WorldWideScience

Sample records for discrete ordinates transport

  1. Recent developments in discrete ordinates electron transport

    International Nuclear Information System (INIS)

    Morel, J.E.; Lorence, L.J. Jr.

    1986-01-01

    The discrete ordinates method is a deterministic method for numerically solving the Boltzmann equation. It was originally developed for neutron transport calculations, but is routinely used for photon and coupled neutron-photon transport calculations as well. The computational state of the art for coupled electron-photon transport (CEPT) calculations is not as developed as that for neutron transport calculations. The only production codes currently available for CEPT calculations are condensed-history Monte Carlo codes such as the ETRAN and ITS codes. A deterministic capability for production calculations is clearly needed. In response to this need, we have begun the development of a production discrete ordinates code for CEPT calculations. The purpose of this paper is to describe the basic approach we are taking, discuss the current status of the project, and present some new computational results. Although further characterization of the coupled electron-photon discrete ordinates method remains to be done, the results to date indicate that the discrete ordinates method can be just as accurate and from 10 to 100 times faster than the Monte Carlo method for a wide variety of problems. We stress that these results are obtained with standard discrete ordinates codes such as ONETRAN. It is clear that even greater efficiency can be obtained by developing a new generation of production discrete ordinates codes specifically designed to solve the Boltzmann-Fokker-Planck equation. However, the prospects for such development in the near future appear to be remote

  2. Multidimensional electron-photon transport with standard discrete ordinates codes

    International Nuclear Information System (INIS)

    Drumm, C.R.

    1995-01-01

    A method is described for generating electron cross sections that are compatible with standard discrete ordinates codes without modification. There are many advantages of using an established discrete ordinates solver, e.g. immediately available adjoint capability. Coupled electron-photon transport capability is needed for many applications, including the modeling of the response of electronics components to space and man-made radiation environments. The cross sections have been successfully used in the DORT, TWODANT and TORT discrete ordinates codes. The cross sections are shown to provide accurate and efficient solutions to certain multidimensional electronphoton transport problems

  3. Multidimensional electron-photon transport with standard discrete ordinates codes

    International Nuclear Information System (INIS)

    Drumm, C.R.

    1997-01-01

    A method is described for generating electron cross sections that are comparable with standard discrete ordinates codes without modification. There are many advantages of using an established discrete ordinates solver, e.g. immediately available adjoint capability. Coupled electron-photon transport capability is needed for many applications, including the modeling of the response of electronics components to space and man-made radiation environments. The cross sections have been successfully used in the DORT, TWODANT and TORT discrete ordinates codes. The cross sections are shown to provide accurate and efficient solutions to certain multidimensional electron-photon transport problems. The key to the method is a simultaneous solution of the continuous-slowing-down (CSD) portion and elastic-scattering portion of the scattering source by the Goudsmit-Saunderson theory. The resulting multigroup-Legendre cross sections are much smaller than the true scattering cross sections that they represent. Under certain conditions, the cross sections are guaranteed positive and converge with a low-order Legendre expansion

  4. Multidimensional electron-photon transport with standard discrete ordinates codes

    International Nuclear Information System (INIS)

    Drumm, C.R.

    1997-01-01

    A method is described for generating electron cross sections that are compatible with standard discrete ordinates codes without modification. There are many advantages to using an established discrete ordinates solver, e.g., immediately available adjoint capability. Coupled electron-photon transport capability is needed for many applications, including the modeling of the response of electronics components to space and synthetic radiation environments. The cross sections have been successfully used in the DORT, TWODANT, and TORT discrete ordinates codes. The cross sections are shown to provide accurate and efficient solutions to certain multidimensional electron-photon transport problems. The key to the method is a simultaneous solution of the continuous-slowing-down and elastic-scattering portions of the scattering source by the Goudsmit-Saunderson theory. The resulting multigroup-Legendre cross sections are much smaller than the true scattering cross sections that they represent. Under certain conditions, the cross sections are guaranteed positive and converge with a low-order Legendre expansion

  5. Time dependence linear transport III convergence of the discrete ordinate method

    International Nuclear Information System (INIS)

    Wilson, D.G.

    1983-01-01

    In this paper the uniform pointwise convergence of the discrete ordinate method for weak and strong solutions of the time dependent, linear transport equation posed in a multidimensional, rectangular parallelepiped with partially reflecting walls is established. The first result is that a sequence of discrete ordinate solutions converges uniformly on the quadrature points to a solution of the continuous problem provided that the corresponding sequence of truncation errors for the solution of the continuous problem converges to zero in the same manner. The second result is that continuity of the solution with respect to the velocity variables guarantees that the truncation erros in the quadrature formula go the zero and hence that the discrete ordinate approximations converge to the solution of the continuous problem as the discrete ordinate become dense. An existence theory for strong solutions of the the continuous problem follows as a result

  6. Discrete Ordinates Approximations to the First- and Second-Order Radiation Transport Equations

    International Nuclear Information System (INIS)

    FAN, WESLEY C.; DRUMM, CLIFTON R.; POWELL, JENNIFER L. email wcfan@sandia.gov

    2002-01-01

    The conventional discrete ordinates approximation to the Boltzmann transport equation can be described in a matrix form. Specifically, the within-group scattering integral can be represented by three components: a moment-to-discrete matrix, a scattering cross-section matrix and a discrete-to-moment matrix. Using and extending these entities, we derive and summarize the matrix representations of the second-order transport equations

  7. Discrete Ordinates Approximations to the First- and Second-Order Radiation Transport Equations

    CERN Document Server

    Fan, W C; Powell, J L

    2002-01-01

    The conventional discrete ordinates approximation to the Boltzmann transport equation can be described in a matrix form. Specifically, the within-group scattering integral can be represented by three components: a moment-to-discrete matrix, a scattering cross-section matrix and a discrete-to-moment matrix. Using and extending these entities, we derive and summarize the matrix representations of the second-order transport equations.

  8. Hydrogen transport in a toroidal plasma using multigroup discrete-ordinates methodology

    International Nuclear Information System (INIS)

    Wienke, B.R.; Miller, W.F. Jr.; Seed, T.J.

    1979-01-01

    Neutral hydrogen transport in a fully ionized two-dimensional tokamak plasma was examined using discrete ordinates and contrasted with earlier analyses. In particular, curvature effects induced by toroidal geometries and ray effects caused by possible source localization were investigated. From an overview of the multigroup discrete-ordinates approximation, methodology in two-dimensional cylindrical geometry is detailed, mesh and plasma zoning procedures are sketched, and the piecewise polynomial solution algorithm on a triangular domain is obtained. Toroidal effects and comparisons as related to reaction rates and perticle spectra are examined for various model and source configurations

  9. Discrete Ordinates Method-Like Computation with Group Condensation and Angle Collapsing in Transport Theory

    International Nuclear Information System (INIS)

    Won, Jong Hyuck; Cho, Nam Zin

    2010-01-01

    In group condensation for transport method, it is well-known that angle-dependent total cross section is generated. To remove this difficulty on angledependent total cross section, we normally perform the group condensation on total cross section by using scalar flux weight as used in neutron diffusion method. In this study, angle-dependent total cross section is directly applied to the discrete ordinates method. In addition, angle collapsing concept is introduced based on equivalence to reduce calculational burden of transport computation. We also show numerical results for a heterogeneous 1-D slab problem with local/global iteration, in which fine-group discrete ordinates calculation is used in local problem while few-group angle collapsed discrete ordinates calculation is used in global problem iteratively

  10. Energy-pointwise discrete ordinates transport methods

    International Nuclear Information System (INIS)

    Williams, M.L.; Asgari, M.; Tashakorri, R.

    1997-01-01

    A very brief description is given of a one-dimensional code, CENTRM, which computes a detailed, space-dependent flux spectrum in a pointwise-energy representation within the resolved resonance range. The code will become a component in the SCALE system to improve computation of self-shielded cross sections, thereby enhancing the accuracy of codes such as KENO. CENTRM uses discrete-ordinates transport theory with an arbitrary angular quadrature order and a Legendre expansion of scattering anisotropy for moderator materials and heavy nuclides. The CENTRM program provides capability to deterministically compute full energy range, space-dependent angular flux spectra, rigorously accounting for resonance fine-structure and scattering anisotropy effects

  11. Application of a discrete-energy, discrete-ordinates technique to the study of neutron transport in iron

    International Nuclear Information System (INIS)

    Ching, J.T.

    1975-01-01

    An algebraic equivalence between the point-energy and multigroup forms of the Boltzmann transport equation is demonstrated which allows the development of a discrete-energy, discrete-ordinates method for the solution of radiation transport problems. The method utilizes a modified version of a cross section processing scheme devised for the moments method code BMT and the transport equation solution algorithm from the one-dimensional discrete-ordinates transport code ANISN. The combined system, identified as MOMANS, computes fluxes directly from point cross sections in a single operation. In the cross-section processing, the group averaging required for multigroup calculations is replaced by a fast numerical scheme capable of generating a set of transfer cross sections containing all the physical features of interest, thereby increasing the detail in the calculated results. Test calculations in which the discrete-energy method was compared with the multigroup method have shown that for the same energy grid (number of points = number of groups), the discrete-energy method is faster but somewhat less accurate than the multigroup method. However, the accuracy of the discrete-energy method increases rapidly as the spacing between energy points is decreased, approaching that of multigroup calculations. For problems requiring great detail in the energy spectrum the discrete-energy method has therefore proven to be as accurate as, and more economical than, the multigroup technique. This was demonstrated by the application of the method to the study of the transport of neutrons in an iron sphere. Using the capability of the discrete-energy method for rapidly treating changes in cross-section sets, the propagation of neutrons from a 14 MeV source in a 22 cm radius sphere of iron was analyzed for sensitivity to changes in the microscopic scattering mechanisms

  12. Discrete energy formulation of neutron transport theory applied to solving the discrete ordinates equations

    International Nuclear Information System (INIS)

    Ching, J.; Oblow, E.M.; Goldstein, H.

    1976-01-01

    An algebraic equivalence between the point-energy and multigroup forms of the Boltzmann transport equation is demonstrated that allows the development of a discrete energy, discrete ordinates method for the solution of radiation transport problems. In the discrete energy method, the group averaging required in the cross-section processing for multigroup calculations is replaced by a faster numerical quadrature scheme capable of generating transfer cross sections describing all the physical processes of interest on a fine point-energy grid. Test calculations in which the discrete energy method is compared with the multigroup method show that, for the same energy grid, the discrete energy method is much faster, although somewhat less accurate, than the multigroup method. However, the accuracy of the discrete energy method increases rapidly as the spacing between energy grid points is decreased, approaching that of multigroup calculations. For problems requiring great detail in the energy spectrum, the discrete energy method is therefore expected to be far more economical than the multigroup technique for equivalent accuracy solutions. This advantage of the point method is demonstrated by application to the study of neutron transport in a thick iron slab

  13. The discrete ordinates method for solving the azimuthally dependent transport equation in plane geometry

    International Nuclear Information System (INIS)

    Chalhoub, Ezzat Selim

    1997-01-01

    The method of discrete ordinates is applied to the solution of the slab albedo problem with azimuthal dependence in transport theory. A new set of quadratures appropriate to the problem is introduced. In addition to the ANISN code, modified to include the proposed formalism, two new programs, PEESNC and PEESNA, which were created on the basis of the discrete ordinates formalism, using the direct integration method and the analytic solution method respectively, are used in the generation of results for a few sample problems. Program PEESNC was created to validate the results obtained with the discrete ordinates method and the finite difference approximation (ANISN), while program PEESNA was developed in order to implement an analytical discrete ordinates formalism, which provides more accurate results. The obtained results for selected sample problems are compared with highly accurate numerical results published in the literature. Compared to ANISN and PEESNC, program PEESNA presents a greater efficiency in execution time and much more precise numerical results. (author)

  14. Numerical solution of neutron transport equations in discrete ordinates and slab geometry

    International Nuclear Information System (INIS)

    Serrano Pedraza, F.

    1985-01-01

    An unified formalism to solve numerically, between other equation, the neutron transport in discrete ordinates, slab geometry, several energy groups and independents of time, has been developed recently. Such a formalism cover some of the conventional schemes as diamond difference, (WDD) characteristic step (SC) lineal characteristic (LC), quadratic characteristic (QC) and lineal discontinuous. Unified formation gives before hand the convergence order of the previously selected scheme. In fact it allows besides to generate a big amount of numerical schemes, with which is also possible to solve numerical equations as soon as neutron transport. The essential purpose of this work was to solve the neutron transport equations in slab geometry and discrete ordinates considering several energy groups without to take under advisement time dependence based in the above mentioned unified formalism. To reach this purpose it was necesary to design a computer code with the name TNOD1 (Neutron transport in discrete ordinates and 1 dimension) which includes each one of the schemes already pointed out. there exist two numerical schemes, also recently developed, quadratic continuous (QC) and cubic continuous (CN), although covered by unified formalism, it has been possible to include them inside this computer code without make substantial changes in its structure. In chapter I, derivative of neutron transport equation independent of time is taken, for angular flux, including boundary conditions and discontinuity. In chapter II the neutron transport equations are obtained in multigroups, independents of time, for approximation of discrete ordinates. Description of theory related with unified formalism and its relationship with mentioned discretization schemes is presented in chapter III. Chapter IV describes the computer code developed and finally, in chapter V different numerical results obtained with TNOD1 program are shown. In Appendix A theorems and mathematical arguments used

  15. Discrete-ordinates electron transport calculations using standard neutron transport codes

    International Nuclear Information System (INIS)

    Morel, J.E.

    1979-01-01

    The primary purpose of this work was to develop a method for using standard neutron transport codes to perform electron transport calculations. The method is to develop approximate electron cross sections which are sufficiently well-behaved to be treated with standard S/sub n/ methods, but which nonetheless yield flux solutions which are very similar to the exact solutions. The main advantage of this approach is that, once the approximate cross sections are constructed, their multigroup Legendre expansion coefficients can be calculated and input to any standard S/sub n/ code. Discrete-ordinates calculations were performed to determine the accuracy of the flux solutions for problems corresponding to 1.0-MeV electrons incident upon slabs of aluminum and gold. All S/sub n/ calculations were compared with similar calculations performed with an electron Monte Carlo code, considered to be exact. In all cases, the discrete-ordinates solutions for integral flux quantities (i.e., scalar flux, energy deposition profiles, etc.) are generally in agreement with the Monte Carlo solutions to within approximately 5% or less. The central conclusion is that integral electron flux quantities can be efficiently and accurately calculated using standard S/sub n/ codes in conjunction with approximate cross sections. Furthermore, if group structures and approximate cross section construction are optimized, accurate differential flux energy spectra may also be obtainable without having to use an inordinately large number of energy groups. 1 figure

  16. On the convergence of multigroup discrete-ordinates approximations

    International Nuclear Information System (INIS)

    Victory, H.D. Jr.; Allen, E.J.; Ganguly, K.

    1987-01-01

    Our analysis is divided into two distinct parts which we label for convenience as Part A and Part B. In Part A, we demonstrate that the multigroup discrete-ordinates approximations are well-defined and converge to the exact transport solution in any subcritical setting. For the most part, we focus on transport in two-dimensional Cartesian geometry. A Nystroem technique is used to extend the discrete ordinates multigroup approximates to all values of the angular and energy variables. Such an extension enables us to employ collectively compact operator theory to deduce stability and convergence of the approximates. In Part B, we perform a thorough convergence analysis for the multigroup discrete-ordinates method for an anisotropically-scattering subcritical medium in slab geometry. The diamond-difference and step-characteristic spatial approximation methods are each studied. The multigroup neutron fluxes are shown to converge in a Banach space setting under realistic smoothness conditions on the solution. This is the first thorough convergence analysis for the fully-discretized multigroup neutron transport equations

  17. SPANDOM - source projection analytic nodal discrete ordinates method

    International Nuclear Information System (INIS)

    Kim, Tae Hyeong; Cho, Nam Zin

    1994-01-01

    We describe a new discrete ordinates nodal method for the two-dimensional transport equation. We solve the discrete ordinates equation analytically after the source term is projected and represented in polynomials. The method is applied to two fast reactor benchmark problems and compared with the TWOHEX code. The results indicate that the present method accurately predicts not only multiplication factor but also flux distribution

  18. A linear multiple balance method for discrete ordinates neutron transport equations

    International Nuclear Information System (INIS)

    Park, Chang Je; Cho, Nam Zin

    2000-01-01

    A linear multiple balance method (LMB) is developed to provide more accurate and positive solutions for the discrete ordinates neutron transport equations. In this multiple balance approach, one mesh cell is divided into two subcells with quadratic approximation of angular flux distribution. Four multiple balance equations are used to relate center angular flux with average angular flux by Simpson's rule. From the analysis of spatial truncation error, the accuracy of the linear multiple balance scheme is ο(Δ 4 ) whereas that of diamond differencing is ο(Δ 2 ). To accelerate the linear multiple balance method, we also describe a simplified additive angular dependent rebalance factor scheme which combines a modified boundary projection acceleration scheme and the angular dependent rebalance factor acceleration schme. It is demonstrated, via fourier analysis of a simple model problem as well as numerical calculations, that the additive angular dependent rebalance factor acceleration scheme is unconditionally stable with spectral radius < 0.2069c (c being the scattering ration). The numerical results tested so far on slab-geometry discrete ordinates transport problems show that the solution method of linear multiple balance is effective and sufficiently efficient

  19. High order discrete ordinates transport in two dimensions

    International Nuclear Information System (INIS)

    Arkuszewski, J.J.

    1980-01-01

    A two-dimensional neutron transport equation in (x,y) geometry is solved by the subdomain version of the weighted residual method. The weight functions are chosen to be characteristic functions of computational boxes (subdomains). In the case of bilinear interpolant the conventional diamond relations are obtained, while the quadratic one produces generalized diamond relations containing first derivatives of the solution. The balance equation remains the same. The derivation yields also additional relations for extrapolating boundary values of derivatives and leaves the room for supplementing the interpolant with specially curtailed higher order polynomials. The method requires only slight modifications in inner iteration process used by conventional discrete ordinates programs, and has been introduced as an option into the program DOT2. The paper contains comparisons of the proposed method with conventional one based on calculations of IAEA-CRP transport theory benchmarks. (author)

  20. Sputtering calculations with the discrete ordinated method

    International Nuclear Information System (INIS)

    Hoffman, T.J.; Dodds, H.L. Jr.; Robinson, M.T.; Holmes, D.K.

    1977-01-01

    The purpose of this work is to investigate the applicability of the discrete ordinates (S/sub N/) method to light ion sputtering problems. In particular, the neutral particle discrete ordinates computer code, ANISN, was used to calculate sputtering yields. No modifications to this code were necessary to treat charged particle transport. However, a cross section processing code was written for the generation of multigroup cross sections; these cross sections include a modification to the total macroscopic cross section to account for electronic interactions and small-scattering-angle elastic interactions. The discrete ordinates approach enables calculation of the sputtering yield as functions of incident energy and angle and of many related quantities such as ion reflection coefficients, angular and energy distributions of sputtering particles, the behavior of beams penetrating thin foils, etc. The results of several sputtering problems as calculated with ANISN are presented

  1. The nodal discrete-ordinate transport calculation of anisotropy scattering problem in three-dimensional cartesian geometry

    International Nuclear Information System (INIS)

    Wu Hongchun; Xie Zhongsheng; Zhu Xuehua

    1994-01-01

    The nodal discrete-ordinate transport calculating model of anisotropy scattering problem in three-dimensional cartesian geometry is given. The computing code NOTRAN/3D has been encoded and the satisfied conclusion is gained

  2. On the spectrum of the one-speed slab-geometry discrete ordinates operator in neutron transport theory

    International Nuclear Information System (INIS)

    Abreu, Marcos Pimenta de

    1998-01-01

    We describe a numerical method applied to the first-order form of one-speed slab-geometry discrete ordinates equations modelling time-independent neutron transport problems with anisotropic scattering, with no interior source and defined in a nonmultiplying homogeneous host medium. Our numerical method is concerned with the generation of the spectrum and of a vector basis for the null space of the one-speed slab-geometry discrete ordinates operator. Moreover, it allows us to overcome the difficulties introduced in previous methods by anisotropic scattering and by angular quadrature sets of high order. To illustrate the positive features of our numerical method, we present numerical results for one-speed slab-geometry neutron transport model problems with anisotropic scattering

  3. GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method

    International Nuclear Information System (INIS)

    Gong Chunye; Liu Jie; Chi Lihua; Huang Haowei; Fang Jingyue; Gong Zhenghu

    2011-01-01

    Graphics Processing Unit (GPU), originally developed for real-time, high-definition 3D graphics in computer games, now provides great faculty in solving scientific applications. The basis of particle transport simulation is the time-dependent, multi-group, inhomogeneous Boltzmann transport equation. The numerical solution to the Boltzmann equation involves the discrete ordinates (S n ) method and the procedure of source iteration. In this paper, we present a GPU accelerated simulation of one energy group time-independent deterministic discrete ordinates particle transport in 3D Cartesian geometry (Sweep3D). The performance of the GPU simulations are reported with the simulations of vacuum boundary condition. The discussion of the relative advantages and disadvantages of the GPU implementation, the simulation on multi GPUs, the programming effort and code portability are also reported. The results show that the overall performance speedup of one NVIDIA Tesla M2050 GPU ranges from 2.56 compared with one Intel Xeon X5670 chip to 8.14 compared with one Intel Core Q6600 chip for no flux fixup. The simulation with flux fixup on one M2050 is 1.23 times faster than on one X5670.

  4. GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method

    Science.gov (United States)

    Gong, Chunye; Liu, Jie; Chi, Lihua; Huang, Haowei; Fang, Jingyue; Gong, Zhenghu

    2011-07-01

    Graphics Processing Unit (GPU), originally developed for real-time, high-definition 3D graphics in computer games, now provides great faculty in solving scientific applications. The basis of particle transport simulation is the time-dependent, multi-group, inhomogeneous Boltzmann transport equation. The numerical solution to the Boltzmann equation involves the discrete ordinates ( Sn) method and the procedure of source iteration. In this paper, we present a GPU accelerated simulation of one energy group time-independent deterministic discrete ordinates particle transport in 3D Cartesian geometry (Sweep3D). The performance of the GPU simulations are reported with the simulations of vacuum boundary condition. The discussion of the relative advantages and disadvantages of the GPU implementation, the simulation on multi GPUs, the programming effort and code portability are also reported. The results show that the overall performance speedup of one NVIDIA Tesla M2050 GPU ranges from 2.56 compared with one Intel Xeon X5670 chip to 8.14 compared with one Intel Core Q6600 chip for no flux fixup. The simulation with flux fixup on one M2050 is 1.23 times faster than on one X5670.

  5. The ADO-nodal method for solving two-dimensional discrete ordinates transport problems

    International Nuclear Information System (INIS)

    Barichello, L.B.; Picoloto, C.B.; Cunha, R.D. da

    2017-01-01

    Highlights: • Two-dimensional discrete ordinates neutron transport. • Analytical Discrete Ordinates (ADO) nodal method. • Heterogeneous media fixed source problems. • Local solutions. - Abstract: In this work, recent results on the solution of fixed-source two-dimensional transport problems, in Cartesian geometry, are reported. Homogeneous and heterogeneous media problems are considered in order to incorporate the idea of arbitrary number of domain division into regions (nodes) when applying the ADO method, which is a method of analytical features, to those problems. The ADO-nodal formulation is developed, for each node, following previous work devoted to heterogeneous media problem. Here, however, the numerical procedure is extended to higher number of domain divisions. Such extension leads, in some cases, to the use of an iterative method for solving the general linear system which defines the arbitrary constants of the general solution. In addition to solve alternative heterogeneous media configurations than reported in previous works, the present approach allows comparisons with results provided by other metodologies generated with refined meshes. Numerical results indicate the ADO solution may achieve a prescribed accuracy using coarser meshes than other schemes.

  6. The three-dimensional, discrete ordinates neutral particle transport code TORT: An overview

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1996-01-01

    The centerpiece of the Discrete Ordinates Oak Ridge System (DOORS), the three-dimensional neutral particle transport code TORT is reviewed. Its most prominent features pertaining to large applications, such as adjustable problem parameters, memory management, and coarse mesh methods, are described. Advanced, state-of-the-art capabilities including acceleration and multiprocessing are summarized here. Future enhancement of existing graphics and visualization tools is briefly presented

  7. Improved treatment of two-dimensional neutral particle transport through voids within the discrete ordinates method by use of generalized view factors

    International Nuclear Information System (INIS)

    Brockmann, H.

    1992-01-01

    Using the discrete ordinates method for the treatment of neutral particle transport through voids serious flux distortions may occur due to the restricted streaming of particles along discrete directions. For mitigating this type of ray effect the method of view factors is proposed which has been developed in the theory of thermal radiation for describing the radiant exchange among surfaces. In order to apply this method to transport theory generalized view factors are defined which regard the angular dependence of the radiation leaving the surfaces. The generalized view factors are calculated analytically for r-z cylinder geometries and by applying the view factor algebra. The method was realized in the discrete ordinates transport code DOT 4.2 and applied to an r-z analogue of the S I S (Square-In-Square) sample problem. The results of the proposed method are compared with those calculated by the common discrete ordinates method and the Monte Carlo method

  8. Computational Modeling of a Time-Independent, Heterogeneous Reactor Core Using Simplified Discrete Ordinates Neutron Transport Techniques

    National Research Council Canada - National Science Library

    Labowski, Kristofer

    2001-01-01

    The Linear Characteristic (LC) method on rectangular boxoid meshes is a discrete ordinate neutron transport technique that uses both zeroth and first moments of the angular neutron flux to construct a relatively accurate...

  9. Multiband discrete ordinates method: formalism and results

    International Nuclear Information System (INIS)

    Luneville, L.

    1998-06-01

    The multigroup discrete ordinates method is a classical way to solve transport equation (Boltzmann) for neutral particles. Self-shielding effects are not correctly treated due to large variations of cross sections in a group (in the resonance range). To treat the resonance domain, the multiband method is introduced. The main idea is to divide the cross section domain into bands. We obtain the multiband parameters using the moment method; the code CALENDF provides probability tables for these parameters. We present our implementation in an existing discrete ordinates code: SN1D. We study deep penetration benchmarks and show the improvement of the method in the treatment of self-shielding effects. (author)

  10. On discontinuous Galerkin and discrete ordinates approximations for neutron transport equation and the critical eigenvalue

    International Nuclear Information System (INIS)

    Asadzadeh, M.; Thevenot, L.

    2010-01-01

    The objective of this paper is to give a mathematical framework for a fully discrete numerical approach for the study of the neutron transport equation in a cylindrical domain (container model,). More specifically, we consider the discontinuous Galerkin (D G) finite element method for spatial approximation of the mono-energetic, critical neutron transport equation in an infinite cylindrical domain ??in R3 with a polygonal convex cross-section ? The velocity discretization relies on a special quadrature rule developed to give optimal estimates in discrete ordinate parameters compatible with the quasi-uniform spatial mesh. We use interpolation spaces and derive optimal error estimates, up to maximal available regularity, for the fully discrete scalar flux. Finally we employ a duality argument and prove superconvergence estimates for the critical eigenvalue.

  11. ASOP, Shield Calculation, 1-D, Discrete Ordinates Transport

    International Nuclear Information System (INIS)

    1993-01-01

    1 - Nature of physical problem solved: ASOP is a shield optimization calculational system based on the one-dimensional discrete ordinates transport program ANISN. It has been used to design optimum shields for space applications of SNAP zirconium-hydride-uranium- fueled reactors and uranium-oxide fueled thermionic reactors and to design beam stops for the ORELA facility. 2 - Method of solution: ASOP generates coefficients of linear equations describing the logarithm of the dose and dose-weight derivatives as functions of position from data obtained in an automated sequence of ANISN calculations. With the dose constrained to a design value and all dose-weight derivatives required to be equal, the linear equations may be solved for a new set of shield dimensions. Since changes in the shield dimensions may cause the linear functions to change, the entire procedure is repeated until convergence is obtained. The detailed calculations of the radiation transport through shield configurations for every step in the procedure distinguish ASOP from other shield optimization computer code systems which rely on multiple component sources and attenuation coefficients to describe the transport. 3 - Restrictions on the complexity of the problem: Problem size is limited only by machine size

  12. Generalized perturbation theory using two-dimensional, discrete ordinates transport theory

    International Nuclear Information System (INIS)

    Childs, R.L.

    1979-01-01

    Perturbation theory for changes in linear and bilinear functionals of the forward and adjoint fluxes in a critical reactor has been implemented using two-dimensional discrete ordinates transport theory. The computer program DOT IV was modified to calculate the generalized functions Λ and Λ*. Demonstration calculations were performed for changes in a reaction-rate ratio and a reactivity worth caused by system perturbations. The perturbation theory predictions agreed with direct calculations to within about 2%. A method has been developed for calculating higher lambda eigenvalues and eigenfunctions using techniques similar to those developed for generalized functions. Demonstration calculations have been performed to obtain these eigenfunctions

  13. DOMINO, Coupling of Discrete Ordinate Program DOT with Monte-Carlo Program MORSE

    International Nuclear Information System (INIS)

    1974-01-01

    1 - Nature of physical problem solved: DOMINO is a general purpose code for coupling discrete ordinates and Monte Carlo radiation transport calculations. 2 - Method of solution: DOMINO transforms the angular flux as a function of energy group, mesh interval and discrete angle into current and subsequently into normalized probability distributions. 3 - Restrictions on the complexity of the problem: The discrete ordinates calculation is limited to an r-z geometry

  14. Parallel performance of the angular versus spatial domain decomposition for discrete ordinates transport methods

    International Nuclear Information System (INIS)

    Fischer, J.W.; Azmy, Y.Y.

    2003-01-01

    A previously reported parallel performance model for Angular Domain Decomposition (ADD) of the Discrete Ordinates method for solving multidimensional neutron transport problems is revisited for further validation. Three communication schemes: native MPI, the bucket algorithm, and the distributed bucket algorithm, are included in the validation exercise that is successfully conducted on a Beowulf cluster. The parallel performance model is comprised of three components: serial, parallel, and communication. The serial component is largely independent of the number of participating processors, P, while the parallel component decreases like 1/P. These two components are independent of the communication scheme, in contrast with the communication component that typically increases with P in a manner highly dependent on the global reduced algorithm. Correct trends for each component and each communication scheme were measured for the Arbitrarily High Order Transport (AHOT) code, thus validating the performance models. Furthermore, extensive experiments illustrate the superiority of the bucket algorithm. The primary question addressed in this research is: for a given problem size, which domain decomposition method, angular or spatial, is best suited to parallelize Discrete Ordinates methods on a specific computational platform? We address this question for three-dimensional applications via parallel performance models that include parameters specifying the problem size and system performance: the above-mentioned ADD, and a previously constructed and validated Spatial Domain Decomposition (SDD) model. We conclude that for large problems the parallel component dwarfs the communication component even on moderately large numbers of processors. The main advantages of SDD are: (a) scalability to higher numbers of processors of the order of the number of computational cells; (b) smaller memory requirement; (c) better performance than ADD on high-end platforms and large number of

  15. BALTORO a general purpose code for coupling discrete ordinates and Monte-Carlo radiation transport calculations

    International Nuclear Information System (INIS)

    Zazula, J.M.

    1983-01-01

    The general purpose code BALTORO was written for coupling the three-dimensional Monte-Carlo /MC/ with the one-dimensional Discrete Ordinates /DO/ radiation transport calculations. The quantity of a radiation-induced /neutrons or gamma-rays/ nuclear effect or the score from a radiation-yielding nuclear effect can be analysed in this way. (author)

  16. Data visualization for ONEDANT and TWODANT discrete ordinates codes

    International Nuclear Information System (INIS)

    Lee, C.L.

    1993-01-01

    Effective graphical display of code calculations allow for efficient analysis of results. This is especially true in the case of discrete ordinates transport codes, which can generate thousands of flux or reaction rate data points per calculation. For this reason, a package of portable interface programs called OTTUI (ONEDANT-TWODANT-Tecplot trademark Unix-Based Interface) has been developed at Los Alamos National Laboratory to permit rapid visualization of ONEDANT and TWODANT discrete ordinates results using the graphics package Tecplot. This paper describes the various uses of OTTUI for display of ONEDANT and TWODANT problem geometries and calculational results

  17. Discrete-ordinates finite-element method for atmospheric radiative transfer and remote sensing

    International Nuclear Information System (INIS)

    Gerstl, S.A.W.; Zardecki, A.

    1985-01-01

    Advantages and disadvantages of modern discrete-ordinates finite-element methods for the solution of radiative transfer problems in meteorology, climatology, and remote sensing applications are evaluated. After the common basis of the formulation of radiative transfer problems in the fields of neutron transport and atmospheric optics is established, the essential features of the discrete-ordinates finite-element method are described including the limitations of the method and their remedies. Numerical results are presented for 1-D and 2-D atmospheric radiative transfer problems where integral as well as angular dependent quantities are compared with published results from other calculations and with measured data. These comparisons provide a verification of the discrete-ordinates results for a wide spectrum of cases with varying degrees of absorption, scattering, and anisotropic phase functions. Accuracy and computational speed are also discussed. Since practically all discrete-ordinates codes offer a builtin adjoint capability, the general concept of the adjoint method is described and illustrated by sample problems. Our general conclusion is that the strengths of the discrete-ordinates finite-element method outweight its weaknesses. We demonstrate that existing general-purpose discrete-ordinates codes can provide a powerful tool to analyze radiative transfer problems through the atmosphere, especially when 2-D geometries must be considered

  18. An analytical discrete-ordinates solution for an improved one-dimensional model of three-dimensional transport in ducts

    International Nuclear Information System (INIS)

    Garcia, R.D.M.

    2015-01-01

    Highlights: • An improved 1-D model of 3-D particle transport in ducts is studied. • The cases of isotropic and directional incidence are treated with the ADO method. • Accurate numerical results are reported for ducts of circular cross section. • A comparison with results of other authors is included. • The ADO method is found to be very efficient. - Abstract: An analytical discrete-ordinates solution is developed for the problem of particle transport in ducts, as described by a one-dimensional model constructed with two basis functions. Two types of particle incidence are considered: isotropic incidence and incidence described by the Dirac delta distribution. Accurate numerical results are tabulated for the reflection probabilities of semi-infinite ducts and the reflection and transmission probabilities of finite ducts. It is concluded that the developed solution is more efficient than commonly used numerical implementations of the discrete-ordinates method.

  19. TRIDENT: a two-dimensional, multigroup, triangular mesh discrete ordinates, explicit neutron transport code

    International Nuclear Information System (INIS)

    Seed, T.J.; Miller, W.F. Jr.; Brinkley, F.W. Jr.

    1977-03-01

    TRIDENT solves the two-dimensional-multigroup-transport equations in rectangular (x-y) and cylindrical (r-z) geometries using a regular triangular mesh. Regular and adjoint, inhomogeneous and homogeneous (k/sub eff/ and eigenvalue searches) problems subject to vacuum, reflective, white, or source boundary conditions are solved. General anisotropic scattering is allowed and anisotropic-distributed sources are permitted. The discrete-ordinates approximation is used for the neutron directional variables. An option is included to append a fictitious source to the discrete-ordinates equations that is defined such that spherical-harmonics solutions (in x-y geometry) or spherical-harmonics-like solutions (in r-z geometry) are obtained. A spatial-finite-element method is used in which the angular flux is expressed as a linear polynomial in each triangle that is discontinous at triangle boundaries. Unusual Features of the program: Provision is made for creation of standard interface output files for S/sub N/ constants, angle-integrated (scalar) fluxes, and angular fluxes. Standard interface input files for S/sub N/ constants, inhomogeneous sources, cross sections, and the scalar flux may be read. Flexible edit options as well as a dump and restart capability are provided

  20. Description of a neutron field perturbed by a probe using coupled Monte Carlo and discrete ordinates radiation transport calculations

    International Nuclear Information System (INIS)

    Zazula, J.M.

    1984-01-01

    This work concerns calculation of a neutron response, caused by a neutron field perturbed by materials surrounding the source or the detector. Solution of a problem is obtained using coupling of the Monte Carlo radiation transport computation for the perturbed region and the discrete ordinates transport computation for the unperturbed system. (author). 62 refs

  1. Discrete elements method of neutron transport

    International Nuclear Information System (INIS)

    Mathews, K.A.

    1988-01-01

    In this paper a new neutron transport method, called discrete elements (L N ) is derived and compared to discrete ordinates methods, theoretically and by numerical experimentation. The discrete elements method is based on discretizing the Boltzmann equation over a set of elements of angle. The discrete elements method is shown to be more cost-effective than discrete ordinates, in terms of accuracy versus execution time and storage, for the cases tested. In a two-dimensional test case, a vacuum duct in a shield, the L N method is more consistently convergent toward a Monte Carlo benchmark solution

  2. Analysis of Massively Parallel Discrete-Ordinates Transport Sweep Algorithms with Collisions

    International Nuclear Information System (INIS)

    Bailey, T.S.; Falgout, R.D.

    2008-01-01

    We present theoretical scaling models for a variety of discrete-ordinates sweep algorithms. In these models, we pay particular attention to the way each algorithm handles collisions. A collision is defined as a processor having multiple angles with ready to be swept during one stage of the sweep. The models also take into account how subdomains are assigned to processors and how angles are grouped during the sweep. We describe a data driven algorithm that resolves collisions efficiently during the sweep as well as other algorithms that have been designed to avoid collisions completely. Our models are validated using the ARGES and AMTRAN transport codes. We then use the models to study and predict scaling trends in all of the sweep algorithms

  3. Method for coupling two-dimensional to three-dimensional discrete ordinates calculations

    International Nuclear Information System (INIS)

    Thompson, J.L.; Emmett, M.B.; Rhoades, W.A.; Dodds, H.L. Jr.

    1985-01-01

    A three-dimensional (3-D) discrete ordinates transport code, TORT, has been developed at the Oak Ridge National Laboratory for radiation penetration studies. It is not feasible to solve some 3-D penetration problems with TORT, such as a building located a large distance from a point source, because (a) the discretized 3-D problem is simply too big to fit on the computer or (b) the computing time (and corresponding cost) is prohibitive. Fortunately, such problems can be solved with a hybrid approach by coupling a two-dimensional (2-D) description of the point source, which is assumed to be azimuthally symmetric, to a 3-D description of the building, the region of interest. The purpose of this paper is to describe this hybrid methodology along with its implementation and evaluation in the DOTTOR (Discrete Ordinates to Three-dimensional Oak Ridge Transport) code

  4. The adaptive collision source method for discrete ordinates radiation transport

    International Nuclear Information System (INIS)

    Walters, William J.; Haghighat, Alireza

    2017-01-01

    Highlights: • A new adaptive quadrature method to solve the discrete ordinates transport equation. • The adaptive collision source (ACS) method splits the flux into n’th collided components. • Uncollided flux requires high quadrature; this is lowered with number of collisions. • ACS automatically applies appropriate quadrature order each collided component. • The adaptive quadrature is 1.5–4 times more efficient than uniform quadrature. - Abstract: A novel collision source method has been developed to solve the Linear Boltzmann Equation (LBE) more efficiently by adaptation of the angular quadrature order. The angular adaptation method is unique in that the flux from each scattering source iteration is obtained, with potentially a different quadrature order used for each. Traditionally, the flux from every iteration is combined, with the same quadrature applied to the combined flux. Since the scattering process tends to distribute the radiation more evenly over angles (i.e., make it more isotropic), the quadrature requirements generally decrease with each iteration. This method allows for an optimal use of processing power, by using a high order quadrature for the first iterations that need it, before shifting to lower order quadratures for the remaining iterations. This is essentially an extension of the first collision source method, and is referred to as the adaptive collision source (ACS) method. The ACS methodology has been implemented in the 3-D, parallel, multigroup discrete ordinates code TITAN. This code was tested on a several simple and complex fixed-source problems. The ACS implementation in TITAN has shown a reduction in computation time by a factor of 1.5–4 on the fixed-source test problems, for the same desired level of accuracy, as compared to the standard TITAN code.

  5. Multiband discrete ordinates method: formalism and results; Methode multibande aux ordonnees discretes: formalisme et resultats

    Energy Technology Data Exchange (ETDEWEB)

    Luneville, L

    1998-06-01

    The multigroup discrete ordinates method is a classical way to solve transport equation (Boltzmann) for neutral particles. Self-shielding effects are not correctly treated due to large variations of cross sections in a group (in the resonance range). To treat the resonance domain, the multiband method is introduced. The main idea is to divide the cross section domain into bands. We obtain the multiband parameters using the moment method; the code CALENDF provides probability tables for these parameters. We present our implementation in an existing discrete ordinates code: SN1D. We study deep penetration benchmarks and show the improvement of the method in the treatment of self-shielding effects. (author) 15 refs.

  6. Development of parallel 3D discrete ordinates transport program on JASMIN framework

    International Nuclear Information System (INIS)

    Cheng, T.; Wei, J.; Shen, H.; Zhong, B.; Deng, L.

    2015-01-01

    A parallel 3D discrete ordinates radiation transport code JSNT-S is developed, aiming at simulating real-world radiation shielding and reactor physics applications in a reasonable time. Through the patch-based domain partition algorithm, the memory requirement is shared among processors and a space-angle parallel sweeping algorithm is developed based on data-driven algorithm. Acceleration methods such as partial current rebalance are implemented. The correctness is proved through the VENUS-3 and other benchmark models. In the radiation shielding calculation of the Qinshan-II reactor pressure vessel model with 24.3 billion DoF, only 88 seconds is required and the overall parallel efficiency of 44% is achieved on 1536 CPU cores. (author)

  7. Discrete ordinates transport methods for problems with highly forward-peaked scattering

    International Nuclear Information System (INIS)

    Pautz, S.D.

    1998-04-01

    The author examines the solutions of the discrete ordinates (S N ) method for problems with highly forward-peaked scattering kernels. He derives conditions necessary to obtain reasonable solutions in a certain forward-peaked limit, the Fokker-Planck (FP) limit. He also analyzes the acceleration of the iterative solution of such problems and offer improvements to it. He extends the analytic Fokker-Planck limit analysis to the S N equations. This analysis shows that in this asymptotic limit the S N solution satisfies a pseudospectral discretization of the FP equation, provided that the scattering term is handled in a certain way (which he describes) and that the analytic transport solution satisfies an analytic FP equation. Similar analyses of various spatially discretized S N equations reveal that they too produce solutions that satisfy discrete FP equations, given the same provisions. Numerical results agree with these theoretical predictions. He defines a multidimensional angular multigrid (ANMG) method to accelerate the iterative solution of highly forward-peaked problems. The analyses show that a straightforward application of this scheme is subject to high-frequency instabilities. However, by applying a diffusive filter to the ANMG corrections he is able to stabilize this method. Fourier analyses of model problems show that the resulting method is effective at accelerating the convergence rate when the scattering is forward-peaked. The numerical results demonstrate that these analyses are good predictors of the actual performance of the ANMG method

  8. A variational synthesis nodal discrete ordinates method

    International Nuclear Information System (INIS)

    Favorite, J.A.; Stacey, W.M.

    1999-01-01

    A self-consistent nodal approximation method for computing discrete ordinates neutron flux distributions has been developed from a variational functional for neutron transport theory. The advantage of the new nodal method formulation is that it is self-consistent in its definition of the homogenized nodal parameters, the construction of the global nodal equations, and the reconstruction of the detailed flux distribution. The efficacy of the method is demonstrated by two-dimensional test problems

  9. Performance of the discrete ordinates method-like neutron transport computation with equivalent group condensation and angle-collapsing

    International Nuclear Information System (INIS)

    Yoo, Han Jong; Won, Jong Hyuck; Cho, Nam Zin

    2011-01-01

    In computational studies of neutron transport equations, the fine-group to few-group condensation procedure leads to equivalent total cross section that becomes angle dependent. The difficulty of this angle dependency has been traditionally treated by consistent P or extended transport approximation in the literature. In a previous study, we retained the angle dependency of the total cross section and applied directly to the discrete ordinates equation, with additional concept of angle-collapsing, and tested in a one-dimensional slab problem. In this study, we provide further results of this discrete ordinates-like method in comparison with the typical traditional methods. In addition, IRAM acceleration (based on Krylov subspace method) is tested for the purpose of further reducing the computational burden of few-group calculation. From the test results, it is ascertained that the angle-dependent total cross section with angle-collapsing gives excellent estimation of k_e_f_f and flux distribution and that IRAM acceleration effectively reduces the number of outer iterations. However, since IRAM requires sufficient convergence in inner iterations, speedup in total computer time is not significant for problems with upscattering. (author)

  10. Acceleration techniques for the discrete ordinate method

    International Nuclear Information System (INIS)

    Efremenko, Dmitry; Doicu, Adrian; Loyola, Diego; Trautmann, Thomas

    2013-01-01

    In this paper we analyze several acceleration techniques for the discrete ordinate method with matrix exponential and the small-angle modification of the radiative transfer equation. These techniques include the left eigenvectors matrix approach for computing the inverse of the right eigenvectors matrix, the telescoping technique, and the method of false discrete ordinate. The numerical simulations have shown that on average, the relative speedup of the left eigenvector matrix approach and the telescoping technique are of about 15% and 30%, respectively. -- Highlights: ► We presented the left eigenvector matrix approach. ► We analyzed the method of false discrete ordinate. ► The telescoping technique is applied for matrix operator method. ► Considered techniques accelerate the computations by 20% in average.

  11. A massively parallel discrete ordinates response matrix method for neutron transport

    International Nuclear Information System (INIS)

    Hanebutte, U.R.; Lewis, E.E.

    1992-01-01

    In this paper a discrete ordinates response matrix method is formulated with anisotropic scattering for the solution of neutron transport problems on massively parallel computers. The response matrix formulation eliminates iteration on the scattering source. The nodal matrices that result from the diamond-differenced equations are utilized in a factored form that minimizes memory requirements and significantly reduces the number of arithmetic operations required per node. The red-black solution algorithm utilizes massive parallelism by assigning each spatial node to one or more processors. The algorithm is accelerated by a synthetic method in which the low-order diffusion equations are also solved by massively parallel red-black iterations. The method is implemented on a 16K Connection Machine-2, and S 8 and S 16 solutions are obtained for fixed-source benchmark problems in x-y geometry

  12. First and second collision source for mitigating ray effects in discrete ordinate calculations

    International Nuclear Information System (INIS)

    Gomes, L.T.; Stevens, P.N.

    1991-01-01

    This work revisits the problem of ray effects in discrete ordinates calculations that frequently occurs in two- and three-dimensional systems which contain isolated sources within a highly absorbing medium. The effectiveness of using a first collision source or a second collision source are analyzed as possible remedies to mitigate this problem. The first collision and second collision sources are generated by three-dimensional Monte Carlo calculations that enables its application to a variety of source configurations, and the results can be coupled to a two- or three-dimensional discrete ordinates transport code. (author)

  13. CEPXS/ONELD: A one-dimensional coupled electron-photon discrete ordinates code package

    International Nuclear Information System (INIS)

    Lorence, L.J. Jr.; Morel, J.E.

    1992-01-01

    CEPXS/ONELD is a discrete ordinates transport code package that can model the electron-photon cascade from 100 MeV to 1 keV. The CEPXS code generates fully-coupled multigroup-Legendre cross section data. This data is used by the general-purpose discrete ordinates code, ONELD, which is derived from the Los Alamos ONEDANT and ONBTRAN codes. Version 1.0 of CEPXS/ONELD was released in 1989 and has been primarily used to analyze the effect of radiation environments on electronics. Version 2.0 is under development and will include user-friendly features such as the automatic selection of group structure, spatial mesh structure, and S N order

  14. C5 Benchmark Problem with Discrete Ordinate Radiation Transport Code DENOVO

    Energy Technology Data Exchange (ETDEWEB)

    Yesilyurt, Gokhan [ORNL; Clarno, Kevin T [ORNL; Evans, Thomas M [ORNL; Davidson, Gregory G [ORNL; Fox, Patricia B [ORNL

    2011-01-01

    The C5 benchmark problem proposed by the Organisation for Economic Co-operation and Development/Nuclear Energy Agency was modeled to examine the capabilities of Denovo, a three-dimensional (3-D) parallel discrete ordinates (S{sub N}) radiation transport code, for problems with no spatial homogenization. Denovo uses state-of-the-art numerical methods to obtain accurate solutions to the Boltzmann transport equation. Problems were run in parallel on Jaguar, a high-performance supercomputer located at Oak Ridge National Laboratory. Both the two-dimensional (2-D) and 3-D configurations were analyzed, and the results were compared with the reference MCNP Monte Carlo calculations. For an additional comparison, SCALE/KENO-V.a Monte Carlo solutions were also included. In addition, a sensitivity analysis was performed for the optimal angular quadrature and mesh resolution for both the 2-D and 3-D infinite lattices of UO{sub 2} fuel pin cells. Denovo was verified with the C5 problem. The effective multiplication factors, pin powers, and assembly powers were found to be in good agreement with the reference MCNP and SCALE/KENO-V.a Monte Carlo calculations.

  15. Program to solve the multigroup discrete ordinates transport equation in (x,y,z) geometry

    International Nuclear Information System (INIS)

    Lathrop, K.D.

    1976-04-01

    Numerical formulations and programming algorithms are given for the THREETRAN computer program which solves the discrete ordinates, multigroup transport equation in (x,y,z) geometry. An efficient, flexible, and general data-handling strategy is derived to make use of three hierarchies of storage: small core memory, large core memory, and disk file. Data management, input instructions, and sample problem output are described. A six-group, S 4 , 18 502 mesh point, 2 800 zone, k/sub eff/ calculation of the ZPPR-4 critical assembly required 144 min of CDC-7600 time to execute to a convergence tolerance of 5 x 10 -4 and gave results in good qualitative agreement with experiment and other calculations. 6 references

  16. Three-dimensional coupled Monte Carlo-discrete ordinates computational scheme for shielding calculations of large and complex nuclear facilities

    International Nuclear Information System (INIS)

    Chen, Y.; Fischer, U.

    2005-01-01

    Shielding calculations of advanced nuclear facilities such as accelerator based neutron sources or fusion devices of the tokamak type are complicated due to their complex geometries and their large dimensions, including bulk shields of several meters thickness. While the complexity of the geometry in the shielding calculation can be hardly handled by the discrete ordinates method, the deep penetration of radiation through bulk shields is a severe challenge for the Monte Carlo particle transport technique. This work proposes a dedicated computational scheme for coupled Monte Carlo-Discrete Ordinates transport calculations to handle this kind of shielding problems. The Monte Carlo technique is used to simulate the particle generation and transport in the target region with both complex geometry and reaction physics, and the discrete ordinates method is used to treat the deep penetration problem in the bulk shield. The coupling scheme has been implemented in a program system by loosely integrating the Monte Carlo transport code MCNP, the three-dimensional discrete ordinates code TORT and a newly developed coupling interface program for mapping process. Test calculations were performed with comparison to MCNP solutions. Satisfactory agreements were obtained between these two approaches. The program system has been chosen to treat the complicated shielding problem of the accelerator-based IFMIF neutron source. The successful application demonstrates that coupling scheme with the program system is a useful computational tool for the shielding analysis of complex and large nuclear facilities. (authors)

  17. Two-dimensional discrete ordinates photon transport calculations for brachytherapy dosimetry applications

    International Nuclear Information System (INIS)

    Daskalov, G.M.; Baker, R.S.; Little, R.C.; Rogers, D.W.O.; Williamson, J.F.

    2000-01-01

    The DANTSYS discrete ordinates computer code system is applied to quantitative estimation of water kerma rate distributions in the vicinity of discrete photon sources with energies in the 20- to 800-keV range in two-dimensional cylindrical r-z geometry. Unencapsulated sources immersed in cylindrical water phantoms of 40-cm diameter and 40-cm height are modeled in either homogeneous phantoms or shielded by Ti, Fe, and Pb filters with thicknesses of 1 and 2 mean free paths. The obtained dose results are compared with corresponding photon Monte Carlo simulations. A 210-group photon cross-section library for applications in this energy range is developed and applied, together with a general-purpose 42-group library developed at Los Alamos National Laboratory, for DANTSYS calculations. The accuracy of DANTSYS with the 42-group library relative to Monte Carlo exhibits large pointwise fluctuations from -42 to +84%. The major cause for the observed discrepancies is determined to be the inadequacy of the weighting function used for the 42-group library derivation. DANTSYS simulations with a finer 210-group library show excellent accuracy on and off the source transverse plane relative to Monte Carlo kerma calculations, varying from minus4.9 to 3.7%. The P 3 Legendre polynomial expansion of the angular scattering function is shown to be sufficient for accurate calculations. The results demonstrate that DANTSYS is capable of calculating photon doses in very good agreement with Monte Carlo and that the multigroup cross-section library and efficient techniques for mitigation of ray effects are critical for accurate discrete ordinates implementation

  18. Discrete elements method of neutral particle transport

    International Nuclear Information System (INIS)

    Mathews, K.A.

    1983-01-01

    A new discrete elements (L/sub N/) transport method is derived and compared to the discrete ordinates S/sub N/ method, theoretically and by numerical experimentation. The discrete elements method is more accurate than discrete ordinates and strongly ameliorates ray effects for the practical problems studied. The discrete elements method is shown to be more cost effective, in terms of execution time with comparable storage to attain the same accuracy, for a one-dimensional test case using linear characteristic spatial quadrature. In a two-dimensional test case, a vacuum duct in a shield, L/sub N/ is more consistently convergent toward a Monte Carlo benchmark solution than S/sub N/, using step characteristic spatial quadrature. An analysis of the interaction of angular and spatial quadrature in xy-geometry indicates the desirability of using linear characteristic spatial quadrature with the L/sub N/ method

  19. Pin cell discontinuity factors in the transient 3-D discrete ordinates code TORT-TD - 237

    International Nuclear Information System (INIS)

    Seubert, A.

    2010-01-01

    This paper describes the application of generalized equivalence theory to the time-dependent 3-D discrete ordinates neutron transport code TORT-TD. The introduction of pin cell discontinuity factors into the discrete ordinates transport equation is described by assuming a linear dependence of the homogenized neutron angular flux within a pin cell which may be discontinuous at the interfaces to adjacent cells. The homogenized flux discontinuity at cell interfaces is expressed by pin cell discontinuity factors which in turn are determined from fuel assembly lattice calculations using HELIOS. Application of TORT-TD to the all rods in state of the PWR MOX/UO 2 Core Transient Benchmark with pin cell homogenized nuclear cross sections demonstrate the potential of pin cell discontinuity factors to reduce pin cell homogenization errors. (authors)

  20. An analytical discrete ordinates solution for a nodal model of a two-dimensional neutron transport problem

    International Nuclear Information System (INIS)

    Filho, J. F. P.; Barichello, L. B.

    2013-01-01

    In this work, an analytical discrete ordinates method is used to solve a nodal formulation of a neutron transport problem in x, y-geometry. The proposed approach leads to an important reduction in the order of the associated eigenvalue systems, when combined with the classical level symmetric quadrature scheme. Auxiliary equations are proposed, as usually required for nodal methods, to express the unknown fluxes at the boundary introduced as additional unknowns in the integrated equations. Numerical results, for the problem defined by a two-dimensional region with a spatially constant and isotropically emitting source, are presented and compared with those available in the literature. (authors)

  1. High-order discrete ordinate transport in hexagonal geometry: A new capability in ERANOS

    International Nuclear Information System (INIS)

    Le Tellier, R.; Suteau, C.; Fournier, D.; Ruggieri, J.M.

    2010-01-01

    This paper presents the implementation of an arbitrary order discontinuous Galerkin scheme within the framework of a discrete ordinate solver of the neutron transport equation for nuclear reactor calculations. More precisely, it deals with non-conforming spatial meshes for the 2 D and 3 D modeling of core geometries based on hexagonal assemblies. This work aims at improving the capabilities of the ERANOS code system dedicated to fast reactor analysis and design. Both the angular quadrature and spatial scheme peculiarities for hexagonal geometries are presented. A particular focus is set on the spatial non-conforming mesh and variable order capabilities of this scheme in anticipation to the development of spatial adaptiveness algorithms. These features are illustrated on a 3 D numerical benchmark with comparison to a Monte Carlo reference and a 2 D benchmark that shows the potential of this scheme for both h-and p-adaptation.

  2. High-order discrete ordinate transport in non-conforming 2D Cartesian meshes

    International Nuclear Information System (INIS)

    Gastaldo, L.; Le Tellier, R.; Suteau, C.; Fournier, D.; Ruggieri, J. M.

    2009-01-01

    We present in this paper a numerical scheme for solving the time-independent first-order form of the Boltzmann equation in non-conforming 2D Cartesian meshes. The flux solution technique used here is the discrete ordinate method and the spatial discretization is based on discontinuous finite elements. In order to have p-refinement capability, we have chosen a hierarchical polynomial basis based on Legendre polynomials. The h-refinement capability is also available and the element interface treatment has been simplified by the use of special functions decomposed over the mesh entities of an element. The comparison to a classical S N method using the Diamond Differencing scheme as spatial approximation confirms the good behaviour of the method. (authors)

  3. The TORT three-dimensional discrete ordinates neutron/photon transport code (TORT version 3)

    Energy Technology Data Exchange (ETDEWEB)

    Rhoades, W.A.; Simpson, D.B.

    1997-10-01

    TORT calculates the flux or fluence of neutrons and/or photons throughout three-dimensional systems due to particles incident upon the system`s external boundaries, due to fixed internal sources, or due to sources generated by interaction with the system materials. The transport process is represented by the Boltzman transport equation. The method of discrete ordinates is used to treat the directional variable, and a multigroup formulation treats the energy dependence. Anisotropic scattering is treated using a Legendre expansion. Various methods are used to treat spatial dependence, including nodal and characteristic procedures that have been especially adapted to resist numerical distortion. A method of body overlay assists in material zone specification, or the specification can be generated by an external code supplied by the user. Several special features are designed to concentrate machine resources where they are most needed. The directional quadrature and Legendre expansion can vary with energy group. A discontinuous mesh capability has been shown to reduce the size of large problems by a factor of roughly three in some cases. The emphasis in this code is a robust, adaptable application of time-tested methods, together with a few well-tested extensions.

  4. High-order solution methods for grey discrete ordinates thermal radiative transfer

    Energy Technology Data Exchange (ETDEWEB)

    Maginot, Peter G., E-mail: maginot1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Ragusa, Jean C., E-mail: jean.ragusa@tamu.edu [Department of Nuclear Engineering, Texas A& M University, College Station, TX 77843 (United States); Morel, Jim E., E-mail: morel@tamu.edu [Department of Nuclear Engineering, Texas A& M University, College Station, TX 77843 (United States)

    2016-12-15

    This work presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation is accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.

  5. Parallel ray tracing for one-dimensional discrete ordinate computations

    International Nuclear Information System (INIS)

    Jarvis, R.D.; Nelson, P.

    1996-01-01

    The ray-tracing sweep in discrete-ordinates, spatially discrete numerical approximation methods applied to the linear, steady-state, plane-parallel, mono-energetic, azimuthally symmetric, neutral-particle transport equation can be reduced to a parallel prefix computation. In so doing, the often severe penalty in convergence rate of the source iteration, suffered by most current parallel algorithms using spatial domain decomposition, can be avoided while attaining parallelism in the spatial domain to whatever extent desired. In addition, the reduction implies parallel algorithm complexity limits for the ray-tracing sweep. The reduction applies to all closed, linear, one-cell functional (CLOF) spatial approximation methods, which encompasses most in current popular use. Scalability test results of an implementation of the algorithm on a 64-node nCube-2S hypercube-connected, message-passing, multi-computer are described. (author)

  6. Mining the multigroup-discrete ordinates algorithm for high quality solutions

    International Nuclear Information System (INIS)

    Ganapol, B.D.; Kornreich, D.E.

    2005-01-01

    A novel approach to the numerical solution of the neutron transport equation via the discrete ordinates (SN) method is presented. The new technique is referred to as 'mining' low order (SN) numerical solutions to obtain high order accuracy. The new numerical method, called the Multigroup Converged SN (MGCSN) algorithm, is a combination of several sequence accelerators: Romberg and Wynn-epsilon. The extreme accuracy obtained by the method is demonstrated through self consistency and comparison to the independent semi-analytical benchmark BLUE. (authors)

  7. Simplified discrete ordinates method in spherical geometry

    International Nuclear Information System (INIS)

    Elsawi, M.A.; Abdurrahman, N.M.; Yavuz, M.

    1999-01-01

    The authors extend the method of simplified discrete ordinates (SS N ) to spherical geometry. The motivation for such an extension is that the appearance of the angular derivative (redistribution) term in the spherical geometry transport equation makes it difficult to decide which differencing scheme best approximates this term. In the present method, the angular derivative term is treated implicitly and thus avoids the need for the approximation of such term. This method can be considered to be analytic in nature with the advantage of being free from spatial truncation errors from which most of the existing transport codes suffer. In addition, it treats the angular redistribution term implicitly with the advantage of avoiding approximations to that term. The method also can handle scattering in a very general manner with the advantage of spending almost the same computational effort for all scattering modes. Moreover, the methods can easily be applied to higher-order S N calculations

  8. Evaluation of the streaming-matrix method for discrete-ordinates duct-streaming calculations

    International Nuclear Information System (INIS)

    Clark, B.A.; Urban, W.T.; Dudziak, D.J.

    1983-01-01

    A new deterministic streaming technique called the Streaming Matrix Hybrid Method (SMHM) is applied to two realistic duct-shielding problems. The results are compared to standard discrete-ordinates and Monte Carlo calculations. The SMHM shows promise as an alternative deterministic streaming method to standard discrete-ordinates

  9. Adaptive discrete-ordinates algorithms and strategies

    International Nuclear Information System (INIS)

    Stone, J.C.; Adams, M.L.

    2005-01-01

    We present our latest algorithms and strategies for adaptively refined discrete-ordinates quadrature sets. In our basic strategy, which we apply here in two-dimensional Cartesian geometry, the spatial domain is divided into regions. Each region has its own quadrature set, which is adapted to the region's angular flux. Our algorithms add a 'test' direction to the quadrature set if the angular flux calculated at that direction differs by more than a user-specified tolerance from the angular flux interpolated from other directions. Different algorithms have different prescriptions for the method of interpolation and/or choice of test directions and/or prescriptions for quadrature weights. We discuss three different algorithms of different interpolation orders. We demonstrate through numerical results that each algorithm is capable of generating solutions with negligible angular discretization error. This includes elimination of ray effects. We demonstrate that all of our algorithms achieve a given level of error with far fewer unknowns than does a standard quadrature set applied to an entire problem. To address a potential issue with other algorithms, we present one algorithm that retains exact integration of high-order spherical-harmonics functions, no matter how much local refinement takes place. To address another potential issue, we demonstrate that all of our methods conserve partial currents across interfaces where quadrature sets change. We conclude that our approach is extremely promising for solving the long-standing problem of angular discretization error in multidimensional transport problems. (authors)

  10. Spatial Treatment of the Slab-geometry Discrete Ordinates Equations Using Artificial Neural Networks

    International Nuclear Information System (INIS)

    Brantley, P S

    2001-01-01

    An artificial neural network (ANN) method is developed for treating the spatial variable of the one-group slab-geometry discrete ordinates (S N ) equations in a homogeneous medium with linearly anisotropic scattering. This ANN method takes advantage of the function approximation capability of multilayer ANNs. The discrete ordinates angular flux is approximated by a multilayer ANN with a single input representing the spatial variable x and N outputs representing the angular flux in each of the discrete ordinates angular directions. A global objective function is formulated which measures how accurately the output of the ANN approximates the solution of the discrete ordinates equations and boundary conditions at specified spatial points. Minimization of this objective function determines the appropriate values for the parameters of the ANN. Numerical results are presented demonstrating the accuracy of the method for both fixed source and incident angular flux problems

  11. Ordinal Welfare Comparisons with Multiple Discrete Indicators

    DEFF Research Database (Denmark)

    Arndt, Channing; Distante, Roberta; Hussain, M. Azhar

    We develop an ordinal method for making welfare comparisons between populations with multidimensional discrete well-being indicators observed at the micro level. The approach assumes that, for each well-being indicator, the levels can be ranked from worse to better; however, no assumptions are made...

  12. Use of the Streaming Matrix Hybrid Method for discrete-ordinates fusion reactor calculations

    International Nuclear Information System (INIS)

    Battat, M.E.; Davidson, J.W.; Dudziak, D.J.; Thayer, G.R.

    1984-01-01

    The use of the discrete-ordinates method for solving two-dimensional, neutral-particle transport in fusion reactor blankets and shields is often limited by inherent inaccuracies due to the ray-effect. This effect presents a particular problem in the case of neutron streaming in the large internal void regions of a fusion reactor. A deterministic streaming technique called the Streaming Matrix Hybrid Method (SMHM) has been incorporated in the two-dimensional discrete-ordinates code TRIDENT-CTR. Calculations have been performed for an actual inertial-confinement fusion (ICF) reactor design using TRIDENT-CTR both with and without the SMHM. Comparisons of the calculated fluxes indicate that substantial mitigation of the ray effect can be achieved with the SMHM. Calculations were performed for the Los Alamos FIRST STEP hybrid ICF reactor designed for tritium production. Conventional 238 U fuel rod assemblies surround the spherical steel target chamber to form an annular cylindrical blanket. An axial fuel region is included to complete the blanket

  13. Exponential characteristics spatial quadrature for discrete ordinates radiation transport in slab geometry

    International Nuclear Information System (INIS)

    Mathews, K.; Sjoden, G.; Minor, B.

    1994-01-01

    The exponential characteristic spatial quadrature for discrete ordinates neutral particle transport in slab geometry is derived and compared with current methods. It is similar to the linear characteristic (or, in slab geometry, the linear nodal) quadrature but differs by assuming an exponential distribution of the scattering source within each cell, S(x) = a exp(bx), whose parameters are root-solved to match the known (from the previous iteration) average and first moment of the source over the cell. Like the linear adaptive method, the exponential characteristic method is positive and nonlinear but more accurate and more readily extended to other cell shapes. The nonlinearity has not interfered with convergence. The authors introduce the ''exponential moment functions,'' a generalization of the functions used by Walters in the linear nodal method, and use them to avoid numerical ill-conditioning. The method exhibits O(Δx 4 ) truncation error on fine enough meshes; the error is insensitive to mesh size for coarse meshes. In a shielding problem, it is accurate to 10% using 16-mfp-thick cells; conventional methods err by 8 to 15 orders of magnitude. The exponential characteristic method is computationally more costly per cell than current methods but can be accurate with very thick cells, leading to increased computational efficiency on appropriate problems

  14. Verification of three dimensional triangular prismatic discrete ordinates transport code ENSEMBLE-TRIZ by comparison with Monte Carlo code GMVP

    International Nuclear Information System (INIS)

    Homma, Y.; Moriwaki, H.; Ikeda, K.; Ohdi, S.

    2013-01-01

    This paper deals with the verification of the 3 dimensional triangular prismatic discrete ordinates transport calculation code ENSEMBLE-TRIZ by comparison with the multi-group Monte Carlo calculation code GMVP in a large fast breeder reactor. The reactor is a 750 MWe electric power sodium cooled reactor. Nuclear characteristics are calculated at the beginning of cycle of an initial core and at the beginning and the end of cycle of an equilibrium core. According to the calculations, the differences between the two methodologies are smaller than 0.0002 Δk in the multiplication factor, relatively about 1% in the control rod reactivity, and 1% in the sodium void reactivity. (authors)

  15. Development of three-dimensional program based on Monte Carlo and discrete ordinates bidirectional coupling method

    International Nuclear Information System (INIS)

    Han Jingru; Chen Yixue; Yuan Longjun

    2013-01-01

    The Monte Carlo (MC) and discrete ordinates (SN) are the commonly used methods in the design of radiation shielding. Monte Carlo method is able to treat the geometry exactly, but time-consuming in dealing with the deep penetration problem. The discrete ordinate method has great computational efficiency, but it is quite costly in computer memory and it suffers from ray effect. Single discrete ordinates method or single Monte Carlo method has limitation in shielding calculation for large complex nuclear facilities. In order to solve the problem, the Monte Carlo and discrete ordinates bidirectional coupling method is developed. The bidirectional coupling method is implemented in the interface program to transfer the particle probability distribution of MC and angular flux of discrete ordinates. The coupling method combines the advantages of MC and SN. The test problems of cartesian and cylindrical coordinate have been calculated by the coupling methods. The calculation results are performed with comparison to MCNP and TORT and satisfactory agreements are obtained. The correctness of the program is proved. (authors)

  16. Singular characteristic tracking algorithm for improved solution accuracy of the discrete ordinates method with isotropic scattering

    International Nuclear Information System (INIS)

    Duo, J. I.; Azmy, Y. Y.

    2007-01-01

    A new method, the Singular Characteristics Tracking algorithm, is developed to account for potential non-smoothness across the singular characteristics in the exact solution of the discrete ordinates approximation of the transport equation. Numerical results show improved rate of convergence of the solution to the discrete ordinates equations in two spatial dimensions with isotropic scattering using the proposed methodology. Unlike the standard Weighted Diamond Difference methods, the new algorithm achieves local convergence in the case of discontinuous angular flux along the singular characteristics. The method also significantly reduces the error for problems where the angular flux presents discontinuous spatial derivatives across these lines. For purposes of verifying the results, the Method of Manufactured Solutions is used to generate analytical reference solutions that permit estimating the local error in the numerical solution. (authors)

  17. A Deep Penetration Problem Calculation Using AETIUS:An Easy Modeling Discrete Ordinates Transport Code UsIng Unstructured Tetrahedral Mesh, Shared Memory Parallel

    Science.gov (United States)

    KIM, Jong Woon; LEE, Young-Ouk

    2017-09-01

    As computing power gets better and better, computer codes that use a deterministic method seem to be less useful than those using the Monte Carlo method. In addition, users do not like to think about space, angles, and energy discretization for deterministic codes. However, a deterministic method is still powerful in that we can obtain a solution of the flux throughout the problem, particularly as when particles can barely penetrate, such as in a deep penetration problem with small detection volumes. Recently, a new state-of-the-art discrete-ordinates code, ATTILA, was developed and has been widely used in several applications. ATTILA provides the capabilities to solve geometrically complex 3-D transport problems by using an unstructured tetrahedral mesh. Since 2009, we have been developing our own code by benchmarking ATTILA. AETIUS is a discrete ordinates code that uses an unstructured tetrahedral mesh such as ATTILA. For pre- and post- processing, Gmsh is used to generate an unstructured tetrahedral mesh by importing a CAD file (*.step) and visualizing the calculation results of AETIUS. Using a CAD tool, the geometry can be modeled very easily. In this paper, we describe a brief overview of AETIUS and provide numerical results from both AETIUS and a Monte Carlo code, MCNP5, in a deep penetration problem with small detection volumes. The results demonstrate the effectiveness and efficiency of AETIUS for such calculations.

  18. Boltzmann-Fokker-Planck calculations using standard discrete-ordinates codes

    International Nuclear Information System (INIS)

    Morel, J.E.

    1987-01-01

    The Boltzmann-Fokker-Planck (BFP) equation can be used to describe both neutral and charged-particle transport. Over the past several years, the author and several collaborators have developed methods for representing Fokker-Planck operators with standard multigroup-Legendre cross-section data. When these data are input to a standard S/sub n/ code such as ONETRAN, the code actually solves the Boltzmann-Fokker-Planck equation rather than the Boltzmann equation. This is achieved wihout any modification to the S/sub n/ codes. Because BFP calculations can be more demanding from a numerical viewpoint than standard neutronics calculations, we have found it useful to implement new quadrature methods ad convergence acceleration methods in the standard discrete-ordinates code, ONETRAN. We discuss our BFP cross-section representation techniques, our improved quadrature and acceleration techniques, and present results from BFP coupled electron-photon transport calculations performed with ONETRAN. 19 refs., 7 figs

  19. Timing comparison of two-dimensional discrete-ordinates codes for criticality calculations

    International Nuclear Information System (INIS)

    Miller, W.F. Jr.; Alcouffe, R.E.; Bosler, G.E.; Brinkley, F.W. Jr.; O'dell, R.D.

    1979-01-01

    The authors compare two-dimensional discrete-ordinates neutron transport computer codes to solve reactor criticality problems. The fundamental interest is in determining which code requires the minimum Central Processing Unit (CPU) time for a given numerical model of a reasonably realistic fast reactor core and peripherals. The computer codes considered are the most advanced available and, in three cases, are not officially released. The conclusion, based on the study of four fast reactor core models, is that for this class of problems the diffusion synthetic accelerated version of TWOTRAN, labeled TWOTRAN-DA, is superior to the other codes in terms of CPU requirements

  20. Scalable parallel prefix solvers for discrete ordinates transport

    International Nuclear Information System (INIS)

    Pautz, S.; Pandya, T.; Adams, M.

    2009-01-01

    The well-known 'sweep' algorithm for inverting the streaming-plus-collision term in first-order deterministic radiation transport calculations has some desirable numerical properties. However, it suffers from parallel scaling issues caused by a lack of concurrency. The maximum degree of concurrency, and thus the maximum parallelism, grows more slowly than the problem size for sweeps-based solvers. We investigate a new class of parallel algorithms that involves recasting the streaming-plus-collision problem in prefix form and solving via cyclic reduction. This method, although computationally more expensive at low levels of parallelism than the sweep algorithm, offers better theoretical scalability properties. Previous work has demonstrated this approach for one-dimensional calculations; we show how to extend it to multidimensional calculations. Notably, for multiple dimensions it appears that this approach is limited to long-characteristics discretizations; other discretizations cannot be cast in prefix form. We implement two variants of the algorithm within the radlib/SCEPTRE transport code library at Sandia National Laboratories and show results on two different massively parallel systems. Both the 'forward' and 'symmetric' solvers behave similarly, scaling well to larger degrees of parallelism then sweeps-based solvers. We do observe some issues at the highest levels of parallelism (relative to the system size) and discuss possible causes. We conclude that this approach shows good potential for future parallel systems, but the parallel scalability will depend heavily on the architecture of the communication networks of these systems. (authors)

  1. Matrix albedo for discrete ordinates infinite-medium boundary condition

    International Nuclear Information System (INIS)

    Mathews, K.; Dishaw, J.

    2007-01-01

    Discrete ordinates problems with an infinite exterior medium (reflector) can be more efficiently computed by eliminating grid cells in the exterior medium and applying a matrix albedo boundary condition. The albedo matrix is a discretized bidirectional reflection distribution function (BRDF) that accounts for the angular quadrature set, spatial quadrature method, and spatial grid that would have been used to model a portion of the exterior medium. The method is exact in slab geometry, and could be used as an approximation in multiple dimensions or curvilinear coordinates. We present an adequate method for computing albedo matrices and demonstrate their use in verifying a discrete ordinates code in slab geometry by comparison with Ganapol's infinite medium semi-analytic TIEL benchmark. With sufficient resolution in the spatial and angular grids and iteration tolerance to yield solutions converged to 6 digits, the conventional (scalar) albedo boundary condition yielded 2-digit accuracy at the boundary, but the matrix albedo solution reproduced the benchmark scalar flux at the boundary to all 6 digits. (authors)

  2. Intercomparison of the finite difference and nodal discrete ordinates and surface flux transport methods for a LWR pool-reactor benchmark problem in X-Y geometry

    International Nuclear Information System (INIS)

    O'Dell, R.D.; Stepanek, J.; Wagner, M.R.

    1983-01-01

    The aim of the present work is to compare and discuss the three of the most advanced two dimensional transport methods, the finite difference and nodal discrete ordinates and surface flux method, incorporated into the transport codes TWODANT, TWOTRAN-NODAL, MULTIMEDIUM and SURCU. For intercomparison the eigenvalue and the neutron flux distribution are calculated using these codes in the LWR pool reactor benchmark problem. Additionally the results are compared with some results obtained by French collision probability transport codes MARSYAS and TRIDENT. Because the transport solution of this benchmark problem is close to its diffusion solution some results obtained by the finite element diffusion code FINELM and the finite difference diffusion code DIFF-2D are included

  3. Gamma-Weighted Discrete Ordinate Two-Stream Approximation for Computation of Domain Averaged Solar Irradiance

    Science.gov (United States)

    Kato, S.; Smith, G. L.; Barker, H. W.

    2001-01-01

    An algorithm is developed for the gamma-weighted discrete ordinate two-stream approximation that computes profiles of domain-averaged shortwave irradiances for horizontally inhomogeneous cloudy atmospheres. The algorithm assumes that frequency distributions of cloud optical depth at unresolved scales can be represented by a gamma distribution though it neglects net horizontal transport of radiation. This algorithm is an alternative to the one used in earlier studies that adopted the adding method. At present, only overcast cloudy layers are permitted.

  4. Nuclear data preparation and discrete ordinates calculation

    International Nuclear Information System (INIS)

    Carmignani, B.

    1980-01-01

    These lectures deal with the use of the GAM-GATHER and GAM-THERMOS chains for the calculation of lattice cross sections and within use of the discrete ordinates one dimensional ANISN code for the calculation of criticality and flux distribution of the cell and of the whole reactor. As an example the codes are applied to the calculation of a PWR. Results of different approximations are compared. (author)

  5. Variable discrete ordinates method for radiation transfer in plane-parallel semi-transparent media with variable refractive index

    Science.gov (United States)

    Sarvari, S. M. Hosseini

    2017-09-01

    The traditional form of discrete ordinates method is applied to solve the radiative transfer equation in plane-parallel semi-transparent media with variable refractive index through using the variable discrete ordinate directions and the concept of refracted radiative intensity. The refractive index are taken as constant in each control volume, such that the direction cosines of radiative rays remain non-variant through each control volume, and then, the directions of discrete ordinates are changed locally by passing each control volume, according to the Snell's law of refraction. The results are compared by the previous studies in this field. Despite simplicity, the results show that the variable discrete ordinate method has a good accuracy in solving the radiative transfer equation in the semi-transparent media with arbitrary distribution of refractive index.

  6. A discrete ordinate response matrix method for massively parallel computers

    International Nuclear Information System (INIS)

    Hanebutte, U.R.; Lewis, E.E.

    1991-01-01

    A discrete ordinate response matrix method is formulated for the solution of neutron transport problems on massively parallel computers. The response matrix formulation eliminates iteration on the scattering source. The nodal matrices which result from the diamond-differenced equations are utilized in a factored form which minimizes memory requirements and significantly reduces the required number of algorithm utilizes massive parallelism by assigning each spatial node to a processor. The algorithm is accelerated effectively by a synthetic method in which the low-order diffusion equations are also solved by massively parallel red/black iterations. The method has been implemented on a 16k Connection Machine-2, and S 8 and S 16 solutions have been obtained for fixed-source benchmark problems in X--Y geometry

  7. Explicit formulation of a nodal transport method for discrete ordinates calculations in two-dimensional fixed-source problems

    Energy Technology Data Exchange (ETDEWEB)

    Tres, Anderson [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Matematica Aplicada; Becker Picoloto, Camila [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Prolo Filho, Joao Francisco [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Inst de Matematica, Estatistica e Fisica; Dias da Cunha, Rudnei; Basso Barichello, Liliane [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Inst de Matematica

    2014-04-15

    In this work a study of two-dimensional fixed-source neutron transport problems, in Cartesian geometry, is reported. The approach reduces the complexity of the multidimensional problem using a combination of nodal schemes and the Analytical Discrete Ordinates Method (ADO). The unknown leakage terms on the boundaries that appear from the use of the derivation of the nodal scheme are incorporated to the problem source term, such as to couple the one-dimensional integrated solutions, made explicit in terms of the x and y spatial variables. The formulation leads to a considerable reduction of the order of the associated eigenvalue problems when combined with the usual symmetric quadratures, thereby providing solutions that have a higher degree of computational efficiency. Reflective-type boundary conditions are introduced to represent the domain on a simpler form than that previously considered in connection with the ADO method. Numerical results obtained with the technique are provided and compared to those present in the literature. (orig.)

  8. Spectral nodal methodology for multigroup slab-geometry discrete ordinates neutron transport problems with linearly anisotropic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, Amaury M.; Filho, Hermes A.; Silva, Davi M.; Garcia, Carlos R., E-mail: aoliva@iprj.uerj.br, E-mail: halves@iprj.uerj.br, E-mail: davijmsilva@yahoo.com.br, E-mail: cgh@instec.cu [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico. Departamento de Modelagem Computacional; Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba)

    2017-07-01

    In this paper, we propose a numerical methodology for the development of a method of the spectral nodal class that will generate numerical solutions free from spatial truncation errors. This method, denominated Spectral Deterministic Method (SDM), is tested as an initial study of the solutions (spectral analysis) of neutron transport equations in the discrete ordinates (S{sub N}) formulation, in one-dimensional slab geometry, multigroup approximation, with linearly anisotropic scattering, considering homogeneous and heterogeneous domains with fixed source. The unknowns in the methodology are the cell-edge, and cell average angular fluxes, the numerical values calculated for these quantities coincide with the analytic solution of the equations. These numerical results are shown and compared with the traditional ne- mesh method Diamond Difference (DD) and the coarse-mesh method spectral Green's function (SGF) to illustrate the method's accuracy and stability. The solution algorithms problems are implemented in a computer simulator made in C++ language, the same that was used to generate the results of the reference work. (author)

  9. A coarse-mesh diffusion synthetic acceleration of the source iteration scheme for one-speed discrete ordinates transport calculations in Slab geometry

    International Nuclear Information System (INIS)

    Santos, Frederico P.; Xavier, Vinicius S.; Alves Filho, Hermes; Barros, Ricardo C.

    2011-01-01

    The scattering source iterative (SI) scheme is traditionally applied to converge fine-mesh numerical solutions to fixed-source discrete ordinates (S N ) neutron transport problems. The SI scheme is very simple to implement under a computational viewpoint. However, the SI scheme may show very slow convergence rate, mainly for diffusive media (low absorption) with several mean free paths in extent. In this work we describe an acceleration technique based on an improved initial guess for the scattering source distribution within the slab. In other words, we use as initial guess for the fine-mesh scattering source, the coarse-mesh solution of the neutron diffusion equation with special boundary conditions to account for the classical S N prescribed boundary conditions, including vacuum boundary conditions. Therefore, we first implement a spectral nodal method that generates coarse-mesh diffusion solution that is completely free from spatial truncation errors, then we reconstruct this coarse-mesh solution within each spatial cell of the discretization grid, to further yield the initial guess for the fine-mesh scattering source in the first S N transport sweep (μm > 0 and μm < 0, m = 1:N) across the spatial grid. We consider a number of numerical experiments to illustrate the efficiency of the offered diffusion synthetic acceleration (DSA) technique. (author)

  10. An analytical nodal method for time-dependent one-dimensional discrete ordinates problems

    International Nuclear Information System (INIS)

    Barros, R.C. de

    1992-01-01

    In recent years, relatively little work has been done in developing time-dependent discrete ordinates (S N ) computer codes. Therefore, the topic of time integration methods certainly deserves further attention. In this paper, we describe a new coarse-mesh method for time-dependent monoenergetic S N transport problesm in slab geometry. This numerical method preserves the analytic solution of the transverse-integrated S N nodal equations by constants, so we call our method the analytical constant nodal (ACN) method. For time-independent S N problems in finite slab geometry and for time-dependent infinite-medium S N problems, the ACN method generates numerical solutions that are completely free of truncation errors. Bsed on this positive feature, we expect the ACN method to be more accurate than conventional numerical methods for S N transport calculations on coarse space-time grids

  11. Domain decomposition and CMFD acceleration applied to discrete-ordinate methods for the solution of the neutron transport equation in XYZ geometries

    International Nuclear Information System (INIS)

    Masiello, Emiliano; Martin, Brunella; Do, Jean-Michel

    2011-01-01

    A new development for the IDT solver is presented for large reactor core applications in XYZ geometries. The multigroup discrete-ordinate neutron transport equation is solved using a Domain-Decomposition (DD) method coupled with the Coarse-Mesh Finite Differences (CMFD). The later is used for accelerating the DD convergence rate. In particular, the external power iterations are preconditioned for stabilizing the oscillatory behavior of the DD iterative process. A set of critical 2-D and 3-D numerical tests on a single processor will be presented for the analysis of the performances of the method. The results show that the application of the CMFD to the DD can be a good candidate for large 3D full-core parallel applications. (author)

  12. Deterministic absorbed dose estimation in computed tomography using a discrete ordinates method

    International Nuclear Information System (INIS)

    Norris, Edward T.; Liu, Xin; Hsieh, Jiang

    2015-01-01

    Purpose: Organ dose estimation for a patient undergoing computed tomography (CT) scanning is very important. Although Monte Carlo methods are considered gold-standard in patient dose estimation, the computation time required is formidable for routine clinical calculations. Here, the authors instigate a deterministic method for estimating an absorbed dose more efficiently. Methods: Compared with current Monte Carlo methods, a more efficient approach to estimating the absorbed dose is to solve the linear Boltzmann equation numerically. In this study, an axial CT scan was modeled with a software package, Denovo, which solved the linear Boltzmann equation using the discrete ordinates method. The CT scanning configuration included 16 x-ray source positions, beam collimators, flat filters, and bowtie filters. The phantom was the standard 32 cm CT dose index (CTDI) phantom. Four different Denovo simulations were performed with different simulation parameters, including the number of quadrature sets and the order of Legendre polynomial expansions. A Monte Carlo simulation was also performed for benchmarking the Denovo simulations. A quantitative comparison was made of the simulation results obtained by the Denovo and the Monte Carlo methods. Results: The difference in the simulation results of the discrete ordinates method and those of the Monte Carlo methods was found to be small, with a root-mean-square difference of around 2.4%. It was found that the discrete ordinates method, with a higher order of Legendre polynomial expansions, underestimated the absorbed dose near the center of the phantom (i.e., low dose region). Simulations of the quadrature set 8 and the first order of the Legendre polynomial expansions proved to be the most efficient computation method in the authors’ study. The single-thread computation time of the deterministic simulation of the quadrature set 8 and the first order of the Legendre polynomial expansions was 21 min on a personal computer

  13. Exponential characteristic spatial quadrature for discrete ordinates radiation transport with rectangular cells

    International Nuclear Information System (INIS)

    Minor, B.; Mathews, K.

    1995-01-01

    The exponential characteristic (EC) spatial quadrature for discrete ordinates neutral particle transport previously introduced in slab geometry is extended here to x-y geometry with rectangular cells. The method is derived and compared with current methods. It is similar to the linear characteristic (LC) quadrature (a linear-linear moments method) but differs by assuming an exponential distribution of the scattering source within each cell, S(x) = a exp(bx + cy), whose parameters are rootsolved to match the known (from the previous iteration) spatial average and first moments of the source over the cell. Similarly, EC assumes exponential distributions of flux along cell edges through which particles enter the cell, with parameters chosen to match the average and first moments of flux, as passed from the adjacent, upstream cells (or as determined by boundary conditions). Like the linear adaptive (LA) method, EC is positive and nonlinear. It is more accurate than LA and does not require subdivision of cells. The nonlinearity has not interfered with convergence. The exponential moment functions, which were introduced with the slab geometry method, are extended to arbitrary dimensions (numbers of arguments) and used to avoid numerical ill conditioning. As in slab geometry, the method approaches O(Δx 4 ) global truncation error on fine-enough meshes, while the error is insensitive to mesh size for coarse meshes. Performance of the method is compared with that of the step characteristic, LC, linear nodal, step adaptive, and LA schemes. The EC method is a strong performer with scattering ratios ranging from 0 to 0.9 (the range tested), particularly so for lower scattering ratios. As in slab geometry, EC is computationally more costly per cell than current methods but can be accurate with very thick cells, leading to increased computational efficiency on appropriate problems

  14. A Laplace transform method for energy multigroup hybrid discrete ordinates

    International Nuclear Information System (INIS)

    Segatto, C.F.; Vilhena, M.T.; Barros, R.C.

    2010-01-01

    In typical lattice cells where a highly absorbing, small fuel element is embedded in the moderator, a large weakly absorbing medium, high-order transport methods become unnecessary. In this work we describe a hybrid discrete ordinates (S N) method for energy multigroup slab lattice calculations. This hybrid S N method combines the convenience of a low-order S N method in the moderator with a high-order S N method in the fuel. The idea is based on the fact that in weakly absorbing media whose physical size is several neutron mean free paths in extent, even the S 2 method (P 1 approximation), leads to an accurate result. We use special fuel-moderator interface conditions and the Laplace transform (LTS N ) analytical numerical method to calculate the two-energy group neutron flux distributions and the thermal disadvantage factor. We present numerical results for a range of typical model problems.

  15. A parallel algorithm for solving the multidimensional within-group discrete ordinates equations with spatial domain decomposition - 104

    International Nuclear Information System (INIS)

    Zerr, R.J.; Azmy, Y.Y.

    2010-01-01

    A spatial domain decomposition with a parallel block Jacobi solution algorithm has been developed based on the integral transport matrix formulation of the discrete ordinates approximation for solving the within-group transport equation. The new methodology abandons the typical source iteration scheme and solves directly for the fully converged scalar flux. Four matrix operators are constructed based upon the integral form of the discrete ordinates equations. A single differential mesh sweep is performed to construct these operators. The method is parallelized by decomposing the problem domain into several smaller sub-domains, each treated as an independent problem. The scalar flux of each sub-domain is solved exactly given incoming angular flux boundary conditions. Sub-domain boundary conditions are updated iteratively, and convergence is achieved when the scalar flux error in all cells meets a pre-specified convergence criterion. The method has been implemented in a computer code that was then employed for strong scaling studies of the algorithm's parallel performance via a fixed-size problem in tests ranging from one domain up to one cell per sub-domain. Results indicate that the best parallel performance compared to source iterations occurs for optically thick, highly scattering problems, the variety that is most difficult for the traditional SI scheme to solve. Moreover, the minimum execution time occurs when each sub-domain contains a total of four cells. (authors)

  16. A discrete-ordinates solution for a radiation therapy problem

    International Nuclear Information System (INIS)

    Goldschmidt, Gustavo Brun; Reichert, Janice Teresinha; Barichello, Liliane Basso

    2008-01-01

    A concise and accurate procedure for evaluating dose distribution, in a radiation therapy planning, is presented. The analytical discrete-ordinates method (ADO method) is used to develop a complete solution for a spectral dependent radiative transfer equation, in a one-dimensional medium, according to a multigroup scheme. Numerical results are presented for test problems, where the Klein-Nishina scattering kernel was used to describe the interaction processes. (author)

  17. Normal scheme for solving the transport equation independently of spatial discretization

    International Nuclear Information System (INIS)

    Zamonsky, O.M.

    1993-01-01

    To solve the discrete ordinates neutron transport equation, a general order nodal scheme is used, where nodes are allowed to have different orders of approximation and the whole system reaches a final order distribution. Independence in the election of system discretization and order of approximation is obtained without loss of accuracy. The final equations and the iterative method to reach a converged order solution were implemented in a two-dimensional computer code to solve monoenergetic, isotropic scattering, external source problems. Two benchmark problems were solved using different automatic selection order methods. Results show accurate solutions without spatial discretization, regardless of the initial selection of distribution order. (author)

  18. A piecewise bi-linear discontinuous finite element spatial discretization of the Sn transport equation

    International Nuclear Information System (INIS)

    Bailey, Teresa S.; Warsa, James S.; Chang, Jae H.; Adams, Marvin L.

    2011-01-01

    We present a new spatial discretization of the discrete-ordinates transport equation in two dimensional Cartesian (X-Y) geometry for arbitrary polygonal meshes. The discretization is a discontinuous finite element method (DFEM) that utilizes piecewise bi-linear (PWBL) basis functions, which are formally introduced in this paper. We also present a series of numerical results on quadrilateral and polygonal grids and compare these results to a variety of other spatial discretization that have been shown to be successful on these grid types. Finally, we note that the properties of the PWBL basis functions are such that the leading-order piecewise bi-linear discontinuous finite element (PWBLD) solution will satisfy a reasonably accurate diffusion discretization in the thick diffusion limit, making the PWBLD method a viable candidate for many different classes of transport problems. (author)

  19. A Piecewise Bi-Linear Discontinuous Finite Element Spatial Discretization of the Sn Transport Equation

    International Nuclear Information System (INIS)

    Bailey, T.S.; Chang, J.H.; Warsa, J.S.; Adams, M.L.

    2010-01-01

    We present a new spatial discretization of the discrete-ordinates transport equation in two-dimensional Cartesian (X-Y) geometry for arbitrary polygonal meshes. The discretization is a discontinuous finite element method (DFEM) that utilizes piecewise bi-linear (PWBL) basis functions, which are formally introduced in this paper. We also present a series of numerical results on quadrilateral and polygonal grids and compare these results to a variety of other spatial discretizations that have been shown to be successful on these grid types. Finally, we note that the properties of the PWBL basis functions are such that the leading-order piecewise bi-linear discontinuous finite element (PWBLD) solution will satisfy a reasonably accurate diffusion discretization in the thick diffusion limit, making the PWBLD method a viable candidate for many different classes of transport problems.

  20. A Piecewise Bi-Linear Discontinuous Finite Element Spatial Discretization of the Sn Transport Equation

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, T S; Chang, J H; Warsa, J S; Adams, M L

    2010-12-22

    We present a new spatial discretization of the discrete-ordinates transport equation in two-dimensional Cartesian (X-Y) geometry for arbitrary polygonal meshes. The discretization is a discontinuous finite element method (DFEM) that utilizes piecewise bi-linear (PWBL) basis functions, which are formally introduced in this paper. We also present a series of numerical results on quadrilateral and polygonal grids and compare these results to a variety of other spatial discretizations that have been shown to be successful on these grid types. Finally, we note that the properties of the PWBL basis functions are such that the leading-order piecewise bi-linear discontinuous finite element (PWBLD) solution will satisfy a reasonably accurate diffusion discretization in the thick diffusion limit, making the PWBLD method a viable candidate for many different classes of transport problems.

  1. The discrete cones method for two-dimensional neutron transport calculations

    International Nuclear Information System (INIS)

    Watanabe, Y.; Maynard, C.W.

    1986-01-01

    A novel method, the discrete cones method (DC/sub N/), is proposed as an alternative to the discrete ordinates method (S/sub N/) for solutions of the two-dimensional neutron transport equation. The new method utilizes a new concept, discrete cones, which are made by partitioning a unit spherical surface that the direction vector of particles covers. In this method particles in a cone are simultaneously traced instead of those in discrete directions so that an anomaly of the S/sub N/ method, the ray effects, can be eliminated. The DC/sub N/ method has been formulated for X-Y geometry and a program has been creaed by modifying the standard S/sub N/ program TWOTRAN-II. Our sample calculations demonstrate a strong mitigation of the ray effects without a computing cost penalty

  2. Benchmarking of EPRI-cell epithermal methods with the point-energy discrete-ordinates code (OZMA)

    International Nuclear Information System (INIS)

    Williams, M.L.; Wright, R.Q.; Barhen, J.; Rothenstein, W.

    1982-01-01

    The purpose of the present study is to benchmark E-C resonance-shielding and cell-averaging methods against a rigorous deterministic solution on a fine-group level (approx. 30 groups between 1 eV and 5.5 keV). The benchmark code used is OZMA, which solves the space-dependent slowing-down equations using continuous-energy discrete ordinates or integral transport theory to produce fine-group cross sections. Results are given for three water-moderated lattices - a mixed oxide, a uranium method, and a tight-pitch high-conversion uranium oxide configuration. The latter two lattices were chosen because of the strong self shielding of the 238 U resonances

  3. ANISN-L, a CDC-7600 code which solves the one-dimensional, multigroup, time dependent transport equation by the method of discrete ordinates

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, T. P.

    1973-09-20

    The code ANISN-L solves the one-dimensional, multigroup, time-independent Boltzmann transport equation by the method of discrete ordinates. In problems involving a fissionable system, it can calculate the system multiplication or alpha. In such cases, it is also capable of determining isotopic concentrations, radii, zone widths, or buckling in order to achieve a given multiplication or alpha. The code may also calculate fluxes caused by a specified fixed source. Neutron, gamma, and coupled neutron--gamma problems may be solved in either the forward or adjoint (backward) modes. Cross sections describing upscatter, as well as the usual downscatter, may be employed. This report describes the use of ANISN-L; this is a revised version of ANISN which handles both large and small problems efficiently on CDC-7600 computers. (RWR)

  4. Coupling of discrete ordinates methods by transmission of boundary conditions in solving the neutron transport equation in slab geometry; Couplage de discretisations aux ordonnees discretes d`equations de transport 1D par passage de conditions frontieres

    Energy Technology Data Exchange (ETDEWEB)

    Bal, G. [Departement MMN, Service IMA, Direction des Etudes et Recherches, Electricite de France (EDF), 92 - Clamart (France)

    1995-10-01

    Neutron transport in nuclear reactors is quite well modelled by the linear Boltzmann transport equation. Its solution is relatively easy, but unfortunately too expensive to achieve whole core computations. Thus, we have to simplify it, for example by homogenizing some physical characteristics. However, the solution may then be inaccurate. Moreover, in strongly homogeneous areas, the error may be too big. Then we would like to deal with such an inconvenient by solving the equation accurately on this area, but more coarsely away from it, so that the computation is not too expensive. This problem is the subject of a thesis. We present here some results obtained for slab geometry. The couplings between the fine and coarse discretization regions could be conceived in a number of approaches. Here, we only deal with the coupling at crossing the interface between two sub-domains. In the first section, we present the coupling of discrete ordinate methods for solving the homogeneous, isotropic and mono-kinetic equation. Coupling operators are defined and shown to be optimal. The second and the third sections are devoted to an extension of the previous results when the equation is non-homogeneous, anisotropic and multigroup (under some restrictive assumptions). Some numerical results are given in the case of isotropic and mono-kinetic equations. (author) 15 refs.

  5. Development of a discrete-ordinate approximation of the neutron transport equation for coupled xy-R-geometry

    International Nuclear Information System (INIS)

    Maertens, H.D.

    1982-01-01

    The inhomogenious structure of modern heavy water reactor fuel elements result in a strong spacial dependence of the neutron flux. The flux distribution can be calculated in detail by numerical methods, which describe exactly the geometrical heterogeniety and take into account the neutron flux anisotropy by higher transport theoretical approximations. Starting from the discrete ordinate method an approximation of the neutron transport equation has been developed, allowing for a cylindrical representation of the fuel-elements in a rectangular array of rods. The discretisation of the space variables, is based on the finite-difference approximation, defining a rectangular lattice in a two-dimensional cartesian coordinate system, which can be cut and replaced by circular mesh elements of a partially one-dimensional cylindrical coordinate system at arbitrary space points. To couple the two spacial regions the outer circle line of a cylindrical geometry is approximated in the cartesian system by a polygon with n >= 8. A cylindrical geometry is approximated in the cartesian system by a polygon with n>=8. A cylindrical geometry is thus enclosed by a system of two-dimensional rectangular, triangular and trapezoid mesh elements. The directional distribution of the neutron flux is conserved when switching from the xy-system to the cylindrical coordinate system. The angle discretisation by balanced sets of squares (EQsub(n)) allows a simple definition of transfer-coefficients for the redistribution of the neutron flux due to coordinate transformations. The procedure is verified and tested by selected problems. Possible applications and limits are discussed. (orig.) [de

  6. Diffusion-synthetic acceleration methods for discrete-ordinates problems

    International Nuclear Information System (INIS)

    Larsen, E.W.

    1984-01-01

    The diffusion-synthetic acceleration (DSA) method is an iterative procedure for obtaining numerical solutions of discrete-ordinates problems. The DSA method is operationally more complicated than the standard source-iteration (SI) method, but if encoded properly it converges much more rapidly, especially for problems with diffusion-like regions. In this article we describe the basic ideas behind the DSA method and give a (roughly chronological) review of its long development. We conclude with a discussion which covers additional topics, including some remaining open problems an the status of current efforts aimed at solving these problems

  7. Computation of 2-D pinhole image-formation process of large-scale furnaces using the discrete ordinates method

    CERN Document Server

    Li Hong; Lu Ji Dong; Zheng Chu Guan

    2003-01-01

    In most of the discrete ordinate schemes (DOS) reported in the literature, the discrete directions are fixed, and unable to be arbitrarily adjusted; therefore, it is difficult to employ these schemes to calculate the radiative energy image-formation of pulverized-coal furnaces. On the basis of a new DOS, named the discrete ordinate scheme with (an) infinitely small weight(s), which was recently proposed by the authors, a novel algorithm for computing the pinhole image-formation process is developed in this work. The performance of this algorithm is tested, and is found to be also suitable for parallel computation.

  8. Computation of 2-D pinhole image-formation process of large-scale furnaces using the discrete ordinates method

    International Nuclear Information System (INIS)

    Li Hongshun; Zhou Huaichun; Lu Jidong; Zheng Chuguang

    2003-01-01

    In most of the discrete ordinate schemes (DOS) reported in the literature, the discrete directions are fixed, and unable to be arbitrarily adjusted; therefore, it is difficult to employ these schemes to calculate the radiative energy image-formation of pulverized-coal furnaces. On the basis of a new DOS, named the discrete ordinate scheme with (an) infinitely small weight(s), which was recently proposed by the authors, a novel algorithm for computing the pinhole image-formation process is developed in this work. The performance of this algorithm is tested, and is found to be also suitable for parallel computation

  9. Three-dimensional discrete ordinates reactor assembly calculations on GPUs

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Thomas M [ORNL; Joubert, Wayne [ORNL; Hamilton, Steven P [ORNL; Johnson, Seth R [ORNL; Turner, John A [ORNL; Davidson, Gregory G [ORNL; Pandya, Tara M [ORNL

    2015-01-01

    In this paper we describe and demonstrate a discrete ordinates sweep algorithm on GPUs. This sweep algorithm is nested within a multilevel comunication-based decomposition based on energy. We demonstrated the effectiveness of this algorithm on detailed three-dimensional critical experiments and PWR lattice problems. For these problems we show improvement factors of 4 6 over conventional communication-based, CPU-only sweeps. These sweep kernel speedups resulted in a factor of 2 total time-to-solution improvement.

  10. The discrete cones methods for two-dimensional neutral particle transport problems with voids

    International Nuclear Information System (INIS)

    Watanabe, Y.; Maynard, C.W.

    1983-01-01

    One of the most widely applied deterministic methods for time-independent, two-dimensional neutron transport calculations is the discrete ordinates method (DSN). The DSN solution, however, fails to be accurate in a void due to the ray effect. In order to circumvent this drawback, the authors have been developing a novel approximation: the discrete cones method (DCN), where a group of particles in a cone are simultaneously traced instead of particles in discrete directions for the DSN method. Programs, which apply to the DSN method in a non-vacuum region and the DCN method in a void, have been written for transport calculations in X-Y coordinates. The solutions for test problems demonstrate mitigation of the ray effect in voids without loosing the computational efficiency of the DSN method

  11. Effect of flux discontinuity on spatial approximations for discrete ordinates methods

    International Nuclear Information System (INIS)

    Duo, J.I.; Azmy, Y.Y.

    2005-01-01

    This work presents advances on error analysis of the spatial approximation of the discrete ordinates method for solving the neutron transport equation. Error norms for different non-collided flux problems over a two dimensional pure absorber medium are evaluated using three numerical methods. The problems are characterized by the incoming flux boundary conditions to obtain solutions with different level of differentiability. The three methods considered are the Diamond Difference (DD) method, the Arbitrarily High Order Transport method of the Nodal type (AHOT-N), and of the Characteristic type (AHOT-C). The last two methods are employed in constant, linear and quadratic orders of spatial approximation. The cell-wise error is computed as the difference between the cell-averaged flux computed by each method and the exact value, then the L 1 , L 2 , and L ∞ error norms are calculated. The results of this study demonstrate that the level of differentiability of the exact solution profoundly affects the rate of convergence of the numerical methods' solutions. Furthermore, in the case of discontinuous exact flux the methods fail to converge in the maximum error norm, or in the pointwise sense, in accordance with previous local error analysis. (authors)

  12. The CNCSN: one, two- and three-dimensional coupled neutral and charged particle discrete ordinates code package

    International Nuclear Information System (INIS)

    Voloschenko, A.M.; Gukov, S.V.; Kryuchkov, V.P.; Dubinin, A.A.; Sumaneev, O.V.

    2005-01-01

    The CNCSN package is composed of the following codes: -) KATRIN-2.0: a three-dimensional neutral and charged particle transport code; -) KASKAD-S-2.5: a two-dimensional neutral and charged particle transport code; -) ROZ-6.6: a one-dimensional neutral and charged particle transport code; -) ARVES-2.5: a preprocessor for the working macroscopic cross-section format FMAC-M for transport calculations; -) MIXERM: a utility code for preparing mixtures on the base of multigroup cross-section libraries in ANISN format; -) CEPXS-BFP: a version of the Sandia National Lab. multigroup coupled electron-photon cross-section generating code CEPXS, adapted for solving the charged particles transport in the Boltzmann-Fokker-Planck formulation with the use of discrete ordinate method; -) SADCO-2.4: Institute for High-Energy Physics modular system for generating coupled nuclear data libraries to provide high-energy particles transport calculations by multigroup method; -) KATRIF: the post-processor for the KATRIN code; -) KASF: the post-processor for the KASKAD-S code; and ROZ6F: the post-processor for the ROZ-6 code. The coding language is Fortran-90

  13. Methodology for solving the equation of transport ordered discrete TORT code in the reactor IPEN/MB-01; Metodologia para resolver la ecuacion del transporte con el codigo de Ordenadas Discretas TORT en el reactor IPEN/MB-01

    Energy Technology Data Exchange (ETDEWEB)

    Bernal, A.; Abarca, A.; Barrachina, T.; Miro, R.; Verdu, G.

    2013-07-01

    The resolution of the neutron transport equation in steady state in pool-type nuclear reactors, is normally achieved through 2 different numerical methods: Monte Carlo (stochastic) and discrete ordinates (deterministic). The discrete ordinates method solves the neutron transport equation for a set of specific addresses, obtaining a set of equations and solutions for each direction, where the solution for each direction is the angular flux. With the aim of treating energy dependence, used energy multigroup approximation, thus obtaining a set of equations that depends on the number of energy groups considered.

  14. Diffusion-synthetic acceleration methods for the discrete-ordinates equations

    International Nuclear Information System (INIS)

    Larsen, E.W.

    1983-01-01

    The diffusion-synthetic acceleration (DSA) method is an iterative procedure for obtaining numerical solutions of discrete-ordinates problems. The DSA method is operationally more complicated than the standard source-iteration (SI) method, but if encoded properly it converges much more rapidly, especially for problems with diffusion-like regions. In this article we describe the basic ideas beind the DSA method and give a (roughly chronological) review of its long development. We conclude with a discussion which covers additional topics, including some remaining open problems and the status of current efforts aimed at solving these problems

  15. Solution of neutron transport equation using Daubechies' wavelet expansion in the angular discretization

    International Nuclear Information System (INIS)

    Cao Liangzhi; Wu Hongchun; Zheng Youqi

    2008-01-01

    Daubechies' wavelet expansion is introduced to discretize the angular variables of the neutron transport equation when the neutron angular flux varies very acutely with the angular directions. An improvement is made by coupling one-dimensional wavelet expansion and discrete ordinate method to make two-dimensional angular discretization efficient and stable. The angular domain is divided into several subdomains for treating the vacuum boundary condition exactly in the unstructured geometry. A set of wavelet equations coupled with each other is obtained in each subdomain. An iterative method is utilized to decouple the wavelet moments. The numerical results of several benchmark problems demonstrate that the wavelet expansion method can provide more accurate results by lower-order expansion than other angular discretization methods

  16. Particular solution of the discrete-ordinate method.

    Science.gov (United States)

    Qin, Yi; Box, Michael A; Jupp, David L

    2004-06-20

    We present two methods that can be used to derive the particular solution of the discrete-ordinate method (DOM) for an arbitrary source in a plane-parallel atmosphere, which allows us to solve the transfer equation 12-18% faster in the case of a single beam source and is even faster for the atmosphere thermal emission source. We also remove the divide by zero problem that occurs when a beam source coincides with a Gaussian quadrature point. In our implementation, solution for multiple sources can be obtained simultaneously. For each extra source, it costs only 1.3-3.6% CPU time required for a full solution. The GDOM code that we developed previously has been revised to integrate with the DOM. Therefore we are now able to compute the Green's function and DOM solutions simultaneously.

  17. Ordinance on the transport of dangerous goods by road (SDR)

    International Nuclear Information System (INIS)

    1985-04-01

    This Ordinance regulates the transport of dangerous goods by road and replaces a similar Ordinance of 1972. The dangerous goods are listed in Annex A and the special provisions to be complied with for their transport are contained in Annex B. Radioactive materials, categorized as Class IVb, are included in the goods covered by the Ordinance. The Ordinance which entered into force on 1 May 1985 was amended on 9 April 1987 on a minor point and on 27 November 1989 so as to provide for special training for drivers of vehicles carrying such goods. This latter amendment entered into force on 1 January 1990. (NEA) [fr

  18. Radiative heat transfer in strongly forward scattering media using the discrete ordinates method

    Science.gov (United States)

    Granate, Pedro; Coelho, Pedro J.; Roger, Maxime

    2016-03-01

    The discrete ordinates method (DOM) is widely used to solve the radiative transfer equation, often yielding satisfactory results. However, in the presence of strongly forward scattering media, this method does not generally conserve the scattering energy and the phase function asymmetry factor. Because of this, the normalization of the phase function has been proposed to guarantee that the scattering energy and the asymmetry factor are conserved. Various authors have used different normalization techniques. Three of these are compared in the present work, along with two other methods, one based on the finite volume method (FVM) and another one based on the spherical harmonics discrete ordinates method (SHDOM). In addition, the approximation of the Henyey-Greenstein phase function by a different one is investigated as an alternative to the phase function normalization. The approximate phase function is given by the sum of a Dirac delta function, which accounts for the forward scattering peak, and a smoother scaled phase function. In this study, these techniques are applied to three scalar radiative transfer test cases, namely a three-dimensional cubic domain with a purely scattering medium, an axisymmetric cylindrical enclosure containing an emitting-absorbing-scattering medium, and a three-dimensional transient problem with collimated irradiation. The present results show that accurate predictions are achieved for strongly forward scattering media when the phase function is normalized in such a way that both the scattered energy and the phase function asymmetry factor are conserved. The normalization of the phase function may be avoided using the FVM or the SHDOM to evaluate the in-scattering term of the radiative transfer equation. Both methods yield results whose accuracy is similar to that obtained using the DOM along with normalization of the phase function. Very satisfactory predictions were also achieved using the delta-M phase function, while the delta

  19. GGVS. Ordinance on road transport of hazardous materials, including the European agreement on international road transport of hazardous materials (ADR), in their wording. Annexes A and B. Ordinances regarding exceptions from GGVS and from the ordinance on rail transport of hazardous materials, GGVE. Reasons. Selected guidelines. List of materials. 6. rev. and enlarged ed.

    International Nuclear Information System (INIS)

    Ridder, K.

    1990-01-01

    The brochure contains the following texts: (1) Ordinance on road transport of hazardous materials (GGVS), including the European agreement on international road transport of hazardous materials (ADR), as of 1990: Skeleton ordinance, annexes A and B, reasons given for the first version, and for the first amendment in 1988, execution guidelines - RS 002 (guidelines for executing the ordinance on road transport of hazardous materials, with catalogue of penalties), guidelines for drawing up written instructions for the event of accidents - RS 006, guiding principles for the training of vehicle conductors; (2) ordinance regarding exceptions from the ordinance on road transport of hazardous materials; (3) ordinance regarding exceptions from the ordinance on rail transport of hazardous materials; (4) selected guidelines: Technical guidelines TR IBC K 001, TRS 003, TRS 004, TRS 005, TRS 006; (5) listing of materials and objects governed by the ordinance on hazardous materials transport; (6) catalogue of penalties relative to road transport of hazardous materials. (orig./HP) [de

  20. Development and application of the discrete ordinate method in orthogonal curvilinear coordinates; Developpement et application de la methode des ordonnees discretes en coordonnees curvilignes orthogonales

    Energy Technology Data Exchange (ETDEWEB)

    Vaillon, R; Lallemand, M; Lemonnier, D [Ecole Nationale Superieure de Mecanique et d` Aerotechnique (ENSMA), 86 - Poitiers (France)

    1997-12-31

    The method of discrete ordinates, which is more and more widely used in radiant heat transfer studies, is mainly developed in Cartesian, (r,z) and (r,{Theta}) cylindrical, and spherical coordinates. In this study, the approach of this method is performed in orthogonal curvilinear coordinates: determination of the radiant heat transfer equation, treatment of the angular redistribution terms, numerical procedure. Some examples of application are described in 2-D geometry defined in curvilinear coordinates along a curve and at the thermal equilibrium. A comparison is made with the discrete ordinates method in association with the finite-volumes method in non structured mesh. (J.S.) 27 refs.

  1. Development and application of the discrete ordinate method in orthogonal curvilinear coordinates; Developpement et application de la methode des ordonnees discretes en coordonnees curvilignes orthogonales

    Energy Technology Data Exchange (ETDEWEB)

    Vaillon, R.; Lallemand, M.; Lemonnier, D. [Ecole Nationale Superieure de Mecanique et d`Aerotechnique (ENSMA), 86 - Poitiers (France)

    1996-12-31

    The method of discrete ordinates, which is more and more widely used in radiant heat transfer studies, is mainly developed in Cartesian, (r,z) and (r,{Theta}) cylindrical, and spherical coordinates. In this study, the approach of this method is performed in orthogonal curvilinear coordinates: determination of the radiant heat transfer equation, treatment of the angular redistribution terms, numerical procedure. Some examples of application are described in 2-D geometry defined in curvilinear coordinates along a curve and at the thermal equilibrium. A comparison is made with the discrete ordinates method in association with the finite-volumes method in non structured mesh. (J.S.) 27 refs.

  2. Advances in the discrete ordinates and finite volume methods for the solution of radiative heat transfer problems in participating media

    International Nuclear Information System (INIS)

    Coelho, Pedro J.

    2014-01-01

    Many methods are available for the solution of radiative heat transfer problems in participating media. Among these, the discrete ordinates method (DOM) and the finite volume method (FVM) are among the most widely used ones. They provide a good compromise between accuracy and computational requirements, and they are relatively easy to integrate in CFD codes. This paper surveys recent advances on these numerical methods. Developments concerning the grid structure (e.g., new formulations for axisymmetrical geometries, body-fitted structured and unstructured meshes, embedded boundaries, multi-block grids, local grid refinement), the spatial discretization scheme, and the angular discretization scheme are described. Progress related to the solution accuracy, solution algorithm, alternative formulations, such as the modified DOM and FVM, even-parity formulation, discrete-ordinates interpolation method and method of lines, and parallelization strategies is addressed. The application to non-gray media, variable refractive index media, and transient problems is also reviewed. - Highlights: • We survey recent advances in the discrete ordinates and finite volume methods. • Developments in spatial and angular discretization schemes are described. • Progress in solution algorithms and parallelization methods is reviewed. • Advances in the transient solution of the radiative transfer equation are appraised. • Non-gray media and variable refractive index media are briefly addressed

  3. Applications of the Discrete ordinates of Oak ridge System (DOORS) package to Nuclear Engineering problems

    Energy Technology Data Exchange (ETDEWEB)

    Azmy, Y.Y. [The Pennsylvania State University, 229 Reber Building, University Park, PA 16802 (United States)]. e-mail: yya3@psu.edu

    2004-07-01

    Particle transport problems are notorious for their difficulty. This fact requires that production level computer codes designed to address realistic engineering problems possess three important features: (i) high computational efficiency as measured by solution accuracy for a fixed computational cost; (ii) a wide variety of options to enhance robustness of the transport solver; and (iii) a broad collection of support codes that extend the reach of the transport solver to a wide variety of applications. The Discrete Ordinates of Oak Ridge System (DOORS) code package was designed with these features in mind. In this paper, capabilities of member codes in the DOORS package are overviewed with particular emphasis on two newly developed peripheral codes: BOT3P the mesh-generation and visualization code package, and GipGui the graphical user interface for the cross section manipulation code, GIP. Two large applications are used to illustrate the tight coupling between the peripheral codes and the DORT and TORT transport solvers in two and three dimensional geometries, respectively. These are: (i) criticality calculations for the C5G7MOX core benchmark; and (ii) dose distribution calculations for the Target Service Cell (TSC) of the Spallation Neutron Source (SNS). (Author)

  4. Applications of the Discrete ordinates of Oak ridge System (DOORS) package to Nuclear Engineering problems

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    2004-01-01

    Particle transport problems are notorious for their difficulty. This fact requires that production level computer codes designed to address realistic engineering problems possess three important features: (i) high computational efficiency as measured by solution accuracy for a fixed computational cost; (ii) a wide variety of options to enhance robustness of the transport solver; and (iii) a broad collection of support codes that extend the reach of the transport solver to a wide variety of applications. The Discrete Ordinates of Oak Ridge System (DOORS) code package was designed with these features in mind. In this paper, capabilities of member codes in the DOORS package are overviewed with particular emphasis on two newly developed peripheral codes: BOT3P the mesh-generation and visualization code package, and GipGui the graphical user interface for the cross section manipulation code, GIP. Two large applications are used to illustrate the tight coupling between the peripheral codes and the DORT and TORT transport solvers in two and three dimensional geometries, respectively. These are: (i) criticality calculations for the C5G7MOX core benchmark; and (ii) dose distribution calculations for the Target Service Cell (TSC) of the Spallation Neutron Source (SNS). (Author)

  5. On the equivalence between the discrete ordinates and the spherical harmonics methods in radiative transfer

    International Nuclear Information System (INIS)

    Barichello, L.B.; Siewert, C.E.

    1998-01-01

    In this work concerning steady-state radiative-transfer calculations in plane-parallel media, the equivalence between the discrete ordinates method and the spherical harmonics method is proved. More specifically, it is shown that for standard radiative-transfer problems without the imposed restriction of azimuthal symmetry the two methods yield identical results for the radiation intensity when the quadrature scheme for the discrete ordinates method is defined by the zeros of the associated Legendre functions and when generalized Mark boundary conditions are used to define the spherical harmonics solution. It is also shown that, with these choices for a quadrature scheme and for the boundary conditions, the two methods can be formulated so as to require the same computational effort. Finally a justification for using the generalized Mark boundary conditions in the spherical harmonics solution is given

  6. First ordinance amending the Ordinance on Rail Transport of Dangerous Goods (1. Amendment Ordinance Rail Transport of Dangerous Goods). As of June 22, 1983

    International Nuclear Information System (INIS)

    1983-01-01

    This Amendment which came into force on September 1, 1983 brings about modifications of many items of the original Ordinance on Rail Transport of Dangerous Goods and its supplement, as of August 29, 1979. (HSCH) [de

  7. New developments in the discrete ordinate method for the resolution of the radiative transfer equation

    International Nuclear Information System (INIS)

    Ben Jaffel, L.; Vidal-Madjar, A.

    1989-01-01

    The discrete ordinate method for the resolution of the radiative transfer equation is developed. We show that the construction of a quasi-analytical solution to the corresponding matrix diagonalization problem reduces the time calculation and allows the use of more dense discrete frequency and angle grids. Comparison with previous work is made, showing that the present method reduces by more than a factor of ten the computational time, and is more appropriate in all cases

  8. A response matrix method for one-speed discrete ordinates fixed source problems in slab geometry with no spatial truncation error

    International Nuclear Information System (INIS)

    Lydia, Emilio J.; Barros, Ricardo C.

    2011-01-01

    In this paper we describe a response matrix method for one-speed slab-geometry discrete ordinates (SN) neutral particle transport problems that is completely free from spatial truncation errors. The unknowns in the method are the cell-edge angular fluxes of particles. The numerical results generated for these quantities are exactly those obtained from the analytic solution of the SN problem apart from finite arithmetic considerations. Our method is based on a spectral analysis that we perform in the SN equations with scattering inside a discretization cell of the spatial grid set up on the slab. As a result of this spectral analysis, we are able to obtain an expression for the local general solution of the SN equations. With this local general solution, we determine the response matrix and use the prescribed boundary conditions and continuity conditions to sweep across the discretization cells from left to right and from right to left across the slab, until a prescribed convergence criterion is satisfied. (author)

  9. Generating Importance Map for Geometry Splitting using Discrete Ordinates Code in Deep Shielding Problem

    International Nuclear Information System (INIS)

    Kim, Jong Woon; Lee, Young Ouk

    2016-01-01

    When we use MCNP code for a deep shielding problem, we prefer to use variance reduction technique such as geometry splitting, or weight window, or source biasing to have relative error within reliable confidence interval. To generate importance map for geometry splitting in MCNP calculation, we should know the track entering number and previous importance on each cells since a new importance is calculated based on these information. If a problem is deep shielding problem such that we have zero tracks entering on a cell, we cannot generate new importance map. In this case, discrete ordinates code can provide information to generate importance map easily. In this paper, we use AETIUS code as a discrete ordinates code. Importance map for MCNP is generated based on a zone average flux of AETIUS calculation. The discretization of space, angle, and energy is not necessary for MCNP calculation. This is the big merit of MCNP code compared to the deterministic code. However, deterministic code (i.e., AETIUS) can provide a rough estimate of the flux throughout a problem relatively quickly. This can help MCNP by providing variance reduction parameters. Recently, ADVANTG code is released. This is an automated tool for generating variance reduction parameters for fixed-source continuous-energy Monte Carlo simulations with MCNP5 v1.60

  10. Application of the 2-D discrete-ordinates method to multiple scattering of laser radiation

    International Nuclear Information System (INIS)

    Zardecki, A.; Gerstl, S.A.W.; Embury, J.F.

    1983-01-01

    The discrete-ordinates finite-element radiation transport code twotran is applied to describe the multiple scattering of a laser beam from a reflecting target. For a model scenario involving a 99% relative humidity rural aerosol we compute the average intensity of the scattered radiation and correction factors to the Beer-Lambert law arising from multiple scattering. As our results indicate, 2-D x-y and r-z geometry modeling can reliably describe a realistic 3-D scenario. Specific results are presented for the two visual ranges of 1.52 and 0.76 km which show that, for sufficiently high aerosol concentrations (e.g., equivalent to V = 0.76 km), the target signature in a distant detector becomes dominated by multiply scattered radiation from interactions of the laser light with the aerosol environment. The merits of the scaling group and the delta-M approximation for the transfer equation are also explored

  11. Modifications Of Discrete Ordinate Method For Computations With High Scattering Anisotropy: Comparative Analysis

    Science.gov (United States)

    Korkin, Sergey V.; Lyapustin, Alexei I.; Rozanov, Vladimir V.

    2012-01-01

    A numerical accuracy analysis of the radiative transfer equation (RTE) solution based on separation of the diffuse light field into anisotropic and smooth parts is presented. The analysis uses three different algorithms based on the discrete ordinate method (DOM). Two methods, DOMAS and DOM2+, that do not use the truncation of the phase function, are compared against the TMS-method. DOMAS and DOM2+ use the Small-Angle Modification of RTE and the single scattering term, respectively, as an anisotropic part. The TMS method uses Delta-M method for truncation of the phase function along with the single scattering correction. For reference, a standard discrete ordinate method, DOM, is also included in analysis. The obtained results for cases with high scattering anisotropy show that at low number of streams (16, 32) only DOMAS provides an accurate solution in the aureole area. Outside of the aureole, the convergence and accuracy of DOMAS, and TMS is found to be approximately similar: DOMAS was found more accurate in cases with coarse aerosol and liquid water cloud models, except low optical depth, while the TMS showed better results in case of ice cloud.

  12. Discrete-ordinate method with matrix exponential for a pseudo-spherical atmosphere: Scalar case

    International Nuclear Information System (INIS)

    Doicu, A.; Trautmann, T.

    2009-01-01

    We present a discrete-ordinate algorithm using the matrix-exponential solution for pseudo-spherical radiative transfer. Following the finite-element technique we introduce the concept of layer equation and formulate the discrete radiative transfer problem in terms of the level values of the radiance. The layer quantities are expressed by means of matrix exponentials, which are computed by using the matrix eigenvalue method and the Pade approximation. These solution methods lead to a compact and versatile formulation of the radiative transfer. Simulated nadir and limb radiances for an aerosol-loaded atmosphere and a cloudy atmosphere are presented along with a discussion of the model intercomparisons and timings

  13. The discrete ordinate method in association with the finite-volume method in non-structured mesh; Methode des ordonnees discretes associee a la methode des volumes finis en maillage non structure

    Energy Technology Data Exchange (ETDEWEB)

    Le Dez, V; Lallemand, M [Ecole Nationale Superieure de Mecanique et d` Aerotechnique (ENSMA), 86 - Poitiers (France); Sakami, M; Charette, A [Quebec Univ., Chicoutimi, PQ (Canada). Dept. des Sciences Appliquees

    1997-12-31

    The description of an efficient method of radiant heat transfer field determination in a grey semi-transparent environment included in a 2-D polygonal cavity with surface boundaries that reflect the radiation in a purely diffusive manner is proposed, at the equilibrium and in radiation-conduction coupling situation. The technique uses simultaneously the finite-volume method in non-structured triangular mesh, the discrete ordinate method and the ray shooting method. The main mathematical developments and comparative results with the discrete ordinate method in orthogonal curvilinear coordinates are included. (J.S.) 10 refs.

  14. The discrete ordinate method in association with the finite-volume method in non-structured mesh; Methode des ordonnees discretes associee a la methode des volumes finis en maillage non structure

    Energy Technology Data Exchange (ETDEWEB)

    Le Dez, V.; Lallemand, M. [Ecole Nationale Superieure de Mecanique et d`Aerotechnique (ENSMA), 86 - Poitiers (France); Sakami, M.; Charette, A. [Quebec Univ., Chicoutimi, PQ (Canada). Dept. des Sciences Appliquees

    1996-12-31

    The description of an efficient method of radiant heat transfer field determination in a grey semi-transparent environment included in a 2-D polygonal cavity with surface boundaries that reflect the radiation in a purely diffusive manner is proposed, at the equilibrium and in radiation-conduction coupling situation. The technique uses simultaneously the finite-volume method in non-structured triangular mesh, the discrete ordinate method and the ray shooting method. The main mathematical developments and comparative results with the discrete ordinate method in orthogonal curvilinear coordinates are included. (J.S.) 10 refs.

  15. TDTORT: Time-Dependent, 3-D, Discrete Ordinates, Neutron Transport Code System with Delayed Neutrons

    International Nuclear Information System (INIS)

    2002-01-01

    1 - Description of program or function: TDTORT solves the time-dependent, three-dimensional neutron transport equation with explicit representation of delayed neutrons to estimate the fission yield from fissionable material transients. This release includes a modified version of TORT from the C00650MFMWS01 DOORS3.1 code package plus the time-dependent TDTORT code. GIP is also included for cross-section preparation. TORT calculates the flux or fluence of particles due to particles incident upon the system from extraneous sources or generated internally as a result of interaction with the system in two- or three-dimensional geometric systems. The principle application is to the deep-penetration transport of neutrons and photons. Reactor eigenvalue problems can also be solved. Numerous printed edits of the results are available, and results can be transferred to output files for subsequent analysis. TDTORT reads ANISN-format cross-section libraries, which are not included in the package. Users may choose from several available in RSICC's data library collection which can be identified by the keyword 'ANISN FORMAT'. 2 - Methods:The time-dependent spatial flux is expressed as a product of a space-, energy-, and angle-dependent shape function, which is usually slowly varying in time and a purely time-dependent amplitude function. The shape equation is solved for the shape using TORT; and the result is used to calculate the point kinetics parameters (e.g., reactivity) by using their inner product definitions, which are then used to solve the time-dependent amplitude and precursor equations. The amplitude function is calculated by solving the kinetics equations using the LSODE solver. When a new shape calculation is needed, the flux is calculated using the newly computed amplitude function. The Boltzmann transport equation is solved using the method of discrete ordinates to treat the directional variable and weighted finite-difference methods, in addition to Linear Nodal

  16. The time-dependent 3D discrete ordinates code TORT-TD with thermal-hydraulic feedback by ATHLET models

    International Nuclear Information System (INIS)

    Seubert, A.; Velkov, K.; Langenbuch, S.

    2008-01-01

    This paper describes the time-dependent 3D discrete ordinates transport code TORT-TD. Thermal-hydraulic feedback is considered by coupling TORT-TD with the thermal-hydraulics system code ATHLET. The coupled code TORT-TD/ATHLET allows 3D pin-by-pin analyses of transients in few energy groups and anisotropic scattering by solving the time-dependent transport equation using the unconditionally stable implicit method. The nuclear cross sections are interpolated between pre-calculated table values of fuel temperature, moderator density and boron concentration. For verification of the implementation, selected test cases have been calculated by TORT-TD/ATHLET. They include a control rod ejection transient in a small PWR fuel assembly arrangement and a local boron concentration change in a single PWR fuel assembly. In the latter, special attention has been paid to study the influence of the thermal-hydraulic feedback modelling in ATHLET. The results obtained for a control rod ejection accident in a PWR quarter core demonstrate the applicability of TORT-TD/ATHLET. (authors)

  17. Experiences in the parallelization of the discrete ordinates method using OpenMP and MPI

    Energy Technology Data Exchange (ETDEWEB)

    Pautz, A. [TUV Hannover/Sachsen-Anhalt e.V. (Germany); Langenbuch, S. [Gesellschaft fur Anlagen- und Reaktorsicherheit (GRS) mbH (Germany)

    2003-07-01

    The method of Discrete Ordinates is in principle parallelizable to a high degree, since the transport 'mesh sweeps' are mutually independent for all angular directions. However, in the well-known production code Dort such a type of angular domain decomposition has to be done on a spatial line-byline basis, causing the parallelism in the code to be very fine-grained. The construction of scalar fluxes and moments requires a large effort for inter-thread or inter-process communication. We have implemented two different parallelization approaches in Dort: firstly, we have used a shared-memory model suitable for SMP (Symmetric Multiprocessor) machines based on the standard OpenMP. The second approach uses the well-known Message Passing Interface (MPI) to establish communication between parallel processes running in a distributed-memory environment. We investigate the benefits and drawbacks of both models and show first results on performance and scaling behaviour of the parallel Dort code. (authors)

  18. Experiences in the parallelization of the discrete ordinates method using OpenMP and MPI

    International Nuclear Information System (INIS)

    Pautz, A.; Langenbuch, S.

    2003-01-01

    The method of Discrete Ordinates is in principle parallelizable to a high degree, since the transport 'mesh sweeps' are mutually independent for all angular directions. However, in the well-known production code Dort such a type of angular domain decomposition has to be done on a spatial line-byline basis, causing the parallelism in the code to be very fine-grained. The construction of scalar fluxes and moments requires a large effort for inter-thread or inter-process communication. We have implemented two different parallelization approaches in Dort: firstly, we have used a shared-memory model suitable for SMP (Symmetric Multiprocessor) machines based on the standard OpenMP. The second approach uses the well-known Message Passing Interface (MPI) to establish communication between parallel processes running in a distributed-memory environment. We investigate the benefits and drawbacks of both models and show first results on performance and scaling behaviour of the parallel Dort code. (authors)

  19. Extended discrete-ordinate method considering full polarization state

    International Nuclear Information System (INIS)

    Box, Michael A.; Qin Yi

    2006-01-01

    This paper presents an extension to the standard discrete-ordinate method (DOM) to consider generalized sources including: beam sources which can be placed at any (vertical) position and illuminate in any direction, thermal emission from the atmosphere and angularly distributed sources which illuminate from a surface as continuous functions of zenith and azimuth angles. As special cases, the thermal emission from the surface and deep space can be implemented as angularly distributed sources. Analytical-particular solutions for all source types are derived using the infinite medium Green's function. Radiation field zenith angle interpolation using source function integration is developed for all source types. The development considers the full state of polarization, including the sources (as applicable) and the (BRDF) surface, but the development can be reduced easily to scalar problems and is ready to be implemented in a single set of code for both scalar and vector radiative transfer computation

  20. TIMEX: a time-dependent explicit discrete ordinates program for the solution of multigroup transport equations with delayed neutrons

    International Nuclear Information System (INIS)

    Hill, T.R.; Reed, W.H.

    1976-01-01

    TIMEX solves the time-dependent, one-dimensional multigroup transport equation with delayed neutrons in plane, cylindrical, spherical, and two-angle plane geometries. Both regular and adjoint, inhomogeneous and homogeneous problems subject to vacuum, reflective, periodic, white, albedo or inhomogeneous boundary flux conditions are solved. General anisotropic scattering is allowed and anisotropic inhomogeneous sources are permitted. The discrete ordinates approximation for the angular variable is used with the diamond (central) difference approximation for the angular extrapolation in curved geometries. A linear discontinuous finite element representation for the angular flux in each spatial mesh cell is used. The time variable is differenced by an explicit technique that is unconditionally stable so that arbitrarily large time steps can be taken. Because no iteration is performed the method is exceptionally fast in terms of computing time per time step. Two acceleration methods, exponential extrapolation and rebalance, are utilized to improve the accuracy of the time differencing scheme. Variable dimensioning is used so that any combination of problem parameters leading to a container array less than MAXCOR can be accommodated. The running time for TIMEX is highly problem-dependent, but varies almost linearly with the total number of unknowns and time steps. Provision is made for creation of standard interface output files for angular fluxes and angle-integrated fluxes. Five interface units (use of interface units is optional), five output units, and two system input/output units are required. A large bulk memory is desirable, but may be replaced by disk, drum, or tape storage. 13 tables, 9 figures

  1. Extended discrete-ordinate method considering full polarization state

    Energy Technology Data Exchange (ETDEWEB)

    Box, Michael A. [School of Physics, University of New South Wales (Australia)]. E-mail: m.box@unsw.edu.au; Qin Yi [School of Physics, University of New South Wales (Australia)]. E-mail: yi.qin@csiro.au

    2006-01-15

    This paper presents an extension to the standard discrete-ordinate method (DOM) to consider generalized sources including: beam sources which can be placed at any (vertical) position and illuminate in any direction, thermal emission from the atmosphere and angularly distributed sources which illuminate from a surface as continuous functions of zenith and azimuth angles. As special cases, the thermal emission from the surface and deep space can be implemented as angularly distributed sources. Analytical-particular solutions for all source types are derived using the infinite medium Green's function. Radiation field zenith angle interpolation using source function integration is developed for all source types. The development considers the full state of polarization, including the sources (as applicable) and the (BRDF) surface, but the development can be reduced easily to scalar problems and is ready to be implemented in a single set of code for both scalar and vector radiative transfer computation.

  2. Solution of the within-group multidimensional discrete ordinates transport equations on massively parallel architectures

    Science.gov (United States)

    Zerr, Robert Joseph

    2011-12-01

    The integral transport matrix method (ITMM) has been used as the kernel of new parallel solution methods for the discrete ordinates approximation of the within-group neutron transport equation. The ITMM abandons the repetitive mesh sweeps of the traditional source iterations (SI) scheme in favor of constructing stored operators that account for the direct coupling factors among all the cells and between the cells and boundary surfaces. The main goals of this work were to develop the algorithms that construct these operators and employ them in the solution process, determine the most suitable way to parallelize the entire procedure, and evaluate the behavior and performance of the developed methods for increasing number of processes. This project compares the effectiveness of the ITMM with the SI scheme parallelized with the Koch-Baker-Alcouffe (KBA) method. The primary parallel solution method involves a decomposition of the domain into smaller spatial sub-domains, each with their own transport matrices, and coupled together via interface boundary angular fluxes. Each sub-domain has its own set of ITMM operators and represents an independent transport problem. Multiple iterative parallel solution methods have investigated, including parallel block Jacobi (PBJ), parallel red/black Gauss-Seidel (PGS), and parallel GMRES (PGMRES). The fastest observed parallel solution method, PGS, was used in a weak scaling comparison with the PARTISN code. Compared to the state-of-the-art SI-KBA with diffusion synthetic acceleration (DSA), this new method without acceleration/preconditioning is not competitive for any problem parameters considered. The best comparisons occur for problems that are difficult for SI DSA, namely highly scattering and optically thick. SI DSA execution time curves are generally steeper than the PGS ones. However, until further testing is performed it cannot be concluded that SI DSA does not outperform the ITMM with PGS even on several thousand or tens of

  3. Collection of problems in transport theory

    International Nuclear Information System (INIS)

    Kaper, H.G.

    1975-01-01

    Problems presented are: (1) definition of transport operators; (2) relation between the integro-differential and integral form of the transport equation; (3) asymptotic behavior of the scalar density near curved boundaries and interfaces; (4) singularities at a corner; (5) regularity of the solution of the transport equation; (7) transport equations on a manifold; (8) numerical analysis; (9) cubature; (10) point spectrum of the transport operator; (11) convergence of the multigroup approximation; (12) convergence of discrete ordinates approximations; (13) the finite double-norm property; (14) convergence of discrete ordinates approximation. The presentation of the problems is intended to direct attention to gaps in the existing knowledge of transport theory and to stimulate research into new areas of transport theory

  4. A numerical method for multigroup slab-geometry discrete ordinates problems with no spatial truncation error

    International Nuclear Information System (INIS)

    Barros, R.C. de; Larsen, E.W.

    1991-01-01

    A generalization of the one-group Spectral Green's Function (SGF) method is developed for multigroup, slab-geometry discrete ordinates (S N ) problems. The multigroup SGF method is free from spatial truncation errors; it generated numerical values for the cell-edge and cell-average angular fluxes that agree with the analytic solution of the multigroup S N equations. Numerical results are given to illustrate the method's accuracy

  5. Slab geometry spatial discretization schemes with infinite-order convergence

    International Nuclear Information System (INIS)

    Adams, M.L.; Martin, W.R.

    1985-01-01

    Spatial discretization schemes for the slab geometry discrete ordinates transport equation have received considerable attention in the past several years, with particular interest shown in developing methods that are more computationally efficient that standard schemes. Here the authors apply to the discrete ordinates equations a spectral method that is significantly more efficient than previously proposed schemes for high-accuracy calculations of homogeneous problems. This is a direct consequence of the exponential (infinite-order) convergence of spectral methods for problems with every smooth solutions. For heterogeneous problems where smooth solutions do not exist and exponential convergence is not observed with spectral methods, a spectral element method is proposed which does exhibit exponential convergence

  6. Discrete ordinate solution of the radiative transfer equation in the 'polarization normal wave representation'

    Science.gov (United States)

    Kylling, A.

    1991-01-01

    The transfer equations for normal waves in finite, inhomogeneous and plane-parallel magnetoactive media are solved using the discrete ordinate method. The physical process of absorption, emission, and multiple scattering are accounted for, and the medium may be forced both at the top and bottom boundary by anisotropic radiation as well as by internal anisotropic sources. The computational procedure is numerically stable for arbitrarily large optical depths, and the computer time is independent of optical thickness.

  7. A coarse-mesh diffusion synthetic acceleration of the scattering source iteration scheme for one-speed slab-geometry discrete ordinates problems

    International Nuclear Information System (INIS)

    Santos, Frederico P.; Alves Filho, Hermes; Barros, Ricardo C.; Xavier, Vinicius S.

    2011-01-01

    The scattering source iterative (SI) scheme is traditionally applied to converge fine-mesh numerical solutions to fixed-source discrete ordinates (S N ) neutron transport problems. The SI scheme is very simple to implement under a computational viewpoint. However, the SI scheme may show very slow convergence rate, mainly for diffusive media (low absorption) with several mean free paths in extent. In this work we describe an acceleration technique based on an improved initial guess for the scattering source distribution within the slab. In other words, we use as initial guess for the fine-mesh scattering source, the coarse-mesh solution of the neutron diffusion equation with special boundary conditions to account for the classical S N prescribed boundary conditions, including vacuum boundary conditions. Therefore, we first implement a spectral nodal method that generates coarse-mesh diffusion solution that is completely free from spatial truncation errors, then we reconstruct this coarse-mesh solution within each spatial cell of the discretization grid, to further yield the initial guess for the fine-mesh scattering source in the first S N transport sweep (μm > 0 and μm < 0, m = 1:N) across the spatial grid. We consider a number of numerical experiments to illustrate the efficiency of the offered diffusion synthetic acceleration (DSA) technique. (author)

  8. A posteriori error estimator and AMR for discrete ordinates nodal transport methods

    International Nuclear Information System (INIS)

    Duo, Jose I.; Azmy, Yousry Y.; Zikatanov, Ludmil T.

    2009-01-01

    In the development of high fidelity transport solvers, optimization of the use of available computational resources and access to a tool for assessing quality of the solution are key to the success of large-scale nuclear systems' simulation. In this regard, error control provides the analyst with a confidence level in the numerical solution and enables for optimization of resources through Adaptive Mesh Refinement (AMR). In this paper, we derive an a posteriori error estimator based on the nodal solution of the Arbitrarily High Order Transport Method of the Nodal type (AHOT-N). Furthermore, by making assumptions on the regularity of the solution, we represent the error estimator as a function of computable volume and element-edges residuals. The global L 2 error norm is proved to be bound by the estimator. To lighten the computational load, we present a numerical approximation to the aforementioned residuals and split the global norm error estimator into local error indicators. These indicators are used to drive an AMR strategy for the spatial discretization. However, the indicators based on forward solution residuals alone do not bound the cell-wise error. The estimator and AMR strategy are tested in two problems featuring strong heterogeneity and highly transport streaming regime with strong flux gradients. The results show that the error estimator indeed bounds the global error norms and that the error indicator follows the cell-error's spatial distribution pattern closely. The AMR strategy proves beneficial to optimize resources, primarily by reducing the number of unknowns solved for to achieve prescribed solution accuracy in global L 2 error norm. Likewise, AMR achieves higher accuracy compared to uniform refinement when resolving sharp flux gradients, for the same number of unknowns

  9. Analysis of QUADOS problem on TLD-ALBEDO personal dosemeter responses using discrete ordinates and Monte Carlo methods

    International Nuclear Information System (INIS)

    Kodeli, I.; Tanner, R.

    2005-01-01

    In the scope of QUADOS, a Concerted Action of the European Commission, eight calculational problems were prepared in order to evaluate the use of computational codes for dosimetry in radiation protection and medical physics, and to disseminate 'good practice' throughout the radiation dosimetry community. This paper focuses on the analysis of the P4 problem on the 'TLD-albedo dosemeter: neutron and/or photon response of a four-element TL-dosemeter mounted on a standard ISO slab phantom'. Altogether 17 solutions were received from the participants, 14 of those transported neutrons and 15 photons. Most participants (16 out of 17) used Monte Carlo methods. These calculations are time-consuming, requiring several days of CPU time to perform the whole set of calculations and achieve good statistical precision. The possibility of using deterministic discrete ordinates codes as an alternative to Monte Carlo was therefore investigated and is presented here. In particular the capacity of the adjoint mode calculations is shown. (authors)

  10. On the adequacy of Cartesian geometry discrete ordinates solutions for assembly calculations

    International Nuclear Information System (INIS)

    Schunert, S.; Azmy, Y. Y.

    2009-01-01

    The current generation of lattice codes employs the method of Collision Probabilities (CP), the Method of Characteristics (MOC) or methods derived thereof to solve the two-dimensional multigroup transport equation on the assembly level. We compare the attainable solution accuracy of the lattice code DRAGON to the accuracy of the Discrete Ordinates (DO) code DORT on the basis of the two-dimensional GE-13 assembly in order to determine if the DO on Cartesian meshes is suitable as flux solver in future lattice codes. If DO exhibits high accuracy for assembly configurations, the next question is at what computational expense compared to traditional assembly codes. For this purpose DORT and DRAGON are required to converge to a reference solution, obtained by a multigroup MCNP calculation, with increasing angular quadrature order and decreasing spatial cell size; additionally for DRAGON the reference solution must be approached with increasing tracking density. The convergence of the two codes is judged via the multiplication factor, the pin wise relative error in the fission production rate, it's RMS and the maximum of it's absolute value over all pins. Additionally the computational cost of the obtained solutions is judged via the user CPU time. Although the multiplication factor computed by both codes converges with refinement of the employed meshes, the maximum deviation error of the fission production rate in the central region of the assembly remains unsatisfactorily high for CP and MOC. (authors)

  11. Specular reflection treatment for the 3D radiative transfer equation solved with the discrete ordinates method

    Energy Technology Data Exchange (ETDEWEB)

    Le Hardy, D. [Université de Nantes, LTN UMR CNRS 6607 (France); Favennec, Y., E-mail: yann.favennec@univ-nantes.fr [Université de Nantes, LTN UMR CNRS 6607 (France); Rousseau, B. [Université de Nantes, LTN UMR CNRS 6607 (France); Hecht, F. [Sorbonne Universités, UPMC Université Paris 06, UMR 7598, inria de Paris, Laboratoire Jacques-Louis Lions, F-75005, Paris (France)

    2017-04-01

    The contribution of this paper relies in the development of numerical algorithms for the mathematical treatment of specular reflection on borders when dealing with the numerical solution of radiative transfer problems. The radiative transfer equation being integro-differential, the discrete ordinates method allows to write down a set of semi-discrete equations in which weights are to be calculated. The calculation of these weights is well known to be based on either a quadrature or on angular discretization, making the use of such method straightforward for the state equation. Also, the diffuse contribution of reflection on borders is usually well taken into account. However, the calculation of accurate partition ratio coefficients is much more tricky for the specular condition applied on arbitrary geometrical borders. This paper presents algorithms that calculate analytically partition ratio coefficients needed in numerical treatments. The developed algorithms, combined with a decentered finite element scheme, are validated with the help of comparisons with analytical solutions before being applied on complex geometries.

  12. The response matrix discrete ordinates solution to the 1D radiative transfer equation

    International Nuclear Information System (INIS)

    Ganapol, Barry D.

    2015-01-01

    The discrete ordinates method (DOM) of solution to the 1D radiative transfer equation has been an effective method of solution for nearly 70 years. During that time, the method has experienced numerous improvements as numerical and computational techniques have become more powerful and efficient. Here, we again consider the analytical solution to the discrete radiative transfer equation in a homogeneous medium by proposing a new, and consistent, form of solution that improves upon previous forms. Aided by a Wynn-epsilon convergence acceleration, its numerical evaluation can achieve extreme precision as demonstrated by comparison with published benchmarks. Finally, we readily extend the solution to a heterogeneous medium through the star product formulation producing a novel benchmark for closed form Henyey–Greenstein scattering as an example. - Highlights: • Presents a new solution to the RTE called the response matrix DOM (RM/DOM). • Solution representations avoid the instability common in exponential solutions. • Explicit form in terms of matrix hyperbolic functions. • Extreme accuracy through Wynn-epsilon acceleration checked by published benchmarks. • Provides a more transparent numerical evaluation than found previously

  13. Approximate albedo boundary conditions for energy multigroup X,Y-geometry discrete ordinates nuclear global calculations

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Davi J.M.; Nunes, Carlos E.A.; Alves Filho, Hermes; Barros, Ricardo C., E-mail: davijmsilva@yahoo.com.br, E-mail: ceanunes@yahoo.com.br, E-mail: rcbarros@pq.cnpq.br [Secretaria Municipal de Educacao de Itaborai, RJ (Brazil); Universidade Estacio de Sa (UNESA), Rio de Janeiro, RJ (Brazil); Universidade do Estado do Rio de Janeiro (UERJ), Novra Friburgo, RJ (Brazil). Instituto Politecnico. Departamento de Modelagem Computacional

    2017-11-01

    Discussed here is the accuracy of approximate albedo boundary conditions for energy multigroup discrete ordinates (S{sub N}) eigenvalue problems in two-dimensional rectangular geometry for criticality calculations in neutron fission reacting systems, such as nuclear reactors. The multigroup (S{sub N}) albedo matrix substitutes approximately the non-multiplying media around the core, e.g., baffle and reflector, as we neglect the transverse leakage terms within these non-multiplying regions. Numerical results to a typical model problem are given to illustrate the accuracy versus the computer running time. (author)

  14. Shielding calculations in support of the Spallation Neutron Source (SNS) proton beam transport system

    International Nuclear Information System (INIS)

    Johnson, Jeffrey O.; Gallmeier, Franz X.; Popova, Irina

    2002-01-01

    Determining the bulk shielding requirements for accelerator environments is generally an easy task compared to analyzing the radiation transport through the complex shield configurations and penetrations typically associated with the detailed Title II design efforts of a facility. Shielding calculations for penetrations in the SNS accelerator environment are presented based on hybrid Monte Carlo and discrete ordinates particle transport methods. This methodology relies on coupling tools that map boundary surface leakage information from the Monte Carlo calculations to boundary sources for one-, two-, and three-dimensional discrete ordinates calculations. The paper will briefly introduce the coupling tools for coupling MCNPX to the one-, two-, and three-dimensional discrete ordinates codes in the DOORS code suite. The paper will briefly present typical applications of these tools in the design of complex shield configurations and penetrations in the SNS proton beam transport system

  15. Use of exact albedo conditions in numerical methods for one-dimensional one-speed discrete ordinates eigenvalue problems

    International Nuclear Information System (INIS)

    Abreu, M.P. de

    1994-01-01

    The use of exact albedo boundary conditions in numerical methods applied to one-dimensional one-speed discrete ordinates (S n ) eigenvalue problems for nuclear reactor global calculations is described. An albedo operator that treats the reflector region around a nuclear reactor core implicitly is described and exactly was derived. To illustrate the method's efficiency and accuracy, it was used conventional linear diamond method with the albedo option to solve typical model problems. (author)

  16. Discrete ordinates cross-section generation in parallel plane geometry -- 2: Computational results

    International Nuclear Information System (INIS)

    Yavuz, M.

    1998-01-01

    In Ref. 1, the author presented inverse discrete ordinates (S N ) methods for cross-section generation with an arbitrary scattering anisotropy of order L (L ≤ N - 1) in parallel plane geometry. The solution techniques depend on the S N eigensolutions. The eigensolutions are determined by the inverse simplified S N method (ISS N ), which uses the surface Green's function matrices (T and R). Inverse problems are generally designed so that experimentally measured physical quantities can be used in the formulations. In the formulations, although T and R (TR matrices) are measurable quantities, the author does not have such data to check the adequacy and accuracy of the methods. However, it is possible to compute TR matrices by S N methods. The author presents computational results and computationally observed properties

  17. Solution of the one-dimensional time-dependent discrete ordinates problem in a slab by the spectral and LTSN methods

    International Nuclear Information System (INIS)

    Oliveira, J.V.P. de; Cardona, A.V.; Vilhena, M.T.M.B. de

    2002-01-01

    In this work, we present a new approach to solve the one-dimensional time-dependent discrete ordinates problem (S N problem) in a slab. The main idea is based upon the application of the spectral method to the set of S N time-dependent differential equations and solution of the resulting coupling equations by the LTS N method. We report numerical simulations

  18. Los Alamos neutral particle transport codes: New and enhanced capabilities

    International Nuclear Information System (INIS)

    Alcouffe, R.E.; Baker, R.S.; Brinkley, F.W.; Clark, B.A.; Koch, K.R.; Marr, D.R.

    1992-01-01

    We present new developments in Los Alamos discrete-ordinates transport codes and introduce THREEDANT, the latest in the series of Los Alamos discrete ordinates transport codes. THREEDANT solves the multigroup, neutral-particle transport equation in X-Y-Z and R-Θ-Z geometries. THREEDANT uses computationally efficient algorithms: Diffusion Synthetic Acceleration (DSA) is used to accelerate the convergence of transport iterations, the DSA solution is accelerated using the multigrid technique. THREEDANT runs on a wide range of computers, from scientific workstations to CRAY supercomputers. The algorithms are highly vectorized on CRAY computers. Recently, the THREEDANT transport algorithm was implemented on the massively parallel CM-2 computer, with performance that is comparable to a single-processor CRAY-YMP We present the results of THREEDANT analysis of test problems

  19. Energy dependent mesh adaptivity of discontinuous isogeometric discrete ordinate methods with dual weighted residual error estimators

    Science.gov (United States)

    Owens, A. R.; Kópházi, J.; Welch, J. A.; Eaton, M. D.

    2017-04-01

    In this paper a hanging-node, discontinuous Galerkin, isogeometric discretisation of the multigroup, discrete ordinates (SN) equations is presented in which each energy group has its own mesh. The equations are discretised using Non-Uniform Rational B-Splines (NURBS), which allows the coarsest mesh to exactly represent the geometry for a wide range of engineering problems of interest; this would not be the case using straight-sided finite elements. Information is transferred between meshes via the construction of a supermesh. This is a non-trivial task for two arbitrary meshes, but is significantly simplified here by deriving every mesh from a common coarsest initial mesh. In order to take full advantage of this flexible discretisation, goal-based error estimators are derived for the multigroup, discrete ordinates equations with both fixed (extraneous) and fission sources, and these estimators are used to drive an adaptive mesh refinement (AMR) procedure. The method is applied to a variety of test cases for both fixed and fission source problems. The error estimators are found to be extremely accurate for linear NURBS discretisations, with degraded performance for quadratic discretisations owing to a reduction in relative accuracy of the "exact" adjoint solution required to calculate the estimators. Nevertheless, the method seems to produce optimal meshes in the AMR process for both linear and quadratic discretisations, and is ≈×100 more accurate than uniform refinement for the same amount of computational effort for a 67 group deep penetration shielding problem.

  20. Ordinance concerning the filing of transport of nuclear fuel materials

    International Nuclear Information System (INIS)

    1979-01-01

    The ordinance is defined under the law for the regulations of nuclear source materials, nuclear fuel materials and reactors and the order for execution of the law. Any person who reports the transport of nuclear fuel materials shall file four copies of a notification according to the form attached to the public safety commission of the prefecture in charge of the dispatching place. When the transportation extends over the area in charge of another public safety commission, the commission which has received the notice shall report without delay date and route of the transport, kind and quantity of nuclear fuel materials and other necessary matters to the commission concerned and hear from the latter opinions on the items informed. The designation by the ordinance includes speed of the vehicle loaded with nuclear fuel materials, disposition of an accompanying car, arrangement of the line of the loaded vehicle and accompanying and other escorting cars, location of the parking, place of unloading and temporary storage, etc. Reports concerning troubles and measures taken shall be filed in ten days to the public safety commission which has received the notification, when accidents occur on the way, such as: theft or loss of nuclear fuel materials; traffic accident; irregular leaking of nuclear fuel materials and personal trouble by the transport. (Okada, K.)

  1. Discrete ordinate theory of radiative transfer. 2: Scattering from maritime haze

    Science.gov (United States)

    Kattawar, G. W.; Plass, G. N.; Catchings, F. E.

    1971-01-01

    Discrete ordinate theory was used to calculate the reflected and transmitted radiance of photons which have interacted with plane parallel maritime haze layers. The results are presented for three solar zenith angles, three values of the surface albedo, and a range of optical thicknesses from very thin to very thick. The diffuse flux at the lower boundary and the cloud albedo were tabulated. The forward peak and other features in the single scattered phase function caused the radiance in many cases to be very different from that for Rayleigh scattering. The variation of the radiance with both the zenith or nadir angle and the azimuthal angle is more marked, and the relative limb darkening under very thick layers is greater, for haze than for Rayleigh scattering. The downward diffuse flux at the lower boundary for A = O is always greater and the cloud albedo is always less for haze than for Rayleigh layers.

  2. Application of the three-dimensional transport code to analysis of the neutron streaming experiment

    International Nuclear Information System (INIS)

    Chatani, K.; Slater, C.O.

    1990-01-01

    The neutron streaming through an experimental mock-up of a Clinch River Breeder Reactor (CRBR) prototypic coolant pipe chaseway was recalculated with a three-dimensional discrete ordinates code. The experiment was conducted at the Tower Shielding Facility at Oak Ridge National Laboratory in 1976 and 1977. The measurement of the neutron flux, using Bonner ball detectors, indicated nine orders of attenuation in the empty pipeway, which contained two 90-deg bends and was surrounded by concrete walls. The measurement data were originally analyzed using the DOT3.5 two-dimensional discrete ordinates radiation transport code. However, the results did not agree with measurement data at the bend because of the difficulties in modeling the three-dimensional configurations using two-dimensional methods. The two-dimensional calculations used a three-step procedure in which each of the three legs making the two 90-deg bends was a separate calculation. The experiment was recently analyzed with the TORT three-dimensional discrete ordinates radiation transport code, not only to compare the calculational results with the experimental results, but also to compare with results obtained from analyses in Japan using DOT3.5, MORSE, and ENSEMBLE, which is a three-dimensional discrete ordinates radiation transport code developed in Japan

  3. An extended step characteristic method for solving the transport equation in general geometries

    International Nuclear Information System (INIS)

    DeHart, M.D.; Pevey, R.E.; Parish, T.A.

    1994-01-01

    A method for applying the discrete ordinates method to solve the Boltzmann transport equation on arbitrary two-dimensional meshes has been developed. The finite difference approach normally used to approximate spatial derivatives in extrapolating angular fluxes across a cell is replaced by direct solution of the characteristic form of the transport equation for each discrete direction. Thus, computational cells are not restricted to the geometrical shape of a mesh element characteristic of a given coordinate system. However, in terms of the treatment of energy and angular dependencies, this method resembles traditional discrete ordinates techniques. By using the method developed here, a general two-dimensional space can be approximated by an irregular mesh comprised of arbitrary polygons. Results for a number of test problems have been compared with solutions obtained from traditional methods, with good agreement. Comparisons include benchmarks against analytical results for problems with simple geometry, as well as numerical results obtained from traditional discrete ordinates methods by applying the ANISN and TWOTRAN-II computer programs

  4. Pin cell discontinuity factors in the transient 3-D discrete ordinates code TORT-TD

    International Nuclear Information System (INIS)

    Seubert, A.

    2010-01-01

    Even with the rapid increase of computing power, whole core transient and accident analyses based on the direct solution of the 3-D neutron transport equation with a large number of energy groups and a detailed heterogeneous description of the core still remain computationally challenging. Current industrial methods for reactor core calculations therefore involve a two step approach in which lattice (assembly) depletion transport methods are used to prepare energy collapsed and fuel assembly or pin cell homogenized cross sections for subsequent whole core transport calculations. Spatial homogenization, in principal, requires the knowledge of both the actual boundary condition (local core environment) of the fuel assembly and the exact heterogeneous flux distribution (reference solution) of the whole core problem within that fuel assembly. Since, in particular, the latter is not known a priori, an infinite medium (zero net current) condition is used in the lattice calculations. It is well known that this approximation may lead to undesirable errors in cores in which large flux gradients are present across the fuel assemblies. This is the case in cores that have high heterogeneity and/or strong local absorbers, e.g. PWRs with partial MOX loading and inserted control rod clusters. There are two major approaches to mitigate spatial homogenization errors, superhomogenization (SPH) factors, and discontinuity factors within the scope of equivalence theory (ET) and generalized equivalence theory (GET). Although discontinuity factors are usually applied at the level of fuel assembly node size (assembly discontinuity factors, ADF), the methodology can be extended to pin cell homogenized whole core calculations involving pin cell discontinuity factors (PDF). There are also further developments for both the diffusion and the simplified transport (SP3) equation. In this paper, PDFs are introduced into the time-dependent 3-D discrete ordinates code TORT-TD in order to reduce the

  5. Derivation of new 3D discrete ordinate equations

    International Nuclear Information System (INIS)

    Ahrens, C. D.

    2012-01-01

    The Sn equations have been the workhorse of deterministic radiation transport calculations for many years. Here we derive two new angular discretizations of the 3D transport equation. The first set of equations, derived using Lagrange interpolation and collocation, retains the classical Sn structure, with the main difference being how the scattering source is calculated. Because of the formal similarity with the classical S n equations, it should be possible to modify existing computer codes to take advantage of the new formulation. In addition, the new S n-like equations correctly capture delta function scattering. The second set of equations, derived using a Galerkin technique, does not retain the classical Sn structure because the streaming term is not diagonal. However, these equations can be cast into a form similar to existing methods developed to reduce ray effects. Numerical investigation of both sets of equations is under way. (authors)

  6. The method of lines solution of discrete ordinates method for non-grey media

    International Nuclear Information System (INIS)

    Cayan, Fatma Nihan; Selcuk, Nevin

    2007-01-01

    A radiation code based on method of lines (MOL) solution of discrete ordinates method (DOM) for radiative heat transfer in non-grey absorbing-emitting media was developed by incorporation of a gas spectral radiative property model, namely wide band correlated-k (WBCK) model, which is compatible with MOL solution of DOM. Predictive accuracy of the code was evaluated by applying it to 1-D parallel plate and 2-D axisymmetric cylindrical enclosure problems containing absorbing-emitting medium and benchmarking its predictions against line-by-line solutions available in the literature. Comparisons reveal that MOL solution of DOM with WBCK model produces accurate results for radiative heat fluxes and source terms and can be used with confidence in conjunction with computational fluid dynamics codes based on the same approach

  7. Uniform Gauss-Weight Quadratures for Discrete Ordinate Transport Calculations

    International Nuclear Information System (INIS)

    Carew, John F.; Hu, Kai; Zamonsky, Gabriel

    2000-01-01

    Recently, a uniform equal-weight quadrature set, UE n , and a uniform Gauss-weight quadrature set, UG n , have been derived. These quadratures have the advantage over the standard level-symmetric LQ n quadrature sets in that the weights are positive for all orders,and the transport solution may be systematically converged by increasing the order of the quadrature set. As the order of the quadrature is increased,the points approach a uniform continuous distribution on the unit sphere,and the quadrature is invariant with respect to spatial rotations. The numerical integrals converge for continuous functions as the order of the quadrature is increased.The numerical characteristics of the UE n quadrature set have been investigated previously. In this paper, numerical calculations are performed to evaluate the application of the UG n quadrature set in typical transport analyses. A series of DORT transport calculations of the >1-MeV neutron flux have been performed for a set of pressure-vessel fluence benchmark problems. These calculations employed the UG n (n = 8, 12, 16, 24, and 32) quadratures and indicate that the UG n solutions have converged to within ∼0.25%. The converged UG n solutions are found to be comparable to the UE n results and are more accurate than the level-symmetric S 16 predictions

  8. Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes

    International Nuclear Information System (INIS)

    Larsen, E.W.; Morel, J.E.; Miller, W.F. Jr.

    1987-01-01

    We present an asymptotic analysis of spatial differencing schemes for the discrete-ordinates equations, for diffusive media with spatial cells that are not optically thin. Our theoretical tool is an asymptotic expansion that has previously been used to describe the transform from analytic transport to analytic diffusion theory for such media. To introduce this expansion and its physical rationale, we first describe it for the analytic discrete-ordinates equations. Then, we apply the expansion to the spatially discretized discrete-ordinates equations, with the spatial mesh scaled in either of two physically relevant ways such that the optical thickness of the spatial cells is not small. If the result of either expansion is a legitimate diffusion description for either the cell-averaged or cell-edge fluxes, then we say that the approximate flux has the appropriate diffusion limit; otherwise, we say it does not. We consider several transport differencing schemes that are applicable in neutron transport and thermal radiation applications. We also include numerical results which demonstrate the validity of our theory and show that differencing schemes that do have a particular diffusion limit are substantially more accurate, in the regime described by the limit, than those that do not. copyright 1987 Academic Press, Inc

  9. A response matrix method for slab-geometry discrete ordinates adjoint calculations in energy-dependent source-detector problems

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, Ralph S.; Moura, Carlos A., E-mail: ralph@ime.uerj.br, E-mail: demoura@ime.uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Departamento de Engenharia Mecanica; Barros, Ricardo C., E-mail: rcbarros@pq.cnpq.br [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Departamento de Modelagem Computacional

    2017-07-01

    Presented here is an application of the Response Matrix (RM) method for adjoint discrete ordinates (S{sub N}) problems in slab geometry applied to energy-dependent source-detector problems. The adjoint RM method is free from spatial truncation errors, as it generates numerical results for the adjoint angular fluxes in multilayer slabs that agree with the numerical values obtained from the analytical solution of the energy multigroup adjoint SN equations. Numerical results are given for two typical source-detector problems to illustrate the accuracy and the efficiency of the offered RM computer code. (author)

  10. Radiative transfer modelling in combusting systems using discrete ordinates method on three-dimensional unstructured grids; Modelisation des transferts radiatifs en combustion par methode aux ordonnees discretes sur des maillages non structures tridimensionnels

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, D.

    2004-04-01

    The prediction of pollutant species such as soots and NO{sub x} emissions and lifetime of the walls in a combustion chamber is strongly dependant on heat transfer by radiation at high temperatures. This work deals with the development of a code based on the Discrete Ordinates Method (DOM) aiming at providing radiative source terms and wall fluxes with a good compromise between cpu time and accuracy. Radiative heat transfers are calculated using the unstructured grids defined by the Computational Fluid Dynamics (CFD) codes. The spectral properties of the combustion gases are taken into account by a statistical narrow bands correlated-k model (SNB-ck). Various types of angular quadrature are tested and three different spatial differencing schemes were integrated and compared. The validation tests show the limit at strong optical thicknesses of the finite volume approximation used the Discrete Ordinates Method. The first calculations performed on LES solutions are presented, it provides instantaneous radiative source terms and wall heat fluxes. Those results represent a first step towards radiation/combustion coupling. (author)

  11. Radiation (Safety Control) Ordinance 1978

    International Nuclear Information System (INIS)

    1978-01-01

    This Ordinance provides for the control, regulation, possession, use and transport of radioactive substance and irradiating apparatus. The Director of Health is responsible for administration of the Ordinance, which contains detailed provisions concerning the terms and conditions of licences, duties of licensees, medical examinations, maximum radiation doses, precautions to be taken to avoid exceeding such doses. The Ordinance also lays down a system of record-keeping and registration as well as packaging specifications for the transport of radioactive substances. (NEA) [fr

  12. Multigroup discrete ordinates solution of Boltzmann-Fokker-Planck equations and cross section library development of ion transport

    International Nuclear Information System (INIS)

    Prinja, A.K.

    1995-08-01

    We have developed and successfully implemented a two-dimensional bilinear discontinuous in space and time, used in conjunction with the S N angular approximation, to numerically solve the time dependent, one-dimensional, one-speed, slab geometry, (ion) transport equation. Numerical results and comparison with analytical solutions have shown that the bilinear-discontinuous (BLD) scheme is third-order accurate in the space ad time dimensions independently. Comparison of the BLD results with diamond-difference methods indicate that the BLD method is both quantitavely and qualitatively superior to the DD scheme. We note that the form of the transport operator is such that these conclusions carry over to energy dependent problems that include the constant-slowing-down-approximation term, and to multiple space dimensions or combinations thereof. An optimized marching or inversion scheme or a parallel algorithm should be investigated to determine if the increased accuracy can compensate for the extra overhead required for a BLD solution, and then could be compared to other discretization methods such as nodal or characteristic schemes

  13. The linear characteristic method for spatially discretizing the discrete ordinates equations in (x,y)-geometry

    International Nuclear Information System (INIS)

    Larsen, E.W.; Alcouffe, R.E.

    1981-01-01

    In this article a new linear characteristic (LC) spatial differencing scheme for the discrete ordinates equations in (x,y)-geometry is described and numerical comparisons are given with the diamond difference (DD) method. The LC method is more stable with mesh size and is generally much more accurate than the DD method on both fine and coarse meshes, for eigenvalue and deep penetration problems. The LC method is based on computations involving the exact solution of a cell problem which has spatially linear boundary conditions and interior source. The LC method is coupled to the diffusion synthetic acceleration (DSA) algorithm in that the linear variations of the source are determined in part by the results of the DSA calculation from the previous inner iteration. An inexpensive negative-flux fixup is used which has very little effect on the accuracy of the solution. The storage requirements for LC are essentially the same as that for DD, while the computational times for LC are generally less than twice the DD computational times for the same mesh. This increase in computational cost is offset if one computes LC solutions on somewhat coarser meshes than DD; the resulting LC solutions are still generally much more accurate than the DD solutions. (orig.) [de

  14. Advanced quadrature sets and acceleration and preconditioning techniques for the discrete ordinates method in parallel computing environments

    Science.gov (United States)

    Longoni, Gianluca

    In the nuclear science and engineering field, radiation transport calculations play a key-role in the design and optimization of nuclear devices. The linear Boltzmann equation describes the angular, energy and spatial variations of the particle or radiation distribution. The discrete ordinates method (S N) is the most widely used technique for solving the linear Boltzmann equation. However, for realistic problems, the memory and computing time require the use of supercomputers. This research is devoted to the development of new formulations for the SN method, especially for highly angular dependent problems, in parallel environments. The present research work addresses two main issues affecting the accuracy and performance of SN transport theory methods: quadrature sets and acceleration techniques. New advanced quadrature techniques which allow for large numbers of angles with a capability for local angular refinement have been developed. These techniques have been integrated into the 3-D SN PENTRAN (Parallel Environment Neutral-particle TRANsport) code and applied to highly angular dependent problems, such as CT-Scan devices, that are widely used to obtain detailed 3-D images for industrial/medical applications. In addition, the accurate simulation of core physics and shielding problems with strong heterogeneities and transport effects requires the numerical solution of the transport equation. In general, the convergence rate of the solution methods for the transport equation is reduced for large problems with optically thick regions and scattering ratios approaching unity. To remedy this situation, new acceleration algorithms based on the Even-Parity Simplified SN (EP-SSN) method have been developed. A new stand-alone code system, PENSSn (Parallel Environment Neutral-particle Simplified SN), has been developed based on the EP-SSN method. The code is designed for parallel computing environments with spatial, angular and hybrid (spatial/angular) domain

  15. A multi-layer discrete-ordinate method for vector radiative transfer in a vertically-inhomogeneous, emitting and scattering atmosphere. I - Theory. II - Application

    Science.gov (United States)

    Weng, Fuzhong

    1992-01-01

    A theory is developed for discretizing the vector integro-differential radiative transfer equation including both solar and thermal radiation. A complete solution and boundary equations are obtained using the discrete-ordinate method. An efficient numerical procedure is presented for calculating the phase matrix and achieving computational stability. With natural light used as a beam source, the Stokes parameters from the model proposed here are compared with the analytical solutions of Chandrasekhar (1960) for a Rayleigh scattering atmosphere. The model is then applied to microwave frequencies with a thermal source, and the brightness temperatures are compared with those from Stamnes'(1988) radiative transfer model.

  16. A parallel algorithm for solving the integral form of the discrete ordinates equations

    International Nuclear Information System (INIS)

    Zerr, R. J.; Azmy, Y. Y.

    2009-01-01

    The integral form of the discrete ordinates equations involves a system of equations that has a large, dense coefficient matrix. The serial construction methodology is presented and properties that affect the execution times to construct and solve the system are evaluated. Two approaches for massively parallel implementation of the solution algorithm are proposed and the current results of one of these are presented. The system of equations May be solved using two parallel solvers-block Jacobi and conjugate gradient. Results indicate that both methods can reduce overall wall-clock time for execution. The conjugate gradient solver exhibits better performance to compete with the traditional source iteration technique in terms of execution time and scalability. The parallel conjugate gradient method is synchronous, hence it does not increase the number of iterations for convergence compared to serial execution, and the efficiency of the algorithm demonstrates an apparent asymptotic decline. (authors)

  17. EPRI-LATTICE: a multigroup neutron transport code for light water reactor lattice physics calculations

    International Nuclear Information System (INIS)

    Jones, D.B.

    1986-01-01

    EPRI-LATTICE is a multigroup neutron transport computer code for the analysis of light water reactor fuel assemblies. It can solve the two-dimensional neutron transport problem by two distinct methods: (a) the method of collision probabilities and (b) the method of discrete ordinates. The code was developed by S. Levy Inc. as an account of work sponsored by the Electric Power Research Institute (EPRI). The collision probabilities calculation in EPRI-LATTICE (L-CP) is based on the same methodology that exists in the lattice codes CPM-2 and EPRI-CPM. Certain extensions have been made to the data representations of the CPM programs to improve the overall accuracy of the calculation. The important extensions include unique representations of scattering matrices and fission fractions (chi) for each composition in the problem. A new capability specifically developed for the EPRI-LATTICE code is a discrete ordinates methodology. The discrete ordinates calculation in EPRI-LATTICE (L-SN) is based on the discrete S/sub n/ methodology that exists in the TWODANT program. In contrast to TWODANT, which utilizes synthetic diffusion acceleration and supports multiple geometries, only the transport equations are solved by L-SN and only the data representations for the two-dimensional geometry are treated

  18. Ray effects in the discrete-ordinate solution for surface radiation exchange

    Energy Technology Data Exchange (ETDEWEB)

    Liou, B T [Dept. of Mechanical Engineering, National Cheng Kung Univ., Tainan (Taiwan, Province of China); Wu, C Y [Dept. of Mechanical Engineering, National Cheng Kung Univ., Tainan (Taiwan, Province of China)

    1997-04-01

    A study of the application of the discrete-ordinate method (DOM) with remedy for the ray effects to the solution of surface radiation exchange is presented in this paper. The remedy for the ray effects is achieved by dividing the radiative intensity into the attenuated incident and the medium emitting components. To demonstrate the application of the technique, this work considers radiative heat transfer in a two-dimensional cylindrical enclosure filled with a nearly transparent medium. The results obtained by the present DOM are in excellent agreement with those by the radiosity/irradiation method. (orig.). With 4 figs., 3 tabs. [Deutsch] In der Arbeit wird ein Weg aufgezeigt, wie die Stoerstrahlungseffekte bei Anwendung der Methode der diskreten Ordinaten auf die Berechnung des Energietausches zwischen Oberflaechenstrahlern vermieden werden koennen. Dies laesst sich durch Aufspaltung der Strahlungsintensitaet in die abgeschwaechte einfallende und die vom Medium emittierte Komponente erreichen. Als Beispiel fuer die Anwendung dieses Verfahrens dient der Waermeaustausch durch Strahlung in einem zweidimensionalen zylindrischen Behaeltnis, das mit einem nahezu transparenten Medium befuellt ist. Die mit der modifizierten Methode erhaltenen Ergebnisse stimmen ausgezeichnet mit jenen nach dem klassischen Brutto-Verfahren ueberein. (orig.)

  19. On radiative transfer in water spray curtains using the discrete ordinates method

    Energy Technology Data Exchange (ETDEWEB)

    Collin, A. [Laboratoire d' Energetique et de Mecanique Theorique and Appliquee (LEMTA), CNRS UMR 7563, Faculte des Sciences et Techniques BP 239 - 54506 VANDOEUVRE Cedex (France); Boulet, P. [Laboratoire d' Energetique et de Mecanique Theorique and Appliquee (LEMTA), CNRS UMR 7563, Faculte des Sciences et Techniques BP 239 - 54506 VANDOEUVRE Cedex (France)]. E-mail: Pascal.Boulet@lemta.uhp-nancy.fr; Lacroix, D. [Laboratoire d' Energetique et de Mecanique Theorique and Appliquee (LEMTA), CNRS UMR 7563, Faculte des Sciences et Techniques BP 239 - 54506 VANDOEUVRE Cedex (France); Jeandel, G. [Laboratoire d' Energetique et de Mecanique Theorique and Appliquee (LEMTA), CNRS UMR 7563, Faculte des Sciences et Techniques BP 239 - 54506 VANDOEUVRE Cedex (France)

    2005-04-15

    Radiative transfer through water spray curtains has been presently addressed in conditions similar to devices used in fire protection systems. The radiation propagation from the heat source through the medium is simulated using a 2D Discrete Ordinates Method. The curtain is treated as an absorbing and anisotropically scattering medium, made of droplets injected in a mixing of air, water vapor and carbon dioxide. Such a participating medium requires a careful treatment of its spectral response in order to model the radiative transfer accurately. This particular problem is dealt with using a correlated-K method. Radiative properties for the droplets are calculated applying the Mie theory. Transmissivities under realistic conditions are then simulated after a validation thanks to comparisons with some experimental data available in the literature. Owing to promising results which are already observed in this case of uncoupled radiative problem, next step will be to combine the present study with a companion work dedicated to the careful treatment of the spray dynamics and of the induced heat transfer phenomena.

  20. Second Ordinance amending the Radiation Protection Ordinance

    International Nuclear Information System (INIS)

    1989-01-01

    The amendment of the Radiation Protection Ordinance brings about the following changes: (1) Introduction of the concept of effective dose, reduction of limits for partial body dose, adoption of the radiotoxicity values of radionuclides as established by the EC Basis Standards; (2) introduction of a working-life-related dose limit of 400 mSv; (3) supplementing provisions for the protection of the population, particularly by the standard procedure for radioecological impact assessment and determination of dose factors; (4) supplementing provisions on the use of radioactive substances in medicine and medical research; (5) supplementing provisions on health physics monitoring; (6) provisions for improving the supervision and controls in the transport of radioactive substances; (7) definition of activities and their assignment to the provisions of the Radiation Protection Ordinance; (8) revision of the waste management provisions of the Radiation Protection Ordinance. (HP) [de

  1. Angular discretization errors in transport theory

    International Nuclear Information System (INIS)

    Nelson, P.; Yu, F.

    1992-01-01

    Elements of the information-based complexity theory are computed for several types of information and associated algorithms for angular approximations in the setting of a on-dimensional model problem. For point-evaluation information, the local and global radii of information are computed, a (trivial) optimal algorithm is determined, and the local and global error of a discrete ordinates algorithm are shown to be infinite. For average cone-integral information, the local and global radii of information are computed, the local and global error tends to zero as the underlying partition is indefinitely refined. A central algorithm for such information and an optimal partition (of given cardinality) are described. It is further shown that the analytic first-collision source method has zero error (for the purely absorbing model problem). Implications of the restricted problem domains suitable for the various types of information are discussed

  2. A more efficient implementation of the discrete-ordinates method for an approximate model of particle transport in a duct

    International Nuclear Information System (INIS)

    Ganapol, B.D.

    2015-01-01

    Highlights: • Method of doubling solution for the pipe problem. • Uses convergence acceleration. • Fully discretized solution. • Improvement over ADO. - Abstract: We consider transport of light, neutrons, or any uncharged particles in a straight duct of circular cross section. This problem first came to fashion some 30 years ago when Pomraning and Prinja formulated their so called “pipe problem”. In the years to follow, investigators applied essentially every known method of numerical solution, including MMRW’s Wiener–Hopf – except possibly one. This presentation concerns that particular numerical solution, which arguably seems to be the most efficient of all.

  3. Radiation protection Ordinance

    International Nuclear Information System (INIS)

    1976-06-01

    This Ordinance lays down the licensing system for activities in Switzerland involving possible exposure to radiation, with the exception of nuclear installations, fuels and radioactive waste which, under the 1959 Atomic Energy Act, are subject to licensing. The Ordinance applies to the production, handling, use, storage, transport, disposal, import and export of radioactive substances and devices and articles containing them; and generally to any activity involving hazards caused by ionizing radiation. The Federal Public Health Office is the competent authority for granting licences. Provision is also made for the administrative conditions to be complied with for obtaining such licences as well as for technical measures required when engaged in work covered by the Ordinance. This consolidated version of the Ordinance contains all the successive amendments up to 26 September 1988. (NEA) [fr

  4. Investigation of radiation effects in Hiroshima and Nagasaki using a general Monte Carlo-discrete ordinates coupling scheme

    International Nuclear Information System (INIS)

    Cramer, S.N.; Slater, C.O.

    1990-01-01

    A general adjoint Monte Carlo-forward discrete ordinates radiation transport calculational scheme has been created to study the effects of the radiation environment in Hiroshima and Nagasaki due to the bombing of these two cities. Various such studies for comparison with physical data have progressed since the end of World War II with advancements in computing machinery and computational methods. These efforts have intensified in the last several years with the U.S.-Japan joint reassessment of nuclear weapons dosimetry in Hiroshima and Nagasaki. Three principal areas of investigation are: (1) to determine by experiment and calculation the neutron and gamma-ray energy and angular spectra and total yield of the two weapons; (2) using these weapons descriptions as source terms, to compute radiation effects at several locations in the two cities for comparison with experimental data collected at various times after the bombings and thus validate the source terms; and (3) to compute radiation fields at the known locations of fatalities and surviving individuals at the time of the bombings and thus establish an absolute cause-and-effect relationship between the radiation received and the resulting injuries to these individuals and any of their descendants as indicated by their medical records. It is in connection with the second and third items, the determination of the radiation effects and the dose received by individuals, that the current study is concerned

  5. Application of preconditioned GMRES to the numerical solution of the neutron transport equation

    International Nuclear Information System (INIS)

    Patton, B.W.; Holloway, J.P.

    2002-01-01

    The generalized minimal residual (GMRES) method with right preconditioning is examined as an alternative to both standard and accelerated transport sweeps for the iterative solution of the diamond differenced discrete ordinates neutron transport equation. Incomplete factorization (ILU) type preconditioners are used to determine their effectiveness in accelerating GMRES for this application. ILU(τ), which requires the specification of a dropping criteria τ, proves to be a good choice for the types of problems examined in this paper. The combination of ILU(τ) and GMRES is compared with both DSA and unaccelerated transport sweeps for several model problems. It is found that the computational workload of the ILU(τ)-GMRES combination scales nonlinearly with the number of energy groups and quadrature order, making this technique most effective for problems with a small number of groups and discrete ordinates. However, the cost of preconditioner construction can be amortized over several calculations with different source and/or boundary values. Preconditioners built upon standard transport sweep algorithms are also evaluated as to their effectiveness in accelerating the convergence of GMRES. These preconditioners show better scaling with such problem parameters as the scattering ratio, the number of discrete ordinates, and the number of spatial meshes. These sweeps based preconditioners can also be cast in a matrix free form that greatly reduces storage requirements

  6. Comparison of the auxiliary function method and the discrete-ordinate method for solving the radiative transfer equation for light scattering.

    Science.gov (United States)

    da Silva, Anabela; Elias, Mady; Andraud, Christine; Lafait, Jacques

    2003-12-01

    Two methods for solving the radiative transfer equation are compared with the aim of computing the angular distribution of the light scattered by a heterogeneous scattering medium composed of a single flat layer or a multilayer. The first method [auxiliary function method (AFM)], recently developed, uses an auxiliary function and leads to an exact solution; the second [discrete-ordinate method (DOM)] is based on the channel concept and needs an angular discretization. The comparison is applied to two different media presenting two typical and extreme scattering behaviors: Rayleigh and Mie scattering with smooth or very anisotropic phase functions, respectively. A very good agreement between the predictions of the two methods is observed in both cases. The larger the number of channels used in the DOM, the better the agreement. The principal advantages and limitations of each method are also listed.

  7. Few-Group Transport Analysis of the Core-Reflector Problem in Fast Reactor Cores via Equivalent Group Condensation and Local/Global Iteration

    International Nuclear Information System (INIS)

    Won, Jong Hyuck; Cho, Nam Zin

    2011-01-01

    In deterministic neutron transport methods, a process called fine-group to few-group condensation is used to reduce the computational burden. However, recent results on the core-reflector problem in fast reactor cores show that use of a small number of energy groups has limitation to describe neutron flux around core reflector interface. Therefore, researches are still ongoing to overcome this limitation. Recently, the authors proposed I) direct application of equivalently condensed angle-dependent total cross section to discrete ordinates method to overcome the limitation of conventional multi-group approximations, and II) local/global iteration framework in which fine-group discrete ordinates calculation is used in local problems while few-group transport calculation is used in the global problem iteratively. In this paper, an analysis of the core-reflector problem is performed in few-group structure using equivalent angle-dependent total cross section with local/global iteration. Numerical results are obtained under S 12 discrete ordinates-like transport method with scattering cross section up to P1 Legendre expansion

  8. Numerical computation of discrete differential scattering cross sections for Monte Carlo charged particle transport

    International Nuclear Information System (INIS)

    Walsh, Jonathan A.; Palmer, Todd S.; Urbatsch, Todd J.

    2015-01-01

    Highlights: • Generation of discrete differential scattering angle and energy loss cross sections. • Gauss–Radau quadrature utilizing numerically computed cross section moments. • Development of a charged particle transport capability in the Milagro IMC code. • Integration of cross section generation and charged particle transport capabilities. - Abstract: We investigate a method for numerically generating discrete scattering cross sections for use in charged particle transport simulations. We describe the cross section generation procedure and compare it to existing methods used to obtain discrete cross sections. The numerical approach presented here is generalized to allow greater flexibility in choosing a cross section model from which to derive discrete values. Cross section data computed with this method compare favorably with discrete data generated with an existing method. Additionally, a charged particle transport capability is demonstrated in the time-dependent Implicit Monte Carlo radiative transfer code, Milagro. We verify the implementation of charged particle transport in Milagro with analytic test problems and we compare calculated electron depth–dose profiles with another particle transport code that has a validated electron transport capability. Finally, we investigate the integration of the new discrete cross section generation method with the charged particle transport capability in Milagro.

  9. Parallel algorithms for 2-D cylindrical transport equations of Eigenvalue problem

    International Nuclear Information System (INIS)

    Wei, J.; Yang, S.

    2013-01-01

    In this paper, aimed at the neutron transport equations of eigenvalue problem under 2-D cylindrical geometry on unstructured grid, the discrete scheme of Sn discrete ordinate and discontinuous finite is built, and the parallel computation for the scheme is realized on MPI systems. Numerical experiments indicate that the designed parallel algorithm can reach perfect speedup, it has good practicality and scalability. (authors)

  10. Determination of point isotropic buildup factors of gamma rays including incoherent and coherent scattering for aluminum, iron, lead, and water by discrete ordinates method

    International Nuclear Information System (INIS)

    Kitsos, S.; Assad, A.; Diop, C.M.; Nimal, J.C.

    1994-01-01

    Exposure and energy absorption buildup factors for aluminum, iron, lead, and water are calculated by the SNID discrete ordinates code for an isotropic point source in a homogeneous medium. The calculation of the buildup factors takes into account the effects of both bound-electron Compton (incoherent) and coherent (Rayleigh) scattering. A comparison with buildup factors from the literature shows that these two effects greatly increase the buildup factors for energies below a few hundred kilo-electron-volts, and thus the new results are improved relative to the experiment. This greater accuracy is due to the increase in the linear attenuation coefficient, which leads to the calculation of the buildup factors for a mean free path with a smaller shield thickness. On the other hand, for the same shield thickness, exposure increases when only incoherent scattering is included and decreases when only coherent scattering is included, so that the exposure finally decreases when both effects are included. Great care must also be taken when checking the approximations for gamma-ray deep-penetration transport calculations, as well as for the cross-section treatment and origin

  11. The discontinuous finite element method for solving Eigenvalue problems of transport equations

    International Nuclear Information System (INIS)

    Yang, Shulin; Wang, Ruihong

    2011-01-01

    In this paper, the multigroup transport equations for solving the eigenvalues λ and K_e_f_f under two dimensional cylindrical coordinate are discussed. Aimed at the equations, the discretizing way combining discontinuous finite element method (DFE) with discrete ordinate method (SN) is developed, and the iterative algorithms and steps are studied. The numerical results show that the algorithms are efficient. (author)

  12. Radiation Ordinance 1983 (No. 58 of 1983) (Australian Capital Territory)

    International Nuclear Information System (INIS)

    1983-01-01

    This Ordinance provides for the safe use, transportation and disposal of radioactive materials and irradiating apparatus. It repeals the Fluoroscopes Ordinance of 1958. Radioactive materials whose radioactivity does not exceed levels as set out in a Schedule to the Ordinance are exempted from application of the Ordinance. (NEA) [fr

  13. Application of the three-dimensional Oak Ridge transport code

    International Nuclear Information System (INIS)

    Rhoades, W.A.; Childs, R.L.; Emmett, M.B.; Cramer, S.N.

    1984-01-01

    TORT, a 3-d extension of the DOT discrete ordinates transport code is now in production use for studies of radiation penetration into large concrete and masonry structures. This paper discusses certain features of the new code and shows representative results, including comparisons with Monte Carlo calculations

  14. 3-D neutron transport benchmarks

    International Nuclear Information System (INIS)

    Takeda, T.; Ikeda, H.

    1991-03-01

    A set of 3-D neutron transport benchmark problems proposed by the Osaka University to NEACRP in 1988 has been calculated by many participants and the corresponding results are summarized in this report. The results of K eff , control rod worth and region-averaged fluxes for the four proposed core models, calculated by using various 3-D transport codes are compared and discussed. The calculational methods used were: Monte Carlo, Discrete Ordinates (Sn), Spherical Harmonics (Pn), Nodal Transport and others. The solutions of the four core models are quite useful as benchmarks for checking the validity of 3-D neutron transport codes

  15. Parallel Jacobian-free Newton Krylov solution of the discrete ordinates method with flux limiters for 3D radiative transfer

    International Nuclear Information System (INIS)

    Godoy, William F.; Liu Xu

    2012-01-01

    The present study introduces a parallel Jacobian-free Newton Krylov (JFNK) general minimal residual (GMRES) solution for the discretized radiative transfer equation (RTE) in 3D, absorbing, emitting and scattering media. For the angular and spatial discretization of the RTE, the discrete ordinates method (DOM) and the finite volume method (FVM) including flux limiters are employed, respectively. Instead of forming and storing a large Jacobian matrix, JFNK methods allow for large memory savings as the required Jacobian-vector products are rather approximated by semiexact and numerical formulations, for which convergence and computational times are presented. Parallelization of the GMRES solution is introduced in a combined memory-shared/memory-distributed formulation that takes advantage of the fact that only large vector arrays remain in the JFNK process. Results are presented for 3D test cases including a simple homogeneous, isotropic medium and a more complex non-homogeneous, non-isothermal, absorbing–emitting and anisotropic scattering medium with collimated intensities. Additionally, convergence and stability of Gram–Schmidt and Householder orthogonalizations for the Arnoldi process in the parallel GMRES algorithms are discussed and analyzed. Overall, the introduction of JFNK methods results in a parallel, yet scalable to the tested 2048 processors, and memory affordable solution to 3D radiative transfer problems without compromising the accuracy and convergence of a Newton-like solution.

  16. Computational programs for shielding calculation with transport of one dimensional and monoenergetic SN

    International Nuclear Information System (INIS)

    Nunes, Carlos Eduardo A.; Barros, Ricardo C.

    2009-01-01

    This paper describes a computational program for result simulation of neutron transport problems at one velocity with isotropic scattering in Cartesian onedimensional geometry. Describing the physical modelling, the next phase is a mathematical modelling of the physical problem for simulation of the neutron distribution. The mathematical modelling uses the linearized Boltzmann equation which represents a balance among the production and loss of particles. The formulation of the discrete ordinates S N consists of discretization of angular variables at N directions (discrete ordinates), and using a set of angular quadratures for the approximation of integral terms of scattering sources. The S N equations are numerically solved. This work describes three numerical methods: diamond difference, step and characteristic step. The paper also presents numerical results for illustration of the efficiency of the developed program

  17. Finite element method for solving neutron transport problems

    International Nuclear Information System (INIS)

    Ferguson, J.M.; Greenbaum, A.

    1984-01-01

    A finite element method is introduced for solving the neutron transport equations. Our method falls into the category of Petrov-Galerkin solution, since the trial space differs from the test space. The close relationship between this method and the discrete ordinate method is discussed, and the methods are compared for simple test problems

  18. One-, two- and three-dimensional transport codes using multi-group double-differential form cross sections

    International Nuclear Information System (INIS)

    Mori, Takamasa; Nakagawa, Masayuki; Sasaki, Makoto.

    1988-11-01

    We have developed a group of computer codes to realize the accurate transport calculation by using the multi-group double-differential form cross section. This type of cross section can correctly take account of the energy-angle correlated reaction kinematics. Accordingly, the transport phenomena in materials with highly anisotropic scattering are accurately calculated by using this cross section. They include the following four codes or code systems: PROF-DD : a code system to generate the multi-group double-differential form cross section library by processing basic nuclear data file compiled in the ENDF / B-IV or -V format, ANISN-DD : a one-dimensional transport code based on the discrete ordinate method, DOT-DD : a two-dimensional transport code based on the discrete ordinate method, MORSE-DD : a three-dimensional transport code based on the Monte Carlo method. In addition to these codes, several auxiliary codes have been developed to process calculated results. This report describes the calculation algorithm employed in these codes and how to use them. (author)

  19. Discrete ordinates solution of coupled conductive radiative heat transfer in a two-layer slab with Fresnel interfaces subject to diffuse and obliquely collimated irradiation

    International Nuclear Information System (INIS)

    Muresan, Cristian; Vaillon, Rodolphe; Menezo, Christophe; Morlot, Rodolphe

    2004-01-01

    The coupled conductive radiative heat transfer in a two-layer slab with Fresnel interfaces subject to diffuse and obliquely collimated irradiation is solved. The collimated and diffuse components problems are treated separately. The solution for diffuse radiation is obtained by using a composite discrete ordinates method and includes the development of adaptive directional quadratures to overcome the difficulties usually encountered at the interfaces. The complete radiation numerical model is validated against the predictions obtained by using the Monte Carlo method

  20. Monte Carlo and discrete-ordinate simulations of irradiances in the coupled atmosphere-ocean system.

    Science.gov (United States)

    Gjerstad, Karl Idar; Stamnes, Jakob J; Hamre, Børge; Lotsberg, Jon K; Yan, Banghua; Stamnes, Knut

    2003-05-20

    We compare Monte Carlo (MC) and discrete-ordinate radiative-transfer (DISORT) simulations of irradiances in a one-dimensional coupled atmosphere-ocean (CAO) system consisting of horizontal plane-parallel layers. The two models have precisely the same physical basis, including coupling between the atmosphere and the ocean, and we use precisely the same atmospheric and oceanic input parameters for both codes. For a plane atmosphere-ocean interface we find agreement between irradiances obtained with the two codes to within 1%, both in the atmosphere and the ocean. Our tests cover case 1 water, scattering by density fluctuations both in the atmosphere and in the ocean, and scattering by particulate matter represented by a one-parameter Henyey-Greenstein (HG) scattering phase function. The CAO-MC code has an advantage over the CAO-DISORT code in that it can handle surface waves on the atmosphere-ocean interface, but the CAO-DISORT code is computationally much faster. Therefore we use CAO-MC simulations to study the influence of ocean surface waves and propose a way to correct the results of the CAO-DISORT code so as to obtain fast and accurate underwater irradiances in the presence of surface waves.

  1. Monte Carlo and discrete-ordinate simulations of spectral radiances in a coupled air-tissue system.

    Science.gov (United States)

    Hestenes, Kjersti; Nielsen, Kristian P; Zhao, Lu; Stamnes, Jakob J; Stamnes, Knut

    2007-04-20

    We perform a detailed comparison study of Monte Carlo (MC) simulations and discrete-ordinate radiative-transfer (DISORT) calculations of spectral radiances in a 1D coupled air-tissue (CAT) system consisting of horizontal plane-parallel layers. The MC and DISORT models have the same physical basis, including coupling between the air and the tissue, and we use the same air and tissue input parameters for both codes. We find excellent agreement between radiances obtained with the two codes, both above and in the tissue. Our tests cover typical optical properties of skin tissue at the 280, 540, and 650 nm wavelengths. The normalized volume scattering function for internal structures in the skin is represented by the one-parameter Henyey-Greenstein function for large particles and the Rayleigh scattering function for small particles. The CAT-DISORT code is found to be approximately 1000 times faster than the CAT-MC code. We also show that the spectral radiance field is strongly dependent on the inherent optical properties of the skin tissue.

  2. The transport of neutrons and gamma-rays in the air

    International Nuclear Information System (INIS)

    Adamski, J.

    1980-01-01

    The transport of neutrons and gamma rays in the infinite homogeneous air has been investigated. For the calculations has been used the Multigroup One Dimensional Discrete Ordinates Transport Code ANISN-W. The calculations have been performed for three types of neutron sources. The neutrons and gamma ray doses in the air have been analyzed, and comparison to the other authors' results has been given. (author)

  3. Quadratic Finite Element Method for 1D Deterministic Transport

    International Nuclear Information System (INIS)

    Tolar, D R Jr.; Ferguson, J M

    2004-01-01

    In the discrete ordinates, or SN, numerical solution of the transport equation, both the spatial ((und r)) and angular ((und (Omega))) dependences on the angular flux ψ(und r),(und (Omega))are modeled discretely. While significant effort has been devoted toward improving the spatial discretization of the angular flux, we focus on improving the angular discretization of ψ(und r),(und (Omega)). Specifically, we employ a Petrov-Galerkin quadratic finite element approximation for the differencing of the angular variable (μ) in developing the one-dimensional (1D) spherical geometry S N equations. We develop an algorithm that shows faster convergence with angular resolution than conventional S N algorithms

  4. Biomedical applications of two- and three-dimensional deterministic radiation transport methods

    International Nuclear Information System (INIS)

    Nigg, D.W.

    1992-01-01

    Multidimensional deterministic radiation transport methods are routinely used in support of the Boron Neutron Capture Therapy (BNCT) Program at the Idaho National Engineering Laboratory (INEL). Typical applications of two-dimensional discrete-ordinates methods include neutron filter design, as well as phantom dosimetry. The epithermal-neutron filter for BNCT that is currently available at the Brookhaven Medical Research Reactor (BMRR) was designed using such methods. Good agreement between calculated and measured neutron fluxes was observed for this filter. Three-dimensional discrete-ordinates calculations are used routinely for dose-distribution calculations in three-dimensional phantoms placed in the BMRR beam, as well as for treatment planning verification for live canine subjects. Again, good agreement between calculated and measured neutron fluxes and dose levels is obtained

  5. Application of direct discrete method (DDM) to multigroup neutron transport problems

    International Nuclear Information System (INIS)

    Vosoughi, Naser; Salehi, Ali Akbar; Shahriari, Majid

    2003-01-01

    The Direct Discrete Method (DDM), which produced excellent results for one-group neutron transport problems, has been developed for multigroup energy. A multigroup neutron transport discrete equation has been produced for a cylindrical shape fuel element with and without associated coolant regions with two boundary conditions. The calculations are illustrated for two-group energy by graphs showing the fast and thermal fluxes. The validity of the results are tested against the results obtained by the ANISN code. (author)

  6. Computational methods of electron/photon transport

    International Nuclear Information System (INIS)

    Mack, J.M.

    1983-01-01

    A review of computational methods simulating the non-plasma transport of electrons and their attendant cascades is presented. Remarks are mainly restricted to linearized formalisms at electron energies above 1 keV. The effectiveness of various metods is discussed including moments, point-kernel, invariant imbedding, discrete-ordinates, and Monte Carlo. Future research directions and the potential impact on various aspects of science and engineering are indicated

  7. Analytical reconstruction schemes for coarse-mesh spectral nodal solution of slab-geometry SN transport problems

    International Nuclear Information System (INIS)

    Barros, R. C.; Filho, H. A.; Platt, G. M.; Oliveira, F. B. S.; Militao, D. S.

    2009-01-01

    Coarse-mesh numerical methods are very efficient in the sense that they generate accurate results in short computational time, as the number of floating point operations generally decrease, as a result of the reduced number of mesh points. On the other hand, they generate numerical solutions that do not give detailed information on the problem solution profile, as the grid points can be located considerably away from each other. In this paper we describe two analytical reconstruction schemes for the coarse-mesh solution generated by the spectral nodal method for neutral particle discrete ordinates (S N ) transport model in slab geometry. The first scheme we describe is based on the analytical reconstruction of the coarse-mesh solution within each discretization cell of the spatial grid set up on the slab. The second scheme is based on the angular reconstruction of the discrete ordinates solution between two contiguous ordinates of the angular quadrature set used in the S N model. Numerical results are given so we can illustrate the accuracy of the two reconstruction schemes, as described in this paper. (authors)

  8. An analytical approach for a nodal formulation of a two-dimensional fixed-source neutron transport problem in heterogeneous medium

    Energy Technology Data Exchange (ETDEWEB)

    Basso Barichello, Liliane; Dias da Cunha, Rudnei [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Inst. de Matematica; Becker Picoloto, Camila [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Tres, Anderson [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Matematica Aplicada

    2015-05-15

    A nodal formulation of a fixed-source two-dimensional neutron transport problem, in Cartesian geometry, defined in a heterogeneous medium, is solved by an analytical approach. Explicit expressions, in terms of the spatial variables, are derived for averaged fluxes in each region in which the domain is subdivided. The procedure is an extension of an analytical discrete ordinates method, the ADO method, for the solution of the two-dimensional homogeneous medium case. The scheme is developed from the discrete ordinates version of the two-dimensional transport equation along with the level symmetric quadrature scheme. As usual for nodal schemes, relations between the averaged fluxes and the unknown angular fluxes at the contours are introduced as auxiliary equations. Numerical results are in agreement with results available in the literature.

  9. Radiation transport calculation methods in BNCT

    International Nuclear Information System (INIS)

    Koivunoro, H.; Seppaelae, T.; Savolainen, S.

    2000-01-01

    Boron neutron capture therapy (BNCT) is used as a radiotherapy for malignant brain tumours. Radiation dose distribution is necessary to determine individually for each patient. Radiation transport and dose distribution calculations in BNCT are more complicated than in conventional radiotherapy. Total dose in BNCT consists of several different dose components. The most important dose component for tumour control is therapeutic boron dose D B . The other dose components are gamma dose D g , incident fast neutron dose D f ast n and nitrogen dose D N . Total dose is a weighted sum of the dose components. Calculation of neutron and photon flux is a complex problem and requires numerical methods, i.e. deterministic or stochastic simulation methods. Deterministic methods are based on the numerical solution of Boltzmann transport equation. Such are discrete ordinates (SN) and spherical harmonics (PN) methods. The stochastic simulation method for calculation of radiation transport is known as Monte Carlo method. In the deterministic methods the spatial geometry is partitioned into mesh elements. In SN method angular integrals of the transport equation are replaced with weighted sums over a set of discrete angular directions. Flux is calculated iteratively for all these mesh elements and for each discrete direction. Discrete ordinates transport codes used in the dosimetric calculations are ANISN, DORT and TORT. In PN method a Legendre expansion for angular flux is used instead of discrete direction fluxes, land the angular dependency comes a property of vector function space itself. Thus, only spatial iterations are required for resulting equations. A novel radiation transport code based on PN method and tree-multigrid technique (TMG) has been developed at VTT (Technical Research Centre of Finland). Monte Carlo method solves the radiation transport by randomly selecting neutrons and photons from a prespecified boundary source and following the histories of selected particles

  10. New ordinances

    International Nuclear Information System (INIS)

    Reuter, H.

    1980-01-01

    Based on extensive preliminary work of the responsible Federal Minister of Labour and Social Affairs, the 'Ordinance to Replace Ordinances under Article 24 of the Irading and Industrial Code' has been issued by the Federal Government on February 27, 1980. This new ordinance also contains the new versions of the Steam Boiler Ordinance, the Pressure Gas Ordinance, the Lift Ordinance, the Ordinance on Electrical Installations in Rooms with High Explosion Hazards, the Acetylene Ordinance, and the Ordinance on Combustible Liquids. Accordingly, these new ordinances all have the same date of issue. Coming into force on July 1, 1980, they will replace six ordinances for plants to be licensed. The same applies to the pertinent general administrative regulations. (orig.) [de

  11. A Krylov Subspace Method for Unstructured Mesh SN Transport Computation

    International Nuclear Information System (INIS)

    Yoo, Han Jong; Cho, Nam Zin; Kim, Jong Woon; Hong, Ser Gi; Lee, Young Ouk

    2010-01-01

    Hong, et al., have developed a computer code MUST (Multi-group Unstructured geometry S N Transport) for the neutral particle transport calculations in three-dimensional unstructured geometry. In this code, the discrete ordinates transport equation is solved by using the discontinuous finite element method (DFEM) or the subcell balance methods with linear discontinuous expansion. In this paper, the conventional source iteration in the MUST code is replaced by the Krylov subspace method to reduce computing time and the numerical test results are given

  12. An analytical approach for a nodal scheme of two-dimensional neutron transport problems

    International Nuclear Information System (INIS)

    Barichello, L.B.; Cabrera, L.C.; Prolo Filho, J.F.

    2011-01-01

    Research highlights: → Nodal equations for a two-dimensional neutron transport problem. → Analytical Discrete Ordinates Method. → Numerical results compared with the literature. - Abstract: In this work, a solution for a two-dimensional neutron transport problem, in cartesian geometry, is proposed, on the basis of nodal schemes. In this context, one-dimensional equations are generated by an integration process of the multidimensional problem. Here, the integration is performed for the whole domain such that no iterative procedure between nodes is needed. The ADO method is used to develop analytical discrete ordinates solution for the one-dimensional integrated equations, such that final solutions are analytical in terms of the spatial variables. The ADO approach along with a level symmetric quadrature scheme, lead to a significant order reduction of the associated eigenvalues problems. Relations between the averaged fluxes and the unknown fluxes at the boundary are introduced as the usually needed, in nodal schemes, auxiliary equations. Numerical results are presented and compared with test problems.

  13. Ordinance of the Prime Minister's Office concerning reports on transport of radioisotopes

    International Nuclear Information System (INIS)

    1981-01-01

    This rule is established under the provisions of the law on the prevention of radiation injuries by radioisotopes and the enforcement ordinance for this law, and to execute the law. Radioisotopes or the goods contaminated by radioisotopes which require reports are the same as those defined in the enforcement regulation for the law. Persons who intend to report on the transport of radioisotopes under the law shall submit two copies of reports in the form specified in this rule to the public safety commissions of prefectures which exercise jurisdiction over the dispatching places of these radioisotopes. The indication matters defined in this rule include speed of the vehicles loaded with radioisotopes, the disposition of escort cars, the formation of these vehicles, cars and other vehicles which accompany to transport, parking areas, the places of loading and unloading, etc. When the transport reported is related to the areas which are under the jurisdiction of other public safety commissions, those commissions which have received the reports shall inform without delay to the commissions concerned the date of transport, course, the kinds and quantities of radioisotopes and other necessary matters. The examinations of transport are made according to the contents of the reports submitted as to whether the transport was made as notified. Reports may be collected on the circumstances of transport outside works or enterprises and the personal injuries by the transport concerned, etc. (Okada, K.)

  14. On the use of flux limiters in the discrete ordinates method for 3D radiation calculations in absorbing and scattering media

    International Nuclear Information System (INIS)

    Godoy, William F.; DesJardin, Paul E.

    2010-01-01

    The application of flux limiters to the discrete ordinates method (DOM), S N , for radiative transfer calculations is discussed and analyzed for 3D enclosures for cases in which the intensities are strongly coupled to each other such as: radiative equilibrium and scattering media. A Newton-Krylov iterative method (GMRES) solves the final systems of linear equations along with a domain decomposition strategy for parallel computation using message passing libraries in a distributed memory system. Ray effects due to angular discretization and errors due to domain decomposition are minimized until small variations are introduced by these effects in order to focus on the influence of flux limiters on errors due to spatial discretization, known as numerical diffusion, smearing or false scattering. Results are presented for the DOM-integrated quantities such as heat flux, irradiation and emission. A variety of flux limiters are compared to 'exact' solutions available in the literature, such as the integral solution of the RTE for pure absorbing-emitting media and isotropic scattering cases and a Monte Carlo solution for a forward scattering case. Additionally, a non-homogeneous 3D enclosure is included to extend the use of flux limiters to more practical cases. The overall balance of convergence, accuracy, speed and stability using flux limiters is shown to be superior compared to step schemes for any test case.

  15. The discrete spectrum in azimuthally dependent transport theory

    International Nuclear Information System (INIS)

    Garcia, R.D.M.; Siewert, C.E.

    1989-01-01

    The discrete spectrum for each component of a Fourier decomposition of the azimuthally dependent transport equation is analyzed. For a non-multiplying medium described by an L th -order scattering law, the problem of determining the zeros of the dispersion function for the m th Fourier component is formulated in terms of Sturm sequences. In particular, a straightforward application of the Sturm-sequence property is used to compute the number of discrete eigenvalue pairs κ m and to show that either κ m = γ m or κ m = γ m + 1, where γ m denotes the number of zeros of the Chandrasekhar polynomial g m L+1 (ξ) which are greater than unity. It is also shown how Sturm sequences can be used to construct effective algorithms to compute and to refine estimates of the discrete eigenvalues. Results are presented for a test problem. (author) [pt

  16. A generalized nodal finite element formalism for discrete ordinates equations in slab geometry Part I: Theory in the continuous moment case

    International Nuclear Information System (INIS)

    Hennart, J.P.; Valle, E. del.

    1995-01-01

    A generalized nodal finite element formalism is presented, which covers virtually all known finit difference approximation to the discrete ordinates equations in slab geometry. This paper (Part 1) presents the theory of the so called open-quotes continuous moment methodsclose quotes, which include such well-known methods as the open-quotes diamond differenceclose quotes and the open-quotes characteristicclose quotes schemes. In a second paper (hereafter referred to as Part II), the authors will present the theory of the open-quotes discontinuous moment methodsclose quotes, consisting in particular of the open-quotes linear discontinuousclose quotes scheme as well as of an entire new class of schemes. Corresponding numerical results are available for all these schemes and will be presented in a third paper (Part III). 12 refs

  17. Solution of the Boltzmann-Fokker-Planck transport equation using exponential nodal schemes; Solucion de la ecuacion de transporte de Boltzmann-Fokker-Planck usando esquemas nodales exponenciales

    Energy Technology Data Exchange (ETDEWEB)

    Ortega J, R.; Valle G, E. del [IPN-ESFM, 07738 Mexico D.F. (Mexico)]. e-mail: roj@correo.azc.uam.mx

    2003-07-01

    There are carried out charge and energy calculations deposited due to the interaction of electrons with a plate of a certain material, solving numerically the electron transport equation for the Boltzmann-Fokker-Planck approach of first order in plate geometry with a computer program denominated TEOD-NodExp (Transport of Electrons in Discreet Ordinates, Nodal Exponentials), using the proposed method by the Dr. J. E. Morel to carry out the discretization of the variable energy and several spatial discretization schemes, denominated exponentials nodal. It is used the Fokker-Planck equation since it represents an approach of the Boltzmann transport equation that is been worth whenever it is predominant the dispersion of small angles, that is to say, resulting dispersion in small dispersion angles and small losses of energy in the transport of charged particles. Such electrons could be those that they face with a braking plate in a device of thermonuclear fusion. In the present work its are considered electrons of 1 MeV that impact isotropically on an aluminum plate. They were considered three different thickness of plate that its were designated as problems 1, 2 and 3. In the calculations it was used the discrete ordinate method S{sub 4} with expansions of the dispersion cross sections until P{sub 3} order. They were considered 25 energy groups of uniform size between the minimum energy of 0.1 MeV and the maximum of 1.0 MeV; the one spatial intervals number it was considered variable and it was assigned the values of 10, 20 and 30. (Author)

  18. Coarse-mesh rebalance methods compatible with the spherical harmonic fictitious source in neutron transport calculations

    International Nuclear Information System (INIS)

    Miller, W.F. Jr.

    1975-10-01

    The coarse-mesh rebalance method, based on neutron conservation, is used in discrete ordinates neutron transport codes to accelerate convergence of the within-group scattering source. Though very powerful for this application, the method is ineffective in accelerating the iteration on the discrete-ordinates-to-spherical-harmonics fictitious sources used for ray-effect elimination. This is largely because this source makes a minimum contribution to the neutron balance equation. The traditional rebalance approach is derived in a variational framework and compared with new rebalance approaches tailored to be compatible with the fictitious source. The new approaches are compared numerically to determine their relative advantages. It is concluded that there is little incentive to use the new methods. (3 tables, 5 figures)

  19. To the development of numerical methods in problems of radiation transport

    International Nuclear Information System (INIS)

    Germogenova, T.A.

    1990-01-01

    Review of studies on the development of numerical methods and the discrete ordinate method in particular, used for solution of radiation protection physics problems is given. Consideration is given to the problems, which arise when calculating fields of penetrating radiation and when studying processes of charged-particle transport and cascade processes, generated by high-energy primary radiation

  20. Amendments to ordinances in Radiation Protection Law; Novellierung der strahlenschutzrechtlichen Verordnungen

    Energy Technology Data Exchange (ETDEWEB)

    Heller, W.

    2007-05-15

    The last major reform of the German Radiation Protection Ordinance took place on July 26, 2001. The 'First Ordinance Amending Ordinances in Radiation Protection Law' now proposed is to cover primarily the necessary changes and supplements resulting from experience in the execution of the ordinances. They mainly relate to these issues: (1) the scope of application of the Radiation Protection Ordinance and of the x-ray Ordinance in medical research (2) the scope of application of the Radiation Protection Ordinance and the -ray Ordinance in unjustified types of activities (3) electronic communication ('e-government') (4) changes in the provisions about permits and announcements in the Radiation Protection Ordinance (5) new clearance levels in the Radiation Protection Ordinance (6) cross-border transports of 'NORM' materials (7) other changes in the scope of application of the Radiation Protection Ordinance (8) other changes in the x-ray area. (orig.)

  1. ANAUSN - a one-dimensional multigroup SN transport theory module for the AUS reactor neutronics system

    International Nuclear Information System (INIS)

    Clancy, B.E.

    1982-05-01

    ANAUSN is a general purpose, one-dimensional discrete ordinate transport theory program which has access to AUS datapools. Fixed source, reactivity and a variety of criticality search calculations can be performed. The program can be operated as a module in the AUS scheme or as a stand-alone program

  2. Discrete nodal integral transport-theory method for multidimensional reactor physics and shielding calculations

    International Nuclear Information System (INIS)

    Lawrence, R.D.; Dorning, J.J.

    1980-01-01

    A coarse-mesh discrete nodal integral transport theory method has been developed for the efficient numerical solution of multidimensional transport problems of interest in reactor physics and shielding applications. The method, which is the discrete transport theory analogue and logical extension of the nodal Green's function method previously developed for multidimensional neutron diffusion problems, utilizes the same transverse integration procedure to reduce the multidimensional equations to coupled one-dimensional equations. This is followed by the conversion of the differential equations to local, one-dimensional, in-node integral equations by integrating back along neutron flight paths. One-dimensional and two-dimensional transport theory test problems have been systematically studied to verify the superior computational efficiency of the new method

  3. Solution of the Boltzmann-Fokker-Planck transport equation using exponential nodal schemes

    International Nuclear Information System (INIS)

    Ortega J, R.; Valle G, E. del

    2003-01-01

    There are carried out charge and energy calculations deposited due to the interaction of electrons with a plate of a certain material, solving numerically the electron transport equation for the Boltzmann-Fokker-Planck approach of first order in plate geometry with a computer program denominated TEOD-NodExp (Transport of Electrons in Discreet Ordinates, Nodal Exponentials), using the proposed method by the Dr. J. E. Morel to carry out the discretization of the variable energy and several spatial discretization schemes, denominated exponentials nodal. It is used the Fokker-Planck equation since it represents an approach of the Boltzmann transport equation that is been worth whenever it is predominant the dispersion of small angles, that is to say, resulting dispersion in small dispersion angles and small losses of energy in the transport of charged particles. Such electrons could be those that they face with a braking plate in a device of thermonuclear fusion. In the present work its are considered electrons of 1 MeV that impact isotropically on an aluminum plate. They were considered three different thickness of plate that its were designated as problems 1, 2 and 3. In the calculations it was used the discrete ordinate method S 4 with expansions of the dispersion cross sections until P 3 order. They were considered 25 energy groups of uniform size between the minimum energy of 0.1 MeV and the maximum of 1.0 MeV; the one spatial intervals number it was considered variable and it was assigned the values of 10, 20 and 30. (Author)

  4. Discrete Diffusion Monte Carlo for Electron Thermal Transport

    Science.gov (United States)

    Chenhall, Jeffrey; Cao, Duc; Wollaeger, Ryan; Moses, Gregory

    2014-10-01

    The iSNB (implicit Schurtz Nicolai Busquet electron thermal transport method of Cao et al. is adapted to a Discrete Diffusion Monte Carlo (DDMC) solution method for eventual inclusion in a hybrid IMC-DDMC (Implicit Monte Carlo) method. The hybrid method will combine the efficiency of a diffusion method in short mean free path regions with the accuracy of a transport method in long mean free path regions. The Monte Carlo nature of the approach allows the algorithm to be massively parallelized. Work to date on the iSNB-DDMC method will be presented. This work was supported by Sandia National Laboratory - Albuquerque.

  5. Recently developed methods in neutral-particle transport calculations: overview

    International Nuclear Information System (INIS)

    Alcouffe, R.E.

    1982-01-01

    It has become increasingly apparent that successful, general methods for the solution of the neutral particle transport equation involve a close connection between the spatial-discretization method used and the source-acceleration method chosen. The first form of the transport equation, angular discretization which is discrete ordinates is considered as well as spatial discretization based upon a mesh arrangement. Characteristic methods are considered briefly in the context of future, desirable developments. The ideal spatial-discretization method is described as having the following attributes: (1) positive-positive boundary data yields a positive angular flux within the mesh including its boundaries; (2) satisfies the particle balance equation over the mesh, that is, the method is conservative; (3) possesses the diffusion limit independent of spatial mesh size, that is, for a linearly isotropic flux assumption, the transport differencing reduces to a suitable diffusion equation differencing; (4) the method is unconditionally acceleratable, i.e., for each mesh size, the method is unconditionally convergent with a source iteration acceleration. It is doubtful that a single method possesses all these attributes for a general problem. Some commonly used methods are outlined and their computational performance and usefulness are compared; recommendations for future development are detailed, which include practical computational considerations

  6. Ordinance on the Carriage of Dangerous Goods by Rail (GGVE). 2. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Ridder, K.; Katholnig, F.

    1993-01-01

    The book presents the legislative texts and other legal provisions concerning the transport of dangerous goods by rail: (1) Act on the transport of dangerous goods, full text. (2) Ordinance on the carriage of dangerous goods by rail (GGVE) - GGVE skeleton ordinance; Annex to the skeleton ordinance. (3) Documents - GGVE implementing regulations RE 001; R 002; Ordinance on exeptions GGVE; Extracts from IAEA recommendations concerning safe transport of radioactive materials; catalogue of fines pertaining to section 10 GGVE. (4) Alphabetical list of materials for GGVE/RID and GGVS/ADR. Index terms printed in deep black at the margin of pages allow quick access to the text passages of interest, and there is a subject index for retrieval over the entire book. (orig./HP) [de

  7. Coupling of a discrete ordinate 3-D radiant heat transfer model with the PHOENICS fluid mechanics software; Couplage d`un modele radiatif tridimensionnel aux ordonnees discretes au logiciel de mecanique des fluides phoenics

    Energy Technology Data Exchange (ETDEWEB)

    Muller, J [IRSID, Institut de Recherches Siderurgie, 57 - Maizieres-les-Metz (France)

    1997-12-31

    Radiant heat transfer is the main solution retained in many iron and steel metallurgy installations (re-heating and annealing furnaces etc..). Today, it has become important to dispose of performing radiant heat transfer models in heat transfer and fluid mechanics simulation softwares, and well adapted to multidimensional industrial problems. This work presents the discrete ordinate radiant heat transfer model developed at the IRSID (the French institute of research in iron and steel metallurgy) and coupled with the PHOENICS heat transfer-fluid mechanics software. Three modeling approaches are presented concerning the radiative properties of gases (H{sub 2}O-CO{sub 2}). A ``weighted grey gases sum`` model gives satisfactory results for several 1-D validation cases. (J.S.) 20 refs.

  8. Coupling of a discrete ordinate 3-D radiant heat transfer model with the PHOENICS fluid mechanics software; Couplage d`un modele radiatif tridimensionnel aux ordonnees discretes au logiciel de mecanique des fluides phoenics

    Energy Technology Data Exchange (ETDEWEB)

    Muller, J. [IRSID, Institut de Recherches Siderurgie, 57 - Maizieres-les-Metz (France)

    1996-12-31

    Radiant heat transfer is the main solution retained in many iron and steel metallurgy installations (re-heating and annealing furnaces etc..). Today, it has become important to dispose of performing radiant heat transfer models in heat transfer and fluid mechanics simulation softwares, and well adapted to multidimensional industrial problems. This work presents the discrete ordinate radiant heat transfer model developed at the IRSID (the French institute of research in iron and steel metallurgy) and coupled with the PHOENICS heat transfer-fluid mechanics software. Three modeling approaches are presented concerning the radiative properties of gases (H{sub 2}O-CO{sub 2}). A ``weighted grey gases sum`` model gives satisfactory results for several 1-D validation cases. (J.S.) 20 refs.

  9. Implementation of the kinetics in the transport code AZTRAN; Implementacion de la cinetica en el codigo de transporte AZTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Duran G, J. A.; Del Valle G, E. [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, San Pedro Zacatenco, 07738 Ciudad de Mexico (Mexico); Gomez T, A. M., E-mail: redfield1290@gmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2017-09-15

    This paper shows the implementation of the time dependence in the three-dimensional transport code AZTRAN (AZtlan TRANsport), which belongs to the AZTLAN platform, for the analysis of nuclear reactors (currently under development). The AZTRAN code with this implementation is able to numerically solve the time-dependent transport equation in XYZ geometry, for several energy groups, using the discrete ordinate method S{sub n} for the discretization of the angular variable, the nodal method RTN-0 for spatial discretization and method 0 for discretization in time. Initially, the code only solved the neutrons transport equation in steady state, so the implementation of the temporal part was made integrating the neutrons transport equation with respect to time and balance equations corresponding to the concentrations of delayed neutron precursors, for which method 0 was applied. After having directly implemented code kinetics, the improved quasi-static method was implemented, which is a tool for reducing computation time, where the angular flow is factored by the product of two functions called shape function and amplitude function, where the first is calculated for long time steps, called macro-steps and the second is resolved for small time steps called micro-steps. In the new version of AZTRAN several Benchmark problems that were taken from the literature were simulated, the problems used are of two and three dimensions which allowed corroborating the accuracy and stability of the code, showing in general in the reference tests a good behavior. (Author)

  10. Radiative transfer equation accounting for rotational Raman scattering and its solution by the discrete-ordinates method

    International Nuclear Information System (INIS)

    Rozanov, Vladimir V.; Vountas, Marco

    2014-01-01

    Rotational Raman scattering of solar light in Earth's atmosphere leads to the filling-in of Fraunhofer and telluric lines observed in the reflected spectrum. The phenomenological derivation of the inelastic radiative transfer equation including rotational Raman scattering is presented. The different forms of the approximate radiative transfer equation with first-order rotational Raman scattering terms are obtained employing the Cabannes, Rayleigh, and Cabannes–Rayleigh scattering models. The solution of these equations is considered in the framework of the discrete-ordinates method using rigorous and approximate approaches to derive particular integrals. An alternative forward-adjoint technique is suggested as well. A detailed description of the model including the exact spectral matching and a binning scheme that significantly speeds up the calculations is given. The considered solution techniques are implemented in the radiative transfer software package SCIATRAN and a specified benchmark setup is presented to enable readers to compare with own results transparently. -- Highlights: • We derived the radiative transfer equation accounting for rotational Raman scattering. • Different approximate radiative transfer approaches with first order scattering were used. • Rigorous and approximate approaches are shown to derive particular integrals. • An alternative forward-adjoint technique is suggested as well. • An additional spectral binning scheme which speeds up the calculations is presented

  11. Discrete event simulation of Maglev transport considering traffic waves

    Directory of Open Access Journals (Sweden)

    Moo Hyun Cha

    2014-10-01

    Full Text Available A magnetically levitated vehicle (Maglev system is under commercialization as a new transportation system in Korea. The Maglev is operated by an unmanned automatic control system. Therefore, the plan of train operation should be carefully established and validated in advance. In general, when making a train operation plan, statistically predicted traffic data is used. However, a traffic wave often occurs in real train service, and demand-driven simulation technology is required to review a train operation plan and service quality considering traffic waves. We propose a method and model to simulate Maglev operation considering continuous demand changes. For this purpose, we employed a discrete event model that is suitable for modeling the behavior of railway passenger transportation. We modeled the system hierarchically using discrete event system specification (DEVS formalism. In addition, through implementation and an experiment using the DEVSim++ simulation environment, we tested the feasibility of the proposed model. Our experimental results also verified that our demand-driven simulation technology can be used for a priori review of train operation plans and strategies.

  12. Parallel Implementation and Scaling of an Adaptive Mesh Discrete Ordinates Algorithm for Transport

    International Nuclear Information System (INIS)

    Howell, L H

    2004-01-01

    Block-structured adaptive mesh refinement (AMR) uses a mesh structure built up out of locally-uniform rectangular grids. In the BoxLib parallel framework used by the Raptor code, each processor operates on one or more of these grids at each refinement level. The decomposition of the mesh into grids and the distribution of these grids among processors may change every few timesteps as a calculation proceeds. Finer grids use smaller timesteps than coarser grids, requiring additional work to keep the system synchronized and ensure conservation between different refinement levels. In a paper for NECDC 2002 I presented preliminary results on implementation of parallel transport sweeps on the AMR mesh, conjugate gradient acceleration, accuracy of the AMR solution, and scalar speedup of the AMR algorithm compared to a uniform fully-refined mesh. This paper continues with a more in-depth examination of the parallel scaling properties of the scheme, both in single-level and multi-level calculations. Both sweeping and setup costs are considered. The algorithm scales with acceptable performance to several hundred processors. Trends suggest, however, that this is the limit for efficient calculations with traditional transport sweeps, and that modifications to the sweep algorithm will be increasingly needed as job sizes in the thousands of processors become common

  13. Minaret, a deterministic neutron transport solver for nuclear core calculations

    Energy Technology Data Exchange (ETDEWEB)

    Moller, J-Y.; Lautard, J-J., E-mail: jean-yves.moller@cea.fr, E-mail: jean-jacques.lautard@cea.fr [CEA - Centre de Saclay , Gif sur Yvette (France)

    2011-07-01

    We present here MINARET a deterministic transport solver for nuclear core calculations to solve the steady state Boltzmann equation. The code follows the multi-group formalism to discretize the energy variable. It uses discrete ordinate method to deal with the angular variable and a DGFEM to solve spatially the Boltzmann equation. The mesh is unstructured in 2D and semi-unstructured in 3D (cylindrical). Curved triangles can be used to fit the exact geometry. For the curved elements, two different sets of basis functions can be used. Transport solver is accelerated with a DSA method. Diffusion and SPN calculations are made possible by skipping the transport sweep in the source iteration. The transport calculations are parallelized with respect to the angular directions. Numerical results are presented for simple geometries and for the C5G7 Benchmark, JHR reactor and the ESFR (in 2D and 3D). Straight and curved finite element results are compared. (author)

  14. Minaret, a deterministic neutron transport solver for nuclear core calculations

    International Nuclear Information System (INIS)

    Moller, J-Y.; Lautard, J-J.

    2011-01-01

    We present here MINARET a deterministic transport solver for nuclear core calculations to solve the steady state Boltzmann equation. The code follows the multi-group formalism to discretize the energy variable. It uses discrete ordinate method to deal with the angular variable and a DGFEM to solve spatially the Boltzmann equation. The mesh is unstructured in 2D and semi-unstructured in 3D (cylindrical). Curved triangles can be used to fit the exact geometry. For the curved elements, two different sets of basis functions can be used. Transport solver is accelerated with a DSA method. Diffusion and SPN calculations are made possible by skipping the transport sweep in the source iteration. The transport calculations are parallelized with respect to the angular directions. Numerical results are presented for simple geometries and for the C5G7 Benchmark, JHR reactor and the ESFR (in 2D and 3D). Straight and curved finite element results are compared. (author)

  15. Ordinance of 30 June 1976 on radiation protection

    International Nuclear Information System (INIS)

    1976-01-01

    This Ordinance on radiation protection lays down the licensing system for activities in Switzerland involving possible exposure to radiation, with the exception of nuclear installations, fuels and radioactive waste which, under the 1959 Atomic Energy Act, are subject to licensing. The Ordinance applies to the production, handling, use, storage, transport, disposal, import and export of radioactive substances and devices and articles containing them; and generally to any activity involving hazards caused by ionizing radiation. The Federal Public Health Service is the competent authority for granting licences. Provision is also made for the administrative conditions to be complied with for obtaining such licences as well as for technical measures required when engaged in work covered by the Ordinance. (NEA) [fr

  16. Some results on the neutron transport and the coupling of equations; Quelques resultats sur le transport neutronique et le couplage d`equations

    Energy Technology Data Exchange (ETDEWEB)

    Bal, G. [Electricite de France (EDF), Direction des Etudes et Recherches, 92 - Clamart (France)

    1997-12-31

    Neutron transport in nuclear reactors is well modeled by the linear Boltzmann transport equation. Its resolution is relatively easy but very expensive. To achieve whole core calculations, one has to consider simpler models, such as diffusion or homogeneous transport equations. However, the solutions may become inaccurate in particular situations (as accidents for instance). That is the reason why we wish to solve the equations on small area accurately and more coarsely on the remaining part of the core. It is than necessary to introduce some links between different discretizations or modelizations. In this note, we give some results on the coupling of different discretizations of all degrees of freedom of the integral-differential neutron transport equation (two degrees for the angular variable, on for the energy component, and two or three degrees for spatial position respectively in 2D (cylindrical symmetry) and 3D). Two chapters are devoted to the coupling of discrete ordinates methods (for angular discretization). The first one is theoretical and shows the well posing of the coupled problem, whereas the second one deals with numerical applications of practical interest (the results have been obtained from the neutron transport code developed at the R and D, which has been modified for introducing the coupling). Next, we present the nodal scheme RTN0, used for the spatial discretization. We show well posing results for the non-coupled and the coupled problems. At the end, we deal with the coupling of energy discretizations for the multigroup equations obtained by homogenization. Some theoretical results of the discretization of the velocity variable (well-posing of problems), which do not deal directly with the purposes of coupling, are presented in the annexes. (author). 34 refs.

  17. Calculations on safe storage and transportation of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Hathout, A M; El-Messiry, A M; Amin, E [National Center for Nuclear Safety and Radiation Control and AEA, Cairo (Egypt)

    1997-12-31

    In this work the safe storage and transportation of fresh fuel as a radioactive material studied. Egypt planned ET RR 2 reactor which is of relatively high power and would require adequate handling and transportation. Therefore, the present work is initiated to develop a procedure for safe handling and transportation of radioactive materials. The possibility of reducing the magnitude of radiation transmitted on the exterior of the packages is investigated. Neutron absorbers are used to decrease the neutron flux. Criticality calculations are carried out to ensure the achievement of subcriticality so that the inherent safety can be verified. The discrete ordinate transport code ANISN was used. The results show good agreement with other techniques. 2 figs., 2 tabs.

  18. On the adequacy of message-passing parallel supercomputers for solving neutron transport problems

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1990-01-01

    A coarse-grained, static-scheduling parallelization of the standard iterative scheme used for solving the discrete-ordinates approximation of the neutron transport equation is described. The parallel algorithm is based on a decomposition of the angular domain along the discrete ordinates, thus naturally producing a set of completely uncoupled systems of equations in each iteration. Implementation of the parallel code on Intcl's iPSC/2 hypercube, and solutions to test problems are presented as evidence of the high speedup and efficiency of the parallel code. The performance of the parallel code on the iPSC/2 is analyzed, and a model for the CPU time as a function of the problem size (order of angular quadrature) and the number of participating processors is developed and validated against measured CPU times. The performance model is used to speculate on the potential of massively parallel computers for significantly speeding up real-life transport calculations at acceptable efficiencies. We conclude that parallel computers with a few hundred processors are capable of producing large speedups at very high efficiencies in very large three-dimensional problems. 10 refs., 8 figs

  19. Implementation of the kinetics in the transport code AZTRAN

    International Nuclear Information System (INIS)

    Duran G, J. A.; Del Valle G, E.; Gomez T, A. M.

    2017-09-01

    This paper shows the implementation of the time dependence in the three-dimensional transport code AZTRAN (AZtlan TRANsport), which belongs to the AZTLAN platform, for the analysis of nuclear reactors (currently under development). The AZTRAN code with this implementation is able to numerically solve the time-dependent transport equation in XYZ geometry, for several energy groups, using the discrete ordinate method S n for the discretization of the angular variable, the nodal method RTN-0 for spatial discretization and method 0 for discretization in time. Initially, the code only solved the neutrons transport equation in steady state, so the implementation of the temporal part was made integrating the neutrons transport equation with respect to time and balance equations corresponding to the concentrations of delayed neutron precursors, for which method 0 was applied. After having directly implemented code kinetics, the improved quasi-static method was implemented, which is a tool for reducing computation time, where the angular flow is factored by the product of two functions called shape function and amplitude function, where the first is calculated for long time steps, called macro-steps and the second is resolved for small time steps called micro-steps. In the new version of AZTRAN several Benchmark problems that were taken from the literature were simulated, the problems used are of two and three dimensions which allowed corroborating the accuracy and stability of the code, showing in general in the reference tests a good behavior. (Author)

  20. Unconditionally stable diffusion-acceleration of the transport equation

    International Nuclear Information System (INIS)

    Larsen, E.W.

    1982-01-01

    The standard iterative procedure for solving fixed-source discrete-ordinates problems converges very slowly for problems in optically large regions with scattering ratios c near unity. The diffusion-synthetic acceleration method has been proposed to make use of the fact that for this class of problems the diffusion equation is often an accurate approximation to the transport equation. However, stability difficulties have historically hampered the implementation of this method for general transport differencing schemes. In this article we discuss a recently developed procedure for obtaining unconditionally stable diffusion-synthetic acceleration methods for various transport differencing schemes. We motivate the analysis by first discussing the exact transport equation; then we illustrate the procedure by deriving a new stable acceleration method for the linear discontinuous transport differencing scheme. We also provide some numerical results

  1. Unconditionally stable diffusion-acceleration of the transport equation

    International Nuclear Information System (INIS)

    Larson, E.W.

    1982-01-01

    The standard iterative procedure for solving fixed-source discrete-ordinates problems converges very slowly for problems in optically thick regions with scattering ratios c near unity. The diffusion-synthetic acceleration method has been proposed to make use of the fact that for this class of problems, the diffusion equation is often an accurate approximation to the transport equation. However, stability difficulties have historically hampered the implementation of this method for general transport differencing schemes. In this article we discuss a recently developed procedure for obtaining unconditionally stable diffusion-synthetic acceleration methods for various transport differencing schemes. We motivate the analysis by first discussing the exact transport equation; then we illustrate the procedure by deriving a new stable acceleration method for the linear discontinuous transport differencing scheme. We also provide some numerical results

  2. GRAVE: An Interactive Geometry Construction and Visualization Software System for the TORT Nuclear Radiation Transport Code

    International Nuclear Information System (INIS)

    Blakeman, E.D.

    2000-01-01

    A software system, GRAVE (Geometry Rendering and Visual Editor), has been developed at the Oak Ridge National Laboratory (ORNL) to perform interactive visualization and development of models used as input to the TORT three-dimensional discrete ordinates radiation transport code. Three-dimensional and two-dimensional visualization displays are included. Display capabilities include image rotation, zoom, translation, wire-frame and translucent display, geometry cuts and slices, and display of individual component bodies and material zones. The geometry can be interactively edited and saved in TORT input file format. This system is an advancement over the current, non-interactive, two-dimensional display software. GRAVE is programmed in the Java programming language and can be implemented on a variety of computer platforms. Three- dimensional visualization is enabled through the Visualization Toolkit (VTK), a free-ware C++ software library developed for geometric and data visual display. Future plans include an extension of the system to read inputs using binary zone maps and combinatorial geometry models containing curved surfaces, such as those used for Monte Carlo code inputs. Also GRAVE will be extended to geometry visualization/editing for the DORT two-dimensional transport code and will be integrated into a single GUI-based system for all of the ORNL discrete ordinates transport codes

  3. Angular interpolations and splice options for three-dimensional transport computations

    International Nuclear Information System (INIS)

    Abu-Shumays, I.K.; Yehnert, C.E.

    1996-01-01

    New, accurate and mathematically rigorous angular Interpolation strategies are presented. These strategies preserve flow and directionality separately over each octant of the unit sphere, and are based on a combination of spherical harmonics expansions and least squares algorithms. Details of a three-dimensional to three-dimensional (3-D to 3-D) splice method which utilizes the new angular interpolations are summarized. The method has been implemented in a multidimensional discrete ordinates transport computer program. Various features of the splice option are illustrated by several applications to a benchmark Dog-Legged Void Neutron (DLVN) streaming and transport experimental assembly

  4. Recent developments in the Los Alamos radiation transport code system

    International Nuclear Information System (INIS)

    Forster, R.A.; Parsons, K.

    1997-01-01

    A brief progress report on updates to the Los Alamos Radiation Transport Code System (LARTCS) for solving criticality and fixed-source problems is provided. LARTCS integrates the Diffusion Accelerated Neutral Transport (DANT) discrete ordinates codes with the Monte Carlo N-Particle (MCNP) code. The LARCTS code is being developed with a graphical user interface for problem setup and analysis. Progress in the DANT system for criticality applications include a two-dimensional module which can be linked to a mesh-generation code and a faster iteration scheme. Updates to MCNP Version 4A allow statistical checks of calculated Monte Carlo results

  5. Spatial and Angular Moment Analysis of Continuous and Discretized Transport Problems

    International Nuclear Information System (INIS)

    Brantley, Patrick S.; Larsen, Edward W.

    2000-01-01

    A new theoretical tool for analyzing continuous and discretized transport equations is presented. This technique is based on a spatial and angular moment analysis of the analytic transport equation, which yields exact expressions for the 'center of mass' and 'squared radius of gyration' of the particle distribution. Essentially the same moment analysis is applied to discretized particle transport problems to determine numerical expressions for the center of mass and squared radius of gyration. Because this technique makes no assumption about the optical thickness of the spatial cells or about the amount of absorption in the system, it is applicable to problems that cannot be analyzed by a truncation analysis or an asymptotic diffusion limit analysis. The spatial differencing schemes examined (weighted- diamond, lumped linear discontinuous, and multiple balance) yield a numerically consistent expression for computing the squared radius of gyration plus an error term that depends on the mesh spacing, quadrature constants, and material properties of the system. The numerical results presented suggest that the relative accuracy of spatial differencing schemes for different types of problems can be assessed by comparing the magnitudes of these error terms

  6. Some results on the neutron transport and the coupling of equations

    International Nuclear Information System (INIS)

    Bal, G.

    1997-01-01

    Neutron transport in nuclear reactors is well modeled by the linear Boltzmann transport equation. Its resolution is relatively easy but very expensive. To achieve whole core calculations, one has to consider simpler models, such as diffusion or homogeneous transport equations. However, the solutions may become inaccurate in particular situations (as accidents for instance). That is the reason why we wish to solve the equations on small area accurately and more coarsely on the remaining part of the core. It is than necessary to introduce some links between different discretizations or modelizations. In this note, we give some results on the coupling of different discretizations of all degrees of freedom of the integral-differential neutron transport equation (two degrees for the angular variable, on for the energy component, and two or three degrees for spatial position respectively in 2D (cylindrical symmetry) and 3D). Two chapters are devoted to the coupling of discrete ordinates methods (for angular discretization). The first one is theoretical and shows the well posing of the coupled problem, whereas the second one deals with numerical applications of practical interest (the results have been obtained from the neutron transport code developed at the R and D, which has been modified for introducing the coupling). Next, we present the nodal scheme RTN0, used for the spatial discretization. We show well posing results for the non-coupled and the coupled problems. At the end, we deal with the coupling of energy discretizations for the multigroup equations obtained by homogenization. Some theoretical results of the discretization of the velocity variable (well-posing of problems), which do not deal directly with the purposes of coupling, are presented in the annexes. (author)

  7. Comparison of discrete ordinate and Monte Carlo simulations of polarized radiative transfer in two coupled slabs with different refractive indices.

    Science.gov (United States)

    Cohen, D; Stamnes, S; Tanikawa, T; Sommersten, E R; Stamnes, J J; Lotsberg, J K; Stamnes, K

    2013-04-22

    A comparison is presented of two different methods for polarized radiative transfer in coupled media consisting of two adjacent slabs with different refractive indices, each slab being a stratified medium with no change in optical properties except in the direction of stratification. One of the methods is based on solving the integro-differential radiative transfer equation for the two coupled slabs using the discrete ordinate approximation. The other method is based on probabilistic and statistical concepts and simulates the propagation of polarized light using the Monte Carlo approach. The emphasis is on non-Rayleigh scattering for particles in the Mie regime. Comparisons with benchmark results available for a slab with constant refractive index show that both methods reproduce these benchmark results when the refractive index is set to be the same in the two slabs. Computed results for test cases with coupling (different refractive indices in the two slabs) show that the two methods produce essentially identical results for identical input in terms of absorption and scattering coefficients and scattering phase matrices.

  8. Two-dimensional DORT discrete ordinates X-Y geometry neutron flux calculations for the Halden Heavy Boiling Water Reactor core configurations

    Energy Technology Data Exchange (ETDEWEB)

    Slater, C.O.

    1990-07-01

    Results are reported for two-dimensional discrete ordinates, X-Y geometry calculations performed for seven Halden Heavy Boiling Water Reactor core configurations. The calculations were performed in support of an effort to reassess the neutron fluence received by the reactor vessel. Nickel foil measurement data indicated considerable underprediction of fluences by the previously used multigroup removal- diffusion method. Therefore, calculations by a more accurate method were deemed appropriate. For each core configuration, data are presented for (1) integral fluxes in the core and near the vessel wall, (2) neutron spectra at selected locations, (3) isoflux contours superimposed on the geometry models, (4) plots of the geometry models, and (5) input for the calculations. The initial calculations were performed with several mesh sizes. Comparisons of the results from these calculations indicated that the uncertainty in the calculated fluxes should be less than 10%. However, three-dimensional effects (such as axial asymmetry in the fuel loading) could contribute to much greater uncertainty in the calculated neutron fluxes. 7 refs., 22 figs., 11 tabs.

  9. The spectral volume method as applied to transport problems

    International Nuclear Information System (INIS)

    McClarren, Ryan G.

    2011-01-01

    We present a new spatial discretization for transport problems: the spectral volume method. This method, rst developed by Wang for computational fluid dynamics, divides each computational cell into several sub-cells and enforces particle balance on each of these sub-cells. Also, these sub-cells are used to build a polynomial reconstruction in the cell. The idea of dividing cells into many cells is a generalization of the simple corner balance and other similar schemes. The spectral volume method preserves particle conservation and preserves the asymptotic diffusion limit. We present results from the method on two transport problems in slab geometry using discrete ordinates and second through sixth order spectral volume schemes. The numerical results demonstrate the accuracy and preservation of the diffusion limit of the spectral volume method. Future work will explore possible bene ts of the scheme for high-performance computing and for resolving diffusive boundary layers. (author)

  10. Variational approach in transport theory

    International Nuclear Information System (INIS)

    Panta Pazos, R.; Tullio de Vilhena, M.

    2004-01-01

    In this work we present a variational approach to some methods to solve transport problems of neutral particles. We consider a convex domain X (for example the geometry of a slab, or a convex set in the plane, or a convex bounded set in the space) and we use discrete ordinates quadrature to get a system of differential equations derived from the neutron transport equation. The boundary conditions are vacuum for a subset of the boundary, and of specular reflection for the complementary subset of the boundary. Recently some different approximation methods have been presented to solve these transport problems. We introduce in this work the adjoint equations and the conjugate functions obtained by means of the variational approach. First we consider the general formulation, and then some numerical methods such as spherical harmonics and spectral collocation method. (authors)

  11. Variational approach in transport theory

    Energy Technology Data Exchange (ETDEWEB)

    Panta Pazos, R. [Nucler Engineering Department, UFRGS, Porto-Alegre (Brazil); Tullio de Vilhena, M. [Institute of Mathematics, UFRGS, Porto-Alegre (Brazil)

    2004-07-01

    In this work we present a variational approach to some methods to solve transport problems of neutral particles. We consider a convex domain X (for example the geometry of a slab, or a convex set in the plane, or a convex bounded set in the space) and we use discrete ordinates quadrature to get a system of differential equations derived from the neutron transport equation. The boundary conditions are vacuum for a subset of the boundary, and of specular reflection for the complementary subset of the boundary. Recently some different approximation methods have been presented to solve these transport problems. We introduce in this work the adjoint equations and the conjugate functions obtained by means of the variational approach. First we consider the general formulation, and then some numerical methods such as spherical harmonics and spectral collocation method. (authors)

  12. Radiation transport analyses in support of the SNS Target Station Neutron Beam Line Shutters Title I Design

    International Nuclear Information System (INIS)

    Miller, T.M.; Pevey, R.E.; Lillie, R.A.; Johnson, J.O.

    2000-01-01

    A detailed radiation transport analysis of the Spallation Neutron Source (SNS) shutters is important for the construction of the SNS because of its impact on conventional facility design, normal operation of the facility, and maintenance operations. Thus far the analysis of the SNS shutter travel gaps has been completed. This analysis was performed using coupled Monte Carlo and multi-dimensional discrete ordinates calculations

  13. A scalar flux - oriented method for the transport equation in slab geometry

    International Nuclear Information System (INIS)

    Budd, C.

    1981-01-01

    A new method for solving the neutron transport equation is described. An unusual feature of this method is that it deals principally with scalar fluxes rather than angular fluxes. An alternative approach in slab geometry promises to be cheaper to run and does not suffer from many of the problems of the discrete ordinates method. It also appears possible to extend the method to several dimensions and this is discussed. (U.K.)

  14. Application of discrete ordinates and Monte Carlo methods to transport of photons from environmental sources

    International Nuclear Information System (INIS)

    Ryman, J.C.; Eckerman, K.F.; Shultis, J.K.; Faw, R.E.; Dillman, L.T.

    1996-01-01

    Federal Guidance Report No. 12 tabulates dose coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, water, and soil. Although the dose coefficients of this report are based on previously developed dosimetric methodologies, they are derived from new, detailed calculations of energy and angular distributions of the radiations incident on the body and the transport of these radiations within the body. Effort was devoted to expanding the information available for assessment of radiation dose from radionuclides distributed on or below the surface of the ground. A companion paper (External Exposure to Radionuclides in Air, Water, and Soil) discusses the significance of the new tabulations of coefficients and provides detiled comparisons to previously published values. This paper discusses details of the photon transport calculations

  15. Deteksi Pemalsuan Citra dengan Teknik Copy-Move Menggunakan Metode Ordinal Measure dari Koefisien Discrete Cosine Transform

    Directory of Open Access Journals (Sweden)

    Zulfan

    2016-07-01

    Full Text Available This article discusses a new method for the detection of forgery images generated by copy-move technique. Copy-move technique is one of image forgery techniques which taking a particular object from its original image and add it on that image for the purpose of increasing the number of or changing the same object in the original image. This study aims to detect the forged image generated by the copy-move techniques and copy-move forged image that has been modified by the rotation operation and histogram equalization. Detection feature used is Ordinal Measure of Discrete Cosine Transform coefficient (OM-DCT. Detection starts with division of the image into a block size of BXB (B = 16x16, 32x32 and 64x64 and two-dimensional DCT was performed to each of blocks. The feature distance from the original to the fake image, was calculated by the Euclidian distance and each feature has a distance of less than or equal to the threshold value (T according to the observations will be marked as a forged part. The results show that there are blocks detected on the copy-move image, whether on the unmodified copy-move forge image or those which modified by the rotation operation and histogram equalization. The number of blocks that are found in the copy-move object varies according to the size of the detection block used.

  16. Mesh requirements for neutron transport calculations

    International Nuclear Information System (INIS)

    Askew, J.R.

    1967-07-01

    Fine-structure calculations are reported for a cylindrical natural uranium-graphite cell using different solution methods (discrete ordinate and collision probability codes) and varying the spatial mesh. It is suggested that of formulations assuming the source constant in a mesh interval the differential approach is generally to be preferred. Due to cancellation between approximations made in the derivation of the finite difference equations and the errors in neglecting source variation, the discrete ordinate code gave a more accurate estimate of fine structure for a given mesh even for unusually coarse representations. (author)

  17. DANTSYS: A diffusion accelerated neutral particle transport code system

    Energy Technology Data Exchange (ETDEWEB)

    Alcouffe, R.E.; Baker, R.S.; Brinkley, F.W.; Marr, D.R.; O`Dell, R.D.; Walters, W.F.

    1995-06-01

    The DANTSYS code package includes the following transport codes: ONEDANT, TWODANT, TWODANT/GQ, TWOHEX, and THREEDANT. The DANTSYS code package is a modular computer program package designed to solve the time-independent, multigroup discrete ordinates form of the boltzmann transport equation in several different geometries. The modular construction of the package separates the input processing, the transport equation solving, and the post processing (or edit) functions into distinct code modules: the Input Module, one or more Solver Modules, and the Edit Module, respectively. The Input and Edit Modules are very general in nature and are common to all the Solver Modules. The ONEDANT Solver Module contains a one-dimensional (slab, cylinder, and sphere), time-independent transport equation solver using the standard diamond-differencing method for space/angle discretization. Also included in the package are solver Modules named TWODANT, TWODANT/GQ, THREEDANT, and TWOHEX. The TWODANT Solver Module solves the time-independent two-dimensional transport equation using the diamond-differencing method for space/angle discretization. The authors have also introduced an adaptive weighted diamond differencing (AWDD) method for the spatial and angular discretization into TWODANT as an option. The TWOHEX Solver Module solves the time-independent two-dimensional transport equation on an equilateral triangle spatial mesh. The THREEDANT Solver Module solves the time independent, three-dimensional transport equation for XYZ and RZ{Theta} symmetries using both diamond differencing with set-to-zero fixup and the AWDD method. The TWODANT/GQ Solver Module solves the 2-D transport equation in XY and RZ symmetries using a spatial mesh of arbitrary quadrilaterals. The spatial differencing method is based upon the diamond differencing method with set-to-zero fixup with changes to accommodate the generalized spatial meshing.

  18. DANTSYS: A diffusion accelerated neutral particle transport code system

    International Nuclear Information System (INIS)

    Alcouffe, R.E.; Baker, R.S.; Brinkley, F.W.; Marr, D.R.; O'Dell, R.D.; Walters, W.F.

    1995-06-01

    The DANTSYS code package includes the following transport codes: ONEDANT, TWODANT, TWODANT/GQ, TWOHEX, and THREEDANT. The DANTSYS code package is a modular computer program package designed to solve the time-independent, multigroup discrete ordinates form of the boltzmann transport equation in several different geometries. The modular construction of the package separates the input processing, the transport equation solving, and the post processing (or edit) functions into distinct code modules: the Input Module, one or more Solver Modules, and the Edit Module, respectively. The Input and Edit Modules are very general in nature and are common to all the Solver Modules. The ONEDANT Solver Module contains a one-dimensional (slab, cylinder, and sphere), time-independent transport equation solver using the standard diamond-differencing method for space/angle discretization. Also included in the package are solver Modules named TWODANT, TWODANT/GQ, THREEDANT, and TWOHEX. The TWODANT Solver Module solves the time-independent two-dimensional transport equation using the diamond-differencing method for space/angle discretization. The authors have also introduced an adaptive weighted diamond differencing (AWDD) method for the spatial and angular discretization into TWODANT as an option. The TWOHEX Solver Module solves the time-independent two-dimensional transport equation on an equilateral triangle spatial mesh. The THREEDANT Solver Module solves the time independent, three-dimensional transport equation for XYZ and RZΘ symmetries using both diamond differencing with set-to-zero fixup and the AWDD method. The TWODANT/GQ Solver Module solves the 2-D transport equation in XY and RZ symmetries using a spatial mesh of arbitrary quadrilaterals. The spatial differencing method is based upon the diamond differencing method with set-to-zero fixup with changes to accommodate the generalized spatial meshing

  19. The German Radiation Protection Ordinance (StrlSchV). 3. ed.

    International Nuclear Information System (INIS)

    Hinrichs, O.

    1992-01-01

    The German Radiation Protection Ordinance constitutes the central statutory instrument containing the main protective provisions for all fields of application of radioactive materials and ionizing radiation, with the exception of the field covered by the X-ray Ordinance. The current text of the Ordinance is that promulgated on 30.06.1989 with the subsequent amendments, as last amended through the Unification Treaty (Einigungsvertrag) of 23.09.1990. The Radiation Protection Ordinance was adopted on the basis of the German Nuclear Energy Act (Atomgesetz), which contains, inter alia, the necessary empowerments to issue statutory ordinances. Further fields containing relevant protective provisions are, above all, the law of dangerous substances (which concerns the transport of radioactive materials), the law of pharmaceutical products and the law of foodstuffs. The whole regulatory package is a part of EC and Euratom law. The limit values of the Euratom Directives were transposed into the Radiation Protection Ordinance. In order to reduce the bulk of the Ordinance, the legislator has only included the limit values for the most important radionuclides, and has made provision for the separate promulgation of the other limit values. In order to enhance the practical use of the book, the provisions governing the radiation pass, which are regulated in a separate administrative instruction, are also reproduced. (orig./HSCH) [de

  20. MINARET: Towards a time-dependent neutron transport parallel solver

    International Nuclear Information System (INIS)

    Baudron, A.M.; Lautard, J.J.; Maday, Y.; Mula, O.

    2013-01-01

    We present the newly developed time-dependent 3D multigroup discrete ordinates neutron transport solver that has recently been implemented in the MINARET code. The solver is the support for a study about computing acceleration techniques that involve parallel architectures. In this work, we will focus on the parallelization of two of the variables involved in our equation: the angular directions and the time. This last variable has been parallelized by a (time) domain decomposition method called the para-real in time algorithm. (authors)

  1. Application of space-angle synthesis to two-dimensional neutral-particle transport problems of weapon physics

    International Nuclear Information System (INIS)

    Roberds, R.M.

    1975-01-01

    A space-angle synthesis (SAS) method has been developed for treating the steady-state, two-dimensional transport of neutrons and gamma rays from a point source of simulated nuclear weapon radiation in air. The method was validated by applying it to the problem of neutron transport from a point source in air over a ground interface, and then comparing the results to those obtained by DOT, a state-of-the-art, discrete-ordinates code. In the SAS method, the energy dependence of the Boltzmann transport equation was treated in the standard multigroup manner. The angular dependence was treated by expanding the flux in specially tailored trial functions and applying the method of weighted residuals which analytically integrated the transport equation over all angles. The weighted-residual approach was analogous to the conventional spherical-harmonics (P/sub N/) method with the exception that the tailored expansion allowed for more rapid convergence than a spherical-harmonics P 1 expansion and resulted in a greater degree of accuracy. The trial functions used in the expansion were odd and even combinations of selected trial solutions, the trial solutions being shaped ellipsoids which approximated the angular distribution of the neutron flux in one-dimensional space. The parameters which described the shape of the ellipsoid varied with energy group and the spatial medium, only, and were obtained from a one-dimensional discrete-ordinates calculation. Thus, approximate transport solutions were made available for all two-dimensional problems of a certain class by using tabulated parameters obtained from a single, one-dimensional calculation

  2. Solution to the transport equation with anisotropic dispersion in a BWR type assembly using the AZTRAN code; Solucion de la ecuacion de transporte con dispersion anisotropica en un ensamble tipo BWR usando el codigo AZTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Chepe P, M. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico); Xolocostli M, J. V.; Gomez T, A. M. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Del Valle G, E., E-mail: liaison.web@gmail.com [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, Col. San Pedro Zacatenco, 07730 Ciudad de Mexico (Mexico)

    2016-09-15

    Due to the current computing power, the deterministic codes for analyzing nuclear reactors that have been used for several years are becoming more relevant, since much more precise solution techniques can be used; the last century would have been very difficult, since memory and processor capacities were very limited or had high prices on the components. In this work we analyze the effect of the anisotropic dispersion of the effective dispersion section, compared to the isotropic dispersion. The anisotropy implementation was carried out in the AZTRAN transport code, which is part of the AZTLAN platform for nuclear reactors analysis (in development). The AZTRAN code solves the Boltzmann transport equation in one, two and three dimensions at steady state, using the multi-group technique for energy discretization, the RTN-0 nodal method in spatial discretization and for angular discretization the discrete ordinates without considering anisotropy originally. The effect of the anisotropy dispersion on the effective multiplication factor and the axial and radial power on a fuel assembly BWR type are analyzed. (Author)

  3. A general analytical approach to the one-group, one-dimensional transport equation

    International Nuclear Information System (INIS)

    Barichello, L.B.; Vilhena, M.T.

    1993-01-01

    The main feature of the presented approach to solve the neutron transport equation consists in the application of the Laplace transform to the discrete ordinates equations, which yields a linear system of order N to be solved (LTS N method). In this paper this system is solved analytically and the inversion is performed using the Heaviside expansion technique. The general formulation achieved by this procedure is then applied to homogeneous and heterogeneous one-group slab-geometry problems. (orig.) [de

  4. Analytic approach to auroral electron transport and energy degradation

    International Nuclear Information System (INIS)

    Stamnes, K.

    1980-01-01

    The interaction of a beam of auroral electrons with the atmosphere is described by the linear transport equation, encompassing discrete energy loss, multiple scattering, and secondary electrons. A solution to the transport equation provides the electron intensity as a function of altitude, pitch angle (with respect to the geomagnetic field) and energy. A multi-stream (discrete ordinate) approximation to the transport equation is developed. An analytic solution is obtained in this approximation. The computational scheme obtained by combining the present transport code with the energy degradation method of Swartz (1979) conserves energy identically. The theory provides a framework within which angular distributions can be easily calculated and interpreted. Thus, a detailed study of the angular distributions of 'non-absorbed' electrons (i.e., electrons that have lost just a small fraction of their incident energy) reveals a systematic variation with incident angle and energy, and with penetration depth. The present approach also gives simple yet accurate solutions in low order multi-stream approximations. The accuracy of the four-stream approximation is generally within a few per cent, whereas two-stream results for backscattered mean intensities and fluxes are accurate to within 10-15%. (author)

  5. Linear triangle finite element formulation for multigroup neutron transport analysis with anisotropic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lillie, R.A.; Robinson, J.C.

    1976-05-01

    The discrete ordinates method is the most powerful and generally used deterministic method to obtain approximate solutions of the Boltzmann transport equation. A finite element formulation, utilizing a canonical form of the transport equation, is here developed to obtain both integral and pointwise solutions to neutron transport problems. The formulation is based on the use of linear triangles. A general treatment of anisotropic scattering is included by employing discrete ordinates-like approximations. In addition, multigroup source outer iteration techniques are employed to perform group-dependent calculations. The ability of the formulation to reduce substantially ray effects and its ability to perform streaming calculations are demonstrated by analyzing a series of test problems. The anisotropic scattering and multigroup treatments used in the development of the formulation are verified by a number of one-dimensional comparisons. These comparisons also demonstrate the relative accuracy of the formulation in predicting integral parameters. The applicability of the formulation to nonorthogonal planar geometries is demonstrated by analyzing a hexagonal-type lattice. A small, high-leakage reactor model is analyzed to investigate the effects of varying both the spatial mesh and order of angular quadrature. This analysis reveals that these effects are more pronounced in the present formulation than in other conventional formulations. However, the insignificance of these effects is demonstrated by analyzing a realistic reactor configuration. In addition, this final analysis illustrates the importance of incorporating anisotropic scattering into the finite element formulation. 8 tables, 29 figures.

  6. Linear triangle finite element formulation for multigroup neutron transport analysis with anisotropic scattering

    International Nuclear Information System (INIS)

    Lillie, R.A.; Robinson, J.C.

    1976-05-01

    The discrete ordinates method is the most powerful and generally used deterministic method to obtain approximate solutions of the Boltzmann transport equation. A finite element formulation, utilizing a canonical form of the transport equation, is here developed to obtain both integral and pointwise solutions to neutron transport problems. The formulation is based on the use of linear triangles. A general treatment of anisotropic scattering is included by employing discrete ordinates-like approximations. In addition, multigroup source outer iteration techniques are employed to perform group-dependent calculations. The ability of the formulation to reduce substantially ray effects and its ability to perform streaming calculations are demonstrated by analyzing a series of test problems. The anisotropic scattering and multigroup treatments used in the development of the formulation are verified by a number of one-dimensional comparisons. These comparisons also demonstrate the relative accuracy of the formulation in predicting integral parameters. The applicability of the formulation to nonorthogonal planar geometries is demonstrated by analyzing a hexagonal-type lattice. A small, high-leakage reactor model is analyzed to investigate the effects of varying both the spatial mesh and order of angular quadrature. This analysis reveals that these effects are more pronounced in the present formulation than in other conventional formulations. However, the insignificance of these effects is demonstrated by analyzing a realistic reactor configuration. In addition, this final analysis illustrates the importance of incorporating anisotropic scattering into the finite element formulation. 8 tables, 29 figures

  7. UK Natural Analogue Co-Ordinating Group: first annual progress report

    International Nuclear Information System (INIS)

    Hooker, P.J.; Chapman, N.A.

    1987-11-01

    The British Geological Survey is reponsible for co-ordinating the Department of the Environment's programme of natural analogue studies of radionuclide migration, a research programme that involved both UK and overseas sites. Co-ordination is achieved through the UK Natural Analogue Co-ordinating Group (NACG) which was established in October 1986. It has met three times to date and its function is to ensure that the different research projects have an integrated purpose aimed at improving and applying our understanding of natural geochemical processes in a way that will increase our confidence in long-term modelling predictions. Improved modelling prediction of radionuclide transport in the geosphere will directly benefit the performance and safety assessments of proposed radioactive waste repositories. (author)

  8. Numerical Experiments on Advective Transport in Large Three-Dimensional Discrete Fracture Networks

    Science.gov (United States)

    Makedonska, N.; Painter, S. L.; Karra, S.; Gable, C. W.

    2013-12-01

    Modeling of flow and solute transport in discrete fracture networks is an important approach for understanding the migration of contaminants in impermeable hard rocks such as granite, where fractures provide dominant flow and transport pathways. The discrete fracture network (DFN) model attempts to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. An integrated DFN meshing [1], flow, and particle tracking [2] simulation capability that enables accurate flow and particle tracking simulation on large DFNs has recently been developed. The new capability has been used in numerical experiments on advective transport in large DFNs with tens of thousands of fractures and millions of computational cells. The modeling procedure starts from the fracture network generation using a stochastic model derived from site data. A high-quality computational mesh is then generated [1]. Flow is then solved using the highly parallel PFLOTRAN [3] code. PFLOTRAN uses the finite volume approach, which is locally mass conserving and thus eliminates mass balance problems during particle tracking. The flow solver provides the scalar fluxes on each control volume face. From the obtained fluxes the Darcy velocity is reconstructed for each node in the network [4]. Velocities can then be continuously interpolated to any point in the domain of interest, thus enabling random walk particle tracking. In order to describe the flow field on fractures intersections, the control volume cells on intersections are split into four planar polygons, where each polygon corresponds to a piece of a fracture near the intersection line. Thus

  9. Solution of the Neutron transport equation in hexagonal geometry using strongly discontinuous nodal schemes; Solucion de la Ecuacion de transporte de neutrones en geometria hexagonal usando esquemas nodales fuertemente discontinuos

    Energy Technology Data Exchange (ETDEWEB)

    Mugica R, C.A.; Valle G, E. del [IPN, ESFM, Departamento de Ingenieria Nuclear, 07738 Mexico D.F. (Mexico)]. e-mail: cmugica@ipn.mx

    2005-07-01

    In 2002, E. del Valle and Ernest H. Mund developed a technique to solve numerically the Neutron transport equations in discrete ordinates and hexagonal geometry using two nodal schemes type finite element weakly discontinuous denominated WD{sub 5,3} and WD{sub 12,8} (of their initials in english Weakly Discontinuous). The technique consists on representing each hexagon in the union of three rhombuses each one of which it is transformed in a square in the one that the methods WD{sub 5,3} and WD{sub 12,8} were applied. In this work they are solved the mentioned equations of transport using the same discretization technique by hexagon but using two nodal schemes type finite element strongly discontinuous denominated SD{sub 3} and SD{sub 8} (of their initials in english Strongly Discontinuous). The application in each case as well as a reference problem for those that results are provided for the effective multiplication factor is described. It is carried out a comparison with the obtained results by del Valle and Mund for different discretization meshes so much angular as spatial. (Author)

  10. Solution to the transport equation with anisotropic dispersion in a BWR type assembly using the AZTRAN code

    International Nuclear Information System (INIS)

    Chepe P, M.; Xolocostli M, J. V.; Gomez T, A. M.; Del Valle G, E.

    2016-09-01

    Due to the current computing power, the deterministic codes for analyzing nuclear reactors that have been used for several years are becoming more relevant, since much more precise solution techniques can be used; the last century would have been very difficult, since memory and processor capacities were very limited or had high prices on the components. In this work we analyze the effect of the anisotropic dispersion of the effective dispersion section, compared to the isotropic dispersion. The anisotropy implementation was carried out in the AZTRAN transport code, which is part of the AZTLAN platform for nuclear reactors analysis (in development). The AZTRAN code solves the Boltzmann transport equation in one, two and three dimensions at steady state, using the multi-group technique for energy discretization, the RTN-0 nodal method in spatial discretization and for angular discretization the discrete ordinates without considering anisotropy originally. The effect of the anisotropy dispersion on the effective multiplication factor and the axial and radial power on a fuel assembly BWR type are analyzed. (Author)

  11. Reactivity perturbation formulation for a discontinuous Galerkin-based transport solver and its use with adaptive mesh refinement

    International Nuclear Information System (INIS)

    Le Tellier, R.; Fournier, D.; Suteau, C.

    2011-01-01

    Within the framework of a Discontinuous Galerkin spatial approximation of the multigroup discrete ordinates transport equation, we present a generalization of the exact standard perturbation formula that takes into account spatial discretization-induced reactivity changes. It encompasses in two separate contributions the nuclear data-induced reactivity change and the reactivity modification induced by two different spatial discretizations. The two potential uses of such a formulation when considering adaptive mesh refinement are discussed, and numerical results on a simple two-group Cartesian two-dimensional benchmark are provided. In particular, such a formulation is shown to be useful to filter out a more accurate estimate of nuclear data-related reactivity effects from initial and perturbed calculations based on independent adaptation processes. (authors)

  12. Applying Multivariate Discrete Distributions to Genetically Informative Count Data.

    Science.gov (United States)

    Kirkpatrick, Robert M; Neale, Michael C

    2016-03-01

    We present a novel method of conducting biometric analysis of twin data when the phenotypes are integer-valued counts, which often show an L-shaped distribution. Monte Carlo simulation is used to compare five likelihood-based approaches to modeling: our multivariate discrete method, when its distributional assumptions are correct, when they are incorrect, and three other methods in common use. With data simulated from a skewed discrete distribution, recovery of twin correlations and proportions of additive genetic and common environment variance was generally poor for the Normal, Lognormal and Ordinal models, but good for the two discrete models. Sex-separate applications to substance-use data from twins in the Minnesota Twin Family Study showed superior performance of two discrete models. The new methods are implemented using R and OpenMx and are freely available.

  13. Analysis of discrete reaction-diffusion equations for autocatalysis and continuum diffusion equations for transport

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chi-Jen [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    In this thesis, we analyze both the spatiotemporal behavior of: (A) non-linear “reaction” models utilizing (discrete) reaction-diffusion equations; and (B) spatial transport problems on surfaces and in nanopores utilizing the relevant (continuum) diffusion or Fokker-Planck equations. Thus, there are some common themes in these studies, as they all involve partial differential equations or their discrete analogues which incorporate a description of diffusion-type processes. However, there are also some qualitative differences, as shall be discussed below.

  14. Development and implementation of a set of numerical quadratures SQN and EQN type in the transport code AZTRAN

    International Nuclear Information System (INIS)

    Chepe P, M.; Xolocostli M, J. V.; Gomez T, A. M.; Del Valle G, E.

    2015-09-01

    The deterministic transport codes for analysis of nuclear reactors have been used for several years already, these codes have evolved in terms of the methodology used and the degree of accuracy, because at the present time has more computer power. In this paper, the transport code used considers the classical technique of multi-group for discretization energy, for space discretization uses the nodal methods, while for the angular discretization the discrete ordinates method is used; so that presents the development and implementation of a set of numerical quadratures of SQ N type symmetrical with the same weight for each angular direction and these are compared with the quadratures of EQ N type. The two sets of numerical quadratures were implemented in the program AZTRAN to a problem with isotropic medium in XYZ geometry, in steady state using the nodal method RTN-0 (Raviart-Thomas-Nedelec). The analyzed results correspond to the effective multiplication factor k eff and neutron angular flux with approximations from S 4 to S 16 . (Author)

  15. X-ray Ordinance

    International Nuclear Information System (INIS)

    Kramer, R.; Zerlett, G.

    1983-01-01

    This commentary, presented as volume 2 of the Deutsches Strahlenschutzrecht (German legislation on radiation protection) deals with the legal provisions of the ordinance on the protection against harmful effects of X-radiation (X-ray Ordinance - RoeV), of March 1, 1973 (announced in BGBl.I, page 173), as amended by the ordinance on the protection against harmful effects of ionizing radiation, of October 13, 1976 (announced in BGBl. I, page 2905). Thus volume 2 completes the task started with volume 1, namely to present a comprehensive view and account of the body of laws governing radiation protection, a task which was thought useful as developments in the FRG led to regulations being split up into the X-ray Ordinance, and the Radiation Protection Ordinance. In order to present a well-balanced commentary on the X-ray Ordinance, it was necessary to discuss the provisions both from the legal and the medical point of view. This edition takes into account the Fourth Public Notice of the BMA (Fed. Min. of Labour and Social Affairs) concerning the implementation of the X-ray Ordinance of January 4, 1982, as well as court decisions and literature published in this field, until September 1982. In addition, the judgment of the Federal Constitutional Court, dated October 19, 1982, concerning the voidness of the law on government liability, and two decisions by the Federal High Court, dated November 23, 1982, concerning the right to have insight into medical reports - of great significance in practice - have been considered. This commentary therefore is up to date with current developments. (orig.) [de

  16. Verification & Validation of High-Order Short-Characteristics-Based Deterministic Transport Methodology on Unstructured Grids

    International Nuclear Information System (INIS)

    Azmy, Yousry; Wang, Yaqi

    2013-01-01

    The research team has developed a practical, high-order, discrete-ordinates, short characteristics neutron transport code for three-dimensional configurations represented on unstructured tetrahedral grids that can be used for realistic reactor physics applications at both the assembly and core levels. This project will perform a comprehensive verification and validation of this new computational tool against both a continuous-energy Monte Carlo simulation (e.g. MCNP) and experimentally measured data, an essential prerequisite for its deployment in reactor core modeling. Verification is divided into three phases. The team will first conduct spatial mesh and expansion order refinement studies to monitor convergence of the numerical solution to reference solutions. This is quantified by convergence rates that are based on integral error norms computed from the cell-by-cell difference between the code's numerical solution and its reference counterpart. The latter is either analytic or very fine- mesh numerical solutions from independent computational tools. For the second phase, the team will create a suite of code-independent benchmark configurations to enable testing the theoretical order of accuracy of any particular discretization of the discrete ordinates approximation of the transport equation. For each tested case (i.e. mesh and spatial approximation order), researchers will execute the code and compare the resulting numerical solution to the exact solution on a per cell basis to determine the distribution of the numerical error. The final activity comprises a comparison to continuous-energy Monte Carlo solutions for zero-power critical configuration measurements at Idaho National Laboratory's Advanced Test Reactor (ATR). Results of this comparison will allow the investigators to distinguish between modeling errors and the above-listed discretization errors introduced by the deterministic method, and to separate the sources of uncertainty.

  17. Ordinance on the Protection against X-Radiation Hazards (X-Ray Ordinance)

    International Nuclear Information System (INIS)

    1987-01-01

    The ordinance refers to X-ray equipment and to stray radiation sources which generate X-radiation of at least 5 keV by means of accelerated electrons, and for this purpose apply an acceleration energy not exceeding 3 MeV. The ordinance does not apply to stray radiation sources which are used for the generation of ionizing particle radiation and thus are subject to the provisions of the Radiation Protection Ordinance. (orig./PW) [de

  18. IAEA co-ordinated research programme on the transport of low specific activity materials and surface contaminated objects

    International Nuclear Information System (INIS)

    Gray, I.L.S.

    2000-01-01

    The International Atomic Energy Agency (IAEA) prepares regulations for the safe transport of radioactive material, and periodically revised editions of these are published. These regulations are adopted by individual countries across the world and by international organisations concerned with transport. Whilst it is desirable to have a stable framework of regulatory requirements, there is also a need to take account of technical advances and operational experience and revise the regulations. From time to time Co-ordinated Research Programmes (CRP) are established to investigate particular areas of the regulations that are giving concern. In 1996 the IAEA Standing Advisory Group on the Transport of Radioactive Material (SAGSTRAM) concluded that the requirements for classification, packaging and transport of low specific activity (LSA) material and surface contaminated objects (SCO) did not always have a strong radiation protection basis. Accordingly SAGSTRAM established a CRP with an overall objective to develop a dose-based approach for establishing LSA/SCO requirements. Six countries are participating in this CRP. Brazil, Canada, France, Germany, United Kingdom and United States. Each country is carrying out work that is outlined in agreements with the IAEA, with the work aimed at meeting the specific objective of the agreement and also contributing to achieving the overall objective of the CRP. Completion of the CRP usually involves the preparation of an IAEA TECDOC by a Consultant Services Meeting (CSM), and this TECDOC will summarise the work performed under the CRP and include any recommendations made by the CRP. Following the establishment of the CRP in 1997, the first Research Co-ordination Meeting (RCM) was held in December 1997. The second RCM was held in March 1999, with the final RCM planned for the end of 2000. The work being carried out by Brazil and Canada is focused upon the transport of uranium and thorium ores, and is a mixture of theoretical and

  19. Solution of the Neutron transport equation in hexagonal geometry using strongly discontinuous nodal schemes

    International Nuclear Information System (INIS)

    Mugica R, C.A.; Valle G, E. del

    2005-01-01

    In 2002, E. del Valle and Ernest H. Mund developed a technique to solve numerically the Neutron transport equations in discrete ordinates and hexagonal geometry using two nodal schemes type finite element weakly discontinuous denominated WD 5,3 and WD 12,8 (of their initials in english Weakly Discontinuous). The technique consists on representing each hexagon in the union of three rhombuses each one of which it is transformed in a square in the one that the methods WD 5,3 and WD 12,8 were applied. In this work they are solved the mentioned equations of transport using the same discretization technique by hexagon but using two nodal schemes type finite element strongly discontinuous denominated SD 3 and SD 8 (of their initials in english Strongly Discontinuous). The application in each case as well as a reference problem for those that results are provided for the effective multiplication factor is described. It is carried out a comparison with the obtained results by del Valle and Mund for different discretization meshes so much angular as spatial. (Author)

  20. Multigroup calculations of low-energy neutral transport in tokamak plasmas

    International Nuclear Information System (INIS)

    Gilligan, J.G.; Gralnick, S.L.; Price, W.G. Jr.; Kammash, T.

    1978-01-01

    Multigroup discrete ordinates methods avoid many of the approximations that have been used in previous neutral transport analyses. Of particular interest are the neutral profiles generated as an integral part of larger plasma system simulation codes. To determine the appropriateness of utilizing a particular multigroup code, ANISN, for this purpose, results are compared with the neutral transport module of the Duechs code. For a typical TFTR plasma, predicted neutral densities differ by a maximum factor of three on axis and outfluxes at the plasma boundary by approximately 40%. This is found to be significant for a neutral transport module. Possible sources of the observed discrepancies are indicated from an analysis of the approximations used in the Duechs model. Recommendations are made concerning the future application of the multigroup method. (author)

  1. Los Alamos radiation transport code system on desktop computing platforms

    International Nuclear Information System (INIS)

    Briesmeister, J.F.; Brinkley, F.W.; Clark, B.A.; West, J.T.

    1990-01-01

    The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. These codes were originally developed many years ago and have undergone continual improvement. With a large initial effort and continued vigilance, the codes are easily portable from one type of hardware to another. The performance of scientific work-stations (SWS) has evolved to the point that such platforms can be used routinely to perform sophisticated radiation transport calculations. As the personal computer (PC) performance approaches that of the SWS, the hardware options for desk-top radiation transport calculations expands considerably. The current status of the radiation transport codes within the LARTCS is described: MCNP, SABRINA, LAHET, ONEDANT, TWODANT, TWOHEX, and ONELD. Specifically, the authors discuss hardware systems on which the codes run and present code performance comparisons for various machines

  2. Charged-particle calculations using Boltzmann transport methods

    International Nuclear Information System (INIS)

    Hoffman, T.J.; Dodds, H.L. Jr.; Robinson, M.T.; Holmes, D.K.

    1981-01-01

    Several aspects of radiation damage effects in fusion reactor neutron and ion irradiation environments are amenable to treatment by transport theory methods. In this paper, multigroup transport techniques are developed for the calculation of charged particle range distributions, reflection coefficients, and sputtering yields. The Boltzmann transport approach can be implemented, with minor changes, in standard neutral particle computer codes. With the multigroup discrete ordinates code, ANISN, determination of ion and target atom distributions as functions of position, energy, and direction can be obtained without the stochastic error associated with atomistic computer codes such as MARLOWE and TRIM. With the multigroup Monte Carlo code, MORSE, charged particle effects can be obtained for problems associated with very complex geometries. Results are presented for several charged particle problems. Good agreement is obtained between quantities calculated with the multigroup approach and those obtained experimentally or by atomistic computer codes

  3. The Second Ordinance for Amendment of the Radiation Protection Ordinance

    International Nuclear Information System (INIS)

    Czajka, D.

    1989-01-01

    This Second Ordinance for Amendment of the Radiation Protection Ordinance has modified the most important legal provisions supplementing the Atomic Energy Act. But looking closer at the revised version of the Ordinance, many an amendment turns out to be just a new facade on the old brickwork. The article critically reviews the most important amendments, stating that the main principles have remained untouched, and discussing the modification of limiting values, the definition of regulatory scopes, the new meaning of the term 'wastes containing nuclear fuel', and the regulatory scope of provisions governing radioactive substances and their medical applications. (orig./RST) [de

  4. Boron transport in plants: co-ordinated regulation of transporters

    Science.gov (United States)

    Miwa, Kyoko; Fujiwara, Toru

    2010-01-01

    Background The essentiality of boron (B) for plant growth was established >85 years ago. In the last decade, it has been revealed that one of the physiological roles of B is cross-linking the pectic polysaccharide rhamnogalacturonan II in primary cell walls. Borate cross-linking of pectic networks serves both for physical strength of cell walls and for cell adhesion. On the other hand, high concentrations of B are toxic to plant growth. To avoid deficiency and toxicity problems, it is important for plants to maintain their tissue B concentrations within an optimum range by regulating transport processes. Boron transport was long believed to be a passive, unregulated process, but the identification of B transporters has suggested that plants sense and respond to the B conditions and regulate transporters to maintain B homeostasis. Scope Transporters responsible for efficient B uptake by roots, xylem loading and B distribution among leaves have been described. These transporters are required under B limitation for efficient acquisition and utilization of B. Transporters important for tolerating high B levels in the environment have also been identified, and these transporters export B from roots back to the soil. Two types of transporters are involved in these processes: NIPs (nodulin-26-like intrinsic proteins), boric acid channels, and BORs, B exporters. It is demonstrated that the expression of genes encoding these transporters is finely regulated in response to B availability in the environment to ensure tissue B homeostasis. Furthermore, plants tolerant to stress produced by low B or high B in the environment can be generated through altered expression of these transporters. Conclusions The identification of the first B transporter led to the discovery that B transport was a process mediated not only by passive diffusion but also by transporters whose activity was regulated in response to B conditions. Now it is evident that plants sense internal and external B

  5. MORSE-C, Neutron Transport, Gamma Transport for Criticality Calculation by Monte-Carlo Method

    International Nuclear Information System (INIS)

    2002-01-01

    1 - Description of program or function: MORSE-C is a Monte-Carlo code to solve the multiple energy group form of the Boltzmann transport equation in order to obtain the eigenvalue (multiplication) when fissionable materials are present. Cross sections for up to 100 energy groups may be employed. The angular scattering is treated by the usual Legendre expansion as used in the discrete ordinates codes. Up-scattering may be specified. The geometry is defined by relationships to general 1. or 2. degree surfaces. Array units may be specified. Output includes, besides the usual values of input quantities, plots of the geometry, calculated volumes and masses, and graphs of results to assist the user in determining the correctness of the problem's solution

  6. Development and implementation of a set of numerical quadratures SQ{sub N} and EQ{sub N} type in the transport code AZTRAN; Desarrollo e implementacion de un conjunto de cuadraturas numericas de tipo SQ{sub N} y EQ{sub N} en el codigo de transporte AZTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Chepe P, M. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico); Xolocostli M, J. V.; Gomez T, A. M. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Del Valle G, E., E-mail: liaison.web@gmail.com [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, Col. Lindavista, 07738 Ciudad de Mexico (Mexico)

    2015-09-15

    The deterministic transport codes for analysis of nuclear reactors have been used for several years already, these codes have evolved in terms of the methodology used and the degree of accuracy, because at the present time has more computer power. In this paper, the transport code used considers the classical technique of multi-group for discretization energy, for space discretization uses the nodal methods, while for the angular discretization the discrete ordinates method is used; so that presents the development and implementation of a set of numerical quadratures of SQ{sub N} type symmetrical with the same weight for each angular direction and these are compared with the quadratures of EQ{sub N} type. The two sets of numerical quadratures were implemented in the program AZTRAN to a problem with isotropic medium in XYZ geometry, in steady state using the nodal method RTN-0 (Raviart-Thomas-Nedelec). The analyzed results correspond to the effective multiplication factor k{sub eff} and neutron angular flux with approximations from S{sub 4} to S{sub 16}. (Author)

  7. Application of the Arbitrarily High Order Method to Coupled Electron Photon Transport

    International Nuclear Information System (INIS)

    Duo, Jose Ignacio

    2004-01-01

    This work is about the application of the Arbitrary High Order Nodal Method to coupled electron photon transport.A Discrete Ordinates code was enhanced and validated which permited to evaluate the advantages of using variable spatial development order per particle.The results obtained using variable spatial development and adaptive mesh refinement following an a posteriori error estimator are encouraging.Photon spectra for clinical accelerator target and, dose and charge depositio profiles are simulated in one-dimensional problems using cross section generated with CEPXS code.Our results are in good agreement with ONELD and MCNP codes

  8. Preparation and crystal structure of carbonyltris (diethyldithiocarbamato) technetium (III): an unexpected source of co-ordinated carbon monoxide

    International Nuclear Information System (INIS)

    Baldas, J.; Bonnyman, J.; Pojer, P.M.; Williams, G.A.

    1981-10-01

    Tc(S 2 CNEt 2 ) 3 CO has been prepared by the reduction of NH 4 TcO 4 with formamidinesulphinic acid in the presence of NaS 2 CNEt 2 . It is suggested that the co-ordinated carbon monoxide is formed after co-ordination of formamidinesulphinic acid, or some decomposition product, with technetium. The crystal structure of Tc(S 2 CNEt 2 ) 3 CO has been determined by single-crystal X-ray diffraction methods at 17 deg. C. Diffractometry has provided significant Bragg intensities for 2045 independent reflections and the structure has been refined by full-matrix least-squares methods to R 0.049. The compound is isostructural with the rhenium analogue and consists of discrete Tc(S 2 CNEt 2 ) 3 CO molecules, each containing a terminal linear CO group. The technetium atom has a seven co-ordinate environment which is best described as a distorted pentagonal bipyramid

  9. Integro-differential transport approaches

    International Nuclear Information System (INIS)

    Stepanek, J.; Arkuszewski, J.; Boffi, V.; Matausek, M.V.

    1981-01-01

    This chapter summarizes the work done in Italy, Poland, Switzerland and Yugoslavia in the field of integro-differential neutron transport theory. It reflects different viewpoints in the handling of the subject. Some of the methods are based only on the solution of the integro-differential equation, others use only the integral form of the transport equation. Use of the characteristic solution closely related to the integral equation (ARKUSZEWSKI et al.,(1979)) seems to be a rather effective way to accelerate the 2 dimensional discrete ordinates (Ssub(n)) transport methods and supress one of the main disadvantages, the ray effect. The advanced ''Surface Currents'' (MAEDER (1975)) and ''Surface Flux'' (STEPANEK (1979)) methods are based on the solution of both the integro-differential and integral form of the transport equation. As long as the spatial fluxes were considered to be flat in each region only the integral form of the transport equation was considered. The solution seems to be the best method of simple handling the higher order Legendre polynomials used to approximate spatial and angular flux distribution. The coupling of the Bsub(n) integral transport equations with the related Psub(n) equations removes the greatest disadvantage of the Psub(n) theory and closes the system of the Psub(n) equations (LIGOU, STEPANEK (1974))

  10. Radioactive whey concentrate - a case to apply section 3 of the Radiation Protection Ordinance

    International Nuclear Information System (INIS)

    Sauer, G.W.; Zypries, B.

    1988-01-01

    According to the authors, section 4 StrlSchV does not apply, the case has to be handled applying section 3 StrlSchV (Radiation Protection Ordinance). This means that the storage, treatment and disposal of the radioactive whey concentrate is subject to licensing. Disposal as radioactive waste, however, will require a licence only if the limit given in section 4 IV, No. 2 lit. e, the 10 -4 -fold of the allowed radioactivity per gramme (i.e. 3700 Bq/kg) is exceeded. The averaged radioactivity data measured do exceed this limit. Only the transport of the radioactive whey concentrate does not fall under the provisions of the ordinances on road transport or rail transport of hazardons substances, as the limit given there is 74 Bq/g of specific activity. (orig./HP) [de

  11. Solution algorithms for a PN-1 - Equivalent SN angular discretization of the transport equation in one-dimensional spherical coordinates

    International Nuclear Information System (INIS)

    Warsa, J. S.; Morel, J. E.

    2007-01-01

    Angular discretizations of the S N transport equation in curvilinear coordinate systems may result in a streaming-plus-removal operator that is dense in the angular variable or that is not lower-triangular. We investigate numerical solution algorithms for such angular discretizations using relationships given by Chandrasekhar to compute the angular derivatives in the one-dimensional S N transport equation in spherical coordinates with Gauss quadrature. This discretization makes the S N transport equation P N-1 - equivalent, but it also makes the sweep operator dense at every spatial point because the N angular derivatives are expressed in terms of the N angular fluxes. To avoid having to invert the sweep operator directly, we must work with the angular fluxes to solve the equations iteratively. We show how we can use approximations to the sweep operator to precondition the full P N-1 equivalent S N equations. We show that these pre-conditioners affect the operator enough such that convergence of a Krylov iterative method improves. (authors)

  12. Ordinal measures for iris recognition.

    Science.gov (United States)

    Sun, Zhenan; Tan, Tieniu

    2009-12-01

    Images of a human iris contain rich texture information useful for identity authentication. A key and still open issue in iris recognition is how best to represent such textural information using a compact set of features (iris features). In this paper, we propose using ordinal measures for iris feature representation with the objective of characterizing qualitative relationships between iris regions rather than precise measurements of iris image structures. Such a representation may lose some image-specific information, but it achieves a good trade-off between distinctiveness and robustness. We show that ordinal measures are intrinsic features of iris patterns and largely invariant to illumination changes. Moreover, compactness and low computational complexity of ordinal measures enable highly efficient iris recognition. Ordinal measures are a general concept useful for image analysis and many variants can be derived for ordinal feature extraction. In this paper, we develop multilobe differential filters to compute ordinal measures with flexible intralobe and interlobe parameters such as location, scale, orientation, and distance. Experimental results on three public iris image databases demonstrate the effectiveness of the proposed ordinal feature models.

  13. Sub-cell balanced nodal expansion methods using S4 eigenfunctions for multi-group SN transport problems in slab geometry

    International Nuclear Information System (INIS)

    Hong, Ser Gi; Lee, Deokjung

    2015-01-01

    A highly accurate S 4 eigenfunction-based nodal method has been developed to solve multi-group discrete ordinate neutral particle transport problems with a linearly anisotropic scattering in slab geometry. The new method solves the even-parity form of discrete ordinates transport equation with an arbitrary S N order angular quadrature using two sub-cell balance equations and the S 4 eigenfunctions of within-group transport equation. The four eigenfunctions from S 4 approximation have been chosen as basis functions for the spatial expansion of the angular flux in each mesh. The constant and cubic polynomial approximations are adopted for the scattering source terms from other energy groups and fission source. A nodal method using the conventional polynomial expansion and the sub-cell balances was also developed to be used for demonstrating the high accuracy of the new methods. Using the new methods, a multi-group eigenvalue problem has been solved as well as fixed source problems. The numerical test results of one-group problem show that the new method has third-order accuracy as mesh size is finely refined and it has much higher accuracies for large meshes than the diamond differencing method and the nodal method using sub-cell balances and polynomial expansion of angular flux. For multi-group problems including eigenvalue problem, it was demonstrated that the new method using the cubic polynomial approximation of the sources could produce very accurate solutions even with large mesh sizes. (author)

  14. A Multiscale Time-Splitting Discrete Fracture Model of Nanoparticles Transport in Fractured Porous Media

    KAUST Repository

    El-Amin, Mohamed F.; Kou, Jisheng; Sun, Shuyu

    2017-01-01

    Recently, applications of nanoparticles have been considered in many branches of petroleum engineering, especially, enhanced oil recovery. The current paper is devoted to investigate the problem of nanoparticles transport in fractured porous media, numerically. We employed the discrete-fracture model (DFM) to represent the flow and transport in the fractured formations. The system of the governing equations consists of the mass conservation law, Darcy's law, nanoparticles concentration in water, deposited nanoparticles concentration on the pore-wall, and entrapped nanoparticles concentration in the pore-throat. The variation of porosity and permeability due to the nanoparticles deposition/entrapment on/in the pores is also considered. We employ the multiscale time-splitting strategy to control different time-step sizes for different physics, such as pressure and concentration. The cell-centered finite difference (CCFD) method is used for the spatial discretization. Numerical examples are provided to demonstrate the efficiency of the proposed multiscale time splitting approach.

  15. A Multiscale Time-Splitting Discrete Fracture Model of Nanoparticles Transport in Fractured Porous Media

    KAUST Repository

    El-Amin, Mohamed F.

    2017-06-06

    Recently, applications of nanoparticles have been considered in many branches of petroleum engineering, especially, enhanced oil recovery. The current paper is devoted to investigate the problem of nanoparticles transport in fractured porous media, numerically. We employed the discrete-fracture model (DFM) to represent the flow and transport in the fractured formations. The system of the governing equations consists of the mass conservation law, Darcy\\'s law, nanoparticles concentration in water, deposited nanoparticles concentration on the pore-wall, and entrapped nanoparticles concentration in the pore-throat. The variation of porosity and permeability due to the nanoparticles deposition/entrapment on/in the pores is also considered. We employ the multiscale time-splitting strategy to control different time-step sizes for different physics, such as pressure and concentration. The cell-centered finite difference (CCFD) method is used for the spatial discretization. Numerical examples are provided to demonstrate the efficiency of the proposed multiscale time splitting approach.

  16. RTk/SN Solutions of the Two-Dimensional Multigroup Transport Equations in Hexagonal Geometry

    International Nuclear Information System (INIS)

    Valle, Edmundo del; Mund, Ernest H.

    2004-01-01

    This paper describes an extension to the hexagonal geometry of some weakly discontinuous nodal finite element schemes developed by Hennart and del Valle for the two-dimensional discrete ordinates transport equation in quadrangular geometry. The extension is carried out in a way similar to the extension to the hexagonal geometry of nodal element schemes for the diffusion equation using a composite mapping technique suggested by Hennart, Mund, and del Valle. The combination of the weakly discontinuous nodal transport scheme and the composite mapping is new and is detailed in the main section of the paper. The algorithm efficiency is shown numerically through some benchmark calculations on classical problems widely referred to in the literature

  17. Krylov Techniques for 3D Problems in Transport Theory

    International Nuclear Information System (INIS)

    Ruben Panta Pazos

    2006-01-01

    When solving integral-differential equations by means of numerical methods one has to deal with large systems of linear equations, such as happens in transport theory [10]. Many iterative techniques are now used in Transport Theory in order to solve problems of 2D and 3D dimensions. In this paper, we choose two problems to solve the following transport equation, [Equation] where x: represents the spatial variable, μ: the cosine of the angle, ψ: the angular flux, h(x, μ): is the collision frequency, k(x, μ, μ'): the scattering kernel, q(x, μ): the source. The aim of this work is the straightforward application of the Krylov spaces technique [2] to the governing equation or to its discretizations derived of the discrete ordinates method (choosing a finite number of directions and then approximating the integral term by means of a proper sum). The equation (1) can be written in functional form as [Equation] with ψ in the Hilbert space L 2 ([0,a] x [-1,1])., and q is the source function. The operator derived from a discrete ordinates scheme that approximates the operator [Equation] generates the following subspace [Equation] i.e. the subspace generated by the iterations of order 0, 1, 2,..., m-1 of the source function q. Two methods are specially outstanding, the Lanczos method to solve the problem given by equation (2) with certain boundary conditions, and the conjugate gradient method to solve the same problem with identical boundary conditions. We discuss and accelerate the basic iterative method [8]. An important conclusion is the generation of these methods to solve linear systems in Hilbert spaces, if verify the convergence conditions, which are outlined in this work. The first problem is a cubic domain with two regions, one with a source near the vertex at the origin and the shield region. In this case, the Cartesian planes (specifically 0 < x < L, 0 < y < L, 0 < z < L) are reflexive boundaries and the rest faces of the cube are vacuum boundaries. The

  18. Albedo boundary conditions for global calculations of thermal nuclear reactors with the model of discrete ordinates to two energy groups

    International Nuclear Information System (INIS)

    Nunes, Carlos Eduardo de Araujo

    2011-01-01

    As neutron fission events do not take place in the non-multiplying regions of nuclear reactors, e.g., moderator, reflector, and structural core, these regions do not generate power and the computational efficiency of nuclear reactor global calculations can hence be improved by eliminating the explicit numerical calculations within the non-multiplying regions around the active domain. Discussed here is the computational efficiency of approximate discrete ordinates (SN) albedo boundary conditions for two-energy group eigenvalue problems in X, Y geometry. Albedo, the Latin word for w hiteness , was originally defined as the fraction of incident light reflected diffusely by a surface. This Latin word has remained the usual scientific term in astronomy and in this dissertation this concept is extended for the reflection of neutrons. The non-standard SN albedo substitutes approximately the reflector region around the active domain, as we neglect the transverse leakage terms within the non-multiplying reflector. Should the problem have no transverse leakage terms, i.e., one dimensional slab geometry, then the offered albedo boundary conditions are exact. By computational efficiency we mean analyzing the accuracy of the numerical results versus the CPU execution time of each run for a given model problem. Numerical results to two 1/4 symmetric test problems are shown to illustrate this efficiency analysis. (author)

  19. Neutronics analysis of the International Thermonuclear Experimental Reactor (ITER) MCNP ''Benchmark CAD Model'' with the ATTILA discrete ordinance code

    International Nuclear Information System (INIS)

    Youssef, M.Z.; Feder, R.; Davis, I.

    2007-01-01

    The ITER IT has adopted the newly developed FEM, 3-D, and CAD-based Discrete Ordinates code, ATTILA for the neutronics studies contingent on its success in predicting key neutronics parameters and nuclear field according to the stringent QA requirements set forth by the Management and Quality Program (MQP). ATTILA has the advantage of providing a full flux and response functions mapping everywhere in one run where components subjected to excessive radiation level and strong streaming paths can be identified. The ITER neutronics community had agreed to use a standard CAD model of ITER (40 degree sector, denoted ''Benchmark CAD Model'') to compare results for several responses selected for calculation benchmarking purposes to test the efficiency and accuracy of the CAD-MCNP approach developed by each party. Since ATTILA seems to lend itself as a powerful design tool with minimal turnaround time, it was decided to benchmark this model with ATTILA as well and compare the results to those obtained with the CAD MCNP calculations. In this paper we report such comparison for five responses, namely: (1) Neutron wall load on the surface of the 18 shield blanket module (SBM), (2) Neutron flux and nuclear heating rate in the divertor cassette, (3) nuclear heating rate in the winding pack of the inner leg of the TF coil, (4) Radial flux profile across dummy port plug and shield plug placed in the equatorial port, and (5) Flux at seven point locations situated behind the equatorial port plug. (orig.)

  20. Simulating Ordinal Data

    Science.gov (United States)

    Ferrari, Pier Alda; Barbiero, Alessandro

    2012-01-01

    The increasing use of ordinal variables in different fields has led to the introduction of new statistical methods for their analysis. The performance of these methods needs to be investigated under a number of experimental conditions. Procedures to simulate from ordinal variables are then required. In this article, we deal with simulation from…

  1. Spatial domain decomposition for neutron transport problems

    International Nuclear Information System (INIS)

    Yavuz, M.; Larsen, E.W.

    1989-01-01

    A spatial Domain Decomposition method is proposed for modifying the Source Iteration (SI) and Diffusion Synthetic Acceleration (DSA) algorithms for solving discrete ordinates problems. The method, which consists of subdividing the spatial domain of the problem and performing the transport sweeps independently on each subdomain, has the advantage of being parallelizable because the calculations in each subdomain can be performed on separate processors. In this paper we describe the details of this spatial decomposition and study, by numerical experimentation, the effect of this decomposition on the SI and DSA algorithms. Our results show that the spatial decomposition has little effect on the convergence rates until the subdomains become optically thin (less than about a mean free path in thickness)

  2. User's manual for ONEDANT: a code package for one-dimensional, diffusion-accelerated, neutral-particle transport

    International Nuclear Information System (INIS)

    O'Dell, R.D.; Brinkley, F.W. Jr.; Marr, D.R.

    1982-02-01

    ONEDANT is designed for the CDC-7600, but the program has been implemented and run on the IBM-370/190 and CRAY-I computers. ONEDANT solves the one-dimensional multigroup transport equation in plane, cylindrical, spherical, and two-angle plane geometries. Both regular and adjoint, inhomogeneous and homogeneous (k/sub eff/ and eigenvalue search) problems subject to vacuum, reflective, periodic, white, albedo, or inhomogeneous boundary flux conditions are solved. General anisotropic scattering is allowed and anisotropic inhomogeneous sources are permitted. ONEDANT numerically solves the one-dimensional, multigroup form of the neutral-particle, steady-state form of the Boltzmann transport equation. The discrete-ordinates approximation is used for treating the angular variation of the particle distribution and the diamond-difference scheme is used for phase space discretization. Negative fluxes are eliminated by a local set-to-zero-and-correct algorithm. A standard inner (within-group) iteration, outer (energy-group-dependent source) iteration technique is used. Both inner and outer iterations are accelerated using the diffusion synthetic acceleration method

  3. Co-ordinated traffic control in freeway corridors : A proposed evaluation approach

    NARCIS (Netherlands)

    Hoogendoorn, S.P.; Bovy, P.H.L.; Van der Zijpp, N.J.

    1997-01-01

    In the course of the Telematics implications Programme Transport of the European Commission Fourth Framework Research Programme much attention is devoted to evaluation and demonstration. This report is part of the DACCORD project TR1017, devoted to the development and application of co-ordinated

  4. A fully coupled Monte Carlo/discrete ordinates solution to the neutron transport equation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Randal Scott [Univ. of Arizona, Tucson, AZ (United States)

    1990-01-01

    The neutron transport equation is solved by a hybrid method that iteratively couples regions where deterministic (SN) and stochastic (Monte Carlo) methods are applied. Unlike previous hybrid methods, the Monte Carlo and SN regions are fully coupled in the sense that no assumption is made about geometrical separation or decoupling. The hybrid method provides a new means of solving problems involving both optically thick and optically thin regions that neither Monte Carlo nor SN is well suited for by themselves. The fully coupled Monte Carlo/SN technique consists of defining spatial and/or energy regions of a problem in which either a Monte Carlo calculation or an SN calculation is to be performed. The Monte Carlo region may comprise the entire spatial region for selected energy groups, or may consist of a rectangular area that is either completely or partially embedded in an arbitrary SN region. The Monte Carlo and SN regions are then connected through the common angular boundary fluxes, which are determined iteratively using the response matrix technique, and volumetric sources. The hybrid method has been implemented in the SN code TWODANT by adding special-purpose Monte Carlo subroutines to calculate the response matrices and volumetric sources, and linkage subrountines to carry out the interface flux iterations. The common angular boundary fluxes are included in the SN code as interior boundary sources, leaving the logic for the solution of the transport flux unchanged, while, with minor modifications, the diffusion synthetic accelerator remains effective in accelerating SN calculations. The special-purpose Monte Carlo routines used are essentially analog, with few variance reduction techniques employed. However, the routines have been successfully vectorized, with approximately a factor of five increase in speed over the non-vectorized version.

  5. Discrete element modelling of bedload transport

    Science.gov (United States)

    Loyer, A.; Frey, P.

    2011-12-01

    Discrete element modelling (DEM) has been widely used in solid mechanics and in granular physics. In this type of modelling, each individual particle is taken into account and intergranular interactions are modelled with simple laws (e.g. Coulomb friction). Gravity and contact forces permit to solve the dynamical behaviour of the system. DEM is interesting to model configurations and access to parameters not directly available in laboratory experimentation, hence the term "numerical experimentations" sometimes used to describe DEM. DEM was used to model bedload transport experiments performed at the particle scale with spherical glass beads in a steep and narrow flume. Bedload is the larger material that is transported on the bed on stream channels. It has a great geomorphic impact. Physical processes ruling bedload transport and more generally coarse-particle/fluid systems are poorly known, arguably because granular interactions have been somewhat neglected. An existing DEM code (PFC3D) already computing granular interactions was used. We implemented basic hydrodynamic forces to model the fluid interactions (buoyancy, drag, lift). The idea was to use the minimum number of ingredients to match the experimental results. Experiments were performed with one-size and two-size mixtures of coarse spherical glass beads entrained by a shallow turbulent and supercritical water flow down a steep channel with a mobile bed. The particle diameters were 4 and 6mm, the channel width 6.5mm (about the same width as the coarser particles) and the channel inclination was typically 10%. The water flow rate and the particle rate were kept constant at the upstream entrance and adjusted to obtain bedload transport equilibrium. Flows were filmed from the side by a high-speed camera. Using image processing algorithms made it possible to determine the position, velocity and trajectory of both smaller and coarser particles. Modelled and experimental particle velocity and concentration depth

  6. Atomic Energy Act and ordinances. 8. ed.

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The new issue of the text contains the Atomic Energy Act (AtG) in its new wording of the announcement of 31 Oct 76, the new wording of the ordinances put in effect in 1977: Atomic procedure ordinance (AtVfV), radiation protection ordinance (SSU), and atomic financial security ordinance (AtDeckV); furthermore the x-ray ordinance (RoeV) of 1978 in its wording which has been changed by the radiation protection ordinance. Also printed are the cost ordinance (AtKostV) of 1971, the food irradiation ordinance (LebensmBestrV) in the wording of 1975 and the medicine ordinance (ArzneimV) in the wording of 1971. An addition was made by adding to the liability laws the Paris agreement (PUE) on the liability towards third persons in the field of nuclear energy in the wording of the announcement of 5 Feb 76. (orig./HP) [de

  7. The development of the natural gas transportation network in Brazil: Recent changes to the gas law and its role in co-ordinating new investments

    International Nuclear Information System (INIS)

    Colomer Ferraro, Marcelo; Hallack, Michelle

    2012-01-01

    In Brazil, the consensus that natural gas regulation has failed to attract investments, especially from private companies, culminated in a new law for the natural gas sector, passed in March 2009 (Law No. 11,909). The most significant change this new law introduced was the new governmental role in co-ordinating investments in the transportation sector. The Brazilian government has had to plan pipeline networks, estimate the size of demand for transportation and organise bidding to select investors for new pipeline projects. Although the law has established a clear regulatory framework for the midstream sector, providing stability and the legal certainty necessary for long-term investments in assets with high specificity, it has not been able to fill all of the gaps that remain under Law 9,478. In this sense, besides the challenges related to effective implementation of the regulatory attributes defined in Law 11,909, the absence of certain issues prevents the modified legal structure from encouraging the entry of new players in the transportation sector. This paper has identified, according to the neo-institutional view, the mechanisms of co-ordination introduced by the new law and the limitations of the new regulatory framework. - Highlights: ► Natural gas transportation investment requires some coordination mechanisms. ► The 9,478 Act was not capable to incentive the new player entrance. ► Brazilian natural gas industry is strongly concentrated in Petrobras hands. ► The new Brazilian legal framework aims to reduce transaction costs in gas industry. ► The industrial structure of the gas sector discourages the entrance of new investors.

  8. DOE HPCOR - ARDRA Project Overview

    Energy Technology Data Exchange (ETDEWEB)

    Kunen, A J

    2015-09-02

    The problem addressed is Deterministic (Sn) Particle Transport (Neutrons and Gamma Rays) on structured grids. The Linear Boltzmann Transport Equation is discretized and solved using the Discrete Ordinates method. This work can be used for solving criticality, shielding and time-dependent problems. Primary numerical methods, calculation aspects, and software issues are sketched.

  9. The selection of a mode of urban transportation: Integrating psychological variables to discrete choice models

    International Nuclear Information System (INIS)

    Cordoba Maquilon, Jorge E; Gonzalez Calderon, Carlos A; Posada Henao, John J

    2011-01-01

    A study using revealed preference surveys and psychological tests was conducted. Key psychological variables of behavior involved in the choice of transportation mode in a population sample of the Metropolitan Area of the Valle de Aburra were detected. The experiment used the random utility theory for discrete choice models and reasoned action in order to assess beliefs. This was used as a tool for analysis of the psychological variables using the sixteen personality factor questionnaire (16PF test). In addition to the revealed preference surveys, two other surveys were carried out: one with socio-economic characteristics and the other with latent indicators. This methodology allows for an integration of discrete choice models and latent variables. The integration makes the model operational and quantifies the unobservable psychological variables. The most relevant result obtained was that anxiety affects the choice of urban transportation mode and shows that physiological alterations, as well as problems in perception and beliefs, can affect the decision-making process.

  10. Discrete Feature Model (DFM) User Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Geier, Joel (Clearwater Hardrock Consulting, Corvallis, OR (United States))

    2008-06-15

    This manual describes the Discrete-Feature Model (DFM) software package for modelling groundwater flow and solute transport in networks of discrete features. A discrete-feature conceptual model represents fractures and other water-conducting features around a repository as discrete conductors surrounded by a rock matrix which is usually treated as impermeable. This approximation may be valid for crystalline rocks such as granite or basalt, which have very low permeability if macroscopic fractures are excluded. A discrete feature is any entity that can conduct water and permit solute transport through bedrock, and can be reasonably represented as a piecewise-planar conductor. Examples of such entities may include individual natural fractures (joints or faults), fracture zones, and disturbed-zone features around tunnels (e.g. blasting-induced fractures or stress-concentration induced 'onion skin' fractures around underground openings). In a more abstract sense, the effectively discontinuous nature of pathways through fractured crystalline bedrock may be idealized as discrete, equivalent transmissive features that reproduce large-scale observations, even if the details of connective paths (and unconnected domains) are not precisely known. A discrete-feature model explicitly represents the fundamentally discontinuous and irregularly connected nature of systems of such systems, by constraining flow and transport to occur only within such features and their intersections. Pathways for flow and solute transport in this conceptualization are a consequence not just of the boundary conditions and hydrologic properties (as with continuum models), but also the irregularity of connections between conductive/transmissive features. The DFM software package described here is an extensible code for investigating problems of flow and transport in geological (natural or human-altered) systems that can be characterized effectively in terms of discrete features. With this

  11. Discrete Feature Model (DFM) User Documentation

    International Nuclear Information System (INIS)

    Geier, Joel

    2008-06-01

    This manual describes the Discrete-Feature Model (DFM) software package for modelling groundwater flow and solute transport in networks of discrete features. A discrete-feature conceptual model represents fractures and other water-conducting features around a repository as discrete conductors surrounded by a rock matrix which is usually treated as impermeable. This approximation may be valid for crystalline rocks such as granite or basalt, which have very low permeability if macroscopic fractures are excluded. A discrete feature is any entity that can conduct water and permit solute transport through bedrock, and can be reasonably represented as a piecewise-planar conductor. Examples of such entities may include individual natural fractures (joints or faults), fracture zones, and disturbed-zone features around tunnels (e.g. blasting-induced fractures or stress-concentration induced 'onion skin' fractures around underground openings). In a more abstract sense, the effectively discontinuous nature of pathways through fractured crystalline bedrock may be idealized as discrete, equivalent transmissive features that reproduce large-scale observations, even if the details of connective paths (and unconnected domains) are not precisely known. A discrete-feature model explicitly represents the fundamentally discontinuous and irregularly connected nature of systems of such systems, by constraining flow and transport to occur only within such features and their intersections. Pathways for flow and solute transport in this conceptualization are a consequence not just of the boundary conditions and hydrologic properties (as with continuum models), but also the irregularity of connections between conductive/transmissive features. The DFM software package described here is an extensible code for investigating problems of flow and transport in geological (natural or human-altered) systems that can be characterized effectively in terms of discrete features. With this software, the

  12. On the spectral analysis of iterative solutions of the discretized one-group transport equation

    International Nuclear Information System (INIS)

    Sanchez, Richard

    2004-01-01

    We analyze the Fourier-mode technique used for the spectral analysis of iterative solutions of the one-group discretized transport equation. We introduce a direct spectral analysis for the iterative solution of finite difference approximations for finite slabs composed of identical layers, providing thus a complementary analysis that is more appropriate for reactor applications. Numerical calculations for the method of characteristics and with the diamond difference approximation show the appearance of antisymmetric modes generated by the iteration on boundary data. We have also utilized the discrete Fourier transform to compute the spectrum for a periodic slab containing N identical layers and shown that at the limit N → ∞ one obtains the familiar Fourier-mode solution

  13. Two-dimensional radiation shielding optimization analysis of spent fuel transport container

    International Nuclear Information System (INIS)

    Tian Yingnan; Chen Yixue; Yang Shouhai

    2013-01-01

    The intelligent radiation shielding optimization design software platform is a one-dimensional multi-target radiation shielding optimization program which is developed on the basis of the genetic algorithm program and one-dimensional discrete ordinate program-ANISN. This program was applied in the optimization design analysis of the spent fuel transport container radiation shielding. The multi-objective optimization calculation model of the spent fuel transport container radiation shielding was established, and the optimization calculation of the spent fuel transport container weight and radiation dose rate was carried by this program. The calculation results were checked by Monte-Carlo program-MCNP/4C. The results show that the weight of the optimized spent fuel transport container decreases to 81.1% of the origin and the radiation dose rate decreases to below 65.4% of the origin. The maximum deviation between the calculated values from the program and the MCNP is below 5%. The results show that the optimization design scheme is feasible and the calculation result is correct. (authors)

  14. Analysis of a HP-refinement method for solving the neutron transport equation using two error estimators

    International Nuclear Information System (INIS)

    Fournier, D.; Le Tellier, R.; Suteau, C.; Herbin, R.

    2011-01-01

    The solution of the time-independent neutron transport equation in a deterministic way invariably consists in the successive discretization of the three variables: energy, angle and space. In the SNATCH solver used in this study, the energy and the angle are respectively discretized with a multigroup approach and the discrete ordinate method. A set of spatial coupled transport equations is obtained and solved using the Discontinuous Galerkin Finite Element Method (DGFEM). Within this method, the spatial domain is decomposed into elements and the solution is approximated by a hierarchical polynomial basis in each one. This approach is time and memory consuming when the mesh becomes fine or the basis order high. To improve the computational time and the memory footprint, adaptive algorithms are proposed. These algorithms are based on an error estimation in each cell. If the error is important in a given region, the mesh has to be refined (h−refinement) or the polynomial basis order increased (p−refinement). This paper is related to the choice between the two types of refinement. Two ways to estimate the error are compared on different benchmarks. Analyzing the differences, a hp−refinement method is proposed and tested. (author)

  15. Some improvements in the discrete ordinate method of B.G. Carlson for solving the neutron transport equation

    Energy Technology Data Exchange (ETDEWEB)

    Askew, J R; Brissenden, R J [Technical Assessments and Services Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1963-08-15

    This report gives an account of the DSN method for simulating neutron transport, together with methods of solution developed to deal with problems in the physics of thermal reactors, for which previously available computer programmes were unsatisfactory. The methods described are those incorporated in the programmes WINFRITH DSN written in FORTRAN language for the IBM 7090 and STRETCH computers. (author)

  16. Quantization in rotating co-ordinates revisited

    International Nuclear Information System (INIS)

    Hussain, F.; Qadir, A.

    1982-07-01

    Recent work on quantization in rotating co-ordinates showed that no radiation would be seen by an observer rotating with a constant angular speed. This work used a Galilean-type co-ordinate transformation. We show that the same result holds for a Lorentz-type co-ordinate system, in spite of the fact that the metric has a co-ordinate singularity at rΩ = 1. Further, we are able to define positive and negative energy modes for a particular case of a non-static, non-stationary metric. (author)

  17. An accurate solver for forward and inverse transport

    International Nuclear Information System (INIS)

    Monard, Francois; Bal, Guillaume

    2010-01-01

    This paper presents a robust and accurate way to solve steady-state linear transport (radiative transfer) equations numerically. Our main objective is to address the inverse transport problem, in which the optical parameters of a domain of interest are reconstructed from measurements performed at the domain's boundary. This inverse problem has important applications in medical and geophysical imaging, and more generally in any field involving high frequency waves or particles propagating in scattering environments. Stable solutions of the inverse transport problem require that the singularities of the measurement operator, which maps the optical parameters to the available measurements, be captured with sufficient accuracy. This in turn requires that the free propagation of particles be calculated with care, which is a difficult problem on a Cartesian grid. A standard discrete ordinates method is used for the direction of propagation of the particles. Our methodology to address spatial discretization is based on rotating the computational domain so that each direction of propagation is always aligned with one of the grid axes. Rotations are performed in the Fourier domain to achieve spectral accuracy. The numerical dispersion of the propagating particles is therefore minimal. As a result, the ballistic and single scattering components of the transport solution are calculated robustly and accurately. Physical blurring effects, such as small angular diffusion, are also incorporated into the numerical tool. Forward and inverse calculations performed in a two-dimensional setting exemplify the capabilities of the method. Although the methodology might not be the fastest way to solve transport equations, its physical accuracy provides us with a numerical tool to assess what can and cannot be reconstructed in inverse transport theory.

  18. Radiation transport benchmarks for simple geometries with void regions using the spherical harmonics method

    International Nuclear Information System (INIS)

    Kobayashi, K.

    2009-01-01

    In 2001, an international cooperation on the 3D radiation transport benchmarks for simple geometries with void region was performed under the leadership of E. Sartori of OECD/NEA. There were contributions from eight institutions, where 6 contributions were by the discrete ordinate method and only two were by the spherical harmonics method. The 3D spherical harmonics program FFT3 by the finite Fourier transformation method has been improved for this presentation, and benchmark solutions for the 2D and 3D simple geometries with void region by the FFT2 and FFT3 are given showing fairly good accuracy. (authors)

  19. FENDL/MG-2.0 and FENDL/MC-2.0. The processed cross-section libraries for neutron photon transport calculations. Version 1, March 1997. Summary documentation

    International Nuclear Information System (INIS)

    Wienke, H.; Herman, M.

    1998-01-01

    Evaluated neutron reaction data and photon-atom interaction cross sections for materials contained in the general purpose Fusion Evaluated Nuclear Data Library (FENDL/E2.0) have been processed with the NJOY code system into VITAMIN-J multigroup structure, for use in discrete-ordinates transport codes, and into continuous energy ACE format, for use in the Monte Carlo transport code MCNP. This document summarizes the resulting data libraries FENDL/MG-2.0 version 1 and FENDL/MC-2.0 version 1. The data are available costfree from the IAEA Nuclear Data Section online or on magnetic tape. (author)

  20. A time-dependent neutron transport model and its coupling to thermal-hydraulics

    International Nuclear Information System (INIS)

    Pautz, A.

    2001-01-01

    A new neutron transport code for time-dependent analyses of nuclear systems has been developed. The code system is based on the well-known Discrete Ordinates code DORT, which solves the steady-state neutron/photon transport equation in two dimensions for an arbitrary number of energy groups and the most common regular geometries. For the implementation of time-dependence a fully implicit first-order scheme was employed to minimize errors due to temporal discretization. This requires various modifications to the transport equation as well as the extensive use of elaborated acceleration mechanisms. The convergence criteria for fluxes, fission rates etc. had to be strongly tightened to ensure the reliability of results. To perform coupled analyses, an interface to the GRS system code ATHLET has been developed. The nodal power densities from the neutron transport code are passed to ATHLET to calculate thermal-hydraulic system parameters, e.g. fuel and coolant temperatures. These are in turn used to generate appropriate nuclear cross sections by interpolation of pre-calculated data sets for each time step. Finally, to demonstrate the transient capabilities of the coupled code system, the research reactor FRM-II has been analysed. Several design basis accidents were modelled, like the loss of off site power, loss of secondary heat sink and unintended control rod withdrawal. (author)

  1. Ordinal bivariate inequality

    DEFF Research Database (Denmark)

    Sonne-Schmidt, Christoffer Scavenius; Tarp, Finn; Østerdal, Lars Peter Raahave

    This paper introduces a concept of inequality comparisons with ordinal bivariate categorical data. In our model, one population is more unequal than another when they have common arithmetic median outcomes and the first can be obtained from the second by correlationincreasing switches and/or median......-preserving spreads. For the canonical 2x2 case (with two binary indicators), we derive a simple operational procedure for checking ordinal inequality relations in practice. As an illustration, we apply the model to childhood deprivation in Mozambique....

  2. Performance of a neutron transport code with full phase space decomposition on the Cray Research T3D

    International Nuclear Information System (INIS)

    Dorr, M.R.; Salo, E.M.

    1995-01-01

    We present performance results obtained on a 128-node Cray Research T3D computer by a neutron transport code implementing a standard mtiltigroup, discrete ordinates algorithm on a three-dimensional Cartesian grid. After summarizing the implementation strategy used to obtain a full decomposition of phase space (i.e., simultaneous parallelization of the neutron energy, directional and spatial variables), we investigate the scalability of the fundamental source iteration step with respect to each phase space variable. We also describe enhancements that have enabled performance rates approaching 10 gigaflops on the full 128-node machine

  3. ZZ SAIL, Albedo Scattering Data Library for 3-D Monte-Carlo Radiation Transport in LWR Pressure Vessel

    International Nuclear Information System (INIS)

    1982-01-01

    1 - Description of problem or function: Format: SAIL format; Number of groups: 23 neutron / 17 gamma-ray; Nuclides: Type 04 Concrete and Low Carbon Steel (A533B). Origin: Science Applications, Inc (SAI); Weighting spectrum: yes. SAIL is a library of albedo scattering data to be used in three-dimensional Monte Carlo codes to solve radiation transport problems specific to the reactor pressure vessel cavity region of a LWR. The library contains data for Type 04 Concrete and Low Carbon Steel (A533B). 2 - Method of solution: The calculation of the albedo data was perform- ed with a version of the discrete ordinates transport code DOT which treats the transport of neutrons, secondary gamma-rays and gamma- rays in one dimension, while maintaining the complete two-dimension- al treatment of the angular dependence

  4. Fourier analysis of parallel block-Jacobi splitting with transport synthetic acceleration in two-dimensional geometry

    International Nuclear Information System (INIS)

    Rosa, M.; Warsa, J. S.; Chang, J. H.

    2007-01-01

    A Fourier analysis is conducted in two-dimensional (2D) Cartesian geometry for the discrete-ordinates (SN) approximation of the neutron transport problem solved with Richardson iteration (Source Iteration) and Richardson iteration preconditioned with Transport Synthetic Acceleration (TSA), using the Parallel Block-Jacobi (PBJ) algorithm. The results for the un-accelerated algorithm show that convergence of PBJ can degrade, leading in particular to stagnation of GMRES(m) in problems containing optically thin sub-domains. The results for the accelerated algorithm indicate that TSA can be used to efficiently precondition an iterative method in the optically thin case when implemented in the 'modified' version MTSA, in which only the scattering in the low order equations is reduced by some non-negative factor β<1. (authors)

  5. Ordinance on protection from the harmful effects of X-radiation (X-ray Ordinance). As of January 8, 1987. 3. ed.

    International Nuclear Information System (INIS)

    Hinrichs, O.

    1992-01-01

    The German X-ray Ordinance (Roentgenverordnung) contains the main protective provisions applying to the field of X-ray equipment and sources of unwanted X radiation. It thus forms a complement to the German Radiation Protection Ordinance (Strahlenschutzverordnung). The X-ray Ordinance is based, as is the Radiation Protection Ordinance, on the German Nuclear Energy Act (Atomgesetz). It transposes the same Euratom Directives into national law, through which above all the limit values are defined. The current state of the X-ray Ordinance is that of the text promulgated on 8.01.1987 with the subsequent amendments, the last of which was adopted on 19.12.1990. The brochure also reproduces the Official Memorandum to the X-ray Ordinance, as this gives important indications for the legal construction of the Ordinance. (orig./HSCH) [de

  6. Severity, probability and risk of accidents during maritime transport of radioactive material. Final report of a co-ordinated research project 1995-1999

    International Nuclear Information System (INIS)

    2001-07-01

    The primary purpose of this CRP was to provide a co-ordinated international effort to assemble and evaluate relevant data using sound technical judgement concerning the effects that fires, explosions or breaches of hulls of ships might have on the integrity of radioactive material packages. The probability and expected consequences of such events could thereby be assessed. If it were shown that the proportion of maritime accidents with severity in excess of the IAEA regulatory requirements was expected to be higher than that for land transport, then pertinent proposals could be submitted to the forthcoming Revision Panels to amend the IAEA Regulations for Safe Transport of Radioactive Material and their supporting documents. Four main areas of research were included in the CRP. These consisted of studying the probability of ship accidents; fire; collision; and radiological consequences

  7. Severity, probability and risk of accidents during maritime transport of radioactive material. Final report of a co-ordinated research project 1995-1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The primary purpose of this CRP was to provide a co-ordinated international effort to assemble and evaluate relevant data using sound technical judgement concerning the effects that fires, explosions or breaches of hulls of ships might have on the integrity of radioactive material packages. The probability and expected consequences of such events could thereby be assessed. If it were shown that the proportion of maritime accidents with severity in excess of the IAEA regulatory requirements was expected to be higher than that for land transport, then pertinent proposals could be submitted to the forthcoming Revision Panels to amend the IAEA Regulations for Safe Transport of Radioactive Material and their supporting documents. Four main areas of research were included in the CRP. These consisted of studying the probability of ship accidents; fire; collision; and radiological consequences.

  8. Memory-Based Specification of Verbal Features for Classifying Animals into Super-Ordinate and Sub-Ordinate Categories

    Directory of Open Access Journals (Sweden)

    Takahiro Soshi

    2017-09-01

    Full Text Available Accumulating evidence suggests that category representations are based on features. Distinguishing features are considered to define categories, because of all-or-none responses for objects in different categories; however, it is unclear how distinguishing features actually classify objects at various category levels. The present study included 75 animals within three classes (mammal, bird, and fish, along with 195 verbal features. Healthy adults participated in memory-based feature-animal matching verification tests. Analyses included a hierarchical clustering analysis, support vector machine, and independent component analysis to specify features effective for classifications. Quantitative and qualitative comparisons for significant features were conducted between super-ordinate and sub-ordinate levels. The number of significant features was larger for super-ordinate than sub-ordinate levels. Qualitatively, the proportion of biological features was larger than cultural/affective features in both the levels, while the proportion of affective features increased at the sub-ordinate level. To summarize, the two types of features differentially function to establish category representations.

  9. General Purpose Fortran Program for Discrete-Ordinate-Method Radiative Transfer in Scattering and Emitting Layered Media: An Update of DISORT

    Science.gov (United States)

    Tsay, Si-Chee; Stamnes, Knut; Wiscombe, Warren; Laszlo, Istvan; Einaudi, Franco (Technical Monitor)

    2000-01-01

    This update reports a state-of-the-art discrete ordinate algorithm for monochromatic unpolarized radiative transfer in non-isothermal, vertically inhomogeneous, but horizontally homogeneous media. The physical processes included are Planckian thermal emission, scattering with arbitrary phase function, absorption, and surface bidirectional reflection. The system may be driven by parallel or isotropic diffuse radiation incident at the top boundary, as well as by internal thermal sources and thermal emission from the boundaries. Radiances, fluxes, and mean intensities are returned at user-specified angles and levels. DISORT has enjoyed considerable popularity in the atmospheric science and other communities since its introduction in 1988. Several new DISORT features are described in this update: intensity correction algorithms designed to compensate for the 8-M forward-peak scaling and obtain accurate intensities even in low orders of approximation; a more general surface bidirectional reflection option; and an exponential-linear approximation of the Planck function allowing more accurate solutions in the presence of large temperature gradients. DISORT has been designed to be an exemplar of good scientific software as well as a program of intrinsic utility. An extraordinary effort has been made to make it numerically well-conditioned, error-resistant, and user-friendly, and to take advantage of robust existing software tools. A thorough test suite is provided to verify the program both against published results, and for consistency where there are no published results. This careful attention to software design has been just as important in DISORT's popularity as its powerful algorithmic content.

  10. Ordinal Bivariate Inequality

    DEFF Research Database (Denmark)

    Sonne-Schmidt, Christoffer Scavenius; Tarp, Finn; Østerdal, Lars Peter Raahave

    2016-01-01

    This paper introduces a concept of inequality comparisons with ordinal bivariate categorical data. In our model, one population is more unequal than another when they have common arithmetic median outcomes and the first can be obtained from the second by correlation-increasing switches and....../or median-preserving spreads. For the canonical 2 × 2 case (with two binary indicators), we derive a simple operational procedure for checking ordinal inequality relations in practice. As an illustration, we apply the model to childhood deprivation in Mozambique....

  11. Tree Ordination as Invented Tradition

    Directory of Open Access Journals (Sweden)

    Avery Morrow

    2012-01-01

    Full Text Available The symbolic ordination of trees as monks in Thailand is widely perceived in Western scholarship to be proof of the power of Buddhism to spur ecological thought. However, a closer analysis of tree ordination demonstrates that it is not primarily about Buddhist teaching, but rather is an invented tradition based on the sanctity of Thai Buddhist symbols as well as those of spirit worship and the monarchy. Tree ordinations performed by non-Buddhist minorities in Thailand do not demonstrate a religious commitment but rather a political one.

  12. Application of the TWODANT code system to pressure vessel dosimetry calculations

    International Nuclear Information System (INIS)

    Parsons, D.K.; Alcouffe, R.E.; Marr, D.R.; Urban, W.T.

    1993-01-01

    The TWODANT code system has recently been enhanced to include TWODANT/GQ and THREEDANT. TWODANT/GQ solves the two-dimensional form of the discrete ordinates approximation to the transport equation on a generalized quadrilateral mesh. This geometric capability is very general and allows nearly exact representations of X-Y or R-Z geometries. THREEDANT solves the three-dimensional form of the discrete ordinates equations. In addition to the conventional coarse-mesh material zone input, THREEDANT can also be linked to a three-dimensional nested-region mesh generation code called FRAC-IN-THE-BOX. THREEDANT can thus model a much wider variety of geometric shapes than any other discrete ordinates code. These enhanced geometric modeling capabilities are applied here to the analysis of the VENUS PWR Mock-Up Facility

  13. COMPUTATIONAL EFFICIENCY OF A MODIFIED SCATTERING KERNEL FOR FULL-COUPLED PHOTON-ELECTRON TRANSPORT PARALLEL COMPUTING WITH UNSTRUCTURED TETRAHEDRAL MESHES

    Directory of Open Access Journals (Sweden)

    JONG WOON KIM

    2014-04-01

    In this paper, we introduce a modified scattering kernel approach to avoid the unnecessarily repeated calculations involved with the scattering source calculation, and used it with parallel computing to effectively reduce the computation time. Its computational efficiency was tested for three-dimensional full-coupled photon-electron transport problems using our computer program which solves the multi-group discrete ordinates transport equation by using the discontinuous finite element method with unstructured tetrahedral meshes for complicated geometrical problems. The numerical tests show that we can improve speed up to 17∼42 times for the elapsed time per iteration using the modified scattering kernel, not only in the single CPU calculation but also in the parallel computing with several CPUs.

  14. A Spatial Discretization Scheme for Solving the Transport Equation on Unstructured Grids of Polyhedra

    International Nuclear Information System (INIS)

    Thompson, K.G.

    2000-01-01

    In this work, we develop a new spatial discretization scheme that may be used to numerically solve the neutron transport equation. This new discretization extends the family of corner balance spatial discretizations to include spatial grids of arbitrary polyhedra. This scheme enforces balance on subcell volumes called corners. It produces a lower triangular matrix for sweeping, is algebraically linear, is non-negative in a source-free absorber, and produces a robust and accurate solution in thick diffusive regions. Using an asymptotic analysis, we design the scheme so that in thick diffusive regions it will attain the same solution as an accurate polyhedral diffusion discretization. We then refine the approximations in the scheme to reduce numerical diffusion in vacuums, and we attempt to capture a second order truncation error. After we develop this Upstream Corner Balance Linear (UCBL) discretization we analyze its characteristics in several limits. We complete a full diffusion limit analysis showing that we capture the desired diffusion discretization in optically thick and highly scattering media. We review the upstream and linear properties of our discretization and then demonstrate that our scheme captures strictly non-negative solutions in source-free purely absorbing media. We then demonstrate the minimization of numerical diffusion of a beam and then demonstrate that the scheme is, in general, first order accurate. We also note that for slab-like problems our method actually behaves like a second-order method over a range of cell thicknesses that are of practical interest. We also discuss why our scheme is first order accurate for truly 3D problems and suggest changes in the algorithm that should make it a second-order accurate scheme. Finally, we demonstrate 3D UCBL's performance on several very different test problems. We show good performance in diffusive and streaming problems. We analyze truncation error in a 3D problem and demonstrate robustness in a

  15. Provably optimal parallel transport sweeps on regular grids

    International Nuclear Information System (INIS)

    Adams, M. P.; Adams, M. L.; Hawkins, W. D.; Smith, T.; Rauchwerger, L.; Amato, N. M.; Bailey, T. S.; Falgout, R. D.

    2013-01-01

    We have found provably optimal algorithms for full-domain discrete-ordinate transport sweeps on regular grids in 3D Cartesian geometry. We describe these algorithms and sketch a 'proof that they always execute the full eight-octant sweep in the minimum possible number of stages for a given P x x P y x P z partitioning. Computational results demonstrate that our optimal scheduling algorithms execute sweeps in the minimum possible stage count. Observed parallel efficiencies agree well with our performance model. An older version of our PDT transport code achieves almost 80% parallel efficiency on 131,072 cores, on a weak-scaling problem with only one energy group, 80 directions, and 4096 cells/core. A newer version is less efficient at present-we are still improving its implementation - but achieves almost 60% parallel efficiency on 393,216 cores. These results conclusively demonstrate that sweeps can perform with high efficiency on core counts approaching 10 6 . (authors)

  16. Provably optimal parallel transport sweeps on regular grids

    Energy Technology Data Exchange (ETDEWEB)

    Adams, M. P.; Adams, M. L.; Hawkins, W. D. [Dept. of Nuclear Engineering, Texas A and M University, 3133 TAMU, College Station, TX 77843-3133 (United States); Smith, T.; Rauchwerger, L.; Amato, N. M. [Dept. of Computer Science and Engineering, Texas A and M University, 3133 TAMU, College Station, TX 77843-3133 (United States); Bailey, T. S.; Falgout, R. D. [Lawrence Livermore National Laboratory (United States)

    2013-07-01

    We have found provably optimal algorithms for full-domain discrete-ordinate transport sweeps on regular grids in 3D Cartesian geometry. We describe these algorithms and sketch a 'proof that they always execute the full eight-octant sweep in the minimum possible number of stages for a given P{sub x} x P{sub y} x P{sub z} partitioning. Computational results demonstrate that our optimal scheduling algorithms execute sweeps in the minimum possible stage count. Observed parallel efficiencies agree well with our performance model. An older version of our PDT transport code achieves almost 80% parallel efficiency on 131,072 cores, on a weak-scaling problem with only one energy group, 80 directions, and 4096 cells/core. A newer version is less efficient at present-we are still improving its implementation - but achieves almost 60% parallel efficiency on 393,216 cores. These results conclusively demonstrate that sweeps can perform with high efficiency on core counts approaching 10{sup 6}. (authors)

  17. Atomic Energy Law with ordinances. 9. ed.

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The revised edition of the text is due to a variety of major changes in, and amendments to, the German Atomic Energy Law. This book includes the current version of the Atomic Energy Law which has been changed several times, the 1982-version of the ordinace concerning procedures laid down in the Atomic Energy Law, the 1976 radiation protection ordinance together with recent amendments, the 1973 X-ray ordinance, the 1977 financial security ordinance laid down in the Atomic Energy Law, the 1981 ordinance concerning costs, the ordinance concerning performance in anticipation of ultimate disposal. The book is a compilation of the basic Atomic Energy Law which is needed mostly for imminent practical requirements. (orig./HSCH) [de

  18. Transport calculation of medium-energy protons and neutrons by Monte Carlo method

    International Nuclear Information System (INIS)

    Ban, Syuuichi; Hirayama, Hideo; Katoh, Kazuaki.

    1978-09-01

    A Monte Carlo transport code, ARIES, has been developed for protons and neutrons at medium energy (25 -- 500 MeV). Nuclear data provided by R.G. Alsmiller, Jr. were used for the calculation. To simulate the cascade development in the medium, each generation was represented by a single weighted particle and an average number of emitted particles was used as the weight. Neutron fluxes were stored by the collisions density method. The cutoff energy was set to 25 MeV. Neutrons below the cutoff were stored to be used as the source for the low energy neutron transport calculation upon the discrete ordinates method. Then transport calculations were performed for both low energy neutrons (thermal -- 25 MeV) and secondary gamma-rays. Energy spectra of emitted neutrons were calculated and compared with those of published experimental and calculated results. The agreement was good for the incident particles of energy between 100 and 500 MeV. (author)

  19. Parallel FE Electron-Photon Transport Analysis on 2-D Unstructured Mesh

    International Nuclear Information System (INIS)

    Drumm, C.R.; Lorenz, J.

    1999-01-01

    A novel solution method has been developed to solve the coupled electron-photon transport problem on an unstructured triangular mesh. Instead of tackling the first-order form of the linear Boltzmann equation, this approach is based on the second-order form in conjunction with the conventional multi-group discrete-ordinates approximation. The highly forward-peaked electron scattering is modeled with a multigroup Legendre expansion derived from the Goudsmit-Saunderson theory. The finite element method is used to treat the spatial dependence. The solution method is unique in that the space-direction dependence is solved simultaneously, eliminating the need for the conventional inner iterations, a method that is well suited for massively parallel computers

  20. Discontinuous Galerkin discretization and hp-refinement for the resolution of the neutron transport equation

    International Nuclear Information System (INIS)

    Fournier, Damien; Le-Tellier, Romain; Herbin, Raphaele

    2013-01-01

    This paper presents an hp-refinement method for a first order scalar transport reaction equation discretized by a discontinuous Galerkin method. First, the theoretical rates of convergence of h- and p-refinement are recalled and numerically tested. Then, in order to design some meshes, we propose two different estimators of the local error on the spatial domain. These quantities are analyzed and compared depending on the regularity of the solution so as to find the best way to lead the refinement process and the best strategy to choose between h- and p-refinement. Finally, the different possible refinement strategies are compared first on analytical examples and then on realistic applications for neutron transport in a nuclear reactor core. (authors)

  1. Social Host Ordinances and Policies. Prevention Update

    Science.gov (United States)

    Higher Education Center for Alcohol, Drug Abuse, and Violence Prevention, 2011

    2011-01-01

    Social host liability laws (also known as teen party ordinances, loud or unruly gathering ordinances, or response costs ordinances) target the location in which underage drinking takes place. Social host liability laws hold noncommercial individuals responsible for underage drinking events on property they own, lease, or otherwise control. They…

  2. Transport methods: general. 3. An Additive Angular-Dependent Re-balance Acceleration Method for Neutron Transport Equations

    International Nuclear Information System (INIS)

    Cho, Nam Zin; Park, Chang Je

    2001-01-01

    An additive angular-dependent re-balance (AADR) factor acceleration method is described to accelerate the source iteration of discrete ordinates transport calculation. The formulation of the AADR method follows that of the angular-dependent re-balance (ADR) method in that the re-balance factor is defined only on the cell interface and in that the low-order equation is derived by integrating the transport equation (high-order equation) over angular subspaces. But, the re-balance factor is applied additively. While the AADR method is similar to the boundary projection acceleration and the alpha-weighted linear acceleration, it is more general and does have distinct features. The method is easily extendible to DP N and low-order S N re-balancing, and it does not require consistent discretizations between the high- and low-order equations as in diffusion synthetic acceleration. We find by Fourier analysis and numerical results that the AADR method with a chosen form of weighting functions is unconditionally stable and very effective. There also exists an optimal weighting parameter that leads to the smallest spectral radius. The AADR acceleration method described in this paper is simple to implement, unconditionally stable, and very effective. It uses a physically based weighting function with an optimal parameter, leading to the best spectral radius of ρ<0.1865, compared to ρ<0.2247 of DSA. The application of the AADR acceleration method with the LMB scheme on a test problem shows encouraging results

  3. Processing ordinality and quantity: the case of developmental dyscalculia.

    Directory of Open Access Journals (Sweden)

    Orly Rubinsten

    Full Text Available In contrast to quantity processing, up to date, the nature of ordinality has received little attention from researchers despite the fact that both quantity and ordinality are embodied in numerical information. Here we ask if there are two separate core systems that lie at the foundations of numerical cognition: (1 the traditionally and well accepted numerical magnitude system but also (2 core system for representing ordinal information. We report two novel experiments of ordinal processing that explored the relation between ordinal and numerical information processing in typically developing adults and adults with developmental dyscalculia (DD. Participants made "ordered" or "non-ordered" judgments about 3 groups of dots (non-symbolic numerical stimuli; in Experiment 1 and 3 numbers (symbolic task: Experiment 2. In contrast to previous findings and arguments about quantity deficit in DD participants, when quantity and ordinality are dissociated (as in the current tasks, DD participants exhibited a normal ratio effect in the non-symbolic ordinal task. They did not show, however, the ordinality effect. Ordinality effect in DD appeared only when area and density were randomized, but only in the descending direction. In the symbolic task, the ordinality effect was modulated by ratio and direction in both groups. These findings suggest that there might be two separate cognitive representations of ordinal and quantity information and that linguistic knowledge may facilitate estimation of ordinal information.

  4. Processing ordinality and quantity: the case of developmental dyscalculia.

    Science.gov (United States)

    Rubinsten, Orly; Sury, Dana

    2011-01-01

    In contrast to quantity processing, up to date, the nature of ordinality has received little attention from researchers despite the fact that both quantity and ordinality are embodied in numerical information. Here we ask if there are two separate core systems that lie at the foundations of numerical cognition: (1) the traditionally and well accepted numerical magnitude system but also (2) core system for representing ordinal information. We report two novel experiments of ordinal processing that explored the relation between ordinal and numerical information processing in typically developing adults and adults with developmental dyscalculia (DD). Participants made "ordered" or "non-ordered" judgments about 3 groups of dots (non-symbolic numerical stimuli; in Experiment 1) and 3 numbers (symbolic task: Experiment 2). In contrast to previous findings and arguments about quantity deficit in DD participants, when quantity and ordinality are dissociated (as in the current tasks), DD participants exhibited a normal ratio effect in the non-symbolic ordinal task. They did not show, however, the ordinality effect. Ordinality effect in DD appeared only when area and density were randomized, but only in the descending direction. In the symbolic task, the ordinality effect was modulated by ratio and direction in both groups. These findings suggest that there might be two separate cognitive representations of ordinal and quantity information and that linguistic knowledge may facilitate estimation of ordinal information.

  5. Collection of laws and ordinances concerning regulation of atomic energy, 1989 edition. 1989 ed.

    International Nuclear Information System (INIS)

    1989-01-01

    The collection of the laws and ordinances concerning the regulation of atomic energy, 1989 edition, was published by the Nuclear Safety Bureau, Science and Technology Agency. First, the abbreviated expressions of 56 laws and ordinances are shown. The contents are divided into Part 1: Fundamental laws and ordinances, Part 2: Regulation of nuclear source materials, nuclear fuel materials and nuclear reactors, Part 3: Prevention of radiation injuries due to radioactive isotopes and others, and Part 4: Related laws and ordinances. In Part 1, Atomic Energy Fundamental Act, Act of Institution of Atomic Energy Commission and Nuclear Safety Commission of Japan, Law Concerning the Technical Standard for Prevention of Radiation Injuries and 9 others are included. In Part 2, Law Concerning Regulation of Nuclear Source Materials, Nuclear Fuel Materials and Nuclear Reactors and 45 others are included. In Part 3, Law Concerning Prevention of Radiation Injuries Due to Radioisotopes and Others and 25 others are included. In Part 4, Electricity Enterprises Act, Road Transport and Vehicles Act, Ships' Safety Law, Labor Safety and Hygiene Law, Japan Atomic Energy Research Institute Law and 29 others are included. The contents are those as of November 30, 1988. (Kako, I.)

  6. Some efficient Lagrangian mesh finite elements encoded in ZEPHYR for two dimensional transport calculations

    International Nuclear Information System (INIS)

    Mordant, Maurice.

    1981-04-01

    To solve a multigroup stationary neutron transport equation in two-dimensional geometries (X-Y), (R-O) or (R-Z) generally on uses discrete ordinates and rectangular meshes. The way to do it is then well known, well documented and somewhat obvious. If one needs to treat awkward geometries or distorted meshes, things are not so easy and the way to do it is no longer straightforward. We have studied this problem at Limeil Nuclear Center and as an alternative to Monte Carlo methods and code we have implemented in ZEPHYR code at least two efficient finite element solutions for Lagrangian meshes involving any kind of triangles and quadrilaterals

  7. Lecture 3: the methods and applications of discrete ordinates in low energy neutron-photon transport (ANISN, DOT). Part I. Methods

    International Nuclear Information System (INIS)

    Engle, W.W. Jr.

    1978-01-01

    A rather complete description of the derivation of the finite difference form of the transport equation can be found in earlier work; therefore that derivation is discussed here. Attention is focused on the additional equations required to solve the transport equation which are often referred to as flux models and on the iteration process and efforts to accelerate the convergence of the iteration process. All equations discussed here are limited to the one-dimensional, time-independent case, but they may be extended in a straightforward manner to multidimensional, time-dependent geometries

  8. Generalized Fokker-Planck theory for electron and photon transport in biological tissues: application to radiotherapy.

    Science.gov (United States)

    Olbrant, Edgar; Frank, Martin

    2010-12-01

    In this paper, we study a deterministic method for particle transport in biological tissues. The method is specifically developed for dose calculations in cancer therapy and for radiological imaging. Generalized Fokker-Planck (GFP) theory [Leakeas and Larsen, Nucl. Sci. Eng. 137 (2001), pp. 236-250] has been developed to improve the Fokker-Planck (FP) equation in cases where scattering is forward-peaked and where there is a sufficient amount of large-angle scattering. We compare grid-based numerical solutions to FP and GFP in realistic medical applications. First, electron dose calculations in heterogeneous parts of the human body are performed. Therefore, accurate electron scattering cross sections are included and their incorporation into our model is extensively described. Second, we solve GFP approximations of the radiative transport equation to investigate reflectance and transmittance of light in biological tissues. All results are compared with either Monte Carlo or discrete-ordinates transport solutions.

  9. A guide to practical radiation protection in medicine. X-Ray Ordinance. Radiation Protection Ordinance. Practice-oriented hints, comments, text compilation

    International Nuclear Information System (INIS)

    Fiebich, M.; Nischelsky, J.E.; Pfeiff, H.; Westermann, K.

    2003-01-01

    This loose-leaf collection has been compiled for users who have to implement the X-ray Ordinance and the Radiation Protection Ordinance at their place of work. It presents all acts, ordinances, safety guides, regulations and recommendations of relevance in connection with the above two ordinances, as well as practical instructions and the full text of technical codes. Radiation protection officers and other persons in charge of radiation protection will find the references, information and advice needed to solve problems encountered. (orig.) [de

  10. A Monte Carlo Green's function method for three-dimensional neutron transport

    International Nuclear Information System (INIS)

    Gamino, R.G.; Brown, F.B.; Mendelson, M.R.

    1992-01-01

    This paper describes a Monte Carlo transport kernel capability, which has recently been incorporated into the RACER continuous-energy Monte Carlo code. The kernels represent a Green's function method for neutron transport from a fixed-source volume out to a particular volume of interest. This method is very powerful transport technique. Also, since kernels are evaluated numerically by Monte Carlo, the problem geometry can be arbitrarily complex, yet exact. This method is intended for problems where an ex-core neutron response must be determined for a variety of reactor conditions. Two examples are ex-core neutron detector response and vessel critical weld fast flux. The response is expressed in terms of neutron transport kernels weighted by a core fission source distribution. In these types of calculations, the response must be computed for hundreds of source distributions, but the kernels only need to be calculated once. The advance described in this paper is that the kernels are generated with a highly accurate three-dimensional Monte Carlo transport calculation instead of an approximate method such as line-of-sight attenuation theory or a synthesized three-dimensional discrete ordinates solution

  11. The new German radiation protection ordinance

    International Nuclear Information System (INIS)

    Pfeffer, W.; Weimer, G.

    2003-01-01

    According to European law, the Basic Safety Standards (BSS) published by the European Council in 1996 and the Council Directive on health protection of individuals against dangers of ionising radiation in relation to medical exposure had to be transferred into national law within due time. In 2001 the new Ordinance for the Implementation of the Euratom Guidelines on Radiation Protection] was published, which replaces the old Radiation Protection Ordinance. The new German Ordinance adapts the European Directive to German law, covering the general principles but even giving more details in many fields of radiation protection. The BSS scope certainly is much broader than the prescriptions important for the field of radiation protection in nuclear power plants. According to the scope of this workshop on occupational exposure in nuclear power plants - and as the BSS most probably will be quite familiar to all of you - after a short general overview on relevant contents of the German Ordinance, this presentation will focus on the main issues important in the operation of NPP and especially on some areas which may give rise to necessary changes caused by the new Ordinance. (A.L.B.)

  12. Sample selection and taste correlation in discrete choice transport modelling

    DEFF Research Database (Denmark)

    Mabit, Stefan Lindhard

    2008-01-01

    explain counterintuitive results in value of travel time estimation. However, the results also point at the difficulty of finding suitable instruments for the selection mechanism. Taste heterogeneity is another important aspect of discrete choice modelling. Mixed logit models are designed to capture...... the question for a broader class of models. It is shown that the original result may be somewhat generalised. Another question investigated is whether mode choice operates as a self-selection mechanism in the estimation of the value of travel time. The results show that self-selection can at least partly...... of taste correlation in willingness-to-pay estimation are presented. The first contribution addresses how to incorporate taste correlation in the estimation of the value of travel time for public transport. Given a limited dataset the approach taken is to use theory on the value of travel time as guidance...

  13. Reactor Dosimetry Applications Using RAPTOR-M3G:. a New Parallel 3-D Radiation Transport Code

    Science.gov (United States)

    Longoni, Gianluca; Anderson, Stanwood L.

    2009-08-01

    The numerical solution of the Linearized Boltzmann Equation (LBE) via the Discrete Ordinates method (SN) requires extensive computational resources for large 3-D neutron and gamma transport applications due to the concurrent discretization of the angular, spatial, and energy domains. This paper will discuss the development RAPTOR-M3G (RApid Parallel Transport Of Radiation - Multiple 3D Geometries), a new 3-D parallel radiation transport code, and its application to the calculation of ex-vessel neutron dosimetry responses in the cavity of a commercial 2-loop Pressurized Water Reactor (PWR). RAPTOR-M3G is based domain decomposition algorithms, where the spatial and angular domains are allocated and processed on multi-processor computer architectures. As compared to traditional single-processor applications, this approach reduces the computational load as well as the memory requirement per processor, yielding an efficient solution methodology for large 3-D problems. Measured neutron dosimetry responses in the reactor cavity air gap will be compared to the RAPTOR-M3G predictions. This paper is organized as follows: Section 1 discusses the RAPTOR-M3G methodology; Section 2 describes the 2-loop PWR model and the numerical results obtained. Section 3 addresses the parallel performance of the code, and Section 4 concludes this paper with final remarks and future work.

  14. Solution and study of nodal neutron transport equation applying the LTSN-DiagExp method

    International Nuclear Information System (INIS)

    Hauser, Eliete Biasotto; Pazos, Ruben Panta; Vilhena, Marco Tullio de; Barros, Ricardo Carvalho de

    2003-01-01

    In this paper we report advances about the three-dimensional nodal discrete-ordinates approximations of neutron transport equation for Cartesian geometry. We use the combined collocation method of the angular variables and nodal approach for the spatial variables. By nodal approach we mean the iterated transverse integration of the S N equations. This procedure leads to the set of one-dimensional averages angular fluxes in each spatial variable. The resulting system of equations is solved with the LTS N method, first applying the Laplace transform to the set of the nodal S N equations and then obtained the solution by symbolic computation. We include the LTS N method by diagonalization to solve the nodal neutron transport equation and then we outline the convergence of these nodal-LTS N approximations with the help of a norm associated to the quadrature formula used to approximate the integral term of the neutron transport equation. (author)

  15. Co-ordinating Product Developing Activities

    DEFF Research Database (Denmark)

    Terkelsen, Søren Bendix

    1996-01-01

    The paper contains a presentation of research methods to be used in case studies in product development and a presentation on how to deal with Design Co-ordination according to litterature......The paper contains a presentation of research methods to be used in case studies in product development and a presentation on how to deal with Design Co-ordination according to litterature...

  16. Overview of Existing Wind Energy Ordinances

    Energy Technology Data Exchange (ETDEWEB)

    Oteri, F.

    2008-12-01

    Due to increased energy demand in the United States, rural communities with limited or no experience with wind energy now have the opportunity to become involved in this industry. Communities with good wind resources may be approached by entities with plans to develop the resource. Although these opportunities can create new revenue in the form of construction jobs and land lease payments, they also create a new responsibility on the part of local governments to ensure that ordinances will be established to aid the development of safe facilities that will be embraced by the community. The purpose of this report is to educate and engage state and local governments, as well as policymakers, about existing large wind energy ordinances. These groups will have a collection of examples to utilize when they attempt to draft a new large wind energy ordinance in a town or county without existing ordinances.

  17. Spatial Representation of Ordinal Information

    Directory of Open Access Journals (Sweden)

    Meng eZhang

    2016-04-01

    Full Text Available Right hand responds faster than left hand when shown larger numbers and vice-versa when shown smaller numbers (the SNARC effect. Accumulating evidence suggests that the SNARC effect may not be exclusive for numbers and can be extended to other ordinal sequences (e.g., months or letters in the alphabet as well. In this study, we tested the SNARC effect with a non-numerically ordered sequence: The Chinese notations for the color spectrum (Red, Orange, Yellow, Green, Blue, Indigo, and Violet. Chinese color word sequence reserves relatively weak ordinal information, because each element color in the sequence normally appears in non-sequential contexts, making it ideal to test the spatial organization of sequential information that was stored in the long-term memory. This study found a reliable SNARC-like effect for Chinese color words (deciding whether the presented color word was before or after the reference color word green, suggesting that, without access to any quantitative information or exposure to any previous training, ordinal representation can still activate a sense of space. The results support that weak ordinal information without quantitative magnitude encoded in the long-term memory can activate spatial representation in a comparison task.

  18. Spatial Representation of Ordinal Information.

    Science.gov (United States)

    Zhang, Meng; Gao, Xuefei; Li, Baichen; Yu, Shuyuan; Gong, Tianwei; Jiang, Ting; Hu, Qingfen; Chen, Yinghe

    2016-01-01

    Right hand responds faster than left hand when shown larger numbers and vice-versa when shown smaller numbers (the SNARC effect). Accumulating evidence suggests that the SNARC effect may not be exclusive for numbers and can be extended to other ordinal sequences (e.g., months or letters in the alphabet) as well. In this study, we tested the SNARC effect with a non-numerically ordered sequence: the Chinese notations for the color spectrum (Red, Orange, Yellow, Green, Blue, Indigo, and Violet). Chinese color word sequence reserves relatively weak ordinal information, because each element color in the sequence normally appears in non-sequential contexts, making it ideal to test the spatial organization of sequential information that was stored in the long-term memory. This study found a reliable SNARC-like effect for Chinese color words (deciding whether the presented color word was before or after the reference color word "green"), suggesting that, without access to any quantitative information or exposure to any previous training, ordinal representation can still activate a sense of space. The results support that weak ordinal information without quantitative magnitude encoded in the long-term memory can activate spatial representation in a comparison task.

  19. Evaluation of uncertainties in the gamma-ray heating analysis of a PWR

    International Nuclear Information System (INIS)

    West, J.T.

    1977-01-01

    The limits of accuracy in a PWR gamma heating analysis, which used conventional one- and two-dimensional discrete ordinate transport methods, by utilizing three-dimensional Monte Carlo methods are determined

  20. Direct Discrete Method for Neutronic Calculations

    International Nuclear Information System (INIS)

    Vosoughi, Naser; Akbar Salehi, Ali; Shahriari, Majid

    2002-01-01

    The objective of this paper is to introduce a new direct method for neutronic calculations. This method which is named Direct Discrete Method, is simpler than the neutron Transport equation and also more compatible with physical meaning of problems. This method is based on physic of problem and with meshing of the desired geometry, writing the balance equation for each mesh intervals and with notice to the conjunction between these mesh intervals, produce the final discrete equations series without production of neutron transport differential equation and mandatory passing from differential equation bridge. We have produced neutron discrete equations for a cylindrical shape with two boundary conditions in one group energy. The correction of the results from this method are tested with MCNP-4B code execution. (authors)

  1. Acceleration methods and models in Sn calculations

    International Nuclear Information System (INIS)

    Sbaffoni, M.M.; Abbate, M.J.

    1984-01-01

    In some neutron transport problems solved by the discrete ordinate method, it is relatively common to observe some particularities as, for example, negative fluxes generation, slow and insecure convergences and solution instabilities. The commonly used models for neutron flux calculation and acceleration methods included in the most used codes were analyzed, in face of their use in problems characterized by a strong upscattering effect. Some special conclusions derived from this analysis are presented as well as a new method to perform the upscattering scaling for solving the before mentioned problems in this kind of cases. This method has been included in the DOT3.5 code (two dimensional discrete ordinates radiation transport code) generating a new version of wider application. (Author) [es

  2. Discrete ordinates cross-sections generation in parallel plane geometry -- 1: Concept

    International Nuclear Information System (INIS)

    Yavuz, M.

    1998-01-01

    Cross-section formulations derived from the linear Boltzman transport equation have been the subjects of several studies. In these studies, theoretical foundations and concepts are provided, and the solution techniques are derived. The author presents new methods for generating cross-section sets for transport problems, with an arbitrary scattering anisotropy of order L (L ≤ N - 1), approximated by the S N (and P N-1 ) methods. The formulations require knowledge of the eigensolutions, which may be determined by a recent eigenvalue equation found in Yavuz. The motivation for this study is to generate few-group cross sections for pin cells (and/or assemblies) using a Monte Carlo code, for example, MCNP, with a continuous-energy cross-section library. However, this work is a first step, and it describes a new concept to perform inverse transport calculations, provided that the surface Green's functions over desired angular and energy intervals are known

  3. Interfacial Phonon Transport Through Si/Ge Multilayer Film Using Monte Carlo Scheme With Spectral Transmissivity

    Directory of Open Access Journals (Sweden)

    Xin Ran

    2018-05-01

    Full Text Available The knowledge of interfacial phonon transport accounting for detailed phonon spectral properties is desired because of its importance for design of nanoscale energy systems. In this work, we investigate the interfacial phonon transport through Si/Ge multilayer films using an efficient Monte Carlo scheme with spectral transmissivity, which is validated for cross-plane phonon transport through both Si/Ge single-layer and Si/Ge bi-layer thin films by comparing with the discrete-ordinates solution. Different thermal boundary conductances between even the same material pair are declared at different interfaces within the multilayer system. Furthermore, the thermal boundary conductances at different interfaces show different trends with varying total system size, with the variation slope, very different as well. The results are much different from those in the bi-layer thin film or periodic superlattice. These unusual behaviors can be attributed to the combined interfacial local non-equilibrium effect and constraint effect from other interfaces.

  4. Cable Television Report and Suggested Ordinance.

    Science.gov (United States)

    League of California Cities, Sacramento.

    Guidelines and suggested ordinances for cable television regulation by local governments are comprehensively discussed in this report. The emphasis is placed on franchising the cable operator. Seventeen legal aspects of franchising are reviewed, and an exemplary ordinance is presented. In addition, current statistics about cable franchising in…

  5. Mixed first- and second-order transport method using domain decomposition techniques for reactor core calculations

    International Nuclear Information System (INIS)

    Girardi, E.; Ruggieri, J.M.

    2003-01-01

    The aim of this paper is to present the last developments made on a domain decomposition method applied to reactor core calculations. In this method, two kind of balance equation with two different numerical methods dealing with two different unknowns are coupled. In the first part the two balance transport equations (first order and second order one) are presented with the corresponding following numerical methods: Variational Nodal Method and Discrete Ordinate Nodal Method. In the second part, the Multi-Method/Multi-Domain algorithm is introduced by applying the Schwarz domain decomposition to the multigroup eigenvalue problem of the transport equation. The resulting algorithm is then provided. The projection operators used to coupled the two methods are detailed in the last part of the paper. Finally some preliminary numerical applications on benchmarks are given showing encouraging results. (authors)

  6. Fourier analysis of parallel inexact Block-Jacobi splitting with transport synthetic acceleration in slab geometry

    International Nuclear Information System (INIS)

    Rosa, M.; Warsa, J. S.; Chang, J. H.

    2006-01-01

    A Fourier analysis is conducted for the discrete-ordinates (SN) approximation of the neutron transport problem solved with Richardson iteration (Source Iteration) and Richardson iteration preconditioned with Transport Synthetic Acceleration (TSA), using the Parallel Block-Jacobi (PBJ) algorithm. Both 'traditional' TSA (TTSA) and a 'modified' TSA (MTSA), in which only the scattering in the low order equations is reduced by some non-negative factor β and < 1, are considered. The results for the un-accelerated algorithm show that convergence of the PBJ algorithm can degrade. The PBJ algorithm with TTSA can be effective provided the β parameter is properly tuned for a given scattering ratio c, but is potentially unstable. Compared to TTSA, MTSA is less sensitive to the choice of β, more effective for the same computational effort (c'), and it is unconditionally stable. (authors)

  7. Estimating Ordinal Reliability for Likert-Type and Ordinal Item Response Data: A Conceptual, Empirical, and Practical Guide

    Science.gov (United States)

    Gadermann, Anne M.; Guhn, Martin; Zumbo, Bruno D.

    2012-01-01

    This paper provides a conceptual, empirical, and practical guide for estimating ordinal reliability coefficients for ordinal item response data (also referred to as Likert, Likert-type, ordered categorical, or rating scale item responses). Conventionally, reliability coefficients, such as Cronbach's alpha, are calculated using a Pearson…

  8. Implicit Monte Carlo methods and non-equilibrium Marshak wave radiative transport

    International Nuclear Information System (INIS)

    Lynch, J.E.

    1985-01-01

    Two enhancements to the Fleck implicit Monte Carlo method for radiative transport are described, for use in transparent and opaque media respectively. The first introduces a spectral mean cross section, which applies to pseudoscattering in transparent regions with a high frequency incident spectrum. The second provides a simple Monte Carlo random walk method for opaque regions, without the need for a supplementary diffusion equation formulation. A time-dependent transport Marshak wave problem of radiative transfer, in which a non-equilibrium condition exists between the radiation and material energy fields, is then solved. These results are compared to published benchmark solutions and to new discrete ordinate S-N results, for both spatially integrated radiation-material energies versus time and to new spatially dependent temperature profiles. Multigroup opacities, which are independent of both temperature and frequency, are used in addition to a material specific heat which is proportional to the cube of the temperature. 7 refs., 4 figs

  9. Semi-supervised learning for ordinal Kernel Discriminant Analysis.

    Science.gov (United States)

    Pérez-Ortiz, M; Gutiérrez, P A; Carbonero-Ruz, M; Hervás-Martínez, C

    2016-12-01

    Ordinal classification considers those classification problems where the labels of the variable to predict follow a given order. Naturally, labelled data is scarce or difficult to obtain in this type of problems because, in many cases, ordinal labels are given by a user or expert (e.g. in recommendation systems). Firstly, this paper develops a new strategy for ordinal classification where both labelled and unlabelled data are used in the model construction step (a scheme which is referred to as semi-supervised learning). More specifically, the ordinal version of kernel discriminant learning is extended for this setting considering the neighbourhood information of unlabelled data, which is proposed to be computed in the feature space induced by the kernel function. Secondly, a new method for semi-supervised kernel learning is devised in the context of ordinal classification, which is combined with our developed classification strategy to optimise the kernel parameters. The experiments conducted compare 6 different approaches for semi-supervised learning in the context of ordinal classification in a battery of 30 datasets, showing (1) the good synergy of the ordinal version of discriminant analysis and the use of unlabelled data and (2) the advantage of computing distances in the feature space induced by the kernel function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Enhanced discreteness, renormalization, and anomalous transport in turbulent plasma. Final technical report, 15 September 1991--14 September 1992

    International Nuclear Information System (INIS)

    Johnston, S.

    1997-01-01

    The Principal Investigator, Professor Shayne Johnston, devoted 25% of his time during the academic year 1991--92 to this grant. The central idea underlying this project was a renormalized vision of a turbulent plasma in which electrons become microclumps, discreteness is thereby enhanced,and transport processes, still essentially classical, become anomalous. After two years of continued investigation, the PI believes strongly that this vision remains viable and compelling as an approach to electron heat conduction in the tokamak core. The simple analysis presented below shows that electrostatic waves can indeed correlate resonant repelling particles on length scales much shorter than a wavelength, thus causing enhanced discreteness within Debye clouds

  11. The DANTE Boltzmann transport solver: An unstructured mesh, 3-D, spherical harmonics algorithm compatible with parallel computer architectures

    International Nuclear Information System (INIS)

    McGhee, J.M.; Roberts, R.M.; Morel, J.E.

    1997-01-01

    A spherical harmonics research code (DANTE) has been developed which is compatible with parallel computer architectures. DANTE provides 3-D, multi-material, deterministic, transport capabilities using an arbitrary finite element mesh. The linearized Boltzmann transport equation is solved in a second order self-adjoint form utilizing a Galerkin finite element spatial differencing scheme. The core solver utilizes a preconditioned conjugate gradient algorithm. Other distinguishing features of the code include options for discrete-ordinates and simplified spherical harmonics angular differencing, an exact Marshak boundary treatment for arbitrarily oriented boundary faces, in-line matrix construction techniques to minimize memory consumption, and an effective diffusion based preconditioner for scattering dominated problems. Algorithm efficiency is demonstrated for a massively parallel SIMD architecture (CM-5), and compatibility with MPP multiprocessor platforms or workstation clusters is anticipated

  12. Ordinance on nuclear third party liability (ORCN)

    International Nuclear Information System (INIS)

    1983-12-01

    The Ordinance exempts from the application of the 1983 Act on Nuclear Third Party Liability some substances with low radiation effects. It determines the amount of private insurance cover and defines the risks that insurers may exclude from cover. It establishes a special fund for nuclear damage made up of contributions from the nuclear operators. Specifications are given on the amount of the contributions and their conditions, as well as on administration of the fund. The Ordinance repeals the Ordinance of 13 June 1960 on funds for delayed atomic damage, the Order of 19 December 1960 on contributions to the fund for delayed atomic damage and the Ordinance of 30 November 1981 on cover for third party liability resulting from nuclear power plant operation [fr

  13. Methods in nuclear reactors calculations

    International Nuclear Information System (INIS)

    Velarde, G.

    1966-01-01

    Studies are made of the neutron transport equation corresponding to the the real and virtual reactors, as well as the starting hypotheses. Methods are developed to solve the transport equation in slab geometry, and P l ; B l ; M l ; S n and discrete ordinates approximations. (Author)

  14. An energy recondensation method using the discrete generalized multigroup energy expansion theory

    International Nuclear Information System (INIS)

    Zhu Lei; Forget, Benoit

    2011-01-01

    Highlights: → Discrete-generalized multigroup method was implemented as a recondensation scheme. → Coarse group cross-sections were recondensed from core-level solution. → Neighboring effect of reflector and MOX bundle was improved. → Methodology was shown to be fully consistent when a flat angular flux approximation is used. - Abstract: In this paper, the discrete generalized multigroup (DGM) method was used to recondense the coarse group cross-sections using the core level solution, thus providing a correction for neighboring effect found at the core level. This approach was tested using a discrete ordinates implementation in both 1-D and 2-D. Results indicate that 2 or 3 iterations can substantially improve the flux and fission density errors associated with strong interfacial spectral changes as found in the presence of strong absorbers, reflector of mixed-oxide fuel. The methodology is also proven to be fully consistent with the multigroup methodology as long as a flat-flux approximation is used spatially.

  15. Input data for quantifying risks associated with the transport of radioactive material. Final report of a co-ordinated research project 1996-2000

    International Nuclear Information System (INIS)

    2003-03-01

    The final outcome of the work done for the Coordinated Research Program (CRP) by ten countries, which was co-ordinated by the IAEA, is presented. Described are the modalities for the collection, analysis and processing of relevant input data and the selection of databases. These data cover such items as package characteristics, accident environments and package behaviour under accident load conditions. Advice is given as to how to present the risk assessment results and how to quantify the uncertainty inherent in the predicted consequences and risks. INTERTRAN2 computer code system as a risk assessment tool is described. Information is also given on various accident scenarios, event trees and severity frequencies, transport accident severity and frequency assessment methods as well as on dose assessment techniques

  16. A non-linear optimal Discontinuous Petrov-Galerkin method for stabilising the solution of the transport equation

    International Nuclear Information System (INIS)

    Merton, S. R.; Smedley-Stevenson, R. P.; Pain, C. C.; Buchan, A. G.; Eaton, M. D.

    2009-01-01

    This paper describes a new Non-Linear Discontinuous Petrov-Galerkin (NDPG) method and application to the one-speed Boltzmann Transport Equation (BTE) for space-time problems. The purpose of the method is to remove unwanted oscillations in the transport solution which occur in the vicinity of sharp flux gradients, while improving computational efficiency and numerical accuracy. This is achieved by applying artificial dissipation in the solution gradient direction, internal to an element using a novel finite element (FE) Riemann approach. The amount of dissipation added acts internal to each element. This is done using a gradient-informed scaling of the advection velocities in the stabilisation term. This makes the method in its most general form non-linear. The method is designed to be independent of angular expansion framework. This is demonstrated for the both discrete ordinates (S N ) and spherical harmonics (P N ) descriptions of the angular variable. Results show the scheme performs consistently well in demanding time dependent and multi-dimensional radiation transport problems. (authors)

  17. Solution and study of nodal neutron transport equation applying the LTS{sub N}-DiagExp method

    Energy Technology Data Exchange (ETDEWEB)

    Hauser, Eliete Biasotto; Pazos, Ruben Panta [Pontificia Univ. Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil). Faculdade de Matematica]. E-mail: eliete@pucrs.br; rpp@mat.pucrs.br; Vilhena, Marco Tullio de [Pontificia Univ. Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil). Instituto de Matematica]. E-mail: vilhena@mat.ufrgs.br; Barros, Ricardo Carvalho de [Universidade do Estado, Nova Friburgo, RJ (Brazil). Instituto Politecnico]. E-mail: ricardo@iprj.uerj.br

    2003-07-01

    In this paper we report advances about the three-dimensional nodal discrete-ordinates approximations of neutron transport equation for Cartesian geometry. We use the combined collocation method of the angular variables and nodal approach for the spatial variables. By nodal approach we mean the iterated transverse integration of the S{sub N} equations. This procedure leads to the set of one-dimensional averages angular fluxes in each spatial variable. The resulting system of equations is solved with the LTS{sub N} method, first applying the Laplace transform to the set of the nodal S{sub N} equations and then obtained the solution by symbolic computation. We include the LTS{sub N} method by diagonalization to solve the nodal neutron transport equation and then we outline the convergence of these nodal-LTS{sub N} approximations with the help of a norm associated to the quadrature formula used to approximate the integral term of the neutron transport equation. (author)

  18. Bilinear nodal transport method in weighted diamond difference form

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1987-01-01

    Nodal methods have been developed and implemented for the numerical solution of the discrete ordinates neutron transport equation. Numerical testing of these methods and comparison of their results to those obtained by conventional methods have established the high accuracy of nodal methods. Furthermore, it has been suggested that the linear-linear approximation is the most computationally efficient, practical nodal approximation. Indeed, this claim has been substantiated by comparing the accuracy in the solution, and the CPU time required to achieve convergence to that solution by several nodal approximations, as well as the diamond difference scheme. Two types of linear-linear nodal methods have been developed in the literature: analytic linear-linear (NLL) methods, in which the transverse-leakage terms are derived analytically, and approximate linear-linear (PLL) methods, in which these terms are approximated. In spite of their higher accuracy, NLL methods result in very complicated discrete-variable equations that exhibit a high degree of coupling, thus requiring special solution algorithms. On the other hand, the sacrificed accuracy in PLL methods is compensated for by the simple discrete-variable equations and diamond-difference-like solution algorithm. In this paper the authors outline the development of an NLL nodal method, the bilinear method, which can be written in a weighted diamond difference form with one spatial weight per dimension that is analytically derived rather than preassigned in an ad hoc fashion

  19. Supplementary neutron flux calculations for the ORNL pool critical assembly pressure vessel facility

    Energy Technology Data Exchange (ETDEWEB)

    Maerker, R.E.; Maudlin, P.J.

    1981-02-01

    A three-dimensional Monte Carlo calculation was performed to estimate the neutron flux in the 8/7 configuration of the ORNL Pool Critical Assembly Pressure Vessel Facility. The calculational tool was the multigroup transport code MORSE operated in the adjoint mode. The MORSE flux results compared well with those using a previously adopted procedure for constructing a three-dimensional flux from one- and two-dimensional discrete ordinates calculations using the DOT-IV code. This study concluded that use of these discrete ordinates constructions in previous calculations is sufficiently accurate and does not account for the existing discrepancies between calculation and experiment.

  20. Supplementary neutron flux calculations for the ORNL pool critical assembly pressure vessel facility

    International Nuclear Information System (INIS)

    Maerker, R.E.; Maudlin, P.J.

    1981-02-01

    A three-dimensional Monte Carlo calculation was performed to estimate the neutron flux in the 8/7 configuration of the ORNL Pool Critical Assembly Pressure Vessel Facility. The calculational tool was the multigroup transport code MORSE operated in the adjoint mode. The MORSE flux results compared well with those using a previously adopted procedure for constructing a three-dimensional flux from one- and two-dimensional discrete ordinates calculations using the DOT-IV code. This study concluded that use of these discrete ordinates constructions in previous calculations is sufficiently accurate and does not account for the existing discrepancies between calculation and experiment

  1. New dose-mortality data based on 3-D radiation shielding calculation for concrete buildings at Nagasaki

    International Nuclear Information System (INIS)

    Rhoades, W.A.; Childs, R.L.; Ingersoll, D.T.

    1988-01-01

    The analysis of radiation doses received during the World War II attack on Nagasaki provides an important source of biochemical information. More than 40 years after the war, it has been possible to make a satisfactory calculation of the doses to personnel inside reinforced concrete buildings by use of a 3-dimensional discrete ordinates code, TORT. The results were used to deduce a new value of the LD50 parameter that is in good agreement with traditional values. The new discrete ordinates software appears to have potential application to conventional radiation transport calculations as well. 9 refs., 3 figs., 2 tabs

  2. Nucleonic analysis of a preliminary design for the ETF neutral-beam-injector duct shielding

    International Nuclear Information System (INIS)

    Urban, W.T.; Seed, T.J.; Dudziak, D.J.

    1980-01-01

    A nucleonic analysis of the Engineering Test Facility Neutral-Beam-Injector duct shielding has been made using a hybrid Monte Carlo/discrete-ordinates method. This method used Monte Carlo to determine internal and external boundary surface sources for a subsequent discrete-ordinates calculation of the neutron and gamma-ray transport through the shield. The analysis also included determination of the energy and angular distribution of neutrons and gamma rays entering the duct from the torus plasma chamber. Confidence in the hybrid method and the results obtained were provided through a comparison with three-dimensional Monte Carlo results

  3. Extension of ANISN and DOT 3.5 transport computer codes to calculate heat generation by radiation and temperature distribution in nuclear reactors

    International Nuclear Information System (INIS)

    Torres, L.M.R.; Gomes, I.C.; Maiorino, J.R.

    1986-01-01

    The ANISN and DOT 3.5 codes solve the transport equation using the discrete ordinate method, in one and two-dimensions, respectively. The objectives of the study were to modify these two codes, frequently used in reactor shielding problems, to include nuclear heating calculations due to the interaction of neutrons and gamma-rays with matter. In order to etermine the temperature distribution, a numerical algorithm was developed using the finite difference method to solve the heat conduction equation, in one and two-dimensions, considering the nuclear heating from neutron and gamma-rays, as the source term. (Author) [pt

  4. Transport synthetic acceleration scheme for multi-dimensional neutron transport problems

    Energy Technology Data Exchange (ETDEWEB)

    Modak, R S; Kumar, Vinod; Menon, S V.G. [Theoretical Physics Div., Bhabha Atomic Research Centre, Mumbai (India); Gupta, Anurag [Reactor Physics Design Div., Bhabha Atomic Research Centre, Mumbai (India)

    2005-09-15

    The numerical solution of linear multi-energy-group neutron transport equation is required in several analyses in nuclear reactor physics and allied areas. Computer codes based on the discrete ordinates (Sn) method are commonly used for this purpose. These codes solve external source problem and K-eigenvalue problem. The overall solution technique involves solution of source problem in each energy group as intermediate procedures. Such a single-group source problem is solved by the so-called Source Iteration (SI) method. As is well-known, the SI-method converges very slowly for optically thick and highly scattering regions, leading to large CPU times. Over last three decades, many schemes have been tried to accelerate the SI; the most prominent being the Diffusion Synthetic Acceleration (DSA) scheme. The DSA scheme, however, often fails and is also rather difficult to implement. In view of this, in 1997, Ramone and others have developed a new acceleration scheme called Transport Synthetic Acceleration (TSA) which is much more robust and easy to implement. This scheme has been recently incorporated in 2-D and 3-D in-house codes at BARC. This report presents studies on the utility of TSA scheme for fairly general test problems involving many energy groups and anisotropic scattering. The scheme is found to be useful for problems in Cartesian as well as Cylindrical geometry. (author)

  5. Transport synthetic acceleration scheme for multi-dimensional neutron transport problems

    International Nuclear Information System (INIS)

    Modak, R.S.; Vinod Kumar; Menon, S.V.G.; Gupta, Anurag

    2005-09-01

    The numerical solution of linear multi-energy-group neutron transport equation is required in several analyses in nuclear reactor physics and allied areas. Computer codes based on the discrete ordinates (Sn) method are commonly used for this purpose. These codes solve external source problem and K-eigenvalue problem. The overall solution technique involves solution of source problem in each energy group as intermediate procedures. Such a single-group source problem is solved by the so-called Source Iteration (SI) method. As is well-known, the SI-method converges very slowly for optically thick and highly scattering regions, leading to large CPU times. Over last three decades, many schemes have been tried to accelerate the SI; the most prominent being the Diffusion Synthetic Acceleration (DSA) scheme. The DSA scheme, however, often fails and is also rather difficult to implement. In view of this, in 1997, Ramone and others have developed a new acceleration scheme called Transport Synthetic Acceleration (TSA) which is much more robust and easy to implement. This scheme has been recently incorporated in 2-D and 3-D in-house codes at BARC. This report presents studies on the utility of TSA scheme for fairly general test problems involving many energy groups and anisotropic scattering. The scheme is found to be useful for problems in Cartesian as well as Cylindrical geometry. (author)

  6. Overstatement in happiness reporting with ordinal, bounded scale.

    Science.gov (United States)

    Tanaka, Saori C; Yamada, Katsunori; Kitada, Ryo; Tanaka, Satoshi; Sugawara, Sho K; Ohtake, Fumio; Sadato, Norihiro

    2016-02-18

    There are various methods by which people can express subjective evaluations quantitatively. For example, happiness can be measured on a scale from 1 to 10, and has been suggested as a measure of economic policy. However, there is resistance to these types of measurement from economists, who often regard welfare to be a cardinal, unbounded quantity. It is unclear whether there are differences between subjective evaluation reported on ordinal, bounded scales and on cardinal, unbounded scales. To answer this question, we developed functional magnetic resonance imaging experimental tasks for reporting happiness from monetary gain and the perception of visual stimulus. Subjects tended to report higher values when they used ordinal scales instead of cardinal scales. There were differences in neural activation between ordinal and cardinal reporting scales. The posterior parietal area showed greater activation when subjects used an ordinal scale instead of a cardinal scale. Importantly, the striatum exhibited greater activation when asked to report happiness on an ordinal scale than when asked to report on a cardinal scale. The finding that ordinal (bounded) scales are associated with higher reported happiness and greater activation in the reward system shows that overstatement bias in happiness data must be considered.

  7. Regulatory considerations for computational requirements for nuclear criticality safety

    International Nuclear Information System (INIS)

    Bidinger, G.H.

    1995-01-01

    As part of its safety mission, the U.S. Nuclear Regulatory Commission (NRC) approves the use of computational methods as part of the demonstration of nuclear criticality safety. While each NRC office has different criteria for accepting computational methods for nuclear criticality safety results, the Office of Nuclear Materials Safety and Safeguards (NMSS) approves the use of specific computational methods and methodologies for nuclear criticality safety analyses by specific companies (licensees or consultants). By contrast, the Office of Nuclear Reactor Regulation approves codes for general use. Historically, computational methods progressed from empirical methods to one-dimensional diffusion and discrete ordinates transport calculations and then to three-dimensional Monte Carlo transport calculations. With the advent of faster computational ability, three-dimensional diffusion and discrete ordinates transport calculations are gaining favor. With the proper user controls, NMSS has accepted any and all of these methods for demonstrations of nuclear criticality safety

  8. Analysis of EBR-II neutron and photon physics by multidimensional transport-theory techniques

    International Nuclear Information System (INIS)

    Jacqmin, R.P.; Finck, P.J.; Palmiotti, G.

    1994-01-01

    This paper contains a review of the challenges specific to the EBR-II core physics, a description of the methods and techniques which have been developed for addressing these challenges, and the results of some validation studies relative to power-distribution calculations. Numerical tests have shown that the VARIANT nodal code yields eigenvalue and power predictions as accurate as finite difference and discrete ordinates transport codes, at a small fraction of the cost. Comparisons with continuous-energy Monte Carlo results have proven that the errors introduced by the use of the diffusion-theory approximation in the collapsing procedure to obtain broad-group cross sections, kerma factors, and photon-production matrices, have a small impact on the EBR-II neutron/photon power distribution

  9. Development and preliminary verification of 2-D transport module of radiation shielding code ARES

    International Nuclear Information System (INIS)

    Zhang Penghe; Chen Yixue; Zhang Bin; Zang Qiyong; Yuan Longjun; Chen Mengteng

    2013-01-01

    The 2-D transport module of radiation shielding code ARES is two-dimensional neutron and radiation shielding code. The theory model was based on the first-order steady state neutron transport equation, adopting the discrete ordinates method to disperse direction variables. Then a set of differential equations can be obtained and solved with the source iteration method. The 2-D transport module of ARES was capable of calculating k eff and fixed source problem with isotropic or anisotropic scattering in x-y geometry. The theoretical model was briefly introduced and series of benchmark problems were verified in this paper. Compared with the results given by the benchmark, the maximum relative deviation of k eff is 0.09% and the average relative deviation of flux density is about 0.60% in the BWR cells benchmark problem. As for the fixed source problem with isotropic and anisotropic scattering, the results of the 2-D transport module of ARES conform with DORT very well. These numerical results of benchmark problems preliminarily demonstrate that the development process of the 2-D transport module of ARES is right and it is able to provide high precision result. (authors)

  10. Amendment of Atomic Ordinance

    International Nuclear Information System (INIS)

    1987-10-01

    This amendment to the 1984 Ordinance on definitions and licences in the atomic energy field aims essentially to ensure that the commitments under the Treaty on the Non-Proliferation of Nuclear Weapons are complied with in Switzerland. The goods and articles involving uranium enrichment by the gas centrifuge process and nuclear fuel reprocessing as specified by the competent international bodies, are henceforth included in the goods subject to notification or licensing listed in the Annex to the Ordinance. Also, it is provided that a construction and an operating licence for a nuclear installation may be granted simultaneously in cases where safe operating conditions can be fully assessed. (NEA) [fr

  11. Three ancient hormonal cues co-ordinate shoot branching in a moss.

    Science.gov (United States)

    Coudert, Yoan; Palubicki, Wojtek; Ljung, Karin; Novak, Ondrej; Leyser, Ottoline; Harrison, C Jill

    2015-03-25

    Shoot branching is a primary contributor to plant architecture, evolving independently in flowering plant sporophytes and moss gametophytes. Mechanistic understanding of branching is largely limited to flowering plants such as Arabidopsis, which have a recent evolutionary origin. We show that in gametophytic shoots of Physcomitrella, lateral branches arise by re-specification of epidermal cells into branch initials. A simple model co-ordinating the activity of leafy shoot tips can account for branching patterns, and three known and ancient hormonal regulators of sporophytic branching interact to generate the branching pattern- auxin, cytokinin and strigolactone. The mode of auxin transport required in branch patterning is a key divergence point from known sporophytic pathways. Although PIN-mediated basipetal auxin transport regulates branching patterns in flowering plants, this is not so in Physcomitrella, where bi-directional transport is required to generate realistic branching patterns. Experiments with callose synthesis inhibitors suggest plasmodesmal connectivity as a potential mechanism for transport.

  12. Spectral collocation method with a flexible angular discretization scheme for radiative transfer in multi-layer graded index medium

    Science.gov (United States)

    Wei, Linyang; Qi, Hong; Sun, Jianping; Ren, Yatao; Ruan, Liming

    2017-05-01

    The spectral collocation method (SCM) is employed to solve the radiative transfer in multi-layer semitransparent medium with graded index. A new flexible angular discretization scheme is employed to discretize the solid angle domain freely to overcome the limit of the number of discrete radiative direction when adopting traditional SN discrete ordinate scheme. Three radial basis function interpolation approaches, named as multi-quadric (MQ), inverse multi-quadric (IMQ) and inverse quadratic (IQ) interpolation, are employed to couple the radiative intensity at the interface between two adjacent layers and numerical experiments show that MQ interpolation has the highest accuracy and best stability. Variable radiative transfer problems in double-layer semitransparent media with different thermophysical properties are investigated and the influence of these thermophysical properties on the radiative transfer procedure in double-layer semitransparent media is also analyzed. All the simulated results show that the present SCM with the new angular discretization scheme can predict the radiative transfer in multi-layer semitransparent medium with graded index efficiently and accurately.

  13. Angular dependent transport of auroral electrons in the upper atmosphere

    International Nuclear Information System (INIS)

    Lummerzheim, D.; Rees, M.H.

    1989-01-01

    The transport of auroral electrons through the upper atmosphere is analyzed. The transport equation is solved using a discrete ordinate method including elastic and inelastic scattering of electrons resulting in changes of pitch angle, and degradation in energy as the electrons penetrate into the atmosphere. The transport equation is solved numerically for the electron intensity as a function of altitude, pitch angle, and energy. In situ measurements of the pitch angle and energy distribution of precipitating electrons over an auroral arc provide boundary conditions for the calculation. The electron spectra from various locations over the aurora present a variety of anisotropic pitch angle distributions and energy spectra. Good agreement is found between the observed backscattered electron energy spectra and model predictions. Differences occur at low energies (below 500 eV) in the structure of the pitch angle distribution. Model calculations were carried out with various different phase functions for elastic and inelastic collisions to attempt changing the angular scattering, but the observed pitch angle distributions remain unexplained. We suggest that mechanisms other than collisional scattering influence the angular distribution of auroral electrons at or below 300 km altitude in the low energy domain. (author)

  14. A hierarchical model for ordinal matrix factorization

    DEFF Research Database (Denmark)

    Paquet, Ulrich; Thomson, Blaise; Winther, Ole

    2012-01-01

    This paper proposes a hierarchical probabilistic model for ordinal matrix factorization. Unlike previous approaches, we model the ordinal nature of the data and take a principled approach to incorporating priors for the hidden variables. Two algorithms are presented for inference, one based...

  15. GPU-based discrete element rigid body transport

    CSIR Research Space (South Africa)

    Govender, Nicolin

    2013-08-01

    Full Text Available . For applications in coastal engineering and also in pavement engineering, the capture of particle shapes as polyhedra rather than clumped spheres is particularly important. The development of a Discrete Element Model applicable to both fields, and to industrial...

  16. Methods in nuclear reactors calculations; Metodos de calculo en reactores nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Velarde, G

    1966-07-01

    Studies are made of the neutron transport equation corresponding to the the real and virtual reactors, as well as the starting hypotheses. Methods are developed to solve the transport equation in slab geometry, and P{sub l}; B{sub l}; M{sub l}; S{sub n} and discrete ordinates approximations. (Author)

  17. Calculation of multigroup reaction rates for the Ghana Research ...

    African Journals Online (AJOL)

    The discrete ordinate spatial model, which pro-vides solution to the differential form of the transport equation by the Carlson-SN (N=4) approach was adopted to solve the Ludwig-Boltzmann multigroup neutron transport equation for this analysis. The results show that for any fissile resonance absorber, the reaction rates ...

  18. Why Overlearned Sequences are Special: Distinct Neural Networks for Ordinal Sequences

    Directory of Open Access Journals (Sweden)

    Vani ePariyadath

    2012-12-01

    Full Text Available Several observations suggest that overlearned ordinal categories (e.g., letters, numbers, weekdays, months are processed differently than non-ordinal categories in the brain. In synesthesia, for example, anomalous perceptual experiences are most often triggered by members of ordinal categories (Rich et al., 2005; Eagleman, 2009. In semantic dementia, the processing of ordinal stimuli appears to be preserved relative to non-ordinal ones (Cappelletti et al., 2001. Moreover, ordinal stimuli often map onto unconscious spatial representations, as observed in the SNARC effect (Dehaene et al, 1993; Fias, 1996. At present, little is known about the neural representation of ordinal categories. Using functional neuroimaging, we show that words in ordinal categories are processed in a fronto-temporo-parietal network biased toward the right hemisphere. This differs from words in non-ordinal categories (such as names of furniture, animals, cars and fruit, which show an expected bias toward the left hemisphere. Further, we find that increased predictability of stimulus order correlates with smaller regions of BOLD activation, a phenomenon we term prediction suppression. Our results provide new insights into the processing of ordinal stimuli, and suggest a new anatomical framework for understanding the patterns seen in synesthesia, unconscious spatial representation, and semantic dementia.

  19. Ordinance of 8 February 1984 on the radioactivity of timepieces

    International Nuclear Information System (INIS)

    1984-01-01

    This Ordinance regulates the approval of radioluminescent timepieces (wristwatches, fob-watches, alarm-clocks, clocks, etc.) imported or made in Switzerland. Such timepieces must comply with conditions in particular regarding their maximum radioactivity as laid down by the Ordinance and are subject to controls by the Federal Office of Public Health. The Ordinance, which came into force on 1 March 1984, replaces a similar Ordinance of 18 April 1968. (NEA) [fr

  20. Generalization of Spectral Green's Function nodal method for slab-geometry fixed-source adjoint transport problems in SN formulation

    International Nuclear Information System (INIS)

    Curbelo, Jesus P.; Silva, Odair P. da; Barros, Ricardo C.

    2017-01-01

    Presented here is the application of the adjoint technique for solving source{detector discrete ordinates (S N ) transport problems by using a spectral nodal method. For slab-geometry adjoint S-N model, the adjoint spectral Green's function method (SGF † ) is extended to multigroup problems considering arbitrary L'th-order of scattering anisotropy, and the possibility of non{zero prescribed boundary conditions for the forward S N transport problems. The SGF † method converges numerical solutions that are completely free from spatial truncation errors. In order to generate numerical solutions of the SGF † equations, we use the partial adjoint one{node block inversion (NBI) iterative scheme. Partial adjoint NBI scheme uses the most recent estimates for the node-edge adjoint angular Fluxes in the outgoing directions of a given discretization node, to solve the resulting adjoint SN problem in that node for all the adjoint angular fluxes in the incoming directions, which constitute the outgoing adjoint angular fluxes for the adjacent node in the sweeping directions. Numerical results are given to illustrate the present spectral nodal method features and some advantages of using the adjoint technique in source-detector problems. author)

  1. Study of the sensitivity of the radiation transport problem in a scattering medium; Estudo da sensibilidade do problema de transporte de radiacao em meio espalhador

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Rogerio Chaffin

    2002-03-15

    In this work, the system of differential equations obtained by the angular approach of the two-dimensional transport equation by the discrete ordinates method is solved through the formulation of finite elements with the objective of investigating the sensitivity of the outgoing flux of radiation with the incoming flux and the properties of absorption and scattering of the medium. The variational formulation for the system of differential equations of second order with the generalized boundary conditions of Neumann (third type) allows an easy implementation of the method of the finite elements with triangular mesh and approximation space of first order. The geometry chosen for the simulations is a circle with a non homogeneous circular form in its interior. The mapping of Dirichlet-Neumann is studied through various simulations involving the incoming flux, the outgoing flux and the properties of the medium. (author)

  2. The influence of boundary conditions on resonant frequencies of cavities in 3-D FDTD algorithm using non-orthogonal co-ordinates

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.; Tong, L.S. [Southeast Univ., Nanjing (China). Research Inst. of Electronics; Carter, R.G. [Lancaster Univ. (United Kingdom). Engineering Dept.

    1994-09-01

    The 3-dimensional finite-difference time-domain method in non-orthogonal co-ordinates (non-standard FDTD) is used to calculate the frequencies of resonators. The numerical boundary conditions of the method are presented. The Influences of boundary conditions and discrete meshes on the numerical accuracy are investigated. The authors present the nonstandard FDTD method using the boundary-orthogonal mesh and equivalent dielectric constant so that the error is reduced from 8.66% to 3.0% for the cylindrical cavity loaded by a dielectric button.

  3. Protective Behaviour of Citizens to Transport Accidents Involving Hazardous Materials: A Discrete Choice Experiment Applied to Populated Areas nearby Waterways.

    Directory of Open Access Journals (Sweden)

    Esther W de Bekker-Grob

    Full Text Available To improve the information for and preparation of citizens at risk to hazardous material transport accidents, a first important step is to determine how different characteristics of hazardous material transport accidents will influence citizens' protective behaviour. However, quantitative studies investigating citizens' protective behaviour in case of hazardous material transport accidents are scarce.A discrete choice experiment was conducted among subjects (19-64 years living in the direct vicinity of a large waterway. Scenarios were described by three transport accident characteristics: odour perception, smoke/vapour perception, and the proportion of people in the environment that were leaving at their own discretion. Subjects were asked to consider each scenario as realistic and to choose the alternative that was most appealing to them: staying, seeking shelter, or escaping. A panel error component model was used to quantify how different transport accident characteristics influenced subjects' protective behaviour.The response was 44% (881/1,994. The predicted probability that a subject would stay ranged from 1% in case of a severe looking accident till 62% in case of a mild looking accident. All three transport accident characteristics proved to influence protective behaviour. Particularly a perception of strong ammonia or mercaptan odours and visible smoke/vapour close to citizens had the strongest positive influence on escaping. In general, 'escaping' was more preferred than 'seeking shelter', although stated preference heterogeneity among subjects for these protective behaviour options was substantial. Males were less willing to seek shelter than females, whereas elderly people were more willing to escape than younger people.Various characteristics of transport accident involving hazardous materials influence subjects' protective behaviour. The preference heterogeneity shows that information needs to be targeted differently depending on

  4. Calculation of neutron shielding using an unidimensional model of transportation in formulation of discrete ordinates with scattering linearly anisotropic and a speed

    International Nuclear Information System (INIS)

    Libotte, Rafael Barbosa; Alves Filho, Hermes; Oliva, Amaury Muñoz

    2017-01-01

    The physical phenomenon of transport of neutral particles in a host environment is of interest in various scientific applications, e.g., nuclear reactors, shielding calculations, radiological protection, nuclear medicine, agronomy, materials science, oil prospecting, etc. In all these areas there is a need for an accurate description of the transport of the particles in the host medium. In this class of applications are the neutron shielding problems, also referred to as 'fixed-source' problems, where the interaction of the particles with the medium does not produce new neutrons, i.e., non-multiplicative medium. In this context, the development of tools that model these problems is relevant and of a beneficial return to society. In this work, we propose the development of deterministic mathematical and computational modeling of neutron transport using the linearized equation of Boltzmann applied to neutron shielding problems. Here we present also the development of a spectro-nodal method (coarse mesh) considering the scattering phenomenon as being linearly anisotropic. We show the results using a computational application, developed in Java language, version 1.8.0 9 1

  5. Analysis of a block Gauss-Seidel iterative method for a finite element discretization of the neutron transport equation

    International Nuclear Information System (INIS)

    Lorence, L.J. Jr.; Martin, W.R.; Luskin, M.

    1985-01-01

    We prove the convergence of a finite element discretization of the neutron transport equation. The iterative solution of the resulting linear system by a block Gauss-Seidel method is also analyzed. This procedure is shown to require less storage than the direct solution by Gaussian elimination, and an estimate for the rate of convergence is used to show that fewer arithmetic operations are required

  6. Comparison of two ordinal prediction models

    DEFF Research Database (Denmark)

    Kattan, Michael W; Gerds, Thomas A

    2015-01-01

    system (i.e. old or new), such as the level of evidence for one or more factors included in the system or the general opinions of expert clinicians. However, given the major objective of estimating prognosis on an ordinal scale, we argue that the rival staging system candidates should be compared...... on their ability to predict outcome. We sought to outline an algorithm that would compare two rival ordinal systems on their predictive ability. RESULTS: We devised an algorithm based largely on the concordance index, which is appropriate for comparing two models in their ability to rank observations. We...... demonstrate our algorithm with a prostate cancer staging system example. CONCLUSION: We have provided an algorithm for selecting the preferred staging system based on prognostic accuracy. It appears to be useful for the purpose of selecting between two ordinal prediction models....

  7. Angular quadrature generator for neutron transport SN calculations in slab geometry with arbitrary arithmetic precision

    International Nuclear Information System (INIS)

    Dominguez, Dany S.; Oliveira, Francisco B.S.; Barros, Ricardo C.

    2003-01-01

    We present in this paper a multiplatform computational code to calculate elements of Gauss-Legendre angular quadrature sets of arbitrary order used in slab-geometry discrete ordinates (S N ) formulation of neutron transport equation. In the code, the values can be computed with arbitrary arithmetic precision based on the approach of exact computing floating-point numbers. Calculation routines have been developed in the common language ANSI C using standard compiler gcc and the libraries of the open code GMP (GNU Multi precision Library). The code has a graphical interface in order to facilitate user interaction and numerical results analysis. The code architecture allows it to run on different platforms such as Unix, Linux and Windows. Numerical results and performance measures are also given. (author)

  8. GRUNCLE, 1. Collision Source Calculation for Program DOT. DOT-3.5, 2-D Neutron Transport, Gamma Transport Program DOT with New Space-Scaling

    International Nuclear Information System (INIS)

    1996-01-01

    A - Nature of problem or function: DOT solves the Boltzmann transport equation in two-dimensional geometries. Principal applications are to neutron and/or photon transport, although the code can be applied to transport problems for any particles not subject to external force fields. Both homogeneous and external-source problems can be solved. Searches on multiplication factor, time absorption, nuclide concentration, and zone thickness are available for reactor problems. Numerous edits and output data sets for subsequent use are available. DOT-3.5 improves the space-scaling algorithm. DOT-3.5/CAB contains group by group UPSCATTER scaling method. DUCT calculates perturbations to the scalar flux caused by the presence of ducts filled with coolant. VIP is a program for cross section sensitivity analysis using two- dimensional discrete ordinates transport calculations. DGRAD calculates the directional flux gradients from DOT-3 diffusion theory flux tapes. In conjunction with VIP and TPERT, it allows the use of diffusion theory fluxes to obtain exact and first-order perturbation reactivity changes. In order to calculate the reactivity associated with changes in reactor compositions using diffusion theory, it is necessary to fold not only the scalar fluxes with the appropriate cross sections, but also the average flux gradients with the diffusion coefficients. Since DOT diffusion theory does not directly calculate these gradients, it was necessary to calculate the needed quantities external to the DOT code. TPERT is a perturbation code to obtain exact and first-order reactivity changes. TPERT is coupled to VIP which generates adjoint forward flux tables using DOT-3 scalar flux tape information. GRTUNCL calculates an analytical first-collision source for subsequent use in DOT. B - Method of solution: The method of discrete ordinates is used. Balance equations are solved for the density of particles moving along discrete directions in each cell of a two-dimensional spatial

  9. Radiation Protection Ordinance 1989. Supplement with Radiation Protection Register Ordinance, general administration regulation pursuant to Sect. 45 Radiation Protection Ordinance, general administration regulation pursuant to Sect. 62 sub-sect. radiation passport

    International Nuclear Information System (INIS)

    Veith, H.M.

    1990-01-01

    The addendum contains regulations issued supplementary to the Radiation Protection Ordinance: The Radiation Protection Register as of April 3, 1990 including the law on the setting up of a Federal Office on Radiation Protection; the general administration regulation pursuant to Sect. 45 Radiation Protection Ordinance as of February 21, 1990; the general administration regulation pursuant to Sect. 62 sub-sect. 2 Radiation Protection Ordinance as of May 3, 1990 (AVV Radiation passport). The volume contains, apart from the legal texts, the appropriate decision by the Bundesrat, the official explanation from the Bundestag Publications as well as a comprehensive introduction into the new legal matter. (orig.) [de

  10. LOCFES-B: Solving the one-dimensional transport equation with user-selected spatial approximations

    International Nuclear Information System (INIS)

    Jarvis, R.D.; Nelson, P.

    1993-01-01

    Closed linear one-cell functional (CLOF) methods constitute an abstractly defined class of spatial approximations to the one-dimensional discrete ordinates equations of linear particle transport that encompass, as specific instances, the vast majority of the spatial approximations that have been either used or suggested in the computational solution of these equations. A specific instance of the class of CLOF methods is defined by a (typically small) number of functions of the cell width, total cross section, and direction cosine of particle motion. The LOCFES code takes advantage of the latter observation by permitting the use, within a more-or-less standard source iteration solution process, of an arbitrary CLOF method as defined by a user-supplied subroutine. The design objective of LOCFES was to provide automated determination of the order of accuracy (i.e., order of the discretization error) in the fine-mesh limit for an arbitrary user-selected CLOF method. This asymptotic order of accuracy is one widely used measure of the merit of a spatial approximation. This paper discusses LOCFES-B, which is a code that uses methods developed in LOCFES to solve one-dimensional linear particle transport problems with any user-selected CLOF method. LOCFES-B provides automatic solution of a given problem to within an accuracy specified by user input and provides comparison of the computational results against results from externally provided benchmark results

  11. Direct integration multiple collision integral transport analysis method for high energy fusion neutronics

    International Nuclear Information System (INIS)

    Koch, K.R.

    1985-01-01

    A new analysis method specially suited for the inherent difficulties of fusion neutronics was developed to provide detailed studies of the fusion neutron transport physics. These studies should provide a better understanding of the limitations and accuracies of typical fusion neutronics calculations. The new analysis method is based on the direct integration of the integral form of the neutron transport equation and employs a continuous energy formulation with the exact treatment of the energy angle kinematics of the scattering process. In addition, the overall solution is analyzed in terms of uncollided, once-collided, and multi-collided solution components based on a multiple collision treatment. Furthermore, the numerical evaluations of integrals use quadrature schemes that are based on the actual dependencies exhibited in the integrands. The new DITRAN computer code was developed on the Cyber 205 vector supercomputer to implement this direct integration multiple-collision fusion neutronics analysis. Three representative fusion reactor models were devised and the solutions to these problems were studied to provide suitable choices for the numerical quadrature orders as well as the discretized solution grid and to understand the limitations of the new analysis method. As further verification and as a first step in assessing the accuracy of existing fusion-neutronics calculations, solutions obtained using the new analysis method were compared to typical multigroup discrete ordinates calculations

  12. Modeling of radiant heat transfers in non-grey gases using the discrete ordinate method in association with a narrow bands statistical model; Modelisation des transferts radiatifs dans des gaz non gris par la methode des ordonnees discretes associee a un modele statistique a bandes etroites

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, A.B. de; Delmas, A; Sacadura, J F [Institut National des Sciences Appliquees (INSA), 69 - Villeurbanne (France)

    1997-12-31

    A formulation based on the use of the discrete ordinate method applied to the integral form of the radiant heat transfer equation is proposed for non-grey gases. The correlations between transmittances are neglected and no explicit wall reflexion is considered. The configuration analyzed consists in a flat layer of non-isothermal steam-nitrogen mixture. Cavity walls are grey with diffuse reflexion and emission. A narrow band statistical model is used to represent the radiative properties of the gas. The distribution of the radiative source term inside the cavity is calculated along two temperature profiles in a uniform steam concentration. Results obtained using this simplified approach are in good agreement with those found in the literature for the same temperature and concentration distributions. This preliminary study seems to indicate that the algorithm based on the integration of radiant heat transfer along the luminance path is less sensitive to de-correlation effects than formulations based on the differential form the the radiant heat transfer. Thus, a more systematic study of the influence of the neglecting of correlations on the integral approach is analyzed in this work. (J.S.) 16 refs.

  13. Modeling of radiant heat transfers in non-grey gases using the discrete ordinate method in association with a narrow bands statistical model; Modelisation des transferts radiatifs dans des gaz non gris par la methode des ordonnees discretes associee a un modele statistique a bandes etroites

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, A.B. de; Delmas, A.; Sacadura, J.F. [Institut National des Sciences Appliquees (INSA), 69 - Villeurbanne (France)

    1996-12-31

    A formulation based on the use of the discrete ordinate method applied to the integral form of the radiant heat transfer equation is proposed for non-grey gases. The correlations between transmittances are neglected and no explicit wall reflexion is considered. The configuration analyzed consists in a flat layer of non-isothermal steam-nitrogen mixture. Cavity walls are grey with diffuse reflexion and emission. A narrow band statistical model is used to represent the radiative properties of the gas. The distribution of the radiative source term inside the cavity is calculated along two temperature profiles in a uniform steam concentration. Results obtained using this simplified approach are in good agreement with those found in the literature for the same temperature and concentration distributions. This preliminary study seems to indicate that the algorithm based on the integration of radiant heat transfer along the luminance path is less sensitive to de-correlation effects than formulations based on the differential form the the radiant heat transfer. Thus, a more systematic study of the influence of the neglecting of correlations on the integral approach is analyzed in this work. (J.S.) 16 refs.

  14. Knowledge of the ordinal position of list items in pigeons.

    Science.gov (United States)

    Scarf, Damian; Colombo, Michael

    2011-10-01

    Ordinal knowledge is a fundamental aspect of advanced cognition. It is self-evident that humans represent ordinal knowledge, and over the past 20 years it has become clear that nonhuman primates share this ability. In contrast, evidence that nonprimate species represent ordinal knowledge is missing from the comparative literature. To address this issue, in the present experiment we trained pigeons on three 4-item lists and then tested them with derived lists in which, relative to the training lists, the ordinal position of the items was either maintained or changed. Similar to the findings with human and nonhuman primates, our pigeons performed markedly better on the maintained lists compared to the changed lists, and displayed errors consistent with the view that they used their knowledge of ordinal position to guide responding on the derived lists. These findings demonstrate that the ability to acquire ordinal knowledge is not unique to the primate lineage. (PsycINFO Database Record (c) 2011 APA, all rights reserved).

  15. Open Method of Co-Ordination for Demoi-Cracy?

    DEFF Research Database (Denmark)

    Borrás, Susana; Radaelli, Claudio

    2014-01-01

    Under which conditions does the open method of co-ordination match the standards for demoi-cracy? To answer this question, we need some explicit standards about demoi-cracy. In fact, open co-ordination serves three different but interrelated purposes in European Union policy: to facilitate...... convergence; to support learning processes; and to encourage exploration of policy innovation. By intersecting standards and purposes, we find open co-ordination is neither inherently ‘good’ nor ‘bad’ for demoi-cracy, as it depends on how it has been put into practice. Therefore, we qualify the answer...

  16. Radiation transport Part B: Applications with examples

    International Nuclear Information System (INIS)

    Beutler, D.E.

    1997-01-01

    In the previous sections Len Lorence has described the need, theory, and types of radiation codes that can be applied to model the results of radiation effects tests or working environments for electronics. For the rest of this segment, the author will concentrate on the specific ways the codes can be used to predict device response or analyze radiation test results. Regardless of whether one is predicting responses in a working or test environment, the procedures are virtually the same. The same can be said for the use of 1-, 2-, or 3-dimensional codes and Monte Carlo or discrete ordinates codes. No attempt is made to instruct the student on the specifics of the code. For example, the author will not discuss the details, such as the number of meshes, energy groups, etc. that are appropriate for a discrete ordinates code. For the sake of simplicity, he will restrict himself to the 1-dimensional code CEPXS/ONELD. This code along with a wide variety of other radiation codes can be obtained form the Radiation Safety Information Computational Center (RSICC) for a nominal handling fee

  17. Ordinance on measures for preparation of a radioactive waste repository (Ordinance on preparatory measures) of 24 October 1979

    International Nuclear Information System (INIS)

    1981-01-01

    This Ordinance contains details concerning the special procedure provided for under Section 10(2) of the Federal Order of 6th October 1978 concerning the Atomic Energy Act whereby the Federal Council must grant permission before preparations for the construction of radioactive waste repositories may be undertaken. The Ordinance defines the preparatory measures, which include maps and plans of the area, a geological report, etc. (NEA) [fr

  18. Lanthanide co-ordination frameworks: Opportunities and diversity

    International Nuclear Information System (INIS)

    Hill, Robert J.; Long, De-Liang; Hubberstey, Peter; Schroeder, Martin; Champness, Neil R.

    2005-01-01

    Significant successes have been made over recent years in preparing co-ordination framework polymers that show macroscopic material properties, but in the vast majority of cases this has been achieved with d-block metal-based systems. Lanthanide co-ordination frameworks also offer attractive properties in terms of their potential applications as luminescent, non-linear optical and porous materials. However, lanthanide-based systems have been far less studied to date than their d-block counterparts. One possible reason for this is that the co-ordination spheres of lanthanide cations are more difficult to control and, in the absence of design strategies for lanthanide co-ordination frameworks, it is significantly more difficult to target materials with specific properties. However, this article highlights some of the exciting possibilities that have emerged from the earliest investigations in this field with new topological families of compounds being discovered from relatively simple framework components, including unusual eight, seven and five-connected framework systems. Our own research, as well as others, is leading to a much greater appreciation of the factors that control framework formation and the resultant observed topologies of these polymers. As this understanding develops targeting particular framework types will become more straightforward and the development of designed polyfunctional materials more accessible. Thus, it can be seen that lanthanide co-ordination frameworks have the potential to open up previously unexplored directions for materials chemistry. This article focuses on the underlying concepts for the construction of these enticing and potentially highly important materials

  19. The new X-ray ordinance: what's new?

    International Nuclear Information System (INIS)

    Reichow, H.

    2000-01-01

    The augmented requirements for the minimisation of the radiation dose in medical exposure and the experiences gained from the implementation of the ordinance in force call for more extensive measures for reducing radiation, for quality assurance and expertise in radiological protection. In future physicians, dentists, veterinarians and other people using X-rays will have to bring their necessary expert knowledge regarding radiological protection up to date at regular intervals, and prove that they have done so. To protect the public against radiation exposure from targeted use, the limit value of the effective dose is reduced to 1 mSv in the calendar year. The dose level for the protection of people professionally exposed to radiation is reduced to 20 mSv. The further development of information technology and digital imaging demands that appropriate framework conditions be laid down in response to the changing requirements for radiation protection such as those in telemedicine and in digital recording and documentation possibilities in radiology. The draft further clarifies the distinction between the Radiological Protection Ordinance and the X-Ray Ordinance in relation to accelerators, in which electrons are accelerated with the aim of producing ionizing radiation, and reduces the limit energy from 3 MeV to 1 MeV. It is discussed to remove the X-ray therapy from the X-ray Ordinance and to insert it into the Radiological Protection Ordinance, in order to conform to the higher protection requirements in X-ray therapy. (orig.) [de

  20. Preparing the generalized Harvey–Shack rough surface scattering method for use with the discrete ordinates method

    DEFF Research Database (Denmark)

    Johansen, Villads Egede

    2015-01-01

    The paper shows how to implement the generalized Harvey–Shack (GHS) method for isotropic rough surfaces discretized in a polar coordinate system and approximated using Fourier series. This is particularly relevant for the use of the GHS method as a boundary condition for radiative transfer proble...

  1. Revision without ordinals

    NARCIS (Netherlands)

    Rivello, Edoardo

    2013-01-01

    We show that Herzberger’s and Gupta’s revision theories of truth can be recast in purely inductive terms, without any appeal neither to the transfinite ordinal numbers nor to the axiom of Choice. The result is presented in an abstract and general setting, emphasising both its validity for a wide

  2. The Pakistan atomic energy commission ordinance, 1965 ordinance no. XVII of 1965

    International Nuclear Information System (INIS)

    1983-01-01

    This act, entitled Pakistan Atomic Energy Commission ordinance 1965, allows amendments incorporated under PAEC (amendment) act 1974 upto August 1983. The amendments relates to regulations concerned with the composition and functions of the commission and some miscellaneous rules. (A.B.)

  3. Collection of laws and ordinances concerning regulation of atomic energy, 1991 edition

    International Nuclear Information System (INIS)

    1990-01-01

    This is the collection of the laws and ordinances on the regulation of atomic energy, 1991 edition, published under the supervision of Nuclear Safety Bureau, Science and Technology Agency. First, the abbreviated indication of the laws and ordinances is shown. The contents are those as of September 30, 1990. 12 basic laws and ordinances, 45 laws and ordinances on the regulation of nuclear raw materials, nuclear fuel materials and nuclear reactors, 26 laws and ordinances on the prevention of the radiation injuries due to radioisotopes and others, and 29 related laws and ordinances are collected in this book. (K.I.)

  4. Solution and Study of the Two-Dimensional Nodal Neutron Transport Equation

    International Nuclear Information System (INIS)

    Panta Pazos, Ruben; Biasotto Hauser, Eliete; Tullio de Vilhena, Marco

    2002-01-01

    In the last decade Vilhena and coworkers reported an analytical solution to the two-dimensional nodal discrete-ordinates approximations of the neutron transport equation in a convex domain. The key feature of these works was the application of the combined collocation method of the angular variable and nodal approach in the spatial variables. By nodal approach we mean the transverse integration of the SN equations. This procedure leads to a set of one-dimensional S N equations for the average angular fluxes in the variables x and y. These equations were solved by the old version of the LTS N method, which consists in the application of the Laplace transform to the set of nodal S N equations and solution of the resulting linear system by symbolic computation. It is important to recall that this procedure allow us to increase N the order of S N up to 16. To overcome this drawback we step forward performing a spectral painstaking analysis of the nodal S N equations for N up to 16 and we begin the convergence of the S N nodal equations defining an error for the angular flux and estimating the error in terms of the truncation error of the quadrature approximations of the integral term. Furthermore, we compare numerical results of this approach with those of other techniques used to solve the two-dimensional discrete approximations of the neutron transport equation. (authors)

  5. Ordinal Log-Linear Models for Contingency Tables

    Directory of Open Access Journals (Sweden)

    Brzezińska Justyna

    2016-12-01

    Full Text Available A log-linear analysis is a method providing a comprehensive scheme to describe the association for categorical variables in a contingency table. The log-linear model specifies how the expected counts depend on the levels of the categorical variables for these cells and provide detailed information on the associations. The aim of this paper is to present theoretical, as well as empirical, aspects of ordinal log-linear models used for contingency tables with ordinal variables. We introduce log-linear models for ordinal variables: linear-by-linear association, row effect model, column effect model and RC Goodman’s model. Algorithm, advantages and disadvantages will be discussed in the paper. An empirical analysis will be conducted with the use of R.

  6. Application of the finite element method to the neutron transport equation

    International Nuclear Information System (INIS)

    Martin, W.R.

    1976-01-01

    This paper examines the theoretical and practical application of the finite element method to the neutron transport equation. It is shown that in principle the system of equations obtained by application of the finite element method can be solved with certain physical restrictions concerning the criticality of the medium. The convergence of this approximate solution to the exact solution with mesh refinement is examined, and a non-optical estimate of the convergence rate is obtained analytically. It is noted that the numerical results indicate a faster convergence rate and several approaches to obtain this result analytically are outlined. The practical application of the finite element method involved the development of a computer code capable of solving the neutron transport equation in 1-D plane geometry. Vacuum, reflecting, or specified incoming boundary conditions may be analyzed, and all are treated as natural boundary conditions. The time-dependent transport equation is also examined and it is shown that the application of the finite element method in conjunction with the Crank-Nicholson time discretization method results in a system of algebraic equations which is readily solved. Numerical results are given for several critical slab eigenvalue problems, including anisotropic scattering, and the results compare extremely well with benchmark results. It is seen that the finite element code is more efficient than a standard discrete ordinates code for certain problems. A problem with severe heterogeneities is considered and it is shown that the use of discontinuous spatial and angular elements results in a marked improvement in the results. Finally, time-dependent problems are examined and it is seen that the phenomenon of angular mode separation makes the numerical treatment of the transport equation in slab geometry a considerable challenge, with the result that the angular mesh has a dominant effect on obtaining acceptable solutions

  7. Urban Runoff: Model Ordinances for Erosion and Sediment Control

    Science.gov (United States)

    The model ordinance in this section borrows language from the erosion and sediment control ordinance features that might help prevent erosion and sedimentation and protect natural resources more fully.

  8. Diamond difference method with hybrid angular quadrature applied to neutron transport problems

    International Nuclear Information System (INIS)

    Zani, Jose H.; Barros, Ricardo C.; Alves Filho, Hermes

    2005-01-01

    In this work we presents the results for the calculations of the disadvantage factor in thermal nuclear reactor physics. We use the one-group discrete ordinates (S N ) equations to mathematically model the flux distributions in slab lattices. We apply the diamond difference method with source iteration iterative scheme to numerically solve the discretized systems equations. We used special interface conditions to describe the method with hybrid angular quadrature. We show numerical results to illustrate the accuracy of the hybrid method. (author)

  9. Transport synthetic acceleration for long-characteristics assembly-level transport problems

    Energy Technology Data Exchange (ETDEWEB)

    Zika, M R; Adams, M L

    2000-02-01

    The authors apply the transport synthetic acceleration (TSA) scheme to the long-characteristics spatial discretization for the two-dimensional assembly-level transport problem. This synthetic method employs a simplified transport operator as its low-order approximation. Thus, in the acceleration step, the authors take advantage of features of the long-characteristics discretization that make it particularly well suited to assembly-level transport problems. The main contribution is to address difficulties unique to the long-characteristics discretization and produce a computationally efficient acceleration scheme. The combination of the long-characteristics discretization, opposing reflecting boundary conditions (which are present in assembly-level transport problems), and TSA presents several challenges. The authors devise methods for overcoming each of them in a computationally efficient way. Since the boundary angular data exist on different grids in the high- and low-order problems, they define restriction and prolongation operations specific to the method of long characteristics to map between the two grids. They implement the conjugate gradient (CG) method in the presence of opposing reflection boundary conditions to solve the TSA low-order equations. The CG iteration may be applied only to symmetric positive definite (SPD) matrices; they prove that the long-characteristics discretization yields an SPD matrix. They present results of the acceleration scheme on a simple test problem, a typical pressurized water reactor assembly, and a typical boiling water reactor assembly.

  10. Transport synthetic acceleration for long-characteristics assembly-level transport problems

    International Nuclear Information System (INIS)

    Zika, M.R.; Adams, M.L.

    2000-01-01

    The authors apply the transport synthetic acceleration (TSA) scheme to the long-characteristics spatial discretization for the two-dimensional assembly-level transport problem. This synthetic method employs a simplified transport operator as its low-order approximation. Thus, in the acceleration step, the authors take advantage of features of the long-characteristics discretization that make it particularly well suited to assembly-level transport problems. The main contribution is to address difficulties unique to the long-characteristics discretization and produce a computationally efficient acceleration scheme. The combination of the long-characteristics discretization, opposing reflecting boundary conditions (which are present in assembly-level transport problems), and TSA presents several challenges. The authors devise methods for overcoming each of them in a computationally efficient way. Since the boundary angular data exist on different grids in the high- and low-order problems, they define restriction and prolongation operations specific to the method of long characteristics to map between the two grids. They implement the conjugate gradient (CG) method in the presence of opposing reflection boundary conditions to solve the TSA low-order equations. The CG iteration may be applied only to symmetric positive definite (SPD) matrices; they prove that the long-characteristics discretization yields an SPD matrix. They present results of the acceleration scheme on a simple test problem, a typical pressurized water reactor assembly, and a typical boiling water reactor assembly

  11. Transport Synthetic Acceleration for Long-Characteristics Assembly-Level Transport Problems

    International Nuclear Information System (INIS)

    Zika, Michael R.; Adams, Marvin L.

    2000-01-01

    We apply the transport synthetic acceleration (TSA) scheme to the long-characteristics spatial discretization for the two-dimensional assembly-level transport problem. This synthetic method employs a simplified transport operator as its low-order approximation. Thus, in the acceleration step, we take advantage of features of the long-characteristics discretization that make it particularly well suited to assembly-level transport problems. Our main contribution is to address difficulties unique to the long-characteristics discretization and produce a computationally efficient acceleration scheme.The combination of the long-characteristics discretization, opposing reflecting boundary conditions (which are present in assembly-level transport problems), and TSA presents several challenges. We devise methods for overcoming each of them in a computationally efficient way. Since the boundary angular data exist on different grids in the high- and low-order problems, we define restriction and prolongation operations specific to the method of long characteristics to map between the two grids. We implement the conjugate gradient (CG) method in the presence of opposing reflection boundary conditions to solve the TSA low-order equations. The CG iteration may be applied only to symmetric positive definite (SPD) matrices; we prove that the long-characteristics discretization yields an SPD matrix. We present results of our acceleration scheme on a simple test problem, a typical pressurized water reactor assembly, and a typical boiling water reactor assembly

  12. German regulation concerning domestic or transboundary transport of hazardous goods by rail (GGVE). As of 12 December 1996

    International Nuclear Information System (INIS)

    1996-01-01

    The full official text of the German ordinance on transport of hazardous goods by rail (GGVE) is reproduced, which officially replaces the previous ordinance of 15 Dec. 1995. The new ordinance is published for implementation of the Regulation 96/49 EC of the European Council of 23 July 1996, and for adjustment of German national law to EU legislation governing the transport of hazardous goods by rail within the European Union. (orig./CB) [de

  13. Multicomponent mass transport model: theory and numerical implementation (discrete-parcel-random-walk version)

    International Nuclear Information System (INIS)

    Ahlstrom, S.W.; Foote, H.P.; Arnett, R.C.; Cole, C.R.; Serne, R.J.

    1977-05-01

    The Multicomponent Mass Transfer (MMT) Model is a generic computer code, currently in its third generation, that was developed to predict the movement of radiocontaminants in the saturated and unsaturated sediments of the Hanford Site. This model was designed to use the water movement patterns produced by the unsaturated and saturated flow models coupled with dispersion and soil-waste reaction submodels to predict contaminant transport. This report documents the theorical foundation and the numerical solution procedure of the current (third) generation of the MMT Model. The present model simulates mass transport processes using an analog referred to as the Discrete-Parcel-Random-Walk (DPRW) algorithm. The basic concepts of this solution technique are described and the advantages and disadvantages of the DPRW scheme are discussed in relation to more conventional numerical techniques such as the finite-difference and finite-element methods. Verification of the numerical algorithm is demonstrated by comparing model results with known closed-form solutions. A brief error and sensitivity analysis of the algorithm with respect to numerical parameters is also presented. A simulation of the tritium plume beneath the Hanford Site is included to illustrate the use of the model in a typical application. 32 figs

  14. Ordinance concerning the filing of transport of nuclear fuel materials

    International Nuclear Information System (INIS)

    1987-01-01

    This Order provides provisions concerning nuclear fuel substances requiring notification (nuclear fuel substance, material contaminated with nuclear fuel substances, fissionable substances, etc.), procedure for notification (to prefectural public safety commission), certificate of transpot (issued via public safety commission), instructions (speed of vehicle for transporting nuclear fuel substances, parking of vehicle, place for loading and unloading of nuclear fuel substances, method for loading and unloading, report to police, measures for disaster prevention during transport, etc.), communication among members of public safety commission (for smooth transport), notification of alteration of data in transport certificate (application to be submitted to public safety commission), application of reissue of transport certificate, return of transport certificate, inspection concerning transport (to be performed by police), submission of report (to be submitted by refining facilities manager, processing facilities manager, nuclear reactor manager, master of foreign nuclear powered ship, reprocessing facilities manager, waste disposal facilities manager; concerning stolen or missing nuclear fuel substances, traffic accident, unusual leakage of nuclear fuel substances, etc.). (Nogami, K.)

  15. Atomic ordinance - amendment of 28 october 1987

    International Nuclear Information System (INIS)

    1987-10-01

    This Ordinance amends certain provisions of the 1984 Ordinance on licences for the construction and operation of nuclear installations, import, export and transit of nuclear fuel, as well as the export of nuclear reactors, equipment and technical data. The Order also amends the provisions on the delivery procedure for these licences and makes minor amendments to the 1983 Order on nuclear third party liability [fr

  16. Improved method for solving the neutron transport problem by discretization of space and energy variables

    International Nuclear Information System (INIS)

    Bosevski, T.

    1971-01-01

    The polynomial interpolation of neutron flux between the chosen space and energy variables enabled transformation of the integral transport equation into a system of linear equations with constant coefficients. Solutions of this system are the needed values of flux for chosen values of space and energy variables. The proposed improved method for solving the neutron transport problem including the mathematical formalism is simple and efficient since the number of needed input data is decreased both in treating the spatial and energy variables. Mathematical method based on this approach gives more stable solutions with significantly decreased probability of numerical errors. Computer code based on the proposed method was used for calculations of one heavy water and one light water reactor cell, and the results were compared to results of other very precise calculations. The proposed method was better concerning convergence rate, decreased computing time and needed computer memory. Discretization of variables enabled direct comparison of theoretical and experimental results

  17. Air-over-ground calculations of the neutron, prompt, and secondary-gamma free-in-air tissue kerma from the Hiroshima and Nagasaki devices

    International Nuclear Information System (INIS)

    Pace, J.V. III; Knight, J.R.; Bartine, D.E.

    1982-01-01

    This paper reports preliminary results of the two-dimensional discrete-ordinate, calculations for the air-over-ground transport of radiation from the Hiroshima and Nagasaki weapon devices. It was found that the gamma-ray kerma dominated the total kerma for both environments

  18. Error Estimation and Accuracy Improvements in Nodal Transport Methods; Estimacion de Errores y Aumento de la Precision en Metodos Nodales de Transporte

    Energy Technology Data Exchange (ETDEWEB)

    Zamonsky, O M [Comision Nacional de Energia Atomica, Centro Atomico Bariloche (Argentina)

    2000-07-01

    The accuracy of the solutions produced by the Discrete Ordinates neutron transport nodal methods is analyzed.The obtained new numerical methodologies increase the accuracy of the analyzed scheems and give a POSTERIORI error estimators. The accuracy improvement is obtained with new equations that make the numerical procedure free of truncation errors and proposing spatial reconstructions of the angular fluxes that are more accurate than those used until present. An a POSTERIORI error estimator is rigurously obtained for one dimensional systems that, in certain type of problems, allows to quantify the accuracy of the solutions. From comparisons with the one dimensional results, an a POSTERIORI error estimator is also obtained for multidimensional systems. LOCAL indicators, which quantify the spatial distribution of the errors, are obtained by the decomposition of the menctioned estimators. This makes the proposed methodology suitable to perform adaptive calculations. Some numerical examples are presented to validate the theoretical developements and to illustrate the ranges where the proposed approximations are valid.

  19. An approach to solve group-decision-making problems with ordinal interval numbers.

    Science.gov (United States)

    Fan, Zhi-Ping; Liu, Yang

    2010-10-01

    The ordinal interval number is a form of uncertain preference information in group decision making (GDM), while it is seldom discussed in the existing research. This paper investigates how the ranking order of alternatives is determined based on preference information of ordinal interval numbers in GDM problems. When ranking a large quantity of ordinal interval numbers, the efficiency and accuracy of the ranking process are critical. A new approach is proposed to rank alternatives using ordinal interval numbers when every ranking ordinal in an ordinal interval number is thought to be uniformly and independently distributed in its interval. First, we give the definition of possibility degree on comparing two ordinal interval numbers and the related theory analysis. Then, to rank alternatives, by comparing multiple ordinal interval numbers, a collective expectation possibility degree matrix on pairwise comparisons of alternatives is built, and an optimization model based on this matrix is constructed. Furthermore, an algorithm is also presented to rank alternatives by solving the model. Finally, two examples are used to illustrate the use of the proposed approach.

  20. Co-ordinated action between youth-care and sports: facilitators and barriers.

    Science.gov (United States)

    Hermens, Niels; de Langen, Lisanne; Verkooijen, Kirsten T; Koelen, Maria A

    2017-07-01

    In the Netherlands, youth-care organisations and community sports clubs are collaborating to increase socially vulnerable youths' participation in sport. This is rooted in the idea that sports clubs are settings for youth development. As not much is known about co-ordinated action involving professional care organisations and community sports clubs, this study aims to generate insight into facilitators of and barriers to successful co-ordinated action between these two organisations. A cross-sectional study was conducted using in-depth semi-structured qualitative interview data. In total, 23 interviews were held at five locations where co-ordinated action between youth-care and sports takes place. Interviewees were youth-care workers, representatives from community sports clubs, and Care Sport Connectors who were assigned to encourage and manage the co-ordinated action. Using inductive coding procedures, this study shows that existing and good relationships, a boundary spanner, care workers' attitudes, knowledge and competences of the participants, organisational policies and ambitions, and some elements external to the co-ordinated action were reported to be facilitators or barriers. In addition, the participants reported that the different facilitators and barriers influenced the success of the co-ordinated action at different stages of the co-ordinated action. Future research is recommended to further explore the role of boundary spanners in co-ordinated action involving social care organisations and community sports clubs, and to identify what external elements (e.g. events, processes, national policies) are turning points in the formation, implementation and continuation of such co-ordinated action. © 2017 John Wiley & Sons Ltd.

  1. Group-theoretical aspects of the discrete sine-Gordon equation

    International Nuclear Information System (INIS)

    Orfanidis, S.J.

    1980-01-01

    The group-theoretical interpretation of the sine-Gordon equation in terms of connection forms on fiber bundles is extended to the discrete case. Solutions of the discrete sine-Gordon equation induce surfaces on a lattice in the SU(2) group space. The inverse scattering representation, expressing the parallel transport of fibers, is implemented by means of finite rotations. Discrete Baecklund transformations are realized as gauge transformations. The three-dimensional inverse scattering representation is used to derive a discrete nonlinear sigma model, and the corresponding Baecklund transformation and Pohlmeyer's R transformation are constructed

  2. Massively parallel performance of neutron transport response matrix algorithms

    International Nuclear Information System (INIS)

    Hanebutte, U.R.; Lewis, E.E.

    1993-01-01

    Massively parallel red/black response matrix algorithms for the solution of within-group neutron transport problems are implemented on the Connection Machines-2, 200 and 5. The response matrices are dericed from the diamond-differences and linear-linear nodal discrete ordinate and variational nodal P 3 approximations. The unaccelerated performance of the iterative procedure is examined relative to the maximum rated performances of the machines. The effects of processor partitions size, of virtual processor ratio and of problems size are examined in detail. For the red/black algorithm, the ratio of inter-node communication to computing times is found to be quite small, normally of the order of ten percent or less. Performance increases with problems size and with virtual processor ratio, within the memeory per physical processor limitation. Algorithm adaptation to courser grain machines is straight-forward, with total computing time being virtually inversely proportional to the number of physical processors. (orig.)

  3. Error Estimation and Accuracy Improvements in Nodal Transport Methods

    International Nuclear Information System (INIS)

    Zamonsky, O.M.

    2000-01-01

    The accuracy of the solutions produced by the Discrete Ordinates neutron transport nodal methods is analyzed.The obtained new numerical methodologies increase the accuracy of the analyzed scheems and give a POSTERIORI error estimators. The accuracy improvement is obtained with new equations that make the numerical procedure free of truncation errors and proposing spatial reconstructions of the angular fluxes that are more accurate than those used until present. An a POSTERIORI error estimator is rigurously obtained for one dimensional systems that, in certain type of problems, allows to quantify the accuracy of the solutions. From comparisons with the one dimensional results, an a POSTERIORI error estimator is also obtained for multidimensional systems. LOCAL indicators, which quantify the spatial distribution of the errors, are obtained by the decomposition of the menctioned estimators. This makes the proposed methodology suitable to perform adaptive calculations. Some numerical examples are presented to validate the theoretical developements and to illustrate the ranges where the proposed approximations are valid

  4. Analysis of an a posteriori error estimator for the transport equation with SN and discontinuous Galerkin discretizations

    International Nuclear Information System (INIS)

    Fournier, D.; Le Tellier, R.; Suteau, C.

    2011-01-01

    We present an error estimator for the S N neutron transport equation discretized with an arbitrary high-order discontinuous Galerkin method. As a starting point, the estimator is obtained for conforming Cartesian meshes with a uniform polynomial order for the trial space then adapted to deal with non-conforming meshes and a variable polynomial order. Some numerical tests illustrate the properties of the estimator and its limitations. Finally, a simple shielding benchmark is analyzed in order to show the relevance of the estimator in an adaptive process.

  5. Amendment of the Ordinance on the export and transit of goods

    International Nuclear Information System (INIS)

    1989-12-01

    This Ordinance amends the Annex of the Ordinance of 7 March 1983 on the export and transit of dangerous goods which lists the nuclear items, ie nuclear reactors, equipment and materials subject to export restrictions. The Ordinance came into force on 1 January 1990 (NEA) [fr

  6. Coarse-mesh discretized low-order quasi-diffusion equations for subregion averaged scalar fluxes

    International Nuclear Information System (INIS)

    Anistratov, D. Y.

    2004-01-01

    In this paper we develop homogenization procedure and discretization for the low-order quasi-diffusion equations on coarse grids for core-level reactor calculations. The system of discretized equations of the proposed method is formulated in terms of the subregion averaged group scalar fluxes. The coarse-mesh solution is consistent with a given fine-mesh discretization of the transport equation in the sense that it preserves a set of average values of the fine-mesh transport scalar flux over subregions of coarse-mesh cells as well as the surface currents, and eigenvalue. The developed method generates numerical solution that mimics the large-scale behavior of the transport solution within assemblies. (authors)

  7. Comparison of TITAN hybrid deterministic transport code and MCNP5 for simulation of SPECT

    International Nuclear Information System (INIS)

    Royston, K.; Haghighat, A.; Yi, C.

    2010-01-01

    Traditionally, Single Photon Emission Computed Tomography (SPECT) simulations use Monte Carlo methods. The hybrid deterministic transport code TITAN has recently been applied to the simulation of a SPECT myocardial perfusion study. The TITAN SPECT simulation uses the discrete ordinates formulation in the phantom region and a simplified ray-tracing formulation outside of the phantom. A SPECT model has been created in the Monte Carlo Neutral particle (MCNP)5 Monte Carlo code for comparison. In MCNP5 the collimator is directly modeled, but TITAN instead simulates the effect of collimator blur using a circular ordinate splitting technique. Projection images created using the TITAN code are compared to results using MCNP5 for three collimator acceptance angles. Normalized projection images for 2.97 deg, 1.42 deg and 0.98 deg collimator acceptance angles had maximum relative differences of 21.3%, 11.9% and 8.3%, respectively. Visually the images are in good agreement. Profiles through the projection images were plotted to find that the TITAN results followed the shape of the MCNP5 results with some differences in magnitude. A timing comparison on 16 processors found that the TITAN code completed the calculation 382 to 2787 times faster than MCNP5. Both codes exhibit good parallel performance. (author)

  8. Study of the sensitivity of the radiation transport problem in a scattering medium

    International Nuclear Information System (INIS)

    Nunes, Rogerio Chaffin

    2002-03-01

    In this work, the system of differential equations obtained by the angular approach of the two-dimensional transport equation by the discrete ordinates method is solved through the formulation of finite elements with the objective of investigating the sensitivity of the outgoing flux of radiation with the incoming flux and the properties of absorption and scattering of the medium. The variational formulation for the system of differential equations of second order with the generalized boundary conditions of Neumann (third type) allows an easy implementation of the method of the finite elements with triangular mesh and approximation space of first order. The geometry chosen for the simulations is a circle with a non homogeneous circular form in its interior. The mapping of Dirichlet-Neumann is studied through various simulations involving the incoming flux, the outgoing flux and the properties of the medium. (author)

  9. Time-dependent anisotropic external sources in transient 3-D transport code TORT-TD

    International Nuclear Information System (INIS)

    Seubert, A.; Pautz, A.; Becker, M.; Dagan, R.

    2009-01-01

    This paper describes the implementation of a time-dependent distributed external source in TORT-TD by explicitly considering the external source in the ''fixed-source'' term of the implicitly time-discretised 3-D discrete ordinates transport equation. Anisotropy of the external source is represented by a spherical harmonics series expansion similar to the angular fluxes. The YALINA-Thermal subcritical assembly serves as a test case. The configuration with 280 fuel rods has been analysed with TORT-TD using cross sections in 18 energy groups and P1 scattering order generated by the KAPROS code system. Good agreement is achieved concerning the multiplication factor. The response of the system to an artificial time-dependent source consisting of two square-wave pulses demonstrates the time-dependent external source capability of TORT-TD. The result is physically plausible as judged from validation calculations. (orig.)

  10. Constructing ordinal partition transition networks from multivariate time series.

    Science.gov (United States)

    Zhang, Jiayang; Zhou, Jie; Tang, Ming; Guo, Heng; Small, Michael; Zou, Yong

    2017-08-10

    A growing number of algorithms have been proposed to map a scalar time series into ordinal partition transition networks. However, most observable phenomena in the empirical sciences are of a multivariate nature. We construct ordinal partition transition networks for multivariate time series. This approach yields weighted directed networks representing the pattern transition properties of time series in velocity space, which hence provides dynamic insights of the underling system. Furthermore, we propose a measure of entropy to characterize ordinal partition transition dynamics, which is sensitive to capturing the possible local geometric changes of phase space trajectories. We demonstrate the applicability of pattern transition networks to capture phase coherence to non-coherence transitions, and to characterize paths to phase synchronizations. Therefore, we conclude that the ordinal partition transition network approach provides complementary insight to the traditional symbolic analysis of nonlinear multivariate time series.

  11. A transport synthetic acceleration method for transport iterations

    International Nuclear Information System (INIS)

    Ramone, G.L.; Adams, M.L.

    1997-01-01

    A family of transport synthetic acceleration (TSA) methods for iteratively solving within group scattering problems is presented. A single iteration in these schemes consists of a transport sweep followed by a low-order calculation, which itself is a simplified transport problem. The method for isotropic-scattering problems in X-Y geometry is described. The Fourier analysis of a model problem for equations with no spatial discretization shows that a previously proposed TSA method is unstable in two dimensions but that the modifications make it stable and rapidly convergent. The same procedure for discretized transport equations, using the step characteristic and two bilinear discontinuous methods, shows that discretization enhances TSA performance. A conjugate gradient algorithm for the low-order problem is described, a crude quadrature set for the low-order problem is proposed, and the number of low-order iterations per high-order sweep is limited to a relatively small value. These features lead to simple and efficient improvements to the method. TSA is tested on a series of problems, and a set of parameters is proposed for which the method behaves especially well. TSA achieves a substantial reduction in computational cost over source iteration, regardless of discretization parameters or material properties, and this reduction increases with the difficulty of the problem

  12. 1984 Ordinance on nuclear activities (1984:14)

    International Nuclear Information System (INIS)

    1984-01-01

    This Supplementary Ordinance on Nuclear Activities (1984:14) sets out a regulatory regime for the conveyance out of Sweden of equipment or material that has been specially designed or prepared for the processing, use or production of nuclear substances or which is otherwise of essential importance for the production of nuclear devices. The Annex to the Ordinance sets out the list of such equipment or material whose export is subject to Government authorisation. (NEA) [fr

  13. Anatomical localization of electrophysiological recording sites by co-ordinate transformation.

    Science.gov (United States)

    Sinex, D G

    1997-07-18

    A method for estimating the anatomical locations of the units recorded in electrophysiological mapping experiments is described. A total of three locations must be marked by dye injections or electrolytic lesions and identified in tissue sections. From those locations, equations are derived to translate, scale, and rotate the three-dimensional co-ordinates of the recording sites, so that they are correct for a second, three-dimensional co-ordinate system based on the anatomy of the mapped structure. There is no limit to the number of recording sites that can be localized. This differs from methods that require a dye injection or lesion to be made at the exact location at which a particular unit was recorded. The accuracy of the transformed co-ordinates is limited by the accuracy with which the co-ordinates can be measured: in test measurements and in the experiments for which this algorithm was developed, the computed co-ordinates were typically accurate to within 100 microns or less.

  14. An ordinal model of the McGurk illusion

    DEFF Research Database (Denmark)

    Andersen, Tobias

    2011-01-01

    Audiovisual information is integrated in speech perception. One manifestation of this is the McGurk illusion in which watching the articulating face alters the auditory phonetic percept. Understanding this phenomenon fully requires a computational model with predictive power. Here, we describe...... model it also employed 30 free parameters where the ordinal model needed only 14. Testing the predictive power of the models using a form of cross-validation we found that, although both models performed rather poorly, the ordinal model performed better than the FLMP. Based on these findings we suggest...... that ordinal models generally have greater predictive power because they are constrained by a priori information about the adjacency of phonetic categories....

  15. Advances in the solution of three-dimensional nodal neutron transport equation

    International Nuclear Information System (INIS)

    Pazos, Ruben Panta; Hauser, Eliete Biasotto; Vilhena, Marco Tullio de

    2003-01-01

    In this paper we study the three-dimensional nodal discrete-ordinates approximations of neutron transport equation in a convex domain with piecewise smooth boundaries. We use the combined collocation method of the angular variables and nodal approach for the spatial variables. By nodal approach we mean the iterated transverse integration of the S N equations. This procedure leads to the set of one-dimensional averages angular fluxes in each spatial variable. The resulting system of equations is solved with the LTS N method, first applying the Laplace transform to the set of the nodal S N equations and then obtaining the solution by symbolic computation. We include the LTS N method by diagonalization to solve the nodal neutron transport equation and then we outline the convergence of these nodal-LTS N approximations with the help of a norm associated to the quadrature formula used to approximate the integral term of the neutron transport equation. We give numerical results obtained with an algebraic computer system (for N up to 8) and with a code for higher values of N. We compare our results for the geometry of a box with a source in a vertex and a leakage zone in the opposite with others techniques used in this problem. (author)

  16. The Design Co-ordination Framework: key elements for effective product development

    DEFF Research Database (Denmark)

    Andreasen, Mogens Myrup; Bowen, J.; Storm, T.

    1997-01-01

    This paper proposes a Design Co-ordination Framework (DCF) i.e. a concept for an ideal DC system with the abilities to support co-ordination of various complex aspects of product development. A set of frames, modelling key elements of co-ordination, which reflect the states of design, plans, orga...

  17. A novel two-level dynamic parallel data scheme for large 3-D SN calculations

    International Nuclear Information System (INIS)

    Sjoden, G.E.; Shedlock, D.; Haghighat, A.; Yi, C.

    2005-01-01

    We introduce a new dynamic parallel memory optimization scheme for executing large scale 3-D discrete ordinates (Sn) simulations on distributed memory parallel computers. In order for parallel transport codes to be truly scalable, they must use parallel data storage, where only the variables that are locally computed are locally stored. Even with parallel data storage for the angular variables, cumulative storage requirements for large discrete ordinates calculations can be prohibitive. To address this problem, Memory Tuning has been implemented into the PENTRAN 3-D parallel discrete ordinates code as an optimized, two-level ('large' array, 'small' array) parallel data storage scheme. Memory Tuning can be described as the process of parallel data memory optimization. Memory Tuning dynamically minimizes the amount of required parallel data in allocated memory on each processor using a statistical sampling algorithm. This algorithm is based on the integral average and standard deviation of the number of fine meshes contained in each coarse mesh in the global problem. Because PENTRAN only stores the locally computed problem phase space, optimal two-level memory assignments can be unique on each node, depending upon the parallel decomposition used (hybrid combinations of angular, energy, or spatial). As demonstrated in the two large discrete ordinates models presented (a storage cask and an OECD MOX Benchmark), Memory Tuning can save a substantial amount of memory per parallel processor, allowing one to accomplish very large scale Sn computations. (authors)

  18. A spectral nodal method for discrete ordinates problems in x,y geometry

    International Nuclear Information System (INIS)

    Barros, R.C. de; Larsen, E.W.

    1991-06-01

    A new nodal method is proposed for the solution of S N problems in x- y-geometry. This method uses the Spectral Green's Function (SGF) scheme for solving the one-dimensional transverse-integrated nodal transport equations with no spatial truncation error. Thus, the only approximations in the x, y-geometry nodal method occur in the transverse leakage terms, as in diffusion theory. We approximate these leakage terms using a flat or constant approximation, and we refer to the resulting method as the SGF-Constant Nodal (SGF-CN) method. We show in numerical calculations that the SGF-CN method is much more accurate than other well-known transport nodal methods for coarse-mesh deep-penetration S N problems, even though the transverse leakage terms are approximated rather simply. (author)

  19. Angular finite volume method for solving the multigroup transport equation with piecewise average scattering cross sections

    International Nuclear Information System (INIS)

    Calloo, A.; Vidal, J.F.; Le Tellier, R.; Rimpault, G.

    2011-01-01

    This paper deals with the solving of the multigroup integro-differential form of the transport equation for fine energy group structure. In that case, multigroup transfer cross sections display strongly peaked shape for light scatterers and the current Legendre polynomial expansion is not well-suited to represent them. Furthermore, even if considering an exact scattering cross sections representation, the scattering source in the discrete ordinates method (also known as the Sn method) being calculated by sampling the angular flux at given directions, may be wrongly computed due to lack of angular support for the angular flux. Hence, following the work of Gerts and Matthews, an angular finite volume solver has been developed for 2D Cartesian geometries. It integrates the multigroup transport equation over discrete volume elements obtained by meshing the unit sphere with a product grid over the polar and azimuthal coordinates and by considering the integrated flux per solid angle element. The convergence of this method has been compared to the S_n method for a highly anisotropic benchmark. Besides, piecewise-average scattering cross sections have been produced for non-bound Hydrogen atoms using a free gas model for thermal neutrons. LWR lattice calculations comparing Legendre representations of the Hydrogen scattering multigroup cross section at various orders and piecewise-average cross sections for this same atom are carried out (while keeping a Legendre representation for all other isotopes). (author)

  20. Discrete-fracture-model of multi–scale time-splitting two–phase flow including nanoparticles transport in fractured porous media

    KAUST Repository

    El-Amin, Mohamed

    2017-11-23

    In this article, we consider a two-phase immiscible incompressible flow including nanoparticles transport in fractured heterogeneous porous media. The system of the governing equations consists of water saturation, Darcy’s law, nanoparticles concentration in water, deposited nanoparticles concentration on the pore-wall, and entrapped nanoparticles concentration in the pore-throat, as well as, porosity and permeability variation due to the nanoparticles deposition/entrapment on/in the pores. The discrete-fracture model (DFM) is used to describe the flow and transport in fractured porous media. Moreover, multiscale time-splitting strategy has been employed to manage different time-step sizes for different physics, such as saturation, concentration, etc. Numerical examples are provided to demonstrate the efficiency of the proposed multi-scale time splitting approach.

  1. Discrete-fracture-model of multi–scale time-splitting two–phase flow including nanoparticles transport in fractured porous media

    KAUST Repository

    El-Amin, Mohamed; Kou, Jisheng; Sun, Shuyu

    2017-01-01

    In this article, we consider a two-phase immiscible incompressible flow including nanoparticles transport in fractured heterogeneous porous media. The system of the governing equations consists of water saturation, Darcy’s law, nanoparticles concentration in water, deposited nanoparticles concentration on the pore-wall, and entrapped nanoparticles concentration in the pore-throat, as well as, porosity and permeability variation due to the nanoparticles deposition/entrapment on/in the pores. The discrete-fracture model (DFM) is used to describe the flow and transport in fractured porous media. Moreover, multiscale time-splitting strategy has been employed to manage different time-step sizes for different physics, such as saturation, concentration, etc. Numerical examples are provided to demonstrate the efficiency of the proposed multi-scale time splitting approach.

  2. Regulations concerning marine transport and storage of dangerous things (abridged)

    International Nuclear Information System (INIS)

    1987-01-01

    This report shows the Ordinances No.84 (1967) and No.30 (1957) of the Ministry of transport. The Ordinance No.84 has been published in detail elsewhere. The provisions concerning shipping transport and storage of dangerous substances deal with isolation of each dangerous substance, method for loading (cleaning of container, etc.), certificate for ship for transporting dangerous substances, renewal of certificate for ship for transporting dangerous substances, return of certificate, fee (for renewal and reissue of certificate), definition of terms, type of radioactive cargo (L-type cargo, A-type cargo, BM-type cargo, BU type cargo), transport of radioactive substances, type of fissionable cargo (Type I, Type II and Type III), confirmation of safety concerning radioactive cargo (conformity to standards, inspection, approval, etc.), limit of cargo volume, transport index, marking (type of cargo), confirmation of safety of transport, inspection of contamination, notice of transport, special measures, inspection of cargo (radioactive substances), requirements for container and package, etc. (Nogami, K.)

  3. The expert knowledge as defined by the X-ray Ordinance

    International Nuclear Information System (INIS)

    1991-01-01

    Persons applying within their role responsibility X-rays in medicine or veterinary medicine, or persons with a responsibility as radiation protection officer or according to section 24, sub-sec. (3) Radiation Protection Ordinance have to give proof of the required expert knowledge (section 3, sub-sec. (2), no. 3, section 4, sub-sec. (1) no. 3, section 13, sub-sec. (4), section 23 no.s. 1 and 3 of the X-ray Ordinance). In addition, persons applying X-rays under the supervision and responsibility of a medical specialist or dentist, have to acquire the knowledge in radiation protection as defined by section 23, no. 2 and 4 X-ray Ordinance. As to the application of X-rays in veterinary medicine, the expert knowledge required is defined in section 3, sub-sec. (2) no. 3, section 4, sub-sec. 1 no. 3, section 13, sub-sec. (4), section 29 sub-sec. (1) no. 4 of the X-ray Ordinance. The knowledge to be acquired in radiation protection is given in section 29, sub-sec. (1) no. 3 of the X-ray Ordinance. The radiation protection officer or persons responsible for radiation protection have to give proof of their expert knowledge within the course of the licensing or notification procedure in accordance with sections 3 and 4 of the X-ray Ordinance, or in the course of the procedure for appointment of a radiation protection officier in accordance with section 13, sub-sec. (3) of the X-ray Ordinance. (orig.) [de

  4. Multi-domain/multi-method numerical approach for neutron transport equation; Couplage de methodes et decomposition de domaine pour la resolution de l'equation du transport des neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Girardi, E

    2004-12-15

    A new methodology for the solution of the neutron transport equation, based on domain decomposition has been developed. This approach allows us to employ different numerical methods together for a whole core calculation: a variational nodal method, a discrete ordinate nodal method and a method of characteristics. These new developments authorize the use of independent spatial and angular expansion, non-conformal Cartesian and unstructured meshes for each sub-domain, introducing a flexibility of modeling which is not allowed in today available codes. The effectiveness of our multi-domain/multi-method approach has been tested on several configurations. Among them, one particular application: the benchmark model of the Phebus experimental facility at Cea-Cadarache, shows why this new methodology is relevant to problems with strong local heterogeneities. This comparison has showed that the decomposition method brings more accuracy all along with an important reduction of the computer time.

  5. Discrete fracture modelling for the Stripa tracer validation experiment predictions

    International Nuclear Information System (INIS)

    Dershowitz, W.; Wallmann, P.

    1992-02-01

    Groundwater flow and transport through three-dimensional networks of discrete fractures was modeled to predict the recovery of tracer from tracer injection experiments conducted during phase 3 of the Stripa site characterization and validation protect. Predictions were made on the basis of an updated version of the site scale discrete fracture conceptual model used for flow predictions and preliminary transport modelling. In this model, individual fractures were treated as stochastic features described by probability distributions of geometric and hydrologic properties. Fractures were divided into three populations: Fractures in fracture zones near the drift, non-fracture zone fractures within 31 m of the drift, and fractures in fracture zones over 31 meters from the drift axis. Fractures outside fracture zones are not modelled beyond 31 meters from the drift axis. Transport predictions were produced using the FracMan discrete fracture modelling package for each of five tracer experiments. Output was produced in the seven formats specified by the Stripa task force on fracture flow modelling. (au)

  6. A DETERMINISTIC METHOD FOR TRANSIENT, THREE-DIMENSIONAL NUETRON TRANSPORT

    International Nuclear Information System (INIS)

    S. GOLUOGLU, C. BENTLEY, R. DEMEGLIO, M. DUNN, K. NORTON, R. PEVEY I.SUSLOV AND H.L. DODDS

    1998-01-01

    A deterministic method for solving the time-dependent, three-dimensional Boltzmam transport equation with explicit representation of delayed neutrons has been developed and evaluated. The methodology used in this study for the time variable of the neutron flux is known as the improved quasi-static (IQS) method. The position, energy, and angle-dependent neutron flux is computed deterministically by using the three-dimensional discrete ordinates code TORT. This paper briefly describes the methodology and selected results. The code developed at the University of Tennessee based on this methodology is called TDTORT. TDTORT can be used to model transients involving voided and/or strongly absorbing regions that require transport theory for accuracy. This code can also be used to model either small high-leakage systems, such as space reactors, or asymmetric control rod movements. TDTORT can model step, ramp, step followed by another step, and step followed by ramp type perturbations. It can also model columnwise rod movement can also be modeled. A special case of columnwise rod movement in a three-dimensional model of a boiling water reactor (BWR) with simple adiabatic feedback is also included. TDTORT is verified through several transient one-dimensional, two-dimensional, and three-dimensional benchmark problems. The results show that the transport methodology and corresponding code developed in this work have sufficient accuracy and speed for computing the dynamic behavior of complex multidimensional neutronic systems

  7. Using GIS to check co-ordinates of genebank accessions

    NARCIS (Netherlands)

    Hijmans, R.J.; Schreuder, M.; Cruz, de la J.; Guarino, L.

    1999-01-01

    The geographic co-ordinates of the locations where germplasm accessions have been collected are usually documented in genebank databases. However, the co-ordinate data are often incomplete and may contain errors. This paper describes procedures to check for errors, to determine the cause of these

  8. Expert knowledge as defined by the X-Ray Ordinance

    International Nuclear Information System (INIS)

    1987-01-01

    The radiation protection officer or any person responsible for radiation safety have to give proof of their expert knowledge in accordance with sections 3, 4 of the X-Ray Ordinance. Proof of expert knowledge has to be furnished within the procedure of appointment (sec. 13, sub-sec. (3) X-Ray Ordinance). The directive defines the scope of the expert knowledge required, and the scope of expert knowledge persons must have, or acquire, who are responsible for radiation protection within the preview of sec. 23, no. 2, 4 and sec. 29, sub-sec. 1, no. 3 of the X-Ray Ordinance. (orig./HP) [de

  9. Local zoning ordinances -- how they limit or restrict mining

    International Nuclear Information System (INIS)

    Ingram, H.

    1991-01-01

    Local regulation of mining by zoning has taken place for a long period of time. The delegation to local municipalities of land use planning, zoning and nuisance abatement authority which may affect mining by state governments has been consistently upheld by appellate courts as valid exercises of the police power. Recently, mine operators and mineral owners have been confronted by efforts of local municipalities, often initiated by anti-mining citizen's groups, to impose more stringent restrictions on mining activities within their borders. In some situations, existing ordinances are being enforced for the first time, in others, new ordinances have been adopted without much awareness or involvement by the public. Enforced to the letter, these ordinances can sterilize large blocks of mineable reserves open-quotes operatingclose quotes or performance standards in excess of SMCRA-based regulatory requirements. It is fair to say that investigation of the potential impacts of local zoning and other related ordinances is essential in the planning for the expansion of existing operations or for new operations. There may be new rules in the game. This paper identifies problem areas in typical open-quotes modernclose quotes ordinances and discusses legal and constitutional issues which may arise by their enforcement in coal producing regions

  10. An assessment of the effects of a cadmium discharge ordinance

    International Nuclear Information System (INIS)

    Moser, J.H.; Schultz, J.L.

    1982-01-01

    The problem facing the MMSD was high levels of cadmium in Milorganite fertilizer. The cause was determined to be discharges from industry, primarily electroplaters. The solution was the cooperative development of an ordinance to limit the discharge of cadmium. Because the dischargers acted responsibly to comply with the ordinance, the ordinance succeeded in achieving its objective of significantly reducing the cadmium loading to the municipal sewerage system and subsequently reducing the cadmium concentration in Milorganite fertilizer

  11. A finite element method for neutron transport

    International Nuclear Information System (INIS)

    Ackroyd, R.T.

    1978-01-01

    A variational treatment of the finite element method for neutron transport is given based on a version of the even-parity Boltzmann equation which does not assume that the differential scattering cross-section has a spherical harmonic expansion. The theory of minimum and maximum principles is based on the Cauchy-Schwartz equality and the properties of a leakage operator G and a removal operator C. For systems with extraneous sources, two maximum and one minimum principles are given in boundary free form, to ease finite element computations. The global error of an approximate variational solution is given, the relationship of one the maximum principles to the method of least squares is shown, and the way in which approximate solutions converge locally to the exact solution is established. A method for constructing local error bounds is given, based on the connection between the variational method and the method of the hypercircle. The source iteration technique and a maximum principle for a system with extraneous sources suggests a functional for a variational principle for a self-sustaining system. The principle gives, as a consequence of the properties of G and C, an upper bound to the lowest eigenvalue. A related functional can be used to determine both upper and lower bounds for the lowest eigenvalue from an inspection of any approximate solution for the lowest eigenfunction. The basis for the finite element is presented in a general form so that two modes of exploitation can be undertaken readily. The model can be in phase space, with positional and directional co-ordinates defining points of the model, or it can be restricted to the positional co-ordinates and an expansion in orthogonal functions used for the directional co-ordinates. Suitable sets of functions are spherical harmonics and Walsh functions. The latter set is appropriate if a discrete direction representation of the angular flux is required. (author)

  12. Directions for the choice of the transport modalities for the transport of radioactive materials on public roads

    International Nuclear Information System (INIS)

    Berger, H.U.

    1987-07-01

    This report shall be a help for scientific and technical personal of the nuclear research center in the choice of the modalities of the transport of radioactive materials on public roads in accordance to regulations and authorizations. Not only the Atomic Law, the Radiation Protection Ordinance and the Ordinance on Dangerous Goods on Roads, which are binding in any case, are regarded in this report but also as the scope and the impositions of the transport authorizations of the nuclear research center as the internal instructions of the nuclear research center. The reader is guided by dialogue (pretty much as a book for 'programmed learning') to the solution of his special problem of transport. In order to narrow down the size of this report, all technical or administrative details are treated in eleven brochures, which are published as technical supplements of this report. (orig.) [de

  13. Sensitivity analysis of the titan hybrid deterministic transport code for SPECT simulation

    International Nuclear Information System (INIS)

    Royston, Katherine K.; Haghighat, Alireza

    2011-01-01

    Single photon emission computed tomography (SPECT) has been traditionally simulated using Monte Carlo methods. The TITAN code is a hybrid deterministic transport code that has recently been applied to the simulation of a SPECT myocardial perfusion study. For modeling SPECT, the TITAN code uses a discrete ordinates method in the phantom region and a combined simplified ray-tracing algorithm with a fictitious angular quadrature technique to simulate the collimator and generate projection images. In this paper, we compare the results of an experiment with a physical phantom with predictions from the MCNP5 and TITAN codes. While the results of the two codes are in good agreement, they differ from the experimental data by ∼ 21%. In order to understand these large differences, we conduct a sensitivity study by examining the effect of different parameters including heart size, collimator position, collimator simulation parameter, and number of energy groups. (author)

  14. Co-ordinated research activities: Annual report and statistics for 2003

    International Nuclear Information System (INIS)

    2004-07-01

    Energy Development; Nuclear Science; Food and Agriculture; Human Health; Water Resources; Protection of the Marine and Terrestrial Environments; Physical and Chemical Applications; Safety of Nuclear Installations; Radiation Safety (including Transport Safety); Management of Radioactive Waste; Safeguards; Security of Material. Results of research are available to all Member States, and are disseminated through national, international and Agency scientific and technical publications (TECDOCs). In certain cases the research results are directly relevant to implementation of projects in the Agency's Technical Co-operation Programme. In terms of benefits to Member States through their participating research institutions, number of awards and degree of funding, co-ordinated research activities constitute a significant component of the Agency's overall programme. 883 contracts and agreements were awarded from the 1242 contract and agreement proposals received by the Agency during 2003. Annex I lists by country the number of proposals received and awards made. In 2003, $6 675 465 were awarded from the regular budget to institutes under contractual arrangements and to fund Research Co-ordination Meetings (RCMs). Additionally, $325 546 of extra-budgetary contributions were used to fund additional contracts and RCMs. Thus, total awards amounted to $7 001 011. Table 1 summarizes all awards by Programme in 2003. The average award per contract rose to $6 400, which represents a 12% increase over the 2002 average award level

  15. Co-ordinated research activities: Annual report and statistics for 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-15

    Energy Development; Nuclear Science; Food and Agriculture; Human Health; Water Resources; Protection of the Marine and Terrestrial Environments; Physical and Chemical Applications; Safety of Nuclear Installations; Radiation Safety (including Transport Safety); Management of Radioactive Waste; Safeguards; Security of Material. Results of research are available to all Member States, and are disseminated through national, international and Agency scientific and technical publications (TECDOCs). In certain cases the research results are directly relevant to implementation of projects in the Agency's Technical Co-operation Programme. In terms of benefits to Member States through their participating research institutions, number of awards and degree of funding, co-ordinated research activities constitute a significant component of the Agency's overall programme. 883 contracts and agreements were awarded from the 1242 contract and agreement proposals received by the Agency during 2003. Annex I lists by country the number of proposals received and awards made. In 2003, $6 675 465 were awarded from the regular budget to institutes under contractual arrangements and to fund Research Co-ordination Meetings (RCMs). Additionally, $325 546 of extra-budgetary contributions were used to fund additional contracts and RCMs. Thus, total awards amounted to $7 001 011. Table 1 summarizes all awards by Programme in 2003. The average award per contract rose to $6 400, which represents a 12% increase over the 2002 average award level.

  16. Collections of laws and ordinances concerning radiation injury prevention as of July 24, 1981

    International Nuclear Information System (INIS)

    Tsuruta, Takao

    1981-01-01

    There are laws, government and ministerial ordinances and notifications, each of them bears a definite role, and the contents of the legal regulation on a certain range of matter are determined by their close interrelation and mutual supplementation. Many laws and ordinances concerning atomic energy also form a legal system under such mutual relation. The Atomic Energy Act is positioned at its top, and the main part related to radiation injury prevention comprises a law, two ordinances, a regulation and a notification. Such relationship of individual laws and ordinances is mostly shown in lower rank laws and ordinances. In Chapter 1 of this book, the Atomic Energy Act and the government ordinance concerning the definition of nuclear fuel materials, nuclear raw materials, nuclear reactors and radiation are described. In Chapter 2, the law concerning prevention of radiation injuries due to radiactive isotopes and others, the ordinances and eight notifications closely related to them are collected. In Chapter 3, other related laws and ordinances are gathered. To understand the laws and ordinances synthetically and systematically, the provisions of different laws and ordinances, which are mutually related, are arranged together showing their relation. (Kako, I.)

  17. 2D co-ordinate transformation based on a spike timing-dependent plasticity learning mechanism.

    Science.gov (United States)

    Wu, QingXiang; McGinnity, Thomas Martin; Maguire, Liam; Belatreche, Ammar; Glackin, Brendan

    2008-11-01

    In order to plan accurate motor actions, the brain needs to build an integrated spatial representation associated with visual stimuli and haptic stimuli. Since visual stimuli are represented in retina-centered co-ordinates and haptic stimuli are represented in body-centered co-ordinates, co-ordinate transformations must occur between the retina-centered co-ordinates and body-centered co-ordinates. A spiking neural network (SNN) model, which is trained with spike-timing-dependent-plasticity (STDP), is proposed to perform a 2D co-ordinate transformation of the polar representation of an arm position to a Cartesian representation, to create a virtual image map of a haptic input. Through the visual pathway, a position signal corresponding to the haptic input is used to train the SNN with STDP synapses such that after learning the SNN can perform the co-ordinate transformation to generate a representation of the haptic input with the same co-ordinates as a visual image. The model can be applied to explain co-ordinate transformation in spiking neuron based systems. The principle can be used in artificial intelligent systems to process complex co-ordinate transformations represented by biological stimuli.

  18. Discrete-event simulation of nuclear-waste transport in geologic sites subject to disruptive events. Final report

    International Nuclear Information System (INIS)

    Aggarwal, S.; Ryland, S.; Peck, R.

    1980-01-01

    This report outlines a methodology to study the effects of disruptive events on nuclear waste material in stable geologic sites. The methodology is based upon developing a discrete events model that can be simulated on the computer. This methodology allows a natural development of simulation models that use computer resources in an efficient manner. Accurate modeling in this area depends in large part upon accurate modeling of ion transport behavior in the storage media. Unfortunately, developments in this area are not at a stage where there is any consensus on proper models for such transport. Consequently, our work is directed primarily towards showing how disruptive events can be properly incorporated in such a model, rather than as a predictive tool at this stage. When and if proper geologic parameters can be determined, then it would be possible to use this as a predictive model. Assumptions and their bases are discussed, and the mathematical and computer model are described

  19. Finite-element discretization of 3D energy-transport equations for semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Gadau, Stephan

    2007-07-01

    In this thesis a mathematical model was derived that describes the charge and energy transport in semiconductor devices like transistors. Moreover, numerical simulations of these physical processes are performed. In order to accomplish this, methods of theoretical physics, functional analysis, numerical mathematics and computer programming are applied. After an introduction to the status quo of semiconductor device simulation methods and a brief review of historical facts up to now, the attention is shifted to the construction of a model, which serves as the basis of the subsequent derivations in the thesis. Thereby the starting point is an important equation of the theory of dilute gases. From this equation the model equations are derived and specified by means of a series expansion method. This is done in a multi-stage derivation process, which is mainly taken from a scientific paper and which does not constitute the focus of this thesis. In the following phase we specify the mathematical setting and make precise the model assumptions. Thereby we make use of methods of functional analysis. Since the equations we deal with are coupled, we are concerned with a nonstandard problem. In contrary, the theory of scalar elliptic equations is established meanwhile. Subsequently, we are preoccupied with the numerical discretization of the equations. A special finite-element method is used for the discretization. This special approach has to be done in order to make the numerical results appropriate for practical application. By a series of transformations from the discrete model we derive a system of algebraic equations that are eligible for numerical evaluation. Using self-made computer programs we solve the equations to get approximate solutions. These programs are based on new and specialized iteration procedures that are developed and thoroughly tested within the frame of this research work. Due to their importance and their novel status, they are explained and

  20. Pericles and Attila results for the C5G7 MOX benchmark problems

    International Nuclear Information System (INIS)

    Wareing, T.A.; McGhee, J.M.

    2002-01-01

    Recently the Nuclear Energy Agency has published a new benchmark entitled, 'C5G7 MOX Benchmark.' This benchmark is to test the ability of current transport codes to treat reactor core problems without spatial homogenization. The benchmark includes both a two- and three-dimensional problem. We have calculated results for these benchmark problems with our Pericles and Attila codes. Pericles is a one-,two-, and three-dimensional unstructured grid discrete-ordinates code and was used for the twodimensional benchmark problem. Attila is a three-dimensional unstructured tetrahedral mesh discrete-ordinate code and was used for the three-dimensional problem. Both codes use discontinuous finite element spatial differencing. Both codes use diffusion synthetic acceleration (DSA) for accelerating the inner iterations.

  1. Generalization of Spectral Green's Function nodal method for slab-geometry fixed-source adjoint transport problems in S{sub N} formulation

    Energy Technology Data Exchange (ETDEWEB)

    Curbelo, Jesus P.; Silva, Odair P. da; Barros, Ricardo C. [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico. Programa de Pos-graduacao em Modelagem Computacional; Garcia, Carlos R., E-mail: cgh@instec.cu [Departamento de Ingenieria Nuclear, Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba)

    2017-07-01

    Presented here is the application of the adjoint technique for solving source-detector discrete ordinates (S{sub N}) transport problems by using a spectral nodal method. For slab-geometry adjoint S-N model, the adjoint spectral Green's function method (SGF{sup †}) is extended to multigroup problems considering arbitrary L'th-order of scattering anisotropy, and the possibility of non-zero prescribed boundary conditions for the forward S{sub N} transport problems. The SGF{sup †} method converges numerical solutions that are completely free from spatial truncation errors. In order to generate numerical solutions of the SGF{sup †} equations, we use the partial adjoint one-node block inversion (NBI) iterative scheme. Partial adjoint NBI scheme uses the most recent estimates for the node-edge adjoint angular Fluxes in the outgoing directions of a given discretization node, to solve the resulting adjoint SN problem in that node for all the adjoint angular fluxes in the incoming directions, which constitute the outgoing adjoint angular fluxes for the adjacent node in the sweeping directions. Numerical results are given to illustrate the present spectral nodal method features and some advantages of using the adjoint technique in source-detector problems. author)

  2. Awareness on the Implementation of Anti-Smoking Ordinance No. 1S. 2012

    Directory of Open Access Journals (Sweden)

    Rowena E. Mojares

    2014-10-01

    Full Text Available This study aimed to identify the respondent’s profile variable such as gender, age, educational attainment, occupation, and frequency of smoking; to identify the level of awareness of the public on Anti-Smoking Ordinance and to determine the significant difference on the level of awareness in the implementation when grouped according to profile variables. The researchers used the descriptive method of research and utilized two hundred-four (204 respondents. The result showed that the respondents are dominated by male, college graduate and under graduate and most of them are private employees. They agreed that they are aware on the implementation of anti-smoking ordinance no. 1S 2012 because the ordinance was clearly stated, well disseminated, there are authorities prohibiting it and there is a usage of signage. But they agree also that they are less aware about the specific boundary that the ordinance covered, that there is regular monitoring and there is enough number of personnel implementing the ordinance. The researchers recommended that the Pamahalaang Panglunsod may continue to maintain the strict implementation of the Anti-Smoking Ordinance; authorities should specify the boundary covered by the Ordinance and should have enough personnel to implement it,

  3. Space in Numerical and Ordinal Information: A Common Construct?

    Directory of Open Access Journals (Sweden)

    Philipp Alexander Schroeder

    2017-12-01

    Full Text Available Space is markedly involved in numerical processing, both explicitly in instrumental learning and implicitly in mental operations on numbers. Besides action decisions, action generations, and attention, the response-related effect of numerical magnitude or ordinality on space is well documented in the Spatial-Numerical Associations of Response Codes (SNARC effect. Here, right- over left-hand responses become relatively faster with increasing magnitude positions. However, SNARC-like behavioral signatures in non-numerical tasks with ordinal information were also observed and inspired new models integrating seemingly spatial effects of ordinal and numerical metrics. To examine this issue further, we report a comparison between numerical SNARC and ordinal SNARC-like effects to investigate group-level characteristics and individual-level deductions from generalized views, i.e., convergent validity. Participants solved order-relevant (before/after classification and order-irrelevant tasks (font color classification with numerical stimuli 1-5, comprising both magnitude and order information, and with weekday stimuli, comprising only ordinal information. A small correlation between magnitude- and order-related SNARCs was observed, but effects are not pronounced in order-irrelevant color judgments. On the group level, order-relevant spatial-numerical associations were best accounted for by a linear magnitude predictor, whereas the SNARC effect for weekdays was categorical. Limited by the representativeness of these tasks and analyses, results are inconsistent with a single amodal cognitive mechanism that activates space in mental processing of cardinal and ordinal information alike. A possible resolution to maintain a generalized view is proposed by discriminating different spatial activations, possibly mediated by visuospatial and verbal working memory, and by relating results to findings from embodied numerical cognition.

  4. On the influence of spatial discretization in LWR steady state and burnup calculations with HELIOS 1.9

    International Nuclear Information System (INIS)

    Merk, B.; Weiss, F. P.

    2009-01-01

    Cell and burnup calculations are fundamental to all deterministic static and transient 3D full core calculations for different operational states of the reactor. The spatial discretization used for the cell and burnup calculations influences significantly the results of full integral transport solutions. The influence of the discretization on k inf is shown for the steady state case and the influence on the neutron spectrum is analyzed. Moreover, the differences in k inf are presented for different spatial discretization strategies in the burnup calculation of Uranium Oxide (UOX) fuel. The resulting different flux distributions cause significant changes in the isotopic densities. The influence of the discretization strategies on the calculation of homogenized few group cross-sections is investigated. This detailed discretization study demonstrates the need for sufficiently fine discretization to produce reliable and accurate results when using integral transport methods. In contrast to the currently used discretization schemes, refined discretization is especially important in the moderator region of the unit cell to reproduce the influence on the thermal neutron spectrum. Additionally, the need for sufficient discretization affects the idea of full core calculations based on integral transport methods since it has to be discussed whether it is worth to do full core calculations with reduced discretization when facing this strong discretization effect. The computer resources required for full core calculations with fine discretization are currently not available. (authors)

  5. Iterative discrete ordinates solution of the equation for surface-reflected radiance

    Science.gov (United States)

    Radkevich, Alexander

    2017-11-01

    This paper presents a new method of numerical solution of the integral equation for the radiance reflected from an anisotropic surface. The equation relates the radiance at the surface level with BRDF and solutions of the standard radiative transfer problems for a slab with no reflection on its surfaces. It is also shown that the kernel of the equation satisfies the condition of the existence of a unique solution and the convergence of the successive approximations to that solution. The developed method features two basic steps: discretization on a 2D quadrature, and solving the resulting system of algebraic equations with successive over-relaxation method based on the Gauss-Seidel iterative process. Presented numerical examples show good coincidence between the surface-reflected radiance obtained with DISORT and the proposed method. Analysis of contributions of the direct and diffuse (but not yet reflected) parts of the downward radiance to the total solution is performed. Together, they represent a very good initial guess for the iterative process. This fact ensures fast convergence. The numerical evidence is given that the fastest convergence occurs with the relaxation parameter of 1 (no relaxation). An integral equation for BRDF is derived as inversion of the original equation. The potential of this new equation for BRDF retrievals is analyzed. The approach is found not viable as the BRDF equation appears to be an ill-posed problem, and it requires knowledge the surface-reflected radiance on the entire domain of both Sun and viewing zenith angles.

  6. Metal selective co-ordinative self-assembly of π-donors

    Indian Academy of Sciences (India)

    Metal selective co-ordinative nanostructures were constructed by the supramolecular ... observed an anomalous binding of metal ion to the core sulphur groups causing redox changes in the TTF ... attention on metal-assisted co-ordinative self-assembly ..... M TTF-Py in 1:1 CHCl3: MeCN and (c) photographs showing visual.

  7. Determination of neutron buildup factor using analytical solution of one-dimensional neutron diffusion equation in cylindrical geometry

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Julio Cesar L.; Vilhena, Marco Tullio, E-mail: julio.lombaldo@ufrgs.b, E-mail: vilhena@pq.cnpq.b [Universidade Federal do Rio Grande do Sul (DMPA/UFRGS), Porto Alegre, RS (Brazil). Dept. de Matematica Pura e Aplicada. Programa de Pos Graduacao em Matematica Aplicada; Borges, Volnei; Bodmann, Bardo Ernest, E-mail: bardo.bodmann@ufrgs.b, E-mail: borges@ufrgs.b [Universidade Federal do Rio Grande do Sul (PROMEC/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica

    2011-07-01

    The principal idea of this work, consist on formulate an analytical method to solved problems for diffusion of neutrons with isotropic scattering in one-dimensional cylindrical geometry. In this area were develop many works that study the same problem in different system of coordinates as well as cartesian system, nevertheless using numerical methods to solve the shielding problem. In view of good results in this works, we starting with the idea that we can represent a source in the origin of the cylindrical system by a Delta Dirac distribution, we describe the physical modeling and solved the neutron diffusion equation inside of cylinder of radius R. For the case of transport equation, the formulation of discrete ordinates S{sub N} consists in discretize the angular variables in N directions and in using a quadrature angular set for approximate the sources of scattering, where the Diffusion equation consist on S{sub 2} approximated transport equation in discrete ordinates. We solved the neutron diffusion equation with an analytical form by the finite Hankel transform. Was presented also the build-up factor for the case that we have neutron flux inside the cylinder. (author)

  8. Determination of neutron buildup factor using analytical solution of one-dimensional neutron diffusion equation in cylindrical geometry

    International Nuclear Information System (INIS)

    Fernandes, Julio Cesar L.; Vilhena, Marco Tullio; Borges, Volnei; Bodmann, Bardo Ernest

    2011-01-01

    The principal idea of this work, consist on formulate an analytical method to solved problems for diffusion of neutrons with isotropic scattering in one-dimensional cylindrical geometry. In this area were develop many works that study the same problem in different system of coordinates as well as cartesian system, nevertheless using numerical methods to solve the shielding problem. In view of good results in this works, we starting with the idea that we can represent a source in the origin of the cylindrical system by a Delta Dirac distribution, we describe the physical modeling and solved the neutron diffusion equation inside of cylinder of radius R. For the case of transport equation, the formulation of discrete ordinates S N consists in discretize the angular variables in N directions and in using a quadrature angular set for approximate the sources of scattering, where the Diffusion equation consist on S 2 approximated transport equation in discrete ordinates. We solved the neutron diffusion equation with an analytical form by the finite Hankel transform. Was presented also the build-up factor for the case that we have neutron flux inside the cylinder. (author)

  9. 40 CFR 35.935-16 - Sewer use ordinance and evaluation/rehabilitation program.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Sewer use ordinance and evaluation...-Clean Water Act § 35.935-16 Sewer use ordinance and evaluation/rehabilitation program. (a) The grantee... sewer use ordinance, and the grantee is complying with the sewer system evaluation and rehabilitation...

  10. Guidelines for the implementation of the X-ray Ordinance (RoeV). Vol. 2. Recommendations concerning data acquisition and archivation pursuant to paragraph 28 of the X-ray Ordinance passed by the Laender Committee for the X-ray Ordinance, 26/27 January 1989

    International Nuclear Information System (INIS)

    1990-01-01

    The recommendations apply to biomedical radiography and X-ray therapy. They refer to: 1) Patients' personal data as required according to Paragraph 28, sub-sec. 1, X-ray Ordinance. 2) Scope of data to be recorded acc. to Paragraph 28, sub-sec. 2, X-ray Ordinance. 3) Archivation of data acc. to Paragraph 28, sub-sec., 4 + 5, X-ray Ordinance. 4) Passing on of data acc. to Paragraph 28, sub-sec. 6, X-ray Ordinance. 5) Archivation of technical standard data (X-ray equipment specification records). The recommendations' main aim is to provide for radiological protection of the patient and for data showing the radiation doses received by patients. (HP) [de

  11. Metabolite transport and associated sugar signalling systems underpinning source/sink interactions.

    Science.gov (United States)

    Griffiths, Cara A; Paul, Matthew J; Foyer, Christine H

    2016-10-01

    Metabolite transport between organelles, cells and source and sink tissues not only enables pathway co-ordination but it also facilitates whole plant communication, particularly in the transmission of information concerning resource availability. Carbon assimilation is co-ordinated with nitrogen assimilation to ensure that the building blocks of biomass production, amino acids and carbon skeletons, are available at the required amounts and stoichiometry, with associated transport processes making certain that these essential resources are transported from their sites of synthesis to those of utilisation. Of the many possible posttranslational mechanisms that might participate in efficient co-ordination of metabolism and transport only reversible thiol-disulphide exchange mechanisms have been described in detail. Sucrose and trehalose metabolism are intertwined in the signalling hub that ensures appropriate resource allocation to drive growth and development under optimal and stress conditions, with trehalose-6-phosphate acting as an important signal for sucrose availability. The formidable suite of plant metabolite transporters provides enormous flexibility and adaptability in inter-pathway coordination and source-sink interactions. Focussing on the carbon metabolism network, we highlight the functions of different transporter families, and the important of thioredoxins in the metabolic dialogue between source and sink tissues. In addition, we address how these systems can be tailored for crop improvement. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Augmenting Ordinal Methods of Attribute Weight Approximation

    DEFF Research Database (Denmark)

    Daneilson, Mats; Ekenberg, Love; He, Ying

    2014-01-01

    of the obstacles and methods for introducing so-called surrogate weights have proliferated in the form of ordinal ranking methods for criteria weights. Considering the decision quality, one main problem is that the input information allowed in ordinal methods is sometimes too restricted. At the same time, decision...... makers often possess more background information, for example, regarding the relative strengths of the criteria, and might want to use that. We propose combined methods for facilitating the elicitation process and show how this provides a way to use partial information from the strength of preference...

  13. Waste control guidelines according to the Amendment of the Radiation Protection Ordinance

    International Nuclear Information System (INIS)

    Schaefer, B.

    2003-01-01

    Up to now, the Waste Control Guidelines are considered one of the essential evaluation standards for giving an expert opinion about an application for radioactive material disposal. When the new Radiation Protection Ordinance became effective, some parts of the Waste Control Guidelines have become legal regulation. Nevertheless, the Waste Control Guidelines have not been repealed and both regulations exist simultaneously. Therefore, it is now being under discussion how a new subordinate regulation should look like. 14 years of experience with the Waste Control Guidelines have shown that it is not only desirable but necessary to have nationwide standardized regulations for the disposal of radioactive waste. In the following parts, the results of a search made by the TUeV Nord e.V. have been summed up. This search shows for which aspects legal regulation will be necessary in future as well. Those parts of the Waste Control Guidelines, which have been transferred into the Radiation Protection Ordinance, can be found in 72-75 of the Radiation Protection Ordinance. Besides this, other parts are or will be determined by other regulations (AtAV, GGVSE for transport procedures, planned regulations for intermediate storage and clearance). Furthermore, there are some aspects which have hardly been applied in every day's practice (e.g. qualified procedures). In addition to this, there all still some aspects which have to be determined by the Waste Control Guidelines. This refers to the demand for a waste disposal concept, the obligatory application of the Waste Acceptance Criteria for Final Disposal for conditioning, rules for mixing of waste as well as regulations concerning recycling and reuse of radioactive residues. (orig.)

  14. Inferring network structure in non-normal and mixed discrete-continuous genomic data.

    Science.gov (United States)

    Bhadra, Anindya; Rao, Arvind; Baladandayuthapani, Veerabhadran

    2018-03-01

    Inferring dependence structure through undirected graphs is crucial for uncovering the major modes of multivariate interaction among high-dimensional genomic markers that are potentially associated with cancer. Traditionally, conditional independence has been studied using sparse Gaussian graphical models for continuous data and sparse Ising models for discrete data. However, there are two clear situations when these approaches are inadequate. The first occurs when the data are continuous but display non-normal marginal behavior such as heavy tails or skewness, rendering an assumption of normality inappropriate. The second occurs when a part of the data is ordinal or discrete (e.g., presence or absence of a mutation) and the other part is continuous (e.g., expression levels of genes or proteins). In this case, the existing Bayesian approaches typically employ a latent variable framework for the discrete part that precludes inferring conditional independence among the data that are actually observed. The current article overcomes these two challenges in a unified framework using Gaussian scale mixtures. Our framework is able to handle continuous data that are not normal and data that are of mixed continuous and discrete nature, while still being able to infer a sparse conditional sign independence structure among the observed data. Extensive performance comparison in simulations with alternative techniques and an analysis of a real cancer genomics data set demonstrate the effectiveness of the proposed approach. © 2017, The International Biometric Society.

  15. Advanced quadratures and periodic boundary conditions in parallel 3D Sn transport

    International Nuclear Information System (INIS)

    Manalo, K.; Yi, C.; Huang, M.; Sjoden, G.

    2013-01-01

    Significant updates in numerical quadratures have warranted investigation with 3D Sn discrete ordinates transport. We show new applications of quadrature departing from level symmetric ( 2 o) and Pn-Tn (>S 2 o). investigating 3 recently developed quadratures: Even-Odd (EO), Linear-Discontinuous Finite Element - Surface Area (LDFE-SA), and the non-symmetric Icosahedral Quadrature (IC). We discuss implementation changes to 3D Sn codes (applied to Hybrid MOC-Sn TITAN and 3D parallel PENTRAN) that can be performed to accommodate Icosahedral Quadrature, as this quadrature is not 90-degree rotation invariant. In particular, as demonstrated using PENTRAN, the properties of Icosahedral Quadrature are suitable for trivial application using periodic BCs versus that of reflective BCs. In addition to implementing periodic BCs for 3D Sn PENTRAN, we implemented a technique termed 'angular re-sweep' which properly conditions periodic BCs for outer eigenvalue iterative loop convergence. As demonstrated by two simple transport problems (3-group fixed source and 3-group reflected/periodic eigenvalue pin cell), we remark that all of the quadratures we investigated are generally superior to level symmetric quadrature, with Icosahedral Quadrature performing the most efficiently for problems tested. (authors)

  16. Co-ordination of heterovalent cation impurities in molten salts

    International Nuclear Information System (INIS)

    Andreoni, W.; Rovere, M.; Tosi, M.P.

    1982-01-01

    The local liquid structure around heterovalent cation impurities in molten chlorides is discussed in relation to spectroscopic data on solutions of transition metal ions. A tightly packed, low co-ordination shell is shown to be favoured by Coulomb ionic interactions for physically reasonable values of the size of the impurity. A competition between these forces and ''crystal field'' interactions favouring octahedral co-ordination is thus to be expected for many transition metal ions, as suggested by Gruen and McBeth. The transition observed for some transition metal ions from higher to lower co-ordination with increasing temperature is attributed primarily to entropy differences, that are roughly estimated in a solid-like model. (author)

  17. Radiation transport in earth for neutron and gamma ray point sources above an air-ground interface

    International Nuclear Information System (INIS)

    Lillie, R.A.; Santoro, R.T.

    1979-03-01

    Two-dimensional discrete ordinates methods were used to calculate the instantaneous dose rate in silicon and neutron and gamma ray fluences as a function of depth in earth from point sources at various heights (1.0, 61.3, and 731.5 meters) above an air--ground interface. The radiation incident on the earth's surface was transported through an earth-only and an earth--concrete model containing 0.9 meters of borated concrete beginning 0.5 meters below the earth's surface to obtain fluence distributions to a depth of 3.0 meters. The inclusion of borated concrete did not significantly reduce the total instantaneous dose rate in silicon and, in all cases, the secondary gamma ray fluence and corresponding dose are substantially larger than the primary neutron fluence and corresponding dose for depths greater than 0.6 meter. 4 figures, 4 tables

  18. Radiation transport in earth for neutron and gamma-ray point sources above an air-ground interface

    International Nuclear Information System (INIS)

    Lillie, R.A.; Santoro, R.T.

    1980-01-01

    Two-dimensional discrete-ordinates methods have been used to calculate the instantaneous dose rate in silicon and neutron and gamma-ray fluences as a function of depth in earth from point sources at various heights (1.0, 61.3, and 731.5 m) above an air-ground interface. The radiation incident on the earth's surface was transported through an earth-only and an earth-concrete model containing 0.9 m of borated concrete beginning 0.5 m below the earth's surface to obtain fluence distributions to a depth of 3.0 m. The inclusion of borated concrete did not significantly reduce the total instantaneous dose rate in silicon, and in all cases, the secondary gamma-ray fluence and corresponding dose are substantially larger than the primary neutron fluence and corresponding dose for depths > 0.6 m

  19. Stability analysis of the Backward Euler time discretization for the pin-resolved transport transient reactor calculation

    International Nuclear Information System (INIS)

    Zhu, Ang; Xu, Yunlin; Downar, Thomas

    2016-01-01

    Three-dimensional, full core transport modeling with pin-resolved detail for reactor dynamic simulation is important for some multi-physics reactor applications. However, it can be computationally intensive due to the difficulty in maintaining accuracy while minimizing the number of time steps. A recently proposed Transient Multi-Level (TML) methodology overcomes this difficulty by use multi-level transient solvers to capture the physical phenomenal in different time domains and thus maximize the numerical accuracy and computational efficiency. One major problem with the TML method is the negative flux/precursor number density generated using large time steps for the MOC solver, which is due to the Backward Euler discretization scheme. In this paper, the stability issue of Backward Euler discretization is first investigated using the Point Kinetics Equations (PKEs), and the predicted maximum allowed time step for SPERT test 60 case is shown to be less than 10 ms. To overcome this difficulty, linear and exponential transformations are investigated using the PKEs. The linear transformation is shown to increase the maximum time step by a factor of 2, and the exponential transformation is shown to increase the maximum time step by a factor of 5, as well as provide unconditionally stability above a specified threshold. The two sets of transformations are then applied to TML scheme in the MPACT code, and the numerical results presented show good agreement for standard, linear transformed, and exponential transformed maximum time step between the PKEs model and the MPACT whole core transport solution for three different cases, including a pin cell case, a 3D SPERT assembly case and a row of assemblies (“striped assembly case”) from the SPERT model. Finally, the successful whole transient execution of the stripe assembly case shows the ability of the exponential transformation method to use 10 ms and 20 ms time steps, which all failed using the standard method.

  20. Computer code ANISN multiplying media and shielding calculation II. Code description (input/output)

    International Nuclear Information System (INIS)

    Maiorino, J.R.

    1990-01-01

    The user manual of the ANISN computer code describing input and output subroutines is presented. ANISN code was developed to solve one-dimensional transport equation for neutron or gamma rays in slab, sphere or cylinder geometry with general anisotropic scattering. The solution technique is the discrete ordinate method. (M.C.K.)