center of the phantom (i.e., low dose region). Simulations of the quadrature set 8 and the first order of the Legendre polynomial expansions proved to be the most efficient computation method in the authors’ study. The single-thread computation time of the deterministic simulation of the quadrature set 8 and the first order of the Legendre polynomial expansions was 21 min on a personal computer

  11. DART: a practical reconstruction algorithm for discrete tomography.

    Science.gov (United States)

    Batenburg, Kees Joost; Sijbers, Jan

    2011-09-01

    In this paper, we present an iterative reconstruction algorithm for discrete tomography, called discrete algebraic reconstruction technique (DART). DART can be applied if the scanned object is known to consist of only a few different compositions, each corresponding to a constant gray value in the reconstruction. Prior knowledge of the gray values for each of the compositions is exploited to steer the current reconstruction towards a reconstruction that contains only these gray values. Based on experiments with both simulated CT data and experimental μCT data, it is shown that DART is capable of computing more accurate reconstructions from a small number of projection images, or from a small angular range, than alternative methods. It is also shown that DART can deal effectively with noisy projection data and that the algorithm is robust with respect to errors in the estimation of the gray values.

  12. Discrete tomography in an in vivo small animal bone study.

    Science.gov (United States)

    Van de Casteele, Elke; Perilli, Egon; Van Aarle, Wim; Reynolds, Karen J; Sijbers, Jan

    2018-01-01

    This study aimed at assessing the feasibility of a discrete algebraic reconstruction technique (DART) to be used in in vivo small animal bone studies. The advantage of discrete tomography is the possibility to reduce the amount of X-ray projection images, which makes scans faster and implies also a significant reduction of radiation dose, without compromising the reconstruction results. Bone studies are ideal for being performed with discrete tomography, due to the relatively small number of attenuation coefficients contained in the image [namely three: background (air), soft tissue and bone]. In this paper, a validation is made by comparing trabecular bone morphometric parameters calculated from images obtained by using DART and the commonly used standard filtered back-projection (FBP). Female rats were divided into an ovariectomized (OVX) and a sham-operated group. In vivo micro-CT scanning of the tibia was done at baseline and at 2, 4, 8 and 12 weeks after surgery. The cross-section images were reconstructed using first the full set of projection images and afterwards reducing them in number to a quarter and one-sixth (248, 62, 42 projection images, respectively). For both reconstruction methods, similar changes in morphometric parameters were observed over time: bone loss for OVX and bone growth for sham-operated rats, although for DART the actual values were systematically higher (bone volume fraction) or lower (structure model index) compared to FBP, depending on the morphometric parameter. The DART algorithm was, however, more robust when using fewer projection images, where the standard FBP reconstruction was more prone to noise, showing a significantly bigger deviation from the morphometric parameters obtained using all projection images. This study supports the use of DART as a potential alternative method to FBP in X-ray micro-CT animal studies, in particular, when the number of projections has to be drastically minimized, which directly reduces

  13. Continuous versus discrete structures II -- Discrete Hamiltonian systems and Helmholtz conditions

    OpenAIRE

    Cresson, Jacky; Pierret, Frédéric

    2015-01-01

    We define discrete Hamiltonian systems in the framework of discrete embeddings. An explicit comparison with previous attempts is given. We then solve the discrete Helmholtz's inverse problem for the discrete calculus of variation in the Hamiltonian setting. Several applications are discussed.

  14. Numerical computation of the discrete Fourier transform and its applications in the statistic processing of experimental data

    International Nuclear Information System (INIS)

    Marinescu, D.C.; Radulescu, T.G.

    1977-06-01

    The Integral Fourier Transform has a large range of applications in such areas as communication theory, circuit theory, physics, etc. In order to perform discrete Fourier Transform the Finite Fourier Transform is defined; it operates upon N samples of a uniformely sampled continuous function. All the properties known in the continuous case can be found in the discrete case also. The first part of the paper presents the relationship between the Finite Fourier Transform and the Integral one. The computing of a Finite Fourier Transform is a problem in itself since in order to transform a set of N data we have to perform N 2 ''operations'' if the transformation relations are used directly. An algorithm known as the Fast Fourier Transform (FFT) reduces this figure from N 2 to a more reasonable Nlog 2 N, when N is a power of two. The original Cooley and Tuckey algorithm for FFT can be further improved when higher basis are used. The price to be paid in this case is the increase in complexity of such algorithms. The recurrence relations and a comparation among such algorithms are presented. The key point in understanding the application of FFT resides in the convolution theorem which states that the convolution (an N 2 type procedure) of the primitive functions is equivalent to the ordinar multiplication of their transforms. Since filtering is actually a convolution process we present several procedures to perform digital filtering by means of FFT. The best is the one using the segmentation of records and the transformation of pairs of records. In the digital processing of signals, besides digital filtering a special attention is paid to the estimation of various statistical characteristics of a signal as: autocorrelation and correlation functions, periodiograms, density power sepctrum, etc. We give several algorithms for the consistent and unbiased estimation of such functions, by means of FFT. (author)

  15. Image compression-encryption algorithms by combining hyper-chaotic system with discrete fractional random transform

    Science.gov (United States)

    Gong, Lihua; Deng, Chengzhi; Pan, Shumin; Zhou, Nanrun

    2018-07-01

    Based on hyper-chaotic system and discrete fractional random transform, an image compression-encryption algorithm is designed. The original image is first transformed into a spectrum by the discrete cosine transform and the resulting spectrum is compressed according to the method of spectrum cutting. The random matrix of the discrete fractional random transform is controlled by a chaotic sequence originated from the high dimensional hyper-chaotic system. Then the compressed spectrum is encrypted by the discrete fractional random transform. The order of DFrRT and the parameters of the hyper-chaotic system are the main keys of this image compression and encryption algorithm. The proposed algorithm can compress and encrypt image signal, especially can encrypt multiple images once. To achieve the compression of multiple images, the images are transformed into spectra by the discrete cosine transform, and then the spectra are incised and spliced into a composite spectrum by Zigzag scanning. Simulation results demonstrate that the proposed image compression and encryption algorithm is of high security and good compression performance.

  16. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2011-01-01

    ; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics...... to new problems. Relations and functions: Define a product set; define and apply equivalence relations; construct and apply functions. Apply these concepts to new problems. Natural numbers and induction: Define the natural numbers; apply the principle of induction to verify a selection of properties...

  17. Digital Discretion

    DEFF Research Database (Denmark)

    Busch, Peter Andre; Zinner Henriksen, Helle

    2018-01-01

    discretion is suggested to reduce this footprint by influencing or replacing their discretionary practices using ICT. What is less researched is whether digital discretion can cause changes in public policy outcomes, and under what conditions such changes can occur. Using the concept of public service values......This study reviews 44 peer-reviewed articles on digital discretion published in the period from 1998 to January 2017. Street-level bureaucrats have traditionally had a wide ability to exercise discretion stirring debate since they can add their personal footprint on public policies. Digital......, we suggest that digital discretion can strengthen ethical and democratic values but weaken professional and relational values. Furthermore, we conclude that contextual factors such as considerations made by policy makers on the macro-level and the degree of professionalization of street...

  18. Modeling Anti-Air Warfare With Discrete Event Simulation and Analyzing Naval Convoy Operations

    Science.gov (United States)

    2016-06-01

    W., & Scheaffer, R. L. (2008). Mathematical statistics with applications . Belmont, CA: Cengage Learning. 118 THIS PAGE INTENTIONALLY LEFT BLANK...WARFARE WITH DISCRETE EVENT SIMULATION AND ANALYZING NAVAL CONVOY OPERATIONS by Ali E. Opcin June 2016 Thesis Advisor: Arnold H. Buss Co...REPORT DATE June 2016 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE MODELING ANTI-AIR WARFARE WITH DISCRETE EVENT

  19. Statistical characterization of discrete conservative systems: The web map

    Science.gov (United States)

    Ruiz, Guiomar; Tirnakli, Ugur; Borges, Ernesto P.; Tsallis, Constantino

    2017-10-01

    We numerically study the two-dimensional, area preserving, web map. When the map is governed by ergodic behavior, it is, as expected, correctly described by Boltzmann-Gibbs statistics, based on the additive entropic functional SB G[p (x ) ] =-k ∫d x p (x ) lnp (x ) . In contrast, possible ergodicity breakdown and transitory sticky dynamical behavior drag the map into the realm of generalized q statistics, based on the nonadditive entropic functional Sq[p (x ) ] =k 1/-∫d x [p(x ) ] q q -1 (q ∈R ;S1=SB G ). We statistically describe the system (probability distribution of the sum of successive iterates, sensitivity to the initial condition, and entropy production per unit time) for typical values of the parameter that controls the ergodicity of the map. For small (large) values of the external parameter K , we observe q -Gaussian distributions with q =1.935 ⋯ (Gaussian distributions), like for the standard map. In contrast, for intermediate values of K , we observe a different scenario, due to the fractal structure of the trajectories embedded in the chaotic sea. Long-standing non-Gaussian distributions are characterized in terms of the kurtosis and the box-counting dimension of chaotic sea.

  20. Models for probability and statistical inference theory and applications

    CERN Document Server

    Stapleton, James H

    2007-01-01

    This concise, yet thorough, book is enhanced with simulations and graphs to build the intuition of readersModels for Probability and Statistical Inference was written over a five-year period and serves as a comprehensive treatment of the fundamentals of probability and statistical inference. With detailed theoretical coverage found throughout the book, readers acquire the fundamentals needed to advance to more specialized topics, such as sampling, linear models, design of experiments, statistical computing, survival analysis, and bootstrapping.Ideal as a textbook for a two-semester sequence on probability and statistical inference, early chapters provide coverage on probability and include discussions of: discrete models and random variables; discrete distributions including binomial, hypergeometric, geometric, and Poisson; continuous, normal, gamma, and conditional distributions; and limit theory. Since limit theory is usually the most difficult topic for readers to master, the author thoroughly discusses mo...

  1. Computational statistics handbook with Matlab

    CERN Document Server

    Martinez, Wendy L

    2007-01-01

    Prefaces Introduction What Is Computational Statistics? An Overview of the Book Probability Concepts Introduction Probability Conditional Probability and Independence Expectation Common Distributions Sampling Concepts Introduction Sampling Terminology and Concepts Sampling Distributions Parameter Estimation Empirical Distribution Function Generating Random Variables Introduction General Techniques for Generating Random Variables Generating Continuous Random Variables Generating Discrete Random Variables Exploratory Data Analysis Introduction Exploring Univariate Data Exploring Bivariate and Trivariate Data Exploring Multidimensional Data Finding Structure Introduction Projecting Data Principal Component Analysis Projection Pursuit EDA Independent Component Analysis Grand Tour Nonlinear Dimensionality Reduction Monte Carlo Methods for Inferential Statistics Introduction Classical Inferential Statistics Monte Carlo Methods for Inferential Statist...

  2. A goodness of fit statistic for the geometric distribution

    OpenAIRE

    Ferreira, J.A.

    2003-01-01

    textabstractWe propose a goodness of fit statistic for the geometric distribution and compare it in terms of power, via simulation, with the chi-square statistic. The statistic is based on the Lau-Rao theorem and can be seen as a discrete analogue of the total time on test statistic. The results suggest that the test based on the new statistic is generally superior to the chi-square test.

  3. Optimization of Operations Resources via Discrete Event Simulation Modeling

    Science.gov (United States)

    Joshi, B.; Morris, D.; White, N.; Unal, R.

    1996-01-01

    The resource levels required for operation and support of reusable launch vehicles are typically defined through discrete event simulation modeling. Minimizing these resources constitutes an optimization problem involving discrete variables and simulation. Conventional approaches to solve such optimization problems involving integer valued decision variables are the pattern search and statistical methods. However, in a simulation environment that is characterized by search spaces of unknown topology and stochastic measures, these optimization approaches often prove inadequate. In this paper, we have explored the applicability of genetic algorithms to the simulation domain. Genetic algorithms provide a robust search strategy that does not require continuity and differentiability of the problem domain. The genetic algorithm successfully minimized the operation and support activities for a space vehicle, through a discrete event simulation model. The practical issues associated with simulation optimization, such as stochastic variables and constraints, were also taken into consideration.

  4. Discrete Exterior Calculus Discretization of Incompressible Navier-Stokes Equations

    KAUST Repository

    Mohamed, Mamdouh S.

    2017-05-23

    A conservative discretization of incompressible Navier-Stokes equations over surface simplicial meshes is developed using discrete exterior calculus (DEC). Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy otherwise. The mimetic character of many of the DEC operators provides exact conservation of both mass and vorticity, in addition to superior kinetic energy conservation. The employment of barycentric Hodge star allows the discretization to admit arbitrary simplicial meshes. The discretization scheme is presented along with various numerical test cases demonstrating its main characteristics.

  5. Discrete Model for the Structure and Strength of Cementitious Materials

    Science.gov (United States)

    Balopoulos, Victor D.; Archontas, Nikolaos; Pantazopoulou, Stavroula J.

    2017-12-01

    Cementitious materials are characterized by brittle behavior in direct tension and by transverse dilatation (due to microcracking) under compression. Microcracking causes increasingly larger transverse strains and a phenomenological Poisson's ratio that gradually increases to about ν =0.5 and beyond, at the limit point in compression. This behavior is due to the underlying structure of cementitious pastes which is simulated here with a discrete physical model. The computational model is generic, assembled from a statistically generated, continuous network of flaky dendrites consisting of cement hydrates that emanate from partially hydrated cement grains. In the actual amorphous material, the dendrites constitute the solid phase of the cement gel and interconnect to provide the strength and stiffness against load. The idealized dendrite solid is loaded in compression and tension to compute values for strength and Poisson's effects. Parametric studies are conducted, to calibrate the statistical parameters of the discrete model with the physical and mechanical characteristics of the material, so that the familiar experimental trends may be reproduced. The model provides a framework for the study of the mechanical behavior of the material under various states of stress and strain and can be used to model the effects of additives (e.g., fibers) that may be explicitly simulated in the discrete structure.

  6. A Two-stage Improvement Method for Robot Based 3D Surface Scanning

    Science.gov (United States)

    He, F. B.; Liang, Y. D.; Wang, R. F.; Lin, Y. S.

    2018-03-01

    As known that the surface of unknown object was difficult to measure or recognize precisely, hence the 3D laser scanning technology was introduced and used properly in surface reconstruction. Usually, the surface scanning speed was slower and the scanning quality would be better, while the speed was faster and the quality would be worse. In this case, the paper presented a new two-stage scanning method in order to pursuit the quality of surface scanning in a faster speed. The first stage was rough scanning to get general point cloud data of object’s surface, and then the second stage was specific scanning to repair missing regions which were determined by chord length discrete method. Meanwhile, a system containing a robotic manipulator and a handy scanner was also developed to implement the two-stage scanning method, and relevant paths were planned according to minimum enclosing ball and regional coverage theories.

  7. Distribution for fermionic discrete lattice gas within the canonical ensemble

    International Nuclear Information System (INIS)

    Kutner, R.; Barszczak, T.

    1991-01-01

    The distinct deviations from the Fermi-Dirac statistics ascertained recently at low temperatures for a one-dimensional, spinless fermionic discrete lattice gas with conserved number of noninteracting particles hopping on the nondegenerated, well-separated single-particle energy levels are studied in numerical and theoretical terms. The generalized distribution is derived in the form n(h) = {Y h exp[(var-epsilon h -μ)β]+1} -1 valid even in the thermodynamic limit, when the discreteness of the energy levels is kept. This distribution demonstrates good agreement with the data obtained numerically both by the canonical partition-function technique and by Monte Carlo simulation

  8. Statistical Model Checking for Biological Systems

    DEFF Research Database (Denmark)

    David, Alexandre; Larsen, Kim Guldstrand; Legay, Axel

    2014-01-01

    Statistical Model Checking (SMC) is a highly scalable simulation-based verification approach for testing and estimating the probability that a stochastic system satisfies a given linear temporal property. The technique has been applied to (discrete and continuous time) Markov chains, stochastic...

  9. Applicability of statistical process control techniques

    NARCIS (Netherlands)

    Schippers, W.A.J.

    1998-01-01

    This paper concerns the application of Process Control Techniques (PCTs) for the improvement of the technical performance of discrete production processes. Successful applications of these techniques, such as Statistical Process Control Techniques (SPC), can be found in the literature. However, some

  10. Statistical descriptions of polydisperse turbulent two-phase flows

    Energy Technology Data Exchange (ETDEWEB)

    Minier, Jean-Pierre, E-mail: jean-pierre.minier@edf.fr

    2016-12-15

    Disperse two-phase flows are flows containing two non-miscible phases where one phase is present as a set of discrete elements dispersed in the second one. These discrete elements, or ‘particles’, can be droplets, bubbles or solid particles having different sizes. This situation encompasses a wide range of phenomena, from nano-particles and colloids sensitive to the molecular fluctuations of the carrier fluid to inertia particles transported by the large-scale motions of turbulent flows and, depending on the phenomenon studied, a broad spectrum of approaches have been developed. The aim of the present article is to analyze statistical models of particles in turbulent flows by addressing this issue as the extension of the classical formulations operating at a molecular or meso-molecular level of description. It has a three-fold purpose: (1) to bring out the thread of continuity between models for discrete particles in turbulent flows (above the hydrodynamical level of description) and classical mesoscopic formulations of statistical physics (below the hydrodynamical level); (2) to reveal the specific challenges met by statistical models in turbulence; (3) to establish a methodology for modeling particle dynamics in random media with non-zero space and time correlations. The presentation is therefore centered on organizing the different approaches, establishing links and clarifying physical foundations. The analysis of disperse two-phase flow models is developed by discussing: first, approaches of classical statistical physics; then, by considering models for single-phase turbulent flows; and, finally, by addressing current formulations for discrete particles in turbulent flows. This brings out that particle-based models do not cease to exist above the hydrodynamical level and offer great interest when combined with proper stochastic formulations to account for the lack of equilibrium distributions and scale separation. In the course of this study, general

  11. Energy-level statistics and time relaxation in quantum systems

    International Nuclear Information System (INIS)

    Gruver, J.L.; Cerdeira, H.A.; Aliaga, J.; Mello, P.A.; Proto, A.N.

    1997-05-01

    We study a quantum-mechanical system, prepared, at t = 0, in a model state, that subsequently decays into a sea of other states whose energy levels form a discrete spectrum with given statistical properties. An important quantity is the survival probability P(t), defined as the probability, at time t, to find the system in the original model state. Our main purpose is to analyze the influence of the discreteness and statistical properties of the spectrum on the behavior of P(t). Since P(t) itself is a statistical quantity, we restrict our attention to its ensemble average , which is calculated analytically using random-matrix techniques, within certain approximations discussed in the text. We find, for , an exponential decay, followed by a revival, governed by the two-point structure of the statistical spectrum, thus giving a nonzero asymptotic value for large t's. The analytic result compares well with a number of computer simulations, over a time range discussed in the text. (author). 17 refs, 1 fig

  12. Comparison of dimensional accuracy of digital dental models produced from scanned impressions and scanned stone casts

    Science.gov (United States)

    Subeihi, Haitham

    dimensional accuracy, which is defined as the absolute value of deviation in micrometers from the reference model. A two-way analysis of analysis of variance (ANOVA) was applied to calculate if the measurements for the six test groups were statistically significantly different from the original reference model as well as between test groups (p Results: The mean (± SD) RMS was 29.42 ± 5.80 microns for digital models produced from polyether impression scans, 27.58 ± 5.85 microns for digital models from PVS impressions scans, and 24.08 ± 4.89 microns for digital models produced from VPES impressions scans. 26.08 ± 6.58 microns for digital models produced by scanning stone casts poured from PE, 31.67 ± 9.95 microns for digital models produced by scanning stone casts poured from PVS and 22.58 ± 2.84 microns for digital models produced by scanning stone casts poured from VPES. In the Two-Way ANOVA, the p-value for the material factor was 0.004, reflecting a statistically significant difference between the accuracy of the three impression materials, with VPES showing the highest accuracy (mean RMS = 23.33 ± 3.99 microns) followed by PE (mean RMS = 27.75 ± 6.3 microns) and PVS (mean RMS = 29.63 ± 8.25 microns). For the technique factor, the p-value was 0.870 reflecting no statistically significant difference between the accuracy of the two techniques (impression scan and stone cast scan). The mean RMS values were 27.03 ± 5.82 microns and 26.78 ± 7.85 microns, respectively. In the post-hoc tests for the material factor, a significant difference was found between the accuracy of VPES and PVS (p-value = 0.004) with VPES having the higher accuracy (lower mean RMS). No significant difference was found between the accuracies of PE and PVS (p-value = 0.576), and between the accuracies of PE and VPES (p-value = 0.054). Conclusions: Within the limitations of this in vitro study, it can be concluded that: 1. There is no statistically significant difference in dimensional accuracy

  13. Discrete Exterior Calculus Discretization of Incompressible Navier-Stokes Equations

    KAUST Repository

    Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi

    2017-01-01

    A conservative discretization of incompressible Navier-Stokes equations over surface simplicial meshes is developed using discrete exterior calculus (DEC). Numerical experiments for flows over surfaces reveal a second order accuracy

  14. DISCRETE MATHEMATICS/NUMBER THEORY

    OpenAIRE

    Mrs. Manju Devi*

    2017-01-01

    Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous. In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics such as integers, graphs, and statements do not vary smoothly in this way, but have distinct, separated values. Discrete mathematics therefore excludes topics in "continuous mathematics" such as calculus and analysis. Discrete objects can often be enumerated by ...

  15. Resonance and web structure in discrete soliton systems: the two-dimensional Toda lattice and its fully discrete and ultra-discrete analogues

    International Nuclear Information System (INIS)

    Maruno, Ken-ichi; Biondini, Gino

    2004-01-01

    We present a class of solutions of the two-dimensional Toda lattice equation, its fully discrete analogue and its ultra-discrete limit. These solutions demonstrate the existence of soliton resonance and web-like structure in discrete integrable systems such as differential-difference equations, difference equations and cellular automata (ultra-discrete equations)

  16. Effect of the image resolution on the statistical descriptors of heterogeneous media

    Science.gov (United States)

    Ledesma-Alonso, René; Barbosa, Romeli; Ortegón, Jaime

    2018-02-01

    The characterization and reconstruction of heterogeneous materials, such as porous media and electrode materials, involve the application of image processing methods to data acquired by scanning electron microscopy or other microscopy techniques. Among them, binarization and decimation are critical in order to compute the correlation functions that characterize the microstructure of the above-mentioned materials. In this study, we present a theoretical analysis of the effects of the image-size reduction, due to the progressive and sequential decimation of the original image. Three different decimation procedures (random, bilinear, and bicubic) were implemented and their consequences on the discrete correlation functions (two-point, line-path, and pore-size distribution) and the coarseness (derived from the local volume fraction) are reported and analyzed. The chosen statistical descriptors (correlation functions and coarseness) are typically employed to characterize and reconstruct heterogeneous materials. A normalization for each of the correlation functions has been performed. When the loss of statistical information has not been significant for a decimated image, its normalized correlation function is forecast by the trend of the original image (reference function). In contrast, when the decimated image does not hold statistical evidence of the original one, the normalized correlation function diverts from the reference function. Moreover, the equally weighted sum of the average of the squared difference, between the discrete correlation functions of the decimated images and the reference functions, leads to a definition of an overall error. During the first stages of the gradual decimation, the error remains relatively small and independent of the decimation procedure. Above a threshold defined by the correlation length of the reference function, the error becomes a function of the number of decimation steps. At this stage, some statistical information is lost

  17. Image processing tensor transform and discrete tomography with Matlab

    CERN Document Server

    Grigoryan, Artyom M

    2012-01-01

    Focusing on mathematical methods in computer tomography, Image Processing: Tensor Transform and Discrete Tomography with MATLAB(R) introduces novel approaches to help in solving the problem of image reconstruction on the Cartesian lattice. Specifically, it discusses methods of image processing along parallel rays to more quickly and accurately reconstruct images from a finite number of projections, thereby avoiding overradiation of the body during a computed tomography (CT) scan. The book presents several new ideas, concepts, and methods, many of which have not been published elsewhere. New co

  18. The spectral transform as a tool for solving nonlinear discrete evolution equations

    International Nuclear Information System (INIS)

    Levi, D.

    1979-01-01

    In this contribution we study nonlinear differential difference equations which became important to the description of an increasing number of problems in natural science. Difference equations arise for instance in the study of electrical networks, in statistical problems, in queueing problems, in ecological problems, as computer models for differential equations and as models for wave excitation in plasma or vibrations of particles in an anharmonic lattice. We shall first review the passages necessary to solve linear discrete evolution equations by the discrete Fourier transfrom, then, starting from the Zakharov-Shabat discretized eigenvalue, problem, we shall introduce the spectral transform. In the following part we obtain the correlation between the evolution of the potentials and scattering data through the Wronskian technique, giving at the same time many other properties as, for example, the Baecklund transformations. Finally we recover some of the important equations belonging to this class of nonlinear discrete evolution equations and extend the method to equations with n-dependent coefficients. (HJ)

  19. New scanning technique using Adaptive Statistical Iterative Reconstruction (ASIR) significantly reduced the radiation dose of cardiac CT.

    Science.gov (United States)

    Tumur, Odgerel; Soon, Kean; Brown, Fraser; Mykytowycz, Marcus

    2013-06-01

    The aims of our study were to evaluate the effect of application of Adaptive Statistical Iterative Reconstruction (ASIR) algorithm on the radiation dose of coronary computed tomography angiography (CCTA) and its effects on image quality of CCTA and to evaluate the effects of various patient and CT scanning factors on the radiation dose of CCTA. This was a retrospective study that included 347 consecutive patients who underwent CCTA at a tertiary university teaching hospital between 1 July 2009 and 20 September 2011. Analysis was performed comparing patient demographics, scan characteristics, radiation dose and image quality in two groups of patients in whom conventional Filtered Back Projection (FBP) or ASIR was used for image reconstruction. There were 238 patients in the FBP group and 109 patients in the ASIR group. There was no difference between the groups in the use of prospective gating, scan length or tube voltage. In ASIR group, significantly lower tube current was used compared with FBP group, 550 mA (450-600) vs. 650 mA (500-711.25) (median (interquartile range)), respectively, P ASIR group compared with FBP group, 4.29 mSv (2.84-6.02) vs. 5.84 mSv (3.88-8.39) (median (interquartile range)), respectively, P ASIR was associated with increased image noise compared with FBP (39.93 ± 10.22 vs. 37.63 ± 18.79 (mean ± standard deviation), respectively, P ASIR reduces the radiation dose of CCTA without affecting the image quality. © 2013 The Authors. Journal of Medical Imaging and Radiation Oncology © 2013 The Royal Australian and New Zealand College of Radiologists.

  20. Statistical theory of heat

    CERN Document Server

    Scheck, Florian

    2016-01-01

    Scheck’s textbook starts with a concise introduction to classical thermodynamics, including geometrical aspects. Then a short introduction to probabilities and statistics lays the basis for the statistical interpretation of thermodynamics. Phase transitions, discrete models and the stability of matter are explained in great detail. Thermodynamics has a special role in theoretical physics. Due to the general approach of thermodynamics the field has a bridging function between several areas like the theory of condensed matter, elementary particle physics, astrophysics and cosmology. The classical thermodynamics describes predominantly averaged properties of matter, reaching from few particle systems and state of matter to stellar objects. Statistical Thermodynamics covers the same fields, but explores them in greater depth and unifies classical statistical mechanics with quantum theory of multiple particle systems. The content is presented as two tracks: the fast track for master students, providing the essen...

  1. Probability and statistics for computer science

    CERN Document Server

    Johnson, James L

    2011-01-01

    Comprehensive and thorough development of both probability and statistics for serious computer scientists; goal-oriented: ""to present the mathematical analysis underlying probability results"" Special emphases on simulation and discrete decision theory Mathematically-rich, but self-contained text, at a gentle pace Review of calculus and linear algebra in an appendix Mathematical interludes (in each chapter) which examine mathematical techniques in the context of probabilistic or statistical importance Numerous section exercises, summaries, historical notes, and Further Readings for reinforcem

  2. Semiclassical analysis, Witten Laplacians, and statistical mechanis

    CERN Document Server

    Helffer, Bernard

    2002-01-01

    This important book explains how the technique of Witten Laplacians may be useful in statistical mechanics. It considers the problem of analyzing the decay of correlations, after presenting its origin in statistical mechanics. In addition, it compares the Witten Laplacian approach with other techniques, such as the transfer matrix approach and its semiclassical analysis. The author concludes by providing a complete proof of the uniform Log-Sobolev inequality. Contents: Witten Laplacians Approach; Problems in Statistical Mechanics with Discrete Spins; Laplace Integrals and Transfer Operators; S

  3. Magnetically scanned proton therapy beams: rationales and techniques

    International Nuclear Information System (INIS)

    Jones, D.T.L.; Schreuder, A.N.

    2000-01-01

    Perhaps the most important advantages of beam scanning systems for proton therapy in comparison with conventional passive beam spreading systems are: (1) Intensity modulation and inverse planning are possible. (2) There is negligible reduction in the range of the beam. (3) Integral dose is reduced as dose conformation to the proximal edge of the lesion is possible. (4) In principle no field-specific modifying devices are required. (5) There is less activation of the surroundings. (6) Scanning systems axe almost infinitely flexible. The main disadvantages include: (1) Scanning systems are more complicated and therefore potentially less reliable and more dangerous. (2) The development of such systems is more demanding in terms of cost, time and manpower. (3) More stable beams are required. (4) Dose and beam position monitoring are more difficult. (5) The problems associated with patient and organ movement axe more severe. There are several techniques which can be used for scanning. For lateral beam spreading, circular scanning (wobbling) or linear scanning can be done. In the latter case the beam can be scanned continuously or in a discrete fashion (spot scanning). Another possibility is to undertake the fastest scan in one dimension (strip scanning) and translate the patient or the scanning magnet in the other dimension. Depth variation is achieved by interposing degraders in the beam (cyclotrons) or by changing the beam energy (synchrotrons). The aim of beam scanning is to deliver a predetermined dose at any point in the body. Special safety precautions must be taken because of the high instantaneous dose rates. The beam position and the dose delivered at each point must be accurately and redundantly determined. (author)

  4. Estimating the SCAN*PRO model of store sales : HB, FM or just OLS?

    NARCIS (Netherlands)

    Andrews, Rick L.; Currim, Imran S.; Leeflang, Peter; Lim, Jooseop

    In this paper we investigate whether consideration of store-level heterogeneity in marketing mix effects improves the accuracy of the marketing mix elasticities, fit, and forecasting accuracy of the widely-applied SCAN*PRO model of store sales. Models with continuous and discrete representations of

  5. Solutions of several coupled discrete models in terms of Lamé ...

    Indian Academy of Sciences (India)

    3Departments of Mathematics and Statistics, Stanford University, Stanford, CA 94305, USA. ∗. Corresponding author. E-mail: avadh@lanl.gov. MS received 23 January 2012; revised 29 March 2012; accepted 18 April 2012. Abstract. Coupled discrete models are ubiquitous in a variety of physical contexts. We provide.

  6. On the putative essential discreteness of q-generalized entropies

    Science.gov (United States)

    Plastino, A.; Rocca, M. C.

    2017-12-01

    It has been argued in Abe (2010), entitled Essential discreteness in generalized thermostatistics with non-logarithmic entropy, that ;continuous Hamiltonian systems with long-range interactions and the so-called q-Gaussian momentum distributions are seen to be outside the scope of non-extensive statistical mechanics;. The arguments are clever and appealing. We show here that, however, some mathematical subtleties render them unconvincing.

  7. Cluster analysis of European Y-chromosomal STR haplotypes using the discrete Laplace method

    DEFF Research Database (Denmark)

    Andersen, Mikkel Meyer; Eriksen, Poul Svante; Morling, Niels

    2014-01-01

    The European Y-chromosomal short tandem repeat (STR) haplotype distribution has previously been analysed in various ways. Here, we introduce a new way of analysing population substructure using a new method based on clustering within the discrete Laplace exponential family that models the probabi......The European Y-chromosomal short tandem repeat (STR) haplotype distribution has previously been analysed in various ways. Here, we introduce a new way of analysing population substructure using a new method based on clustering within the discrete Laplace exponential family that models...... the probability distribution of the Y-STR haplotypes. Creating a consistent statistical model of the haplotypes enables us to perform a wide range of analyses. Previously, haplotype frequency estimation using the discrete Laplace method has been validated. In this paper we investigate how the discrete Laplace...... method can be used for cluster analysis to further validate the discrete Laplace method. A very important practical fact is that the calculations can be performed on a normal computer. We identified two sub-clusters of the Eastern and Western European Y-STR haplotypes similar to results of previous...

  8. Discrete control systems

    CERN Document Server

    Okuyama, Yoshifumi

    2014-01-01

    Discrete Control Systems establishes a basis for the analysis and design of discretized/quantized control systemsfor continuous physical systems. Beginning with the necessary mathematical foundations and system-model descriptions, the text moves on to derive a robust stability condition. To keep a practical perspective on the uncertain physical systems considered, most of the methods treated are carried out in the frequency domain. As part of the design procedure, modified Nyquist–Hall and Nichols diagrams are presented and discretized proportional–integral–derivative control schemes are reconsidered. Schemes for model-reference feedback and discrete-type observers are proposed. Although single-loop feedback systems form the core of the text, some consideration is given to multiple loops and nonlinearities. The robust control performance and stability of interval systems (with multiple uncertainties) are outlined. Finally, the monograph describes the relationship between feedback-control and discrete ev...

  9. A compressed sensing based approach on Discrete Algebraic Reconstruction Technique.

    Science.gov (United States)

    Demircan-Tureyen, Ezgi; Kamasak, Mustafa E

    2015-01-01

    Discrete tomography (DT) techniques are capable of computing better results, even using less number of projections than the continuous tomography techniques. Discrete Algebraic Reconstruction Technique (DART) is an iterative reconstruction method proposed to achieve this goal by exploiting a prior knowledge on the gray levels and assuming that the scanned object is composed from a few different densities. In this paper, DART method is combined with an initial total variation minimization (TvMin) phase to ensure a better initial guess and extended with a segmentation procedure in which the threshold values are estimated from a finite set of candidates to minimize both the projection error and the total variation (TV) simultaneously. The accuracy and the robustness of the algorithm is compared with the original DART by the simulation experiments which are done under (1) limited number of projections, (2) limited view problem and (3) noisy projections conditions.

  10. Typhoid fever acquired in the United States, 1999-2010: epidemiology, microbiology, and use of a space-time scan statistic for outbreak detection.

    Science.gov (United States)

    Imanishi, M; Newton, A E; Vieira, A R; Gonzalez-Aviles, G; Kendall Scott, M E; Manikonda, K; Maxwell, T N; Halpin, J L; Freeman, M M; Medalla, F; Ayers, T L; Derado, G; Mahon, B E; Mintz, E D

    2015-08-01

    Although rare, typhoid fever cases acquired in the United States continue to be reported. Detection and investigation of outbreaks in these domestically acquired cases offer opportunities to identify chronic carriers. We searched surveillance and laboratory databases for domestically acquired typhoid fever cases, used a space-time scan statistic to identify clusters, and classified clusters as outbreaks or non-outbreaks. From 1999 to 2010, domestically acquired cases accounted for 18% of 3373 reported typhoid fever cases; their isolates were less often multidrug-resistant (2% vs. 15%) compared to isolates from travel-associated cases. We identified 28 outbreaks and two possible outbreaks within 45 space-time clusters of ⩾2 domestically acquired cases, including three outbreaks involving ⩾2 molecular subtypes. The approach detected seven of the ten outbreaks published in the literature or reported to CDC. Although this approach did not definitively identify any previously unrecognized outbreaks, it showed the potential to detect outbreaks of typhoid fever that may escape detection by routine analysis of surveillance data. Sixteen outbreaks had been linked to a carrier. Every case of typhoid fever acquired in a non-endemic country warrants thorough investigation. Space-time scan statistics, together with shoe-leather epidemiology and molecular subtyping, may improve outbreak detection.

  11. Discrete Element Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Morris, J; Johnson, S

    2007-12-03

    The Distinct Element Method (also frequently referred to as the Discrete Element Method) (DEM) is a Lagrangian numerical technique where the computational domain consists of discrete solid elements which interact via compliant contacts. This can be contrasted with Finite Element Methods where the computational domain is assumed to represent a continuum (although many modern implementations of the FEM can accommodate some Distinct Element capabilities). Often the terms Discrete Element Method and Distinct Element Method are used interchangeably in the literature, although Cundall and Hart (1992) suggested that Discrete Element Methods should be a more inclusive term covering Distinct Element Methods, Displacement Discontinuity Analysis and Modal Methods. In this work, DEM specifically refers to the Distinct Element Method, where the discrete elements interact via compliant contacts, in contrast with Displacement Discontinuity Analysis where the contacts are rigid and all compliance is taken up by the adjacent intact material.

  12. New scanning technique using Adaptive Statistical lterative Reconstruction (ASIR) significantly reduced the radiation dose of cardiac CT

    International Nuclear Information System (INIS)

    Tumur, Odgerel; Soon, Kean; Brown, Fraser; Mykytowycz, Marcus

    2013-01-01

    The aims of our study were to evaluate the effect of application of Adaptive Statistical Iterative Reconstruction (ASIR) algorithm on the radiation dose of coronary computed tomography angiography (CCTA) and its effects on image quality of CCTA and to evaluate the effects of various patient and CT scanning factors on the radiation dose of CCTA. This was a retrospective study that included 347 consecutive patients who underwent CCTA at a tertiary university teaching hospital between 1 July 2009 and 20 September 2011. Analysis was performed comparing patient demographics, scan characteristics, radiation dose and image quality in two groups of patients in whom conventional Filtered Back Projection (FBP) or ASIR was used for image reconstruction. There were 238 patients in the FBP group and 109 patients in the ASIR group. There was no difference between the groups in the use of prospective gating, scan length or tube voltage. In ASIR group, significantly lower tube current was used compared with FBP group, 550mA (450–600) vs. 650mA (500–711.25) (median (interquartile range)), respectively, P<0.001. There was 27% effective radiation dose reduction in the ASIR group compared with FBP group, 4.29mSv (2.84–6.02) vs. 5.84mSv (3.88–8.39) (median (interquartile range)), respectively, P<0.001. Although ASIR was associated with increased image noise compared with FBP (39.93±10.22 vs. 37.63±18.79 (mean ±standard deviation), respectively, P<001), it did not affect the signal intensity, signal-to-noise ratio, contrast-to-noise ratio or the diagnostic quality of CCTA. Application of ASIR reduces the radiation dose of CCTA without affecting the image quality.

  13. Stochastic Dual Algorithm for Voltage Regulation in Distribution Networks with Discrete Loads: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhou, Xinyang [University of Colorado; Liu, Zhiyuan [University of Colorado; Chen, Lijun [University of Colorado

    2017-10-03

    This paper considers distribution networks with distributed energy resources and discrete-rate loads, and designs an incentive-based algorithm that allows the network operator and the customers to pursue given operational and economic objectives, while concurrently ensuring that voltages are within prescribed limits. Four major challenges include: (1) the non-convexity from discrete decision variables, (2) the non-convexity due to a Stackelberg game structure, (3) unavailable private information from customers, and (4) different update frequency from two types of devices. In this paper, we first make convex relaxation for discrete variables, then reformulate the non-convex structure into a convex optimization problem together with pricing/reward signal design, and propose a distributed stochastic dual algorithm for solving the reformulated problem while restoring feasible power rates for discrete devices. By doing so, we are able to statistically achieve the solution of the reformulated problem without exposure of any private information from customers. Stability of the proposed schemes is analytically established and numerically corroborated.

  14. Will the alphabet soup of design criteria affect discrete choice experiment results?

    DEFF Research Database (Denmark)

    Olsen, Søren Bøye; Meyerhoff, Jürgen

    2017-01-01

    Every discrete choice experiment needs one, but the impacts of a statistical design on the results are still not well understood. Comparative studies have found that efficient designs outperform especially orthogonal designs. What has been little studied is whether efficient designs come at a cos...

  15. A Discrete Spectral Problem and Related Hierarchy of Discrete Hamiltonian Lattice Equations

    International Nuclear Information System (INIS)

    Xu Xixiang; Cao Weili

    2007-01-01

    Staring from a discrete matrix spectral problem, a hierarchy of lattice soliton equations is presented though discrete zero curvature representation. The resulting lattice soliton equations possess non-local Lax pairs. The Hamiltonian structures are established for the resulting hierarchy by the discrete trace identity. Liouville integrability of resulting hierarchy is demonstrated.

  16. Determination of line edge roughness in low-dose top-down scanning electron microscopy images

    NARCIS (Netherlands)

    Verduin, T.; Kruit, P.; Hagen, C.W.

    2014-01-01

    We investigated the off-line metrology for line edge roughness (LER) determination by using the discrete power spectral density (PSD). The study specifically addresses low-dose scanning electron microscopy (SEM) images in order to reduce the acquisition time and the risk of resist shrinkage. The

  17. Discrete exterior calculus discretization of incompressible Navier–Stokes equations over surface simplicial meshes

    KAUST Repository

    Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi

    2016-01-01

    A conservative discretization of incompressible Navier–Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a

  18. Introducing Discrete Frequency Infrared Technology for High-Throughput Biofluid Screening

    Science.gov (United States)

    Hughes, Caryn; Clemens, Graeme; Bird, Benjamin; Dawson, Timothy; Ashton, Katherine M.; Jenkinson, Michael D.; Brodbelt, Andrew; Weida, Miles; Fotheringham, Edeline; Barre, Matthew; Rowlette, Jeremy; Baker, Matthew J.

    2016-02-01

    Accurate early diagnosis is critical to patient survival, management and quality of life. Biofluids are key to early diagnosis due to their ease of collection and intimate involvement in human function. Large-scale mid-IR imaging of dried fluid deposits offers a high-throughput molecular analysis paradigm for the biomedical laboratory. The exciting advent of tuneable quantum cascade lasers allows for the collection of discrete frequency infrared data enabling clinically relevant timescales. By scanning targeted frequencies spectral quality, reproducibility and diagnostic potential can be maintained while significantly reducing acquisition time and processing requirements, sampling 16 serum spots with 0.6, 5.1 and 15% relative standard deviation (RSD) for 199, 14 and 9 discrete frequencies respectively. We use this reproducible methodology to show proof of concept rapid diagnostics; 40 unique dried liquid biopsies from brain, breast, lung and skin cancer patients were classified in 2.4 cumulative seconds against 10 non-cancer controls with accuracies of up to 90%.

  19. Asymptotic behavior of discrete holomorphic maps z^c, log(z) and discrete Painleve transcedents

    OpenAIRE

    Agafonov, S. I.

    2005-01-01

    It is shown that discrete analogs of z^c and log(z) have the same asymptotic behavior as their smooth counterparts. These discrete maps are described in terms of special solutions of discrete Painleve-II equations, asymptotics of these solutions providing the behaviour of discrete z^c and log(z) at infinity.

  20. The Expected Loss in the Discretization of Multistage Stochastic Programming Problems - Estimation and Convergence Rate

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Martin

    2009-01-01

    Roč. 165, č. 1 (2009), s. 29-45 ISSN 0254-5330 R&D Projects: GA ČR GA402/04/1294 Institutional research plan: CEZ:AV0Z10750506 Keywords : multistage stochastic programming problems * approximation * discretization * Monte Carlo Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.961, year: 2009 http://library.utia.cas.cz/separaty/2008/E/smid-the expected loss in the discretization of multistage stochastic programming problems - estimation and convergence rate.pdf

  1. Infinite Random Graphs as Statistical Mechanical Models

    DEFF Research Database (Denmark)

    Durhuus, Bergfinnur Jøgvan; Napolitano, George Maria

    2011-01-01

    We discuss two examples of infinite random graphs obtained as limits of finite statistical mechanical systems: a model of two-dimensional dis-cretized quantum gravity defined in terms of causal triangulated surfaces, and the Ising model on generic random trees. For the former model we describe a ...

  2. Adaptive and robust statistical methods for processing near-field scanning microwave microscopy images.

    Science.gov (United States)

    Coakley, K J; Imtiaz, A; Wallis, T M; Weber, J C; Berweger, S; Kabos, P

    2015-03-01

    Near-field scanning microwave microscopy offers great potential to facilitate characterization, development and modeling of materials. By acquiring microwave images at multiple frequencies and amplitudes (along with the other modalities) one can study material and device physics at different lateral and depth scales. Images are typically noisy and contaminated by artifacts that can vary from scan line to scan line and planar-like trends due to sample tilt errors. Here, we level images based on an estimate of a smooth 2-d trend determined with a robust implementation of a local regression method. In this robust approach, features and outliers which are not due to the trend are automatically downweighted. We denoise images with the Adaptive Weights Smoothing method. This method smooths out additive noise while preserving edge-like features in images. We demonstrate the feasibility of our methods on topography images and microwave |S11| images. For one challenging test case, we demonstrate that our method outperforms alternative methods from the scanning probe microscopy data analysis software package Gwyddion. Our methods should be useful for massive image data sets where manual selection of landmarks or image subsets by a user is impractical. Published by Elsevier B.V.

  3. Typhoid fever acquired in the United States, 1999–2010: epidemiology, microbiology, and use of a space–time scan statistic for outbreak detection

    Science.gov (United States)

    IMANISHI, M.; NEWTON, A. E.; VIEIRA, A. R.; GONZALEZ-AVILES, G.; KENDALL SCOTT, M. E.; MANIKONDA, K.; MAXWELL, T. N.; HALPIN, J. L.; FREEMAN, M. M.; MEDALLA, F.; AYERS, T. L.; DERADO, G.; MAHON, B. E.; MINTZ, E. D.

    2016-01-01

    SUMMARY Although rare, typhoid fever cases acquired in the United States continue to be reported. Detection and investigation of outbreaks in these domestically acquired cases offer opportunities to identify chronic carriers. We searched surveillance and laboratory databases for domestically acquired typhoid fever cases, used a space–time scan statistic to identify clusters, and classified clusters as outbreaks or non-outbreaks. From 1999 to 2010, domestically acquired cases accounted for 18% of 3373 reported typhoid fever cases; their isolates were less often multidrug-resistant (2% vs. 15%) compared to isolates from travel-associated cases. We identified 28 outbreaks and two possible outbreaks within 45 space–time clusters of ⩾2 domestically acquired cases, including three outbreaks involving ⩾2 molecular subtypes. The approach detected seven of the ten outbreaks published in the literature or reported to CDC. Although this approach did not definitively identify any previously unrecognized outbreaks, it showed the potential to detect outbreaks of typhoid fever that may escape detection by routine analysis of surveillance data. Sixteen outbreaks had been linked to a carrier. Every case of typhoid fever acquired in a non-endemic country warrants thorough investigation. Space–time scan statistics, together with shoe-leather epidemiology and molecular subtyping, may improve outbreak detection. PMID:25427666

  4. Discrete geometry: speculations on a new framework for classical electrodynamics

    International Nuclear Information System (INIS)

    Hemion, G.

    1988-01-01

    An attempt is made to describe the basic principles of physics in terms of discrete partially ordered sets. Geometric ideas are introduced by means of an action at a distance formulation of classical electrodynamics. The speculations are in two main directions: (i) Gravity, one of the four elementary forces of nature, seems to be fundamentally different from the other three forces. Could it be that gravity can be explained as a natural consequence of the discrete structure? (ii) The problem of the observer in quantum mechanics continues to cause conceptual problems. Can quantum statistics be explained in terms of finite ensembles of possible partially ordered sets? The development is guided at all stages by reference to the simplest, and most well-established principles of physics

  5. Discrete port-Hamiltonian systems

    NARCIS (Netherlands)

    Talasila, V.; Clemente-Gallardo, J.; Schaft, A.J. van der

    2006-01-01

    Either from a control theoretic viewpoint or from an analysis viewpoint it is necessary to convert smooth systems to discrete systems, which can then be implemented on computers for numerical simulations. Discrete models can be obtained either by discretizing a smooth model, or by directly modeling

  6. Applied discrete-time queues

    CERN Document Server

    Alfa, Attahiru S

    2016-01-01

    This book introduces the theoretical fundamentals for modeling queues in discrete-time, and the basic procedures for developing queuing models in discrete-time. There is a focus on applications in modern telecommunication systems. It presents how most queueing models in discrete-time can be set up as discrete-time Markov chains. Techniques such as matrix-analytic methods (MAM) that can used to analyze the resulting Markov chains are included. This book covers single node systems, tandem system and queueing networks. It shows how queues with time-varying parameters can be analyzed, and illustrates numerical issues associated with computations for the discrete-time queueing systems. Optimal control of queues is also covered. Applied Discrete-Time Queues targets researchers, advanced-level students and analysts in the field of telecommunication networks. It is suitable as a reference book and can also be used as a secondary text book in computer engineering and computer science. Examples and exercises are includ...

  7. Time Discretization Techniques

    KAUST Repository

    Gottlieb, S.; Ketcheson, David I.

    2016-01-01

    The time discretization of hyperbolic partial differential equations is typically the evolution of a system of ordinary differential equations obtained by spatial discretization of the original problem. Methods for this time evolution include

  8. Process Modeling for Energy Usage in “Smart House” System with a Help of Markov Discrete Chain

    Directory of Open Access Journals (Sweden)

    Victor Kravets

    2016-05-01

    Full Text Available Method for evaluating economic efficiency of technical systems using discrete Markov chains modelling illustrated by the system of “Smart house”, consisting, for example, of the three independently functioning elements. Dynamic model of a random power consumption process in the form of a symmetrical state graph of heterogeneous discrete Markov chain is built. The corresponding mathematical model of a random Markov process of power consumption in the “smart house” system in recurrent matrix form is being developed. Technique of statistical determination of probability of random transition elements of the system and the corresponding to the transition probability matrix of the discrete inhomogeneous Markov chain are developed. Statistically determined random transitions of system elements power consumption and the corresponding distribution laws are introduced. The matrix of transition prices, expectations for the possible states of a system price transition and, eventually, the cost of Markov process of power consumption throughout the day.

  9. Discrete repulsive oscillator wavefunctions

    International Nuclear Information System (INIS)

    Munoz, Carlos A; Rueda-Paz, Juvenal; Wolf, Kurt Bernardo

    2009-01-01

    For the study of infinite discrete systems on phase space, the three-dimensional Lorentz algebra and group, so(2,1) and SO(2,1), provide a discrete model of the repulsive oscillator. Its eigenfunctions are found in the principal irreducible representation series, where the compact generator-that we identify with the position operator-has the infinite discrete spectrum of the integers Z, while the spectrum of energies is a double continuum. The right- and left-moving wavefunctions are given by hypergeometric functions that form a Dirac basis for l 2 (Z). Under contraction, the discrete system limits to the well-known quantum repulsive oscillator. Numerical computations of finite approximations raise further questions on the use of Dirac bases for infinite discrete systems.

  10. Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation.

    Science.gov (United States)

    Yurkin, Maxim A; Semyanov, Konstantin A; Tarasov, Peter A; Chernyshev, Andrei V; Hoekstra, Alfons G; Maltsev, Valeri P

    2005-09-01

    Elastic light scattering by mature red blood cells (RBCs) was theoretically and experimentally analyzed by use of the discrete dipole approximation (DDA) and scanning flow cytometry (SFC), respectively. SFC permits measurement of the angular dependence of the light-scattering intensity (indicatrix) of single particles. A mature RBC is modeled as a biconcave disk in DDA simulations of light scattering. We have studied the effect of RBC orientation related to the direction of the light incident upon the indicatrix. Numerical calculations of indicatrices for several axis ratios and volumes of RBC have been carried out. Comparison of the simulated indicatrices and indicatrices measured by SFC showed good agreement, validating the biconcave disk model for a mature RBC. We simulated the light-scattering output signals from the SFC with the DDA for RBCs modeled as a disk-sphere and as an oblate spheroid. The biconcave disk, the disk-sphere, and the oblate spheroid models have been compared for two orientations, i.e., face-on and rim-on incidence, relative to the direction of the incident beam. Only the oblate spheroid model for rim-on incidence gives results similar to those of the rigorous biconcave disk model.

  11. Discrete Hamiltonian evolution and quantum gravity

    International Nuclear Information System (INIS)

    Husain, Viqar; Winkler, Oliver

    2004-01-01

    We study constrained Hamiltonian systems by utilizing general forms of time discretization. We show that for explicit discretizations, the requirement of preserving the canonical Poisson bracket under discrete evolution imposes strong conditions on both allowable discretizations and Hamiltonians. These conditions permit time discretizations for a limited class of Hamiltonians, which does not include homogeneous cosmological models. We also present two general classes of implicit discretizations which preserve Poisson brackets for any Hamiltonian. Both types of discretizations generically do not preserve first class constraint algebras. Using this observation, we show that time discretization provides a complicated time gauge fixing for quantum gravity models, which may be compared with the alternative procedure of gauge fixing before discretization

  12. Comparison of the biometric values obtained by two different A-mode ultrasound devices (Eye Cubed vs. PalmScan): a transversal, descriptive, and comparative study.

    Science.gov (United States)

    Velez-Montoya, Raul; Shusterman, Eugene Mark; López-Miranda, Miriam Jessica; Mayorquin-Ruiz, Mariana; Salcedo-Villanueva, Guillermo; Quiroz-Mercado, Hugo; Morales-Cantón, Virgilio

    2010-03-24

    To assess the reliability of the measurements obtained with the PalmScan, when compared with another standardized A-mode ultrasound device, and assess the consistency and correlation between the two methods. Transversal, descriptive, and comparative study. We recorded the axial length (AL), anterior chamber depth (ACD) and lens thickness (LT) obtained with two A-mode ultrasounds (PalmScan A2000 and Eye Cubed) using an immersion technique. We compared the measurements with a two-sample t-test. Agreement between the two devices was assessed with Bland-Altman plots and 95% limits of agreement. 70 eyes of 70 patients were enrolled in this study. The measurements with the Eye Cubed of AL and ACD were shorter than the measurements taken by the PalmScan. The differences were not statistically significant regarding AL (p < 0.4) but significant regarding ACD (p < 0.001). The highest agreement between the two devices was obtained during LT measurement. The PalmScan measurements were shorter, but not statistically significantly (p < 0.2). The values of AL and LT, obtained with both devices are not identical, but within the limits of agreement. The agreement is not affected by the magnitude of the ocular dimensions (but only between range of 20 mm to 27 mm of AL and 3.5 mm to 5.7 mm of LT). A correction of about 0.5 D could be considered if an intraocular lens is being calculated. However due to the large variability of the results, the authors recommend discretion in using this conversion factor, and to adjust the power of the intraocular lenses based upon the personal experience of the surgeon.

  13. Discrete exterior calculus discretization of incompressible Navier–Stokes equations over surface simplicial meshes

    KAUST Repository

    Mohamed, Mamdouh S.

    2016-02-11

    A conservative discretization of incompressible Navier–Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a combinatorial discretization of the wedge product. The governing equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. The discretization is then carried out by substituting with the corresponding discrete operators based on the DEC framework. Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy for otherwise unstructured meshes. By construction, the method is conservative in that both mass and vorticity are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step.

  14. Discrete exterior calculus discretization of incompressible Navier-Stokes equations over surface simplicial meshes

    Science.gov (United States)

    Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi

    2016-05-01

    A conservative discretization of incompressible Navier-Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a combinatorial discretization of the wedge product. The governing equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. The discretization is then carried out by substituting with the corresponding discrete operators based on the DEC framework. Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy for otherwise unstructured meshes. By construction, the method is conservative in that both mass and vorticity are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step.

  15. Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves

    International Nuclear Information System (INIS)

    Inoguchi, Jun-ichi; Kajiwara, Kenji; Matsuura, Nozomu; Ohta, Yasuhiro

    2012-01-01

    We construct explicit solutions to continuous motion of discrete plane curves described by a semi-discrete potential modified KdV equation. Explicit formulas in terms of the τ function are presented. Bäcklund transformations of the discrete curves are also discussed. We finally consider the continuous limit of discrete motion of discrete plane curves described by the discrete potential modified KdV equation to motion of smooth plane curves characterized by the potential modified KdV equation. (paper)

  16. Evaluation of processing methods for static radioisotope scan images

    International Nuclear Information System (INIS)

    Oakberg, J.A.

    1976-12-01

    Radioisotope scanning in the field of nuclear medicine provides a method for the mapping of a radioactive drug in the human body to produce maps (images) which prove useful in detecting abnormalities in vital organs. At best, radioisotope scanning methods produce images with poor counting statistics. One solution to improving the body scan images is using dedicated small computers with appropriate software to process the scan data. Eleven methods for processing image data are compared

  17. Statistical probabilistic mapping in the individual brain space: decreased metabolism in epilepsy with FDG PET

    International Nuclear Information System (INIS)

    Oh, Jung Su; Lee, Jae Sung; Kim, Yu Kyeong; Chung, June Key; Lee, Myung Chul; Lee, Dong Soo

    2005-01-01

    In the statistical probabilistic mapping, commonly, differences between two or more groups of subjects are statistically analyzed following spatial normalization. However, to our best knowledge, there is few study which performed the statistical mapping in the individual brain space rather than in the stereotaxic brain space, i.e., template space. Therefore, in the current study, a new method for mapping the statistical results in the template space onto individual brain space has been developed. Four young subjects with epilepsy and their age-matched thirty normal healthy subjects were recruited. Both FDG PET and T1 structural MRI was scanned in these groups. Statistical analysis on the decreased FDG metabolism in epilepsy was performed on the SPM with two sample t-test (p < 0.001, intensity threshold 100). To map the statistical results onto individual space, inverse deformation was performed as follows. With SPM deformation toolbox, DCT (discrete cosine transform) basis-encoded deformation fields between individual T1 images and T1 MNI template were obtained. Afterward, inverse of those fields, i.e., inverse deformation fields were obtained. Since both PET and T1 images have been already normalized in the same MNI space, inversely deformed results in PET is on the individual brain MRI space. By applying inverse deformation field on the statistical results of the PET, the statistical map of decreased metabolism in individual spaces were obtained. With statistical results in the template space, localization of decreased metabolism was in the inferior temporal lobe, which was slightly inferior to the hippocampus. The statistical results in the individual space were commonly located in the hippocampus, where the activation should be decreased according to a priori knowledge of neuroscience. With our newly developed statistical mapping on the individual spaces, the localization of the brain functional mapping became more appropriate in the sense of neuroscience

  18. Statistical probabilistic mapping in the individual brain space: decreased metabolism in epilepsy with FDG PET

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jung Su; Lee, Jae Sung; Kim, Yu Kyeong; Chung, June Key; Lee, Myung Chul; Lee, Dong Soo [Seoul National University Hospital, Seoul (Korea, Republic of)

    2005-07-01

    In the statistical probabilistic mapping, commonly, differences between two or more groups of subjects are statistically analyzed following spatial normalization. However, to our best knowledge, there is few study which performed the statistical mapping in the individual brain space rather than in the stereotaxic brain space, i.e., template space. Therefore, in the current study, a new method for mapping the statistical results in the template space onto individual brain space has been developed. Four young subjects with epilepsy and their age-matched thirty normal healthy subjects were recruited. Both FDG PET and T1 structural MRI was scanned in these groups. Statistical analysis on the decreased FDG metabolism in epilepsy was performed on the SPM with two sample t-test (p < 0.001, intensity threshold 100). To map the statistical results onto individual space, inverse deformation was performed as follows. With SPM deformation toolbox, DCT (discrete cosine transform) basis-encoded deformation fields between individual T1 images and T1 MNI template were obtained. Afterward, inverse of those fields, i.e., inverse deformation fields were obtained. Since both PET and T1 images have been already normalized in the same MNI space, inversely deformed results in PET is on the individual brain MRI space. By applying inverse deformation field on the statistical results of the PET, the statistical map of decreased metabolism in individual spaces were obtained. With statistical results in the template space, localization of decreased metabolism was in the inferior temporal lobe, which was slightly inferior to the hippocampus. The statistical results in the individual space were commonly located in the hippocampus, where the activation should be decreased according to a priori knowledge of neuroscience. With our newly developed statistical mapping on the individual spaces, the localization of the brain functional mapping became more appropriate in the sense of neuroscience.

  19. Discrete hierarchical organization of social group sizes.

    Science.gov (United States)

    Zhou, W-X; Sornette, D; Hill, R A; Dunbar, R I M

    2005-02-22

    The 'social brain hypothesis' for the evolution of large brains in primates has led to evidence for the coevolution of neocortical size and social group sizes, suggesting that there is a cognitive constraint on group size that depends, in some way, on the volume of neural material available for processing and synthesizing information on social relationships. More recently, work on both human and non-human primates has suggested that social groups are often hierarchically structured. We combine data on human grouping patterns in a comprehensive and systematic study. Using fractal analysis, we identify, with high statistical confidence, a discrete hierarchy of group sizes with a preferred scaling ratio close to three: rather than a single or a continuous spectrum of group sizes, humans spontaneously form groups of preferred sizes organized in a geometrical series approximating 3-5, 9-15, 30-45, etc. Such discrete scale invariance could be related to that identified in signatures of herding behaviour in financial markets and might reflect a hierarchical processing of social nearness by human brains.

  20. A discrete exterior approach to structure-preserving discretization of distributed-parameter port-Hamiltonian systems

    NARCIS (Netherlands)

    Seslija, Marko; Scherpen, Jacquelien M.A.; van der Schaft, Arjan

    2011-01-01

    This paper addresses the issue of structure-preserving discretization of open distributed-parameter systems with Hamiltonian dynamics. Employing the formalism of discrete exterior calculus, we introduce simplicial Dirac structures as discrete analogues of the Stokes-Dirac structure and demonstrate

  1. Discrete integrable couplings associated with Toda-type lattice and two hierarchies of discrete soliton equations

    International Nuclear Information System (INIS)

    Zhang Yufeng; Fan Engui; Zhang Yongqing

    2006-01-01

    With the help of two semi-direct sum Lie algebras, an efficient way to construct discrete integrable couplings is proposed. As its applications, the discrete integrable couplings of the Toda-type lattice equations are obtained. The approach can be devoted to establishing other discrete integrable couplings of the discrete lattice integrable hierarchies of evolution equations

  2. Discrete exterior geometry approach to structure-preserving discretization of distributed-parameter port-Hamiltonian systems

    NARCIS (Netherlands)

    Seslija, Marko; van der Schaft, Arjan; Scherpen, Jacquelien M.A.

    This paper addresses the issue of structure-preserving discretization of open distributed-parameter systems with Hamiltonian dynamics. Employing the formalism of discrete exterior calculus, we introduce a simplicial Dirac structure as a discrete analogue of the Stokes-Dirac structure and demonstrate

  3. Statistical Methods for the Analysis of Discrete Choice Experiments: A Report of the ISPOR Conjoint Analysis Good Research Practices Task Force.

    Science.gov (United States)

    Hauber, A Brett; González, Juan Marcos; Groothuis-Oudshoorn, Catharina G M; Prior, Thomas; Marshall, Deborah A; Cunningham, Charles; IJzerman, Maarten J; Bridges, John F P

    2016-06-01

    Conjoint analysis is a stated-preference survey method that can be used to elicit responses that reveal preferences, priorities, and the relative importance of individual features associated with health care interventions or services. Conjoint analysis methods, particularly discrete choice experiments (DCEs), have been increasingly used to quantify preferences of patients, caregivers, physicians, and other stakeholders. Recent consensus-based guidance on good research practices, including two recent task force reports from the International Society for Pharmacoeconomics and Outcomes Research, has aided in improving the quality of conjoint analyses and DCEs in outcomes research. Nevertheless, uncertainty regarding good research practices for the statistical analysis of data from DCEs persists. There are multiple methods for analyzing DCE data. Understanding the characteristics and appropriate use of different analysis methods is critical to conducting a well-designed DCE study. This report will assist researchers in evaluating and selecting among alternative approaches to conducting statistical analysis of DCE data. We first present a simplistic DCE example and a simple method for using the resulting data. We then present a pedagogical example of a DCE and one of the most common approaches to analyzing data from such a question format-conditional logit. We then describe some common alternative methods for analyzing these data and the strengths and weaknesses of each alternative. We present the ESTIMATE checklist, which includes a list of questions to consider when justifying the choice of analysis method, describing the analysis, and interpreting the results. Copyright © 2016 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  4. Statistical significance of cis-regulatory modules

    Directory of Open Access Journals (Sweden)

    Smith Andrew D

    2007-01-01

    Full Text Available Abstract Background It is becoming increasingly important for researchers to be able to scan through large genomic regions for transcription factor binding sites or clusters of binding sites forming cis-regulatory modules. Correspondingly, there has been a push to develop algorithms for the rapid detection and assessment of cis-regulatory modules. While various algorithms for this purpose have been introduced, most are not well suited for rapid, genome scale scanning. Results We introduce methods designed for the detection and statistical evaluation of cis-regulatory modules, modeled as either clusters of individual binding sites or as combinations of sites with constrained organization. In order to determine the statistical significance of module sites, we first need a method to determine the statistical significance of single transcription factor binding site matches. We introduce a straightforward method of estimating the statistical significance of single site matches using a database of known promoters to produce data structures that can be used to estimate p-values for binding site matches. We next introduce a technique to calculate the statistical significance of the arrangement of binding sites within a module using a max-gap model. If the module scanned for has defined organizational parameters, the probability of the module is corrected to account for organizational constraints. The statistical significance of single site matches and the architecture of sites within the module can be combined to provide an overall estimation of statistical significance of cis-regulatory module sites. Conclusion The methods introduced in this paper allow for the detection and statistical evaluation of single transcription factor binding sites and cis-regulatory modules. The features described are implemented in the Search Tool for Occurrences of Regulatory Motifs (STORM and MODSTORM software.

  5. Assessment of Quadrivalent Human Papillomavirus Vaccine Safety Using the Self-Controlled Tree-Temporal Scan Statistic Signal-Detection Method in the Sentinel System.

    Science.gov (United States)

    Yih, W Katherine; Maro, Judith C; Nguyen, Michael; Baker, Meghan A; Balsbaugh, Carolyn; Cole, David V; Dashevsky, Inna; Mba-Jonas, Adamma; Kulldorff, Martin

    2018-06-01

    The self-controlled tree-temporal scan statistic-a new signal-detection method-can evaluate whether any of a wide variety of health outcomes are temporally associated with receipt of a specific vaccine, while adjusting for multiple testing. Neither health outcomes nor postvaccination potential periods of increased risk need be prespecified. Using US medical claims data in the Food and Drug Administration's Sentinel system, we employed the method to evaluate adverse events occurring after receipt of quadrivalent human papillomavirus vaccine (4vHPV). Incident outcomes recorded in emergency department or inpatient settings within 56 days after first doses of 4vHPV received by 9- through 26.9-year-olds in 2006-2014 were identified using International Classification of Diseases, Ninth Revision, diagnosis codes and analyzed by pairing the new method with a standard hierarchical classification of diagnoses. On scanning diagnoses of 1.9 million 4vHPV recipients, 2 statistically significant categories of adverse events were found: cellulitis on days 2-3 after vaccination and "other complications of surgical and medical procedures" on days 1-3 after vaccination. Cellulitis is a known adverse event. Clinically informed investigation of electronic claims records of the patients with "other complications" did not suggest any previously unknown vaccine safety problem. Considering that thousands of potential short-term adverse events and hundreds of potential risk intervals were evaluated, these findings add significantly to the growing safety record of 4vHPV.

  6. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2010-01-01

    The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Spring 2010 Ectent: 5 ects Class size: 18......The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Spring 2010 Ectent: 5 ects Class size: 18...

  7. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2010-01-01

    The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Autumn 2010 Ectent: 5 ects Class size: 15......The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Autumn 2010 Ectent: 5 ects Class size: 15...

  8. Two new discrete integrable systems

    International Nuclear Information System (INIS)

    Chen Xiao-Hong; Zhang Hong-Qing

    2013-01-01

    In this paper, we focus on the construction of new (1+1)-dimensional discrete integrable systems according to a subalgebra of loop algebra à 1 . By designing two new (1+1)-dimensional discrete spectral problems, two new discrete integrable systems are obtained, namely, a 2-field lattice hierarchy and a 3-field lattice hierarchy. When deriving the two new discrete integrable systems, we find the generalized relativistic Toda lattice hierarchy and the generalized modified Toda lattice hierarchy. Moreover, we also obtain the Hamiltonian structures of the two lattice hierarchies by means of the discrete trace identity

  9. Space-Time Discrete KPZ Equation

    Science.gov (United States)

    Cannizzaro, G.; Matetski, K.

    2018-03-01

    We study a general family of space-time discretizations of the KPZ equation and show that they converge to its solution. The approach we follow makes use of basic elements of the theory of regularity structures (Hairer in Invent Math 198(2):269-504, 2014) as well as its discrete counterpart (Hairer and Matetski in Discretizations of rough stochastic PDEs, 2015. arXiv:1511.06937). Since the discretization is in both space and time and we allow non-standard discretization for the product, the methods mentioned above have to be suitably modified in order to accommodate the structure of the models under study.

  10. Discrete density of states

    International Nuclear Information System (INIS)

    Aydin, Alhun; Sisman, Altug

    2016-01-01

    By considering the quantum-mechanically minimum allowable energy interval, we exactly count number of states (NOS) and introduce discrete density of states (DOS) concept for a particle in a box for various dimensions. Expressions for bounded and unbounded continua are analytically recovered from discrete ones. Even though substantial fluctuations prevail in discrete DOS, they're almost completely flattened out after summation or integration operation. It's seen that relative errors of analytical expressions of bounded/unbounded continua rapidly decrease for high NOS values (weak confinement or high energy conditions), while the proposed analytical expressions based on Weyl's conjecture always preserve their lower error characteristic. - Highlights: • Discrete density of states considering minimum energy difference is proposed. • Analytical DOS and NOS formulas based on Weyl conjecture are given. • Discrete DOS and NOS functions are examined for various dimensions. • Relative errors of analytical formulas are much better than the conventional ones.

  11. Poisson hierarchy of discrete strings

    International Nuclear Information System (INIS)

    Ioannidou, Theodora; Niemi, Antti J.

    2016-01-01

    The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.

  12. Poisson hierarchy of discrete strings

    Energy Technology Data Exchange (ETDEWEB)

    Ioannidou, Theodora, E-mail: ti3@auth.gr [Faculty of Civil Engineering, School of Engineering, Aristotle University of Thessaloniki, 54249, Thessaloniki (Greece); Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se [Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108, Uppsala (Sweden); Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200, Tours (France); Department of Physics, Beijing Institute of Technology, Haidian District, Beijing 100081 (China)

    2016-01-28

    The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.

  13. Discrete energy formulation of neutron transport theory applied to solving the discrete ordinates equations

    International Nuclear Information System (INIS)

    Ching, J.; Oblow, E.M.; Goldstein, H.

    1976-01-01

    An algebraic equivalence between the point-energy and multigroup forms of the Boltzmann transport equation is demonstrated that allows the development of a discrete energy, discrete ordinates method for the solution of radiation transport problems. In the discrete energy method, the group averaging required in the cross-section processing for multigroup calculations is replaced by a faster numerical quadrature scheme capable of generating transfer cross sections describing all the physical processes of interest on a fine point-energy grid. Test calculations in which the discrete energy method is compared with the multigroup method show that, for the same energy grid, the discrete energy method is much faster, although somewhat less accurate, than the multigroup method. However, the accuracy of the discrete energy method increases rapidly as the spacing between energy grid points is decreased, approaching that of multigroup calculations. For problems requiring great detail in the energy spectrum, the discrete energy method is therefore expected to be far more economical than the multigroup technique for equivalent accuracy solutions. This advantage of the point method is demonstrated by application to the study of neutron transport in a thick iron slab

  14. 3-D Discrete Analytical Ridgelet Transform

    OpenAIRE

    Helbert , David; Carré , Philippe; Andrès , Éric

    2006-01-01

    International audience; In this paper, we propose an implementation of the 3-D Ridgelet transform: the 3-D discrete analytical Ridgelet transform (3-D DART). This transform uses the Fourier strategy for the computation of the associated 3-D discrete Radon transform. The innovative step is the definition of a discrete 3-D transform with the discrete analytical geometry theory by the construction of 3-D discrete analytical lines in the Fourier domain. We propose two types of 3-D discrete lines:...

  15. Simulation of interim spent fuel storage system with discrete event model

    International Nuclear Information System (INIS)

    Yoon, Wan Ki; Song, Ki Chan; Lee, Jae Sol; Park, Hyun Soo

    1989-01-01

    This paper describes dynamic simulation of the spent fuel storage system which is described by statistical discrete event models. It visualizes flow and queue of system over time, assesses the operational performance of the system activities and establishes the system components and streams. It gives information on system organization and operation policy with reference to the design. System was tested and analyzed over a number of critical parameters to establish the optimal system. Workforce schedule and resources with long processing time dominate process. A combination of two workforce shifts a day and two cooling pits gives the optimal solution of storage system. Discrete system simulation is an useful tool to get information on optimal design and operation of the storage system. (Author)

  16. Fisher information and statistical inference for phase-type distributions

    DEFF Research Database (Denmark)

    Bladt, Mogens; Esparza, Luz Judith R; Nielsen, Bo Friis

    2011-01-01

    This paper is concerned with statistical inference for both continuous and discrete phase-type distributions. We consider maximum likelihood estimation, where traditionally the expectation-maximization (EM) algorithm has been employed. Certain numerical aspects of this method are revised and we...

  17. Discrete fractional calculus

    CERN Document Server

    Goodrich, Christopher

    2015-01-01

    This text provides the first comprehensive treatment of the discrete fractional calculus. Experienced researchers will find the text useful as a reference for discrete fractional calculus and topics of current interest. Students who are interested in learning about discrete fractional calculus will find this text to provide a useful starting point. Several exercises are offered at the end of each chapter and select answers have been provided at the end of the book. The presentation of the content is designed to give ample flexibility for potential use in a myriad of courses and for independent study. The novel approach taken by the authors includes a simultaneous treatment of the fractional- and integer-order difference calculus (on a variety of time scales, including both the usual forward and backwards difference operators). The reader will acquire a solid foundation in the classical topics of the discrete calculus while being introduced to exciting recent developments, bringing them to the frontiers of the...

  18. New applications of statistical tools in plant pathology.

    Science.gov (United States)

    Garrett, K A; Madden, L V; Hughes, G; Pfender, W F

    2004-09-01

    ABSTRACT The series of papers introduced by this one address a range of statistical applications in plant pathology, including survival analysis, nonparametric analysis of disease associations, multivariate analyses, neural networks, meta-analysis, and Bayesian statistics. Here we present an overview of additional applications of statistics in plant pathology. An analysis of variance based on the assumption of normally distributed responses with equal variances has been a standard approach in biology for decades. Advances in statistical theory and computation now make it convenient to appropriately deal with discrete responses using generalized linear models, with adjustments for overdispersion as needed. New nonparametric approaches are available for analysis of ordinal data such as disease ratings. Many experiments require the use of models with fixed and random effects for data analysis. New or expanded computing packages, such as SAS PROC MIXED, coupled with extensive advances in statistical theory, allow for appropriate analyses of normally distributed data using linear mixed models, and discrete data with generalized linear mixed models. Decision theory offers a framework in plant pathology for contexts such as the decision about whether to apply or withhold a treatment. Model selection can be performed using Akaike's information criterion. Plant pathologists studying pathogens at the population level have traditionally been the main consumers of statistical approaches in plant pathology, but new technologies such as microarrays supply estimates of gene expression for thousands of genes simultaneously and present challenges for statistical analysis. Applications to the study of the landscape of the field and of the genome share the risk of pseudoreplication, the problem of determining the appropriate scale of the experimental unit and of obtaining sufficient replication at that scale.

  19. Chaotic properties between the nonintegrable discrete nonlinear Schroedinger equation and a nonintegrable discrete Heisenberg model

    International Nuclear Information System (INIS)

    Ding Qing

    2007-01-01

    We prove that the integrable-nonintegrable discrete nonlinear Schroedinger equation (AL-DNLS) introduced by Cai, Bishop and Gronbech-Jensen (Phys. Rev. Lett. 72 591(1994)) is the discrete gauge equivalent to an integrable-nonintegrable discrete Heisenberg model from the geometric point of view. Then we study whether the transmission and bifurcation properties of the AL-DNLS equation are preserved under the action of discrete gauge transformations. Our results reveal that the transmission property of the AL-DNLS equation is completely preserved and the bifurcation property is conditionally preserved to those of the integrable-nonintegrable discrete Heisenberg model

  20. A novel scanning interferometer for two-dimensional plasma density measurements

    International Nuclear Information System (INIS)

    Howard, J.

    1989-01-01

    A novel multichannel scanning interferometer designed for tomographically inferring contours of electron density in magnetically confined plasmas is described. The scanning element is a multi-sectored blazed rotating grating. The diffracted beam emerges at a different angle from each sector giving rise to a fan array of discrete beams for each rotation of the grating. Signals from the probing chords are multiplexed in time enabling the use of a single detecting element for the extraction of many channels of line integrated density information. An air turbine driven grating wheel assembly has been fabricated and initial tests performed. The proposed interferometer is to be installed on the H-1 helical axis stellarator currently under construction at the Australian National University. 16 refs., 12 figs

  1. The dynamics of discrete populations and series of events

    CERN Document Server

    Hopcraft, Keith Iain; Ridley, Kevin D

    2014-01-01

    IntroductionReferencesStatistical PreliminariesIntroductionProbability DistributionsMoment-Generating FunctionsDiscrete ProcessesSeries of EventsSummaryFurther ReadingMarkovian Population ProcessesIntroductionBirths and DeathsImmigration and the Poisson ProcessThe Effect of MeasurementCorrelation of CountsSummaryFurther ReadingThe Birth-Death-Immigration ProcessIntroductionRate Equations for the ProcessEquation for the Generating FunctionGeneral Time-Dependent SolutionFluctuation Characteristics of a Birth-Death-Immigration PopulationSampling and Measurement ProcessesCorrelation of CountsSumma

  2. FROM THE CONTINUOS TO THE DISCRETE MODEL: A LASER SCANNING APPLICATION TO CONSERVATION PROJECTS

    Directory of Open Access Journals (Sweden)

    A. Cardaci

    2012-09-01

    Full Text Available This paper aims to demonstrate the usage of laser scanning (in particular through a methodology based on the integrated use of the software "FARO© Scene" and "GEXCEL JRC-3D Reconstructor" as a valid alternative to traditional surveying techniques, especially when finalized to the restoration and conservation repair of historical buildings. The need to recreate the complex and often irregular shapes of the ancient architecture, by acting quickly and also being accurate, as well as the subsequent implementation of FEM (Finite Element Method for structural analysis, have made nowadays the laser scanning survey a very useful technique. The point cloud obtained by laser scanning can be a flexible tool for every need; not a finished product, but a huge database from which it is possible to extract different information at different times. The use of numerical methods in data processing allows wide opportunities of further investigations starting from the fitting equations. The numerical model lends by itself to the possibility of usage in many applications, such as modelization and structure analysis software. This paper presents the case study of the Church of the Assumption and Saint Michael the Archangel, located in Borgo di Terzo (Italy, a magnificent 18th century's building that presented several structural problems like as the overturning of the façade, the cracking of part of the vaulted ceiling. The survey, carried out by laser scanner (FARO© Photon 120 allowed the reconstruction of the exact geometry of the church, offering the basis for performing structural analysis supported by a realistic model (and not an idealized regular one, useful also in the design of repair interventions.

  3. Discrete density of states

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, Alhun; Sisman, Altug, E-mail: sismanal@itu.edu.tr

    2016-03-22

    By considering the quantum-mechanically minimum allowable energy interval, we exactly count number of states (NOS) and introduce discrete density of states (DOS) concept for a particle in a box for various dimensions. Expressions for bounded and unbounded continua are analytically recovered from discrete ones. Even though substantial fluctuations prevail in discrete DOS, they're almost completely flattened out after summation or integration operation. It's seen that relative errors of analytical expressions of bounded/unbounded continua rapidly decrease for high NOS values (weak confinement or high energy conditions), while the proposed analytical expressions based on Weyl's conjecture always preserve their lower error characteristic. - Highlights: • Discrete density of states considering minimum energy difference is proposed. • Analytical DOS and NOS formulas based on Weyl conjecture are given. • Discrete DOS and NOS functions are examined for various dimensions. • Relative errors of analytical formulas are much better than the conventional ones.

  4. Homogenization of discrete media

    International Nuclear Information System (INIS)

    Pradel, F.; Sab, K.

    1998-01-01

    Material such as granular media, beam assembly are easily seen as discrete media. They look like geometrical points linked together thanks to energetic expressions. Our purpose is to extend discrete kinematics to the one of an equivalent continuous material. First we explain how we build the localisation tool for periodic materials according to estimated continuum medium type (classical Cauchy, and Cosserat media). Once the bridge built between discrete and continuum media, we exhibit its application over two bidimensional beam assembly structures : the honey comb and a structural reinforced variation. The new behavior is then applied for the simple plan shear problem in a Cosserat continuum and compared with the real discrete solution. By the mean of this example, we establish the agreement of our new model with real structures. The exposed method has a longer range than mechanics and can be applied to every discrete problems like electromagnetism in which relationship between geometrical points can be summed up by an energetic function. (orig.)

  5. Homogenization of discrete media

    Energy Technology Data Exchange (ETDEWEB)

    Pradel, F.; Sab, K. [CERAM-ENPC, Marne-la-Vallee (France)

    1998-11-01

    Material such as granular media, beam assembly are easily seen as discrete media. They look like geometrical points linked together thanks to energetic expressions. Our purpose is to extend discrete kinematics to the one of an equivalent continuous material. First we explain how we build the localisation tool for periodic materials according to estimated continuum medium type (classical Cauchy, and Cosserat media). Once the bridge built between discrete and continuum media, we exhibit its application over two bidimensional beam assembly structures : the honey comb and a structural reinforced variation. The new behavior is then applied for the simple plan shear problem in a Cosserat continuum and compared with the real discrete solution. By the mean of this example, we establish the agreement of our new model with real structures. The exposed method has a longer range than mechanics and can be applied to every discrete problems like electromagnetism in which relationship between geometrical points can be summed up by an energetic function. (orig.) 7 refs.

  6. Discrete differential geometry. Consistency as integrability

    OpenAIRE

    Bobenko, Alexander I.; Suris, Yuri B.

    2005-01-01

    A new field of discrete differential geometry is presently emerging on the border between differential and discrete geometry. Whereas classical differential geometry investigates smooth geometric shapes (such as surfaces), and discrete geometry studies geometric shapes with finite number of elements (such as polyhedra), the discrete differential geometry aims at the development of discrete equivalents of notions and methods of smooth surface theory. Current interest in this field derives not ...

  7. Advances in discrete differential geometry

    CERN Document Server

    2016-01-01

    This is one of the first books on a newly emerging field of discrete differential geometry and an excellent way to access this exciting area. It surveys the fascinating connections between discrete models in differential geometry and complex analysis, integrable systems and applications in computer graphics. The authors take a closer look at discrete models in differential geometry and dynamical systems. Their curves are polygonal, surfaces are made from triangles and quadrilaterals, and time is discrete. Nevertheless, the difference between the corresponding smooth curves, surfaces and classical dynamical systems with continuous time can hardly be seen. This is the paradigm of structure-preserving discretizations. Current advances in this field are stimulated to a large extent by its relevance for computer graphics and mathematical physics. This book is written by specialists working together on a common research project. It is about differential geometry and dynamical systems, smooth and discrete theories, ...

  8. The extraction and integration framework: a two-process account of statistical learning.

    Science.gov (United States)

    Thiessen, Erik D; Kronstein, Alexandra T; Hufnagle, Daniel G

    2013-07-01

    The term statistical learning in infancy research originally referred to sensitivity to transitional probabilities. Subsequent research has demonstrated that statistical learning contributes to infant development in a wide array of domains. The range of statistical learning phenomena necessitates a broader view of the processes underlying statistical learning. Learners are sensitive to a much wider range of statistical information than the conditional relations indexed by transitional probabilities, including distributional and cue-based statistics. We propose a novel framework that unifies learning about all of these kinds of statistical structure. From our perspective, learning about conditional relations outputs discrete representations (such as words). Integration across these discrete representations yields sensitivity to cues and distributional information. To achieve sensitivity to all of these kinds of statistical structure, our framework combines processes that extract segments of the input with processes that compare across these extracted items. In this framework, the items extracted from the input serve as exemplars in long-term memory. The similarity structure of those exemplars in long-term memory leads to the discovery of cues and categorical structure, which guides subsequent extraction. The extraction and integration framework provides a way to explain sensitivity to both conditional statistical structure (such as transitional probabilities) and distributional statistical structure (such as item frequency and variability), and also a framework for thinking about how these different aspects of statistical learning influence each other. 2013 APA, all rights reserved

  9. Successive and discrete spaced conditioning in active avoidance learning in young and aged zebrafish.

    Science.gov (United States)

    Yang, Peng; Kajiwara, Riki; Tonoki, Ayako; Itoh, Motoyuki

    2018-05-01

    We designed an automated device to study active avoidance learning abilities of zebrafish. Open source tools were used for the device control, statistical computing, and graphic outputs of data. Using the system, we developed active avoidance tests to examine the effects of trial spacing and aging on learning. Seven-month-old fish showed stronger avoidance behavior as measured by color preference index with discrete spaced training as compared to successive spaced training. Fifteen-month-old fish showed a similar trend, but with reduced cognitive abilities compared with 7-month-old fish. Further, in 7-month-old fish, an increase in learning ability during trials was observed with discrete, but not successive, spaced training. In contrast, 15-month-old fish did not show increase in learning ability during trials. Therefore, these data suggest that discrete spacing is more effective for learning than successive spacing, with the zebrafish active avoidance paradigm, and that the time course analysis of active avoidance using discrete spaced training is useful to detect age-related learning impairment. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  10. Discrete elements method of neutron transport

    International Nuclear Information System (INIS)

    Mathews, K.A.

    1988-01-01

    In this paper a new neutron transport method, called discrete elements (L N ) is derived and compared to discrete ordinates methods, theoretically and by numerical experimentation. The discrete elements method is based on discretizing the Boltzmann equation over a set of elements of angle. The discrete elements method is shown to be more cost-effective than discrete ordinates, in terms of accuracy versus execution time and storage, for the cases tested. In a two-dimensional test case, a vacuum duct in a shield, the L N method is more consistently convergent toward a Monte Carlo benchmark solution

  11. A paradigm for discrete physics

    International Nuclear Information System (INIS)

    Noyes, H.P.; McGoveran, D.; Etter, T.; Manthey, M.J.; Gefwert, C.

    1987-01-01

    An example is outlined for constructing a discrete physics using as a starting point the insight from quantum physics that events are discrete, indivisible and non-local. Initial postulates are finiteness, discreteness, finite computability, absolute nonuniqueness (i.e., homogeneity in the absence of specific cause) and additivity

  12. Study on discrete space charge effects in electron beams and guns

    International Nuclear Information System (INIS)

    Tang Tiantong

    1990-01-01

    The discrete space charge effects in electron beams are studied and a statistical dynamics equation of the ensemble of beam electrons is derived. An approximated analytical solution of this equation is given. This equation has been applied to beam crossover and field-emission and thermal-emission gun problems. The computer calculation results agree on the whole with those of Monte Carlo simulation and experimental data. (orig.)

  13. Discrete-Event Simulation

    Directory of Open Access Journals (Sweden)

    Prateek Sharma

    2015-04-01

    Full Text Available Abstract Simulation can be regarded as the emulation of the behavior of a real-world system over an interval of time. The process of simulation relies upon the generation of the history of a system and then analyzing that history to predict the outcome and improve the working of real systems. Simulations can be of various kinds but the topic of interest here is one of the most important kind of simulation which is Discrete-Event Simulation which models the system as a discrete sequence of events in time. So this paper aims at introducing about Discrete-Event Simulation and analyzing how it is beneficial to the real world systems.

  14. Discrete breathers for a discrete nonlinear Schrödinger ring coupled to a central site.

    Science.gov (United States)

    Jason, Peter; Johansson, Magnus

    2016-01-01

    We examine the existence and properties of certain discrete breathers for a discrete nonlinear Schrödinger model where all but one site are placed in a ring and coupled to the additional central site. The discrete breathers we focus on are stationary solutions mainly localized on one or a few of the ring sites and possibly also the central site. By numerical methods, we trace out and study the continuous families the discrete breathers belong to. Our main result is the discovery of a split bifurcation at a critical value of the coupling between neighboring ring sites. Below this critical value, families form closed loops in a certain parameter space, implying that discrete breathers with and without central-site occupation belong to the same family. Above the split bifurcation the families split up into several separate ones, which bifurcate with solutions with constant ring amplitudes. For symmetry reasons, the families have different properties below the split bifurcation for even and odd numbers of sites. It is also determined under which conditions the discrete breathers are linearly stable. The dynamics of some simpler initial conditions that approximate the discrete breathers are also studied and the parameter regimes where the dynamics remain localized close to the initially excited ring site are related to the linear stability of the exact discrete breathers.

  15. Discrete dynamics versus analytic dynamics

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2014-01-01

    For discrete classical Molecular dynamics obtained by the “Verlet” algorithm (VA) with the time increment h there exists a shadow Hamiltonian H˜ with energy E˜(h) , for which the discrete particle positions lie on the analytic trajectories for H˜ . Here, we proof that there, independent...... of such an analytic analogy, exists an exact hidden energy invariance E * for VA dynamics. The fact that the discrete VA dynamics has the same invariances as Newtonian dynamics raises the question, which of the formulations that are correct, or alternatively, the most appropriate formulation of classical dynamics....... In this context the relation between the discrete VA dynamics and the (general) discrete dynamics investigated by Lee [Phys. Lett. B122, 217 (1983)] is presented and discussed....

  16. 3-D discrete analytical ridgelet transform.

    Science.gov (United States)

    Helbert, David; Carré, Philippe; Andres, Eric

    2006-12-01

    In this paper, we propose an implementation of the 3-D Ridgelet transform: the 3-D discrete analytical Ridgelet transform (3-D DART). This transform uses the Fourier strategy for the computation of the associated 3-D discrete Radon transform. The innovative step is the definition of a discrete 3-D transform with the discrete analytical geometry theory by the construction of 3-D discrete analytical lines in the Fourier domain. We propose two types of 3-D discrete lines: 3-D discrete radial lines going through the origin defined from their orthogonal projections and 3-D planes covered with 2-D discrete line segments. These discrete analytical lines have a parameter called arithmetical thickness, allowing us to define a 3-D DART adapted to a specific application. Indeed, the 3-D DART representation is not orthogonal, It is associated with a flexible redundancy factor. The 3-D DART has a very simple forward/inverse algorithm that provides an exact reconstruction without any iterative method. In order to illustrate the potentiality of this new discrete transform, we apply the 3-D DART and its extension to the Local-DART (with smooth windowing) to the denoising of 3-D image and color video. These experimental results show that the simple thresholding of the 3-D DART coefficients is efficient.

  17. Analysis of Discrete Mittag - Leffler Functions

    Directory of Open Access Journals (Sweden)

    N. Shobanadevi

    2015-03-01

    Full Text Available Discrete Mittag - Leffler functions play a major role in the development of the theory of discrete fractional calculus. In the present article, we analyze qualitative properties of discrete Mittag - Leffler functions and establish sufficient conditions for convergence, oscillation and summability of the infinite series associated with discrete Mittag - Leffler functions.

  18. Difference Discrete Variational Principles, Euler-Lagrange Cohomology and Symplectic, Multisymplectic Structures I: Difference Discrete Variational Principle

    Institute of Scientific and Technical Information of China (English)

    GUO Han-Ying,; LI Yu-Qi; WU Ke1; WANG Shi-Kun

    2002-01-01

    In this first paper of a series, we study the difference discrete variational principle in the framework of multi-parameter differential approach by regarding the forward difference as an entire geometric object in view of noncommutative differential geometry. Regarding the difference as an entire geometric object, the difference discrete version of Legendre transformation can be introduced. By virtue of this variational principle, we can discretely deal with the variation problems in both the Lagrangian and Hamiltonian formalisms to get difference discrete Euler-Lagrange equations and canonical ones for the difference discrete versions of the classical mechanics and classical field theory.

  19. A modern course in statistical physics

    CERN Document Server

    Reichl, Linda E

    2016-01-01

    "A Modern Course in Statistical Physics" is a textbook that illustrates the foundations of equilibrium and non-equilibrium statistical physics, and the universal nature of thermodynamic processes, from the point of view of contemporary research problems. The book treats such diverse topics as the microscopic theory of critical phenomena, superfluid dynamics, quantum conductance, light scattering, transport processes, and dissipative structures, all in the framework of the foundations of statistical physics and thermodynamics. It shows the quantum origins of problems in classical statistical physics. One focus of the book is fluctuations that occur due to the discrete nature of matter, a topic of growing importance for nanometer scale physics and biophysics. Another focus concerns classical and quantum phase transitions, in both monatomic and mixed particle systems. This fourth edition extends the range of topics considered to include, for example, entropic forces, electrochemical processes in biological syste...

  20. Discrete mechanics

    CERN Document Server

    Caltagirone, Jean-Paul

    2014-01-01

    This book presents the fundamental principles of mechanics to re-establish the equations of Discrete Mechanics. It introduces physics and thermodynamics associated to the physical modeling.  The development and the complementarity of sciences lead to review today the old concepts that were the basis for the development of continuum mechanics. The differential geometry is used to review the conservation laws of mechanics. For instance, this formalism requires a different location of vector and scalar quantities in space. The equations of Discrete Mechanics form a system of equations where the H

  1. Discrete mechanics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1985-01-01

    This paper reviews the role of time throughout all phases of mechanics: classical mechanics, non-relativistic quantum mechanics, and relativistic quantum theory. As an example of the relativistic quantum field theory, the case of a massless scalar field interacting with an arbitrary external current is discussed. The comparison between the new discrete theory and the usual continuum formalism is presented. An example is given of a two-dimensional random lattice and its duel. The author notes that there is no evidence that the discrete mechanics is more appropriate than the usual continuum mechanics

  2. Log-concave Probability Distributions: Theory and Statistical Testing

    DEFF Research Database (Denmark)

    An, Mark Yuing

    1996-01-01

    This paper studies the broad class of log-concave probability distributions that arise in economics of uncertainty and information. For univariate, continuous, and log-concave random variables we prove useful properties without imposing the differentiability of density functions. Discrete...... and multivariate distributions are also discussed. We propose simple non-parametric testing procedures for log-concavity. The test statistics are constructed to test one of the two implicati ons of log-concavity: increasing hazard rates and new-is-better-than-used (NBU) property. The test for increasing hazard...... rates are based on normalized spacing of the sample order statistics. The tests for NBU property fall into the category of Hoeffding's U-statistics...

  3. Synchronization Techniques in Parallel Discrete Event Simulation

    OpenAIRE

    Lindén, Jonatan

    2018-01-01

    Discrete event simulation is an important tool for evaluating system models in many fields of science and engineering. To improve the performance of large-scale discrete event simulations, several techniques to parallelize discrete event simulation have been developed. In parallel discrete event simulation, the work of a single discrete event simulation is distributed over multiple processing elements. A key challenge in parallel discrete event simulation is to ensure that causally dependent ...

  4. Penalized likelihood and multi-objective spatial scans for the detection and inference of irregular clusters

    Directory of Open Access Journals (Sweden)

    Fonseca Carlos M

    2010-10-01

    Full Text Available Abstract Background Irregularly shaped spatial clusters are difficult to delineate. A cluster found by an algorithm often spreads through large portions of the map, impacting its geographical meaning. Penalized likelihood methods for Kulldorff's spatial scan statistics have been used to control the excessive freedom of the shape of clusters. Penalty functions based on cluster geometry and non-connectivity have been proposed recently. Another approach involves the use of a multi-objective algorithm to maximize two objectives: the spatial scan statistics and the geometric penalty function. Results & Discussion We present a novel scan statistic algorithm employing a function based on the graph topology to penalize the presence of under-populated disconnection nodes in candidate clusters, the disconnection nodes cohesion function. A disconnection node is defined as a region within a cluster, such that its removal disconnects the cluster. By applying this function, the most geographically meaningful clusters are sifted through the immense set of possible irregularly shaped candidate cluster solutions. To evaluate the statistical significance of solutions for multi-objective scans, a statistical approach based on the concept of attainment function is used. In this paper we compared different penalized likelihoods employing the geometric and non-connectivity regularity functions and the novel disconnection nodes cohesion function. We also build multi-objective scans using those three functions and compare them with the previous penalized likelihood scans. An application is presented using comprehensive state-wide data for Chagas' disease in puerperal women in Minas Gerais state, Brazil. Conclusions We show that, compared to the other single-objective algorithms, multi-objective scans present better performance, regarding power, sensitivity and positive predicted value. The multi-objective non-connectivity scan is faster and better suited for the

  5. Discrete gauge symmetries in discrete MSSM-like orientifolds

    International Nuclear Information System (INIS)

    Ibáñez, L.E.; Schellekens, A.N.; Uranga, A.M.

    2012-01-01

    Motivated by the necessity of discrete Z N symmetries in the MSSM to insure baryon stability, we study the origin of discrete gauge symmetries from open string sector U(1)'s in orientifolds based on rational conformal field theory. By means of an explicit construction, we find an integral basis for the couplings of axions and U(1) factors for all simple current MIPFs and orientifolds of all 168 Gepner models, a total of 32 990 distinct cases. We discuss how the presence of discrete symmetries surviving as a subgroup of broken U(1)'s can be derived using this basis. We apply this procedure to models with MSSM chiral spectrum, concretely to all known U(3)×U(2)×U(1)×U(1) and U(3)×Sp(2)×U(1)×U(1) configurations with chiral bi-fundamentals, but no chiral tensors, as well as some SU(5) GUT models. We find examples of models with Z 2 (R-parity) and Z 3 symmetries that forbid certain B and/or L violating MSSM couplings. Their presence is however relatively rare, at the level of a few percent of all cases.

  6. Darboux and binary Darboux transformations for discrete integrable systems I. Discrete potential KdV equation

    International Nuclear Information System (INIS)

    Shi, Ying; Zhang, Da-jun; Nimmo, Jonathan J C

    2014-01-01

    The Hirota–Miwa equation can be written in ‘nonlinear’ form in two ways: the discrete KP equation and, by using a compatible continuous variable, the discrete potential KP equation. For both systems, we consider the Darboux and binary Darboux transformations, expressed in terms of the continuous variable, and obtain exact solutions in Wronskian and Grammian form. We discuss reductions of both systems to the discrete KdV and discrete potential KdV equation, respectively, and exploit this connection to find the Darboux and binary Darboux transformations and exact solutions of these equations. (paper)

  7. Finite Discrete Gabor Analysis

    DEFF Research Database (Denmark)

    Søndergaard, Peter Lempel

    2007-01-01

    frequency bands at certain times. Gabor theory can be formulated for both functions on the real line and for discrete signals of finite length. The two theories are largely the same because many aspects come from the same underlying theory of locally compact Abelian groups. The two types of Gabor systems...... can also be related by sampling and periodization. This thesis extends on this theory by showing new results for window construction. It also provides a discussion of the problems associated to discrete Gabor bases. The sampling and periodization connection is handy because it allows Gabor systems...... on the real line to be well approximated by finite and discrete Gabor frames. This method of approximation is especially attractive because efficient numerical methods exists for doing computations with finite, discrete Gabor systems. This thesis presents new algorithms for the efficient computation of finite...

  8. Adaptive Discrete Hypergraph Matching.

    Science.gov (United States)

    Yan, Junchi; Li, Changsheng; Li, Yin; Cao, Guitao

    2018-02-01

    This paper addresses the problem of hypergraph matching using higher-order affinity information. We propose a solver that iteratively updates the solution in the discrete domain by linear assignment approximation. The proposed method is guaranteed to converge to a stationary discrete solution and avoids the annealing procedure and ad-hoc post binarization step that are required in several previous methods. Specifically, we start with a simple iterative discrete gradient assignment solver. This solver can be trapped in an -circle sequence under moderate conditions, where is the order of the graph matching problem. We then devise an adaptive relaxation mechanism to jump out this degenerating case and show that the resulting new path will converge to a fixed solution in the discrete domain. The proposed method is tested on both synthetic and real-world benchmarks. The experimental results corroborate the efficacy of our method.

  9. Principles of discrete time mechanics

    CERN Document Server

    Jaroszkiewicz, George

    2014-01-01

    Could time be discrete on some unimaginably small scale? Exploring the idea in depth, this unique introduction to discrete time mechanics systematically builds the theory up from scratch, beginning with the historical, physical and mathematical background to the chronon hypothesis. Covering classical and quantum discrete time mechanics, this book presents all the tools needed to formulate and develop applications of discrete time mechanics in a number of areas, including spreadsheet mechanics, classical and quantum register mechanics, and classical and quantum mechanics and field theories. A consistent emphasis on contextuality and the observer-system relationship is maintained throughout.

  10. Background Noise Removal in Ultrasonic B-scan Images Using Iterative Statistical Techniques

    NARCIS (Netherlands)

    Wells, I.; Charlton, P. C.; Mosey, S.; Donne, K. E.

    2008-01-01

    The interpretation of ultrasonic B-scan images can be a time-consuming process and its success depends on operator skills and experience. Removal of the image background will potentially improve its quality and hence improve operator diagnosis. An automatic background noise removal algorithm is

  11. Discrete integrable systems and hodograph transformations arising from motions of discrete plane curves

    International Nuclear Information System (INIS)

    Feng Baofeng; Maruno, Ken-ichi; Inoguchi, Jun-ichi; Kajiwara, Kenji; Ohta, Yasuhiro

    2011-01-01

    We consider integrable discretizations of some soliton equations associated with the motions of plane curves: the Wadati-Konno-Ichikawa elastic beam equation, the complex Dym equation and the short pulse equation. They are related to the modified KdV or the sine-Gordon equations by the hodograph transformations. Based on the observation that the hodograph transformations are regarded as the Euler-Lagrange transformations of the curve motions, we construct the discrete analogues of the hodograph transformations, which yield integrable discretizations of those soliton equations. (paper)

  12. Modern approaches to discrete curvature

    CERN Document Server

    Romon, Pascal

    2017-01-01

     This book provides a valuable glimpse into discrete curvature, a rich new field of research which blends discrete mathematics, differential geometry, probability and computer graphics. It includes a vast collection of ideas and tools which will offer something new to all interested readers. Discrete geometry has arisen as much as a theoretical development as in response to unforeseen challenges coming from applications. Discrete and continuous geometries have turned out to be intimately connected. Discrete curvature is the key concept connecting them through many bridges in numerous fields: metric spaces, Riemannian and Euclidean geometries, geometric measure theory, topology, partial differential equations, calculus of variations, gradient flows, asymptotic analysis, probability, harmonic analysis, graph theory, etc. In spite of its crucial importance both in theoretical mathematics and in applications, up to now, almost no books have provided a coherent outlook on this emerging field.

  13. Temperature Dependent Electron Transport Properties of Gold Nanoparticles and Composites: Scanning Tunneling Spectroscopy Investigations.

    Science.gov (United States)

    Patil, Sumati; Datar, Suwarna; Dharmadhikari, C V

    2018-03-01

    Scanning tunneling spectroscopy (STS) is used for investigating variations in electronic properties of gold nanoparticles (AuNPs) and its composite with urethane-methacrylate comb polymer (UMCP) as function of temperature. Films are prepared by drop casting AuNPs and UMCP in desired manner on silicon substrates. Samples are further analyzed for morphology under scanning electron microscopy (SEM) and atomic force microscopy (AFM). STS measurements performed in temperature range of 33 °C to 142 °C show systematic variation in current versus voltage (I-V) curves, exhibiting semiconducting to metallic transition/Schottky behavior for different samples, depending upon preparation method and as function of temperature. During current versus time (I-t) measurement for AuNPs, random telegraphic noise is observed at room temperature. Random switching of tunneling current between two discrete levels is observed for this sample. Power spectra derived from I-t show 1/f2 dependence. Statistical analysis of fluctuations shows exponential behavior with time width τ ≈ 7 ms. Local density of states (LDOS) plots derived from I-V curves of each sample show systematic shift in valance/conduction band edge towards/away from Fermi level, with respect to increase in temperature. Schottky emission is best fitted electron emission mechanism for all samples over certain range of bias voltage. Schottky plots are used to calculate barrier heights and temperature dependent measurements helped in measuring activation energies for electron transport in all samples.

  14. Statistical Origin of Black Hole Entropy in Matrix Theory

    International Nuclear Information System (INIS)

    Lowe, D.A.

    1998-01-01

    The statistical entropy of black holes in matrix theory is considered. Assuming matrix theory is the discretized light-cone quantization of a theory with eleven-dimensional Lorentz invariance, we map the counting problem onto the original Gibbons-Hawking calculations of the thermodynamic entropy. copyright 1998 The American Physical Society

  15. Noether symmetries of discrete mechanico–electrical systems

    International Nuclear Information System (INIS)

    Fu Jingli; Xie Fengping; Chen Benyong

    2008-01-01

    This paper focuses on studying Noether symmetries and conservation laws of the discrete mechanico-electrical systems with the nonconservative and the dissipative forces. Based on the invariance of discrete Hamilton action of the systems under the infinitesimal transformation with respect to the generalized coordinates, the generalized electrical quantities and time, it presents the discrete analogue of variational principle, the discrete analogue of Lagrange–Maxwell equations, the discrete analogue of Noether theorems for Lagrange–Maxwell and Lagrange mechanico-electrical systems. Also, the discrete Noether operator identity and the discrete Noether-type conservation laws are obtained for these systems. An actual example is given to illustrate these results. (general)

  16. Exact discretization of Schrödinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru

    2016-01-08

    There are different approaches to discretization of the Schrödinger equation with some approximations. In this paper we derive a discrete equation that can be considered as exact discretization of the continuous Schrödinger equation. The proposed discrete equation is an equation with difference of integer order that is represented by infinite series. We suggest differences, which are characterized by power-law Fourier transforms. These differences can be considered as exact discrete analogs of derivatives of integer orders. Physically the suggested discrete equation describes a chain (or lattice) model with long-range interaction of power-law form. Mathematically it is a uniquely highlighted difference equation that exactly corresponds to the continuous Schrödinger equation. Using the Young's inequality for convolution, we prove that suggested differences are operators on the Hilbert space of square-summable sequences. We prove that the wave functions, which are exact discrete analogs of the free particle and harmonic oscillator solutions of the continuous Schrödinger equations, are solutions of the suggested discrete Schrödinger equations. - Highlights: • Exact discretization of the continuous Schrödinger equation is suggested. • New long-range interactions of power-law form are suggested. • Solutions of discrete Schrödinger equation are exact discrete analogs of continuous solutions.

  17. Exact discretization of Schrödinger equation

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2016-01-01

    There are different approaches to discretization of the Schrödinger equation with some approximations. In this paper we derive a discrete equation that can be considered as exact discretization of the continuous Schrödinger equation. The proposed discrete equation is an equation with difference of integer order that is represented by infinite series. We suggest differences, which are characterized by power-law Fourier transforms. These differences can be considered as exact discrete analogs of derivatives of integer orders. Physically the suggested discrete equation describes a chain (or lattice) model with long-range interaction of power-law form. Mathematically it is a uniquely highlighted difference equation that exactly corresponds to the continuous Schrödinger equation. Using the Young's inequality for convolution, we prove that suggested differences are operators on the Hilbert space of square-summable sequences. We prove that the wave functions, which are exact discrete analogs of the free particle and harmonic oscillator solutions of the continuous Schrödinger equations, are solutions of the suggested discrete Schrödinger equations. - Highlights: • Exact discretization of the continuous Schrödinger equation is suggested. • New long-range interactions of power-law form are suggested. • Solutions of discrete Schrödinger equation are exact discrete analogs of continuous solutions.

  18. Extraction and analysis of discrete synoptic pathology report data using R

    Directory of Open Access Journals (Sweden)

    Alexander Boag

    2015-01-01

    Full Text Available Background: Synoptic pathology reports can serve as a rich source of cancer information, particularly when the content is available as discrete electronic data fields. Our institution generates such reports as part of a province wide program in Ontario but the resulting data is not easily extracted and analyzed at the local level. Methods: A low cost system was developed using the open sourced and freely available R scripting/data analysis environment to parse synoptic report results into a dataframe and perform basic summary statistics. Results: As a pilot project text reports from 427 prostate needle biopsies were successfully read into R and the data elements split out and converted into appropriated data classes for analysis. Conclusion: This approach provides a simple solution at minimal cost that can make discrete synoptic report data readily available for quality assurance and research activities.

  19. Discrete Localized States and Localization Dynamics in Discrete Nonlinear Schrödinger Equations

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Gaididei, Yu.B.; Mezentsev, V.K.

    1996-01-01

    Dynamics of two-dimensional discrete structures is studied in the framework of the generalized two-dimensional discrete nonlinear Schrodinger equation. The nonlinear coupling in the form of the Ablowitz-Ladik nonlinearity is taken into account. Stability properties of the stationary solutions...

  20. Image quality of multiplanar reconstruction of pulmonary CT scans using adaptive statistical iterative reconstruction.

    Science.gov (United States)

    Honda, O; Yanagawa, M; Inoue, A; Kikuyama, A; Yoshida, S; Sumikawa, H; Tobino, K; Koyama, M; Tomiyama, N

    2011-04-01

    We investigated the image quality of multiplanar reconstruction (MPR) using adaptive statistical iterative reconstruction (ASIR). Inflated and fixed lungs were scanned with a garnet detector CT in high-resolution mode (HR mode) or non-high-resolution (HR) mode, and MPR images were then reconstructed. Observers compared 15 MPR images of ASIR (40%) and ASIR (80%) with those of ASIR (0%), and assessed image quality using a visual five-point scale (1, definitely inferior; 5, definitely superior), with particular emphasis on normal pulmonary structures, artefacts, noise and overall image quality. The mean overall image quality scores in HR mode were 3.67 with ASIR (40%) and 4.97 with ASIR (80%). Those in non-HR mode were 3.27 with ASIR (40%) and 3.90 with ASIR (80%). The mean artefact scores in HR mode were 3.13 with ASIR (40%) and 3.63 with ASIR (80%), but those in non-HR mode were 2.87 with ASIR (40%) and 2.53 with ASIR (80%). The mean scores of the other parameters were greater than 3, whereas those in HR mode were higher than those in non-HR mode. There were significant differences between ASIR (40%) and ASIR (80%) in overall image quality (pASIR did not suppress the severe artefacts of contrast medium. In general, MPR image quality with ASIR (80%) was superior to that with ASIR (40%). However, there was an increased incidence of artefacts by ASIR when CT images were obtained in non-HR mode.

  1. A model and variance reduction method for computing statistical outputs of stochastic elliptic partial differential equations

    International Nuclear Information System (INIS)

    Vidal-Codina, F.; Nguyen, N.C.; Giles, M.B.; Peraire, J.

    2015-01-01

    We present a model and variance reduction method for the fast and reliable computation of statistical outputs of stochastic elliptic partial differential equations. Our method consists of three main ingredients: (1) the hybridizable discontinuous Galerkin (HDG) discretization of elliptic partial differential equations (PDEs), which allows us to obtain high-order accurate solutions of the governing PDE; (2) the reduced basis method for a new HDG discretization of the underlying PDE to enable real-time solution of the parameterized PDE in the presence of stochastic parameters; and (3) a multilevel variance reduction method that exploits the statistical correlation among the different reduced basis approximations and the high-fidelity HDG discretization to accelerate the convergence of the Monte Carlo simulations. The multilevel variance reduction method provides efficient computation of the statistical outputs by shifting most of the computational burden from the high-fidelity HDG approximation to the reduced basis approximations. Furthermore, we develop a posteriori error estimates for our approximations of the statistical outputs. Based on these error estimates, we propose an algorithm for optimally choosing both the dimensions of the reduced basis approximations and the sizes of Monte Carlo samples to achieve a given error tolerance. We provide numerical examples to demonstrate the performance of the proposed method

  2. CONSUMER PREFERENCES FOR SCANNING MODALITY TO DIAGNOSE FOCAL LIVER LESIONS.

    Science.gov (United States)

    Whitty, Jennifer; Filby, Alexandra; Smith, Adam B; Carr, Louise M

    2015-01-01

    Differences in the process of using liver imaging technologies might be important to patients. This study aimed to investigate preferences for scanning modalities used in diagnosing focal liver lesions. A discrete choice experiment was administered to 504 adults aged 25 ≥years. Respondents made repeated choices between two hypothetical scans, described according to waiting time for scan and results, procedure type, the chance of minor side-effects, and whether further scanning procedures were likely to be required. Choice data were analyzed using mixed-logit models with respondent characteristics used to explain preference heterogeneity. Respondents preferred shorter waiting times, the procedure to be undertaken with a handheld scanner on a couch instead of within a body scanner, no side-effects, and no follow–up scans (p≤.01). The average respondent was willing to wait an additional 2 weeks for the scan if it resulted in avoiding side-effects, 1.5 weeks to avoid further procedures or to be told the results immediately, and 1 week to have the scan performed on a couch with a handheld scanner. However, substantial heterogeneity was observed in the strength of preference for desirable imaging characteristics. An average individual belonging to a general population sub–group most likely to require imaging to characterize focal liver lesions in the United Kingdom would prefer contrast–enhanced ultrasound over magnetic resonance imaging or computed tomography. Insights into the patient perspective around differential characteristics of imaging modalities have the potential to be used to guide recommendations around the use of these technologie

  3. Observability of discretized partial differential equations

    Science.gov (United States)

    Cohn, Stephen E.; Dee, Dick P.

    1988-01-01

    It is shown that complete observability of the discrete model used to assimilate data from a linear partial differential equation (PDE) system is necessary and sufficient for asymptotic stability of the data assimilation process. The observability theory for discrete systems is reviewed and applied to obtain simple observability tests for discretized constant-coefficient PDEs. Examples are used to show how numerical dispersion can result in discrete dynamics with multiple eigenvalues, thereby detracting from observability.

  4. Discrete-feature modelling of the Aespoe Site: 1. Discrete-fracture network models for the repository scale

    International Nuclear Information System (INIS)

    Geier, J.E.; Thomas, A.L.

    1996-08-01

    This report describes the statistical derivation and partial validation of discrete-fracture network (DFN) models for the rock beneath the island of Aespoe in southeastern Sweden. The purpose was to develop DFN representations of the rock mass within a hypothetical, spent-fuel repository, located under Aespoe. Analyses are presented for four major lithologic types, with separate analyses of the rock within fracture zones, the rock excluding fracture zones, and all rock. Complete DFN models are proposed as descriptions of the rock mass in the near field. The procedure for validation, by comparison between actual and simulated packer tests, was found to be useful for discriminating among candidate DFN models. In particular, the validation approach was shown to be sensitive to a change in the fracture location (clustering) model, and to a change in the variance of single-fracture transmissivity. The proposed models are defined in terms of stochastic processes and statistical distributions, and thus are descriptive of the variability of the fracture system. This report includes discussion of the numerous sources of uncertainty in the models, including uncertainty that results from the variability of the natural system. 62 refs

  5. Discrete Mathematics Re "Tooled."

    Science.gov (United States)

    Grassl, Richard M.; Mingus, Tabitha T. Y.

    1999-01-01

    Indicates the importance of teaching discrete mathematics. Describes how the use of technology can enhance the teaching and learning of discrete mathematics. Explorations using Excel, Derive, and the TI-92 proved how preservice and inservice teachers experienced a new dimension in problem solving and discovery. (ASK)

  6. Euler-Poincare reduction for discrete field theories

    International Nuclear Information System (INIS)

    Vankerschaver, Joris

    2007-01-01

    In this note, we develop a theory of Euler-Poincare reduction for discrete Lagrangian field theories. We introduce the concept of Euler-Poincare equations for discrete field theories, as well as a natural extension of the Moser-Veselov scheme, and show that both are equivalent. The resulting discrete field equations are interpreted in terms of discrete differential geometry. An application to the theory of discrete harmonic mappings is also briefly discussed

  7. Positivity for Convective Semi-discretizations

    KAUST Repository

    Fekete, Imre

    2017-04-19

    We propose a technique for investigating stability properties like positivity and forward invariance of an interval for method-of-lines discretizations, and apply the technique to study positivity preservation for a class of TVD semi-discretizations of 1D scalar hyperbolic conservation laws. This technique is a generalization of the approach suggested in Khalsaraei (J Comput Appl Math 235(1): 137–143, 2010). We give more relaxed conditions on the time-step for positivity preservation for slope-limited semi-discretizations integrated in time with explicit Runge–Kutta methods. We show that the step-size restrictions derived are sharp in a certain sense, and that many higher-order explicit Runge–Kutta methods, including the classical 4th-order method and all non-confluent methods with a negative Butcher coefficient, cannot generally maintain positivity for these semi-discretizations under any positive step size. We also apply the proposed technique to centered finite difference discretizations of scalar hyperbolic and parabolic problems.

  8. Integrable discretizations of the short pulse equation

    International Nuclear Information System (INIS)

    Feng Baofeng; Maruno, Ken-ichi; Ohta, Yasuhiro

    2010-01-01

    In this paper, we propose integrable semi-discrete and full-discrete analogues of the short pulse (SP) equation. The key construction is the bilinear form and determinant structure of solutions of the SP equation. We also give the determinant formulas of N-soliton solutions of the semi-discrete and full-discrete analogues of the SP equations, from which the multi-loop and multi-breather solutions can be generated. In the continuous limit, the full-discrete SP equation converges to the semi-discrete SP equation, and then to the continuous SP equation. Based on the semi-discrete SP equation, an integrable numerical scheme, i.e. a self-adaptive moving mesh scheme, is proposed and used for the numerical computation of the short pulse equation.

  9. Discrete computational structures

    CERN Document Server

    Korfhage, Robert R

    1974-01-01

    Discrete Computational Structures describes discrete mathematical concepts that are important to computing, covering necessary mathematical fundamentals, computer representation of sets, graph theory, storage minimization, and bandwidth. The book also explains conceptual framework (Gorn trees, searching, subroutines) and directed graphs (flowcharts, critical paths, information network). The text discusses algebra particularly as it applies to concentrates on semigroups, groups, lattices, propositional calculus, including a new tabular method of Boolean function minimization. The text emphasize

  10. MR guided spatial normalization of SPECT scans

    International Nuclear Information System (INIS)

    Crouch, B.; Barnden, L.R.; Kwiatek, R.

    2010-01-01

    Full text: In SPECT population studies where magnetic resonance (MR) scans are also available, the higher resolution of the MR scans allows for an improved spatial normalization of the SPECT scans. In this approach, the SPECT images are first coregistered to their corresponding MR images by a linear (affine) transformation which is calculated using SPM's mutual information maximization algorithm. Non-linear spatial normalization maps are then computed either directly from the MR scans using SPM's built in spatial normalization algorithm, or, from segmented TI MR images using DARTEL, an advanced diffeomorphism based spatial normalization algorithm. We compare these MR based methods to standard SPECT based spatial normalization for a population of 27 fibromyalgia patients and 25 healthy controls with spin echo T 1 scans. We identify significant perfusion deficits in prefrontal white matter in FM patients, with the DARTEL based spatial normalization procedure yielding stronger statistics than the standard SPECT based spatial normalization. (author)

  11. Discrete integrable systems and deformations of associative algebras

    International Nuclear Information System (INIS)

    Konopelchenko, B G

    2009-01-01

    Interrelations between discrete deformations of the structure constants for associative algebras and discrete integrable systems are reviewed. Theory of deformations for associative algebras is presented. Closed left ideal generated by the elements representing the multiplication table plays a central role in this theory. Deformations of the structure constants are generated by the deformation driving algebra and governed by the central system of equations. It is demonstrated that many discrete equations such as discrete Boussinesq equation, discrete WDVV equation, discrete Schwarzian KP and BKP equations, discrete Hirota-Miwa equations for KP and BKP hierarchies are particular realizations of the central system. An interaction between the theories of discrete integrable systems and discrete deformations of associative algebras is reciprocal and fruitful. An interpretation of the Menelaus relation (discrete Schwarzian KP equation), discrete Hirota-Miwa equation for KP hierarchy, consistency around the cube as the associativity conditions and the concept of gauge equivalence, for instance, between the Menelaus and KP configurations are particular examples.

  12. An equivalence between the discrete Gaussian model and a generalized Sine Gordon theory on a lattice

    International Nuclear Information System (INIS)

    Baskaran, G.; Gupte, N.

    1983-11-01

    We demonstrate an equivalence between the statistical mechanics of the discrete Gaussian model and a generalized Sine-Gordon theory on an Euclidean lattice in arbitrary dimensions. The connection is obtained by a simple transformation of the partition function and is non perturbative in nature. (author)

  13. Logistic and linear regression model documentation for statistical relations between continuous real-time and discrete water-quality constituents in the Kansas River, Kansas, July 2012 through June 2015

    Science.gov (United States)

    Foster, Guy M.; Graham, Jennifer L.

    2016-04-06

    The Kansas River is a primary source of drinking water for about 800,000 people in northeastern Kansas. Source-water supplies are treated by a combination of chemical and physical processes to remove contaminants before distribution. Advanced notification of changing water-quality conditions and cyanobacteria and associated toxin and taste-and-odor compounds provides drinking-water treatment facilities time to develop and implement adequate treatment strategies. The U.S. Geological Survey (USGS), in cooperation with the Kansas Water Office (funded in part through the Kansas State Water Plan Fund), and the City of Lawrence, the City of Topeka, the City of Olathe, and Johnson County Water One, began a study in July 2012 to develop statistical models at two Kansas River sites located upstream from drinking-water intakes. Continuous water-quality monitors have been operated and discrete-water quality samples have been collected on the Kansas River at Wamego (USGS site number 06887500) and De Soto (USGS site number 06892350) since July 2012. Continuous and discrete water-quality data collected during July 2012 through June 2015 were used to develop statistical models for constituents of interest at the Wamego and De Soto sites. Logistic models to continuously estimate the probability of occurrence above selected thresholds were developed for cyanobacteria, microcystin, and geosmin. Linear regression models to continuously estimate constituent concentrations were developed for major ions, dissolved solids, alkalinity, nutrients (nitrogen and phosphorus species), suspended sediment, indicator bacteria (Escherichia coli, fecal coliform, and enterococci), and actinomycetes bacteria. These models will be used to provide real-time estimates of the probability that cyanobacteria and associated compounds exceed thresholds and of the concentrations of other water-quality constituents in the Kansas River. The models documented in this report are useful for characterizing changes

  14. Geometry and Hamiltonian mechanics on discrete spaces

    International Nuclear Information System (INIS)

    Talasila, V; Clemente-Gallardo, J; Schaft, A J van der

    2004-01-01

    Numerical simulation is often crucial for analysing the behaviour of many complex systems which do not admit analytic solutions. To this end, one either converts a 'smooth' model into a discrete (in space and time) model, or models systems directly at a discrete level. The goal of this paper is to provide a discrete analogue of differential geometry, and to define on these discrete models a formal discrete Hamiltonian structure-in doing so we try to bring together various fundamental concepts from numerical analysis, differential geometry, algebraic geometry, simplicial homology and classical Hamiltonian mechanics. For example, the concept of a twisted derivation is borrowed from algebraic geometry for developing a discrete calculus. The theory is applied to a nonlinear pendulum and we compare the dynamics obtained through a discrete modelling approach with the dynamics obtained via the usual discretization procedures. Also an example of an energy-conserving algorithm on a simple harmonic oscillator is presented, and its effect on the Poisson structure is discussed

  15. Discrete-Feature Model Implementation of SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Geier, Joel (Clearwater Hardrock Consulting, Corvallis, OR (United States))

    2010-03-15

    A discrete-feature model (DFM) was implemented for the Forsmark repository site based on the final site descriptive model from surface based investigations. The discrete-feature conceptual model represents deformation zones, individual fractures, and other water-conducting features around a repository as discrete conductors surrounded by a rock matrix which, in the present study, is treated as impermeable. This approximation is reasonable for sites in crystalline rock which has very low permeability, apart from that which results from macroscopic fracturing. Models are constructed based on the geological and hydrogeological description of the sites and engineering designs. Hydraulic heads and flows through the network of water-conducting features are calculated by the finite-element method, and are used in turn to simulate migration of non-reacting solute by a particle-tracking method, in order to estimate the properties of pathways by which radionuclides could be released to the biosphere. Stochastic simulation is used to evaluate portions of the model that can only be characterized in statistical terms, since many water-conducting features within the model volume cannot be characterized deterministically. Chapter 2 describes the methodology by which discrete features are derived to represent water-conducting features around the hypothetical repository at Forsmark (including both natural features and features that result from the disturbance of excavation), and then assembled to produce a discrete-feature network model for numerical simulation of flow and transport. Chapter 3 describes how site-specific data and repository design are adapted to produce the discrete-feature model. Chapter 4 presents results of the calculations. These include utilization factors for deposition tunnels based on the emplacement criteria that have been set forth by the implementers, flow distributions to the deposition holes, and calculated properties of discharge paths as well as

  16. Discrete-Feature Model Implementation of SDM-Site Forsmark

    International Nuclear Information System (INIS)

    Geier, Joel

    2010-03-01

    A discrete-feature model (DFM) was implemented for the Forsmark repository site based on the final site descriptive model from surface based investigations. The discrete-feature conceptual model represents deformation zones, individual fractures, and other water-conducting features around a repository as discrete conductors surrounded by a rock matrix which, in the present study, is treated as impermeable. This approximation is reasonable for sites in crystalline rock which has very low permeability, apart from that which results from macroscopic fracturing. Models are constructed based on the geological and hydrogeological description of the sites and engineering designs. Hydraulic heads and flows through the network of water-conducting features are calculated by the finite-element method, and are used in turn to simulate migration of non-reacting solute by a particle-tracking method, in order to estimate the properties of pathways by which radionuclides could be released to the biosphere. Stochastic simulation is used to evaluate portions of the model that can only be characterized in statistical terms, since many water-conducting features within the model volume cannot be characterized deterministically. Chapter 2 describes the methodology by which discrete features are derived to represent water-conducting features around the hypothetical repository at Forsmark (including both natural features and features that result from the disturbance of excavation), and then assembled to produce a discrete-feature network model for numerical simulation of flow and transport. Chapter 3 describes how site-specific data and repository design are adapted to produce the discrete-feature model. Chapter 4 presents results of the calculations. These include utilization factors for deposition tunnels based on the emplacement criteria that have been set forth by the implementers, flow distributions to the deposition holes, and calculated properties of discharge paths as well as

  17. Integrable structure in discrete shell membrane theory.

    Science.gov (United States)

    Schief, W K

    2014-05-08

    We present natural discrete analogues of two integrable classes of shell membranes. By construction, these discrete shell membranes are in equilibrium with respect to suitably chosen internal stresses and external forces. The integrability of the underlying equilibrium equations is proved by relating the geometry of the discrete shell membranes to discrete O surface theory. We establish connections with generalized barycentric coordinates and nine-point centres and identify a discrete version of the classical Gauss equation of surface theory.

  18. An analysis of numerical convergence in discrete velocity gas dynamics for internal flows

    Science.gov (United States)

    Sekaran, Aarthi; Varghese, Philip; Goldstein, David

    2018-07-01

    The Discrete Velocity Method (DVM) for solving the Boltzmann equation has significant advantages in the modeling of non-equilibrium and near equilibrium flows as compared to other methods in terms of reduced statistical noise, faster solutions and the ability to handle transient flows. Yet the DVM performance for rarefied flow in complex, small-scale geometries, in microelectromechanical (MEMS) devices for instance, is yet to be studied in detail. The present study focuses on the performance of the DVM for locally large Knudsen number flows of argon around sharp corners and other sources for discontinuities in the distribution function. Our analysis details the nature of the solution for some benchmark cases and introduces the concept of solution convergence for the transport terms in the discrete velocity Boltzmann equation. The limiting effects of the velocity space discretization are also investigated and the constraints on obtaining a robust, consistent solution are derived. We propose techniques to maintain solution convergence and demonstrate the implementation of a specific strategy and its effect on the fidelity of the solution for some benchmark cases.

  19. Discrete event simulation of Maglev transport considering traffic waves

    Directory of Open Access Journals (Sweden)

    Moo Hyun Cha

    2014-10-01

    Full Text Available A magnetically levitated vehicle (Maglev system is under commercialization as a new transportation system in Korea. The Maglev is operated by an unmanned automatic control system. Therefore, the plan of train operation should be carefully established and validated in advance. In general, when making a train operation plan, statistically predicted traffic data is used. However, a traffic wave often occurs in real train service, and demand-driven simulation technology is required to review a train operation plan and service quality considering traffic waves. We propose a method and model to simulate Maglev operation considering continuous demand changes. For this purpose, we employed a discrete event model that is suitable for modeling the behavior of railway passenger transportation. We modeled the system hierarchically using discrete event system specification (DEVS formalism. In addition, through implementation and an experiment using the DEVSim++ simulation environment, we tested the feasibility of the proposed model. Our experimental results also verified that our demand-driven simulation technology can be used for a priori review of train operation plans and strategies.

  20. Discrete port-Hamiltonian systems : mixed interconnections

    NARCIS (Netherlands)

    Talasila, Viswanath; Clemente-Gallardo, J.; Schaft, A.J. van der

    2005-01-01

    Either from a control theoretic viewpoint or from an analysis viewpoint it is necessary to convert smooth systems to discrete systems, which can then be implemented on computers for numerical simulations. Discrete models can be obtained either by discretizing a smooth model, or by directly modeling

  1. Clinical application of multi-slice helical CT volumetric scanning in lumber spine

    International Nuclear Information System (INIS)

    Wang Ling; Ge Yinghui; Zhu Shaocheng; Zhang Ming; Cheng Tianming; Lei Zhidan; Lv Chuanjian; Sun Xiaoping; Wu Minghui; Guo Ying; Ma Qianli; Wen Zeying

    2008-01-01

    Objective: To evaluate the clinical application value of multi-slice helical CT volumetric (VH) scanning in lumber spine. Methods: One thousand of patients with back and leg pain who underwent CT examinations were selected as subjects. We simulated the traditional protocol of single-slice(SS) discrete scanning for L3/4, L4/5, and L5/S1 intervertebral discs. The VH scanning mode was performed with 120 kV, 210 mAs, pitch of 1.5 and coverage of 97.5 mm. The simulated SS scanning mode was performed with 120 kV, 240 mAs and coverage of 45.0 mm. The diagnostic outcomes and the radiation doses were compared between the two scanning modes. Two groups doctors observed ten terms, including the osseous spinal stenosis, narrowed intervertebral space and so on in two scanning modes respectively. Then consistency analysis of the data was carded out. Results: The VH scanning mode showed far more features than the SS mode. The detection rates of the VH mode in the osseous spinal stenosis, narrowed intervertebral space, herniated nucleus pulposus, narrowed lateral recess, vertebral lesion, hypertrophy of L5 transverse process, abnormal direction of facet, facet degeneration, lumbar spondyloschisis, and paraspinal soft tissue were 11.8% (n=118), 38.5% (n=385), 9.3% (n=93), 46.8% (n=468), 31.4% (n=314), 5.7% (n= 57), 25.4% (n=254), 49.7% (n=497), 9.9% (n=99), and 0.6% (n=6) respectively, while the detection rates of the SS mode in ten terms were 5.6% (n=56), 0, 0.6% (n=6), 27.9% (n=279), 22.4% (n=224), 1.2% (n=12), 16.7% (n=167), 37.2% (n=372), 0.5% (n=5), and 0.2% (n=2) respectively. The difference between the two groups had statistically significance (average P 0.05). The detection rates of the VH mode were higher than the SS mode in the osseous spinal stenosis, narrowed intervertebral space, herniated nucleus pulposus, lumbar spondyloschisis, being 6.2% (n=62), 38.5% (n=385), 8.7% (n=87), and 9.4% (n=94), respectively. In addition, VH mode only partially showed the articular

  2. The Concepts of Pseudo Compound Poisson and Partition Representations in Discrete Probability

    Directory of Open Access Journals (Sweden)

    Werner Hürlimann

    2015-01-01

    Full Text Available The mathematical/statistical concepts of pseudo compound Poisson and partition representations in discrete probability are reviewed and clarified. A combinatorial interpretation of the convolution of geometric distributions in terms of a variant of Newton’s identities is obtained. The practical use of the twofold convolution leads to an improved goodness-of-fit for a data set from automobile insurance that was up to now not fitted satisfactorily.

  3. Signature Curves Statistics of DNA Supercoils

    OpenAIRE

    Shakiban, Cheri; Lloyd, Peter

    2004-01-01

    In this paper we describe the Euclidean signature curves for two dimensional closed curves in the plane and their generalization to closed space curves. The focus will be on discrete numerical methods for approximating such curves. Further we will apply these numerical methods to plot the signature curves related to three-dimensional simulated DNA supercoils. Our primary focus will be on statistical analysis of the data generated for the signature curves of the supercoils. We will try to esta...

  4. Statistical Surface Recovery: A Study on Ear Canals

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Olesen, Oline Vinter; Paulsen, Rasmus Reinhold

    2012-01-01

    We present a method for surface recovery in partial surface scans based on a statistical model. The framework is based on multivariate point prediction, where the distribution of the points are learned from an annotated data set. The training set consist of surfaces with dense correspondence...... that are Procrustes aligned. The average shape and point covariances can be estimated from this set. It is shown how missing data in a new given shape can be predicted using the learned statistics. The method is evaluated on a data set of 29 scans of ear canal impressions. By using a leave-one-out approach we...

  5. Neural Correlates of Morphology Acquisition through a Statistical Learning Paradigm.

    Science.gov (United States)

    Sandoval, Michelle; Patterson, Dianne; Dai, Huanping; Vance, Christopher J; Plante, Elena

    2017-01-01

    The neural basis of statistical learning as it occurs over time was explored with stimuli drawn from a natural language (Russian nouns). The input reflected the "rules" for marking categories of gendered nouns, without making participants explicitly aware of the nature of what they were to learn. Participants were scanned while listening to a series of gender-marked nouns during four sequential scans, and were tested for their learning immediately after each scan. Although participants were not told the nature of the learning task, they exhibited learning after their initial exposure to the stimuli. Independent component analysis of the brain data revealed five task-related sub-networks. Unlike prior statistical learning studies of word segmentation, this morphological learning task robustly activated the inferior frontal gyrus during the learning period. This region was represented in multiple independent components, suggesting it functions as a network hub for this type of learning. Moreover, the results suggest that subnetworks activated by statistical learning are driven by the nature of the input, rather than reflecting a general statistical learning system.

  6. Introductory discrete mathematics

    CERN Document Server

    Balakrishnan, V K

    2010-01-01

    This concise text offers an introduction to discrete mathematics for undergraduate students in computer science and mathematics. Mathematics educators consider it vital that their students be exposed to a course in discrete methods that introduces them to combinatorial mathematics and to algebraic and logical structures focusing on the interplay between computer science and mathematics. The present volume emphasizes combinatorics, graph theory with applications to some stand network optimization problems, and algorithms to solve these problems.Chapters 0-3 cover fundamental operations involv

  7. Semiclassical quantum gravity: statistics of combinatorial Riemannian geometries

    International Nuclear Information System (INIS)

    Bombelli, L.; Corichi, A.; Winkler, O.

    2005-01-01

    This paper is a contribution to the development of a framework, to be used in the context of semiclassical canonical quantum gravity, in which to frame questions about the correspondence between discrete spacetime structures at ''quantum scales'' and continuum, classical geometries at large scales. Such a correspondence can be meaningfully established when one has a ''semiclassical'' state in the underlying quantum gravity theory, and the uncertainties in the correspondence arise both from quantum fluctuations in this state and from the kinematical procedure of matching a smooth geometry to a discrete one. We focus on the latter type of uncertainty, and suggest the use of statistical geometry as a way to quantify it. With a cell complex as an example of discrete structure, we discuss how to construct quantities that define a smooth geometry, and how to estimate the associated uncertainties. We also comment briefly on how to combine our results with uncertainties in the underlying quantum state, and on their use when considering phenomenological aspects of quantum gravity. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  8. Statistical mechanics of gravitons in a box and the black hole entropy

    Science.gov (United States)

    Viaggiu, Stefano

    2017-05-01

    This paper is devoted to the study of the statistical mechanics of trapped gravitons obtained by 'trapping' a spherical gravitational wave in a box. As a consequence, a discrete spectrum dependent on the Legendre index ℓ similar to the harmonic oscillator one is obtained and a statistical study is performed. The mean energy 〈 E 〉 results as a sum of two discrete Planck distributions with different dependent frequencies. As an important application, we derive the semiclassical Bekenstein-Hawking entropy formula for a static Schwarzschild black hole by only requiring that the black hole internal energy U is provided by its ADM rest energy, without invoking particular quantum gravity theories. This seriously suggests that the interior of a black hole can be composed of trapped gravitons at a thermodynamical temperature proportional by a factor ≃ 2 to the horizon temperature Th.

  9. Statistical and physical evolution of QSO's

    International Nuclear Information System (INIS)

    Caditz, D.; Petrosian, V.

    1989-09-01

    The relationship between the physical evolution of discrete extragalactic sources, the statistical evolution of the observed population of sources, and the cosmological model is discussed. Three simple forms of statistical evolution: pure luminosity evolution (PLE), pure density evolution (PDE), and generalized luminosity evolution (GLE), are considered in detail together with what these forms imply about the physical evolution of individual sources. Two methods are used to analyze the statistical evolution of the observed distribution of QSO's (quasars) from combined flux limited samples. It is shown that both PLE and PDE are inconsistent with the data over the redshift range 0 less than z less than 2.2, and that a more complicated form of evolution such as GLE is required, independent of the cosmological model. This result is important for physical models of AGN, and in particular, for the accretion disk model which recent results show may be inconsistent with PLE

  10. Discrete Data Qualification System and Method Comprising Noise Series Fault Detection

    Science.gov (United States)

    Fulton, Christopher; Wong, Edmond; Melcher, Kevin; Bickford, Randall

    2013-01-01

    A Sensor Data Qualification (SDQ) function has been developed that allows the onboard flight computers on NASA s launch vehicles to determine the validity of sensor data to ensure that critical safety and operational decisions are not based on faulty sensor data. This SDQ function includes a novel noise series fault detection algorithm for qualification of the output data from LO2 and LH2 low-level liquid sensors. These sensors are positioned in a launch vehicle s propellant tanks in order to detect propellant depletion during a rocket engine s boost operating phase. This detection capability can prevent the catastrophic situation where the engine operates without propellant. The output from each LO2 and LH2 low-level liquid sensor is a discrete valued signal that is expected to be in either of two states, depending on whether the sensor is immersed (wet) or exposed (dry). Conventional methods for sensor data qualification, such as threshold limit checking, are not effective for this type of signal due to its discrete binary-state nature. To address this data qualification challenge, a noise computation and evaluation method, also known as a noise fault detector, was developed to detect unreasonable statistical characteristics in the discrete data stream. The method operates on a time series of discrete data observations over a moving window of data points and performs a continuous examination of the resulting observation stream to identify the presence of anomalous characteristics. If the method determines the existence of anomalous results, the data from the sensor is disqualified for use by other monitoring or control functions.

  11. Laplacians on discrete and quantum geometries

    International Nuclear Information System (INIS)

    Calcagni, Gianluca; Oriti, Daniele; Thürigen, Johannes

    2013-01-01

    We extend discrete calculus for arbitrary (p-form) fields on embedded lattices to abstract discrete geometries based on combinatorial complexes. We then provide a general definition of discrete Laplacian using both the primal cellular complex and its combinatorial dual. The precise implementation of geometric volume factors is not unique and, comparing the definition with a circumcentric and a barycentric dual, we argue that the latter is, in general, more appropriate because it induces a Laplacian with more desirable properties. We give the expression of the discrete Laplacian in several different sets of geometric variables, suitable for computations in different quantum gravity formalisms. Furthermore, we investigate the possibility of transforming from position to momentum space for scalar fields, thus setting the stage for the calculation of heat kernel and spectral dimension in discrete quantum geometries. (paper)

  12. Cuspidal discrete series for projective hyperbolic spaces

    DEFF Research Database (Denmark)

    Andersen, Nils Byrial; Flensted-Jensen, Mogens

    2013-01-01

    Abstract. We have in [1] proposed a definition of cusp forms on semisimple symmetric spaces G/H, involving the notion of a Radon transform and a related Abel transform. For the real non-Riemannian hyperbolic spaces, we showed that there exists an infinite number of cuspidal discrete series......, and at most finitely many non-cuspidal discrete series, including in particular the spherical discrete series. For the projective spaces, the spherical discrete series are the only non-cuspidal discrete series. Below, we extend these results to the other hyperbolic spaces, and we also study the question...

  13. Accuracy of Buccal Scan Procedures for the Registration of Habitual Intercuspation.

    Science.gov (United States)

    Zimmermann, M; Ender, A; Attin, T; Mehl, A

    2018-04-09

    Accurate reproduction of the jaw relationship is important in many fields of dentistry. Maximum intercuspation can be registered with digital buccal scan procedures implemented in the workflow of many intraoral scanning systems. The aim of this study was to investigate the accuracy of buccal scan procedures with intraoral scanning devices for the registration of habitual intercuspation in vivo. The hypothesis was that there is no statistically significant difference for buccal scan procedures compared to registration methods with poured model casts. Ten individuals (full dentition, no dental rehabilitations) were subjects for five different habitual intercuspation registration methods: (CI) poured model casts, manual hand registration, buccal scan with inEOS X5; (BC) intraoral scan, buccal scan with CEREC Bluecam; (OC4.2) intraoral scan, buccal scan with CEREC Omnicam software version 4.2; (OC4.5β) intraoral scan, buccal scan with CEREC Omnicam version 4.5β; and (TR) intraoral scan, buccal scan with Trios 3. Buccal scan was repeated three times. Analysis of rotation (Rot) and translation (Trans) parameters was performed with difference analysis software (OraCheck). Statistical analysis was performed with one-way analysis of variance and the post hoc Scheffé test ( p0.05) differences in terms of translation between groups CI_Trans (98.74±112.01 μm), BC_Trans (84.12±64.95 μm), OC4.2_Trans (60.70±35.08 μm), OC4.5β_Trans (68.36±36.67 μm), and TR_Trans (66.60±64.39 μm). For rotation, there were no significant differences ( p>0.05) for groups CI_Rot (0.23±0.25°), BC_Rot (0.73±0.52°), OC4.2_Rot (0.45±0.31°), OC4.5β_Rot (0.50±0.36°), and TR_Rot (0.47±0.65°). Intraoral scanning devices allow the reproduction of the static relationship of the maxillary and mandibular teeth with the same accuracy as registration methods with poured model casts.

  14. Discrete-Event Simulation

    OpenAIRE

    Prateek Sharma

    2015-01-01

    Abstract Simulation can be regarded as the emulation of the behavior of a real-world system over an interval of time. The process of simulation relies upon the generation of the history of a system and then analyzing that history to predict the outcome and improve the working of real systems. Simulations can be of various kinds but the topic of interest here is one of the most important kind of simulation which is Discrete-Event Simulation which models the system as a discrete sequence of ev...

  15. Positivity for Convective Semi-discretizations

    KAUST Repository

    Fekete, Imre; Ketcheson, David I.; Loczi, Lajos

    2017-01-01

    We propose a technique for investigating stability properties like positivity and forward invariance of an interval for method-of-lines discretizations, and apply the technique to study positivity preservation for a class of TVD semi-discretizations

  16. Perfect discretization of reparametrization invariant path integrals

    International Nuclear Information System (INIS)

    Bahr, Benjamin; Dittrich, Bianca; Steinhaus, Sebastian

    2011-01-01

    To obtain a well-defined path integral one often employs discretizations. In the case of gravity and reparametrization-invariant systems, the latter of which we consider here as a toy example, discretizations generically break diffeomorphism and reparametrization symmetry, respectively. This has severe implications, as these symmetries determine the dynamics of the corresponding system. Indeed we will show that a discretized path integral with reparametrization-invariance is necessarily also discretization independent and therefore uniquely determined by the corresponding continuum quantum mechanical propagator. We use this insight to develop an iterative method for constructing such a discretized path integral, akin to a Wilsonian RG flow. This allows us to address the problem of discretization ambiguities and of an anomaly-free path integral measure for such systems. The latter is needed to obtain a path integral, that can act as a projector onto the physical states, satisfying the quantum constraints. We will comment on implications for discrete quantum gravity models, such as spin foams.

  17. Perfect discretization of reparametrization invariant path integrals

    Science.gov (United States)

    Bahr, Benjamin; Dittrich, Bianca; Steinhaus, Sebastian

    2011-05-01

    To obtain a well-defined path integral one often employs discretizations. In the case of gravity and reparametrization-invariant systems, the latter of which we consider here as a toy example, discretizations generically break diffeomorphism and reparametrization symmetry, respectively. This has severe implications, as these symmetries determine the dynamics of the corresponding system. Indeed we will show that a discretized path integral with reparametrization-invariance is necessarily also discretization independent and therefore uniquely determined by the corresponding continuum quantum mechanical propagator. We use this insight to develop an iterative method for constructing such a discretized path integral, akin to a Wilsonian RG flow. This allows us to address the problem of discretization ambiguities and of an anomaly-free path integral measure for such systems. The latter is needed to obtain a path integral, that can act as a projector onto the physical states, satisfying the quantum constraints. We will comment on implications for discrete quantum gravity models, such as spin foams.

  18. ISBN and QR Barcode Scanning Mobile App for Libraries

    Directory of Open Access Journals (Sweden)

    Graham McCarthy

    2011-04-01

    Full Text Available This article outlines the development of a mobile application for the Ryerson University Library. The application provides for ISBN barcode scanning that results in a lookup of library copies and services for the book scanned, as well as QR code scanning. Two versions of the application were developed, one for iOS and one for Android. The article includes some details on the free packages used for barcode scanning functionality. Source code for the Ryerson iOS and Android applications are freely available, and instructions are provided on customizing the Ryerson application for use in other library environments. Some statistics on the number of downloads of the Ryerson mobile app by users are included.

  19. A study of discrete nonlinear systems

    International Nuclear Information System (INIS)

    Dhillon, H.S.

    2001-04-01

    An investigation of various spatially discrete time-independent nonlinear models was undertaken. These models are generically applicable to many different physical systems including electron-phonon interactions in solids, magnetic multilayers, layered superconductors and classical lattice systems. To characterise the possible magnetic structures created on magnetic multilayers a model has been formulated and studied. The Euler-Lagrange equation for this model is a discrete version of the Sine-Gordon equation. Solutions of this equation are generated by applying the methods of Chaotic Dynamics - treating the space variable associated with the layer number as a discrete time variable. The states found indicate periodic, quasiperiodic and chaotic structures. Analytic solutions to the discrete nonlinear Schroedinger Equation (DNSE) with cubic nonlinearity are presented in the strong coupling limit. Using these as a starting point, a procedure is developed to determine the wave function and the energy eigenvalue for moderate coupling. The energy eigenvalues of the different structures of the wave function are found to be in excellent agreement with the exact strong coupling result. The solutions to the DNSE indicate commensurate and incommensurate spatial structures associated with different localisation patterns of the wave function. The states which arise may be fractal, periodic, quasiperiodic or chaotic. This work is then extended to solve a first order discrete nonlinear equation. The exact solutions for both the first and second order discrete nonlinear equations with cubic nonlinearity suggests that this method of studying discrete nonlinear equations may be applied to solve discrete equations with any order difference and cubic nonlinearity. (author)

  20. Technetium 99mTc Pertechnetate Brain Scanning

    International Nuclear Information System (INIS)

    Rhee, Sang Min; Park, Jin Yung; Lee, Ahn Ki; Chung, Choo Il; Hong, Chang Gi; Rhee, Chong Heon; Koh, Chang Soon

    1968-01-01

    Technetium 99 mTc pertechnetate brain scanning were performed in 3 cases of head injury (2 chronic subdural hematomas and 1 acute epidural hematoma), 2 cases of brain abscess and 1 case of intracerebral hematoma associated with arteriovenous anomaly. In all the cases brain scintigrams showed 'hot areas.' Literatures on radioisotope scanning of intracranial lesions were briefly reviewed. With the improvement of radioisotope scanner and development of new radiopharmaceuticals brain scanning became a safe and useful screening test for diagnosis of intracranial lesions. Brain scanning can be easily performed even to a moribund patient without any discomfort and risk to the patient which are associated with cerebral angiography or pneumoencephalography. Brain scanning has been useful in diagnosis of brain tumor, brain abscess, subdural hematoma, and cerebral vascular diseases. In 80 to 90% of brain tumors positive scintigrams can be expected. Early studies were done with 203 Hg-Neohydrin or 131 I-serum albumin. With these agents, however, patients receive rather much radiation to the whole body and kidneys. In 1965 Harper introduced 99 mTc to reduce radiation dose to the patient and improve statistical variation in isotope scanning.

  1. Estimation in Discretely Observed Diffusions Killed at a Threshold

    DEFF Research Database (Denmark)

    Bibbona, Enrico; Ditlevsen, Susanne

    2013-01-01

    are modelled as discretely observed diffusions which are killed when the threshold is reached. Statistical inference is often based on a misspecified likelihood ignoring the presence of the threshold causing severe bias, e.g. the bias incurred in the drift parameters of the Ornstein–Uhlenbeck model...... for biological relevant parameters can be up to 25–100 per cent. We compute or approximate the likelihood function of the killed process. When estimating from a single trajectory, considerable bias may still be present, and the distribution of the estimates can be heavily skewed and with a huge variance...

  2. TVR-DART: A More Robust Algorithm for Discrete Tomography From Limited Projection Data With Automated Gray Value Estimation.

    Science.gov (United States)

    Xiaodong Zhuge; Palenstijn, Willem Jan; Batenburg, Kees Joost

    2016-01-01

    In this paper, we present a novel iterative reconstruction algorithm for discrete tomography (DT) named total variation regularized discrete algebraic reconstruction technique (TVR-DART) with automated gray value estimation. This algorithm is more robust and automated than the original DART algorithm, and is aimed at imaging of objects consisting of only a few different material compositions, each corresponding to a different gray value in the reconstruction. By exploiting two types of prior knowledge of the scanned object simultaneously, TVR-DART solves the discrete reconstruction problem within an optimization framework inspired by compressive sensing to steer the current reconstruction toward a solution with the specified number of discrete gray values. The gray values and the thresholds are estimated as the reconstruction improves through iterations. Extensive experiments from simulated data, experimental μCT, and electron tomography data sets show that TVR-DART is capable of providing more accurate reconstruction than existing algorithms under noisy conditions from a small number of projection images and/or from a small angular range. Furthermore, the new algorithm requires less effort on parameter tuning compared with the original DART algorithm. With TVR-DART, we aim to provide the tomography society with an easy-to-use and robust algorithm for DT.

  3. Discrete Curvature Theories and Applications

    KAUST Repository

    Sun, Xiang

    2016-08-25

    Discrete Di erential Geometry (DDG) concerns discrete counterparts of notions and methods in di erential geometry. This thesis deals with a core subject in DDG, discrete curvature theories on various types of polyhedral surfaces that are practically important for free-form architecture, sunlight-redirecting shading systems, and face recognition. Modeled as polyhedral surfaces, the shapes of free-form structures may have to satisfy di erent geometric or physical constraints. We study a combination of geometry and physics { the discrete surfaces that can stand on their own, as well as having proper shapes for the manufacture. These proper shapes, known as circular and conical meshes, are closely related to discrete principal curvatures. We study curvature theories that make such surfaces possible. Shading systems of freeform building skins are new types of energy-saving structures that can re-direct the sunlight. From these systems, discrete line congruences across polyhedral surfaces can be abstracted. We develop a new curvature theory for polyhedral surfaces equipped with normal congruences { a particular type of congruences de ned by linear interpolation of vertex normals. The main results are a discussion of various de nitions of normality, a detailed study of the geometry of such congruences, and a concept of curvatures and shape operators associated with the faces of a triangle mesh. These curvatures are compatible with both normal congruences and the Steiner formula. In addition to architecture, we consider the role of discrete curvatures in face recognition. We use geometric measure theory to introduce the notion of asymptotic cones associated with a singular subspace of a Riemannian manifold, which is an extension of the classical notion of asymptotic directions. We get a simple expression of these cones for polyhedral surfaces, as well as convergence and approximation theorems. We use the asymptotic cones as facial descriptors and demonstrate the

  4. Application of a discrete-energy, discrete-ordinates technique to the study of neutron transport in iron

    International Nuclear Information System (INIS)

    Ching, J.T.

    1975-01-01

    An algebraic equivalence between the point-energy and multigroup forms of the Boltzmann transport equation is demonstrated which allows the development of a discrete-energy, discrete-ordinates method for the solution of radiation transport problems. The method utilizes a modified version of a cross section processing scheme devised for the moments method code BMT and the transport equation solution algorithm from the one-dimensional discrete-ordinates transport code ANISN. The combined system, identified as MOMANS, computes fluxes directly from point cross sections in a single operation. In the cross-section processing, the group averaging required for multigroup calculations is replaced by a fast numerical scheme capable of generating a set of transfer cross sections containing all the physical features of interest, thereby increasing the detail in the calculated results. Test calculations in which the discrete-energy method was compared with the multigroup method have shown that for the same energy grid (number of points = number of groups), the discrete-energy method is faster but somewhat less accurate than the multigroup method. However, the accuracy of the discrete-energy method increases rapidly as the spacing between energy points is decreased, approaching that of multigroup calculations. For problems requiring great detail in the energy spectrum the discrete-energy method has therefore proven to be as accurate as, and more economical than, the multigroup technique. This was demonstrated by the application of the method to the study of the transport of neutrons in an iron sphere. Using the capability of the discrete-energy method for rapidly treating changes in cross-section sets, the propagation of neutrons from a 14 MeV source in a 22 cm radius sphere of iron was analyzed for sensitivity to changes in the microscopic scattering mechanisms

  5. Statistical distributions applications and parameter estimates

    CERN Document Server

    Thomopoulos, Nick T

    2017-01-01

    This book gives a description of the group of statistical distributions that have ample application to studies in statistics and probability.  Understanding statistical distributions is fundamental for researchers in almost all disciplines.  The informed researcher will select the statistical distribution that best fits the data in the study at hand.  Some of the distributions are well known to the general researcher and are in use in a wide variety of ways.  Other useful distributions are less understood and are not in common use.  The book describes when and how to apply each of the distributions in research studies, with a goal to identify the distribution that best applies to the study.  The distributions are for continuous, discrete, and bivariate random variables.  In most studies, the parameter values are not known a priori, and sample data is needed to estimate parameter values.  In other scenarios, no sample data is available, and the researcher seeks some insight that allows the estimate of ...

  6. Compatible Spatial Discretizations for Partial Differential Equations

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Douglas, N, ed.

    2004-11-25

    From May 11--15, 2004, the Institute for Mathematics and its Applications held a hot topics workshop on Compatible Spatial Discretizations for Partial Differential Equations. The numerical solution of partial differential equations (PDE) is a fundamental task in science and engineering. The goal of the workshop was to bring together a spectrum of scientists at the forefront of the research in the numerical solution of PDEs to discuss compatible spatial discretizations. We define compatible spatial discretizations as those that inherit or mimic fundamental properties of the PDE such as topology, conservation, symmetries, and positivity structures and maximum principles. A wide variety of discretization methods applied across a wide range of scientific and engineering applications have been designed to or found to inherit or mimic intrinsic spatial structure and reproduce fundamental properties of the solution of the continuous PDE model at the finite dimensional level. A profusion of such methods and concepts relevant to understanding them have been developed and explored: mixed finite element methods, mimetic finite differences, support operator methods, control volume methods, discrete differential forms, Whitney forms, conservative differencing, discrete Hodge operators, discrete Helmholtz decomposition, finite integration techniques, staggered grid and dual grid methods, etc. This workshop seeks to foster communication among the diverse groups of researchers designing, applying, and studying such methods as well as researchers involved in practical solution of large scale problems that may benefit from advancements in such discretizations; to help elucidate the relations between the different methods and concepts; and to generally advance our understanding in the area of compatible spatial discretization methods for PDE. Particular points of emphasis included: + Identification of intrinsic properties of PDE models that are critical for the fidelity of numerical

  7. Static quarks with improved statistical precision

    International Nuclear Information System (INIS)

    Della Morte, M.; Duerr, S.; Molke, H.; Heitger, J.

    2003-09-01

    We present a numerical study for different discretisations of the static action, concerning cut-off effects and the growth of statistical errors with Euclidean time. An error reduction by an order of magnitude can be obtained with respect to the Eichten-Hill action, for time separations up to 2 fm, keeping discretization errors small. The best actions lead to a big improvement on the precision of the quark mass M b and F B s in the static approximation. (orig.)

  8. Perfect discretization of path integrals

    International Nuclear Information System (INIS)

    Steinhaus, Sebastian

    2012-01-01

    In order to obtain a well-defined path integral one often employs discretizations. In the case of General Relativity these generically break diffeomorphism symmetry, which has severe consequences since these symmetries determine the dynamics of the corresponding system. In this article we consider the path integral of reparametrization invariant systems as a toy example and present an improvement procedure for the discretized propagator. Fixed points and convergence of the procedure are discussed. Furthermore we show that a reparametrization invariant path integral implies discretization independence and acts as a projector onto physical states.

  9. Perfect discretization of path integrals

    Science.gov (United States)

    Steinhaus, Sebastian

    2012-05-01

    In order to obtain a well-defined path integral one often employs discretizations. In the case of General Relativity these generically break diffeomorphism symmetry, which has severe consequences since these symmetries determine the dynamics of the corresponding system. In this article we consider the path integral of reparametrization invariant systems as a toy example and present an improvement procedure for the discretized propagator. Fixed points and convergence of the procedure are discussed. Furthermore we show that a reparametrization invariant path integral implies discretization independence and acts as a projector onto physical states.

  10. Control of Discrete Event Systems

    NARCIS (Netherlands)

    Smedinga, Rein

    1989-01-01

    Systemen met discrete gebeurtenissen spelen in vele gebieden een rol. In dit proefschrift staat de volgorde van gebeurtenissen centraal en worden tijdsaspecten buiten beschouwing gelaten. In dat geval kunnen systemen met discrete gebeurtenissen goed worden gemodelleerd door gebruik te maken van

  11. Connections on discrete fibre bundles

    International Nuclear Information System (INIS)

    Manton, N.S.; Cambridge Univ.

    1987-01-01

    A new approach to gauge fields on a discrete space-time is proposed, in which the fundamental object is a discrete version of a principal fibre bundle. If the bundle is twisted, the gauge fields are topologically non-trivial automatically. (orig.)

  12. Basic problems solving for two-dimensional discrete 3 × 4 order hidden markov model

    International Nuclear Information System (INIS)

    Wang, Guo-gang; Gan, Zong-liang; Tang, Gui-jin; Cui, Zi-guan; Zhu, Xiu-chang

    2016-01-01

    A novel model is proposed to overcome the shortages of the classical hypothesis of the two-dimensional discrete hidden Markov model. In the proposed model, the state transition probability depends on not only immediate horizontal and vertical states but also on immediate diagonal state, and the observation symbol probability depends on not only current state but also on immediate horizontal, vertical and diagonal states. This paper defines the structure of the model, and studies the three basic problems of the model, including probability calculation, path backtracking and parameters estimation. By exploiting the idea that the sequences of states on rows or columns of the model can be seen as states of a one-dimensional discrete 1 × 2 order hidden Markov model, several algorithms solving the three questions are theoretically derived. Simulation results further demonstrate the performance of the algorithms. Compared with the two-dimensional discrete hidden Markov model, there are more statistical characteristics in the structure of the proposed model, therefore the proposed model theoretically can more accurately describe some practical problems.

  13. Rational solutions of the discrete time Toda lattice and the alternate discrete Painleve II equation

    International Nuclear Information System (INIS)

    Common, Alan K; Hone, Andrew N W

    2008-01-01

    The Yablonskii-Vorob'ev polynomials y n (t), which are defined by a second-order bilinear differential-difference equation, provide rational solutions of the Toda lattice. They are also polynomial tau-functions for the rational solutions of the second Painleve equation (P II ). Here we define two-variable polynomials Y n (t, h) on a lattice with spacing h, by considering rational solutions of the discrete time Toda lattice as introduced by Suris. These polynomials are shown to have many properties that are analogous to those of the Yablonskii-Vorob'ev polynomials, to which they reduce when h = 0. They also provide rational solutions for a particular discretization of P II , namely the so-called alternate discrete P II , and this connection leads to an expression in terms of the Umemura polynomials for the third Painleve equation (P III ). It is shown that the Baecklund transformation for the alternate discrete Painleve equation is a symplectic map, and the shift in time is also symplectic. Finally we present a Lax pair for the alternate discrete P II , which recovers Jimbo and Miwa's Lax pair for P II in the continuum limit h → 0

  14. Handbook on modelling for discrete optimization

    CERN Document Server

    Pitsoulis, Leonidas; Williams, H

    2006-01-01

    The primary objective underlying the Handbook on Modelling for Discrete Optimization is to demonstrate and detail the pervasive nature of Discrete Optimization. While its applications cut across an incredibly wide range of activities, many of the applications are only known to specialists. It is the aim of this handbook to correct this. It has long been recognized that "modelling" is a critically important mathematical activity in designing algorithms for solving these discrete optimization problems. Nevertheless solving the resultant models is also often far from straightforward. In recent years it has become possible to solve many large-scale discrete optimization problems. However, some problems remain a challenge, even though advances in mathematical methods, hardware, and software technology have pushed the frontiers forward. This handbook couples the difficult, critical-thinking aspects of mathematical modeling with the hot area of discrete optimization. It will be done in an academic handbook treatment...

  15. Central Limit Theorem for Exponentially Quasi-local Statistics of Spin Models on Cayley Graphs

    Science.gov (United States)

    Reddy, Tulasi Ram; Vadlamani, Sreekar; Yogeshwaran, D.

    2018-04-01

    Central limit theorems for linear statistics of lattice random fields (including spin models) are usually proven under suitable mixing conditions or quasi-associativity. Many interesting examples of spin models do not satisfy mixing conditions, and on the other hand, it does not seem easy to show central limit theorem for local statistics via quasi-associativity. In this work, we prove general central limit theorems for local statistics and exponentially quasi-local statistics of spin models on discrete Cayley graphs with polynomial growth. Further, we supplement these results by proving similar central limit theorems for random fields on discrete Cayley graphs taking values in a countable space, but under the stronger assumptions of α -mixing (for local statistics) and exponential α -mixing (for exponentially quasi-local statistics). All our central limit theorems assume a suitable variance lower bound like many others in the literature. We illustrate our general central limit theorem with specific examples of lattice spin models and statistics arising in computational topology, statistical physics and random networks. Examples of clustering spin models include quasi-associated spin models with fast decaying covariances like the off-critical Ising model, level sets of Gaussian random fields with fast decaying covariances like the massive Gaussian free field and determinantal point processes with fast decaying kernels. Examples of local statistics include intrinsic volumes, face counts, component counts of random cubical complexes while exponentially quasi-local statistics include nearest neighbour distances in spin models and Betti numbers of sub-critical random cubical complexes.

  16. Discrete Gabor transform and discrete Zak transform

    NARCIS (Netherlands)

    Bastiaans, M.J.; Namazi, N.M.; Matthews, K.

    1996-01-01

    Gabor's expansion of a discrete-time signal into a set of shifted and modulated versions of an elementary signal or synthesis window is introduced, along with the inverse operation, i.e. the Gabor transform, which uses an analysis window that is related to the synthesis window and with the help of

  17. Statistical geological discrete fracture network model. Forsmark modelling stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Aaron; La Pointe, Paul [Golder Associates Inc (United States); Simeonov, Assen [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Hermanson, Jan; Oehman, Johan [Golder Associates AB, Stockholm (Sweden)

    2007-11-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is performing site characterization at two different locations, Forsmark and Laxemar, in order to locate a site for a final geologic repository for spent nuclear fuel. The program is built upon the development of Site Descriptive Models (SDMs) at specific timed data freezes. Each SDM is formed from discipline-specific reports from across the scientific spectrum. This report describes the methods, analyses, and conclusions of the geological modeling team with respect to a geological and statistical model of fractures and minor deformation zones (henceforth referred to as the geological DFN), version 2.2, at the Forsmark site. The geological DFN builds upon the work of other geological modelers, including the deformation zone (DZ), rock domain (RD), and fracture domain (FD) models. The geological DFN is a statistical model for stochastically simulating rock fractures and minor deformation zones as a scale of less than 1,000 m (the lower cut-off of the DZ models). The geological DFN is valid within four specific fracture domains inside the local model region, and encompassing the candidate volume at Forsmark: FFM01, FFM02, FFM03, and FFM06. The models are build using data from detailed surface outcrop maps and the cored borehole record at Forsmark. The conceptual model for the Forsmark 2.2 geological revolves around the concept of orientation sets; for each fracture domain, other model parameters such as size and intensity are tied to the orientation sets. Two classes of orientation sets were described; Global sets, which are encountered everywhere in the model region, and Local sets, which represent highly localized stress environments. Orientation sets were described in terms of their general cardinal direction (NE, NW, etc). Two alternatives are presented for fracture size modeling: - the tectonic continuum approach (TCM, TCMF) described by coupled size-intensity scaling following power law distributions

  18. Statistical geological discrete fracture network model. Forsmark modelling stage 2.2

    International Nuclear Information System (INIS)

    Fox, Aaron; La Pointe, Paul; Simeonov, Assen; Hermanson, Jan; Oehman, Johan

    2007-11-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is performing site characterization at two different locations, Forsmark and Laxemar, in order to locate a site for a final geologic repository for spent nuclear fuel. The program is built upon the development of Site Descriptive Models (SDMs) at specific timed data freezes. Each SDM is formed from discipline-specific reports from across the scientific spectrum. This report describes the methods, analyses, and conclusions of the geological modeling team with respect to a geological and statistical model of fractures and minor deformation zones (henceforth referred to as the geological DFN), version 2.2, at the Forsmark site. The geological DFN builds upon the work of other geological modelers, including the deformation zone (DZ), rock domain (RD), and fracture domain (FD) models. The geological DFN is a statistical model for stochastically simulating rock fractures and minor deformation zones as a scale of less than 1,000 m (the lower cut-off of the DZ models). The geological DFN is valid within four specific fracture domains inside the local model region, and encompassing the candidate volume at Forsmark: FFM01, FFM02, FFM03, and FFM06. The models are build using data from detailed surface outcrop maps and the cored borehole record at Forsmark. The conceptual model for the Forsmark 2.2 geological revolves around the concept of orientation sets; for each fracture domain, other model parameters such as size and intensity are tied to the orientation sets. Two classes of orientation sets were described; Global sets, which are encountered everywhere in the model region, and Local sets, which represent highly localized stress environments. Orientation sets were described in terms of their general cardinal direction (NE, NW, etc). Two alternatives are presented for fracture size modeling: - the tectonic continuum approach (TCM, TCMF) described by coupled size-intensity scaling following power law distributions

  19. Discrete Feature Model (DFM) User Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Geier, Joel (Clearwater Hardrock Consulting, Corvallis, OR (United States))

    2008-06-15

    This manual describes the Discrete-Feature Model (DFM) software package for modelling groundwater flow and solute transport in networks of discrete features. A discrete-feature conceptual model represents fractures and other water-conducting features around a repository as discrete conductors surrounded by a rock matrix which is usually treated as impermeable. This approximation may be valid for crystalline rocks such as granite or basalt, which have very low permeability if macroscopic fractures are excluded. A discrete feature is any entity that can conduct water and permit solute transport through bedrock, and can be reasonably represented as a piecewise-planar conductor. Examples of such entities may include individual natural fractures (joints or faults), fracture zones, and disturbed-zone features around tunnels (e.g. blasting-induced fractures or stress-concentration induced 'onion skin' fractures around underground openings). In a more abstract sense, the effectively discontinuous nature of pathways through fractured crystalline bedrock may be idealized as discrete, equivalent transmissive features that reproduce large-scale observations, even if the details of connective paths (and unconnected domains) are not precisely known. A discrete-feature model explicitly represents the fundamentally discontinuous and irregularly connected nature of systems of such systems, by constraining flow and transport to occur only within such features and their intersections. Pathways for flow and solute transport in this conceptualization are a consequence not just of the boundary conditions and hydrologic properties (as with continuum models), but also the irregularity of connections between conductive/transmissive features. The DFM software package described here is an extensible code for investigating problems of flow and transport in geological (natural or human-altered) systems that can be characterized effectively in terms of discrete features. With this

  20. Discrete Feature Model (DFM) User Documentation

    International Nuclear Information System (INIS)

    Geier, Joel

    2008-06-01

    This manual describes the Discrete-Feature Model (DFM) software package for modelling groundwater flow and solute transport in networks of discrete features. A discrete-feature conceptual model represents fractures and other water-conducting features around a repository as discrete conductors surrounded by a rock matrix which is usually treated as impermeable. This approximation may be valid for crystalline rocks such as granite or basalt, which have very low permeability if macroscopic fractures are excluded. A discrete feature is any entity that can conduct water and permit solute transport through bedrock, and can be reasonably represented as a piecewise-planar conductor. Examples of such entities may include individual natural fractures (joints or faults), fracture zones, and disturbed-zone features around tunnels (e.g. blasting-induced fractures or stress-concentration induced 'onion skin' fractures around underground openings). In a more abstract sense, the effectively discontinuous nature of pathways through fractured crystalline bedrock may be idealized as discrete, equivalent transmissive features that reproduce large-scale observations, even if the details of connective paths (and unconnected domains) are not precisely known. A discrete-feature model explicitly represents the fundamentally discontinuous and irregularly connected nature of systems of such systems, by constraining flow and transport to occur only within such features and their intersections. Pathways for flow and solute transport in this conceptualization are a consequence not just of the boundary conditions and hydrologic properties (as with continuum models), but also the irregularity of connections between conductive/transmissive features. The DFM software package described here is an extensible code for investigating problems of flow and transport in geological (natural or human-altered) systems that can be characterized effectively in terms of discrete features. With this software, the

  1. Corrections of the NIST Statistical Test Suite for Randomness

    OpenAIRE

    Kim, Song-Ju; Umeno, Ken; Hasegawa, Akio

    2004-01-01

    It is well known that the NIST statistical test suite was used for the evaluation of AES candidate algorithms. We have found that the test setting of Discrete Fourier Transform test and Lempel-Ziv test of this test suite are wrong. We give four corrections of mistakes in the test settings. This suggests that re-evaluation of the test results should be needed.

  2. Comparison of two methods for minimizing the effect of delayed charge on the dose delivered with a synchrotron based discrete spot scanning proton beam.

    Science.gov (United States)

    Whitaker, Thomas J; Beltran, Chris; Tryggestad, Erik; Bues, Martin; Kruse, Jon J; Remmes, Nicholas B; Tasson, Alexandria; Herman, Michael G

    2014-08-01

    Delayed charge is a small amount of charge that is delivered to the patient after the planned irradiation is halted, which may degrade the quality of the treatment by delivering unwarranted dose to the patient. This study compares two methods for minimizing the effect of delayed charge on the dose delivered with a synchrotron based discrete spot scanning proton beam. The delivery of several treatment plans was simulated by applying a normally distributed value of delayed charge, with a mean of 0.001(SD 0.00025) MU, to each spot. Two correction methods were used to account for the delayed charge. Method one (CM1), which is in active clinical use, accounts for the delayed charge by adjusting the MU of the current spot based on the cumulative MU. Method two (CM2) in addition reduces the planned MU by a predicted value. Every fraction of a treatment was simulated using each method and then recomputed in the treatment planning system. The dose difference between the original plan and the sum of the simulated fractions was evaluated. Both methods were tested in a water phantom with a single beam and simple target geometry. Two separate phantom tests were performed. In one test the dose per fraction was varied from 0.5 to 2 Gy using 25 fractions per plan. In the other test the number fractions were varied from 1 to 25, using 2 Gy per fraction. Three patient plans were used to determine the effect of delayed charge on the delivered dose under realistic clinical conditions. The order of spot delivery using CM1 was investigated by randomly selecting the starting spot for each layer, and by alternating per layer the starting spot from first to last. Only discrete spot scanning was considered in this study. Using the phantom setup and varying the dose per fraction, the maximum dose difference for each plan of 25 fractions was 0.37-0.39 Gy and 0.03-0.05 Gy for CM1 and CM2, respectively. While varying the total number of fractions, the maximum dose difference increased at a rate

  3. Comparison of two methods for minimizing the effect of delayed charge on the dose delivered with a synchrotron based discrete spot scanning proton beam

    International Nuclear Information System (INIS)

    Whitaker, Thomas J.; Beltran, Chris; Tryggestad, Erik; Kruse, Jon J.; Remmes, Nicholas B.; Tasson, Alexandria; Herman, Michael G.; Bues, Martin

    2014-01-01

    Purpose: Delayed charge is a small amount of charge that is delivered to the patient after the planned irradiation is halted, which may degrade the quality of the treatment by delivering unwarranted dose to the patient. This study compares two methods for minimizing the effect of delayed charge on the dose delivered with a synchrotron based discrete spot scanning proton beam. Methods: The delivery of several treatment plans was simulated by applying a normally distributed value of delayed charge, with a mean of 0.001(SD 0.00025) MU, to each spot. Two correction methods were used to account for the delayed charge. Method one (CM1), which is in active clinical use, accounts for the delayed charge by adjusting the MU of the current spot based on the cumulative MU. Method two (CM2) in addition reduces the planned MU by a predicted value. Every fraction of a treatment was simulated using each method and then recomputed in the treatment planning system. The dose difference between the original plan and the sum of the simulated fractions was evaluated. Both methods were tested in a water phantom with a single beam and simple target geometry. Two separate phantom tests were performed. In one test the dose per fraction was varied from 0.5 to 2 Gy using 25 fractions per plan. In the other test the number fractions were varied from 1 to 25, using 2 Gy per fraction. Three patient plans were used to determine the effect of delayed charge on the delivered dose under realistic clinical conditions. The order of spot delivery using CM1 was investigated by randomly selecting the starting spot for each layer, and by alternating per layer the starting spot from first to last. Only discrete spot scanning was considered in this study. Results: Using the phantom setup and varying the dose per fraction, the maximum dose difference for each plan of 25 fractions was 0.37–0.39 Gy and 0.03–0.05 Gy for CM1 and CM2, respectively. While varying the total number of fractions, the maximum dose

  4. Discrete-Time Biomedical Signal Encryption

    Directory of Open Access Journals (Sweden)

    Victor Grigoraş

    2017-12-01

    Full Text Available Chaotic modulation is a strong method of improving communication security. Analog and discrete chaotic systems are presented in actual literature. Due to the expansion of digital communication, discrete-time systems become more efficient and closer to actual technology. The present contribution offers an in-depth analysis of the effects chaos encryption produce on 1D and 2D biomedical signals. The performed simulations show that modulating signals are precisely recovered by the synchronizing receiver if discrete systems are digitally implemented and the coefficients precisely correspond. Channel noise is also applied and its effects on biomedical signal demodulation are highlighted.

  5. The origin of discrete particles

    CERN Document Server

    Bastin, T

    2009-01-01

    This book is a unique summary of the results of a long research project undertaken by the authors on discreteness in modern physics. In contrast with the usual expectation that discreteness is the result of mathematical tools for insertion into a continuous theory, this more basic treatment builds up the world from the discrimination of discrete entities. This gives an algebraic structure in which certain fixed numbers arise. As such, one agrees with the measured value of the fine-structure constant to one part in 10,000,000 (10 7 ). Sample Chapter(s). Foreword (56 KB). Chapter 1: Introduction

  6. Patient exposure during thyroid scan in Khartoum Hospital

    International Nuclear Information System (INIS)

    Saeed, N. E. B.

    2013-03-01

    The aim of this study was to measure exposure during thyroid scan by using technetium-9 9m radioactive isotope. This study was conducted on 35 patients under thyroid scan, measured in Alnelein diagnostic center, data collected for the study included, age, sex, height, weight, and the material used in examination and the activity half-life of the material. The mean age was 41.83 years, while the mean body mass index (BMI) was 24.40, and the value of effective dose average 2.65±0.24 mSv. Data collected were analyzed by excel software and statistical analysis program, where the process of analysis category was given such as: age weight of patient, time of scan, the activity and the effective dose, it was found that thyroid scan was more common in female than male patients.(Author)

  7. Time-Discrete Higher-Order ALE Formulations: Stability

    KAUST Repository

    Bonito, Andrea; Kyza, Irene; Nochetto, Ricardo H.

    2013-01-01

    on the stability of the PDE but may influence that of a discrete scheme. We examine this critical issue for higher-order time stepping without space discretization. We propose time-discrete discontinuous Galerkin (dG) numerical schemes of any order for a time

  8. Technetium phosphate bone scan in the diagnosis of septic arthritis in childhood

    International Nuclear Information System (INIS)

    Sundberg, S.B.; Savage, J.P.; Foster, B.K.

    1989-01-01

    The technetium phosphate bone scans of 106 children with suspected septic arthritis were reviewed to determine whether the bone scan can accurately differentiate septic from nonseptic arthropathy. Only 13% of children with proved septic arthritis had correct blind scan interpretation. The clinically adjusted interpretation did not identify septic arthritis in 30%. Septic arthritis was incorrectly identified in 32% of children with no evidence of septic arthritis. No statistically significant differences were noted between the scan findings in the septic and nonseptic groups and no scan findings correlated specifically with the presence or absence of joint sepsis

  9. Fermion systems in discrete space-time

    International Nuclear Information System (INIS)

    Finster, Felix

    2007-01-01

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure

  10. Fermion systems in discrete space-time

    Energy Technology Data Exchange (ETDEWEB)

    Finster, Felix [NWF I - Mathematik, Universitaet Regensburg, 93040 Regensburg (Germany)

    2007-05-15

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.

  11. Fermion Systems in Discrete Space-Time

    OpenAIRE

    Finster, Felix

    2006-01-01

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.

  12. Fermion systems in discrete space-time

    Science.gov (United States)

    Finster, Felix

    2007-05-01

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.

  13. Isocount scintillation scanner with preset statistical data reliability

    International Nuclear Information System (INIS)

    Ikebe, J.; Yamaguchi, H.; Nawa, O.A.

    1975-01-01

    A scintillation detector scans an object such as a live body along horizontal straight scanning lines in such a manner that the scintillation detector is stopped at a scanning point during the time interval T required for counting a predetermined number of N pulses. The rate R/sub N/ = N/T is then calculated and the output signal pulses the number of which represents the rate R or the corresponding output signal is used as the recording signal for forming the scintigram. In contrast to the usual scanner, the isocount scanner scans an object stepwise in order to gather data with statistically uniform reliability

  14. Memorized discrete systems and time-delay

    CERN Document Server

    Luo, Albert C J

    2017-01-01

    This book examines discrete dynamical systems with memory—nonlinear systems that exist extensively in biological organisms and financial and economic organizations, and time-delay systems that can be discretized into the memorized, discrete dynamical systems. It book further discusses stability and bifurcations of time-delay dynamical systems that can be investigated through memorized dynamical systems as well as bifurcations of memorized nonlinear dynamical systems, discretization methods of time-delay systems, and periodic motions to chaos in nonlinear time-delay systems. The book helps readers find analytical solutions of MDS, change traditional perturbation analysis in time-delay systems, detect motion complexity and singularity in MDS; and determine stability, bifurcation, and chaos in any time-delay system.

  15. Discrete Mathematics and Curriculum Reform.

    Science.gov (United States)

    Kenney, Margaret J.

    1996-01-01

    Defines discrete mathematics as the mathematics necessary to effect reasoned decision making in finite situations and explains how its use supports the current view of mathematics education. Discrete mathematics can be used by curriculum developers to improve the curriculum for students of all ages and abilities. (SLD)

  16. Correlation between discrete probability and reaction front propagation rate in heterogeneous mixtures

    Science.gov (United States)

    Naine, Tarun Bharath; Gundawar, Manoj Kumar

    2017-09-01

    We demonstrate a very powerful correlation between the discrete probability of distances of neighboring cells and thermal wave propagation rate, for a system of cells spread on a one-dimensional chain. A gamma distribution is employed to model the distances of neighboring cells. In the absence of an analytical solution and the differences in ignition times of adjacent reaction cells following non-Markovian statistics, invariably the solution for thermal wave propagation rate for a one-dimensional system with randomly distributed cells is obtained by numerical simulations. However, such simulations which are based on Monte-Carlo methods require several iterations of calculations for different realizations of distribution of adjacent cells. For several one-dimensional systems, differing in the value of shaping parameter of the gamma distribution, we show that the average reaction front propagation rates obtained by a discrete probability between two limits, shows excellent agreement with those obtained numerically. With the upper limit at 1.3, the lower limit depends on the non-dimensional ignition temperature. Additionally, this approach also facilitates the prediction of burning limits of heterogeneous thermal mixtures. The proposed method completely eliminates the need for laborious, time intensive numerical calculations where the thermal wave propagation rates can now be calculated based only on macroscopic entity of discrete probability.

  17. Tumor markers and bone scan in breast cancer patients

    International Nuclear Information System (INIS)

    Ugrinska, A.; Vaskova, O.; Kraleva, S.; Petrova, D.; Smickova, S.

    2004-01-01

    Full text: The objective of this study was to compare the levels of CA15-3 and CEA with the bone scan findings in patients with breast cancer. Retrospective analysis of 76 bone scans from 61 patients diagnosed with breast cancer in the last 5 years was performed by two nuclear medicine specialists. All bone scans were performed after surgical treatment of the disease. Patients with loco-regional residual disease or distant metastases in the liver, lung or the brain were excluded from the study. According to the bone scan the patients were divided in 5 groups: normal bone scan (N), equivocal bone scan (E), single metastasis (1MS), three metastases (3MS) and multiple metastases (MMS). Tumor markers were determined within a month before or after the bone scan was performed. Cut-off value for CA 15-3 was 35 U/ml, and for CEA 3 ng/ml. Statistical analysis was performed using descriptive statistic and Kolmogorov-Smirnov test. Bone metastases were revealed in 38% of the patients referred for bone scintigraphy out of which 26% had MMS, 7.8% had single MS and 4% had 3MS. The results of 6.5% of the patients were determined as equivocal. The values of CA15-3 were higher in all patient groups compared with the group that had normal bone scan, but this difference reached statistical significance only in groups with 3MS and MMS (p < 0.01). The values of CEA were significantly higher only in patients with multiple metastases when compared with group N (p < 0.01). Values higher than cut-off value for CA 15-3 was found in 9 patients out of 42 in the group with normal bone scan. The highest value of CA 15-3 in this group was 47 U/ml. Only one patient in this group showed elevated levels for CEA. Three patients in the group with single metastasis had normal CA 15-3, while CEA was elevated only in one patient. All patients in the group with 3MS had elevated levels of CA 15-3 while CEA was in the normal range. All patients with MMS had elevated CA 15-3 values while CEA was elevated in

  18. Statistical physics inspired energy-efficient coded-modulation for optical communications.

    Science.gov (United States)

    Djordjevic, Ivan B; Xu, Lei; Wang, Ting

    2012-04-15

    Because Shannon's entropy can be obtained by Stirling's approximation of thermodynamics entropy, the statistical physics energy minimization methods are directly applicable to the signal constellation design. We demonstrate that statistical physics inspired energy-efficient (EE) signal constellation designs, in combination with large-girth low-density parity-check (LDPC) codes, significantly outperform conventional LDPC-coded polarization-division multiplexed quadrature amplitude modulation schemes. We also describe an EE signal constellation design algorithm. Finally, we propose the discrete-time implementation of D-dimensional transceiver and corresponding EE polarization-division multiplexed system. © 2012 Optical Society of America

  19. Bio-physical effects of scanned proton beams: measurements and models for discrete high dose rates scanning systems

    International Nuclear Information System (INIS)

    De-Marzi, Ludovic

    2016-01-01

    The main objective of this thesis is to develop and optimize algorithms for intensity modulated proton therapy, taking into account the physical and biological pencil beam properties. A model based on the summation and fluence weighted division of the pencil beams has been used. A new parameterization of the lateral dose distribution has been developed using a combination of three Gaussian functions. The algorithms have been implemented into a treatment planning system, then experimentally validated and compared with Monte Carlo simulations. Some approximations have been made and validated in order to achieve reasonable calculation times for clinical purposes. In a second phase, a collaboration with Institut Curie radiobiological teams has been started in order to implement radiobiological parameters and results into the optimization loop of the treatment planning process. Indeed, scanned pencil beams are pulsed and delivered at high dose rates (from 10 to 100 Gy/s), and the relative biological efficiency of protons is still relatively unknown given the wide diversity of use of these beams: the different models available and their dependence with linear energy transfers have been studied. A good agreement between dose calculations and measurements (deviations lower than 3 % and 2 mm) has been obtained. An experimental protocol has been set in order to qualify pulsed high dose rate effects and preliminary results obtained on one cell line suggested variations of the biological efficiency up to 10 %, though with large uncertainties. (author) [fr

  20. Constant pressure and temperature discrete-time Langevin molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Grønbech-Jensen, Niels [Department of Mechanical and Aerospace Engineering, University of California, Davis, California 95616 (United States); Department of Mathematics, University of California, Davis, California 95616 (United States); Farago, Oded [Department of Biomedical Engineering, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel)

    2014-11-21

    We present a new and improved method for simultaneous control of temperature and pressure in molecular dynamics simulations with periodic boundary conditions. The thermostat-barostat equations are built on our previously developed stochastic thermostat, which has been shown to provide correct statistical configurational sampling for any time step that yields stable trajectories. Here, we extend the method and develop a set of discrete-time equations of motion for both particle dynamics and system volume in order to seek pressure control that is insensitive to the choice of the numerical time step. The resulting method is simple, practical, and efficient. The method is demonstrated through direct numerical simulations of two characteristic model systems—a one-dimensional particle chain for which exact statistical results can be obtained and used as benchmarks, and a three-dimensional system of Lennard-Jones interacting particles simulated in both solid and liquid phases. The results, which are compared against the method of Kolb and Dünweg [J. Chem. Phys. 111, 4453 (1999)], show that the new method behaves according to the objective, namely that acquired statistical averages and fluctuations of configurational measures are accurate and robust against the chosen time step applied to the simulation.

  1. Discrete systems and integrability

    CERN Document Server

    Hietarinta, J; Nijhoff, F W

    2016-01-01

    This first introductory text to discrete integrable systems introduces key notions of integrability from the vantage point of discrete systems, also making connections with the continuous theory where relevant. While treating the material at an elementary level, the book also highlights many recent developments. Topics include: Darboux and Bäcklund transformations; difference equations and special functions; multidimensional consistency of integrable lattice equations; associated linear problems (Lax pairs); connections with Padé approximants and convergence algorithms; singularities and geometry; Hirota's bilinear formalism for lattices; intriguing properties of discrete Painlevé equations; and the novel theory of Lagrangian multiforms. The book builds the material in an organic way, emphasizing interconnections between the various approaches, while the exposition is mostly done through explicit computations on key examples. Written by respected experts in the field, the numerous exercises and the thoroug...

  2. Application of dual-energy scanning technique with dual-source CT in pulmonary mass lesions

    International Nuclear Information System (INIS)

    Jiang Jie; Xu Yiming; He Bo; Xie Xiaojie; Han Dan

    2012-01-01

    Objective: To explore the feasibility of DSCT dual-energy technique in pulmonary mass lesions. Methods: A total of 100 patients with pulmonary masses underwent conventional plain CT scan and dual-energy enhanced CT scan. The virtual non-contrast (VNC) images were obtained at post-processing workstation.The mean CT value,enhancement value,signal to noise ratio (SNR), image quality and radiation dose of pulmonary masses were compared between the two scan techniques using F or t test and the detectability of lesions was compared using Wilcoxon test. Results: There was no statistically significant difference among VNC (A) (32.89 ± 12.58) HU,VNC (S) (30.86 ± 9.60) HU and conventional plain images (35.89 ± 9.99) HU in mean CT value of mass (F =2.08, P>0.05). There was statistically significant difference among VNC (A) (3.29 ± 1.45), VNC (S) (3.93 ± 1.49) and conventional plain image (4.61 ± 1.50) in SNR (F =6.01, P<0.05), which of conventional plain scan was higher than that of VNC.The enhancement value of mass in conventional enhanced scan (60.74 ± 13.9) HU and distribution of iodine from VNC (A) (58.26 ± 31.99) HU was no statistically significant difference (t=0.48, P>0.05), but there was a significant difference between conventional enhanced scan (56.51 ± 17.94) HU and distribution of iodine from VNC (S) (52.65 ± 16.78) HU (t=4.45, P<0.05). There was no statistically significant difference among conventional plain scan (4.69 ± 0.06) and VNC (A) (4.60 ± 0.09), VNC (S) (4.61 ±0.11) in image quality at mediastinal window (F=3.014, P>0.05). The appearance, size, internal features of mass (such as necrosis, calcification and cavity) were showed the same in conventional plain scan, VNC (A) and VNC (S). Of 41 patients with hilar mass, 18 patients were found to have lobular and segmental perfusion decrease or defect. Perfusion defect area was found in 59 patients with peripheral lung mass. The radiation dose of dual-energy enhanced scan was lower than that of

  3. Statistical Hair on Black Holes

    International Nuclear Information System (INIS)

    Strominger, A.

    1996-01-01

    The Bekenstein-Hawking entropy for certain BPS-saturated black holes in string theory has recently been derived by counting internal black hole microstates at weak coupling. We argue that the black hole microstate can be measured by interference experiments even in the strong coupling region where there is clearly an event horizon. Extracting information which is naively behind the event horizon is possible due to the existence of statistical quantum hair carried by the black hole. This quantum hair arises from the arbitrarily large number of discrete gauge symmetries present in string theory. copyright 1996 The American Physical Society

  4. Reducing task-based fMRI scanning time using simultaneous multislice echo planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, Mate [Hungarian Academy of Sciences, Brain Imaging Centre, Research Centre for Natural Sciences, Budapest (Hungary); Janos Szentagothai PhD School, MR Research Centre, Budapest (Hungary); National Institute of Clinical Neuroscience, Department of Neuroradiology, Budapest (Hungary); Hermann, Petra; Vidnyanszky, Zoltan; Gal, Viktor [Hungarian Academy of Sciences, Brain Imaging Centre, Research Centre for Natural Sciences, Budapest (Hungary)

    2018-03-15

    To maintain alertness and to remain motionless during scanning represent a substantial challenge for patients/subjects involved in both clinical and research functional magnetic resonance imaging (fMRI) examinations. Therefore, availability and application of new data acquisition protocols allowing the shortening of scan time without compromising the data quality and statistical power are of major importance. Higher order category-selective visual cortical areas were identified individually, and rapid event-related fMRI design was used to compare three different sampling rates (TR = 2000, 1000, and 410 ms, using state-of-the-art simultaneous multislice imaging) and four different scanning lengths to match the statistical power of the traditional scanning methods to high sampling-rate design. The results revealed that ∝ 4 min of the scan time with 1 Hz (TR = 1000 ms) sampling rate and ∝ 2 min scanning at ∝ 2.5 Hz (TR = 410 ms) sampling rate provide similar localization sensitivity and selectivity to that obtained with 11-min session at conventional, 0.5 Hz (TR = 2000 ms) sampling rate. Our findings suggest that task-based fMRI examination of clinical population prone to distress such as presurgical mapping experiments might substantially benefit from the reduced (20-40%) scanning time that can be achieved by the application of simultaneous multislice sequences. (orig.)

  5. Precision of guided scanning procedures for full-arch digital impressions in vivo.

    Science.gov (United States)

    Zimmermann, Moritz; Koller, Christina; Rumetsch, Moritz; Ender, Andreas; Mehl, Albert

    2017-11-01

    System-specific scanning strategies have been shown to influence the accuracy of full-arch digital impressions. Special guided scanning procedures have been implemented for specific intraoral scanning systems with special regard to the digital orthodontic workflow. The aim of this study was to evaluate the precision of guided scanning procedures compared to conventional impression techniques in vivo. Two intraoral scanning systems with implemented full-arch guided scanning procedures (Cerec Omnicam Ortho; Ormco Lythos) were included along with one conventional impression technique with irreversible hydrocolloid material (alginate). Full-arch impressions were taken three times each from 5 participants (n = 15). Impressions were then compared within the test groups using a point-to-surface distance method after best-fit model matching (OraCheck). Precision was calculated using the (90-10%)/2 quantile and statistical analysis with one-way repeated measures ANOVA and post hoc Bonferroni test was performed. The conventional impression technique with alginate showed the lowest precision for full-arch impressions with 162.2 ± 71.3 µm. Both guided scanning procedures performed statistically significantly better than the conventional impression technique (p Cerec Omnicam Ortho were 74.5 ± 39.2 µm and for group Ormco Lythos 91.4 ± 48.8 µm. The in vivo precision of guided scanning procedures exceeds conventional impression techniques with the irreversible hydrocolloid material alginate. Guided scanning procedures may be highly promising for clinical applications, especially for digital orthodontic workflows.

  6. Discrete Painlevé equations: an integrability paradigm

    International Nuclear Information System (INIS)

    Grammaticos, B; Ramani, A

    2014-01-01

    In this paper we present a review of results on discrete Painlevé equations. We begin with an introduction which serves as a refresher on the continuous Painlevé equations. Next, in the first, main part of the paper, we introduce the discrete Painlevé equations, the various methods for their derivation, and their properties as well as their classification scheme. Along the way we present a brief summary of the two major discrete integrability detectors and of Quispel–Roberts–Thompson mapping, which plays a primordial role in the derivation of discrete Painlevé equations. The second part of the paper is more technical and focuses on the presentation of new results on what are called asymmetric discrete Painlevé equations. (comment)

  7. Discrete non-parametric kernel estimation for global sensitivity analysis

    International Nuclear Information System (INIS)

    Senga Kiessé, Tristan; Ventura, Anne

    2016-01-01

    This work investigates the discrete kernel approach for evaluating the contribution of the variance of discrete input variables to the variance of model output, via analysis of variance (ANOVA) decomposition. Until recently only the continuous kernel approach has been applied as a metamodeling approach within sensitivity analysis framework, for both discrete and continuous input variables. Now the discrete kernel estimation is known to be suitable for smoothing discrete functions. We present a discrete non-parametric kernel estimator of ANOVA decomposition of a given model. An estimator of sensitivity indices is also presented with its asymtotic convergence rate. Some simulations on a test function analysis and a real case study from agricultural have shown that the discrete kernel approach outperforms the continuous kernel one for evaluating the contribution of moderate or most influential discrete parameters to the model output. - Highlights: • We study a discrete kernel estimation for sensitivity analysis of a model. • A discrete kernel estimator of ANOVA decomposition of the model is presented. • Sensitivity indices are calculated for discrete input parameters. • An estimator of sensitivity indices is also presented with its convergence rate. • An application is realized for improving the reliability of environmental models.

  8. From the continuous PV to discrete Painleve equations

    International Nuclear Information System (INIS)

    Tokihiro, T.; Grammaticos, B.; Ramani, A.

    2002-01-01

    We study the discrete transformations that are associated with the auto-Baecklund of the (continuous) P V equation. We show that several two-parameter discrete Painleve equations can be obtained as contiguity relations of P V . Among them we find the asymmetric d-P II equation which is a well-known form of discrete P III . The relation between the ternary P I (previously obtained through the discrete dressing approach) and P V is also established. A new discrete Painleve equation is also derived. (author)

  9. Full information acquisition in scanning probe microscopy and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jesse, Stephen; Belianinov, Alex; Kalinin, Sergei V.; Somnath, Suhas

    2017-04-04

    Apparatus and methods are described for scanning probe microscopy and spectroscopy based on acquisition of full probe response. The full probe response contains valuable information about the probe-sample interaction that is lost in traditional scanning probe microscopy and spectroscopy methods. The full probe response is analyzed post data acquisition using fast Fourier transform and adaptive filtering, as well as multivariate analysis. The full response data is further compressed to retain only statistically significant components before being permanently stored.

  10. Discrete Routh reduction

    International Nuclear Information System (INIS)

    Jalnapurkar, Sameer M; Leok, Melvin; Marsden, Jerrold E; West, Matthew

    2006-01-01

    This paper develops the theory of Abelian Routh reduction for discrete mechanical systems and applies it to the variational integration of mechanical systems with Abelian symmetry. The reduction of variational Runge-Kutta discretizations is considered, as well as the extent to which symmetry reduction and discretization commute. These reduced methods allow the direct simulation of dynamical features such as relative equilibria and relative periodic orbits that can be obscured or difficult to identify in the unreduced dynamics. The methods are demonstrated for the dynamics of an Earth orbiting satellite with a non-spherical J 2 correction, as well as the double spherical pendulum. The J 2 problem is interesting because in the unreduced picture, geometric phases inherent in the model and those due to numerical discretization can be hard to distinguish, but this issue does not appear in the reduced algorithm, where one can directly observe interesting dynamical structures in the reduced phase space (the cotangent bundle of shape space), in which the geometric phases have been removed. The main feature of the double spherical pendulum example is that it has a non-trivial magnetic term in its reduced symplectic form. Our method is still efficient as it can directly handle the essential non-canonical nature of the symplectic structure. In contrast, a traditional symplectic method for canonical systems could require repeated coordinate changes if one is evoking Darboux' theorem to transform the symplectic structure into canonical form, thereby incurring additional computational cost. Our method allows one to design reduced symplectic integrators in a natural way, despite the non-canonical nature of the symplectic structure

  11. Foundations of a discrete physics

    International Nuclear Information System (INIS)

    McGoveran, D.; Noyes, P.

    1988-01-01

    Starting from the principles of finiteness, discreteness, finite computability and absolute nonuniqueness, we develop the ordering operator calculus, a strictly constructive mathematical system having the empirical properties required by quantum mechanical and special relativistic phenomena. We show how to construct discrete distance functions, and both rectangular and spherical coordinate systems(with a discrete version of ''π''). The richest discrete space constructible without a preferred axis and preserving translational and rotational invariance is shown to be a discrete 3-space with the usual symmetries. We introduce a local ordering parameter with local (proper) time-like properties and universal ordering parameters with global (cosmological) time-like properties. Constructed ''attribute velocities'' connect ensembles with attributes that are invariant as the appropriate time-like parameter increases. For each such attribute, we show how to construct attribute velocities which must satisfy the '' relativistic Doppler shift'' and the ''relativistic velocity composition law,'' as well as the Lorentz transformations. By construction, these velocities have finite maximum and minimum values. In the space of all attributes, the minimum of these maximum velocities will predominate in all multiple attribute computations, and hence can be identified as a fundamental limiting velocity, General commutation relations are constructed which under the physical interpretation are shown to reduce to the usual quantum mechanical commutation relations. 50 refs., 18 figs

  12. Statistical Methods for the Analysis of Discrete Choice Experiments: A Report of the ISPOR Conjoint Analysis Good Research Practices Task Force

    NARCIS (Netherlands)

    Hauber, A. Brett; Gonzalez, Juan Marcos; Groothuis-Oudshoorn, Catharina Gerarda Maria; Prior, Thomas; Marshall, Deborah A.; Cunningham, Charles; IJzerman, Maarten Joost; Bridges, John

    2016-01-01

    Conjoint analysis is a stated-preference survey method that can be used to elicit responses that reveal preferences, priorities, and the relative importance of individual features associated with health care interventions or services. Conjoint analysis methods, particularly discrete choice

  13. Statistical methodology for discrete fracture model - including fracture size, orientation uncertainty together with intensity uncertainty and variability

    International Nuclear Information System (INIS)

    Darcel, C.; Davy, P.; Le Goc, R.; Dreuzy, J.R. de; Bour, O.

    2009-11-01

    Investigations led for several years at Laxemar and Forsmark reveal the large heterogeneity of geological formations and associated fracturing. This project aims at reinforcing the statistical DFN modeling framework adapted to a site scale. This leads therefore to develop quantitative methods of characterization adapted to the nature of fracturing and data availability. We start with the hypothesis that the maximum likelihood DFN model is a power-law model with a density term depending on orientations. This is supported both by literature and specifically here by former analyses of the SKB data. This assumption is nevertheless thoroughly tested by analyzing the fracture trace and lineament maps. Fracture traces range roughly between 0.5 m and 10 m - i e the usual extension of the sample outcrops. Between the raw data and final data used to compute the fracture size distribution from which the size distribution model will arise, several steps are necessary, in order to correct data from finite-size, topographical and sampling effects. More precisely, a particular attention is paid to fracture segmentation status and fracture linkage consistent with the DFN model expected. The fracture scaling trend observed over both sites displays finally a shape parameter k t close to 1.2 with a density term (α 2d ) between 1.4 and 1.8. Only two outcrops clearly display a different trend with k t close to 3 and a density term (α 2d ) between 2 and 3.5. The fracture lineaments spread over the range between 100 meters and a few kilometers. When compared with fracture trace maps, these datasets are already interpreted and the linkage process developed previously has not to be done. Except for the subregional lineament map from Forsmark, lineaments display a clear power-law trend with a shape parameter k t equal to 3 and a density term between 2 and 4.5. The apparent variation in scaling exponent, from the outcrop scale (k t = 1.2) on one side, to the lineament scale (k t = 2) on

  14. Marginal and internal fit of zirconia copings obtained using different digital scanning methods

    Directory of Open Access Journals (Sweden)

    Lorena Oliveira PEDROCHE

    Full Text Available Abstract The objective of this study was to evaluate the marginal and internal fit of zirconia copings obtained with different digital scanning methods. A human mandibular first molar was set in a typodont with its adjacent and antagonist teeth and prepared for an all-ceramic crown. Digital impressions were made using an intraoral scanner (3Shape. Polyvinyl siloxane impressions and Type IV gypsum models were also obtained and scanned with a benchtop laboratory scanner (3Shape D700. Ten zirconia copings were fabricated for each group using CAD-CAM technology. The marginal and internal fit of the zirconia copings was assessed by the silicone replica technique. Four sections of each replica were obtained, and each section was evaluated at four points: marginal gap (MG, axial wall (AW, axio-occlusal edge (AO and centro-occlusal wall (CO, using an image analyzing software. The data were submitted to one-way ANOVA and Tukey’s test (α = 0.05. They showed statistically significant differences for MG, AO and CO. Regarding MG, intraoral scanning showed lower gap values, whereas gypsum model scanning showed higher gap values. Regarding AO and CO, intraoral digital scanning showed lower gap values. Polyvinyl siloxane impression scanning and gypsum model scanning showed higher gap values and were statistically similar. It can be concluded that intraoral digital scanning provided a lower mean gap value, in comparison with conventional impressions and gypsum casts scanned with a standard benchtop laboratory scanner.

  15. Analysis of health in health centers area in Depok using correspondence analysis and scan statistic

    Science.gov (United States)

    Basir, C.; Widyaningsih, Y.; Lestari, D.

    2017-07-01

    Hotspots indicate area that has a higher case intensity than others. For example, in health problems of an area, the number of sickness of a region can be used as parameter and condition of area that determined severity of an area. If this condition is known soon, it can be overcome preventively. Many factors affect the severity level of area. Some health factors to be considered in this study are the number of infant with low birth weight, malnourished children under five years old, under five years old mortality, maternal deaths, births without the help of health personnel, infants without handling the baby's health, and infant without basic immunization. The number of cases is based on every public health center area in Depok. Correspondence analysis provides graphical information about two nominal variables relationship. It create plot based on row and column scores and show categories that have strong relation in a close distance. Scan Statistic method is used to examine hotspot based on some selected variables that occurred in the study area; and Correspondence Analysis is used to picturing association between the regions and variables. Apparently, using SaTScan software, Sukatani health center is obtained as a point hotspot; and Correspondence Analysis method shows health centers and the seven variables have a very significant relationship and the majority of health centers close to all variables, except Cipayung which is distantly related to the number of pregnant mother death. These results can be used as input for the government agencies to upgrade the health level in the area.

  16. Theoretical Basics of Teaching Discrete Mathematics

    Directory of Open Access Journals (Sweden)

    Y. A. Perminov

    2012-01-01

    Full Text Available  The paper deals with the research findings concerning the process of mastering the theoretical basics of discrete mathematics by the students of vocational pedagogic profile. The methodological analysis is based on the subject and functions of the modern discrete mathematics and its role in mathematical modeling and computing. The modern discrete mathematics (i.e. mathematics of the finite type structures plays the important role in modernization of vocational training. It is especially rele- vant to training students for vocational pedagogic qualifications, as in the future they will be responsible for training the middle and the senior level specialists in engineer- ing and technical spheres. Nowadays in different industries, there arise the problems which require for their solving both continual – based on the classical mathematical methods – and discrete modeling. The teaching course of discrete mathematics for the future vocational teachers should be relevant to the target qualification and aimed at mastering the mathematical modeling, systems of computer mathematics and computer technologies. The author emphasizes the fundamental role of mastering the language of algebraic and serial structures, as well as the logical, algorithmic, combinatory schemes dominating in dis- crete mathematics. The guidelines for selecting the content of the course in discrete mathematics are specified. The theoretical findings of the research can be put into practice whilst developing curricula and working programs for bachelors and masters’ training. 

  17. Discrete symmetries and their stringy origin

    International Nuclear Information System (INIS)

    Mayorga Pena, Damian Kaloni

    2014-05-01

    Discrete symmetries have proven to be very useful in controlling the phenomenology of theories beyond the standard model. In this work we explore how these symmetries emerge from string compactifications. Our approach is twofold: On the one hand, we consider the heterotic string on orbifold backgrounds. In this case the discrete symmetries can be derived from the orbifold conformal field theory, and it can be shown that they are in close relation with the orbifold geometry. We devote special attention to R-symmetries, which arise from discrete remnants of the Lorentz group in compact space. Further we discuss the physical implications of these symmetries both in the heterotic mini-landscape and in newly constructed models based on the Z 2 x Z 4 orbifold. In both cases we observe that the discrete symmetries favor particular locations in the orbifold where the particles of standard model should live. On the other hand we consider a class of F-theory models exhibiting an SU(5) gauge group, times additional U(1) symmetries. In this case, the smooth compactification background does not permit us to track the discrete symmetries as transparently as in orbifold models. Hence, we follow a different approach and search for discrete subgroups emerging after the U(1)s are broken. We observe that in this approach it is possible to obtain the standard Z 2 matter parity of the MSSM.

  18. Exterior difference systems and invariance properties of discrete mechanics

    International Nuclear Information System (INIS)

    Xie Zheng; Xie Duanqiang; Li Hongbo

    2008-01-01

    Invariance properties describe the fundamental physical laws in discrete mechanics. Can those properties be described in a geometric way? We investigate an exterior difference system called the discrete Euler-Lagrange system, whose solution has one-to-one correspondence with solutions of discrete Euler-Lagrange equations, and use it to define the first integrals. The preservation of the discrete symplectic form along the discrete Hamilton phase flows and the discrete Noether's theorem is also described in the language of difference forms

  19. Technetium {sup 99m}Tc Pertechnetate Brain Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Sang Min; Park, Jin Yung; Lee, Ahn Ki; Chung, Choo Il; Hong, Chang Gi [Capital Army Hospital, ROKA, Seoul (Korea, Republic of); Rhee, Chong Heon; Koh, Chang Soon [Radiological Research Institute, Seoul (Korea, Republic of)

    1968-03-15

    Technetium {sup 99}mTc pertechnetate brain scanning were performed in 3 cases of head injury (2 chronic subdural hematomas and 1 acute epidural hematoma), 2 cases of brain abscess and 1 case of intracerebral hematoma associated with arteriovenous anomaly. In all the cases brain scintigrams showed 'hot areas.' Literatures on radioisotope scanning of intracranial lesions were briefly reviewed. With the improvement of radioisotope scanner and development of new radiopharmaceuticals brain scanning became a safe and useful screening test for diagnosis of intracranial lesions. Brain scanning can be easily performed even to a moribund patient without any discomfort and risk to the patient which are associated with cerebral angiography or pneumoencephalography. Brain scanning has been useful in diagnosis of brain tumor, brain abscess, subdural hematoma, and cerebral vascular diseases. In 80 to 90% of brain tumors positive scintigrams can be expected. Early studies were done with 203 Hg-Neohydrin or {sup 131}I-serum albumin. With these agents, however, patients receive rather much radiation to the whole body and kidneys. In 1965 Harper introduced {sup 99}mTc to reduce radiation dose to the patient and improve statistical variation in isotope scanning.

  20. Discrete breathers in graphane: Effect of temperature

    Energy Technology Data Exchange (ETDEWEB)

    Baimova, J. A., E-mail: julia.a.baimova@gmail.com [Russian Academy of Sciences, Institute of Metal Physics, Ural Branch (Russian Federation); Murzaev, R. T.; Lobzenko, I. P.; Dmitriev, S. V. [Russian Academy of Sciences, Institute for Metals Superplasticity Problems (Russian Federation); Zhou, Kun [Nanyang Technological University, School of Mechanical and Aerospace Engineering (Singapore)

    2016-05-15

    The discrete breathers in graphane in thermodynamic equilibrium in the temperature range 50–600 K are studied by molecular dynamics simulation. A discrete breather is a hydrogen atom vibrating along the normal to a sheet of graphane at a high amplitude. As was found earlier, the lifetime of a discrete breather at zero temperature corresponds to several tens of thousands of vibrations. The effect of temperature on the decay time of discrete breathers and the probability of their detachment from a sheet of graphane are studied in this work. It is shown that closely spaced breathers can exchange energy with each other at zero temperature. The data obtained suggest that thermally activated discrete breathers can be involved in the dehydrogenation of graphane, which is important for hydrogen energetics.

  1. Force scanning: a rapid, high-resolution approach for spatial mechanical property mapping

    International Nuclear Information System (INIS)

    Darling, E M

    2011-01-01

    Atomic force microscopy (AFM) can be used to co-localize mechanical properties and topographical features through property mapping techniques. The most common approach for testing biological materials at the microscale and nanoscale is force mapping, which involves taking individual force curves at discrete sites across a region of interest. The limitations of force mapping include long testing times and low resolution. While newer AFM methodologies, like modulated scanning and torsional oscillation, circumvent this problem, their adoption for biological materials has been limited. This could be due to their need for specialized software algorithms and/or hardware. The objective of this study is to develop a novel force scanning technique using AFM to rapidly capture high-resolution topographical images of soft biological materials while simultaneously quantifying their mechanical properties. Force scanning is a straightforward methodology applicable to a wide range of materials and testing environments, requiring no special modification to standard AFMs. Essentially, if a contact-mode image can be acquired, then force scanning can be used to produce a spatial modulus map. The current study first validates this technique using agarose gels, comparing results to ones achieved by the standard force mapping approach. Biologically relevant demonstrations are then presented for high-resolution modulus mapping of individual cells, cell-cell interfaces, and articular cartilage tissue.

  2. An integrable semi-discretization of the Boussinesq equation

    International Nuclear Information System (INIS)

    Zhang, Yingnan; Tian, Lixin

    2016-01-01

    Highlights: • A new integrable semi-discretization of the Boussinesq equation is present. • A Bäcklund transformation and a Lax pair for the differential-difference system is derived by using Hirota's bilinear method. • The soliton solutions of 'good' Boussinesq equation and numerical algorithms are investigated. - Abstract: In this paper, we present an integrable semi-discretization of the Boussinesq equation. Different from other discrete analogues, we discretize the ‘time’ variable and get an integrable differential-difference system. Under a standard limitation, the differential-difference system converges to the continuous Boussinesq equation such that the discrete system can be used to design numerical algorithms. Using Hirota's bilinear method, we find a Bäcklund transformation and a Lax pair of the differential-difference system. For the case of ‘good’ Boussinesq equation, we investigate the soliton solutions of its discrete analogue and design numerical algorithms. We find an effective way to reduce the phase shift caused by the discretization. The numerical results coincide with our analysis.

  3. Discretization of 3d gravity in different polarizations

    Science.gov (United States)

    Dupuis, Maïté; Freidel, Laurent; Girelli, Florian

    2017-10-01

    We study the discretization of three-dimensional gravity with Λ =0 following the loop quantum gravity framework. In the process, we realize that different choices of polarization are possible. This allows us to introduce a new discretization based on the triad as opposed to the connection as in the standard loop quantum gravity framework. We also identify the classical nontrivial symmetries of discrete gravity, namely the Drinfeld double, given in terms of momentum maps. Another choice of polarization is given by the Chern-Simons formulation of gravity. Our framework also provides a new discretization scheme of Chern-Simons, which keeps track of the link between the continuum variables and the discrete ones. We show how the Poisson bracket we recover between the Chern-Simons holonomies allows us to recover the Goldman bracket. There is also a transparent link between the discrete Chern-Simons formulation and the discretization of gravity based on the connection (loop gravity) or triad variables (dual loop gravity).

  4. Discrete fractional solutions of a Legendre equation

    Science.gov (United States)

    Yılmazer, Resat

    2018-01-01

    One of the most popular research interests of science and engineering is the fractional calculus theory in recent times. Discrete fractional calculus has also an important position in fractional calculus. In this work, we acquire new discrete fractional solutions of the homogeneous and non homogeneous Legendre differential equation by using discrete fractional nabla operator.

  5. A cost-saving statistically based screening technique for focused sampling of a lead-contaminated site

    International Nuclear Information System (INIS)

    Moscati, A.F. Jr.; Hediger, E.M.; Rupp, M.J.

    1986-01-01

    High concentrations of lead in soils along an abandoned railroad line prompted a remedial investigation to characterize the extent of contamination across a 7-acre site. Contamination was thought to be spotty across the site reflecting its past use in battery recycling operations at discrete locations. A screening technique was employed to delineate the more highly contaminated areas by testing a statistically determined minimum number of random samples from each of seven discrete site areas. The approach not only quickly identified those site areas which would require more extensive grid sampling, but also provided a statistically defensible basis for excluding other site areas from further consideration, thus saving the cost of additional sample collection and analysis. The reduction in the number of samples collected in ''clean'' areas of the site ranged from 45 to 60%

  6. First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media

    Science.gov (United States)

    Mishchenko, Michael I.; Dlugach, Janna M.; Yurkin, Maxim A.; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R. Lee; Travis, Larry D.; Yang, Ping; Zakharova, Nadezhda T.

    2018-01-01

    A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ, or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell’s equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell–Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell–Lorentz equations, we trace the development

  7. First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media

    International Nuclear Information System (INIS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Yurkin, Maxim A.; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R. Lee; Travis, Larry D.; Yang, Ping; Zakharova, Nadezhda T.

    2016-01-01

    A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ, or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell’s equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell–Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell–Lorentz equations, we trace the development

  8. First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media

    Energy Technology Data Exchange (ETDEWEB)

    Mishchenko, Michael I., E-mail: michael.i.mishchenko@nasa.gov [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Dlugach, Janna M. [Main Astronomical Observatory of the National Academy of Sciences of Ukraine, 27 Zabolotny Str., 03680, Kyiv (Ukraine); Yurkin, Maxim A. [Voevodsky Institute of Chemical Kinetics and Combustion, SB RAS, Institutskaya str. 3, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova 2, 630090 Novosibirsk (Russian Federation); Bi, Lei [Department of Atmospheric Sciences, Texas A& M University, College Station, TX 77843 (United States); Cairns, Brian [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Liu, Li [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Columbia University, 2880 Broadway, New York, NY 10025 (United States); Panetta, R. Lee [Department of Atmospheric Sciences, Texas A& M University, College Station, TX 77843 (United States); Travis, Larry D. [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Yang, Ping [Department of Atmospheric Sciences, Texas A& M University, College Station, TX 77843 (United States); Zakharova, Nadezhda T. [Trinnovim LLC, 2880 Broadway, New York, NY 10025 (United States)

    2016-05-16

    A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ, or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell’s equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell–Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell–Lorentz equations, we trace the development

  9. First-Principles Modeling Of Electromagnetic Scattering By Discrete and Discretely Heterogeneous Random Media

    Science.gov (United States)

    Mishchenko, Michael I.; Dlugach, Janna M.; Yurkin, Maxim A.; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R. Lee; Travis, Larry D.; Yang, Ping; Zakharova, Nadezhda T.

    2016-01-01

    A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ, or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell's equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell- Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell-Lorentz equations, we trace the development of

  10. Discrete Mathematics and Its Applications

    Science.gov (United States)

    Oxley, Alan

    2010-01-01

    The article gives ideas that lecturers of undergraduate Discrete Mathematics courses can use in order to make the subject more interesting for students and encourage them to undertake further studies in the subject. It is possible to teach Discrete Mathematics with little or no reference to computing. However, students are more likely to be…

  11. Current density and continuity in discretized models

    International Nuclear Information System (INIS)

    Boykin, Timothy B; Luisier, Mathieu; Klimeck, Gerhard

    2010-01-01

    Discrete approaches have long been used in numerical modelling of physical systems in both research and teaching. Discrete versions of the Schroedinger equation employing either one or several basis functions per mesh point are often used by senior undergraduates and beginning graduate students in computational physics projects. In studying discrete models, students can encounter conceptual difficulties with the representation of the current and its divergence because different finite-difference expressions, all of which reduce to the current density in the continuous limit, measure different physical quantities. Understanding these different discrete currents is essential and requires a careful analysis of the current operator, the divergence of the current and the continuity equation. Here we develop point forms of the current and its divergence valid for an arbitrary mesh and basis. We show that in discrete models currents exist only along lines joining atomic sites (or mesh points). Using these results, we derive a discrete analogue of the divergence theorem and demonstrate probability conservation in a purely localized-basis approach.

  12. Discrete Calculus as a Bridge between Scales

    Science.gov (United States)

    Degiuli, Eric; McElwaine, Jim

    2012-02-01

    Understanding how continuum descriptions of disordered media emerge from the microscopic scale is a fundamental challenge in condensed matter physics. In many systems, it is necessary to coarse-grain balance equations at the microscopic scale to obtain macroscopic equations. We report development of an exact, discrete calculus, which allows identification of discrete microscopic equations with their continuum equivalent [1]. This allows the application of powerful techniques of calculus, such as the Helmholtz decomposition, the Divergence Theorem, and Stokes' Theorem. We illustrate our results with granular materials. In particular, we show how Newton's laws for a single grain reproduce their continuum equivalent in the calculus. This allows introduction of a discrete Airy stress function, exactly as in the continuum. As an application of the formalism, we show how these results give the natural mean-field variation of discrete quantities, in agreement with numerical simulations. The discrete calculus thus acts as a bridge between discrete microscale quantities and continuous macroscale quantities. [4pt] [1] E. DeGiuli & J. McElwaine, PRE 2011. doi: 10.1103/PhysRevE.84.041310

  13. Integrals of Motion for Discrete-Time Optimal Control Problems

    OpenAIRE

    Torres, Delfim F. M.

    2003-01-01

    We obtain a discrete time analog of E. Noether's theorem in Optimal Control, asserting that integrals of motion associated to the discrete time Pontryagin Maximum Principle can be computed from the quasi-invariance properties of the discrete time Lagrangian and discrete time control system. As corollaries, results for first-order and higher-order discrete problems of the calculus of variations are obtained.

  14. Effective Hamiltonian for travelling discrete breathers

    Science.gov (United States)

    MacKay, Robert S.; Sepulchre, Jacques-Alexandre

    2002-05-01

    Hamiltonian chains of oscillators in general probably do not sustain exact travelling discrete breathers. However solutions which look like moving discrete breathers for some time are not difficult to observe in numerics. In this paper we propose an abstract framework for the description of approximate travelling discrete breathers in Hamiltonian chains of oscillators. The method is based on the construction of an effective Hamiltonian enabling one to describe the dynamics of the translation degree of freedom of moving breathers. Error estimate on the approximate dynamics is also studied. The concept of the Peierls-Nabarro barrier can be made clear in this framework. We illustrate the method with two simple examples, namely the Salerno model which interpolates between the Ablowitz-Ladik lattice and the discrete nonlinear Schrödinger system, and the Fermi-Pasta-Ulam chain.

  15. Evolution equation of Lie-type for finite deformations, time-discrete integration, and incremental methods

    Czech Academy of Sciences Publication Activity Database

    Fiala, Zdeněk

    2015-01-01

    Roč. 226, č. 1 (2015), s. 17-35 ISSN 0001-5970 R&D Projects: GA ČR(CZ) GA103/09/2101 Institutional support: RVO:68378297 Keywords : solid mechanics * finite deformations * evolution equation of Lie-type * time-discrete integration Subject RIV: BA - General Mathematics OBOR OECD: Statistics and probability Impact factor: 1.694, year: 2015 http://link.springer.com/article/10.1007%2Fs00707-014-1162-9#page-1

  16. Mittag-Leffler function for discrete fractional modelling

    Directory of Open Access Journals (Sweden)

    Guo-Cheng Wu

    2016-01-01

    Full Text Available From the difference equations on discrete time scales, this paper numerically investigates one discrete fractional difference equation in the Caputo delta’s sense which has an explicit solution in form of the discrete Mittag-Leffler function. The exact numerical values of the solutions are given in comparison with the truncated Mittag-Leffler function.

  17. An efficient forward–reverse expectation-maximization algorithm for statistical inference in stochastic reaction networks

    KAUST Repository

    Bayer, Christian; Moraes, Alvaro; Tempone, Raul; Vilanova, Pedro

    2016-01-01

    then employ this SRN bridge-generation technique to the statistical inference problem of approximating reaction propensities based on discretely observed data. To this end, we introduce a two-phase iterative inference method in which, during phase I, we solve

  18. Discrete/PWM Ballast-Resistor Controller

    Science.gov (United States)

    King, Roger J.

    1994-01-01

    Circuit offers low switching loss and automatic compensation for failure of ballast resistor. Discrete/PWM ballast-resistor controller improved shunt voltage-regulator circuit designed to supply power from high-resistance source to low-impedance bus. Provides both coarse discrete voltage levels (by switching of ballast resistors) and continuous fine control of voltage via pulse-width modulation.

  19. Discretization of four types of Weyl group orbit functions

    International Nuclear Information System (INIS)

    Hrivnák, Jiří

    2013-01-01

    The discrete Fourier calculus of the four families of special functions, called C–, S–, S s – and S l -functions, is summarized. Functions from each of the four families of special functions are discretely orthogonal over a certain finite set of points. The generalizations of discrete cosine and sine transforms of one variable — the discrete S s – and S l -transforms of the group F 4 — are considered in detail required for their exploitation in discrete Fourier spectral methods. The continuous interpolations, induced by the discrete expansions, are presented

  20. Statistical convergence of a non-positive approximation process

    International Nuclear Information System (INIS)

    Agratini, Octavian

    2011-01-01

    Highlights: → A general class of approximation processes is introduced. → The A-statistical convergence is studied. → Applications in quantum calculus are delivered. - Abstract: Starting from a general sequence of linear and positive operators of discrete type, we associate its r-th order generalization. This construction involves high order derivatives of a signal and it looses the positivity property. Considering that the initial approximation process is A-statistically uniform convergent, we prove that the property is inherited by the new sequence. Also, our result includes information about the uniform convergence. Two applications in q-Calculus are presented. We study q-analogues both of Meyer-Koenig and Zeller operators and Stancu operators.

  1. Discrete elements method of neutral particle transport

    International Nuclear Information System (INIS)

    Mathews, K.A.

    1983-01-01

    A new discrete elements (L/sub N/) transport method is derived and compared to the discrete ordinates S/sub N/ method, theoretically and by numerical experimentation. The discrete elements method is more accurate than discrete ordinates and strongly ameliorates ray effects for the practical problems studied. The discrete elements method is shown to be more cost effective, in terms of execution time with comparable storage to attain the same accuracy, for a one-dimensional test case using linear characteristic spatial quadrature. In a two-dimensional test case, a vacuum duct in a shield, L/sub N/ is more consistently convergent toward a Monte Carlo benchmark solution than S/sub N/, using step characteristic spatial quadrature. An analysis of the interaction of angular and spatial quadrature in xy-geometry indicates the desirability of using linear characteristic spatial quadrature with the L/sub N/ method

  2. Spatially localized, temporally quasiperiodic, discrete nonlinear excitations

    International Nuclear Information System (INIS)

    Cai, D.; Bishop, A.R.; Gronbech-Jensen, N.

    1995-01-01

    In contrast to the commonly discussed discrete breather, which is a spatially localized, time-periodic solution, we present an exact solution of a discrete nonlinear Schroedinger breather which is a spatially localized, temporally quasiperiodic nonlinear coherent excitation. This breather is a multiple-soliton solution in the sense of the inverse scattering transform. A discrete breather of multiple frequencies is conceptually important in studies of nonlinear lattice systems. We point out that, for this breather, the incommensurability of its frequencies is a discrete lattice effect and these frequencies become commensurate in the continuum limit. To understand the dynamical properties of the breather, we also discuss its stability and its behavior in the presence of an external potential. Finally, we indicate how to obtain an exact N-soliton breather as a discrete generalization of the continuum multiple-soliton solution

  3. Discrete changes of current statistics in periodically driven stochastic systems

    International Nuclear Information System (INIS)

    Chernyak, Vladimir Y; Sinitsyn, N A

    2010-01-01

    We demonstrate that the counting statistics of currents in periodically driven ergodic stochastic systems can show sharp changes of some of its properties in response to continuous changes of the driving protocol. To describe this effect, we introduce a new topological phase factor in the evolution of the moment generating function which is akin to the topological geometric phase in the evolution of a periodically driven quantum mechanical system with time-reversal symmetry. This phase leads to the prediction of a sign change for the difference of the probabilities to find even and odd numbers of particles transferred in a stochastic system in response to cyclic evolution of control parameters. The driving protocols that lead to this sign change should enclose specific degeneracy points in the space of control parameters. The relation between the topology of the paths in the control parameter space and the sign changes can be described in terms of the first Stiefel–Whitney class of topological invariants. (letter)

  4. On organizing principles of discrete differential geometry. Geometry of spheres

    International Nuclear Information System (INIS)

    Bobenko, Alexander I; Suris, Yury B

    2007-01-01

    Discrete differential geometry aims to develop discrete equivalents of the geometric notions and methods of classical differential geometry. This survey contains a discussion of the following two fundamental discretization principles: the transformation group principle (smooth geometric objects and their discretizations are invariant with respect to the same transformation group) and the consistency principle (discretizations of smooth parametrized geometries can be extended to multidimensional consistent nets). The main concrete geometric problem treated here is discretization of curvature-line parametrized surfaces in Lie geometry. Systematic use of the discretization principles leads to a discretization of curvature-line parametrization which unifies circular and conical nets.

  5. Effective lagrangian description on discrete gauge symmetries

    International Nuclear Information System (INIS)

    Banks, T.

    1989-01-01

    We exhibit a simple low-energy lagrangian which describes a system with a discrete remnant of a spontaneously broken continuous gauge symmetry. The lagrangian gives a simple description of the effects ascribed to such systems by Krauss and Wilczek: black holes carry discrete hair and interact with cosmic strings, and wormholes cannot lead to violation of discrete gauge symmetries. (orig.)

  6. Relevance of discrete traits in forensic anthropology: From the first cervical vertebra to the pelvic girdle.

    Science.gov (United States)

    Verna, Emeline; Piercecchi-Marti, Marie-Dominique; Chaumoitre, Kathia; Adalian, Pascal

    2015-08-01

    In forensic anthropology, identification begins by determining the sex, age, ancestry and stature of the individuals. Asymptomatic variations present on the skeleton, known as discrete traits, can be useful to identify individuals, or at least contribute to complete their biological profile. We decided to focus our work on the upper part of the skeleton, from the first vertebra to the pelvic girdle, and we chose to present 8 discrete traits (spina bifida occulta, butterfly vertebra, supraclavicular nerve foramen, coracoclavicular joint, os acromiale, suprascapular foramen, manubrium foramen and pubic spine), because they show a frequency lower than 10%. We examined 502 anonymous CT scans from polytraumatized individuals, aged 15 to 65 years, in order to detect the selected discrete traits. Age and sex were known for each subject. Thin sections in the axial, coronal and sagittal planes and 3D volume rendering images were created and examined for the visualization of the selected discrete traits. Supraclavicular foramina were found only in males and only on the left clavicle. Coracoclavicular joints were observed only in males. The majority of individuals with a suprascapular foramen were older than 50 years of age. Pubic spines were observed mostly in females. Other traits did not present significant association with sex, age and laterality. No association between traits was highlighted. Better knowledge of human skeletal variations will help anthropologists come closer to a positive identification, especially if these variations are rare, therefore making them more discriminant. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. An integrable semi-discretization of the Boussinesq equation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingnan, E-mail: ynzhang@njnu.edu.cn [Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, Jiangsu (China); Tian, Lixin, E-mail: tianlixin@njnu.edu.cn [Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, Jiangsu (China); Nonlinear Scientific Research Center, Jiangsu University, Zhenjiang, Jiangsu (China)

    2016-10-23

    Highlights: • A new integrable semi-discretization of the Boussinesq equation is present. • A Bäcklund transformation and a Lax pair for the differential-difference system is derived by using Hirota's bilinear method. • The soliton solutions of 'good' Boussinesq equation and numerical algorithms are investigated. - Abstract: In this paper, we present an integrable semi-discretization of the Boussinesq equation. Different from other discrete analogues, we discretize the ‘time’ variable and get an integrable differential-difference system. Under a standard limitation, the differential-difference system converges to the continuous Boussinesq equation such that the discrete system can be used to design numerical algorithms. Using Hirota's bilinear method, we find a Bäcklund transformation and a Lax pair of the differential-difference system. For the case of ‘good’ Boussinesq equation, we investigate the soliton solutions of its discrete analogue and design numerical algorithms. We find an effective way to reduce the phase shift caused by the discretization. The numerical results coincide with our analysis.

  8. A 2+1 non-isospectral discrete integrable system and its discrete integrable coupling system

    International Nuclear Information System (INIS)

    Yu Fajun; Zhang Hongqing

    2006-01-01

    In this Letter by considering a (2+1)-dimensional discrete non-isospectral linear problem, a new (2+1)-dimensional integrable lattice hierarchy is constructed. It shows that generalization of the Blaszak-Marciniak lattice hierarchy can be obtained as a reduction. Then an extended algebraic system X-bar of X is presented, from which the integrable coupling system of the (2+1)-dimensional discrete non-isospectral Blaszak-Marciniak lattice equations are obtained

  9. Hairs of discrete symmetries and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kang Sin [Scranton Honors Program, Ewha Womans University, Seodaemun-Gu, Seoul 03760 (Korea, Republic of); Center for Fields, Gravity and Strings, CTPU, Institute for Basic Sciences, Yuseong-Gu, Daejeon 34047 (Korea, Republic of); Kim, Jihn E., E-mail: jihnekim@gmail.com [Department of Physics, Kyung Hee University, 26 Gyungheedaero, Dongdaemun-Gu, Seoul 02447 (Korea, Republic of); Center for Axion and Precision Physics Research (IBS), 291 Daehakro, Yuseong-Gu, Daejeon 34141 (Korea, Republic of); Kyae, Bumseok [Department of Physics, Pusan National University, 2 Busandaehakro-63-Gil, Geumjeong-Gu, Busan 46241 (Korea, Republic of); Nam, Soonkeon [Department of Physics, Kyung Hee University, 26 Gyungheedaero, Dongdaemun-Gu, Seoul 02447 (Korea, Republic of)

    2017-06-10

    Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete symmetries in the Universe must involve the vacuum expectation values of Higgs fields, a string-like configuration (hair) at the intersection of domain walls in the Higgs vacua can be realized. Therefore, we argue that discrete charges are also respected by gravity.

  10. Hairs of discrete symmetries and gravity

    Directory of Open Access Journals (Sweden)

    Kang Sin Choi

    2017-06-01

    Full Text Available Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete symmetries in the Universe must involve the vacuum expectation values of Higgs fields, a string-like configuration (hair at the intersection of domain walls in the Higgs vacua can be realized. Therefore, we argue that discrete charges are also respected by gravity.

  11. Transforming between discrete and continuous angle distribution models: application to protein χ1 torsions

    International Nuclear Information System (INIS)

    Schmidt, Jürgen M.

    2012-01-01

    Two commonly employed angular-mobility models for describing amino-acid side-chain χ 1 torsion conformation, the staggered-rotamer jump and the normal probability density, are discussed and performance differences in applications to scalar-coupling data interpretation highlighted. Both models differ in their distinct statistical concepts, representing discrete and continuous angle distributions, respectively. Circular statistics, introduced for describing torsion-angle distributions by using a universal circular order parameter central to all models, suggest another distribution of the continuous class, here referred to as the elliptic model. Characteristic of the elliptic model is that order parameter and circular variance form complementary moduli. Transformations between the parameter sets that describe the probability density functions underlying the different models are provided. Numerical aspects of parameter optimization are considered. The issues are typified by using a set of χ 1 related 3 J coupling constants available for FK506-binding protein. The discrete staggered-rotamer model is found generally to produce lower order parameters, implying elevated rotatory variability in the amino-acid side chains, whereas continuous models tend to give higher order parameters that suggest comparatively less variation in angle conformations. The differences perceived regarding angular mobility are attributed to conceptually different features inherent to the models.

  12. Statistical mechanics of cellular automata

    International Nuclear Information System (INIS)

    Wolfram, S.

    1983-01-01

    Cellular automata are used as simple mathematical models to investigate self-organization in statistical mechanics. A detailed analysis is given of ''elementary'' cellular automata consisting of a sequence of sites with values 0 or 1 on a line, with each site evolving deterministically in discrete time steps according to p definite rules involving the values of its nearest neighbors. With simple initial configurations, the cellular automata either tend to homogeneous states, or generate self-similar patterns with fractal dimensions approx. =1.59 or approx. =1.69. With ''random'' initial configurations, the irreversible character of the cellular automaton evolution leads to several self-organization phenomena. Statistical properties of the structures generated are found to lie in two universality classes, independent of the details of the initial state or the cellular automaton rules. More complicated cellular automata are briefly considered, and connections with dynamical systems theory and the formal theory of computation are discussed

  13. Integrable lattices and their sublattices: From the discrete Moutard (discrete Cauchy-Riemann) 4-point equation to the self-adjoint 5-point scheme

    International Nuclear Information System (INIS)

    Doliwa, A.; Grinevich, P.; Nieszporski, M.; Santini, P. M.

    2007-01-01

    We present the sublattice approach, a procedure to generate, from a given integrable lattice, a sublattice which inherits its integrability features. We consider, as illustrative example of this approach, the discrete Moutard 4-point equation and its sublattice, the self-adjoint 5-point scheme on the star of the square lattice, which are relevant in the theory of the integrable discrete geometries and in the theory of discrete holomorphic and harmonic functions (in this last context, the discrete Moutard equation is called discrete Cauchy-Riemann equation). Therefore an integrable, at one energy, discretization of elliptic two-dimensional operators is considered. We use the sublattice point of view to derive, from the Darboux transformations and superposition formulas of the discrete Moutard equation, the Darboux transformations and superposition formulas of the self-adjoint 5-point scheme. We also construct, from algebro-geometric solutions of the discrete Moutard equation, algebro-geometric solutions of the self-adjoint 5-point scheme. In particular, we show that the corresponding restrictions on the finite-gap data are of the same type as those for the fixed energy problem for the two-dimensional Schroedinger operator. We finally use these solutions to construct explicit examples of discrete holomorphic and harmonic functions, as well as examples of quadrilateral surfaces in R 3

  14. History Matching Through a Smooth Formulation of Multiple-Point Statistics

    DEFF Research Database (Denmark)

    Melnikova, Yulia; Zunino, Andrea; Lange, Katrine

    2014-01-01

    and the mismatch with multiple-point statistics. As a result, in the framework of the Bayesian approach, such a solution belongs to a high posterior region. The methodology, while applicable to any inverse problem with a training-image-based prior, is especially beneficial for problems which require expensive......We propose a smooth formulation of multiple-point statistics that enables us to solve inverse problems using gradient-based optimization techniques. We introduce a differentiable function that quantifies the mismatch between multiple-point statistics of a training image and of a given model. We...... show that, by minimizing this function, any continuous image can be gradually transformed into an image that honors the multiple-point statistics of the discrete training image. The solution to an inverse problem is then found by minimizing the sum of two mismatches: the mismatch with data...

  15. Summary statistics for end-point conditioned continuous-time Markov chains

    DEFF Research Database (Denmark)

    Hobolth, Asger; Jensen, Jens Ledet

    Continuous-time Markov chains are a widely used modelling tool. Applications include DNA sequence evolution, ion channel gating behavior and mathematical finance. We consider the problem of calculating properties of summary statistics (e.g. mean time spent in a state, mean number of jumps between...... two states and the distribution of the total number of jumps) for discretely observed continuous time Markov chains. Three alternative methods for calculating properties of summary statistics are described and the pros and cons of the methods are discussed. The methods are based on (i) an eigenvalue...... decomposition of the rate matrix, (ii) the uniformization method, and (iii) integrals of matrix exponentials. In particular we develop a framework that allows for analyses of rather general summary statistics using the uniformization method....

  16. Statistical methods for longitudinal data with agricultural applications

    DEFF Research Database (Denmark)

    Anantharama Ankinakatte, Smitha

    The PhD study focuses on modeling two kings of longitudinal data arising in agricultural applications: continuous time series data and discrete longitudinal data. Firstly, two statistical methods, neural networks and generalized additive models, are applied to predict masistis using multivariate...... algorithm. This was found to compare favourably with the algorithm implemented in the well-known Beagle software. Finally, an R package to apply APFA models developed as part of the PhD project is described...

  17. Global Profiling and Novel Structure Discovery Using Multiple Neutral Loss/Precursor Ion Scanning Combined with Substructure Recognition and Statistical Analysis (MNPSS): Characterization of Terpene-Conjugated Curcuminoids in Curcuma longa as a Case Study.

    Science.gov (United States)

    Qiao, Xue; Lin, Xiong-hao; Ji, Shuai; Zhang, Zheng-xiang; Bo, Tao; Guo, De-an; Ye, Min

    2016-01-05

    To fully understand the chemical diversity of an herbal medicine is challenging. In this work, we describe a new approach to globally profile and discover novel compounds from an herbal extract using multiple neutral loss/precursor ion scanning combined with substructure recognition and statistical analysis. Turmeric (the rhizomes of Curcuma longa L.) was used as an example. This approach consists of three steps: (i) multiple neutral loss/precursor ion scanning to obtain substructure information; (ii) targeted identification of new compounds by extracted ion current and substructure recognition; and (iii) untargeted identification using total ion current and multivariate statistical analysis to discover novel structures. Using this approach, 846 terpecurcumins (terpene-conjugated curcuminoids) were discovered from turmeric, including a number of potentially novel compounds. Furthermore, two unprecedented compounds (terpecurcumins X and Y) were purified, and their structures were identified by NMR spectroscopy. This study extended the application of mass spectrometry to global profiling of natural products in herbal medicines and could help chemists to rapidly discover novel compounds from a complex matrix.

  18. Discrete tomography in neutron radiography

    International Nuclear Information System (INIS)

    Kuba, Attila; Rodek, Lajos; Kiss, Zoltan; Rusko, Laszlo; Nagy, Antal; Balasko, Marton

    2005-01-01

    Discrete tomography (DT) is an imaging technique for reconstructing discrete images from their projections using the knowledge that the object to be reconstructed contains only a few homogeneous materials characterized by known discrete absorption values. One of the main reasons for applying DT is that we will hopefully require relatively few projections. Using discreteness and some a priori information (such as an approximate shape of the object) we can apply two DT methods in neutron imaging by reducing the problem to an optimization task. The first method is a special one because it is only suitable if the object is composed of cylinders and sphere shapes. The second method is a general one in the sense that it can be used for reconstructing objects of any shape. Software was developed and physical experiments performed in order to investigate the effects of several reconstruction parameters: the number of projections, noise levels, and complexity of the object to be reconstructed. We give a summary of the experimental results and make a comparison of the results obtained using a classical reconstruction technique (FBP). The programs we developed are available in our DT reconstruction program package DIRECT

  19. How Triage Nurses Use Discretion: a Literature Review

    Directory of Open Access Journals (Sweden)

    Lars Emil Fagernes Johannessen

    2016-02-01

    Full Text Available Discretion is quintessential for professional work. This review aims to understand how nurses use discretion when they perform urgency assessments in emergency departments with formalised triage systems—systems that are intended to reduce nurses’ use of discretion. Because little research has dealt explicitly with this topic, this review addresses the discretionary aspects of triage by reinterpreting qualitative studies of how triage nurses perform urgency assessments. The review shows (a how inexhaustive guidelines and a hectic work environment are factors that necessitate nurses’ use of discretion and (b how nurses reason within this discretionary space by relying on their experience and intuition, judging patients according to criteria such as appropriateness and believability, and creating urgency ratings together with their patients. The review also offers a synthesis of the findings’ discretionary aspects and suggests a new interactionist dimension of discretion.Keywords: Triage, discretion, emergency department, meta-ethnography, review, decision-making

  20. An introduction to statistics with Python with applications in the life sciences

    CERN Document Server

    Haslwanter, Thomas

    2016-01-01

    This textbook provides an introduction to the free software Python and its use for statistical data analysis. It covers common statistical tests for continuous, discrete and categorical data, as well as linear regression analysis and topics from survival analysis and Bayesian statistics. Working code and data for Python solutions for each test, together with easy-to-follow Python examples, can be reproduced by the reader and reinforce their immediate understanding of the topic. With recent advances in the Python ecosystem, Python has become a popular language for scientific computing, offering a powerful environment for statistical data analysis and an interesting alternative to R. The book is intended for master and PhD students, mainly from the life and medical sciences, with a basic knowledge of statistics. As it also provides some statistics background, the book can be used by anyone who wants to perform a statistical data analysis. .

  1. Distribution of copper and other elements in ryegrass roots, determined with a scanning proton microprobe

    International Nuclear Information System (INIS)

    Mazzolini, A.P.; Legge, G.J.F.

    1982-01-01

    A scanning proton microprobe has been used to determine the distribution of Cu and other elements in Wimmera ryegrass roots grown in solution cultures. Cu was found to be localized on or near the surface of the roots in randomly distributed discrete zones. The distribution of Cu was partially correlated with those of Fe, P and Ca and possibly indicates some form of association; co-precipitation in a precipitate of ferric phosphate or hydroxy-oxide is favoured

  2. Discrete Riccati equation solutions: Distributed algorithms

    Directory of Open Access Journals (Sweden)

    D. G. Lainiotis

    1996-01-01

    Full Text Available In this paper new distributed algorithms for the solution of the discrete Riccati equation are introduced. The algorithms are used to provide robust and computational efficient solutions to the discrete Riccati equation. The proposed distributed algorithms are theoretically interesting and computationally attractive.

  3. Discrete Fourier analysis of multigrid algorithms

    NARCIS (Netherlands)

    van der Vegt, Jacobus J.W.; Rhebergen, Sander

    2011-01-01

    The main topic of this report is a detailed discussion of the discrete Fourier multilevel analysis of multigrid algorithms. First, a brief overview of multigrid methods is given for discretizations of both linear and nonlinear partial differential equations. Special attention is given to the

  4. Time Discretization Techniques

    KAUST Repository

    Gottlieb, S.

    2016-10-12

    The time discretization of hyperbolic partial differential equations is typically the evolution of a system of ordinary differential equations obtained by spatial discretization of the original problem. Methods for this time evolution include multistep, multistage, or multiderivative methods, as well as a combination of these approaches. The time step constraint is mainly a result of the absolute stability requirement, as well as additional conditions that mimic physical properties of the solution, such as positivity or total variation stability. These conditions may be required for stability when the solution develops shocks or sharp gradients. This chapter contains a review of some of the methods historically used for the evolution of hyperbolic PDEs, as well as cutting edge methods that are now commonly used.

  5. Ensemble simulations with discrete classical dynamics

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2013-01-01

    For discrete classical Molecular dynamics (MD) obtained by the "Verlet" algorithm (VA) with the time increment $h$ there exist a shadow Hamiltonian $\\tilde{H}$ with energy $\\tilde{E}(h)$, for which the discrete particle positions lie on the analytic trajectories for $\\tilde{H}$. $\\tilde......{E}(h)$ is employed to determine the relation with the corresponding energy, $E$ for the analytic dynamics with $h=0$ and the zero-order estimate $E_0(h)$ of the energy for discrete dynamics, appearing in the literature for MD with VA. We derive a corresponding time reversible VA algorithm for canonical dynamics...

  6. Discrete symmetries and de Sitter spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Cotăescu, Ion I., E-mail: gpascu@physics.uvt.ro; Pascu, Gabriel, E-mail: gpascu@physics.uvt.ro [West University of Timişoara, V. Pârvan Ave. 4, RO-300223 Timişoara (Romania)

    2014-11-24

    Aspects of the ambiguity in defining quantum modes on de Sitter spacetime using a commuting system composed only of differential operators are discussed. Discrete symmetries and their actions on the wavefunction in commonly used coordinate charts are reviewed. It is argued that the system of commuting operators can be supplemented by requiring the invariance of the wavefunction to combined discrete symmetries- a criterion which selects a single state out of the α-vacuum family. Two such members of this family are singled out by particular combined discrete symmetries- states between which exists a well-known thermality relation.

  7. Discrete convolution-operators and radioactive disintegration. [Numerical solution

    Energy Technology Data Exchange (ETDEWEB)

    Kalla, S L; VALENTINUZZI, M E [UNIVERSIDAD NACIONAL DE TUCUMAN (ARGENTINA). FACULTAD DE CIENCIAS EXACTAS Y TECNOLOGIA

    1975-08-01

    The basic concepts of discrete convolution and discrete convolution-operators are briefly described. Then, using the discrete convolution - operators, the differential equations associated with the process of radioactive disintegration are numerically solved. The importance of the method is emphasized to solve numerically, differential and integral equations.

  8. Periodic, quasiperiodic and chaotic discrete breathers in a parametrical driven two-dimensional discrete diatomic Klein–Gordon lattice

    International Nuclear Information System (INIS)

    Quan, Xu; Qiang, Tian

    2009-01-01

    We study a two-dimensional (2D) diatomic lattice of anharmonic oscillators with only quartic nearest-neighbor interactions, in which discrete breathers (DBs) can be explicitly constructed by an exact separation of their time and space dependence. DBs can stably exist in the 2D discrete diatomic Klein–Gordon lattice with hard and soft on-site potentials. When a parametric driving term is introduced in the factor multiplying the harmonic part of the on-site potential of the system, we can obtain the stable quasiperiodic discrete breathers (QDBs) and chaotic discrete breathers (CDBs) by changing the amplitude of the driver. But the DBs and QDBs with symmetric and anti-symmetric profiles that are centered at a heavy atom are more stable than at a light atom, because the frequencies of the DBs and QDBs centered at a heavy atom are lower than those centered at a light atom

  9. Discrete-Time Nonlinear Control of VSC-HVDC System

    Directory of Open Access Journals (Sweden)

    TianTian Qian

    2015-01-01

    Full Text Available Because VSC-HVDC is a kind of strong nonlinear, coupling, and multi-input multioutput (MIMO system, its control problem is always attracting much attention from scholars. And a lot of papers have done research on its control strategy in the continuous-time domain. But the control system is implemented through the computer discrete sampling in practical engineering. It is necessary to study the mathematical model and control algorithm in the discrete-time domain. The discrete mathematical model based on output feedback linearization and discrete sliding mode control algorithm is proposed in this paper. And to ensure the effectiveness of the control system in the quasi sliding mode state, the fast output sampling method is used in the output feedback. The results from simulation experiment in MATLAB/SIMULINK prove that the proposed discrete control algorithm can make the VSC-HVDC system have good static, dynamic, and robust characteristics in discrete-time domain.

  10. SR 97 - Alternative models project. Discrete fracture network modelling for performance assessment of Aberg

    International Nuclear Information System (INIS)

    Dershowitz, B.; Eiben, T.; Follin, S.; Andersson, Johan

    1999-08-01

    As part of studies into the siting of a deep repository for nuclear waste, Swedish Nuclear Fuel and Waste Management Company (SKB) has commissioned the Alternative Models Project (AMP). The AMP is a comparison of three alternative modeling approaches for geosphere performance assessment for a single hypothetical site. The hypothetical site, arbitrarily named Aberg is based on parameters from the Aespoe Hard Rock Laboratory in southern Sweden. The Aberg model domain, boundary conditions and canister locations are defined as a common reference case to facilitate comparisons between approaches. This report presents the results of a discrete fracture pathways analysis of the Aberg site, within the context of the SR 97 performance assessment exercise. The Aberg discrete fracture network (DFN) site model is based on consensus Aberg parameters related to the Aespoe HRL site. Discrete fracture pathways are identified from canister locations in a prototype repository design to the surface of the island or to the sea bottom. The discrete fracture pathways analysis presented in this report is used to provide the following parameters for SKB's performance assessment transport codes FARF31 and COMP23: * F-factor: Flow wetted surface normalized with regards to flow rate (yields an appreciation of the contact area available for diffusion and sorption processes) [TL -1 ]. * Travel Time: Advective transport time from a canister location to the environmental discharge [T]. * Canister Flux: Darcy flux (flow rate per unit area) past a representative canister location [LT -1 ]. In addition to the above, the discrete fracture pathways analysis in this report also provides information about: additional pathway parameters such as pathway length, pathway width, transport aperture, reactive surface area and transmissivity, percentage of canister locations with pathways to the surface discharge, spatial pattern of pathways and pathway discharges, visualization of pathways, and statistical

  11. SR 97 - Alternative models project. Discrete fracture network modelling for performance assessment of Aberg

    Energy Technology Data Exchange (ETDEWEB)

    Dershowitz, B.; Eiben, T. [Golder Associates Inc., Seattle (United States); Follin, S.; Andersson, Johan [Golder Grundteknik KB, Stockholm (Sweden)

    1999-08-01

    As part of studies into the siting of a deep repository for nuclear waste, Swedish Nuclear Fuel and Waste Management Company (SKB) has commissioned the Alternative Models Project (AMP). The AMP is a comparison of three alternative modeling approaches for geosphere performance assessment for a single hypothetical site. The hypothetical site, arbitrarily named Aberg is based on parameters from the Aespoe Hard Rock Laboratory in southern Sweden. The Aberg model domain, boundary conditions and canister locations are defined as a common reference case to facilitate comparisons between approaches. This report presents the results of a discrete fracture pathways analysis of the Aberg site, within the context of the SR 97 performance assessment exercise. The Aberg discrete fracture network (DFN) site model is based on consensus Aberg parameters related to the Aespoe HRL site. Discrete fracture pathways are identified from canister locations in a prototype repository design to the surface of the island or to the sea bottom. The discrete fracture pathways analysis presented in this report is used to provide the following parameters for SKB's performance assessment transport codes FARF31 and COMP23: * F-factor: Flow wetted surface normalized with regards to flow rate (yields an appreciation of the contact area available for diffusion and sorption processes) [TL{sup -1}]. * Travel Time: Advective transport time from a canister location to the environmental discharge [T]. * Canister Flux: Darcy flux (flow rate per unit area) past a representative canister location [LT{sup -1}]. In addition to the above, the discrete fracture pathways analysis in this report also provides information about: additional pathway parameters such as pathway length, pathway width, transport aperture, reactive surface area and transmissivity, percentage of canister locations with pathways to the surface discharge, spatial pattern of pathways and pathway discharges, visualization of pathways, and

  12. Intercomparison of Terrestrial Laser Scanning Instruments for Assessing Forested Ecosystems: A Brisbane Field Experiment

    Science.gov (United States)

    Armston, J.; Newnham, G.; Strahler, A. H.; Schaaf, C.; Danson, M.; Gaulton, R.; Zhang, Z.; Disney, M.; Sparrow, B.; Phinn, S. R.; Schaefer, M.; Burt, A.; Counter, S.; Erb, A.; Goodwin, N.; Hancock, S.; Howe, G.; Johansen, K.; Li, Z.; Lollback, G.; Martel, J.; Muir, J.; Paynter, I.; Saenz, E.; Scarth, P.; Tindall, D.; Walker, L.; Witte, C.; Woodgate, W.; Wu, S.

    2013-12-01

    During 28th July - 3rd August, 2013, an international group of researchers brought five terrestrial laser scanners (TLS) to long-term monitoring plots in three eucalyptus-dominated woodland sites near Brisbane, Queensland, Australia, to acquire scans at common locations for calibration and intercomparison.They included: DWEL - a dual-wavelength full-waveform laser scanner (Boston U., U. Massachusetts Lowell, U. Massachusetts Boston, USA) SALCA - a dual-wavelength full-waveform laser scanner (U. Salford, UK) CBL - a canopy biomass lidar, a small ultraportable low-cost multiple discrete return scanner (U. Massachusetts Boston, USA) Riegl VZ400 - a survey-grade commercial waveform scanner (Queensland Government and TERN, U. Queensland, Australia) FARO Focus 3D - a lightweight commercial phase-shift ranging laser scanner (U. Southern Queensland) Two plots were scanned at Karawatha Forest Park, a Terrestrial Ecosystem Research Network (TERN) Supersite, and one plot at D'Aguilar National Park. At each 50 x 100 m plot, a center scan point was surrounded by four scan points located 25 m away in a cross pattern allowing for 3-D reconstructions of scan sites in the form of point clouds. At several center points, multiple instrument configurations (i.e. different beam divergence, angular resolution, pulse rate) were acquired to test the impact of instrument specifications on separation of woody and non-woody materials and estimation of vegetation structure parameters. Three-dimensional Photopoint photographic panoramas were also acquired, providing reconstructions of stems in the form of point clouds using photogrammetric correlation methods. Calibrated reflectance targets were also scanned to compare instrument geometric and radiometric performance. Ancillary data included hemispherical photos, TRAC LAI/clumping measurements, spectra of leaves, bark, litter, and other target components. Wet and dry leaf weights determined water content. Planned intercomparison topics and

  13. A discrete control model of PLANT

    Science.gov (United States)

    Mitchell, C. M.

    1985-01-01

    A model of the PLANT system using the discrete control modeling techniques developed by Miller is described. Discrete control models attempt to represent in a mathematical form how a human operator might decompose a complex system into simpler parts and how the control actions and system configuration are coordinated so that acceptable overall system performance is achieved. Basic questions include knowledge representation, information flow, and decision making in complex systems. The structure of the model is a general hierarchical/heterarchical scheme which structurally accounts for coordination and dynamic focus of attention. Mathematically, the discrete control model is defined in terms of a network of finite state systems. Specifically, the discrete control model accounts for how specific control actions are selected from information about the controlled system, the environment, and the context of the situation. The objective is to provide a plausible and empirically testable accounting and, if possible, explanation of control behavior.

  14. Identification of parameters of discrete-continuous models

    International Nuclear Information System (INIS)

    Cekus, Dawid; Warys, Pawel

    2015-01-01

    In the paper, the parameters of a discrete-continuous model have been identified on the basis of experimental investigations and formulation of optimization problem. The discrete-continuous model represents a cantilever stepped Timoshenko beam. The mathematical model has been formulated and solved according to the Lagrange multiplier formalism. Optimization has been based on the genetic algorithm. The presented proceeding’s stages make the identification of any parameters of discrete-continuous systems possible

  15. Identification of parameters of discrete-continuous models

    Energy Technology Data Exchange (ETDEWEB)

    Cekus, Dawid, E-mail: cekus@imipkm.pcz.pl; Warys, Pawel, E-mail: warys@imipkm.pcz.pl [Institute of Mechanics and Machine Design Foundations, Czestochowa University of Technology, Dabrowskiego 73, 42-201 Czestochowa (Poland)

    2015-03-10

    In the paper, the parameters of a discrete-continuous model have been identified on the basis of experimental investigations and formulation of optimization problem. The discrete-continuous model represents a cantilever stepped Timoshenko beam. The mathematical model has been formulated and solved according to the Lagrange multiplier formalism. Optimization has been based on the genetic algorithm. The presented proceeding’s stages make the identification of any parameters of discrete-continuous systems possible.

  16. Discrete Mathematics in the Schools. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Volume 36.

    Science.gov (United States)

    Rosenstein, Joseph G., Ed.; Franzblau, Deborah S., Ed.; Roberts, Fred S., Ed.

    This book is a collection of articles by experienced educators and explains why and how discrete mathematics should be taught in K-12 classrooms. It includes evidence for "why" and practical guidance for "how" and also discusses how discrete mathematics can be used as a vehicle for achieving the broader goals of the major…

  17. Symmetries in discrete-time mechanics

    International Nuclear Information System (INIS)

    Khorrami, M.

    1996-01-01

    Based on a general formulation for discrete-time quantum mechanics, introduced by M. Khorrami (Annals Phys. 224 (1995), 101), symmetries in discrete-time quantum mechanics are investigated. It is shown that any classical continuous symmetry leads to a conserved quantity in classical mechanics, as well as quantum mechanics. The transformed wave function, however, has the correct evolution if and only if the symmetry is nonanomalous. Copyright copyright 1996 Academic Press, Inc

  18. Finite-dimensional reductions of the discrete Toda chain

    International Nuclear Information System (INIS)

    Kazakova, T G

    2004-01-01

    The problem of construction of integrable boundary conditions for the discrete Toda chain is considered. The restricted chains for properly chosen closure conditions are reduced to the well-known discrete Painleve equations dP III , dP V , dP VI . Lax representations for these discrete Painleve equations are found

  19. Convergence of posteriors for discretized log Gaussian Cox processes

    DEFF Research Database (Denmark)

    Waagepetersen, Rasmus Plenge

    2004-01-01

    In Markov chain Monte Carlo posterior computation for log Gaussian Cox processes (LGCPs) a discretization of the continuously indexed Gaussian field is required. It is demonstrated that approximate posterior expectations computed from discretized LGCPs converge to the exact posterior expectations...... when the cell sizes of the discretization tends to zero. The effect of discretization is studied in a data example....

  20. Numerical Simulation of Antennae by Discrete Exterior Calculus

    International Nuclear Information System (INIS)

    Xie Zheng; Ye Zheng; Ma Yujie

    2009-01-01

    Numerical simulation of antennae is a topic in computational electromagnetism, which is concerned with the numerical study of Maxwell equations. By discrete exterior calculus and the lattice gauge theory with coefficient R, we obtain the Bianchi identity on prism lattice. By defining an inner product of discrete differential forms, we derive the source equation and continuity equation. Those equations compose the discrete Maxwell equations in vacuum case on discrete manifold, which are implemented on Java development platform to simulate the Gaussian pulse radiation on antennaes. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  1. Assessing biomass based on canopy height profiles using airborne laser scanning data in eucalypt plantations

    Directory of Open Access Journals (Sweden)

    André Gracioso Peres Silva

    2015-12-01

    Full Text Available This study aimed to map the stem biomass of an even-aged eucalyptus plantation in southeastern Brazil based on canopy height profile (CHPs statistics using wall-to-wall discrete return airborne laser scanning (ALS, and compare the results with alternative maps generated by ordinary kriging interpolation from field-derived measurements. The assessment of stem biomass with ALS data was carried out using regression analysis methods. Initially, CHPs were determined to express the distribution of laser point heights in the ALS cloud for each sample plot. The probability density function (pdf used was the Weibull distribution, with two parameters that in a secondary task, were used as explanatory variables to model stem biomass. ALS metrics such as height percentiles, dispersion of heights, and proportion of points were also investigated. A simple linear regression model of stem biomass as a function of the Weibull scale parameter showed high correlation (adj.R2 = 0.89. The alternative model considering the 30th percentile and the Weibull shape parameter slightly improved the quality of the estimation (adj.R2 = 0.93. Stem biomass maps based on the Weibull scale parameter doubled the accuracy of the ordinary kriging approach (relative root mean square error = 6 % and 13 %, respectively.

  2. A Variational Approach to Perturbed Discrete Anisotropic Equations

    Directory of Open Access Journals (Sweden)

    Amjad Salari

    2016-01-01

    Full Text Available We continue the study of discrete anisotropic equations and we will provide new multiplicity results of the solutions for a discrete anisotropic equation. We investigate the existence of infinitely many solutions for a perturbed discrete anisotropic boundary value problem. The approach is based on variational methods and critical point theory.

  3. False-positive liver scans due to portal hypertension: correlation with percutaneous transhepatic portograms in 33 patients

    International Nuclear Information System (INIS)

    Takayasu, K.; Moriyama, N.; Suzuki, M.; Yamada, T.; Fukutake, T.; Shima, Y.; Kobayashi, C.; Musha, H.; Okuda, K.

    1983-01-01

    Tc-99m-phytate scanning of the liver and percutaneous transhepatic catheterization of the portal vein were performed in 33 patients--26 with cirrhosis, 3 with chronic active hepatitis, 2 with idiopathic portal hypertension, and 2 with unresolved acute hepatitis. A discrete defect in the porta hepatis area was seen in 6 of 28 patients who had portal vein pressure above 200 mm H2O. In 5 of the 6 patients with a false-positive scan, the umbilical portion of the left portal vein branch was dilated (larger than 25 x 20 mm) on the portogram, with or without a patent paraumbilical vein. The anatomical basis of this phenomenon is discussed, and it is suggested that this area be given special attention

  4. Improving Classification of Airborne Laser Scanning Echoes in the Forest-Tundra Ecotone Using Geostatistical and Statistical Measures

    Directory of Open Access Journals (Sweden)

    Nadja Stumberg

    2014-05-01

    Full Text Available The vegetation in the forest-tundra ecotone zone is expected to be highly affected by climate change and requires effective monitoring techniques. Airborne laser scanning (ALS has been proposed as a tool for the detection of small pioneer trees for such vast areas using laser height and intensity data. The main objective of the present study was to assess a possible improvement in the performance of classifying tree and nontree laser echoes from high-density ALS data. The data were collected along a 1000 km long transect stretching from southern to northern Norway. Different geostatistical and statistical measures derived from laser height and intensity values were used to extent and potentially improve more simple models ignoring the spatial context. Generalised linear models (GLM and support vector machines (SVM were employed as classification methods. Total accuracies and Cohen’s kappa coefficients were calculated and compared to those of simpler models from a previous study. For both classification methods, all models revealed total accuracies similar to the results of the simpler models. Concerning classification performance, however, the comparison of the kappa coefficients indicated a significant improvement for some models both using GLM and SVM, with classification accuracies >94%.

  5. Acquiring 4D thoracic CT scans using a multislice helical method

    International Nuclear Information System (INIS)

    Keall, P J; Starkschall, G; Shukla, H; Forster, K M; Ortiz, V; Stevens, C W; Vedam, S S; George, R; Guerrero, T; Mohan, R

    2004-01-01

    Respiratory motion degrades anatomic position reproducibility during imaging, necessitates larger margins during radiotherapy planning and causes errors during radiation delivery. Computed tomography (CT) scans acquired synchronously with the respiratory signal can be used to reconstruct 4D CT scans, which can be employed for 4D treatment planning to explicitly account for respiratory motion. The aim of this research was to develop, test and clinically implement a method to acquire 4D thoracic CT scans using a multislice helical method. A commercial position-monitoring system used for respiratory-gated radiotherapy was interfaced with a third generation multislice scanner. 4D cardiac reconstruction methods were modified to allow 4D thoracic CT acquisition. The technique was tested on a phantom under different conditions: stationary, periodic motion and non-periodic motion. 4D CT was also implemented for a lung cancer patient with audio-visual breathing coaching. For all cases, 4D CT images were successfully acquired from eight discrete breathing phases, however, some limitations of the system in terms of respiration reproducibility and breathing period relative to scanner settings were evident. Lung mass for the 4D CT patient scan was reproducible to within 2.1% over the eight phases, though the lung volume changed by 20% between end inspiration and end expiration (870 cm 3 ). 4D CT can be used for 4D radiotherapy, respiration-gated radiotherapy, 'slow' CT acquisition and tumour motion studies

  6. Variance Swap Replication: Discrete or Continuous?

    Directory of Open Access Journals (Sweden)

    Fabien Le Floc’h

    2018-02-01

    Full Text Available The popular replication formula to price variance swaps assumes continuity of traded option strikes. In practice, however, there is only a discrete set of option strikes traded on the market. We present here different discrete replication strategies and explain why the continuous replication price is more relevant.

  7. SITE-94. Discrete-feature modelling of the Aespoe site: 4. Source data and detailed analysis procedures

    Energy Technology Data Exchange (ETDEWEB)

    Geier, J E [Golder Associates AB, Uppsala (Sweden)

    1996-12-01

    Specific procedures and source data are described for the construction and application of discrete-feature hydrological models for the vicinity of Aespoe. Documentation is given for all major phases of the work, including: Statistical analyses to develop and validate discrete-fracture network models, Preliminary evaluation, construction, and calibration of the site-scale model based on the SITE-94 structural model of Aespoe, Simulation of multiple realizations of the integrated model, and variations, to predict groundwater flow, and Evaluation of near-field and far-field parameters for performance assessment calculations. Procedures are documented in terms of the computer batch files and executable scripts that were used to perform the main steps in these analyses, to provide for traceability of results that are used in the SITE-94 performance assessment calculations. 43 refs.

  8. SITE-94. Discrete-feature modelling of the Aespoe site: 4. Source data and detailed analysis procedures

    International Nuclear Information System (INIS)

    Geier, J.E.

    1996-12-01

    Specific procedures and source data are described for the construction and application of discrete-feature hydrological models for the vicinity of Aespoe. Documentation is given for all major phases of the work, including: Statistical analyses to develop and validate discrete-fracture network models, Preliminary evaluation, construction, and calibration of the site-scale model based on the SITE-94 structural model of Aespoe, Simulation of multiple realizations of the integrated model, and variations, to predict groundwater flow, and Evaluation of near-field and far-field parameters for performance assessment calculations. Procedures are documented in terms of the computer batch files and executable scripts that were used to perform the main steps in these analyses, to provide for traceability of results that are used in the SITE-94 performance assessment calculations. 43 refs

  9. Perfect discretization of path integrals

    OpenAIRE

    Steinhaus, Sebastian

    2011-01-01

    In order to obtain a well-defined path integral one often employs discretizations. In the case of General Relativity these generically break diffeomorphism symmetry, which has severe consequences since these symmetries determine the dynamics of the corresponding system. In this article we consider the path integral of reparametrization invariant systems as a toy example and present an improvement procedure for the discretized propagator. Fixed points and convergence of the procedure are discu...

  10. Lax Pairs for Discrete Integrable Equations via Darboux Transformations

    International Nuclear Information System (INIS)

    Cao Ce-Wen; Zhang Guang-Yao

    2012-01-01

    A method is developed to construct discrete Lax pairs using Darboux transformations. More kinds of Lax pairs are found for some newly appeared discrete integrable equations, including the H1, the special H3 and the Q1 models in the Adler—Bobenko—Suris list and the closely related discrete and semi-discrete pKdV, pMKdV, SG and Liouville equations. (general)

  11. Graph-cut based discrete-valued image reconstruction.

    Science.gov (United States)

    Tuysuzoglu, Ahmet; Karl, W Clem; Stojanovic, Ivana; Castañòn, David; Ünlü, M Selim

    2015-05-01

    Efficient graph-cut methods have been used with great success for labeling and denoising problems occurring in computer vision. Unfortunately, the presence of linear image mappings has prevented the use of these techniques in most discrete-amplitude image reconstruction problems. In this paper, we develop a graph-cut based framework for the direct solution of discrete amplitude linear image reconstruction problems cast as regularized energy function minimizations. We first analyze the structure of discrete linear inverse problem cost functions to show that the obstacle to the application of graph-cut methods to their solution is the variable mixing caused by the presence of the linear sensing operator. We then propose to use a surrogate energy functional that overcomes the challenges imposed by the sensing operator yet can be utilized efficiently in existing graph-cut frameworks. We use this surrogate energy functional to devise a monotonic iterative algorithm for the solution of discrete valued inverse problems. We first provide experiments using local convolutional operators and show the robustness of the proposed technique to noise and stability to changes in regularization parameter. Then we focus on nonlocal, tomographic examples where we consider limited-angle data problems. We compare our technique with state-of-the-art discrete and continuous image reconstruction techniques. Experiments show that the proposed method outperforms state-of-the-art techniques in challenging scenarios involving discrete valued unknowns.

  12. Discrete Chebyshev nets and a universal permutability theorem

    International Nuclear Information System (INIS)

    Schief, W K

    2007-01-01

    The Pohlmeyer-Lund-Regge system which was set down independently in the contexts of Lagrangian field theories and the relativistic motion of a string and which played a key role in the development of a geometric interpretation of soliton theory is known to appear in a variety of important guises such as the vectorial Lund-Regge equation, the O(4) nonlinear σ-model and the SU(2) chiral model. Here, it is demonstrated that these avatars may be discretized in such a manner that both integrability and equivalence are preserved. The corresponding discretization procedure is geometric and algebraic in nature and based on discrete Chebyshev nets and generalized discrete Lelieuvre formulae. In connection with the derivation of associated Baecklund transformations, it is shown that a generalized discrete Lund-Regge equation may be interpreted as a universal permutability theorem for integrable equations which admit commuting matrix Darboux transformations acting on su(2) linear representations. Three-dimensional coordinate systems and lattices of 'Lund-Regge' type related to particular continuous and discrete Zakharov-Manakov systems are obtained as a by-product of this analysis

  13. On the meaningfulness of testing preference axioms in stated preference discrete choice experiments

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Tjur, Carl Tue; Østerdal, Lars Peter Raahave

    2012-01-01

    A stream of studies on evaluation of health care services and public goods have developed tests of the preference axioms of completeness and transitivity and methods for detecting other preference phenomena such as unstability, learning- and tiredness effects, and random error, in stated preference...... discrete choice experiments. This methodological paper tries to identify the role of the preference axioms and other preference phenomena in the context of such experiments and discusses whether or howsuch axioms and phenomena can be subject to meaningful (statistical) tests....

  14. Generation and monitoring of discrete stable random processes using multiple immigration population models

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, J O; Hopcraft, K I; Jakeman, E [Applied Mathematics Division, School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD (United Kingdom)

    2003-11-21

    Some properties of classical population processes that comprise births, deaths and multiple immigrations are investigated. The rates at which the immigrants arrive can be tailored to produce a population whose steady state fluctuations are described by a pre-selected distribution. Attention is focused on the class of distributions with a discrete stable law, which have power-law tails and whose moments and autocorrelation function do not exist. The separate problem of monitoring and characterizing the fluctuations is studied, analysing the statistics of individuals that leave the population. The fluctuations in the size of the population are transferred to the times between emigrants that form an intermittent time series of events. The emigrants are counted with a detector of finite dynamic range and response time. This is modelled through clipping the time series or saturating it at an arbitrary but finite level, whereupon its moments and correlation properties become finite. Distributions for the time to the first counted event and for the time between events exhibit power-law regimes that are characteristic of the fluctuations in population size. The processes provide analytical models with which properties of complex discrete random phenomena can be explored, and in addition provide generic means by which random time series encompassing a wide range of intermittent and other discrete random behaviour may be generated.

  15. Generation and monitoring of discrete stable random processes using multiple immigration population models

    International Nuclear Information System (INIS)

    Matthews, J O; Hopcraft, K I; Jakeman, E

    2003-01-01

    Some properties of classical population processes that comprise births, deaths and multiple immigrations are investigated. The rates at which the immigrants arrive can be tailored to produce a population whose steady state fluctuations are described by a pre-selected distribution. Attention is focused on the class of distributions with a discrete stable law, which have power-law tails and whose moments and autocorrelation function do not exist. The separate problem of monitoring and characterizing the fluctuations is studied, analysing the statistics of individuals that leave the population. The fluctuations in the size of the population are transferred to the times between emigrants that form an intermittent time series of events. The emigrants are counted with a detector of finite dynamic range and response time. This is modelled through clipping the time series or saturating it at an arbitrary but finite level, whereupon its moments and correlation properties become finite. Distributions for the time to the first counted event and for the time between events exhibit power-law regimes that are characteristic of the fluctuations in population size. The processes provide analytical models with which properties of complex discrete random phenomena can be explored, and in addition provide generic means by which random time series encompassing a wide range of intermittent and other discrete random behaviour may be generated

  16. The scanning Compton polarimeter for the SLD experiment

    International Nuclear Information System (INIS)

    Woods, M.

    1996-10-01

    For the 1994/95 run of the SLD experiment at SLAC, a Compton polarimeter measured the luminosity-weighted electron beam polarization to be (77.2 ± 0.5)%. This excellent accuracy is achieved by measuring the rate asymmetry of Compton-scattered electrons near the kinematic endpoint. The polarimeter takes data continuously while the electron and positron beams are in collision and achieves a statistical precision of better than 1% in a three minute run. To calibrate the polarimeter and demonstrate its accuracy, many scans are frequently done. These include scans of the laser polarization, the detector position with respect to the kinematic edge, and the laser power

  17. Manifestly gauge invariant discretizations of the Schrödinger equation

    International Nuclear Information System (INIS)

    Halvorsen, Tore Gunnar; Kvaal, Simen

    2012-01-01

    Grid-based discretizations of the time dependent Schrödinger equation coupled to an external magnetic field are converted to manifest gauge invariant discretizations. This is done using generalizations of ideas used in classical lattice gauge theory, and the process defined is applicable to a large class of discretized differential operators. In particular, popular discretizations such as pseudospectral discretizations using the fast Fourier transform can be transformed to gauge invariant schemes. Also generic gauge invariant versions of generic time integration methods are considered, enabling completely gauge invariant calculations of the time dependent Schrödinger equation. Numerical examples illuminating the differences between a gauge invariant discretization and conventional discretization procedures are also presented. -- Highlights: ► We investigate the Schrödinger equation coupled to an external magnetic field. ► Any grid-based discretization is made trivially gauge invariant. ► An extension of classical lattice gauge theory.

  18. Mathematical aspects of the discrete space-time hypothesis

    International Nuclear Information System (INIS)

    Sardanashvili, G.A.

    1979-01-01

    A hypothesis of a microcosm space discreteness is considered from the theoretical-mathematical point of view. The type of topological spaces, which formalizes representations on the discrete space-time, is determined. It is explained, how these spaces arise in physical models. The physical task, in which the discrete space could arise as a version of its solution, is considered. It is shown that the discrete structure of space can arise with a certain interaction type in the system, for example, with its considerable self-shielding, which can take place, in particular, in the particles or in the cosmological and astrophysical singularities

  19. Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows

    Science.gov (United States)

    Meng, Jianping; Zhang, Yonghao; Hadjiconstantinou, Nicolas G.; Radtke, Gregg A.; Shan, Xiaowen

    2013-03-01

    A thermal lattice Boltzmann model is constructed on the basis of the ellipsoidal statistical Bhatnagar-Gross-Krook (ES-BGK) collision operator via the Hermite moment representation. The resulting lattice ES-BGK model uses a single distribution function and features an adjustable Prandtl number. Numerical simulations show that using a moderate discrete velocity set, this model can accurately recover steady and transient solutions of the ES-BGK equation in the slip-flow and early transition regimes in the small Mach number limit that is typical of microscale problems of practical interest. In the transition regime in particular, comparisons with numerical solutions of the ES-BGK model, direct Monte Carlo and low-variance deviational Monte Carlo simulations show good accuracy for values of the Knudsen number up to approximately 0.5. On the other hand, highly non-equilibrium phenomena characterized by high Mach numbers, such as viscous heating and force-driven Poiseuille flow for large values of the driving force, are more difficult to capture quantitatively in the transition regime using discretizations chosen with computational efficiency in mind such as the one used here, although improved accuracy is observed as the number of discrete velocities is increased.

  20. Discrete-Time Systems

    Indian Academy of Sciences (India)

    We also describe discrete-time systems in terms of difference ... A more modern alternative, especially for larger systems, is to convert ... In other words, ..... picture?) State-variable equations are also called state-space equations because the ...

  1. Comparison of statistical sampling methods with ScannerBit, the GAMBIT scanning module

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Gregory D. [University of California, Physics and Astronomy Department, Los Angeles, CA (United States); McKay, James; Scott, Pat [Imperial College London, Department of Physics, Blackett Laboratory, London (United Kingdom); Farmer, Ben; Conrad, Jan [AlbaNova University Centre, Oskar Klein Centre for Cosmoparticle Physics, Stockholm (Sweden); Stockholm University, Department of Physics, Stockholm (Sweden); Roebber, Elinore [McGill University, Department of Physics, Montreal, QC (Canada); Putze, Antje [LAPTh, Universite de Savoie, CNRS, Annecy-le-Vieux (France); Collaboration: The GAMBIT Scanner Workgroup

    2017-11-15

    We introduce ScannerBit, the statistics and sampling module of the public, open-source global fitting framework GAMBIT. ScannerBit provides a standardised interface to different sampling algorithms, enabling the use and comparison of multiple computational methods for inferring profile likelihoods, Bayesian posteriors, and other statistical quantities. The current version offers random, grid, raster, nested sampling, differential evolution, Markov Chain Monte Carlo (MCMC) and ensemble Monte Carlo samplers. We also announce the release of a new standalone differential evolution sampler, Diver, and describe its design, usage and interface to ScannerBit. We subject Diver and three other samplers (the nested sampler MultiNest, the MCMC GreAT, and the native ScannerBit implementation of the ensemble Monte Carlo algorithm T-Walk) to a battery of statistical tests. For this we use a realistic physical likelihood function, based on the scalar singlet model of dark matter. We examine the performance of each sampler as a function of its adjustable settings, and the dimensionality of the sampling problem. We evaluate performance on four metrics: optimality of the best fit found, completeness in exploring the best-fit region, number of likelihood evaluations, and total runtime. For Bayesian posterior estimation at high resolution, T-Walk provides the most accurate and timely mapping of the full parameter space. For profile likelihood analysis in less than about ten dimensions, we find that Diver and MultiNest score similarly in terms of best fit and speed, outperforming GreAT and T-Walk; in ten or more dimensions, Diver substantially outperforms the other three samplers on all metrics. (orig.)

  2. The weak-scale hierarchy and discrete symmetries

    International Nuclear Information System (INIS)

    Haba, Naoyuki; Matsuoka, Takeo; Hattori, Chuichiro; Matsuda, Masahisa; Mochinaga, Daizo.

    1996-01-01

    In the underlying Planck scale theory, we introduce a certain type of discrete symmetry, which potentially brings the stability of the weak-scale hierarchy under control. Under the discrete symmetry the μ-problem and the tadpole problem can be solved simultaneously without relying on some fine-tuning of parameters. Instead, it is required that doublet Higgs and color-triplet Higgs fields reside in different irreducible representations of the gauge symmetry group at the Planck scale and that they have distinct charges of the discrete symmetry group. (author)

  3. Limit sets for the discrete spectrum of complex Jacobi matrices

    International Nuclear Information System (INIS)

    Golinskii, L B; Egorova, I E

    2005-01-01

    The discrete spectrum of complex Jacobi matrices that are compact perturbations of the discrete Laplacian is studied. The precise stabilization rate (in the sense of order) of the matrix elements ensuring the finiteness of the discrete spectrum is found. An example of a Jacobi matrix with discrete spectrum having a unique limit point is constructed. These results are discrete analogues of Pavlov's well-known results on Schroedinger operators with complex potential on a half-axis.

  4. Network Science Research Laboratory (NSRL) Discrete Event Toolkit

    Science.gov (United States)

    2016-01-01

    ARL-TR-7579 ● JAN 2016 US Army Research Laboratory Network Science Research Laboratory (NSRL) Discrete Event Toolkit by...Laboratory (NSRL) Discrete Event Toolkit by Theron Trout and Andrew J Toth Computational and Information Sciences Directorate, ARL...Research Laboratory (NSRL) Discrete Event Toolkit 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Theron Trout

  5. Lax pairs for ultra-discrete Painleve cellular automata

    International Nuclear Information System (INIS)

    Joshi, N; Nijhoff, F W; Ormerod, C

    2004-01-01

    Ultra-discrete versions of the discrete Painleve equations are well known. However, evidence for their integrability has so far been restricted. In this letter, we show that their Lax pairs can be constructed and, furthermore, that compatibility conditions of the result yield the ultra-discrete Painleve equation. For conciseness, we restrict our attention to a new d-P III . (letter to the editor)

  6. Constitutive equations for discrete electromagnetic problems over polyhedral grids

    International Nuclear Information System (INIS)

    Codecasa, Lorenzo; Trevisan, Francesco

    2007-01-01

    In this paper a novel approach is proposed for constructing discrete counterparts of constitutive equations over polyhedral grids which ensure both consistency and stability of the algebraic equations discretizing an electromagnetic field problem. The idea is to construct discrete constitutive equations preserving the thermodynamic relations for constitutive equations. In this way, consistency and stability of the discrete equations are ensured. At the base, a purely geometric condition between the primal and the dual grids has to be satisfied for a given primal polyhedral grid, by properly choosing the dual grid. Numerical experiments demonstrate that the proposed discrete constitutive equations lead to accurate approximations of the electromagnetic field

  7. Gyrokinetic Statistical Absolute Equilibrium and Turbulence

    International Nuclear Information System (INIS)

    Zhu, Jian-Zhou; Hammett, Gregory W.

    2011-01-01

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence (T.-D. Lee, 'On some statistical properties of hydrodynamical and magnetohydrodynamical fields,' Q. Appl. Math. 10, 69 (1952)) is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  8. Painleve test and discrete Boltzmann equations

    International Nuclear Information System (INIS)

    Euler, N.; Steeb, W.H.

    1989-01-01

    The Painleve test for various discrete Boltzmann equations is performed. The connection with integrability is discussed. Furthermore the Lie symmetry vector fields are derived and group-theoretical reduction of the discrete Boltzmann equations to ordinary differentiable equations is performed. Lie Backlund transformations are gained by performing the Painleve analysis for the ordinary differential equations. 16 refs

  9. An empirical Bayes method for updating inferences in analysis of quantitative trait loci using information from related genome scans.

    Science.gov (United States)

    Zhang, Kui; Wiener, Howard; Beasley, Mark; George, Varghese; Amos, Christopher I; Allison, David B

    2006-08-01

    Individual genome scans for quantitative trait loci (QTL) mapping often suffer from low statistical power and imprecise estimates of QTL location and effect. This lack of precision yields large confidence intervals for QTL location, which are problematic for subsequent fine mapping and positional cloning. In prioritizing areas for follow-up after an initial genome scan and in evaluating the credibility of apparent linkage signals, investigators typically examine the results of other genome scans of the same phenotype and informally update their beliefs about which linkage signals in their scan most merit confidence and follow-up via a subjective-intuitive integration approach. A method that acknowledges the wisdom of this general paradigm but formally borrows information from other scans to increase confidence in objectivity would be a benefit. We developed an empirical Bayes analytic method to integrate information from multiple genome scans. The linkage statistic obtained from a single genome scan study is updated by incorporating statistics from other genome scans as prior information. This technique does not require that all studies have an identical marker map or a common estimated QTL effect. The updated linkage statistic can then be used for the estimation of QTL location and effect. We evaluate the performance of our method by using extensive simulations based on actual marker spacing and allele frequencies from available data. Results indicate that the empirical Bayes method can account for between-study heterogeneity, estimate the QTL location and effect more precisely, and provide narrower confidence intervals than results from any single individual study. We also compared the empirical Bayes method with a method originally developed for meta-analysis (a closely related but distinct purpose). In the face of marked heterogeneity among studies, the empirical Bayes method outperforms the comparator.

  10. Multilevel discretized random field models with 'spin' correlations for the simulation of environmental spatial data

    Science.gov (United States)

    Žukovič, Milan; Hristopulos, Dionissios T.

    2009-02-01

    A current problem of practical significance is how to analyze large, spatially distributed, environmental data sets. The problem is more challenging for variables that follow non-Gaussian distributions. We show by means of numerical simulations that the spatial correlations between variables can be captured by interactions between 'spins'. The spins represent multilevel discretizations of environmental variables with respect to a number of pre-defined thresholds. The spatial dependence between the 'spins' is imposed by means of short-range interactions. We present two approaches, inspired by the Ising and Potts models, that generate conditional simulations of spatially distributed variables from samples with missing data. Currently, the sampling and simulation points are assumed to be at the nodes of a regular grid. The conditional simulations of the 'spin system' are forced to respect locally the sample values and the system statistics globally. The second constraint is enforced by minimizing a cost function representing the deviation between normalized correlation energies of the simulated and the sample distributions. In the approach based on the Nc-state Potts model, each point is assigned to one of Nc classes. The interactions involve all the points simultaneously. In the Ising model approach, a sequential simulation scheme is used: the discretization at each simulation level is binomial (i.e., ± 1). Information propagates from lower to higher levels as the simulation proceeds. We compare the two approaches in terms of their ability to reproduce the target statistics (e.g., the histogram and the variogram of the sample distribution), to predict data at unsampled locations, as well as in terms of their computational complexity. The comparison is based on a non-Gaussian data set (derived from a digital elevation model of the Walker Lake area, Nevada, USA). We discuss the impact of relevant simulation parameters, such as the domain size, the number of

  11. Recent developments in discrete ordinates electron transport

    International Nuclear Information System (INIS)

    Morel, J.E.; Lorence, L.J. Jr.

    1986-01-01

    The discrete ordinates method is a deterministic method for numerically solving the Boltzmann equation. It was originally developed for neutron transport calculations, but is routinely used for photon and coupled neutron-photon transport calculations as well. The computational state of the art for coupled electron-photon transport (CEPT) calculations is not as developed as that for neutron transport calculations. The only production codes currently available for CEPT calculations are condensed-history Monte Carlo codes such as the ETRAN and ITS codes. A deterministic capability for production calculations is clearly needed. In response to this need, we have begun the development of a production discrete ordinates code for CEPT calculations. The purpose of this paper is to describe the basic approach we are taking, discuss the current status of the project, and present some new computational results. Although further characterization of the coupled electron-photon discrete ordinates method remains to be done, the results to date indicate that the discrete ordinates method can be just as accurate and from 10 to 100 times faster than the Monte Carlo method for a wide variety of problems. We stress that these results are obtained with standard discrete ordinates codes such as ONETRAN. It is clear that even greater efficiency can be obtained by developing a new generation of production discrete ordinates codes specifically designed to solve the Boltzmann-Fokker-Planck equation. However, the prospects for such development in the near future appear to be remote

  12. Bone scan as a screening test for missed fractures in severely injured patients.

    Science.gov (United States)

    Lee, K-J; Jung, K; Kim, J; Kwon, J

    2014-12-01

    In many cases, patients with severe blunt trauma have multiple fractures throughout the body. These fractures are not often detectable by history or physical examination, and their diagnosis can be delayed or even missed. Thus, screening test fractures of the whole body is required after initial management. We performed this study to evaluate the reliability of bone scans for detecting missed fractures in patients with multiple severe traumas and we analyzed the causes of missed fractures by using bone scan. A bone scan is useful as a screening test for fractures of the entire body of severe trauma patients who are passed the acute phase. We reviewed the electronic medical records of severe trauma patients who underwent a bone scan from September 2009 to December 2010. Demographic and medical data were compared and statistically analyzed to determine whether missed fractures were detected after bone scan in the two groups. A total of 382 patients who had an injury severity score [ISS] greater than 16 points with multiple traumas visited the emergency room. One hundred and thirty-one patients underwent bone scan and 81 patients were identified with missed fractures by bone scan. The most frequent location for missed fractures was the rib area (55 cases, 41.98%), followed by the extremities (42 cases, 32.06%). The missed fractures that required surgery or splint were most common in extremities (11 cases). In univariate analysis, higher ISS scores and mechanism of injury were related with the probability that missed fractures would be found with a bone scan. The ISS score was statistically significant in multivariate analysis. Bone scan is an effective method of detecting missed fractures among patients with multiple severe traumas. Level IV, retrospective study. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Discrete quantum gravity

    International Nuclear Information System (INIS)

    Williams, Ruth M

    2006-01-01

    A review is given of a number of approaches to discrete quantum gravity, with a restriction to those likely to be relevant in four dimensions. This paper is dedicated to Rafael Sorkin on the occasion of his sixtieth birthday

  14. Integrable discretizations of the (2+1)-dimensional sinh-Gordon equation

    International Nuclear Information System (INIS)

    Hu, Xing-Biao; Yu, Guo-Fu

    2007-01-01

    In this paper, we propose two semi-discrete equations and one fully discrete equation and study them by Hirota's bilinear method. These equations have continuum limits into a system which admits the (2+1)-dimensional generalization of the sinh-Gordon equation. As a result, two integrable semi-discrete versions and one fully discrete version for the sinh-Gordon equation are found. Baecklund transformations, nonlinear superposition formulae, determinant solution and Lax pairs for these discrete versions are presented

  15. A Framework for the Optimization of Discrete-Event Simulation Models

    Science.gov (United States)

    Joshi, B. D.; Unal, R.; White, N. H.; Morris, W. D.

    1996-01-01

    With the growing use of computer modeling and simulation, in all aspects of engineering, the scope of traditional optimization has to be extended to include simulation models. Some unique aspects have to be addressed while optimizing via stochastic simulation models. The optimization procedure has to explicitly account for the randomness inherent in the stochastic measures predicted by the model. This paper outlines a general purpose framework for optimization of terminating discrete-event simulation models. The methodology combines a chance constraint approach for problem formulation, together with standard statistical estimation and analyses techniques. The applicability of the optimization framework is illustrated by minimizing the operation and support resources of a launch vehicle, through a simulation model.

  16. Integrable discretization s of derivative nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Tsuchida, Takayuki

    2002-01-01

    We propose integrable discretizations of derivative nonlinear Schroedinger (DNLS) equations such as the Kaup-Newell equation, the Chen-Lee-Liu equation and the Gerdjikov-Ivanov equation by constructing Lax pairs. The discrete DNLS systems admit the reduction of complex conjugation between two dependent variables and possess bi-Hamiltonian structure. Through transformations of variables and reductions, we obtain novel integrable discretizations of the nonlinear Schroedinger (NLS), modified KdV (mKdV), mixed NLS, matrix NLS, matrix KdV, matrix mKdV, coupled NLS, coupled Hirota, coupled Sasa-Satsuma and Burgers equations. We also discuss integrable discretizations of the sine-Gordon equation, the massive Thirring model and their generalizations. (author)

  17. Statistical methodology for discrete fracture model - including fracture size, orientation uncertainty together with intensity uncertainty and variability

    Energy Technology Data Exchange (ETDEWEB)

    Darcel, C. (Itasca Consultants SAS (France)); Davy, P.; Le Goc, R.; Dreuzy, J.R. de; Bour, O. (Geosciences Rennes, UMR 6118 CNRS, Univ. def Rennes, Rennes (France))

    2009-11-15

    Investigations led for several years at Laxemar and Forsmark reveal the large heterogeneity of geological formations and associated fracturing. This project aims at reinforcing the statistical DFN modeling framework adapted to a site scale. This leads therefore to develop quantitative methods of characterization adapted to the nature of fracturing and data availability. We start with the hypothesis that the maximum likelihood DFN model is a power-law model with a density term depending on orientations. This is supported both by literature and specifically here by former analyses of the SKB data. This assumption is nevertheless thoroughly tested by analyzing the fracture trace and lineament maps. Fracture traces range roughly between 0.5 m and 10 m - i e the usual extension of the sample outcrops. Between the raw data and final data used to compute the fracture size distribution from which the size distribution model will arise, several steps are necessary, in order to correct data from finite-size, topographical and sampling effects. More precisely, a particular attention is paid to fracture segmentation status and fracture linkage consistent with the DFN model expected. The fracture scaling trend observed over both sites displays finally a shape parameter k{sub t} close to 1.2 with a density term (alpha{sub 2d}) between 1.4 and 1.8. Only two outcrops clearly display a different trend with k{sub t} close to 3 and a density term (alpha{sub 2d}) between 2 and 3.5. The fracture lineaments spread over the range between 100 meters and a few kilometers. When compared with fracture trace maps, these datasets are already interpreted and the linkage process developed previously has not to be done. Except for the subregional lineament map from Forsmark, lineaments display a clear power-law trend with a shape parameter k{sub t} equal to 3 and a density term between 2 and 4.5. The apparent variation in scaling exponent, from the outcrop scale (k{sub t} = 1.2) on one side, to

  18. FDG-PET scan in assessing lymphomas and the application of Deauville Criteria

    International Nuclear Information System (INIS)

    Awan, U.E.K.; Siddiqui, N.; Muzaffar, N.; Farooqui, Z.S.

    2013-01-01

    To evaluate the role of Fluorine-18-fluorodexoyglucose Positron Emission Tomography (FDG-PET) scan in staging and its implications on the treatment of lymphoma, and to study the concordance between visual assessment and Deauville criteria for the interpretation of interim scans. Methods: The prospective single-arm experimental study was conducted at the Shaukat Khanum Memorial Cancer Hospital, Lahore, from May 2011 to October 2011. It comprised 53 newly diagnosed lymphoma patients who agreed to participate in the study. All patients underwent scans with contrast-enhanced computerised tomography at baseline. Treatment plan was formulated based on the final stage. Interim scans were acquired after 2 cycles of chemotherapy and were reported using visual criteria and compared with the 5-point Deauville criteria. Score of 1-3 was taken as disease-negative, while 4-5 was taken as disease-positive. SPSS 19 was used for statistical analysis. Results: Of the 53 patients, 35 (66%) had Hodgkin's Lymphoma, while 18 (34%) had Non-Hodgkin's Lymphoma. Scans resulted in disease upstaging in 4 (7.5%) patients, and detecting increased disease burden in 12 (23%). On interim scans, complete remission was achieved in 38 (71%) patients (Deauville score 1-3); 12 (23%) showed partial response (Deauville score 4-5); and 3 (6%) had progression. Kappa test was statistically significant (kappa 0.856; p <0.001). Conclusion: The positron emission tomography helped to upstage lymphoma and reflected increased disease burden. The Deauville criteria correlated very well with visual assessment criteria and can be applied in the patient population. (author)

  19. Lévy matters IV estimation for discretely observed Lévy processes

    CERN Document Server

    Belomestny, Denis; Genon-Catalot, Valentine; Masuda, Hiroki; Reiß, Markus

    2015-01-01

    The aim of this volume is to provide an extensive account of the most recent advances in statistics for discretely observed Lévy processes. These days, statistics for stochastic processes is a lively topic, driven by the needs of various fields of application, such as finance, the biosciences, and telecommunication. The three chapters of this volume are completely dedicated to the estimation of Lévy processes, and are written by experts in the field. The first chapter by Denis Belomestny and Markus Reiß treats the low frequency situation, and estimation methods are based on the empirical characteristic function. The second chapter by Fabienne Comte and Valery Genon-Catalon is dedicated to non-parametric estimation mainly covering the high-frequency data case. A distinctive feature of this part is the construction of adaptive estimators, based on deconvolution or projection or kernel methods. The last chapter by Hiroki Masuda considers the parametric situation. The chapters cover the main aspects of the est...

  20. Multivariable biorthogonal continuous--discrete Wilson and Racah polynomials

    International Nuclear Information System (INIS)

    Tratnik, M.V.

    1990-01-01

    Several families of multivariable, biorthogonal, partly continuous and partly discrete, Wilson polynomials are presented. These yield limit cases that are purely continuous in some of the variables and purely discrete in the others, or purely discrete in all the variables. The latter are referred to as the multivariable biorthogonal Racah polynomials. Interesting further limit cases include the multivariable biorthogonal Hahn and dual Hahn polynomials

  1. Degree distribution in discrete case

    International Nuclear Information System (INIS)

    Wang, Li-Na; Chen, Bin; Yan, Zai-Zai

    2011-01-01

    Vertex degree of many network models and real-life networks is limited to non-negative integer. By means of measure and integral, the relation of the degree distribution and the cumulative degree distribution in discrete case is analyzed. The degree distribution, obtained by the differential of its cumulative, is only suitable for continuous case or discrete case with constant degree change. When degree change is not a constant but proportional to degree itself, power-law degree distribution and its cumulative have the same exponent and the mean value is finite for power-law exponent greater than 1. -- Highlights: → Degree change is the crux for using the cumulative degree distribution method. → It suits for discrete case with constant degree change. → If degree change is proportional to degree, power-law degree distribution and its cumulative have the same exponent. → In addition, the mean value is finite for power-law exponent greater than 1.

  2. Direct Discrete Method for Neutronic Calculations

    International Nuclear Information System (INIS)

    Vosoughi, Naser; Akbar Salehi, Ali; Shahriari, Majid

    2002-01-01

    The objective of this paper is to introduce a new direct method for neutronic calculations. This method which is named Direct Discrete Method, is simpler than the neutron Transport equation and also more compatible with physical meaning of problems. This method is based on physic of problem and with meshing of the desired geometry, writing the balance equation for each mesh intervals and with notice to the conjunction between these mesh intervals, produce the final discrete equations series without production of neutron transport differential equation and mandatory passing from differential equation bridge. We have produced neutron discrete equations for a cylindrical shape with two boundary conditions in one group energy. The correction of the results from this method are tested with MCNP-4B code execution. (authors)

  3. Research on Signature Verification Method Based on Discrete Fréchet Distance

    Science.gov (United States)

    Fang, J. L.; Wu, W.

    2018-05-01

    This paper proposes a multi-feature signature template based on discrete Fréchet distance, which breaks through the limitation of traditional signature authentication using a single signature feature. It solves the online handwritten signature authentication signature global feature template extraction calculation workload, signature feature selection unreasonable problem. In this experiment, the false recognition rate (FAR) and false rejection rate (FRR) of the statistical signature are calculated and the average equal error rate (AEER) is calculated. The feasibility of the combined template scheme is verified by comparing the average equal error rate of the combination template and the original template.

  4. On the discrete Gabor transform and the discrete Zak transform

    NARCIS (Netherlands)

    Bastiaans, M.J.; Geilen, M.C.W.

    1996-01-01

    Gabor's expansion of a discrete-time signal into a set of shifted and modulated versions of an elementary signal (or synthesis window) and the inverse operation -- the Gabor transform -- with which Gabor's expansion coefficients can be determined, are introduced. It is shown how, in the case of a

  5. Scan Order in Gibbs Sampling: Models in Which it Matters and Bounds on How Much.

    Science.gov (United States)

    He, Bryan; De Sa, Christopher; Mitliagkas, Ioannis; Ré, Christopher

    2016-01-01

    Gibbs sampling is a Markov Chain Monte Carlo sampling technique that iteratively samples variables from their conditional distributions. There are two common scan orders for the variables: random scan and systematic scan. Due to the benefits of locality in hardware, systematic scan is commonly used, even though most statistical guarantees are only for random scan. While it has been conjectured that the mixing times of random scan and systematic scan do not differ by more than a logarithmic factor, we show by counterexample that this is not the case, and we prove that that the mixing times do not differ by more than a polynomial factor under mild conditions. To prove these relative bounds, we introduce a method of augmenting the state space to study systematic scan using conductance.

  6. Discrete Choice and Rational Inattention

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Melo, Emerson; de Palma, André

    2017-01-01

    This paper establishes a general equivalence between discrete choice and rational inattention models. Matejka and McKay (2015, AER) showed that when information costs are modelled using the Shannon entropy, the result- ing choice probabilities in the rational inattention model take the multinomial...... logit form. We show that when information costs are modelled using a class of generalized entropies, then the choice probabilities in any rational inattention model are observationally equivalent to some additive random utility discrete choice model and vice versa. This equivalence arises from convex...

  7. Process algebra with timing : real time and discrete time

    NARCIS (Netherlands)

    Baeten, J.C.M.; Middelburg, C.A.; Bergstra, J.A.; Ponse, A.J.; Smolka, S.A.

    2001-01-01

    We present real time and discrete time versions of ACP with absolute timing and relative timing. The starting-point is a new real time version with absolute timing, called ACPsat, featuring urgent actions and a delay operator. The discrete time versions are conservative extensions of the discrete

  8. Process algebra with timing: Real time and discrete time

    NARCIS (Netherlands)

    Baeten, J.C.M.; Middelburg, C.A.

    1999-01-01

    We present real time and discrete time versions of ACP with absolute timing and relative timing. The startingpoint is a new real time version with absolute timing, called ACPsat , featuring urgent actions and a delay operator. The discrete time versions are conservative extensions of the discrete

  9. A hierarchy of Liouville integrable discrete Hamiltonian equations

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xixiang [College of Science, Shandong University of Science and Technology, Qingdao 266510 (China)], E-mail: xixiang_xu@yahoo.com.cn

    2008-05-12

    Based on a discrete four-by-four matrix spectral problem, a hierarchy of Lax integrable lattice equations with two potentials is derived. Two Hamiltonian forms are constructed for each lattice equation in the resulting hierarchy by means of the discrete variational identity. A strong symmetry operator of the resulting hierarchy is given. Finally, it is shown that the resulting lattice equations are all Liouville integrable discrete Hamiltonian systems.

  10. Variational discretization of the nonequilibrium thermodynamics of simple systems

    Science.gov (United States)

    Gay-Balmaz, François; Yoshimura, Hiroaki

    2018-04-01

    In this paper, we develop variational integrators for the nonequilibrium thermodynamics of simple closed systems. These integrators are obtained by a discretization of the Lagrangian variational formulation of nonequilibrium thermodynamics developed in (Gay-Balmaz and Yoshimura 2017a J. Geom. Phys. part I 111 169–93 Gay-Balmaz and Yoshimura 2017b J. Geom. Phys. part II 111 194–212) and thus extend the variational integrators of Lagrangian mechanics, to include irreversible processes. In the continuous setting, we derive the structure preserving property of the flow of such systems. This property is an extension of the symplectic property of the flow of the Euler–Lagrange equations. In the discrete setting, we show that the discrete flow solution of our numerical scheme verifies a discrete version of this property. We also present the regularity conditions which ensure the existence of the discrete flow. We finally illustrate our discrete variational schemes with the implementation of an example of a simple and closed system.

  11. Discrete breathers in Bose–Einstein condensates

    International Nuclear Information System (INIS)

    Franzosi, Roberto; Politi, Antonio; Livi, Roberto; Oppo, Gian-Luca

    2011-01-01

    Discrete breathers, originally introduced in the context of biopolymers and coupled nonlinear oscillators, are also localized modes of excitation of Bose–Einstein condensates (BEC) in periodic potentials such as those generated by counter-propagating laser beams in an optical lattice. Static and dynamical properties of breather states are analysed in the discrete nonlinear Schrödinger equation that is derived in the limit of deep potential wells, tight-binding and the superfluid regime of the condensate. Static and mobile breathers can be formed by progressive re-shaping of initial Gaussian wave-packets or by transporting atomic density towards dissipative boundaries of the lattice. Static breathers generated via boundary dissipations are determined via a transfer-matrix approach and discussed in the two analytic limits of highly localized and very broad profiles. Mobile breathers that move across the lattice are well approximated by modified analytical expressions derived from integrable models with two independent parameters: the core-phase gradient and the peak amplitude. Finally, possible experimental realizations of discrete breathers in BEC in optical lattices are discussed in the presence of residual harmonic trapping and in interferometry configurations suitable to investigate discrete breathers' interactions. (invited article)

  12. Hopf Bifurcation Analysis for a Stochastic Discrete-Time Hyperchaotic System

    Directory of Open Access Journals (Sweden)

    Jie Ran

    2015-01-01

    Full Text Available The dynamics of a discrete-time hyperchaotic system and the amplitude control of Hopf bifurcation for a stochastic discrete-time hyperchaotic system are investigated in this paper. Numerical simulations are presented to exhibit the complex dynamical behaviors in the discrete-time hyperchaotic system. Furthermore, the stochastic discrete-time hyperchaotic system with random parameters is transformed into its equivalent deterministic system with the orthogonal polynomial theory of discrete random function. In addition, the dynamical features of the discrete-time hyperchaotic system with random disturbances are obtained through its equivalent deterministic system. By using the Hopf bifurcation conditions of the deterministic discrete-time system, the specific conditions for the existence of Hopf bifurcation in the equivalent deterministic system are derived. And the amplitude control with random intensity is discussed in detail. Finally, the feasibility of the control method is demonstrated by numerical simulations.

  13. Cross sections for Discrete γ ray production in interactions of 14.6 MeV neutrons with light and medium heavy nuclei

    International Nuclear Information System (INIS)

    Hlavac, S.; Benovic, M.; Betak, E.; Dostal, L.; Turzo, I.; Simakov, S.P.

    1999-01-01

    We measured cross section of prompt discrete γ ray transitions produced in 14.6 MeV neutron interactions with 23 Na, 27 Al, 28 Si, 31 P 39 K, 51 V, 55 Mn and nat Mo. Cross sections were measured relative to reference cross sections with low uncertainties using a dedicated experimental setup with a 244 cm 3 HPGe photon detector and associated α particle timing. In addition to photons from inelastic scattering we observed discrete transitions from (n,p), (n,n'p), (n,α), and (n,2n) reactions. Discrete γ transitions in 28 Si(n,n'p) 27 Al, the majority of transitions in Mn+n, and all transitions in Mo+n reactions were observed for the first time. Where available, our experimental data are compared with existing data. This comparison shows that existing data are in disagreement with present data in many cases, a finding which stresses the necessity of standardization of measurement procedure. For some reactions we compared our results with statistical model predictions, calculated with the advanced code GNASH as well as with a technically simpler code DEGAS, developed in our lab. In several instances, mostly in reactions where only a single nucleon is emitted, the statistical model calculations describe the observed cross sections well. In other cases, where several nucleons are emitted sequentially or in a cluster, the agreement is less satisfactory. (author)

  14. Failure mechanism analysis of a discrete 650V enhancement mode GaN-on-Si power device with reverse conduction accelerated power cycling test

    DEFF Research Database (Denmark)

    Song, Sungyoung; Munk-Nielsen, Stig; Uhrenfeldt, Christian

    2017-01-01

    A commercial discrete enhancement mode gallium nitride power component employing advanced package technology without conventional bond wire possesses the ability for bidirectional conduction. The gallium nitride power components can provide not only higher forward conductivity but also superior...... of cycles to failure. In physical failure analysis, delamination of a solder joint between a chip and a copper layer of an aluminum print circuit board is observed with a scanning acoustic microscope....

  15. Discretization-induced delays and their role in the dynamics

    International Nuclear Information System (INIS)

    Ramani, A; Grammaticos, B; Satsuma, J; Willox, R

    2008-01-01

    We show that a discretization of a continuous system may entail 'hidden' delays and thus introduce instabilities. In this case, while the continuous system has an attractive fixed point, the instabilities present in the equivalent discrete one may lead to the appearance of a limit cycle. We explain that it is possible, thanks to the proper staggering of the discrete variables, to eliminate the hidden delay. However, in general, other instabilities may appear in the discrete system which can even lead to chaotic behaviour

  16. Discrete mathematics in the high school curriculum

    NARCIS (Netherlands)

    Anderson, I.; Asch, van A.G.; van Lint, J.H.

    2004-01-01

    In this paper we present some topics from the field of discrete mathematics which might be suitable for the high school curriculum. These topics yield both easy to understand challenging problems and important applications of discrete mathematics. We choose elements from number theory and various

  17. Hybrid discrete-time neural networks.

    Science.gov (United States)

    Cao, Hongjun; Ibarz, Borja

    2010-11-13

    Hybrid dynamical systems combine evolution equations with state transitions. When the evolution equations are discrete-time (also called map-based), the result is a hybrid discrete-time system. A class of biological neural network models that has recently received some attention falls within this category: map-based neuron models connected by means of fast threshold modulation (FTM). FTM is a connection scheme that aims to mimic the switching dynamics of a neuron subject to synaptic inputs. The dynamic equations of the neuron adopt different forms according to the state (either firing or not firing) and type (excitatory or inhibitory) of their presynaptic neighbours. Therefore, the mathematical model of one such network is a combination of discrete-time evolution equations with transitions between states, constituting a hybrid discrete-time (map-based) neural network. In this paper, we review previous work within the context of these models, exemplifying useful techniques to analyse them. Typical map-based neuron models are low-dimensional and amenable to phase-plane analysis. In bursting models, fast-slow decomposition can be used to reduce dimensionality further, so that the dynamics of a pair of connected neurons can be easily understood. We also discuss a model that includes electrical synapses in addition to chemical synapses with FTM. Furthermore, we describe how master stability functions can predict the stability of synchronized states in these networks. The main results are extended to larger map-based neural networks.

  18. Stochastic Kuramoto oscillators with discrete phase states

    Science.gov (United States)

    Jörg, David J.

    2017-09-01

    We present a generalization of the Kuramoto phase oscillator model in which phases advance in discrete phase increments through Poisson processes, rendering both intrinsic oscillations and coupling inherently stochastic. We study the effects of phase discretization on the synchronization and precision properties of the coupled system both analytically and numerically. Remarkably, many key observables such as the steady-state synchrony and the quality of oscillations show distinct extrema while converging to the classical Kuramoto model in the limit of a continuous phase. The phase-discretized model provides a general framework for coupled oscillations in a Markov chain setting.

  19. Stochastic Kuramoto oscillators with discrete phase states.

    Science.gov (United States)

    Jörg, David J

    2017-09-01

    We present a generalization of the Kuramoto phase oscillator model in which phases advance in discrete phase increments through Poisson processes, rendering both intrinsic oscillations and coupling inherently stochastic. We study the effects of phase discretization on the synchronization and precision properties of the coupled system both analytically and numerically. Remarkably, many key observables such as the steady-state synchrony and the quality of oscillations show distinct extrema while converging to the classical Kuramoto model in the limit of a continuous phase. The phase-discretized model provides a general framework for coupled oscillations in a Markov chain setting.

  20. Cone-beam tomography with discrete data sets

    International Nuclear Information System (INIS)

    Barrett, H.H.

    1994-01-01

    Sufficiently conditions for cone-beam data are well known for the case of continuous data collection along a cone-vortex curve with continuous detectors. These continuous conditions are inadequate for real-world data where discrete vertex geometries and discrete detector arrays are used. In this paper we present a theoretical formulation of cone-beam tomography with arbitrary discrete arrays of detectors and vertices. The theory models the imaging system as a linear continuous-to-discrete mapping and represents the continuous object exactly as a Fourier series. The reconstruction problem is posed as the estimation of some subset of the Fourier coefficients. The main goal of the theory is to determine which Fourier coefficients can be reliably determined from the data delivered by a specific discrete design. A fourier component will be well determined by the data if it satisfies two conditions: it makes a strong contribution to the data, and this contribution is relatively independent of the contribution of other Fourier components. To make these considerations precise, we introduce a concept called the cross-talk matrix. A diagonal element of this matrix measures the strength of a Fourier component in the data, while an off-diagonal element quantifies the dependence or aliasing of two different components. (Author)

  1. On discrete models of space-time

    International Nuclear Information System (INIS)

    Horzela, A.; Kempczynski, J.; Kapuscik, E.; Georgia Univ., Athens, GA; Uzes, Ch.

    1992-02-01

    Analyzing the Einstein radiolocation method we come to the conclusion that results of any measurement of space-time coordinates should be expressed in terms of rational numbers. We show that this property is Lorentz invariant and may be used in the construction of discrete models of space-time different from the models of the lattice type constructed in the process of discretization of continuous models. (author)

  2. Reflectionless discrete Schr\\"odinger operators are spectrally atypical

    OpenAIRE

    VandenBoom, Tom

    2017-01-01

    We prove that, if an isospectral torus contains a discrete Schr\\"odinger operator with nonconstant potential, the shift dynamics on that torus cannot be minimal. Consequently, we specify a generic sense in which finite unions of nondegenerate closed intervals having capacity one are not the spectrum of any reflectionless discrete Schr\\"odinger operator. We also show that the only reflectionless discrete Schr\\"odinger operators having zero, one, or two spectral gaps are periodic.

  3. A Baecklund transformation between two integrable discrete hungry systems

    International Nuclear Information System (INIS)

    Fukuda, Akiko; Yamamoto, Yusaku; Iwasaki, Masashi; Ishiwata, Emiko; Nakamura, Yoshimasa

    2011-01-01

    The discrete hungry Toda (dhToda) equation and the discrete hungry Lotka-Volterra (dhLV) system are known as integrable discrete hungry systems. In this Letter, through finding the LR transformations associated with the dhToda equation and the dhLV system, we present a Baecklund transformation between these integrable systems.

  4. A Baecklund transformation between two integrable discrete hungry systems

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Akiko, E-mail: j1409704@ed.kagu.tus.ac.j [Department of Mathematical Information Science, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Yamamoto, Yusaku [Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan); Iwasaki, Masashi [Department of Informatics and Environmental Science, Kyoto Prefectural University, 1-5, Nakaragi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522 (Japan); Ishiwata, Emiko [Department of Mathematical Information Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Nakamura, Yoshimasa [Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)

    2011-01-17

    The discrete hungry Toda (dhToda) equation and the discrete hungry Lotka-Volterra (dhLV) system are known as integrable discrete hungry systems. In this Letter, through finding the LR transformations associated with the dhToda equation and the dhLV system, we present a Baecklund transformation between these integrable systems.

  5. Surgical retroperitoneoscopic and transperitoneoscopic access in varicocelectomy: duplex scan results in pediatric population.

    Science.gov (United States)

    Mancini, Stefano; Bulotta, Anna Lavinia; Molinaro, Francesco; Ferrara, Francesco; Tommasino, Giulio; Messina, Mario

    2014-12-01

    This is a retrospective study to compare duplex scan results of laparoscopic Palomo's technique through retroperitoneal and transperitoneal approach for varicocelectomy in children. We statistically analyzed recurrence, testicular volume growth and complications. Surgical intervention was performed utilizing transperitoneoscopic (group A) or retroperitoneoscopic access (group B). Duplex scan control was performed after 12 months (T1), after 2 years (T2) and the last one at 18 years old in most patients. Statistical analysis was performed using the t-test for parametric data. Differences in proportions were evaluated using χ2 or Fisher's exact test. We treated 120 children (age range 10-17 years) who presented an asymptomatic IV grade of reflux, Coolsaet 1, associated with a left testicular hypotrophy in 36.6% of the cases (44 patients). No post-operative complications were verified. Duplex scan exam showed an increase of left testicular growth in both groups, with complete hypotrophy disappear in patients in both groups after 24 months. Hydrocele, diagnosed clinically and confirmed with duplex scan, was the most frequent post-operative complication (22/120 cases; 18.3%). This study showed the importance of duplex scan at all steps of this vascular pathology in children, and that there is no significantly difference in results between the two surgical techniques except for hydrocele in transperitoneoscopic access. Copyright © 2014 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  6. Statistics of Narrowband White Noise Derived from Clipped Broadband White Noise

    Science.gov (United States)

    1992-02-01

    e -26’lnN (7) A=1 with the inverse transform given by I N C(nAt) X D (lAf)e 2N. (8) The validity of this transform pair can be established by means...of the identity N I e (x"- ’ N = 8n.k+IN. (9) NARROWBAND STATISTICS The discrete Fourier transform and inverse transform can be executed via the fast

  7. An introduction to non-Abelian discrete symmetries for particle physicists

    CERN Document Server

    Ishimori, Hajime; Ohki, Hiroshi; Okada, Hiroshi; Shimizu, Yusuke; Tanimoto, Morimitsu

    2012-01-01

    These lecture notes provide a tutorial review of non-Abelian discrete groups and show some applications to issues in physics where discrete symmetries constitute an important principle for model building in particle physics. While Abelian discrete symmetries are often imposed in order to control couplings for particle physics - in particular model building beyond the standard model - non-Abelian discrete symmetries have been applied to understand the three-generation flavor structure in particular. Indeed, non-Abelian discrete symmetries are considered to be the most attractive choice for the flavor sector: model builders have tried to derive experimental values of quark and lepton masses, and mixing angles by assuming non-Abelian discrete flavor symmetries of quarks and leptons, yet, lepton mixing has already been intensively discussed in this context, as well. The possible origins of the non-Abelian discrete symmetry for flavors is another topic of interest, as they can arise from an underlying theory -...

  8. Partition-based discrete-time quantum walks

    Science.gov (United States)

    Konno, Norio; Portugal, Renato; Sato, Iwao; Segawa, Etsuo

    2018-04-01

    We introduce a family of discrete-time quantum walks, called two-partition model, based on two equivalence-class partitions of the computational basis, which establish the notion of local dynamics. This family encompasses most versions of unitary discrete-time quantum walks driven by two local operators studied in literature, such as the coined model, Szegedy's model, and the 2-tessellable staggered model. We also analyze the connection of those models with the two-step coined model, which is driven by the square of the evolution operator of the standard discrete-time coined walk. We prove formally that the two-step coined model, an extension of Szegedy model for multigraphs, and the two-tessellable staggered model are unitarily equivalent. Then, selecting one specific model among those families is a matter of taste not generality.

  9. Stabilizing the discrete vortex of topological charge S=2

    International Nuclear Information System (INIS)

    Kevrekidis, P.G.; Frantzeskakis, D.J.

    2005-01-01

    We study the instability of the discrete vortex with topological charge S=2 in a prototypical lattice model and observe its mediation through the central lattice site. Motivated by this finding, we analyze the model with the central site being inert. We identify analytically and observe numerically the existence of a range of linearly stable discrete vortices with S=2 in the latter model. The range of stability is comparable to that of the recently observed experimentally S=1 discrete vortex, suggesting the potential for observation of such higher charge discrete vortices

  10. Group-theoretical aspects of the discrete sine-Gordon equation

    International Nuclear Information System (INIS)

    Orfanidis, S.J.

    1980-01-01

    The group-theoretical interpretation of the sine-Gordon equation in terms of connection forms on fiber bundles is extended to the discrete case. Solutions of the discrete sine-Gordon equation induce surfaces on a lattice in the SU(2) group space. The inverse scattering representation, expressing the parallel transport of fibers, is implemented by means of finite rotations. Discrete Baecklund transformations are realized as gauge transformations. The three-dimensional inverse scattering representation is used to derive a discrete nonlinear sigma model, and the corresponding Baecklund transformation and Pohlmeyer's R transformation are constructed

  11. Solitonlike solutions of the generalized discrete nonlinear Schrödinger equation

    DEFF Research Database (Denmark)

    Rasmussen, Kim; Henning, D.; Gabriel, H.

    1996-01-01

    We investigate the solution properties oi. a generalized discrete nonlinear Schrodinger equation describing a nonlinear lattice chain. The generalized equation interpolates between the integrable discrete Ablowitz-Ladik equation and the nonintegrable discrete Schrodinger equation. Special interes...... nonlinear Schrodinger equation. In this way eve are able to construct coherent solitonlike structures of profile determined by the map parameters.......We investigate the solution properties oi. a generalized discrete nonlinear Schrodinger equation describing a nonlinear lattice chain. The generalized equation interpolates between the integrable discrete Ablowitz-Ladik equation and the nonintegrable discrete Schrodinger equation. Special interest...

  12. Local discrete symmetries from superstring derived models

    International Nuclear Information System (INIS)

    Faraggi, A.E.

    1996-10-01

    Discrete and global symmetries play an essential role in many extensions of the Standard Model, for example, to preserve the proton lifetime, to prevent flavor changing neutral currents, etc. An important question is how can such symmetries survive in a theory of quantum gravity, like superstring theory. In a specific string model the author illustrates how local discrete symmetries may arise in string models and play an important role in preventing fast proton decay and flavor changing neutral currents. The local discrete symmetry arises due to the breaking of the non-Abelian gauge symmetries by Wilson lines in the superstring models and forbids, for example dimension five operators which mediate rapid proton decay, to all orders of nonrenormalizable terms. In the context of models of unification of the gauge and gravitational interactions, it is precisely this type of local discrete symmetries that must be found in order to insure that a given model is not in conflict with experimental observations

  13. Discrete dispersion models and their Tweedie asymptotics

    DEFF Research Database (Denmark)

    Jørgensen, Bent; Kokonendji, Célestin C.

    2016-01-01

    The paper introduce a class of two-parameter discrete dispersion models, obtained by combining convolution with a factorial tilting operation, similar to exponential dispersion models which combine convolution and exponential tilting. The equidispersed Poisson model has a special place in this ap......The paper introduce a class of two-parameter discrete dispersion models, obtained by combining convolution with a factorial tilting operation, similar to exponential dispersion models which combine convolution and exponential tilting. The equidispersed Poisson model has a special place...... in this approach, whereas several overdispersed discrete distributions, such as the Neyman Type A, Pólya-Aeppli, negative binomial and Poisson-inverse Gaussian, turn out to be Poisson-Tweedie factorial dispersion models with power dispersion functions, analogous to ordinary Tweedie exponential dispersion models...... with power variance functions. Using the factorial cumulant generating function as tool, we introduce a dilation operation as a discrete analogue of scaling, generalizing binomial thinning. The Poisson-Tweedie factorial dispersion models are closed under dilation, which in turn leads to a Poisson...

  14. Use cases of discrete event simulation. Appliance and research

    Energy Technology Data Exchange (ETDEWEB)

    Bangsow, Steffen (ed.)

    2012-11-01

    Use Cases of Discrete Event Simulation. Includes case studies from various important industries such as automotive, aerospace, robotics, production industry. Written by leading experts in the field. Over the last decades Discrete Event Simulation has conquered many different application areas. This trend is, on the one hand, driven by an ever wider use of this technology in different fields of science and on the other hand by an incredibly creative use of available software programs through dedicated experts. This book contains articles from scientists and experts from 10 countries. They illuminate the width of application of this technology and the quality of problems solved using Discrete Event Simulation. Practical applications of simulation dominate in the present book. The book is aimed to researchers and students who deal in their work with Discrete Event Simulation and which want to inform them about current applications. By focusing on discrete event simulation, this book can also serve as an inspiration source for practitioners for solving specific problems during their work. Decision makers who deal with the question of the introduction of discrete event simulation for planning support and optimization this book provides a contribution to the orientation, what specific problems could be solved with the help of Discrete Event Simulation within the organization.

  15. Discrete bacteria foraging optimization algorithm for graph based problems - a transition from continuous to discrete

    Science.gov (United States)

    Sur, Chiranjib; Shukla, Anupam

    2018-03-01

    Bacteria Foraging Optimisation Algorithm is a collective behaviour-based meta-heuristics searching depending on the social influence of the bacteria co-agents in the search space of the problem. The algorithm faces tremendous hindrance in terms of its application for discrete problems and graph-based problems due to biased mathematical modelling and dynamic structure of the algorithm. This had been the key factor to revive and introduce the discrete form called Discrete Bacteria Foraging Optimisation (DBFO) Algorithm for discrete problems which exceeds the number of continuous domain problems represented by mathematical and numerical equations in real life. In this work, we have mainly simulated a graph-based road multi-objective optimisation problem and have discussed the prospect of its utilisation in other similar optimisation problems and graph-based problems. The various solution representations that can be handled by this DBFO has also been discussed. The implications and dynamics of the various parameters used in the DBFO are illustrated from the point view of the problems and has been a combination of both exploration and exploitation. The result of DBFO has been compared with Ant Colony Optimisation and Intelligent Water Drops Algorithms. Important features of DBFO are that the bacteria agents do not depend on the local heuristic information but estimates new exploration schemes depending upon the previous experience and covered path analysis. This makes the algorithm better in combination generation for graph-based problems and combination generation for NP hard problems.

  16. Discrete Pathophysiology is Uncommon in Patients with Nonspecific Arm Pain.

    Science.gov (United States)

    Kortlever, Joost T P; Janssen, Stein J; Molleman, Jeroen; Hageman, Michiel G J S; Ring, David

    2016-06-01

    Nonspecific symptoms are common in all areas of medicine. Patients and caregivers can be frustrated when an illness cannot be reduced to a discrete pathophysiological process that corresponds with the symptoms. We therefore asked the following questions: 1) Which demographic factors and psychological comorbidities are associated with change from an initial diagnosis of nonspecific arm pain to eventual identification of discrete pathophysiology that corresponds with symptoms? 2) What is the percentage of patients eventually diagnosed with discrete pathophysiology, what are those pathologies, and do they account for the symptoms? We evaluated 634 patients with an isolated diagnosis of nonspecific upper extremity pain to see if discrete pathophysiology was diagnosed on subsequent visits to the same hand surgeon, a different hand surgeon, or any physician within our health system for the same pain. There were too few patients with discrete pathophysiology at follow-up to address the primary study question. Definite discrete pathophysiology that corresponded with the symptoms was identified in subsequent evaluations by the index surgeon in one patient (0.16% of all patients) and cured with surgery (nodular fasciitis). Subsequent doctors identified possible discrete pathophysiology in one patient and speculative pathophysiology in four patients and the index surgeon identified possible discrete pathophysiology in four patients, but the five discrete diagnoses accounted for only a fraction of the symptoms. Nonspecific diagnoses are not harmful. Prospective randomized research is merited to determine if nonspecific, descriptive diagnoses are better for patients than specific diagnoses that imply pathophysiology in the absence of discrete verifiable pathophysiology.

  17. Implementing the Standards. Teaching Discrete Mathematics in Grades 7-12.

    Science.gov (United States)

    Hart, Eric W.; And Others

    1990-01-01

    Discrete mathematics are defined briefly. A course in discrete mathematics for high school students and teaching discrete mathematics in grades 7 and 8 including finite differences, recursion, and graph theory are discussed. (CW)

  18. Discretized representations of harmonic variables by bilateral Jacobi operators

    Directory of Open Access Journals (Sweden)

    Andreas Ruffing

    2000-01-01

    Full Text Available Starting from a discrete Heisenberg algebra we solve several representation problems for a discretized quantum oscillator in a weighted sequence space. The Schrödinger operator for a discrete harmonic oscillator is derived. The representation problem for a q-oscillator algebra is studied in detail. The main result of the article is the fact that the energy representation for the discretized momentum operator can be interpreted as follows: It allows to calculate quantum properties of a large number of non-interacting harmonic oscillators at the same time. The results can be directly related to current research on squeezed laser states in quantum optics. They reveal and confirm the observation that discrete versions of continuum Schrodinger operators allow more structural freedom than their continuum analogs do.

  19. Current Density and Continuity in Discretized Models

    Science.gov (United States)

    Boykin, Timothy B.; Luisier, Mathieu; Klimeck, Gerhard

    2010-01-01

    Discrete approaches have long been used in numerical modelling of physical systems in both research and teaching. Discrete versions of the Schrodinger equation employing either one or several basis functions per mesh point are often used by senior undergraduates and beginning graduate students in computational physics projects. In studying…

  20. Discretization vs. Rounding Error in Euler's Method

    Science.gov (United States)

    Borges, Carlos F.

    2011-01-01

    Euler's method for solving initial value problems is an excellent vehicle for observing the relationship between discretization error and rounding error in numerical computation. Reductions in stepsize, in order to decrease discretization error, necessarily increase the number of steps and so introduce additional rounding error. The problem is…

  1. Feasibility study of radiation dose reduction in adult female pelvic CT scan with low tube-voltage and adaptive statistical iterative econstruction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin Lian; He, Wen; Chen, Jian Hong; Hu, Zhi Hai; Zhao, Li Qin [Dept. of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing (China)

    2015-10-15

    To evaluate image quality of female pelvic computed tomography (CT) scans reconstructed with the adaptive statistical iterative reconstruction (ASIR) technique combined with low tube-voltage and to explore the feasibility of its clinical application. Ninety-four patients were divided into two groups. The study group used 100 kVp, and images were reconstructed with 30%, 50%, 70%, and 90% ASIR. The control group used 120 kVp, and images were reconstructed with 30% ASIR. The noise index was 15 for the study group and 11 for the control group. The CT values and noise levels of different tissues were measured. The contrast to noise ratio (CNR) was calculated. A subjective evaluation was carried out by two experienced radiologists. The CT dose index volume (CTDIvol) was recorded. A 44.7% reduction in CTDIvol was observed in the study group (8.18 ± 3.58 mGy) compared with that in the control group (14.78 ± 6.15 mGy). No significant differences were observed in the tissue noise levels and CNR values between the 70% ASIR group and the control group (p = 0.068-1.000). The subjective scores indicated that visibility of small structures, diagnostic confidence, and the overall image quality score in the 70% ASIR group was the best, and were similar to those in the control group (1.87 vs. 1.79, 1.26 vs. 1.28, and 4.53 vs. 4.57; p = 0.122-0.585). No significant difference in diagnostic accuracy was detected between the study group and the control group (42/47 vs. 43/47, p = 1.000). Low tube-voltage combined with automatic tube current modulation and 70% ASIR allowed the low CT radiation dose to be reduced by 44.7% without losing image quality on female pelvic scan.

  2. Feasibility study of radiation dose reduction in adult female pelvic CT scan with low tube-voltage and adaptive statistical iterative econstruction

    International Nuclear Information System (INIS)

    Wang, Xin Lian; He, Wen; Chen, Jian Hong; Hu, Zhi Hai; Zhao, Li Qin

    2015-01-01

    To evaluate image quality of female pelvic computed tomography (CT) scans reconstructed with the adaptive statistical iterative reconstruction (ASIR) technique combined with low tube-voltage and to explore the feasibility of its clinical application. Ninety-four patients were divided into two groups. The study group used 100 kVp, and images were reconstructed with 30%, 50%, 70%, and 90% ASIR. The control group used 120 kVp, and images were reconstructed with 30% ASIR. The noise index was 15 for the study group and 11 for the control group. The CT values and noise levels of different tissues were measured. The contrast to noise ratio (CNR) was calculated. A subjective evaluation was carried out by two experienced radiologists. The CT dose index volume (CTDIvol) was recorded. A 44.7% reduction in CTDIvol was observed in the study group (8.18 ± 3.58 mGy) compared with that in the control group (14.78 ± 6.15 mGy). No significant differences were observed in the tissue noise levels and CNR values between the 70% ASIR group and the control group (p = 0.068-1.000). The subjective scores indicated that visibility of small structures, diagnostic confidence, and the overall image quality score in the 70% ASIR group was the best, and were similar to those in the control group (1.87 vs. 1.79, 1.26 vs. 1.28, and 4.53 vs. 4.57; p = 0.122-0.585). No significant difference in diagnostic accuracy was detected between the study group and the control group (42/47 vs. 43/47, p = 1.000). Low tube-voltage combined with automatic tube current modulation and 70% ASIR allowed the low CT radiation dose to be reduced by 44.7% without losing image quality on female pelvic scan

  3. Feasibility Study of Radiation Dose Reduction in Adult Female Pelvic CT Scan with Low Tube-Voltage and Adaptive Statistical Iterative Reconstruction

    Science.gov (United States)

    Wang, Xinlian; Chen, Jianghong; Hu, Zhihai; Zhao, Liqin

    2015-01-01

    Objective To evaluate image quality of female pelvic computed tomography (CT) scans reconstructed with the adaptive statistical iterative reconstruction (ASIR) technique combined with low tube-voltage and to explore the feasibility of its clinical application. Materials and Methods Ninety-four patients were divided into two groups. The study group used 100 kVp, and images were reconstructed with 30%, 50%, 70%, and 90% ASIR. The control group used 120 kVp, and images were reconstructed with 30% ASIR. The noise index was 15 for the study group and 11 for the control group. The CT values and noise levels of different tissues were measured. The contrast to noise ratio (CNR) was calculated. A subjective evaluation was carried out by two experienced radiologists. The CT dose index volume (CTDIvol) was recorded. Results A 44.7% reduction in CTDIvol was observed in the study group (8.18 ± 3.58 mGy) compared with that in the control group (14.78 ± 6.15 mGy). No significant differences were observed in the tissue noise levels and CNR values between the 70% ASIR group and the control group (p = 0.068-1.000). The subjective scores indicated that visibility of small structures, diagnostic confidence, and the overall image quality score in the 70% ASIR group was the best, and were similar to those in the control group (1.87 vs. 1.79, 1.26 vs. 1.28, and 4.53 vs. 4.57; p = 0.122-0.585). No significant difference in diagnostic accuracy was detected between the study group and the control group (42/47 vs. 43/47, p = 1.000). Conclusion Low tube-voltage combined with automatic tube current modulation and 70% ASIR allowed the low CT radiation dose to be reduced by 44.7% without losing image quality on female pelvic scan. PMID:26357499

  4. Automatic classification of DMSA scans using an artificial neural network

    Science.gov (United States)

    Wright, J. W.; Duguid, R.; Mckiddie, F.; Staff, R. T.

    2014-04-01

    DMSA imaging is carried out in nuclear medicine to assess the level of functional renal tissue in patients. This study investigated the use of an artificial neural network to perform diagnostic classification of these scans. Using the radiological report as the gold standard, the network was trained to classify DMSA scans as positive or negative for defects using a representative sample of 257 previously reported images. The trained network was then independently tested using a further 193 scans and achieved a binary classification accuracy of 95.9%. The performance of the network was compared with three qualified expert observers who were asked to grade each scan in the 193 image testing set on a six point defect scale, from ‘definitely normal’ to ‘definitely abnormal’. A receiver operating characteristic analysis comparison between a consensus operator, generated from the scores of the three expert observers, and the network revealed a statistically significant increase (α quality assurance assistant in clinical practice.

  5. On the Importance of Both Dimensional and Discrete Models of Emotion.

    Science.gov (United States)

    Harmon-Jones, Eddie; Harmon-Jones, Cindy; Summerell, Elizabeth

    2017-09-29

    We review research on the structure and functions of emotions that has benefitted from a serious consideration of both discrete and dimensional perspectives on emotion. To illustrate this point, we review research that demonstrates: (1) how affective valence within discrete emotions differs as a function of individuals and situations, and how these differences relate to various functions; (2) that anger (and other emotional states) should be considered as a discrete emotion but there are dimensions around and within anger; (3) that similarities exist between approach-related positive and negative discrete emotions and they have unique motivational functions; (4) that discrete emotions and broad dimensions of emotions both have unique functions; and (5) evidence that a "new" discrete emotion with discrete functions exists within a broader emotion family. We hope that this consideration of both discrete and dimensional perspectives on emotion will assist in understanding the functions of emotions.

  6. On the Importance of Both Dimensional and Discrete Models of Emotion

    Science.gov (United States)

    Harmon-Jones, Eddie

    2017-01-01

    We review research on the structure and functions of emotions that has benefitted from a serious consideration of both discrete and dimensional perspectives on emotion. To illustrate this point, we review research that demonstrates: (1) how affective valence within discrete emotions differs as a function of individuals and situations, and how these differences relate to various functions; (2) that anger (and other emotional states) should be considered as a discrete emotion but there are dimensions around and within anger; (3) that similarities exist between approach-related positive and negative discrete emotions and they have unique motivational functions; (4) that discrete emotions and broad dimensions of emotions both have unique functions; and (5) evidence that a “new” discrete emotion with discrete functions exists within a broader emotion family. We hope that this consideration of both discrete and dimensional perspectives on emotion will assist in understanding the functions of emotions. PMID:28961185

  7. Discretization-dependent model for weakly connected excitable media

    Science.gov (United States)

    Arroyo, Pedro André; Alonso, Sergio; Weber dos Santos, Rodrigo

    2018-03-01

    Pattern formation has been widely observed in extended chemical and biological processes. Although the biochemical systems are highly heterogeneous, homogenized continuum approaches formed by partial differential equations have been employed frequently. Such approaches are usually justified by the difference of scales between the heterogeneities and the characteristic spatial size of the patterns. Under different conditions, for example, under weak coupling, discrete models are more adequate. However, discrete models may be less manageable, for instance, in terms of numerical implementation and mesh generation, than the associated continuum models. Here we study a model to approach discreteness which permits the computer implementation on general unstructured meshes. The model is cast as a partial differential equation but with a parameter that depends not only on heterogeneities sizes, as in the case of quasicontinuum models, but also on the discretization mesh. Therefore, we refer to it as a discretization-dependent model. We validate the approach in a generic excitable media that simulates three different phenomena: the propagation of action membrane potential in cardiac tissue, in myelinated axons of neurons, and concentration waves in chemical microemulsions.

  8. Discrete Variational Approach for Modeling Laser-Plasma Interactions

    Science.gov (United States)

    Reyes, J. Paxon; Shadwick, B. A.

    2014-10-01

    The traditional approach for fluid models of laser-plasma interactions begins by approximating fields and derivatives on a grid in space and time, leading to difference equations that are manipulated to create a time-advance algorithm. In contrast, by introducing the spatial discretization at the level of the action, the resulting Euler-Lagrange equations have particular differencing approximations that will exactly satisfy discrete versions of the relevant conservation laws. For example, applying a spatial discretization in the Lagrangian density leads to continuous-time, discrete-space equations and exact energy conservation regardless of the spatial grid resolution. We compare the results of two discrete variational methods using the variational principles from Chen and Sudan and Brizard. Since the fluid system conserves energy and momentum, the relative errors in these conserved quantities are well-motivated physically as figures of merit for a particular method. This work was supported by the U. S. Department of Energy under Contract No. DE-SC0008382 and by the National Science Foundation under Contract No. PHY-1104683.

  9. Radioaerosol Inhalation Lung Scan in Pulmonary Emphysema

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jeong Soo; Park, Yong Ha; Kyo, Chung Soo; Bahk, Yong Whee [Catholic University College of Medicine, Seoul (Korea, Republic of)

    1990-07-15

    emphysema was diffuse (6/21), discrete(6/21), intermediate (3/21), or combined (6/21). In 12 patients studied also with perfusion scans, perfusion defects matched closely with ventilation defects in location and configuration. But the size of the ventilation defects was generally larger than the perfusion defects. In all four patients treated with bronchodilators, the follow-up study demonstrated decrease in abnormal of radioaerosol deposition in the central airway with improvement of ventilation defects. RII was useful technique for the evaluation of regional ventilatory abnormality and the effects of treatment with bronchodilators in pulmonary emphysema.

  10. Radioaerosol Inhalation Lung Scan in Pulmonary Emphysema

    International Nuclear Information System (INIS)

    Jeon, Jeong Soo; Park, Yong Ha; Chung Soo Kyo; Bahk, Yong Whee

    1990-01-01

    diffuse (6/21), discrete(6/21), intermediate (3/21), or combined (6/21). In 12 patients studied also with perfusion scans, perfusion defects matched closely with ventilation defects in location and configuration. But the size of the ventilation defects was generally larger than the perfusion defects. In all four patients treated with bronchodilators, the follow-up study demonstrated decrease in abnormal of radioaerosol deposition in the central airway with improvement of ventilation defects. RII was useful technique for the evaluation of regional ventilatory abnormality and the effects of treatment with bronchodilators in pulmonary emphysema.

  11. Discrete Tomography and Imaging of Polycrystalline Structures

    DEFF Research Database (Denmark)

    Alpers, Andreas

    High resolution transmission electron microscopy is commonly considered as the standard application for discrete tomography. While this has yet to be technically realized, new applications with a similar flavor have emerged in materials science. In our group at Ris� DTU (Denmark's National...... Laboratory for Sustainable Energy), for instance, we study polycrystalline materials via synchrotron X-ray diffraction. Several reconstruction problems arise, most of them exhibit inherently discrete aspects. In this talk I want to give a concise mathematical introduction to some of these reconstruction...... problems. Special focus is on their relationship to classical discrete tomography. Several open mathematical questions will be mentioned along the way....

  12. Feature network models for proximity data : statistical inference, model selection, network representations and links with related models

    NARCIS (Netherlands)

    Frank, Laurence Emmanuelle

    2006-01-01

    Feature Network Models (FNM) are graphical structures that represent proximity data in a discrete space with the use of features. A statistical inference theory is introduced, based on the additivity properties of networks and the linear regression framework. Considering features as predictor

  13. Cuspidal discrete series for semisimple symmetric spaces

    DEFF Research Database (Denmark)

    Andersen, Nils Byrial; Flensted-Jensen, Mogens; Schlichtkrull, Henrik

    2012-01-01

    We propose a notion of cusp forms on semisimple symmetric spaces. We then study the real hyperbolic spaces in detail, and show that there exists both cuspidal and non-cuspidal discrete series. In particular, we show that all the spherical discrete series are non-cuspidal. (C) 2012 Elsevier Inc. All...

  14. Geometry and Hamiltonian mechanics on discrete spaces

    NARCIS (Netherlands)

    Talasila, V.; Clemente Gallardo, J.J.; Clemente-Gallardo, J.; van der Schaft, Arjan

    2004-01-01

    Numerical simulation is often crucial for analysing the behaviour of many complex systems which do not admit analytic solutions. To this end, one either converts a 'smooth' model into a discrete (in space and time) model, or models systems directly at a discrete level. The goal of this paper is to

  15. Challenges in 3D scanning: Focusing on Ears and Multiple View Stereopsis

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl

    It is the goal of this thesis to address some of the challenges in 3D scanning. This has been done with focus on direct in-ear scanning and on Multiple View Stereopsis. Seven papers have been produced over the course of the Ph.D., out of which, six have been included. Two papers concern volumetric...... segmentation based on Markov Random Fields. These have been formulated to address problems relating to noise ltering in direct in-ear scanning and Intracranial Volume estimation. Another two papers have been produced on the topic of recovering surface data based on a strong statistical prior. This was done...

  16. Qualitative evaluation of coronary flow during anesthetic induction using thallium-201 perfusion scans

    Energy Technology Data Exchange (ETDEWEB)

    Kleinman, B.; Henkin, R.E.; Glisson, S.N.; el-Etr, A.A.; Bakhos, M.; Sullivan, H.J.; Montoya, A.; Pifarre, R.

    1986-02-01

    Qualitative distribution of coronary flow using thallium-201 perfusion scans immediately postintubation was studied in 22 patients scheduled for elective coronary artery bypass surgery. Ten patients received a thiopental (4 mg/kg) and halothane induction. Twelve patients received a fentanyl (100 micrograms/kg) induction. Baseline thallium-201 perfusion scans were performed 24 h prior to surgery. These scans were compared with the scans performed postintubation. A thallium-positive scan was accepted as evidence of relative hypoperfusion. Baseline hemodynamic and ECG data were obtained prior to induction of anesthesia. These data were compared with the data obtained postintubation. Ten patients developed postintubation thallium-perfusion scan defects (thallium-positive scan), even though there was no statistical difference between their baseline hemodynamics and hemodynamics at the time of intubation. There was no difference in the incidence of thallium-positive scans between those patients anesthetized by fentanyl and those patients anesthetized with thiopental-halothane. The authors conclude that relative hypoperfusion, and possibly ischemia, occurred in 45% of patients studied, despite stable hemodynamics, and that the incidence of these events was the same with two different anesthetic techniques.

  17. Qualitative evaluation of coronary flow during anesthetic induction using thallium-201 perfusion scans

    International Nuclear Information System (INIS)

    Kleinman, B.; Henkin, R.E.; Glisson, S.N.; el-Etr, A.A.; Bakhos, M.; Sullivan, H.J.; Montoya, A.; Pifarre, R.

    1986-01-01

    Qualitative distribution of coronary flow using thallium-201 perfusion scans immediately postintubation was studied in 22 patients scheduled for elective coronary artery bypass surgery. Ten patients received a thiopental (4 mg/kg) and halothane induction. Twelve patients received a fentanyl (100 micrograms/kg) induction. Baseline thallium-201 perfusion scans were performed 24 h prior to surgery. These scans were compared with the scans performed postintubation. A thallium-positive scan was accepted as evidence of relative hypoperfusion. Baseline hemodynamic and ECG data were obtained prior to induction of anesthesia. These data were compared with the data obtained postintubation. Ten patients developed postintubation thallium-perfusion scan defects (thallium-positive scan), even though there was no statistical difference between their baseline hemodynamics and hemodynamics at the time of intubation. There was no difference in the incidence of thallium-positive scans between those patients anesthetized by fentanyl and those patients anesthetized with thiopental-halothane. The authors conclude that relative hypoperfusion, and possibly ischemia, occurred in 45% of patients studied, despite stable hemodynamics, and that the incidence of these events was the same with two different anesthetic techniques

  18. An innovative discrete multilevel sampler design

    International Nuclear Information System (INIS)

    Marvin, B.K.; De Clercq, P.J.; Taylor, B.B.; Mauro, D.M.

    1995-01-01

    An innovative, small-diameter PVC discrete multilevel sampler (DMLS) was designed for the Electric Power Research Institute (EPRI) to provide low-cost, discrete groundwater samples from shallow aquifers. When combined with appropriately-sized direct push soil sampling technologies, high resolution aquifer characterization can be achieved during initial site assessment or remediation monitoring activities. The sampler is constructed from 1-inch diameter PVC well materials, containing polyethylene tubing threaded through PVC disks. Self-expanding annular and internal bentonite seals were developed which isolate discrete sampling zones. The DMLS design allows customization of sampling and isolation zone lengths to suit site-specific goals. Installation of the DMLS is achieved using a temporary, expendable-tipped casting driven by direct push methods. This technique minimizes mobilization costs, site and soil column disturbances, and allows rapid installation in areas of limited overhead clearance. Successful pilot installations of the DMLS prototype have been made at a former manufactured gas plant (MGP) site and a diesel fuel spill site. Analysis of groundwater samples from these sites, using relative compound distributions and contaminant concentration profiling, confirmed that representative discrete samples were collected. This design provides both economical and versatile groundwater monitoring during all phases of site assessment and remediation

  19. Discrete structures in F-theory compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Till, Oskar

    2016-05-04

    In this thesis we study global properties of F-theory compactifications on elliptically and genus-one fibered Calabi-Yau varieties. This is motivated by phenomenological considerations as well as by the need for a deeper understanding of the set of consistent F-theory vacua. The global geometric features arise from discrete and arithmetic structures in the torus fiber and can be studied in detail for fibrations over generic bases. In the case of elliptic fibrations we study the role of the torsion subgroup of the Mordell-Weil group of sections in four dimensional compactifications. We show how the existence of a torsional section restricts the admissible matter representations in the theory. This is shown to be equivalent to inducing a non-trivial fundamental group of the gauge group. Compactifying F-theory on genus-one fibrations with multisections gives rise to discrete selection rules. In field theory the discrete symmetry is a broken U(1) symmetry. In the geometry the higgsing corresponds to a conifold transition. We explain in detail the origin of the discrete symmetry from two different M-theory phases and put the result into the context of torsion homology. Finally we systematically construct consistent gauge fluxes on genus-one fibrations and show that these induce an anomaly free chiral spectrum.

  20. Geometric phases in discrete dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Cartwright, Julyan H.E., E-mail: julyan.cartwright@csic.es [Instituto Andaluz de Ciencias de la Tierra, CSIC–Universidad de Granada, E-18100 Armilla, Granada (Spain); Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada (Spain); Piro, Nicolas, E-mail: nicolas.piro@epfl.ch [École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Piro, Oreste, E-mail: piro@imedea.uib-csic.es [Departamento de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Tuval, Idan, E-mail: ituval@imedea.uib-csic.es [Mediterranean Institute for Advanced Studies, CSIC–Universitat de les Illes Balears, E-07190 Mallorca (Spain)

    2016-10-14

    In order to study the behaviour of discrete dynamical systems under adiabatic cyclic variations of their parameters, we consider discrete versions of adiabatically-rotated rotators. Parallelling the studies in continuous systems, we generalize the concept of geometric phase to discrete dynamics and investigate its presence in these rotators. For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number of the system. For the discrete version of the rotated rotator considered by Berry, the rotated standard map, we further explore this connection as well as the role of the geometric phase at the onset of chaos. Further into the chaotic regime, we show that the geometric phase is also related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent. - Highlights: • We extend the concept of geometric phase to maps. • For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number. • For the rotated standard map, we explore the role of the geometric phase at the onset of chaos. • We show that the geometric phase is related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent.