Ji-Hyun Yeom
Full Text Available Use of non-biological agents for mRNA delivery into living systems in order to induce heterologous expression of functional proteins may provide more advantages than the use of DNA and/or biological vectors for delivery. However, the low efficiency of mRNA delivery into live animals, using non-biological systems, has hampered the use of mRNA as a therapeutic molecule. Here, we show that gold nanoparticle-DNA oligonucleotide (AuNP-DNA conjugates can serve as universal vehicles for more efficient delivery of mRNA into human cells, as well as into xenograft tumors generated in mice. Injections of BAX mRNA loaded on AuNP-DNA conjugates into xenograft tumors resulted in highly efficient mRNA delivery. The delivered mRNA directed the efficient production of biologically functional BAX protein, a pro-apoptotic factor, consequently inhibiting tumor growth. These results demonstrate that mRNA delivery by AuNP-DNA conjugates can serve as a new platform for the development of safe and efficient gene therapy.
Guo, Jun; Zhong, Ruibo; Li, Wanrong; Liu, Yushuang; Bai, Zhijun; Yin, Jun; Liu, Jingran; Gong, Pei [Agricultural Nanocenter, School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018 (China); Zhao, Xinmin, E-mail: zhao.xinmin@hotmail.com [School of Foreign Language, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018 (China); Zhang, Feng, E-mail: fengzhang1978@hotmail.com [Agricultural Nanocenter, School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018 (China)
2015-12-30
Graphical abstract: With the non-uniform coating of amphiphilic polymer, the silver nanoparticles (AgNPs) can form protein coronas which can become discrete protein–nanoparticle conjugates when controlling the protein–nanoparticle molar ratios. The protein's conformational changes upon binding NPs was also studied by both circular dichroism and three-dimensional fluorescence spectroscopy. - Highlights: • The amphiphilic polymer coating can not only transfer hydrophobic NPs into water soluble, but also providing a thick shell responsible for the strong physisorption to proteins without significantly changing their spatial conformations. • NP with discrete proteins can be simply obtained by a simple mixing procedure followed by a gel electrophoresis separation, and the resulting conjugates are robust enough to resist common separation techniques like gel electrophoresis. • In combination with the universal amphiphilic polymer coating strategy and the physisorption mediated protein–NP conjugation, proteins like BSA can be effectively conjugated to different materials such as noble metal, semiconductor and magnetic NPs. • In contrast to chemical coupling methods, the physisorption mediated protein–NP conjugation holds facile, robust and reversible advantages, which may find wide applications in nano-biomedicine field. - Abstract: The nanostructures formed by inorganic nanoparticles together with organic molecules especially biomolecules have attracted increasing attention from both industries and researching fields due to their unique hybrid properties. In this paper, we systemically studied the interactions between amphiphilic polymer coated silver nanoparticles and bovine serum albumins by employing the fluorescence quenching approach in combination with the Stern-Volmer and Hill equations. The binding affinity was determined to 1.30 × 10{sup 7} M{sup −1} and the interaction was spontaneously driven by mainly the van der Waals force and
Guo, Jun; Zhong, Ruibo; Li, Wanrong; Liu, Yushuang; Bai, Zhijun; Yin, Jun; Liu, Jingran; Gong, Pei; Zhao, Xinmin; Zhang, Feng
2015-12-01
The nanostructures formed by inorganic nanoparticles together with organic molecules especially biomolecules have attracted increasing attention from both industries and researching fields due to their unique hybrid properties. In this paper, we systemically studied the interactions between amphiphilic polymer coated silver nanoparticles and bovine serum albumins by employing the fluorescence quenching approach in combination with the Stern-Volmer and Hill equations. The binding affinity was determined to 1.30 × 107 M-1 and the interaction was spontaneously driven by mainly the van der Waals force and hydrogen-bond mediated interactions, and negatively cooperative from the point of view of thermodynamics. With the non-uniform coating of amphiphilic polymer, the silver nanoparticles can form protein coronas which can become discrete protein-nanoparticle conjugates when controlling their molar ratios of mixing. The protein's conformational changes upon binding nanoparticles was also studied by using the three-dimensional fluorescence spectroscopy.
Sun, Huafei; Darmofal, David L.
2014-12-01
In this paper we propose a new high-order solution framework for interface problems on non-interface-conforming meshes. The framework consists of a discontinuous Galerkin (DG) discretization, a simplex cut-cell technique, and an output-based adaptive scheme. We first present a DG discretization with a dual-consistent output evaluation for elliptic interface problems on interface-conforming meshes, and then extend the method to handle multi-physics interface problems, in particular conjugate heat transfer (CHT) problems. The method is then applied to non-interface-conforming meshes using a cut-cell technique, where the interface definition is completely separate from the mesh generation process. No assumption is made on the interface shape (other than Lipschitz continuity). We then equip our strategy with an output-based adaptive scheme for an accurate output prediction. Through numerical examples, we demonstrate high-order convergence for elliptic interface problems and CHT problems with both smooth and non-smooth interface shapes.
Yang, Xiaoli; Hofmann, Ralf; Dapp, Robin; Van de Kamp, Thomas; Rolo, Tomy dos Santos; Xiao, Xianghui; Moosmann, Julian; Kashef, Jubin; Stotzka, Rainer
2015-01-01
High-resolution, three-dimensional (3D) imaging of soft tissues requires the solution of two inverse problems: phase retrieval and the reconstruction of the 3D image from a tomographic stack of two-dimensional (2D) projections. The number of projections per stack should be small to accommodate fast tomography of rapid processes and to constrain X-ray radiation dose to optimal levels to either increase the duration o fin vivo time-lapse series at a given goal for spatial resolution and/or the conservation of structure under X-ray irradiation. In pursuing the 3D reconstruction problem in the sense of compressive sampling theory, we propose to reduce the number of projections by applying an advanced algebraic technique subject to the minimisation of the total variation (TV) in the reconstructed slice. This problem is formulated in a Lagrangian multiplier fashion with the parameter value determined by appealing to a discrete L-curve in conjunction with a conjugate gradient method. The usefulness of this reconstruction modality is demonstrated for simulated and in vivo data, the latter acquired in parallel-beam imaging experiments using synchrotron radiation
Yang, Xiaoli; Hofmann, Ralf; Dapp, Robin; van de Kamp, Thomas; dos Santos Rolo, Tomy; Xiao, Xianghui; Moosmann, Julian; Kashef, Jubin; Stotzka, Rainer
2015-03-09
High-resolution, three-dimensional (3D) imaging of soft tissues requires the solution of two inverse problems: phase retrieval and the reconstruction of the 3D image from a tomographic stack of two-dimensional (2D) projections. The number of projections per stack should be small to accommodate fast tomography of rapid processes and to constrain X-ray radiation dose to optimal levels to either increase the duration of in vivo time-lapse series at a given goal for spatial resolution and/or the conservation of structure under X-ray irradiation. In pursuing the 3D reconstruction problem in the sense of compressive sampling theory, we propose to reduce the number of projections by applying an advanced algebraic technique subject to the minimisation of the total variation (TV) in the reconstructed slice. This problem is formulated in a Lagrangian multiplier fashion with the parameter value determined by appealing to a discrete L-curve in conjunction with a conjugate gradient method. The usefulness of this reconstruction modality is demonstrated for simulated and in vivo data, the latter acquired in parallel-beam imaging experiments using synchrotron radiation.
Prospects of nanoparticle-DNA binding and its implications in medical biotechnology.
An, Hongjie; Jin, Bo
2012-01-01
Bio-nanotechnology is a new interdisciplinary R&D area that integrates engineering and physical science with biology through the development of multifunctional devices and systems, focusing biology inspired processes or their applications, in particular in medical biotechnology. DNA based nanotechnology, in many ways, has been one of the most intensively studied fields in recent years that involves the use and the creation of bio-inspired materials and their technologies for highly selective biosensing, nanoarchitecture engineering and nanoelectronics. Increasing researches have been offered to a fundamental understanding how the interactions between the nanoparticles and DNA molecules could alter DNA molecular structure and its biochemical activities. This minor review describes the mechanisms of the nanoparticle-DNA binding and molecular interactions. We present recent discoveries and research progresses how the nanoparticle-DNA binding could vary DNA molecular structure, DNA detection, and gene therapy. We report a few case studies associated with the application of the nanoparticle-DNA binding devices in medical detection and biotechnology. The potential impacts of the nanoparticles via DNA binding on toxicity of the microorganisms are briefly discussed. The nanoparticle-DNA interactions and their impact on molecular and microbial functionalities have only drown attention in recent a few years. The information presented in this review can provide useful references for further studies on biomedical science and technology. Copyright © 2012 Elsevier Inc. All rights reserved.
Sørensen, John Aasted
2011-01-01
The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics......; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...
Sørensen, John Aasted
2011-01-01
; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics...... to new problems. Relations and functions: Define a product set; define and apply equivalence relations; construct and apply functions. Apply these concepts to new problems. Natural numbers and induction: Define the natural numbers; apply the principle of induction to verify a selection of properties...
Busch, Peter Andre; Zinner Henriksen, Helle
2018-01-01
discretion is suggested to reduce this footprint by influencing or replacing their discretionary practices using ICT. What is less researched is whether digital discretion can cause changes in public policy outcomes, and under what conditions such changes can occur. Using the concept of public service values......This study reviews 44 peer-reviewed articles on digital discretion published in the period from 1998 to January 2017. Street-level bureaucrats have traditionally had a wide ability to exercise discretion stirring debate since they can add their personal footprint on public policies. Digital......, we suggest that digital discretion can strengthen ethical and democratic values but weaken professional and relational values. Furthermore, we conclude that contextual factors such as considerations made by policy makers on the macro-level and the degree of professionalization of street...
Modelling conjugation with stochastic differential equations
Philipsen, Kirsten Riber; Christiansen, Lasse Engbo; Hasman, Henrik
2010-01-01
Enterococcus faecium strains in a rich exhaustible media. The model contains a new expression for a substrate dependent conjugation rate. A maximum likelihood based method is used to estimate the model parameters. Different models including different noise structure for the system and observations are compared......Conjugation is an important mechanism involved in the transfer of resistance between bacteria. In this article a stochastic differential equation based model consisting of a continuous time state equation and a discrete time measurement equation is introduced to model growth and conjugation of two...... using a likelihood-ratio test and Akaike's information criterion. Experiments indicating conjugation on the agar plates selecting for transconjugants motivates the introduction of an extended model, for which conjugation on the agar plate is described in the measurement equation. This model is compared...
Sørensen, John Aasted
2010-01-01
The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Spring 2010 Ectent: 5 ects Class size: 18......The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Spring 2010 Ectent: 5 ects Class size: 18...
Sørensen, John Aasted
2010-01-01
The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Autumn 2010 Ectent: 5 ects Class size: 15......The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Autumn 2010 Ectent: 5 ects Class size: 15...
Caltagirone, Jean-Paul
2014-01-01
This book presents the fundamental principles of mechanics to re-establish the equations of Discrete Mechanics. It introduces physics and thermodynamics associated to the physical modeling. The development and the complementarity of sciences lead to review today the old concepts that were the basis for the development of continuum mechanics. The differential geometry is used to review the conservation laws of mechanics. For instance, this formalism requires a different location of vector and scalar quantities in space. The equations of Discrete Mechanics form a system of equations where the H
Lee, T.D.
1985-01-01
This paper reviews the role of time throughout all phases of mechanics: classical mechanics, non-relativistic quantum mechanics, and relativistic quantum theory. As an example of the relativistic quantum field theory, the case of a massless scalar field interacting with an arbitrary external current is discussed. The comparison between the new discrete theory and the usual continuum formalism is presented. An example is given of a two-dimensional random lattice and its duel. The author notes that there is no evidence that the discrete mechanics is more appropriate than the usual continuum mechanics
Discrete symmetries for spinor field in de Sitter space
Moradi, S.; Rouhani, S.; Takook, M.V.
2005-01-01
Discrete symmetries, parity, time reversal, antipodal, and charge conjugation transformations for spinor field in de Sitter space, are presented in the ambient space notation, i.e., in a coordinate independent way. The PT and PCT transformations are also discussed in this notation. The five-current density is studied and their transformation under the discrete symmetries is discussed
Parker, R Gary
1988-01-01
This book treats the fundamental issues and algorithmic strategies emerging as the core of the discipline of discrete optimization in a comprehensive and rigorous fashion. Following an introductory chapter on computational complexity, the basic algorithmic results for the two major models of polynomial algorithms are introduced--models using matroids and linear programming. Further chapters treat the major non-polynomial algorithms: branch-and-bound and cutting planes. The text concludes with a chapter on heuristic algorithms.Several appendixes are included which review the fundamental ideas o
Dielectrophoresis of gold nanoparticles conjugated to DNA origami structures
Anja Henning-Knechtel
2016-07-01
Full Text Available DNA nanostructures are promising construction materials to bridge the gap between self-assembly of functional molecules and conventional top-down fabrication methods in nanotechnology. Their positioning onto specific locations of a microstructured substrate is an important task towards this aim. Here we study manipulation and positioning of pristine and of gold nanoparticle-conjugated tubular DNA origami structures using ac dielectrophoresis. The dielectrophoretic behavior was investigated employing fluorescence microscopy. For the pristine origami, a significant dielectrophoretic response was found to take place in the megahertz range, whereas, due to the higher polarizability of the metallic nanoparticles, the nanoparticle/DNA hybrid structures required a lower electrical field strength and frequency for a comparable trapping at the edges of the electrode structure. The nanoparticle conjugation additionally resulted in a remarkable alteration of the DNA structure arrangement. The growth of linear, chain-like structures in between electrodes at applied frequencies in the megahertz range was observed. The long-range chain formation is caused by a local, gold nanoparticle-induced field concentration along the DNA nanostructures, which in turn, creates dielectrophoretic forces that enable the observed self-alignment of the hybrid structures.
Discrete gradients in discrete classical mechanics
Renna, L.
1987-01-01
A simple model of discrete classical mechanics is given where, starting from the continuous Hamilton equations, discrete equations of motion are established together with a proper discrete gradient definition. The conservation laws of the total discrete momentum, angular momentum, and energy are demonstrated
Firth, Jean M
1992-01-01
The analysis of signals and systems using transform methods is a very important aspect of the examination of processes and problems in an increasingly wide range of applications. Whereas the initial impetus in the development of methods appropriate for handling discrete sets of data occurred mainly in an electrical engineering context (for example in the design of digital filters), the same techniques are in use in such disciplines as cardiology, optics, speech analysis and management, as well as in other branches of science and engineering. This text is aimed at a readership whose mathematical background includes some acquaintance with complex numbers, linear differen tial equations, matrix algebra, and series. Specifically, a familiarity with Fourier series (in trigonometric and exponential forms) is assumed, and an exposure to the concept of a continuous integral transform is desirable. Such a background can be expected, for example, on completion of the first year of a science or engineering degree cour...
Yong Huang
Full Text Available Porcine circovirus type 2 (PCV2 has emerged as one of the most important pathogens affecting swine production globally. Preclinical identification of PCV2 is very important for effective prophylaxis of PCV2-associated diseases. In this study, we developed an ultrasensitive nanoparticle DNA probe-based PCR assay (UNDP-PCR for PCV2 detection. Magnetic microparticles coated with PCV2 specific DNA probes were used to enrich PCV2 DNA from samples, then gold nanoparticles coated with PCV2 specific oligonucleotides were added to form a sandwich nucleic acid-complex. After the complex was formed, the oligonucleotides were released and characterized by PCR. This assay exhibited about 500-fold more sensitive than conventional PCR, with a detection limit of 2 copies of purified PCV2 genomic DNA and 10 viral copies of PCV2 in serum. The assay has a wide detection range for all of PCV2 genotypes with reliable reproducibility. No cross-reactivity was observed from the samples of other related viruses including porcine circovirus type 1, porcine parvovirus, porcine pseudorabies virus, porcine reproductive and respiratory syndrome virus and classical swine fever virus. The positive detection rate of PCV2 specific UNDP-PCR in 40 preclinical field samples was 27.5%, which appeared greater than that by conventional and real-time PCR and appeared application potency in evaluation of the viral loads levels of preclinical infection samples. The UNDP-PCR assay reported here can reliably rule out false negative results from antibody-based assays, provide a nucleic acid extraction free, specific, ultrasensitive, economic and rapid diagnosis method for preclinical PCV2 infection in field, which may help prevent large-scale outbreaks.
Discrete Curvatures and Discrete Minimal Surfaces
Sun, Xiang
2012-01-01
This thesis presents an overview of some approaches to compute Gaussian and mean curvature on discrete surfaces and discusses discrete minimal surfaces. The variety of applications of differential geometry in visualization and shape design leads
Discrete Curvatures and Discrete Minimal Surfaces
Sun, Xiang
2012-06-01
This thesis presents an overview of some approaches to compute Gaussian and mean curvature on discrete surfaces and discusses discrete minimal surfaces. The variety of applications of differential geometry in visualization and shape design leads to great interest in studying discrete surfaces. With the rich smooth surface theory in hand, one would hope that this elegant theory can still be applied to the discrete counter part. Such a generalization, however, is not always successful. While discrete surfaces have the advantage of being finite dimensional, thus easier to treat, their geometric properties such as curvatures are not well defined in the classical sense. Furthermore, the powerful calculus tool can hardly be applied. The methods in this thesis, including angular defect formula, cotangent formula, parallel meshes, relative geometry etc. are approaches based on offset meshes or generalized offset meshes. As an important application, we discuss discrete minimal surfaces and discrete Koenigs meshes.
Deflation in preconditioned conjugate gradient methods for Finite Element Problems
Vermolen, F.J.; Vuik, C.; Segal, A.
2002-01-01
We investigate the influence of the value of deflation vectors at interfaces on the rate of convergence of preconditioned conjugate gradient methods applied to a Finite Element discretization for an elliptic equation. Our set-up is a Poisson problem in two dimensions with continuous or discontinuous
Fisher, Robert A
1983-01-01
This book appears at a time of intense activity in optical phase conjugation. We chose not to await the maturation of the field, but instead to provide this material in time to be useful in its development. We have tried very hard to elucidate and interrelate the various nonlinear phenomena which can be used for optical phase conjugation.
Integrated circuits based on conjugated polymer monolayer.
Li, Mengmeng; Mangalore, Deepthi Kamath; Zhao, Jingbo; Carpenter, Joshua H; Yan, Hongping; Ade, Harald; Yan, He; Müllen, Klaus; Blom, Paul W M; Pisula, Wojciech; de Leeuw, Dago M; Asadi, Kamal
2018-01-31
It is still a great challenge to fabricate conjugated polymer monolayer field-effect transistors (PoM-FETs) due to intricate crystallization and film formation of conjugated polymers. Here we demonstrate PoM-FETs based on a single monolayer of a conjugated polymer. The resulting PoM-FETs are highly reproducible and exhibit charge carrier mobilities reaching 3 cm 2 V -1 s -1 . The high performance is attributed to the strong interactions of the polymer chains present already in solution leading to pronounced edge-on packing and well-defined microstructure in the monolayer. The high reproducibility enables the integration of discrete unipolar PoM-FETs into inverters and ring oscillators. Real logic functionality has been demonstrated by constructing a 15-bit code generator in which hundreds of self-assembled PoM-FETs are addressed simultaneously. Our results provide the state-of-the-art example of integrated circuits based on a conjugated polymer monolayer, opening prospective pathways for bottom-up organic electronics.
Mimetic discretization methods
Castillo, Jose E
2013-01-01
To help solve physical and engineering problems, mimetic or compatible algebraic discretization methods employ discrete constructs to mimic the continuous identities and theorems found in vector calculus. Mimetic Discretization Methods focuses on the recent mimetic discretization method co-developed by the first author. Based on the Castillo-Grone operators, this simple mimetic discretization method is invariably valid for spatial dimensions no greater than three. The book also presents a numerical method for obtaining corresponding discrete operators that mimic the continuum differential and
Properties of the Simpson discrete fourier transform | Singh ...
The Simpson discrete Fourier transform (SDFT) and its inverse are transformations relating the time and frequency domains. In this paper we state and prove the important properties of shift, circular convolution, conjugation, time reversal and Plancherel's theorem. In addition, we provide an alternative representation of the ...
Time Discretization Techniques
Gottlieb, S.; Ketcheson, David I.
2016-01-01
The time discretization of hyperbolic partial differential equations is typically the evolution of a system of ordinary differential equations obtained by spatial discretization of the original problem. Methods for this time evolution include
Nanostructured conjugated polymers in chemical sensors: synthesis, properties and applications.
Correa, D S; Medeiros, E S; Oliveira, J E; Paterno, L G; Mattoso, Luiz C
2014-09-01
Conjugated polymers are organic materials endowed with a π-electron conjugation along the polymer backbone that present appealing electrical and optical properties for technological applications. By using conjugated polymeric materials in the nanoscale, such properties can be further enhanced. In addition, the use of nanostructured materials makes possible miniaturize devices at the micro/nano scale. The applications of conjugated nanostructured polymers include sensors, actuators, flexible displays, discrete electronic devices, and smart fabric, to name a few. In particular, the use of conjugated polymers in chemical and biological sensors is made feasible owning to their sensitivity to the physicochemical conditions of its surrounding environment, such as chemical composition, pH, dielectric constant, humidity or even temperature. Subtle changes in these conditions bring about variations on the electrical (resistivity and capacitance), optical (absorptivity, luminescence, etc.), and mechanical properties of the conjugated polymer, which can be precisely measured by different experimental methods and ultimately associated with a specific analyte and its concentration. The present review article highlights the main features of conjugated polymers that make them suitable for chemical sensors. An especial emphasis is given to nanostructured sensors systems, which present high sensitivity and selectivity, and find application in beverage and food quality control, pharmaceutical industries, medical diagnosis, environmental monitoring, and homeland security, and other applications as discussed throughout this review.
Qualidade conjugal: mapeando conceitos
Clarisse Mosmann
2006-12-01
Full Text Available Apesar da ampla utilização do conceito de qualidade conjugal, identifica-se falta de clareza conceitual acerca das variáveis que o compõem. Esse artigo apresenta revisão da literatura na área com o objetivo de mapear o conceito de qualidade conjugal. Foram analisadas sete principais teorias sobre o tema: Troca Social, Comportamental, Apego, Teoria da Crise, Interacionismo Simbólico. Pelos postulados propostos nas diferentes teorias, podem-se identificar três grupos de variáveis fundamentais na definição da qualidade conjugal: recursos pessoais dos cônjuges, contexto de inserção do casal e processos adaptativos. Neste sentido, a qualidade conjugal é resultado do processo dinâmico e interativo do casal, razão deste caráter multidimensional.
... version Home Brain, Spinal Cord, and Nerve Disorders Cranial Nerve Disorders Conjugate Gaze Palsies Horizontal gaze palsy Vertical ... Version. DOCTORS: Click here for the Professional Version Cranial Nerve Disorders Overview of the Cranial Nerves Internuclear Ophthalmoplegia ...
Conjugated Polymer Solar Cells
Paraschuk, Dmitry Y
2006-01-01
This report results from a contract tasking Moscow State University as follows: Conjugated polymers are promising materials for many photonics applications, in particular, for photovoltaic and solar cell devices...
Polymers for Protein Conjugation
Gianfranco Pasut
2014-01-01
Full Text Available Polyethylene glycol (PEG at the moment is considered the leading polymer for protein conjugation in view of its unique properties, as well as to its low toxicity in humans, qualities which have been confirmed by its extensive use in clinical practice. Other polymers that are safe, biodegradable and custom-designed have, nevertheless, also been investigated as potential candidates for protein conjugation. This review will focus on natural polymers and synthetic linear polymers that have been used for protein delivery and the results associated with their use. Genetic fusion approaches for the preparation of protein-polypeptide conjugates will be also reviewed and compared with the best known chemical conjugation ones.
Baecklund transformations for discrete Painleve equations: Discrete PII-PV
Sakka, A.; Mugan, U.
2006-01-01
Transformation properties of discrete Painleve equations are investigated by using an algorithmic method. This method yields explicit transformations which relates the solutions of discrete Painleve equations, discrete P II -P V , with different values of parameters. The particular solutions which are expressible in terms of the discrete analogue of the classical special functions of discrete Painleve equations can also be obtained from these transformations
Discrete Gabor transform and discrete Zak transform
Bastiaans, M.J.; Namazi, N.M.; Matthews, K.
1996-01-01
Gabor's expansion of a discrete-time signal into a set of shifted and modulated versions of an elementary signal or synthesis window is introduced, along with the inverse operation, i.e. the Gabor transform, which uses an analysis window that is related to the synthesis window and with the help of
Discrete Mathematics Re "Tooled."
Grassl, Richard M.; Mingus, Tabitha T. Y.
1999-01-01
Indicates the importance of teaching discrete mathematics. Describes how the use of technology can enhance the teaching and learning of discrete mathematics. Explorations using Excel, Derive, and the TI-92 proved how preservice and inservice teachers experienced a new dimension in problem solving and discovery. (ASK)
Hansen, Paul Robert
2015-01-01
To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....
Photoluminescence in conjugated polymers
Furst, J.E.; Laugesen, R.; Dastoor, P.; McNeill, C.
2002-01-01
Full text: Conjugated polymers combine the electronic and optical properties of semiconductors with the processability of polymers. They contain a sequence of alternate single and double carbon bonds so that the overlap of unhybridised p z orbitals creates a delocalised ρ system which gives semiconducting properties with p-bonding (valence) and p* -antibonding (conduction) bands. Photoluminesence (PL) in conjugated polymers results from the radiative decay of singlet excitons confined to a single chain. The present work is the first in a series of studies in our laboratory that will characterize the optical properties of conjugated polymers. The experiment involves the illumination of thin films of conjugated polymer with UV light (I=360 nm) and observing the subsequent fluorescence using a custom-built, fluorescence spectrometer. Photoluminesence spectra provide basic information about the structure of the polymer film. A typical spectrum is shown in the accompanying figure. The position of the first peak is related to the polymer chain length and resolved multiple vibronic peaks are an indication of film structure and morphology. We will also present results related to the optical degradation of these materials when exposed to air and UV light
Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki
2018-05-15
The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.
Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki
2016-05-03
The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.
Integrable discretization s of derivative nonlinear Schroedinger equations
Tsuchida, Takayuki
2002-01-01
We propose integrable discretizations of derivative nonlinear Schroedinger (DNLS) equations such as the Kaup-Newell equation, the Chen-Lee-Liu equation and the Gerdjikov-Ivanov equation by constructing Lax pairs. The discrete DNLS systems admit the reduction of complex conjugation between two dependent variables and possess bi-Hamiltonian structure. Through transformations of variables and reductions, we obtain novel integrable discretizations of the nonlinear Schroedinger (NLS), modified KdV (mKdV), mixed NLS, matrix NLS, matrix KdV, matrix mKdV, coupled NLS, coupled Hirota, coupled Sasa-Satsuma and Burgers equations. We also discuss integrable discretizations of the sine-Gordon equation, the massive Thirring model and their generalizations. (author)
Amini, Bahram; Kamali, Mehdi; Salouti, Mojtaba; Yaghmaei, Parichehreh
2018-06-01
Colorimetric DNA detection is preferred over other methods for clinical molecular diagnosis because it does not require expensive equipment. In the present study, the colorimetric method based on gold nanoparticles (GNPs) and endonuclease enzyme was used for the detection of P. aeruginosa ETA gene. Firstly, the primers and probe for P. aeruginosa exotoxin A (ETA) gene were designed and checked for specificity by the PCR method. Then, GNPs were synthesized using the citrate reduction method and conjugated with the prepared probe to develop the new nano-biosensor. Next, the extracted target DNA of the bacteria was added to GNP-probe complex to check its efficacy for P. aeruginosa ETA gene diagnosis. A decrease in absorbance was seen when GNP-probe-target DNA cleaved into the small fragments of BamHI endonuclease due to the weakened electrostatic interaction between GNPs and the shortened DNA. The right shift of the absorbance peak from 530 to 562 nm occurred after adding the endonuclease. It was measured using a UV-VIS absorption spectroscopy that indicates the existence of the P. aeruginosa ETA gene. Sensitivity was determined in the presence of different concentrations of target DNA of P. aeruginosa. The results obtained from the optimized conditions showed that the absorbance value has linear correlation with concentration of target DNA (R: 0.9850) in the range of 10-50 ng mL-1 with the limit detection of 9.899 ng mL-1. Thus, the specificity of the new method for detection of P. aeruginosa was established in comparison with other bacteria. Additionally, the designed assay was quantitatively applied to detect the P. aeruginosa ETA gene from 103 to 108 CFU mL-1 in real samples with a detection limit of 320 CFU mL-1.
Homogenization of discrete media
Pradel, F.; Sab, K.
1998-01-01
Material such as granular media, beam assembly are easily seen as discrete media. They look like geometrical points linked together thanks to energetic expressions. Our purpose is to extend discrete kinematics to the one of an equivalent continuous material. First we explain how we build the localisation tool for periodic materials according to estimated continuum medium type (classical Cauchy, and Cosserat media). Once the bridge built between discrete and continuum media, we exhibit its application over two bidimensional beam assembly structures : the honey comb and a structural reinforced variation. The new behavior is then applied for the simple plan shear problem in a Cosserat continuum and compared with the real discrete solution. By the mean of this example, we establish the agreement of our new model with real structures. The exposed method has a longer range than mechanics and can be applied to every discrete problems like electromagnetism in which relationship between geometrical points can be summed up by an energetic function. (orig.)
Aydin, Alhun; Sisman, Altug
2016-01-01
By considering the quantum-mechanically minimum allowable energy interval, we exactly count number of states (NOS) and introduce discrete density of states (DOS) concept for a particle in a box for various dimensions. Expressions for bounded and unbounded continua are analytically recovered from discrete ones. Even though substantial fluctuations prevail in discrete DOS, they're almost completely flattened out after summation or integration operation. It's seen that relative errors of analytical expressions of bounded/unbounded continua rapidly decrease for high NOS values (weak confinement or high energy conditions), while the proposed analytical expressions based on Weyl's conjecture always preserve their lower error characteristic. - Highlights: • Discrete density of states considering minimum energy difference is proposed. • Analytical DOS and NOS formulas based on Weyl conjecture are given. • Discrete DOS and NOS functions are examined for various dimensions. • Relative errors of analytical formulas are much better than the conventional ones.
Aydin, Alhun; Sisman, Altug, E-mail: sismanal@itu.edu.tr
2016-03-22
By considering the quantum-mechanically minimum allowable energy interval, we exactly count number of states (NOS) and introduce discrete density of states (DOS) concept for a particle in a box for various dimensions. Expressions for bounded and unbounded continua are analytically recovered from discrete ones. Even though substantial fluctuations prevail in discrete DOS, they're almost completely flattened out after summation or integration operation. It's seen that relative errors of analytical expressions of bounded/unbounded continua rapidly decrease for high NOS values (weak confinement or high energy conditions), while the proposed analytical expressions based on Weyl's conjecture always preserve their lower error characteristic. - Highlights: • Discrete density of states considering minimum energy difference is proposed. • Analytical DOS and NOS formulas based on Weyl conjecture are given. • Discrete DOS and NOS functions are examined for various dimensions. • Relative errors of analytical formulas are much better than the conventional ones.
Okuyama, Yoshifumi
2014-01-01
Discrete Control Systems establishes a basis for the analysis and design of discretized/quantized control systemsfor continuous physical systems. Beginning with the necessary mathematical foundations and system-model descriptions, the text moves on to derive a robust stability condition. To keep a practical perspective on the uncertain physical systems considered, most of the methods treated are carried out in the frequency domain. As part of the design procedure, modified Nyquist–Hall and Nichols diagrams are presented and discretized proportional–integral–derivative control schemes are reconsidered. Schemes for model-reference feedback and discrete-type observers are proposed. Although single-loop feedback systems form the core of the text, some consideration is given to multiple loops and nonlinearities. The robust control performance and stability of interval systems (with multiple uncertainties) are outlined. Finally, the monograph describes the relationship between feedback-control and discrete ev...
Discrete repulsive oscillator wavefunctions
Munoz, Carlos A; Rueda-Paz, Juvenal; Wolf, Kurt Bernardo
2009-01-01
For the study of infinite discrete systems on phase space, the three-dimensional Lorentz algebra and group, so(2,1) and SO(2,1), provide a discrete model of the repulsive oscillator. Its eigenfunctions are found in the principal irreducible representation series, where the compact generator-that we identify with the position operator-has the infinite discrete spectrum of the integers Z, while the spectrum of energies is a double continuum. The right- and left-moving wavefunctions are given by hypergeometric functions that form a Dirac basis for l 2 (Z). Under contraction, the discrete system limits to the well-known quantum repulsive oscillator. Numerical computations of finite approximations raise further questions on the use of Dirac bases for infinite discrete systems.
Morris, J; Johnson, S
2007-12-03
The Distinct Element Method (also frequently referred to as the Discrete Element Method) (DEM) is a Lagrangian numerical technique where the computational domain consists of discrete solid elements which interact via compliant contacts. This can be contrasted with Finite Element Methods where the computational domain is assumed to represent a continuum (although many modern implementations of the FEM can accommodate some Distinct Element capabilities). Often the terms Discrete Element Method and Distinct Element Method are used interchangeably in the literature, although Cundall and Hart (1992) suggested that Discrete Element Methods should be a more inclusive term covering Distinct Element Methods, Displacement Discontinuity Analysis and Modal Methods. In this work, DEM specifically refers to the Distinct Element Method, where the discrete elements interact via compliant contacts, in contrast with Displacement Discontinuity Analysis where the contacts are rigid and all compliance is taken up by the adjacent intact material.
Wachiralurpan, Sirirat; Sriyapai, Thayat; Areekit, Supatra; Sriyapai, Pichapak; Augkarawaritsawong, Suphitcha; Santiwatanakul, Somchai; Chansiri, Kosum
2018-04-01
ABSTRACT Listeria monocytogenes is a major foodborne pathogen of global health concern. Herein, the rapid diagnosis of L. monocytogenes has been achieved using loop-mediated isothermal amplification (LAMP) based on the phosphatidylcholine-phospholipase C gene (plcB). Colorimetric detection was then performed through the formation of DNA concatemers and a gold nanoparticle/DNA probe complex (GNP/DNA probe). The overall detection process was accomplished within approximately 1 h with no need for complicated equipment. The limits of detection for L. monocytogenes in the forms of purified genomic DNA and pure culture were 800 fg and 2.82 CFU mL-1, respectively. No cross reactions were observed from closely related bacteria species. The LAMP-GNP/DNA probe assay was applied to the detection of 200 raw chicken meat samples and compared to routine standard methods. The data revealed that the specificity, sensitivity and accuracy were 100%, 90.20% and 97.50%, respectively. The present assay was 100% in conformity with LAMP-agarose gel electrophoresis assay. Five samples that were negative by both assays appeared to have the pathogen at below the level of detection. The assay can be applied as a rapid direct screening method for L. monocytogenes.
On form factors of the conjugated field in the non-linear Schroedinger model
Kozlowski, K.K.
2011-05-15
Izergin-Korepin's lattice discretization of the non-linear Schroedinger model along with Oota's inverse problem provides one with determinant representations for the form factors of the lattice discretized conjugated field operator. We prove that these form factors converge, in the zero lattice spacing limit, to those of the conjugated field operator in the continuous model. We also compute the large-volume asymptotic behavior of such form factors in the continuous model. These are in particular characterized by Fredholm determinants of operators acting on closed contours. We provide a way of defining these Fredholm determinants in the case of generic paramaters. (orig.)
Izadi, F A; Bagirov, G
2009-01-01
With its origins stretching back several centuries, discrete calculus is now an increasingly central methodology for many problems related to discrete systems and algorithms. The topics covered here usually arise in many branches of science and technology, especially in discrete mathematics, numerical analysis, statistics and probability theory as well as in electrical engineering, but our viewpoint here is that these topics belong to a much more general realm of mathematics; namely calculus and differential equations because of the remarkable analogy of the subject to this branch of mathemati
Finite Discrete Gabor Analysis
Søndergaard, Peter Lempel
2007-01-01
frequency bands at certain times. Gabor theory can be formulated for both functions on the real line and for discrete signals of finite length. The two theories are largely the same because many aspects come from the same underlying theory of locally compact Abelian groups. The two types of Gabor systems...... can also be related by sampling and periodization. This thesis extends on this theory by showing new results for window construction. It also provides a discussion of the problems associated to discrete Gabor bases. The sampling and periodization connection is handy because it allows Gabor systems...... on the real line to be well approximated by finite and discrete Gabor frames. This method of approximation is especially attractive because efficient numerical methods exists for doing computations with finite, discrete Gabor systems. This thesis presents new algorithms for the efficient computation of finite...
Adaptive Discrete Hypergraph Matching.
Yan, Junchi; Li, Changsheng; Li, Yin; Cao, Guitao
2018-02-01
This paper addresses the problem of hypergraph matching using higher-order affinity information. We propose a solver that iteratively updates the solution in the discrete domain by linear assignment approximation. The proposed method is guaranteed to converge to a stationary discrete solution and avoids the annealing procedure and ad-hoc post binarization step that are required in several previous methods. Specifically, we start with a simple iterative discrete gradient assignment solver. This solver can be trapped in an -circle sequence under moderate conditions, where is the order of the graph matching problem. We then devise an adaptive relaxation mechanism to jump out this degenerating case and show that the resulting new path will converge to a fixed solution in the discrete domain. The proposed method is tested on both synthetic and real-world benchmarks. The experimental results corroborate the efficacy of our method.
Goodrich, Christopher
2015-01-01
This text provides the first comprehensive treatment of the discrete fractional calculus. Experienced researchers will find the text useful as a reference for discrete fractional calculus and topics of current interest. Students who are interested in learning about discrete fractional calculus will find this text to provide a useful starting point. Several exercises are offered at the end of each chapter and select answers have been provided at the end of the book. The presentation of the content is designed to give ample flexibility for potential use in a myriad of courses and for independent study. The novel approach taken by the authors includes a simultaneous treatment of the fractional- and integer-order difference calculus (on a variety of time scales, including both the usual forward and backwards difference operators). The reader will acquire a solid foundation in the classical topics of the discrete calculus while being introduced to exciting recent developments, bringing them to the frontiers of the...
Williams, Ruth M
2006-01-01
A review is given of a number of approaches to discrete quantum gravity, with a restriction to those likely to be relevant in four dimensions. This paper is dedicated to Rafael Sorkin on the occasion of his sixtieth birthday
Discrete computational structures
Korfhage, Robert R
1974-01-01
Discrete Computational Structures describes discrete mathematical concepts that are important to computing, covering necessary mathematical fundamentals, computer representation of sets, graph theory, storage minimization, and bandwidth. The book also explains conceptual framework (Gorn trees, searching, subroutines) and directed graphs (flowcharts, critical paths, information network). The text discusses algebra particularly as it applies to concentrates on semigroups, groups, lattices, propositional calculus, including a new tabular method of Boolean function minimization. The text emphasize
Homogenization of discrete media
Pradel, F.; Sab, K. [CERAM-ENPC, Marne-la-Vallee (France)
1998-11-01
Material such as granular media, beam assembly are easily seen as discrete media. They look like geometrical points linked together thanks to energetic expressions. Our purpose is to extend discrete kinematics to the one of an equivalent continuous material. First we explain how we build the localisation tool for periodic materials according to estimated continuum medium type (classical Cauchy, and Cosserat media). Once the bridge built between discrete and continuum media, we exhibit its application over two bidimensional beam assembly structures : the honey comb and a structural reinforced variation. The new behavior is then applied for the simple plan shear problem in a Cosserat continuum and compared with the real discrete solution. By the mean of this example, we establish the agreement of our new model with real structures. The exposed method has a longer range than mechanics and can be applied to every discrete problems like electromagnetism in which relationship between geometrical points can be summed up by an energetic function. (orig.) 7 refs.
DISCRETE MATHEMATICS/NUMBER THEORY
Mrs. Manju Devi*
2017-01-01
Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous. In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics such as integers, graphs, and statements do not vary smoothly in this way, but have distinct, separated values. Discrete mathematics therefore excludes topics in "continuous mathematics" such as calculus and analysis. Discrete objects can often be enumerated by ...
Prateek Sharma
2015-04-01
Full Text Available Abstract Simulation can be regarded as the emulation of the behavior of a real-world system over an interval of time. The process of simulation relies upon the generation of the history of a system and then analyzing that history to predict the outcome and improve the working of real systems. Simulations can be of various kinds but the topic of interest here is one of the most important kind of simulation which is Discrete-Event Simulation which models the system as a discrete sequence of events in time. So this paper aims at introducing about Discrete-Event Simulation and analyzing how it is beneficial to the real world systems.
Discrete systems and integrability
Hietarinta, J; Nijhoff, F W
2016-01-01
This first introductory text to discrete integrable systems introduces key notions of integrability from the vantage point of discrete systems, also making connections with the continuous theory where relevant. While treating the material at an elementary level, the book also highlights many recent developments. Topics include: Darboux and Bäcklund transformations; difference equations and special functions; multidimensional consistency of integrable lattice equations; associated linear problems (Lax pairs); connections with Padé approximants and convergence algorithms; singularities and geometry; Hirota's bilinear formalism for lattices; intriguing properties of discrete Painlevé equations; and the novel theory of Lagrangian multiforms. The book builds the material in an organic way, emphasizing interconnections between the various approaches, while the exposition is mostly done through explicit computations on key examples. Written by respected experts in the field, the numerous exercises and the thoroug...
Exarchakis, Georgios; Lücke, Jörg
2017-11-01
Sparse coding algorithms with continuous latent variables have been the subject of a large number of studies. However, discrete latent spaces for sparse coding have been largely ignored. In this work, we study sparse coding with latents described by discrete instead of continuous prior distributions. We consider the general case in which the latents (while being sparse) can take on any value of a finite set of possible values and in which we learn the prior probability of any value from data. This approach can be applied to any data generated by discrete causes, and it can be applied as an approximation of continuous causes. As the prior probabilities are learned, the approach then allows for estimating the prior shape without assuming specific functional forms. To efficiently train the parameters of our probabilistic generative model, we apply a truncated expectation-maximization approach (expectation truncation) that we modify to work with a general discrete prior. We evaluate the performance of the algorithm by applying it to a variety of tasks: (1) we use artificial data to verify that the algorithm can recover the generating parameters from a random initialization, (2) use image patches of natural images and discuss the role of the prior for the extraction of image components, (3) use extracellular recordings of neurons to present a novel method of analysis for spiking neurons that includes an intuitive discretization strategy, and (4) apply the algorithm on the task of encoding audio waveforms of human speech. The diverse set of numerical experiments presented in this letter suggests that discrete sparse coding algorithms can scale efficiently to work with realistic data sets and provide novel statistical quantities to describe the structure of the data.
Introductory discrete mathematics
Balakrishnan, V K
2010-01-01
This concise text offers an introduction to discrete mathematics for undergraduate students in computer science and mathematics. Mathematics educators consider it vital that their students be exposed to a course in discrete methods that introduces them to combinatorial mathematics and to algebraic and logical structures focusing on the interplay between computer science and mathematics. The present volume emphasizes combinatorics, graph theory with applications to some stand network optimization problems, and algorithms to solve these problems.Chapters 0-3 cover fundamental operations involv
Prateek Sharma
2015-01-01
Abstract Simulation can be regarded as the emulation of the behavior of a real-world system over an interval of time. The process of simulation relies upon the generation of the history of a system and then analyzing that history to predict the outcome and improve the working of real systems. Simulations can be of various kinds but the topic of interest here is one of the most important kind of simulation which is Discrete-Event Simulation which models the system as a discrete sequence of ev...
Organometallic B12-DNA conjugate
Hunger, Miriam; Mutti, Elena; Rieder, Alexander
2014-01-01
Design, synthesis, and structural characterization of a B12-octadecanucleotide are presented herein, a new organometallic B12-DNA conjugate. In such covalent conjugates, the natural B12 moiety may be a versatile vector for controlled in vivo delivery of oligonucleotides to cellular targets in hum...
We also describe discrete-time systems in terms of difference ... A more modern alternative, especially for larger systems, is to convert ... In other words, ..... picture?) State-variable equations are also called state-space equations because the ...
Discrete Lorentzian quantum gravity
Loll, R.
2000-01-01
Just as for non-abelian gauge theories at strong coupling, discrete lattice methods are a natural tool in the study of non-perturbative quantum gravity. They have to reflect the fact that the geometric degrees of freedom are dynamical, and that therefore also the lattice theory must be formulated
Sharp, Karen Tobey
This paper cites information received from a number of sources, e.g., mathematics teachers in two-year colleges, publishers, and convention speakers, about the nature of discrete mathematics and about what topics a course in this subject should contain. Note is taken of the book edited by Ralston and Young which discusses the future of college…
Discrete Exterior Calculus Discretization of Incompressible Navier-Stokes Equations
Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi
2017-01-01
A conservative discretization of incompressible Navier-Stokes equations over surface simplicial meshes is developed using discrete exterior calculus (DEC). Numerical experiments for flows over surfaces reveal a second order accuracy
Conjugation in Escherichia coli
Boyer, Herbert
1966-01-01
Boyer, Herbert (Yale University, New Haven, Conn.). Conjugation in Escherichia coli. J. Bacteriol. 91:1767–1772. 1966.—The sex factor of Escherichia coli K-12 was introduced into an E. coli B/r strain by circumventing the host-controlled modification and restriction incompatibilities known to exist between these closely related strains. The sexual properties of the constructed F+ B strain and its Hfr derivatives were examined. These studies showed that the E. coli strain B/r F+ and Hfr derivatives are similar to the E. coli strain K-12 F+ and Hfr derivatives. However, the site of sex factor integration was found to be dependent on the host genome. PMID:5327905
Electrochromic in conjugated polymers
Picado Valenzuela, Alfredo
2007-01-01
This revision considered object the description of one of the materials with the greatest potential in the field of electrochromic (mainly in the visible region): the conjugated polymers (CP), area of enormous potential both now and in a short time ahead. The CP are insulating materials and organic semiconductors in a state not doped. They can be doped positively or negatively being observed a significant increase in the conductivity and being generated a color change in these materials. The understanding of how optical properties vary based on the chemical structure of the polymer or its mixtures and more precisely of the alternatives that can be entered into the conjugated system or π system to obtain a material that besides to be flexible, environmentally stable, presents the colored states. The revision was centred chiefly in the polypyrrole (Ppy), the polythiophene (PTh) and their derivatives such as poly (3.4-ethylenedioxythiophene) (PEDOT). The advantage of using monomers with variable structure, to adjust the composition of the copolymer, or to blend with the PC, allows to obtain a variety of colored states that can be modulated through the visible spectrum and even with applications to wavelengths outside of this region. Because the PC presented at least two different colored states can be varied continuously as a function of the voltage applied. In some cases, they may submit multicoloured statements, which offers a range of possibilities for their application in flexible electronic devices type screens and windows. Applications include smart windows, camouflage clothing and data screens. This type of material is emerging as one of the substitutes of the traditional inorganic semiconductor, with the advantage of its low cost, high flexibility and the possibility to generate multiple colors through the handling of the monomers in the structure and control of energy of his band gap. (author) [es
Discrete mKdV and discrete sine-Gordon flows on discrete space curves
Inoguchi, Jun-ichi; Kajiwara, Kenji; Matsuura, Nozomu; Ohta, Yasuhiro
2014-01-01
In this paper, we consider the discrete deformation of the discrete space curves with constant torsion described by the discrete mKdV or the discrete sine-Gordon equations, and show that it is formulated as the torsion-preserving equidistant deformation on the osculating plane which satisfies the isoperimetric condition. The curve is reconstructed from the deformation data by using the Sym–Tafel formula. The isoperimetric equidistant deformation of the space curves does not preserve the torsion in general. However, it is possible to construct the torsion-preserving deformation by tuning the deformation parameters. Further, it is also possible to make an arbitrary choice of the deformation described by the discrete mKdV equation or by the discrete sine-Gordon equation at each step. We finally show that the discrete deformation of discrete space curves yields the discrete K-surfaces. (paper)
Application of Conjugate Gradient methods to tidal simulation
Barragy, E.; Carey, G.F.; Walters, R.A.
1993-01-01
A harmonic decomposition technique is applied to the shallow water equations to yield a complex, nonsymmetric, nonlinear, Helmholtz type problem for the sea surface and an accompanying complex, nonlinear diagonal problem for the velocities. The equation for the sea surface is linearized using successive approximation and then discretized with linear, triangular finite elements. The study focuses on applying iterative methods to solve the resulting complex linear systems. The comparative evaluation includes both standard iterative methods for the real subsystems and complex versions of the well known Bi-Conjugate Gradient and Bi-Conjugate Gradient Squared methods. Several Incomplete LU type preconditioners are discussed, and the effects of node ordering, rejection strategy, domain geometry and Coriolis parameter (affecting asymmetry) are investigated. Implementation details for the complex case are discussed. Performance studies are presented and comparisons made with a frontal solver. ?? 1993.
Discrete mathematics with applications
Koshy, Thomas
2003-01-01
This approachable text studies discrete objects and the relationsips that bind them. It helps students understand and apply the power of discrete math to digital computer systems and other modern applications. It provides excellent preparation for courses in linear algebra, number theory, and modern/abstract algebra and for computer science courses in data structures, algorithms, programming languages, compilers, databases, and computation.* Covers all recommended topics in a self-contained, comprehensive, and understandable format for students and new professionals * Emphasizes problem-solving techniques, pattern recognition, conjecturing, induction, applications of varying nature, proof techniques, algorithm development and correctness, and numeric computations* Weaves numerous applications into the text* Helps students learn by doing with a wealth of examples and exercises: - 560 examples worked out in detail - More than 3,700 exercises - More than 150 computer assignments - More than 600 writing projects*...
Discrete and computational geometry
Devadoss, Satyan L
2011-01-01
Discrete geometry is a relatively new development in pure mathematics, while computational geometry is an emerging area in applications-driven computer science. Their intermingling has yielded exciting advances in recent years, yet what has been lacking until now is an undergraduate textbook that bridges the gap between the two. Discrete and Computational Geometry offers a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science. This book covers traditional topics such as convex hulls, triangulations, and Voronoi diagrams, as well as more recent subjects like pseudotriangulations, curve reconstruction, and locked chains. It also touches on more advanced material, including Dehn invariants, associahedra, quasigeodesics, Morse theory, and the recent resolution of the Poincaré conjecture. Connections to real-world applications are made throughout, and algorithms are presented independently of any programming language. This richly illustrated textbook also fe...
2002-01-01
Discrete geometry investigates combinatorial properties of configurations of geometric objects. To a working mathematician or computer scientist, it offers sophisticated results and techniques of great diversity and it is a foundation for fields such as computational geometry or combinatorial optimization. This book is primarily a textbook introduction to various areas of discrete geometry. In each area, it explains several key results and methods, in an accessible and concrete manner. It also contains more advanced material in separate sections and thus it can serve as a collection of surveys in several narrower subfields. The main topics include: basics on convex sets, convex polytopes, and hyperplane arrangements; combinatorial complexity of geometric configurations; intersection patterns and transversals of convex sets; geometric Ramsey-type results; polyhedral combinatorics and high-dimensional convexity; and lastly, embeddings of finite metric spaces into normed spaces. Jiri Matousek is Professor of Com...
Time Discretization Techniques
Gottlieb, S.
2016-10-12
The time discretization of hyperbolic partial differential equations is typically the evolution of a system of ordinary differential equations obtained by spatial discretization of the original problem. Methods for this time evolution include multistep, multistage, or multiderivative methods, as well as a combination of these approaches. The time step constraint is mainly a result of the absolute stability requirement, as well as additional conditions that mimic physical properties of the solution, such as positivity or total variation stability. These conditions may be required for stability when the solution develops shocks or sharp gradients. This chapter contains a review of some of the methods historically used for the evolution of hyperbolic PDEs, as well as cutting edge methods that are now commonly used.
Block-conjugate-gradient method
McCarthy, J.F.
1989-01-01
It is shown that by using the block-conjugate-gradient method several, say s, columns of the inverse Kogut-Susskind fermion matrix can be found simultaneously, in less time than it would take to run the standard conjugate-gradient algorithm s times. The method improves in efficiency relative to the standard conjugate-gradient algorithm as the fermion mass is decreased and as the value of the coupling is pushed to its limit before the finite-size effects become important. Thus it is potentially useful for measuring propagators in large lattice-gauge-theory calculations of the particle spectrum
Mesiar, Radko; Li, J.; Pap, E.
2013-01-01
Roč. 54, č. 3 (2013), s. 357-364 ISSN 0888-613X R&D Projects: GA ČR GAP402/11/0378 Institutional support: RVO:67985556 Keywords : concave integral * pseudo-addition * pseudo-multiplication Subject RIV: BA - General Mathematics Impact factor: 1.977, year: 2013 http://library.utia.cas.cz/separaty/2013/E/mesiar-discrete pseudo-integrals.pdf
Discrete variational Hamiltonian mechanics
Lall, S; West, M
2006-01-01
The main contribution of this paper is to present a canonical choice of a Hamiltonian theory corresponding to the theory of discrete Lagrangian mechanics. We make use of Lagrange duality and follow a path parallel to that used for construction of the Pontryagin principle in optimal control theory. We use duality results regarding sensitivity and separability to show the relationship between generating functions and symplectic integrators. We also discuss connections to optimal control theory and numerical algorithms
Jalnapurkar, Sameer M; Leok, Melvin; Marsden, Jerrold E; West, Matthew
2006-01-01
This paper develops the theory of Abelian Routh reduction for discrete mechanical systems and applies it to the variational integration of mechanical systems with Abelian symmetry. The reduction of variational Runge-Kutta discretizations is considered, as well as the extent to which symmetry reduction and discretization commute. These reduced methods allow the direct simulation of dynamical features such as relative equilibria and relative periodic orbits that can be obscured or difficult to identify in the unreduced dynamics. The methods are demonstrated for the dynamics of an Earth orbiting satellite with a non-spherical J 2 correction, as well as the double spherical pendulum. The J 2 problem is interesting because in the unreduced picture, geometric phases inherent in the model and those due to numerical discretization can be hard to distinguish, but this issue does not appear in the reduced algorithm, where one can directly observe interesting dynamical structures in the reduced phase space (the cotangent bundle of shape space), in which the geometric phases have been removed. The main feature of the double spherical pendulum example is that it has a non-trivial magnetic term in its reduced symplectic form. Our method is still efficient as it can directly handle the essential non-canonical nature of the symplectic structure. In contrast, a traditional symplectic method for canonical systems could require repeated coordinate changes if one is evoking Darboux' theorem to transform the symplectic structure into canonical form, thereby incurring additional computational cost. Our method allows one to design reduced symplectic integrators in a natural way, despite the non-canonical nature of the symplectic structure
Discrete port-Hamiltonian systems
Talasila, V.; Clemente-Gallardo, J.; Schaft, A.J. van der
2006-01-01
Either from a control theoretic viewpoint or from an analysis viewpoint it is necessary to convert smooth systems to discrete systems, which can then be implemented on computers for numerical simulations. Discrete models can be obtained either by discretizing a smooth model, or by directly modeling
A paradigm for discrete physics
Noyes, H.P.; McGoveran, D.; Etter, T.; Manthey, M.J.; Gefwert, C.
1987-01-01
An example is outlined for constructing a discrete physics using as a starting point the insight from quantum physics that events are discrete, indivisible and non-local. Initial postulates are finiteness, discreteness, finite computability, absolute nonuniqueness (i.e., homogeneity in the absence of specific cause) and additivity
Conjugate gradient coupled with multigrid for an indefinite problem
Gozani, J.; Nachshon, A.; Turkel, E.
1984-01-01
An iterative algorithm for the Helmholtz equation is presented. This scheme was based on the preconditioned conjugate gradient method for the normal equations. The preconditioning is one cycle of a multigrid method for the discrete Laplacian. The smoothing algorithm is red-black Gauss-Seidel and is constructed so it is a symmetric operator. The total number of iterations needed by the algorithm is independent of h. By varying the number of grids, the number of iterations depends only weakly on k when k(3)h(2) is constant. Comparisons with a SSOR preconditioner are presented.
Two new discrete integrable systems
Chen Xiao-Hong; Zhang Hong-Qing
2013-01-01
In this paper, we focus on the construction of new (1+1)-dimensional discrete integrable systems according to a subalgebra of loop algebra Ã 1 . By designing two new (1+1)-dimensional discrete spectral problems, two new discrete integrable systems are obtained, namely, a 2-field lattice hierarchy and a 3-field lattice hierarchy. When deriving the two new discrete integrable systems, we find the generalized relativistic Toda lattice hierarchy and the generalized modified Toda lattice hierarchy. Moreover, we also obtain the Hamiltonian structures of the two lattice hierarchies by means of the discrete trace identity
Entanglements in Conjugated Polymers
Xie, Renxuan; Lee, Youngmin; Aplan, Melissa; Caggiano, Nick; Gomez, Enrique; Colby, Ralph
Conjugated polymers, such as poly(3-hexylthiophene-2,5-diyl) (P3HT) and poly-((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(thiophen-5-yl)-2,1,3-benzothiadiazole]-2',2''-diyl) (PFTBT), are widely used as hole and electron transport materials in a variety of electronic devices. However, fundamental knowledge regarding chain entanglements and nematic-to-isotropic transition is still lacking and are crucial to maximize charge transport properties. A systematic melt rheology study on P3HT with various molecular weights and regio regularities was performed. We find that the entanglement molecular weight Me is 5.0 kg/mol for regiorandom P3HT, but the apparent Me for regioregular P3HT is significantly higher. The difference is postulated to arise from the presence of a nematic phase only in regioregular P3HT. Analogously, PFTBT shows a clear rheological signature of the nematic-to-isotropic transition as a reversible sharp transition at 278 C. Shearing of this nematic phase leads to anisotropic crystalline order in PFTBT. We postulate that aligning the microstructure will impact charge transport and thereby advance the field of conducting polymers. National Science Foundation.
Protein carriers of conjugate vaccines
Pichichero, Michael E
2013-01-01
The immunogenicity of polysaccharides as human vaccines was enhanced by coupling to protein carriers. Conjugation transformed the T cell-independent polysaccharide vaccines of the past to T cell-dependent antigenic vaccines that were much more immunogenic and launched a renaissance in vaccinology. This review discusses the conjugate vaccines for prevention of infections caused by Hemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningitidis. Specifically, the characteristics of the proteins used in the construction of the vaccines including CRM, tetanus toxoid, diphtheria toxoid, Neisseria meningitidis outer membrane complex, and Hemophilus influenzae protein D are discussed. The studies that established differences among and key features of conjugate vaccines including immunologic memory induction, reduction of nasopharyngeal colonization and herd immunity, and antibody avidity and avidity maturation are presented. Studies of dose, schedule, response to boosters, of single protein carriers with single and multiple polysaccharides, of multiple protein carriers with multiple polysaccharides and conjugate vaccines administered concurrently with other vaccines are discussed along with undesirable consequences of conjugate vaccines. The clear benefits of conjugate vaccines in improving the protective responses of the immature immune systems of young infants and the senescent immune systems of the elderly have been made clear and opened the way to development of additional vaccines using this technology for future vaccine products. PMID:23955057
Hirsch, M; Peinado, E; Valle, J W F
2010-01-01
We propose a new motivation for the stability of dark matter (DM). We suggest that the same non-abelian discrete flavor symmetry which accounts for the observed pattern of neutrino oscillations, spontaneously breaks to a Z2 subgroup which renders DM stable. The simplest scheme leads to a scalar doublet DM potentially detectable in nuclear recoil experiments, inverse neutrino mass hierarchy, hence a neutrinoless double beta decay rate accessible to upcoming searches, while reactor angle equal to zero gives no CP violation in neutrino oscillations.
Wuensche, Andrew
DDLab is interactive graphics software for creating, visualizing, and analyzing many aspects of Cellular Automata, Random Boolean Networks, and Discrete Dynamical Networks in general and studying their behavior, both from the time-series perspective — space-time patterns, and from the state-space perspective — attractor basins. DDLab is relevant to research, applications, and education in the fields of complexity, self-organization, emergent phenomena, chaos, collision-based computing, neural networks, content addressable memory, genetic regulatory networks, dynamical encryption, generative art and music, and the study of the abstract mathematical/physical/dynamical phenomena in their own right.
Conjugated Fatty Acid Synthesis
Rawat, Richa; Yu, Xiao-Hong; Sweet, Marie; Shanklin, John
2012-01-01
Conjugated linolenic acids (CLNs), 18:3 Δ9,11,13, lack the methylene groups found between the double bonds of linolenic acid (18:3 Δ9,12,15). CLNs are produced by conjugase enzymes that are homologs of the oleate desaturases FAD2. The goal of this study was to map the domain(s) within the Momordica charantia conjugase (FADX) responsible for CLN formation. To achieve this, a series of Momordica FADX-Arabidopsis FAD2 chimeras were expressed in the Arabidopsis fad3fae1 mutant, and the transformed seeds were analyzed for the accumulation of CLN. These experiments identified helix 2 and the first histidine box as a determinant of conjugase product partitioning into punicic acid (18:3 Δ9cis,11trans,13cis) or α-eleostearic acid (18:3 Δ9cis,11trans,13trans). This was confirmed by analysis of a FADX mutant containing six substitutions in which the sequence of helix 2 and first histidine box was converted to that of FAD2. Each of the six FAD2 substitutions was individually converted back to the FADX equivalent identifying residues 111 and 115, adjacent to the first histidine box, as key determinants of conjugase product partitioning. Additionally, expression of FADX G111V and FADX G111V/D115E resulted in an approximate doubling of eleostearic acid accumulation to 20.4% and 21.2%, respectively, compared with 9.9% upon expression of the native Momordica FADX. Like the Momordica conjugase, FADX G111V and FADX D115E produced predominantly α-eleostearic acid and little punicic acid, but the FADX G111V/D115E double mutant produced approximately equal amounts of α-eleostearic acid and its isomer, punicic acid, implicating an interactive effect of residues 111 and 115 in punicic acid formation. PMID:22451660
Souza, Manoelito M. de
1997-01-01
We discuss the physical meaning and the geometric interpretation of implementation in classical field theories. The origin of infinities and other inconsistencies in field theories is traced to fields defined with support on the light cone; a finite and consistent field theory requires a light-cone generator as the field support. Then, we introduce a classical field theory with support on the light cone generators. It results on a description of discrete (point-like) interactions in terms of localized particle-like fields. We find the propagators of these particle-like fields and discuss their physical meaning, properties and consequences. They are conformally invariant, singularity-free, and describing a manifestly covariant (1 + 1)-dimensional dynamics in a (3 = 1) spacetime. Remarkably this conformal symmetry remains even for the propagation of a massive field in four spacetime dimensions. We apply this formalism to Classical electrodynamics and to the General Relativity Theory. The standard formalism with its distributed fields is retrieved in terms of spacetime average of the discrete field. Singularities are the by-products of the averaging process. This new formalism enlighten the meaning and the problem of field theory, and may allow a softer transition to a quantum theory. (author)
Conjugate gradient minimisation approach to generating holographic traps for ultracold atoms.
Harte, Tiffany; Bruce, Graham D; Keeling, Jonathan; Cassettari, Donatella
2014-11-03
Direct minimisation of a cost function can in principle provide a versatile and highly controllable route to computational hologram generation. Here we show that the careful design of cost functions, combined with numerically efficient conjugate gradient minimisation, establishes a practical method for the generation of holograms for a wide range of target light distributions. This results in a guided optimisation process, with a crucial advantage illustrated by the ability to circumvent optical vortex formation during hologram calculation. We demonstrate the implementation of the conjugate gradient method for both discrete and continuous intensity distributions and discuss its applicability to optical trapping of ultracold atoms.
Discrete Exterior Calculus Discretization of Incompressible Navier-Stokes Equations
Mohamed, Mamdouh S.
2017-05-23
A conservative discretization of incompressible Navier-Stokes equations over surface simplicial meshes is developed using discrete exterior calculus (DEC). Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy otherwise. The mimetic character of many of the DEC operators provides exact conservation of both mass and vorticity, in addition to superior kinetic energy conservation. The employment of barycentric Hodge star allows the discretization to admit arbitrary simplicial meshes. The discretization scheme is presented along with various numerical test cases demonstrating its main characteristics.
Research study of conjugate materials; Conjugate material no chosa kenkyu
NONE
1998-03-01
The paper reported an introductory research on possibilities of new glass `conjugate materials.` The report took up the structure and synthetic process of conjugate materials to be researched/developed, classified them according to structural elements on molecular, nanometer and cluster levels, and introduced the structures and functions. Further, as glasses with new functions to be proposed, the paper introduced transparent and high-strength glass used for houses and vehicles, light modulation glass which realizes energy saving and optical data processing, and environmentally functional glass which realizes environmental cleaning or high performance biosensor. An initial survey was also conducted on rights of intellectual property to be taken notice of in Japan and abroad in the present situation. Reports were summed up and introduced of Osaka National Research Institute, Electrotechnical Laboratory, and National Industrial Research Institute of Nagoya which are all carrying out leading studies of conjugate materials. 235 refs., 135 figs., 6 tabs.
Conjugated polymer nanoparticles, methods of using, and methods of making
Habuchi, Satoshi
2017-03-16
Embodiments of the present disclosure provide for conjugated polymer nanoparticle, method of making conjugated polymer nanoparticles, method of using conjugated polymer nanoparticle, polymers, and the like.
Conjugated polymer nanoparticles, methods of using, and methods of making
Habuchi, Satoshi; Piwonski, Hubert Marek; Michinobu, Tsuyoshi
2017-01-01
Embodiments of the present disclosure provide for conjugated polymer nanoparticle, method of making conjugated polymer nanoparticles, method of using conjugated polymer nanoparticle, polymers, and the like.
Advances in discrete differential geometry
2016-01-01
This is one of the first books on a newly emerging field of discrete differential geometry and an excellent way to access this exciting area. It surveys the fascinating connections between discrete models in differential geometry and complex analysis, integrable systems and applications in computer graphics. The authors take a closer look at discrete models in differential geometry and dynamical systems. Their curves are polygonal, surfaces are made from triangles and quadrilaterals, and time is discrete. Nevertheless, the difference between the corresponding smooth curves, surfaces and classical dynamical systems with continuous time can hardly be seen. This is the paradigm of structure-preserving discretizations. Current advances in this field are stimulated to a large extent by its relevance for computer graphics and mathematical physics. This book is written by specialists working together on a common research project. It is about differential geometry and dynamical systems, smooth and discrete theories, ...
Poisson hierarchy of discrete strings
Ioannidou, Theodora; Niemi, Antti J.
2016-01-01
The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.
Poisson hierarchy of discrete strings
Ioannidou, Theodora, E-mail: ti3@auth.gr [Faculty of Civil Engineering, School of Engineering, Aristotle University of Thessaloniki, 54249, Thessaloniki (Greece); Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se [Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108, Uppsala (Sweden); Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200, Tours (France); Department of Physics, Beijing Institute of Technology, Haidian District, Beijing 100081 (China)
2016-01-28
The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.
Conjugated polymer zwitterions and solar cells comprising conjugated polymer zwitterions
Emrick, Todd; Russell, Thomas; Page, Zachariah; Liu, Yao
2018-06-05
A conjugated polymer zwitterion includes repeating units having structure (I), (II), or a combination thereof ##STR00001## wherein Ar is independently at each occurrence a divalent substituted or unsubstituted C3-30 arylene or heteroarylene group; L is independently at each occurrence a divalent C1-16 alkylene group, C6-30arylene or heteroarylene group, or alkylene oxide group; and R1 is independently at each occurrence a zwitterion. A polymer solar cell including the conjugated polymer zwitterion is also disclosed.
Principles of discrete time mechanics
Jaroszkiewicz, George
2014-01-01
Could time be discrete on some unimaginably small scale? Exploring the idea in depth, this unique introduction to discrete time mechanics systematically builds the theory up from scratch, beginning with the historical, physical and mathematical background to the chronon hypothesis. Covering classical and quantum discrete time mechanics, this book presents all the tools needed to formulate and develop applications of discrete time mechanics in a number of areas, including spreadsheet mechanics, classical and quantum register mechanics, and classical and quantum mechanics and field theories. A consistent emphasis on contextuality and the observer-system relationship is maintained throughout.
Dark discrete gauge symmetries
Batell, Brian
2011-01-01
We investigate scenarios in which dark matter is stabilized by an Abelian Z N discrete gauge symmetry. Models are surveyed according to symmetries and matter content. Multicomponent dark matter arises when N is not prime and Z N contains one or more subgroups. The dark sector interacts with the visible sector through the renormalizable kinetic mixing and Higgs portal operators, and we highlight the basic phenomenology in these scenarios. In particular, multiple species of dark matter can lead to an unconventional nuclear recoil spectrum in direct detection experiments, while the presence of new light states in the dark sector can dramatically affect the decays of the Higgs at the Tevatron and LHC, thus providing a window into the gauge origin of the stability of dark matter.
Noyes, H.P.; Starson, S.
1991-03-01
Discrete physics, because it replaces time evolution generated by the energy operator with a global bit-string generator (program universe) and replaces ''fields'' with the relativistic Wheeler-Feynman ''action at a distance,'' allows the consistent formulation of the concept of signed gravitational charge for massive particles. The resulting prediction made by this version of the theory is that free anti-particles near the surface of the earth will ''fall'' up with the same acceleration that the corresponding particles fall down. So far as we can see, no current experimental information is in conflict with this prediction of our theory. The experiment crusis will be one of the anti-proton or anti-hydrogen experiments at CERN. Our prediction should be much easier to test than the small effects which those experiments are currently designed to detect or bound. 23 refs
On the Solution of the Eigenvalue Assignment Problem for Discrete-Time Systems
El-Sayed M. E. Mostafa
2017-01-01
Full Text Available The output feedback eigenvalue assignment problem for discrete-time systems is considered. The problem is formulated first as an unconstrained minimization problem, where a three-term nonlinear conjugate gradient method is proposed to find a local solution. In addition, a cut to the objective function is included, yielding an inequality constrained minimization problem, where a logarithmic barrier method is proposed for finding the local solution. The conjugate gradient method is further extended to tackle the eigenvalue assignment problem for the two cases of decentralized control systems and control systems with time delay. The performance of the methods is illustrated through various test examples.
Control of Discrete Event Systems
Smedinga, Rein
1989-01-01
Systemen met discrete gebeurtenissen spelen in vele gebieden een rol. In dit proefschrift staat de volgorde van gebeurtenissen centraal en worden tijdsaspecten buiten beschouwing gelaten. In dat geval kunnen systemen met discrete gebeurtenissen goed worden gemodelleerd door gebruik te maken van
Discrete Mathematics and Its Applications
Oxley, Alan
2010-01-01
The article gives ideas that lecturers of undergraduate Discrete Mathematics courses can use in order to make the subject more interesting for students and encourage them to undertake further studies in the subject. It is possible to teach Discrete Mathematics with little or no reference to computing. However, students are more likely to be…
Discrete Mathematics and Curriculum Reform.
Kenney, Margaret J.
1996-01-01
Defines discrete mathematics as the mathematics necessary to effect reasoned decision making in finite situations and explains how its use supports the current view of mathematics education. Discrete mathematics can be used by curriculum developers to improve the curriculum for students of all ages and abilities. (SLD)
Connections on discrete fibre bundles
Manton, N.S.; Cambridge Univ.
1987-01-01
A new approach to gauge fields on a discrete space-time is proposed, in which the fundamental object is a discrete version of a principal fibre bundle. If the bundle is twisted, the gauge fields are topologically non-trivial automatically. (orig.)
Discrete dynamics versus analytic dynamics
Toxværd, Søren
2014-01-01
For discrete classical Molecular dynamics obtained by the “Verlet” algorithm (VA) with the time increment h there exists a shadow Hamiltonian H˜ with energy E˜(h) , for which the discrete particle positions lie on the analytic trajectories for H˜ . Here, we proof that there, independent...... of such an analytic analogy, exists an exact hidden energy invariance E * for VA dynamics. The fact that the discrete VA dynamics has the same invariances as Newtonian dynamics raises the question, which of the formulations that are correct, or alternatively, the most appropriate formulation of classical dynamics....... In this context the relation between the discrete VA dynamics and the (general) discrete dynamics investigated by Lee [Phys. Lett. B122, 217 (1983)] is presented and discussed....
Modern approaches to discrete curvature
Romon, Pascal
2017-01-01
This book provides a valuable glimpse into discrete curvature, a rich new field of research which blends discrete mathematics, differential geometry, probability and computer graphics. It includes a vast collection of ideas and tools which will offer something new to all interested readers. Discrete geometry has arisen as much as a theoretical development as in response to unforeseen challenges coming from applications. Discrete and continuous geometries have turned out to be intimately connected. Discrete curvature is the key concept connecting them through many bridges in numerous fields: metric spaces, Riemannian and Euclidean geometries, geometric measure theory, topology, partial differential equations, calculus of variations, gradient flows, asymptotic analysis, probability, harmonic analysis, graph theory, etc. In spite of its crucial importance both in theoretical mathematics and in applications, up to now, almost no books have provided a coherent outlook on this emerging field.
Conjugal Pairing in Escherichia Coli
Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 8. Conjugal Pairing in Escherichia Coli. Joshua Lederberg. Classics Volume 13 Issue 8 August 2008 pp 793-794. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/013/08/0793-0794 ...
Persistence Mechanisms of Conjugative Plasmids
Bahl, Martin Iain; Hansen, Lars H.; Sørensen, Søren Johannes
2009-01-01
Are plasmids selfish parasitic DNA molecules or an integrated part of the bacterial genome? This chapter reviews the current understanding of the persistence mechanisms of conjugative plasmids harbored by bacterial cells and populations. The diversity and intricacy of mechanisms affecting the suc...
Orderings for conjugate gradient preconditionings
Ortega, James M.
1991-01-01
The effect of orderings on the rate of convergence of the conjugate gradient method with SSOR or incomplete Cholesky preconditioning is examined. Some results also are presented that help to explain why red/black ordering gives an inferior rate of convergence.
Bacteriophytochromes control conjugation in Agrobacterium fabrum.
Bai, Yingnan; Rottwinkel, Gregor; Feng, Juan; Liu, Yiyao; Lamparter, Tilman
2016-08-01
Bacterial conjugation, the transfer of single stranded plasmid DNA from donor to recipient cell, is mediated through the type IV secretion system. We performed conjugation assays using a transmissible artificial plasmid as reporter. With this assay, conjugation in Agrobacterium fabrum was modulated by the phytochromes Agp1 and Agp2, photoreceptors that are most sensitive in the red region of visible light. In conjugation studies with wild-type donor cells carrying a pBIN-GUSINT plasmid as reporter that lacked the Ti (tumor inducing) plasmid, no conjugation was observed. When either agp1(-) or agp2(-) knockout donor strains were used, plasmid DNA was delivered to the recipient, indicating that both phytochromes suppress conjugation in the wild type donor. In the recipient strains, the loss of Agp1 or Agp2 led to diminished conjugation. When wild type cells with Ti plasmid and pBIN-GUS reporter plasmid were used as donor, a high rate of conjugation was observed. The DNA transfer was down regulated by red or far-red light by a factor of 3.5. With agp1(-) or agp2(-) knockout donor cells, conjugation in the dark was about 10 times lower than with the wild type donor, and with the double knockout donor no conjugation was observed. These results imply that the phytochrome system has evolved to inhibit conjugation in the light. The decrease of conjugation under different temperature correlated with the decrease of phytochrome autophosphorylation. Copyright © 2015 Elsevier B.V. All rights reserved.
REVIEW ARTICLE Conjugated Hyperbilirubinaemia in Early Infancy ...
REVIEW ARTICLE Conjugated Hyperbilirubinaemia in Early Infancy. AOK Johnson. Abstract. Conjugated hyperbilirubinaemia exists when the conjugated serum bilirubin level is more than 2 mg/dl or more than 20 per cent of the total serum bilirubin. It is always pathological in early infancy. The causes are many and diverse ...
Purification of SUMO conjugating enzymes and kinetic analysis of substrate conjugation
Yunus, Ali A.; Lima, Christopher D.
2009-01-01
SUMO conjugation to protein substrates requires the concerted action of a dedicated E2 ubiquitin conjugation enzyme (Ubc9) and associated E3 ligases. Although Ubc9 can directly recognize and modify substrate lysine residues that occur within a consensus site for SUMO modification, E3 ligases can redirect specificity and enhance conjugation rates during SUMO conjugation in vitro and in vivo. In this chapter, we will describe methods utilized to purify SUMO conjugating enzymes and model substrates which can be used for analysis of SUMO conjugation in vitro. We will also describe methods to extract kinetic parameters during E3-dependent or E3-independent substrate conjugation. PMID:19107417
Discretion and Disproportionality
Jason A. Grissom
2015-12-01
Full Text Available Students of color are underrepresented in gifted programs relative to White students, but the reasons for this underrepresentation are poorly understood. We investigate the predictors of gifted assignment using nationally representative, longitudinal data on elementary students. We document that even among students with high standardized test scores, Black students are less likely to be assigned to gifted services in both math and reading, a pattern that persists when controlling for other background factors, such as health and socioeconomic status, and characteristics of classrooms and schools. We then investigate the role of teacher discretion, leveraging research from political science suggesting that clients of government services from traditionally underrepresented groups benefit from diversity in the providers of those services, including teachers. Even after conditioning on test scores and other factors, Black students indeed are referred to gifted programs, particularly in reading, at significantly lower rates when taught by non-Black teachers, a concerning result given the relatively low incidence of assignment to own-race teachers among Black students.
Vlad, Valentin I.; Ionescu-Pallas, Nicholas
2000-10-01
The Planck radiation spectrum of ideal cubic and spherical cavities, in the region of small adiabatic invariance, γ = TV 1/3 , is shown to be discrete and strongly dependent on the cavity geometry and temperature. This behavior is the consequence of the random distribution of the state weights in the cubic cavity and of the random overlapping of the successive multiplet components, for the spherical cavity. The total energy (obtained by summing up the exact contributions of the eigenvalues and their weights, for low values of the adiabatic invariance) does not obey any longer Stefan-Boltzmann law. The new law includes a corrective factor depending on γ and imposes a faster decrease of the total energy to zero, for γ → 0. We have defined the double quantized regime both for cubic and spherical cavities by the superior and inferior limits put on the principal quantum numbers or the adiabatic invariance. The total energy of the double quantized cavities shows large differences from the classical calculations over unexpected large intervals, which are measurable and put in evidence important macroscopic quantum effects. (author)
Spinors in euclidean field theory, complex structures and discrete symmetries
Wetterich, C.
2011-01-01
We discuss fermions for arbitrary dimensions and signature of the metric, with special emphasis on euclidean space. Generalized Majorana spinors are defined for d=2,3,4,8,9mod8, independently of the signature. These objects permit a consistent analytic continuation of Majorana spinors in Minkowski space to euclidean signature. Compatibility of charge conjugation with complex conjugation requires for euclidean signature a new complex structure which involves a reflection in euclidean time. The possible complex structures for Minkowski and euclidean signature can be understood in terms of a modulo two periodicity in the signature. The concepts of a real action and hermitean observables depend on the choice of the complex structure. For a real action the expectation values of all hermitean multi-fermion observables are real. This holds for arbitrary signature, including euclidean space. In particular, a chemical potential is compatible with a real action for the euclidean theory. We also discuss the discrete symmetries of parity, time reversal and charge conjugation for arbitrary dimension and signature.
Perfect discretization of path integrals
Steinhaus, Sebastian
2012-01-01
In order to obtain a well-defined path integral one often employs discretizations. In the case of General Relativity these generically break diffeomorphism symmetry, which has severe consequences since these symmetries determine the dynamics of the corresponding system. In this article we consider the path integral of reparametrization invariant systems as a toy example and present an improvement procedure for the discretized propagator. Fixed points and convergence of the procedure are discussed. Furthermore we show that a reparametrization invariant path integral implies discretization independence and acts as a projector onto physical states.
Perfect discretization of path integrals
Steinhaus, Sebastian
2012-05-01
In order to obtain a well-defined path integral one often employs discretizations. In the case of General Relativity these generically break diffeomorphism symmetry, which has severe consequences since these symmetries determine the dynamics of the corresponding system. In this article we consider the path integral of reparametrization invariant systems as a toy example and present an improvement procedure for the discretized propagator. Fixed points and convergence of the procedure are discussed. Furthermore we show that a reparametrization invariant path integral implies discretization independence and acts as a projector onto physical states.
The origin of discrete particles
Bastin, T
2009-01-01
This book is a unique summary of the results of a long research project undertaken by the authors on discreteness in modern physics. In contrast with the usual expectation that discreteness is the result of mathematical tools for insertion into a continuous theory, this more basic treatment builds up the world from the discrimination of discrete entities. This gives an algebraic structure in which certain fixed numbers arise. As such, one agrees with the measured value of the fine-structure constant to one part in 10,000,000 (10 7 ). Sample Chapter(s). Foreword (56 KB). Chapter 1: Introduction
Synchronization Techniques in Parallel Discrete Event Simulation
Lindén, Jonatan
2018-01-01
Discrete event simulation is an important tool for evaluating system models in many fields of science and engineering. To improve the performance of large-scale discrete event simulations, several techniques to parallelize discrete event simulation have been developed. In parallel discrete event simulation, the work of a single discrete event simulation is distributed over multiple processing elements. A key challenge in parallel discrete event simulation is to ensure that causally dependent ...
3-D Discrete Analytical Ridgelet Transform
Helbert , David; Carré , Philippe; Andrès , Éric
2006-01-01
International audience; In this paper, we propose an implementation of the 3-D Ridgelet transform: the 3-D discrete analytical Ridgelet transform (3-D DART). This transform uses the Fourier strategy for the computation of the associated 3-D discrete Radon transform. The innovative step is the definition of a discrete 3-D transform with the discrete analytical geometry theory by the construction of 3-D discrete analytical lines in the Fourier domain. We propose two types of 3-D discrete lines:...
A parallel algorithm for solving the integral form of the discrete ordinates equations
Zerr, R. J.; Azmy, Y. Y.
2009-01-01
The integral form of the discrete ordinates equations involves a system of equations that has a large, dense coefficient matrix. The serial construction methodology is presented and properties that affect the execution times to construct and solve the system are evaluated. Two approaches for massively parallel implementation of the solution algorithm are proposed and the current results of one of these are presented. The system of equations May be solved using two parallel solvers-block Jacobi and conjugate gradient. Results indicate that both methods can reduce overall wall-clock time for execution. The conjugate gradient solver exhibits better performance to compete with the traditional source iteration technique in terms of execution time and scalability. The parallel conjugate gradient method is synchronous, hence it does not increase the number of iterations for convergence compared to serial execution, and the efficiency of the algorithm demonstrates an apparent asymptotic decline. (authors)
Exact analysis of discrete data
Hirji, Karim F
2005-01-01
Researchers in fields ranging from biology and medicine to the social sciences, law, and economics regularly encounter variables that are discrete or categorical in nature. While there is no dearth of books on the analysis and interpretation of such data, these generally focus on large sample methods. When sample sizes are not large or the data are otherwise sparse, exact methods--methods not based on asymptotic theory--are more accurate and therefore preferable.This book introduces the statistical theory, analysis methods, and computation techniques for exact analysis of discrete data. After reviewing the relevant discrete distributions, the author develops the exact methods from the ground up in a conceptually integrated manner. The topics covered range from univariate discrete data analysis, a single and several 2 x 2 tables, a single and several 2 x K tables, incidence density and inverse sampling designs, unmatched and matched case -control studies, paired binary and trinomial response models, and Markov...
Discrete geometric structures for architecture
Pottmann, Helmut
2010-01-01
. The talk will provide an overview of recent progress in this field, with a particular focus on discrete geometric structures. Most of these result from practical requirements on segmenting a freeform shape into planar panels and on the physical realization
Causal Dynamics of Discrete Surfaces
Pablo Arrighi
2014-03-01
Full Text Available We formalize the intuitive idea of a labelled discrete surface which evolves in time, subject to two natural constraints: the evolution does not propagate information too fast; and it acts everywhere the same.
Perfect discretization of path integrals
Steinhaus, Sebastian
2011-01-01
In order to obtain a well-defined path integral one often employs discretizations. In the case of General Relativity these generically break diffeomorphism symmetry, which has severe consequences since these symmetries determine the dynamics of the corresponding system. In this article we consider the path integral of reparametrization invariant systems as a toy example and present an improvement procedure for the discretized propagator. Fixed points and convergence of the procedure are discu...
Alfa, Attahiru S
2016-01-01
This book introduces the theoretical fundamentals for modeling queues in discrete-time, and the basic procedures for developing queuing models in discrete-time. There is a focus on applications in modern telecommunication systems. It presents how most queueing models in discrete-time can be set up as discrete-time Markov chains. Techniques such as matrix-analytic methods (MAM) that can used to analyze the resulting Markov chains are included. This book covers single node systems, tandem system and queueing networks. It shows how queues with time-varying parameters can be analyzed, and illustrates numerical issues associated with computations for the discrete-time queueing systems. Optimal control of queues is also covered. Applied Discrete-Time Queues targets researchers, advanced-level students and analysts in the field of telecommunication networks. It is suitable as a reference book and can also be used as a secondary text book in computer engineering and computer science. Examples and exercises are includ...
Discrete Curvature Theories and Applications
Sun, Xiang
2016-08-25
Discrete Di erential Geometry (DDG) concerns discrete counterparts of notions and methods in di erential geometry. This thesis deals with a core subject in DDG, discrete curvature theories on various types of polyhedral surfaces that are practically important for free-form architecture, sunlight-redirecting shading systems, and face recognition. Modeled as polyhedral surfaces, the shapes of free-form structures may have to satisfy di erent geometric or physical constraints. We study a combination of geometry and physics { the discrete surfaces that can stand on their own, as well as having proper shapes for the manufacture. These proper shapes, known as circular and conical meshes, are closely related to discrete principal curvatures. We study curvature theories that make such surfaces possible. Shading systems of freeform building skins are new types of energy-saving structures that can re-direct the sunlight. From these systems, discrete line congruences across polyhedral surfaces can be abstracted. We develop a new curvature theory for polyhedral surfaces equipped with normal congruences { a particular type of congruences de ned by linear interpolation of vertex normals. The main results are a discussion of various de nitions of normality, a detailed study of the geometry of such congruences, and a concept of curvatures and shape operators associated with the faces of a triangle mesh. These curvatures are compatible with both normal congruences and the Steiner formula. In addition to architecture, we consider the role of discrete curvatures in face recognition. We use geometric measure theory to introduce the notion of asymptotic cones associated with a singular subspace of a Riemannian manifold, which is an extension of the classical notion of asymptotic directions. We get a simple expression of these cones for polyhedral surfaces, as well as convergence and approximation theorems. We use the asymptotic cones as facial descriptors and demonstrate the
Analysis of Discrete Mittag - Leffler Functions
N. Shobanadevi
2015-03-01
Full Text Available Discrete Mittag - Leffler functions play a major role in the development of the theory of discrete fractional calculus. In the present article, we analyze qualitative properties of discrete Mittag - Leffler functions and establish sufficient conditions for convergence, oscillation and summability of the infinite series associated with discrete Mittag - Leffler functions.
Structure Property Relationships in Organic Conjugated Systems
O'Neill, Luke
2008-01-01
A series of pi(п) conjugated oligomers containing 1 to 6 monomer units were studied by absorption and photoluminescence spectroscopies. The results are discussed and examined with regard to the variation of the optical properties with the increase of effective conjugation length. It was found that there was a linear relationship between the positioning of the absorption and photoluminescence maxima plotted against inverse conjugation length. The relationships are in good agreement with the si...
Foundations of a discrete physics
McGoveran, D.; Noyes, P.
1988-01-01
Starting from the principles of finiteness, discreteness, finite computability and absolute nonuniqueness, we develop the ordering operator calculus, a strictly constructive mathematical system having the empirical properties required by quantum mechanical and special relativistic phenomena. We show how to construct discrete distance functions, and both rectangular and spherical coordinate systems(with a discrete version of ''π''). The richest discrete space constructible without a preferred axis and preserving translational and rotational invariance is shown to be a discrete 3-space with the usual symmetries. We introduce a local ordering parameter with local (proper) time-like properties and universal ordering parameters with global (cosmological) time-like properties. Constructed ''attribute velocities'' connect ensembles with attributes that are invariant as the appropriate time-like parameter increases. For each such attribute, we show how to construct attribute velocities which must satisfy the '' relativistic Doppler shift'' and the ''relativistic velocity composition law,'' as well as the Lorentz transformations. By construction, these velocities have finite maximum and minimum values. In the space of all attributes, the minimum of these maximum velocities will predominate in all multiple attribute computations, and hence can be identified as a fundamental limiting velocity, General commutation relations are constructed which under the physical interpretation are shown to reduce to the usual quantum mechanical commutation relations. 50 refs., 18 figs
Discrete differential geometry. Consistency as integrability
Bobenko, Alexander I.; Suris, Yuri B.
2005-01-01
A new field of discrete differential geometry is presently emerging on the border between differential and discrete geometry. Whereas classical differential geometry investigates smooth geometric shapes (such as surfaces), and discrete geometry studies geometric shapes with finite number of elements (such as polyhedra), the discrete differential geometry aims at the development of discrete equivalents of notions and methods of smooth surface theory. Current interest in this field derives not ...
Integrable structure in discrete shell membrane theory.
Schief, W K
2014-05-08
We present natural discrete analogues of two integrable classes of shell membranes. By construction, these discrete shell membranes are in equilibrium with respect to suitably chosen internal stresses and external forces. The integrability of the underlying equilibrium equations is proved by relating the geometry of the discrete shell membranes to discrete O surface theory. We establish connections with generalized barycentric coordinates and nine-point centres and identify a discrete version of the classical Gauss equation of surface theory.
Conjugated Polymers for Energy Production
Livi, Francesco
This dissertation is aimed at developing materials for flexible, large area, ITO-free polymer solar cells (PSCs) fully printed under ambient conditions. A large screening of conjugated polymers, both novel and well-known materials, has been carried out in order to find suitable candidates...... polymerization method for industrial production of polymers. Several DArP protocols have been employed for the synthesis of PPDTBT leading to polymers with high structural regularity and photovoltaic performances comparable with the same materials synthesized via Stille cross-coupling polymerization...
Novel ?-cyclodextrin?eosin conjugates
Benkovics, G?bor; Afonso, Damien; Darcsi, Andr?s; B?ni, Szabolcs; Conoci, Sabrina; Fenyvesi, ?va; Szente, Lajos; Malanga, Milo; Sortino, Salvatore
2017-01-01
Eosin B (EoB) and eosin Y (EoY), two xanthene dye derivatives with photosensitizing ability were prepared in high purity through an improved synthetic route. The dyes were grafted to a 6-monoamino-β-cyclodextrin scaffold under mild reaction conditions through a stable amide linkage using the coupling agent 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride. The molecular conjugates, well soluble in aqueous medium, were extensively characterized by 1D and 2D NMR spectroscopy an...
Test of charge conjugation invariance
Nefkens, B.M.K.; Prakhov, S.; Gaardestig, A.; Clajus, M.; Marusic, A.; McDonald, S.; Phaisangittisakul, N.; Price, J.W.; Starostin, A.; Tippens, W.B.; Allgower, C.E.; Spinka, H.; Bekrenev, V.; Koulbardis, A.; Kozlenko, N.; Kruglov, S.; Lopatin, I.; Briscoe, W.J.; Shafi, A.; Comfort, J.R.
2005-01-01
We report on the first determination of upper limits on the branching ratio (BR) of η decay to π 0 π 0 γ and to π 0 π 0 π 0 γ. Both decay modes are strictly forbidden by charge conjugation (C) invariance. Using the Crystal Ball multiphoton detector, we obtained BR(η→π 0 π 0 γ) -4 at the 90% confidence level, in support of C invariance of isoscalar electromagnetic interactions of the light quarks. We have also measured BR(η→π 0 π 0 π 0 γ) -5 at the 90% confidence level, in support of C invariance of isovector electromagnetic interactions
Degree distribution in discrete case
Wang, Li-Na; Chen, Bin; Yan, Zai-Zai
2011-01-01
Vertex degree of many network models and real-life networks is limited to non-negative integer. By means of measure and integral, the relation of the degree distribution and the cumulative degree distribution in discrete case is analyzed. The degree distribution, obtained by the differential of its cumulative, is only suitable for continuous case or discrete case with constant degree change. When degree change is not a constant but proportional to degree itself, power-law degree distribution and its cumulative have the same exponent and the mean value is finite for power-law exponent greater than 1. -- Highlights: → Degree change is the crux for using the cumulative degree distribution method. → It suits for discrete case with constant degree change. → If degree change is proportional to degree, power-law degree distribution and its cumulative have the same exponent. → In addition, the mean value is finite for power-law exponent greater than 1.
On the discrete Gabor transform and the discrete Zak transform
Bastiaans, M.J.; Geilen, M.C.W.
1996-01-01
Gabor's expansion of a discrete-time signal into a set of shifted and modulated versions of an elementary signal (or synthesis window) and the inverse operation -- the Gabor transform -- with which Gabor's expansion coefficients can be determined, are introduced. It is shown how, in the case of a
Discrete Choice and Rational Inattention
Fosgerau, Mogens; Melo, Emerson; de Palma, André
2017-01-01
This paper establishes a general equivalence between discrete choice and rational inattention models. Matejka and McKay (2015, AER) showed that when information costs are modelled using the Shannon entropy, the result- ing choice probabilities in the rational inattention model take the multinomial...... logit form. We show that when information costs are modelled using a class of generalized entropies, then the choice probabilities in any rational inattention model are observationally equivalent to some additive random utility discrete choice model and vice versa. This equivalence arises from convex...
Conjugated polymers developed from alkynes
Yajing Liu; Jacky W.Y.Lam; Ben Zhong Tang
2015-01-01
The numerous merits of conjugated polymers(CPs) have encouraged scientists to develop a variety of synthetic routes to CPs with diverse structures and functionalities. Among the large scope of substrates,alkyne plays an important role in constructing polymers with conjugated backbones. In addition to some well-developed reactions including Glaser–Hay and Sonogashira coupling, azide/thiol-yne click reaction and cyclotrimerization, some novel alkyne-based reactions have also been explored such as oxidative polycoupling, decarbonylative polycoupling and multicomponent tandem polymerizations. his review focuses on the recent progress on the synthetic methodology of CPs in the last ive years using monomers with two or more triple bonds and some of their high-technological applications. Selected examples of materials properties of these CPs are given in this review, such as luorescence response to chemical or physical stimuli, magnetism, white light emission, cell imaging and bioprobing. Finally, a short perspective is raised in regard to the outlook of the preparation methodologies, functionalities as well as potential applications of CPs in the future.
Subgap Absorption in Conjugated Polymers
Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.
1991-01-01
Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.
Subgap absorption in conjugated polymers
Sinclair, M.; Seager, C.H. (Sandia National Labs., Albuquerque, NM (USA)); McBranch, D.; Heeger, A.J. (California Univ., Santa Barbara, CA (USA)); Baker, G.L. (Bell Communications Research, Inc., Red Bank, NJ (USA))
1991-01-01
Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of < 10{sup {minus}5}, Photothermal Deflection Spectroscopy (PDS) is ideal for determining the absorption coefficients of thin films of transparent'' materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination. 11 refs., 4 figs.
Clebsch-Gordan coefficients of discrete groups in subgroup bases
Chen, Gaoli
2018-04-01
We express each Clebsch-Gordan (CG) coefficient of a discrete group as a product of a CG coefficient of its subgroup and a factor, which we call an embedding factor. With an appropriate definition, such factors are fixed up to phase ambiguities. Particularly, they are invariant under basis transformations of irreducible representations of both the group and its subgroup. We then impose on the embedding factors constraints, which relate them to their counterparts under complex conjugate and therefore restrict the phases of embedding factors. In some cases, the phase ambiguities are reduced to sign ambiguities. We describe the procedure of obtaining embedding factors and then calculate CG coefficients of the group 𝒫𝒮ℒ2(7) in terms of embedding factors of its subgroups S4 and 𝒯7.
Discrete Hamiltonian evolution and quantum gravity
Husain, Viqar; Winkler, Oliver
2004-01-01
We study constrained Hamiltonian systems by utilizing general forms of time discretization. We show that for explicit discretizations, the requirement of preserving the canonical Poisson bracket under discrete evolution imposes strong conditions on both allowable discretizations and Hamiltonians. These conditions permit time discretizations for a limited class of Hamiltonians, which does not include homogeneous cosmological models. We also present two general classes of implicit discretizations which preserve Poisson brackets for any Hamiltonian. Both types of discretizations generically do not preserve first class constraint algebras. Using this observation, we show that time discretization provides a complicated time gauge fixing for quantum gravity models, which may be compared with the alternative procedure of gauge fixing before discretization
Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi
2016-01-01
A conservative discretization of incompressible Navier–Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a
Solving discrete zero point problems
van der Laan, G.; Talman, A.J.J.; Yang, Z.F.
2004-01-01
In this paper an algorithm is proposed to .nd a discrete zero point of a function on the collection of integral points in the n-dimensional Euclidean space IRn.Starting with a given integral point, the algorithm generates a .nite sequence of adjacent integral simplices of varying dimension and
Succinct Sampling from Discrete Distributions
Bringmann, Karl; Larsen, Kasper Green
2013-01-01
We revisit the classic problem of sampling from a discrete distribution: Given n non-negative w-bit integers x_1,...,x_n, the task is to build a data structure that allows sampling i with probability proportional to x_i. The classic solution is Walker's alias method that takes, when implemented...
Symplectomorphisms and discrete braid invariants
Czechowski, Aleksander; Vandervorst, Robert
2017-01-01
Area and orientation preserving diffeomorphisms of the standard 2-disc, referred to as symplectomorphisms of D2, allow decompositions in terms of positive twist diffeomorphisms. Using the latter decomposition, we utilize the Conley index theory of discrete braid classes as introduced in Ghrist et
The remarkable discreteness of being
Life is a discrete, stochastic phenomenon: for a biological organism, the time of the two most important events of its life (reproduction and death) is random and these events change the number of individuals of the species by single units. These facts can have surprising, counterintuitive consequences. I review here three ...
Discrete tomography in neutron radiography
Kuba, Attila; Rodek, Lajos; Kiss, Zoltan; Rusko, Laszlo; Nagy, Antal; Balasko, Marton
2005-01-01
Discrete tomography (DT) is an imaging technique for reconstructing discrete images from their projections using the knowledge that the object to be reconstructed contains only a few homogeneous materials characterized by known discrete absorption values. One of the main reasons for applying DT is that we will hopefully require relatively few projections. Using discreteness and some a priori information (such as an approximate shape of the object) we can apply two DT methods in neutron imaging by reducing the problem to an optimization task. The first method is a special one because it is only suitable if the object is composed of cylinders and sphere shapes. The second method is a general one in the sense that it can be used for reconstructing objects of any shape. Software was developed and physical experiments performed in order to investigate the effects of several reconstruction parameters: the number of projections, noise levels, and complexity of the object to be reconstructed. We give a summary of the experimental results and make a comparison of the results obtained using a classical reconstruction technique (FBP). The programs we developed are available in our DT reconstruction program package DIRECT
Preconditioning the modified conjugate gradient method ...
In this paper, the convergence analysis of the conventional conjugate Gradient method was reviewed. And the convergence analysis of the modified conjugate Gradient method was analysed with our extension on preconditioning the algorithm. Convergence of the algorithm is a function of the condition number of M-1A.
DENDRIMER CONJUGATES FOR SELECTIVE OF PROTEIN AGGREGATES
2004-01-01
Dendrimer conjugates are presented, which are formed between a dendrimer and a protein solubilising substance. Such dendrimer conjugates are effective in the treatment of protein aggregate-related diseases (e.g. prion-related diseases). The protein solubilising substance and the dendrimer together...
Tetrafullerene conjugates for all-organic photovoltaics
Fernández, G.; Sánchez, L.; Veldman, D.; Wienk, M.M.; Atienza, C.M.; Guldi, D.M.; Janssen, R.A.J.; Martin, N.
2008-01-01
The synthesis of two new tetrafullerene nanoconjugates in which four C60 units are covalently connected through different -conjugated oligomers (oligo(p-phenylene ethynylene) and oligo(p-phenylene vinylene)) is described. The photovoltaic (PV) response of these C60-based conjugates was evaluated by
CONJUGATED BLOCK-COPOLYMERS FOR ELECTROLUMINESCENT DIODES
Hilberer, A; Gill, R.E; Herrema, J.K; Malliaras, G.G; Wildeman, J.; Hadziioannou, G
In this article we review results obtained in our laboratory on the design and study of new light-emitting polymers. We are interested in the synthesis and characterisation of block copolymers with regularly alternating conjugated and non conjugated sequences. The blocks giving rise to luminescence
The Conjugate Acid-Base Chart.
Treptow, Richard S.
1986-01-01
Discusses the difficulties that beginning chemistry students have in understanding acid-base chemistry. Describes the use of conjugate acid-base charts in helping students visualize the conjugate relationship. Addresses chart construction, metal ions, buffers and pH titrations, and the organic functional groups and nonaqueous solvents. (TW)
Bio-Conjugates for Nanoscale Applications
Villadsen, Klaus
Bio-conjugates for Nanoscale Applications is the title of this thesis, which covers three different projects in chemical bio-conjugation research, namely synthesis and applications of: Lipidated fluorescent peptides, carbohydrate oxime-azide linkers and N-aryl O-R2 oxyamine derivatives. Lipidated...
Class, Kinship Density, and Conjugal Role Segregation.
Hill, Malcolm D.
1988-01-01
Studied conjugal role segregation in 150 married women from intact families in working-class community. Found that, although involvement in dense kinship networks was associated with conjugal role segregation, respondents' attitudes toward marital roles and phase of family cycle when young children were present were more powerful predictors of…
Misonidazole-glutathione conjugates in CHO cells
Varghese, A.J.; Whitmore, G.F.
1984-01-01
Misonidazole, after reduction to the hydroxylamine derivative, reacts with glutathione (GSH) under physiological conditions. The reaction product has been identified as a mixture of two isomeric conjugates. When water soluble extracts of CHO cells exposed to misonidazole under hypoxic conditions are subjected to HPLC analysis, misonidazole derivatives, having the same chromatographic properties as the GSH-MISO conjugates, were detected. When CHO cells were incubated with misonidazole in the presence of added GSH, a substantial increase in the amount of the conjugate was detected. When extracts of CHO cells exposed to misonidazole under hypoxia were subsequently exposed to GSH, an increased formation of the conjugate was observed. A rearrangement product of the hydroxylamine derivative of misonidazole is postulated as the reactive intermediate responsible for the formation of the conjugate
Approximate error conjugation gradient minimization methods
Kallman, Jeffrey S
2013-05-21
In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.
Discrete elements method of neutron transport
Mathews, K.A.
1988-01-01
In this paper a new neutron transport method, called discrete elements (L N ) is derived and compared to discrete ordinates methods, theoretically and by numerical experimentation. The discrete elements method is based on discretizing the Boltzmann equation over a set of elements of angle. The discrete elements method is shown to be more cost-effective than discrete ordinates, in terms of accuracy versus execution time and storage, for the cases tested. In a two-dimensional test case, a vacuum duct in a shield, the L N method is more consistently convergent toward a Monte Carlo benchmark solution
Discrete gauge symmetries in discrete MSSM-like orientifolds
Ibáñez, L.E.; Schellekens, A.N.; Uranga, A.M.
2012-01-01
Motivated by the necessity of discrete Z N symmetries in the MSSM to insure baryon stability, we study the origin of discrete gauge symmetries from open string sector U(1)'s in orientifolds based on rational conformal field theory. By means of an explicit construction, we find an integral basis for the couplings of axions and U(1) factors for all simple current MIPFs and orientifolds of all 168 Gepner models, a total of 32 990 distinct cases. We discuss how the presence of discrete symmetries surviving as a subgroup of broken U(1)'s can be derived using this basis. We apply this procedure to models with MSSM chiral spectrum, concretely to all known U(3)×U(2)×U(1)×U(1) and U(3)×Sp(2)×U(1)×U(1) configurations with chiral bi-fundamentals, but no chiral tensors, as well as some SU(5) GUT models. We find examples of models with Z 2 (R-parity) and Z 3 symmetries that forbid certain B and/or L violating MSSM couplings. Their presence is however relatively rare, at the level of a few percent of all cases.
Positivity for Convective Semi-discretizations
Fekete, Imre; Ketcheson, David I.; Loczi, Lajos
2017-01-01
We propose a technique for investigating stability properties like positivity and forward invariance of an interval for method-of-lines discretizations, and apply the technique to study positivity preservation for a class of TVD semi-discretizations
Yu, Z.G.; Smith, D.L.; Saxena, A.; Bishop, A.R.
1997-01-01
The electronic transmission across metal/conjugated-oligomer/metal structures in the presence of lattice fluctuations is studied for short oligomer chains. The lattice fluctuations are approximated by static white noise disorder. Resonant transmission occurs when the energy of an incoming electron coincides with a discrete electronic level of the oligomer. The corresponding transmission peak diminishes in intensity with increasing disorder strength. Because of disorder there is an enhancement of the electronic transmission for energies that lie within the electronic gap of the oligomer. If fluctuations are sufficiently strong, a transmission peak within the gap is found at the midgap energy E=0 for degenerate conjugated oligomers (e.g., trans-polyacetylene) and E≠0 for AB-type degenerate oligomers. These results can be interpreted in terms of soliton-antisoliton states created by lattice fluctuations. copyright 1997 The American Physical Society
Quantum chaos on discrete graphs
Smilansky, Uzy
2007-01-01
Adapting a method developed for the study of quantum chaos on quantum (metric) graphs (Kottos and Smilansky 1997 Phys. Rev. Lett. 79 4794, Kottos and Smilansky 1999 Ann. Phys., NY 274 76), spectral ζ functions and trace formulae for discrete Laplacians on graphs are derived. This is achieved by expressing the spectral secular equation in terms of the periodic orbits of the graph and obtaining functions which belong to the class of ζ functions proposed originally by Ihara (1966 J. Mat. Soc. Japan 18 219) and expanded by subsequent authors (Stark and Terras 1996 Adv. Math. 121 124, Kotani and Sunada 2000 J. Math. Sci. Univ. Tokyo 7 7). Finally, a model of 'classical dynamics' on the discrete graph is proposed. It is analogous to the corresponding classical dynamics derived for quantum graphs (Kottos and Smilansky 1997 Phys. Rev. Lett. 79 4794, Kottos and Smilansky 1999 Ann. Phys., NY 274 76). (fast track communication)
Dark energy from discrete spacetime.
Aaron D Trout
Full Text Available Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, [Formula: see text] in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies.
Applied geometry and discrete mathematics
Sturm; Gritzmann, Peter; Sturmfels, Bernd
1991-01-01
This volume, published jointly with the Association for Computing Machinery, comprises a collection of research articles celebrating the occasion of Victor Klee's sixty-fifth birthday in September 1990. During his long career, Klee has made contributions to a wide variety of areas, such as discrete and computational geometry, convexity, combinatorics, graph theory, functional analysis, mathematical programming and optimization, and theoretical computer science. In addition, Klee made important contributions to mathematics education, mathematical methods in economics and the decision sciences, applications of discrete mathematics in the biological and social sciences, and the transfer of knowledge from applied mathematics to industry. In honor of Klee's achievements, this volume presents more than forty papers on topics related to Klee's research. While the majority of the papers are research articles, a number of survey articles are also included. Mirroring the breadth of Klee's mathematical contributions, th...
Emissivity of discretized diffusion problems
Densmore, Jeffery D.; Davidson, Gregory; Carrington, David B.
2006-01-01
The numerical modeling of radiative transfer by the diffusion approximation can produce artificially damped radiation propagation if spatial cells are too optically thick. In this paper, we investigate this nonphysical behavior at external problem boundaries by examining the emissivity of the discretized diffusion approximation. We demonstrate that the standard cell-centered discretization produces an emissivity that is too low for optically thick cells, a situation that leads to the lack of radiation propagation. We then present a modified boundary condition that yields an accurate emissivity regardless of cell size. This modified boundary condition can be used with a deterministic calculation or as part of a hybrid transport-diffusion method for increasing the efficiency of Monte Carlo simulations. We also discuss the range of applicability, as a function of cell size and material properties, when this modified boundary condition is employed in a hybrid technique. With a set of numerical calculations, we demonstrate the accuracy and usefulness of this modified boundary condition
Discrete symmetries in the MSSM
Schieren, Roland
2010-12-02
The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z{sup R}{sub 4} symmetry is discovered which solves the {mu}-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z{sup R}{sub 4} is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z{sup R}{sub 4} symmetry and other desirable features. (orig.)
Domain Discretization and Circle Packings
Dias, Kealey
A circle packing is a configuration of circles which are tangent with one another in a prescribed pattern determined by a combinatorial triangulation, where the configuration fills a planar domain or a two-dimensional surface. The vertices in the triangulation correspond to centers of circles...... to domain discretization problems such as triangulation and unstructured mesh generation techniques. We wish to ask ourselves the question: given a cloud of points in the plane (we restrict ourselves to planar domains), is it possible to construct a circle packing preserving the positions of the vertices...... and constrained meshes having predefined vertices as constraints. A standard method of two-dimensional mesh generation involves conformal mapping of the surface or domain to standardized shapes, such as a disk. Since circle packing is a new technique for constructing discrete conformal mappings, it is possible...
Discrete Bose-Einstein spectra
Vlad, Valentin I.; Ionescu-Pallas, Nicholas
2001-03-01
The Bose-Einstein energy spectrum of a quantum gas, confined in a rigid cubic box, is shown to become discrete and strongly dependent on the box geometry (size L), temperature, T and atomic mass number, A at , in the region of small γ=A at TV 1/3 . This behavior is the consequence of the random state degeneracy in the box. Furthermore, we demonstrate that the total energy does not obey the conventional law any longer, but a new law, which depends on γ and on the quantum gas fugacity. This energy law imposes a faster decrease to zero than it is classically expected, for γ→0. The lighter the gas atoms, the higher the temperatures or the box size, for the same effects in the discrete Bose-Einstein regime. (author)
Discrete symmetries in the MSSM
Schieren, Roland
2010-01-01
The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z R 4 symmetry is discovered which solves the μ-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z R 4 is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z R 4 symmetry and other desirable features. (orig.)
Dark energy from discrete spacetime.
Trout, Aaron D
2013-01-01
Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, [Formula: see text] in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies.
Discrete mathematics using a computer
Hall, Cordelia
2000-01-01
Several areas of mathematics find application throughout computer science, and all students of computer science need a practical working understanding of them. These core subjects are centred on logic, sets, recursion, induction, relations and functions. The material is often called discrete mathematics, to distinguish it from the traditional topics of continuous mathematics such as integration and differential equations. The central theme of this book is the connection between computing and discrete mathematics. This connection is useful in both directions: • Mathematics is used in many branches of computer science, in applica tions including program specification, datastructures,design and analysis of algorithms, database systems, hardware design, reasoning about the correctness of implementations, and much more; • Computers can help to make the mathematics easier to learn and use, by making mathematical terms executable, making abstract concepts more concrete, and through the use of software tools su...
Duality for discrete integrable systems
Quispel, G R W; Capel, H W; Roberts, J A G
2005-01-01
A new class of discrete dynamical systems is introduced via a duality relation for discrete dynamical systems with a number of explicitly known integrals. The dual equation can be defined via the difference of an arbitrary linear combination of integrals and its upshifted version. We give an example of an integrable mapping with two parameters and four integrals leading to a (four-dimensional) dual mapping with four parameters and two integrals. We also consider a more general class of higher-dimensional mappings arising via a travelling-wave reduction from the (integrable) MKdV partial-difference equation. By differencing the trace of the monodromy matrix we obtain a class of novel dual mappings which is shown to be integrable as level-set-dependent versions of the original ones
Observability of discretized partial differential equations
Cohn, Stephen E.; Dee, Dick P.
1988-01-01
It is shown that complete observability of the discrete model used to assimilate data from a linear partial differential equation (PDE) system is necessary and sufficient for asymptotic stability of the data assimilation process. The observability theory for discrete systems is reviewed and applied to obtain simple observability tests for discretized constant-coefficient PDEs. Examples are used to show how numerical dispersion can result in discrete dynamics with multiple eigenvalues, thereby detracting from observability.
Effective lagrangian description on discrete gauge symmetries
Banks, T.
1989-01-01
We exhibit a simple low-energy lagrangian which describes a system with a discrete remnant of a spontaneously broken continuous gauge symmetry. The lagrangian gives a simple description of the effects ascribed to such systems by Krauss and Wilczek: black holes carry discrete hair and interact with cosmic strings, and wormholes cannot lead to violation of discrete gauge symmetries. (orig.)
Discrete port-Hamiltonian systems : mixed interconnections
Talasila, Viswanath; Clemente-Gallardo, J.; Schaft, A.J. van der
2005-01-01
Either from a control theoretic viewpoint or from an analysis viewpoint it is necessary to convert smooth systems to discrete systems, which can then be implemented on computers for numerical simulations. Discrete models can be obtained either by discretizing a smooth model, or by directly modeling
Discrete fractional solutions of a Legendre equation
Yılmazer, Resat
2018-01-01
One of the most popular research interests of science and engineering is the fractional calculus theory in recent times. Discrete fractional calculus has also an important position in fractional calculus. In this work, we acquire new discrete fractional solutions of the homogeneous and non homogeneous Legendre differential equation by using discrete fractional nabla operator.
Novel Aflatoxin Derivatives and Protein Conjugates
Reinhard Niessner
2007-03-01
Full Text Available Aflatoxins, a group of structurally related mycotoxins, are well known for their toxic and carcinogenic effects in humans and animals. Aflatoxin derivatives and protein conjugates are needed for diverse analytical applications. This work describes a reliable and fast synthesis of novel aflatoxin derivatives, purification by preparative HPLC and characterisation by ESI-MS and one- and two-dimensional NMR. Novel aflatoxin bovine serum albumin conjugates were prepared and characterised by UV absorption and MALDI-MS. These aflatoxin protein conjugates are potentially interesting as immunogens for the generation of aflatoxin selective antibodies with novel specificities.
Continuous versus discrete structures II -- Discrete Hamiltonian systems and Helmholtz conditions
Cresson, Jacky; Pierret, Frédéric
2015-01-01
We define discrete Hamiltonian systems in the framework of discrete embeddings. An explicit comparison with previous attempts is given. We then solve the discrete Helmholtz's inverse problem for the discrete calculus of variation in the Hamiltonian setting. Several applications are discussed.
Asymptotic behavior of discrete holomorphic maps z^c, log(z) and discrete Painleve transcedents
Agafonov, S. I.
2005-01-01
It is shown that discrete analogs of z^c and log(z) have the same asymptotic behavior as their smooth counterparts. These discrete maps are described in terms of special solutions of discrete Painleve-II equations, asymptotics of these solutions providing the behaviour of discrete z^c and log(z) at infinity.
Zhang Yufeng; Fan Engui; Zhang Yongqing
2006-01-01
With the help of two semi-direct sum Lie algebras, an efficient way to construct discrete integrable couplings is proposed. As its applications, the discrete integrable couplings of the Toda-type lattice equations are obtained. The approach can be devoted to establishing other discrete integrable couplings of the discrete lattice integrable hierarchies of evolution equations
Frequency domain optical tomography using a conjugate gradient method without line search
Kim, Hyun Keol; Charette, Andre
2007-01-01
A conjugate gradient method without line search (CGMWLS) is presented. This method is used to retrieve the local maps of absorption and scattering coefficients inside the tissue-like test medium, with the synthetic data. The forward problem is solved with a discrete-ordinates finite-difference method based on the frequency domain formulation of radiative transfer equation. The inversion results demonstrate that the CGMWLS can retrieve simultaneously the spatial distributions of optical properties inside the medium within a reasonable accuracy, by reducing cross-talk between absorption and scattering coefficients
Hadley, S.W.; Wilbur, D.S.
1990-01-01
The preparations and conjugations of 2,3,5,6-tetrafluorophenyl 5-[125I/131I]iodo-4-pentenoate (7a) and 2,3,5,6-tetrafluorophenyl 3,3-dimethyl-5-[125I/131I]iodo-4-pentenoate (7b) to monoclonal antibodies are reported. Reagents 7a and 7b were prepared in high radiochemical yield by iododestannylation of their corresponding 5-tri-n-butylstannyl precursors. Radioiodinated antibody conjugates were prepared by reaction of 7a or 7b with the protein at basic pH. Evaluation of these conjugates by several in vitro procedures demonstrated that the radiolabel was attached to the antibody in a stable manner and that the conjugates maintained immunoreactivity. Comparative dual-isotope biodistribution studies of a monoclonal antibody Fab fragment conjugate of 7a and 7b with the same Fab fragment labeled with N-succinimidyl p-[131I]iodobenzoate (PIB, p-iodobenzoate, 2) or directly radioiodinated have been carried out in tumor-bearing nude mice. Coinjection of the Fab conjugate of 7a with the Fab conjugate of 2 demonstrated that the biodistributions were similar in most organs, except the neck tissue (thyroid-containing) and the stomach, which contained substantially increased levels of the 7a label. Coinjection of the Fab conjugate of 7a with the Fab fragment radioiodinated by using the chloramine-T method demonstrated that the biodistributions were remarkably similar, suggesting roughly equivalent in vivo deiodination of these labeled antibody fragments. Coinjection of the Fab conjugate of 7a with the Fab conjugate of 7b indicated that there was ∼ a 2-fold reduction in the amount of in vivo deiodination of the 7b conjugate as compared to the 7a conjugate
Cuspidal discrete series for projective hyperbolic spaces
Andersen, Nils Byrial; Flensted-Jensen, Mogens
2013-01-01
Abstract. We have in [1] proposed a definition of cusp forms on semisimple symmetric spaces G/H, involving the notion of a Radon transform and a related Abel transform. For the real non-Riemannian hyperbolic spaces, we showed that there exists an infinite number of cuspidal discrete series......, and at most finitely many non-cuspidal discrete series, including in particular the spherical discrete series. For the projective spaces, the spherical discrete series are the only non-cuspidal discrete series. Below, we extend these results to the other hyperbolic spaces, and we also study the question...
Space-Time Discrete KPZ Equation
Cannizzaro, G.; Matetski, K.
2018-03-01
We study a general family of space-time discretizations of the KPZ equation and show that they converge to its solution. The approach we follow makes use of basic elements of the theory of regularity structures (Hairer in Invent Math 198(2):269-504, 2014) as well as its discrete counterpart (Hairer and Matetski in Discretizations of rough stochastic PDEs, 2015. arXiv:1511.06937). Since the discretization is in both space and time and we allow non-standard discretization for the product, the methods mentioned above have to be suitably modified in order to accommodate the structure of the models under study.
Conjugate descent formulation of backpropagation error in ...
nique of backpropagation was popularized in a paper by Rumelhart, et al. ... the training of a multilayer neural network using a gradient descent approach applied to a .... superior convergence of the conjugate descent method over a standard ...
Integrable discretizations of the short pulse equation
Feng Baofeng; Maruno, Ken-ichi; Ohta, Yasuhiro
2010-01-01
In this paper, we propose integrable semi-discrete and full-discrete analogues of the short pulse (SP) equation. The key construction is the bilinear form and determinant structure of solutions of the SP equation. We also give the determinant formulas of N-soliton solutions of the semi-discrete and full-discrete analogues of the SP equations, from which the multi-loop and multi-breather solutions can be generated. In the continuous limit, the full-discrete SP equation converges to the semi-discrete SP equation, and then to the continuous SP equation. Based on the semi-discrete SP equation, an integrable numerical scheme, i.e. a self-adaptive moving mesh scheme, is proposed and used for the numerical computation of the short pulse equation.
Soluble polymer conjugates for drug delivery.
Minko, Tamara
2005-01-01
The use of water-soluble polymeric conjugates as drug carriers offers several possible advantages. These advantages include: (1) improved drug pharmacokinetics; (2) decreased toxicity to healthy organs; (3) possible facilitation of accumulation and preferential uptake by targeted cells; (4) programmed profile of drug release. In this review, we will consider the main types of useful polymeric conjugates and their role and effectiveness as carriers in drug delivery systems.: © 2005 Elsevier Ltd . All rights reserved.
Structure Property Relationships in Organic Conjugated Systems
O'Neill, Luke; Lynch, Patrick; McNamara, Mary
2005-01-01
A series of π conjugated oligomers were studied by absorption and photoluminescence spectroscopy. A linear relationship between the positioning of the absorption and photoluminescence maxima plotted against inverse conjugation length is observed. The relationships are in good agreement with the simple particle in a box method, one of the earliest descriptions of the properties of one-dimensional organic molecules. In addition to the electronic transition energies, it was observed that the Sto...
Diffeomorphisms Holder conjugate to Anosov diffeomorphisms
Gogolev, Andrey
2008-01-01
We show by means of a counterexample that a $C^{1+Lip}$ diffeomorphism Holder conjugate to an Anosov diffeomorphism is not necessarily Anosov. The counterexample can bear higher smoothness up to $C^3$. Also we include a result from the 2006 Ph.D. thesis of T. Fisher: a $C^{1+Lip}$ diffeomorphism Holder conjugate to an Anosov diffeomorphism is Anosov itself provided that Holder exponents of the conjugacy and its inverse are sufficiently large.
Rapid modification of retroviruses using lipid conjugates
Mukherjee, Nimisha G; Le Doux, Joseph M; Andrew Lyon, L
2009-01-01
Methods are needed to manipulate natural nanoparticles. Viruses are particularly interesting because they can act as therapeutic cellular delivery agents. Here we examine a new method for rapidly modifying retroviruses that uses lipid conjugates composed of a lipid anchor (1,2-distearoyl-sn-glycero-3-phosphoethanolamine), a polyethylene glycol chain, and biotin. The conjugates rapidly and stably modified retroviruses and enabled them to bind streptavidin. The implication of this work for modifying viruses for gene therapy and vaccination protocols is discussed.
Discrete geometric structures for architecture
Pottmann, Helmut
2010-06-13
The emergence of freeform structures in contemporary architecture raises numerous challenging research problems, most of which are related to the actual fabrication and are a rich source of research topics in geometry and geometric computing. The talk will provide an overview of recent progress in this field, with a particular focus on discrete geometric structures. Most of these result from practical requirements on segmenting a freeform shape into planar panels and on the physical realization of supporting beams and nodes. A study of quadrilateral meshes with planar faces reveals beautiful relations to discrete differential geometry. In particular, we discuss meshes which discretize the network of principal curvature lines. Conical meshes are among these meshes; they possess conical offset meshes at a constant face/face distance, which in turn leads to a supporting beam layout with so-called torsion free nodes. This work can be generalized to a variety of multilayer structures and laid the ground for an adapted curvature theory for these meshes. There are also efforts on segmenting surfaces into planar hexagonal panels. Though these are less constrained than planar quadrilateral panels, this problem is still waiting for an elegant solution. Inspired by freeform designs in architecture which involve circles and spheres, we present a new kind of triangle mesh whose faces\\' in-circles form a packing, i.e., the in-circles of two triangles with a common edge have the same contact point on that edge. These "circle packing (CP) meshes" exhibit an aesthetic balance of shape and size of their faces. They are closely tied to sphere packings on surfaces and to various remarkable structures and patterns which are of interest in art, architecture, and design. CP meshes constitute a new link between architectural freeform design and computational conformal geometry. Recently, certain timber structures motivated us to study discrete patterns of geodesics on surfaces. This
Radiative transfer on discrete spaces
Preisendorfer, Rudolph W; Stark, M; Ulam, S
1965-01-01
Pure and Applied Mathematics, Volume 74: Radiative Transfer on Discrete Spaces presents the geometrical structure of natural light fields. This book describes in detail with mathematical precision the radiometric interactions of light-scattering media in terms of a few well established principles.Organized into four parts encompassing 15 chapters, this volume begins with an overview of the derivations of the practical formulas and the arrangement of formulas leading to numerical solution procedures of radiative transfer problems in plane-parallel media. This text then constructs radiative tran
Theoretical and computational studies of excitons in conjugated polymers
Barford, William; Bursill, Robert J.; Smith, Richard W.
2002-09-01
We present a theoretical and computational analysis of excitons in conjugated polymers. We use a tight-binding model of π-conjugated electrons, with 1/r interactions for large r. In both the weak-coupling limit (defined by W>>U) and the strong-coupling limit (defined by Wparticle models. We compare these to density matrix renormalization group (DMRG) calculations, and find good agreement in the extreme limits. We use these analytical results to interpret the DMRG calculations in the intermediate-coupling regime (defined by W~U), most applicable to conjugated polymers. We make the following conclusions. (1) In the weak-coupling limit the bound states are Mott-Wannier excitons, i.e., conduction-band electrons bound to valence-band holes. Singlet and triplet excitons whose relative wave functions are odd under a reflection of the relative coordinate are degenerate. Thus, the 2 1A+g and 1 3A-g states are degenerate in this limit. (2) In the strong-coupling limit the bound states are Mott-Hubbard excitons, i.e., particles in the upper Hubbard band bound to holes in the lower Hubbard band. These bound states occur in doublets of even and odd parity excitons. Triplet excitons are magnons bound to the singlet excitons, and hence are degenerate with their singlet counterparts. (3) In the intermediate-coupling regime Mott-Wannier excitons are the more appropriate description for large dimerization, while for the undimerized chain Mott-Hubbard excitons are the correct description. For dimerizations relevant to polyacetylene and polydiacetylene both Mott-Hubbard and Mott-Wannier excitons are present. (4) For all coupling strengths an infinite number of bound states exist for 1/r interactions for an infinite polymer. As a result of the discreteness of the lattice and the restrictions on the exciton wave functions in one dimension, the progression of states does not follow the Rydberg series. In practice, excitons whose particle-hole separation exceeds the length of the polymer
3-D discrete analytical ridgelet transform.
Helbert, David; Carré, Philippe; Andres, Eric
2006-12-01
In this paper, we propose an implementation of the 3-D Ridgelet transform: the 3-D discrete analytical Ridgelet transform (3-D DART). This transform uses the Fourier strategy for the computation of the associated 3-D discrete Radon transform. The innovative step is the definition of a discrete 3-D transform with the discrete analytical geometry theory by the construction of 3-D discrete analytical lines in the Fourier domain. We propose two types of 3-D discrete lines: 3-D discrete radial lines going through the origin defined from their orthogonal projections and 3-D planes covered with 2-D discrete line segments. These discrete analytical lines have a parameter called arithmetical thickness, allowing us to define a 3-D DART adapted to a specific application. Indeed, the 3-D DART representation is not orthogonal, It is associated with a flexible redundancy factor. The 3-D DART has a very simple forward/inverse algorithm that provides an exact reconstruction without any iterative method. In order to illustrate the potentiality of this new discrete transform, we apply the 3-D DART and its extension to the Local-DART (with smooth windowing) to the denoising of 3-D image and color video. These experimental results show that the simple thresholding of the 3-D DART coefficients is efficient.
Refined isogeometric analysis for a preconditioned conjugate gradient solver
Garcia, Daniel
2018-02-12
Starting from a highly continuous Isogeometric Analysis (IGA) discretization, refined Isogeometric Analysis (rIGA) introduces C0 hyperplanes that act as separators for the direct LU factorization solver. As a result, the total computational cost required to solve the corresponding system of equations using a direct LU factorization solver dramatically reduces (up to a factor of 55) Garcia et al. (2017). At the same time, rIGA enriches the IGA spaces, thus improving the best approximation error. In this work, we extend the complexity analysis of rIGA to the case of iterative solvers. We build an iterative solver as follows: we first construct the Schur complements using a direct solver over small subdomains (macro-elements). We then assemble those Schur complements into a global skeleton system. Subsequently, we solve this system iteratively using Conjugate Gradients (CG) with an incomplete LU (ILU) preconditioner. For a 2D Poisson model problem with a structured mesh and a uniform polynomial degree of approximation, rIGA achieves moderate savings with respect to IGA in terms of the number of Floating Point Operations (FLOPs) and computational time (in seconds) required to solve the resulting system of linear equations. For instance, for a mesh with four million elements and polynomial degree p=3, the iterative solver is approximately 2.6 times faster (in time) when applied to the rIGA system than to the IGA one. These savings occur because the skeleton rIGA system contains fewer non-zero entries than the IGA one. The opposite situation occurs for 3D problems, and as a result, 3D rIGA discretizations provide no gains with respect to their IGA counterparts when considering iterative solvers.
Fermion systems in discrete space-time
Finster, Felix
2007-01-01
Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure
Fermion systems in discrete space-time
Finster, Felix [NWF I - Mathematik, Universitaet Regensburg, 93040 Regensburg (Germany)
2007-05-15
Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.
Fermion Systems in Discrete Space-Time
Finster, Felix
2006-01-01
Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.
Fermion systems in discrete space-time
Finster, Felix
2007-05-01
Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.
Moskal P.
2016-01-01
Full Text Available Discrete symmetries such as parity (P, charge-conjugation (C and time reversal (T are of fundamental importance in physics and cosmology. Breaking of charge conjugation symmetry (C and its combination with parity (CP constitute necessary conditions for the existence of the asymmetry between matter and antimatter in the observed Universe. The presently known sources of discrete symmetries violations can account for only a tiny fraction of the excess of matter over antimatter. So far CP and T symmetries violations were observed only for systems involving quarks and they were never reported for the purely leptonic objects. In this article we describe briefly an experimental proposal for the test of discrete symmetries in the decays of positronium atom which is made exclusively of leptons. The experiments are conducted by means of the Jagiellonian Positron Emission Tomograph (J-PET which is constructed from strips of plastic scintillators enabling registration of photons from the positronium annihilation. J-PET tomograph together with the positronium target system enable to measure expectation values for the discrete symmetries odd operators constructed from (i spin vector of the ortho-positronium atom, (ii momentum vectors of photons originating from the decay of positronium, and (iii linear polarization direction of annihilation photons. Linearly polarized positronium will be produced in the highly porous aerogel or polymer targets, exploiting longitudinally polarized positrons emitted by the sodium 22Na isotope. Information about the polarization vector of orthopositronium will be available on the event by event basis and will be reconstructed from the known position of the positron source and the reconstructed position of the orthopositronium annihilation. In 2016 the first tests and calibration runs are planned, and the data collection with high statistics will commence in the year 2017.
Inevitable randomness in discrete mathematics
Beck, Jozsef
2009-01-01
Mathematics has been called the science of order. The subject is remarkably good for generalizing specific cases to create abstract theories. However, mathematics has little to say when faced with highly complex systems, where disorder reigns. This disorder can be found in pure mathematical arenas, such as the distribution of primes, the 3n+1 conjecture, and class field theory. The purpose of this book is to provide examples--and rigorous proofs--of the complexity law: (1) discrete systems are either simple or they exhibit advanced pseudorandomness; (2) a priori probabilities often exist even when there is no intrinsic symmetry. Part of the difficulty in achieving this purpose is in trying to clarify these vague statements. The examples turn out to be fascinating instances of deep or mysterious results in number theory and combinatorics. This book considers randomness and complexity. The traditional approach to complexity--computational complexity theory--is to study very general complexity classes, such as P...
Quantum evolution by discrete measurements
Roa, L; Guevara, M L Ladron de; Delgado, A; Olivares-RenterIa, G; Klimov, A B
2007-01-01
In this article we review two ways of driving a quantum system to a known pure state via a sequence discrete of von Neumann measurements. The first of them assumes that the initial state of the system is unknown, and the evolution is attained only with the help of two non-commuting observables. For this method, the overall success probability is maximized when the eigentstates of the involved observables constitute mutually unbiased bases. The second method assumes the initial state is known and it uses N observables which are consecutively measured to make the state of the system approach the target state. The probability of success of this procedure converges to 1 as the number of observables increases
Quantum evolution by discrete measurements
Roa, L [Center for Quantum Optics and Quantum Information, Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile); Guevara, M L Ladron de [Departamento de Fisica, Universidad Catolica del Norte, Casilla 1280, Antofagasta (Chile); Delgado, A [Center for Quantum Optics and Quantum Information, Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile); Olivares-RenterIa, G [Center for Quantum Optics and Quantum Information, Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile); Klimov, A B [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44420 Guadalajara, Jalisco (Mexico)
2007-10-15
In this article we review two ways of driving a quantum system to a known pure state via a sequence discrete of von Neumann measurements. The first of them assumes that the initial state of the system is unknown, and the evolution is attained only with the help of two non-commuting observables. For this method, the overall success probability is maximized when the eigentstates of the involved observables constitute mutually unbiased bases. The second method assumes the initial state is known and it uses N observables which are consecutively measured to make the state of the system approach the target state. The probability of success of this procedure converges to 1 as the number of observables increases.
Discrete stochastic processes and applications
Collet, Jean-François
2018-01-01
This unique text for beginning graduate students gives a self-contained introduction to the mathematical properties of stochastics and presents their applications to Markov processes, coding theory, population dynamics, and search engine design. The book is ideal for a newly designed course in an introduction to probability and information theory. Prerequisites include working knowledge of linear algebra, calculus, and probability theory. The first part of the text focuses on the rigorous theory of Markov processes on countable spaces (Markov chains) and provides the basis to developing solid probabilistic intuition without the need for a course in measure theory. The approach taken is gradual beginning with the case of discrete time and moving on to that of continuous time. The second part of this text is more applied; its core introduces various uses of convexity in probability and presents a nice treatment of entropy.
Discrete calculus methods for counting
Mariconda, Carlo
2016-01-01
This book provides an introduction to combinatorics, finite calculus, formal series, recurrences, and approximations of sums. Readers will find not only coverage of the basic elements of the subjects but also deep insights into a range of less common topics rarely considered within a single book, such as counting with occupancy constraints, a clear distinction between algebraic and analytical properties of formal power series, an introduction to discrete dynamical systems with a thorough description of Sarkovskii’s theorem, symbolic calculus, and a complete description of the Euler-Maclaurin formulas and their applications. Although several books touch on one or more of these aspects, precious few cover all of them. The authors, both pure mathematicians, have attempted to develop methods that will allow the student to formulate a given problem in a precise mathematical framework. The aim is to equip readers with a sound strategy for classifying and solving problems by pursuing a mathematically rigorous yet ...
Modeling discrete competitive facility location
Karakitsiou, Athanasia
2015-01-01
This book presents an up-to-date review of modeling and optimization approaches for location problems along with a new bi-level programming methodology which captures the effect of competition of both producers and customers on facility location decisions. While many optimization approaches simplify location problems by assuming decision making in isolation, this monograph focuses on models which take into account the competitive environment in which such decisions are made. New insights in modeling, algorithmic and theoretical possibilities are opened by this approach and new applications are possible. Competition on equal term plus competition between market leader and followers are considered in this study, consequently bi-level optimization methodology is emphasized and further developed. This book provides insights regarding modeling complexity and algorithmic approaches to discrete competitive location problems. In traditional location modeling, assignment of customer demands to supply sources are made ...
Discrete modelling of drapery systems
Thoeni, Klaus; Giacomini, Anna
2016-04-01
Drapery systems are an efficient and cost-effective measure in preventing and controlling rockfall hazards on rock slopes. The simplest form consists of a row of ground anchors along the top of the slope connected to a horizontal support cable from which a wire mesh is suspended down the face of the slope. Such systems are generally referred to as simple or unsecured draperies (Badger and Duffy 2012). Variations such as secured draperies, where a pattern of ground anchors is incorporated within the field of the mesh, and hybrid systems, where the upper part of an unsecured drapery is elevated to intercept rockfalls originating upslope of the installation, are becoming more and more popular. This work presents a discrete element framework for simulation of unsecured drapery systems and its variations. The numerical model is based on the classical discrete element method (DEM) and implemented into the open-source framework YADE (Šmilauer et al., 2010). The model takes all relevant interactions between block, drapery and slope into account (Thoeni et al., 2014) and was calibrated and validated based on full-scale experiments (Giacomini et al., 2012).The block is modelled as a rigid clump made of spherical particles which allows any shape to be approximated. The drapery is represented by a set of spherical particle with remote interactions. The behaviour of the remote interactions is governed by the constitutive behaviour of the wire and generally corresponds to a piecewise linear stress-strain relation (Thoeni et al., 2013). The same concept is used to model wire ropes. The rock slope is represented by rigid triangular elements where material properties (e.g., normal coefficient of restitution, friction angle) are assigned to each triangle. The capabilities of the developed model to simulate drapery systems and estimate the residual hazard involved with such systems is shown. References Badger, T.C., Duffy, J.D. (2012) Drapery systems. In: Turner, A.K., Schuster R
Discrete symmetries with neutral mesons
Bernabéu, José
2018-01-01
Symmetries, and Symmetry Breakings, in the Laws of Physics play a crucial role in Fundamental Science. Parity and Charge Conjugation Violations prompted the consideration of Chiral Fields in the construction of the Standard Model, whereas CP-Violation needed at least three families of Quarks leading to Flavour Physics. In this Lecture I discuss the Conceptual Basis and the present experimental results for a Direct Evidence of Separate Reversal-in-Time T, CP and CPT Genuine Asymmetries in Decaying Particles like Neutral Meson Transitions, using Quantum Entanglement and the Decay as a Filtering Measurement. The eight transitions associated to the Flavour-CP eigenstate decay products of entangled neutral mesons have demonstrated with impressive significance a separate evidence of TRV and CPV in Bd-physics, whereas a CPTV asymmetry shows a 2σ effect interpreted as an upper limit. Novel CPTV observables are discussed for K physics at KLOE-2, including the difference between the semileptonic asymmetries from KL and KS, the ratios of double decay rate Intensities to Flavour-CP eigenstate decay products and the ω-effect. Their observation would lead to a change of paradigm beyond Quantum Field Theory, however there is nothing in Quantum Mechanics forbidding CPTV.
How to construct self/anti-self charge conjugate states?
Dvoeglazov, V V
2014-01-01
We construct self/anti–self charge conjugate (Majorana–like) states for the (1/2, 0)⊕(0, 1/2) representation of the Lorentz group, and their analogs for higher spins within the quantum field theory. The problem of the basis rotations and that of the selection of phases in the Dirac–like and Majorana–like field operators are considered. The discrete symmetries properties (P, C, T) are studied. The corresponding dynamical equations are presented. In the (1/2, 0) ⊕ (0, 1/2) representation they obey the Dirac–like equation with eight components, which has been first introduced by Markov. Thus, the Fock space for corresponding quantum fields is doubled (as shown by Ziino). The particular attention has been paid to the questions of chirality and helicity (two concepts which are frequently confused in the literature) for Dirac and Majorana states. We further review several experimental consequences which follow from the previous works of M. Kirchbach et al. on neutrinoless double beta decay, and G. J. Ni et al. on meson lifetimes
Zhong, Ruibo; Yuan, Ming; Gao, Haiyang; Bai, Zhijun; Guo, Jun; Zhao, Xinmin; Zhang, Feng
2016-03-01
Discrete biomolecule-nanoparticle (NP) conjugates play paramount roles in nanofabrication, in which the key is to get the precise molar extinction coefficient of NPs. By making best use of the gift from a specific separation phenomenon of agarose gel electrophoresis (GE), amphiphilic polymer coated NP with exact number of bovine serum albumin (BSA) proteins can be extracted and further experimentally employed to precisely calculate the molar extinction coefficient of the NPs. This method could further benefit the evaluation and extraction of any other dual-component NP-containing bio-conjugates.
Hu, Rui, E-mail: rhu@anl.gov; Yu, Yiqi
2016-11-15
Highlights: • Developed a computationally efficient method for full-core conjugate heat transfer modeling of sodium fast reactors. • Applied fully-coupled JFNK solution scheme to avoid the operator-splitting errors. • The accuracy and efficiency of the method is confirmed with a 7-assembly test problem. • The effects of different spatial discretization schemes are investigated and compared to the RANS-based CFD simulations. - Abstract: For efficient and accurate temperature predictions of sodium fast reactor structures, a 3-D full-core conjugate heat transfer modeling capability is developed for an advanced system analysis tool, SAM. The hexagon lattice core is modeled with 1-D parallel channels representing the subassembly flow, and 2-D duct walls and inter-assembly gaps. The six sides of the hexagon duct wall and near-wall coolant region are modeled separately to account for different temperatures and heat transfer between coolant flow and each side of the duct wall. The Jacobian Free Newton Krylov (JFNK) solution method is applied to solve the fluid and solid field simultaneously in a fully coupled fashion. The 3-D full-core conjugate heat transfer modeling capability in SAM has been demonstrated by a verification test problem with 7 fuel assemblies in a hexagon lattice layout. Additionally, the SAM simulation results are compared with RANS-based CFD simulations. Very good agreements have been achieved between the results of the two approaches.
Analytical characterization of polymer-drug conjugates
Rizzo, V.; Gigli, M.; Pinciroli, V.
1998-01-01
A few polymeric conjugates of antitumor drugs have been recently developed in view of possible therapeutic advantages: solubilization of sparingly soluble drugs in water, improvement of therapeutic index, organ targeting through a second chemical species bound to the same polymeric chain. In this article it's described the analytical approach used in the characterization of the conjugates for chemical identity, purity and strength of the contained active ingredient. The techniques are: high field NMR and size exclusion chromatography with non-aqueous mobile phase for identity; selective hydrolysis and HPLC for strength and purity. A complete and reliable picture is thus obtained both for qualitative and for quantitative aspects. This is an important step forward in the direction of further development and marketing of polymer-drug conjugates [it
Nonlinear conjugate gradient methods in micromagnetics
J. Fischbacher
2017-04-01
Full Text Available Conjugate gradient methods for energy minimization in micromagnetics are compared. The comparison of analytic results with numerical simulation shows that standard conjugate gradient method may fail to produce correct results. A method that restricts the step length in the line search is introduced, in order to avoid this problem. When the step length in the line search is controlled, conjugate gradient techniques are a fast and reliable way to compute the hysteresis properties of permanent magnets. The method is applied to investigate demagnetizing effects in NdFe12 based permanent magnets. The reduction of the coercive field by demagnetizing effects is μ0ΔH = 1.4 T at 450 K.
Conjugate Meningococcal Vaccines Development: GSK Biologicals Experience
Miller, Jacqueline M.; Mesaros, Narcisa; Van Der Wielen, Marie; Baine, Yaela
2011-01-01
Meningococcal diseases are serious threats to global health, and new vaccines specifically tailored to meet the age-related needs of various geographical areas are required. This paper focuses on the meningococcal conjugate vaccines developed by GSK Biologicals. Two combined conjugate vaccines were developed to help protect infants and young children in countries where the incidence of meningococcal serogroup C or serogroup C and Y disease is important: Hib-MenC-TT vaccine, which offers protection against Haemophilus influenzae type b and Neisseria meningitidis serogroup C diseases, is approved in several countries; and Hib-MenCY-TT vaccine, which adds N. meningitidis serogroup Y antigen, is currently in the final stages of development. Additionally, a tetravalent conjugate vaccine (MenACWY-TT) designed to help protect against four meningococcal serogroups is presently being evaluated for global use in all age groups. All of these vaccines were shown to be highly immunogenic and to have clinically acceptable safety profiles. PMID:21991444
Conjugate Meningococcal Vaccines Development: GSK Biologicals Experience
Jacqueline M. Miller
2011-01-01
Full Text Available Meningococcal diseases are serious threats to global health, and new vaccines specifically tailored to meet the age-related needs of various geographical areas are required. This paper focuses on the meningococcal conjugate vaccines developed by GSK Biologicals. Two combined conjugate vaccines were developed to help protect infants and young children in countries where the incidence of meningococcal serogroup C or serogroup C and Y disease is important: Hib-MenC-TT vaccine, which offers protection against Haemophilus influenzae type b and Neisseria meningitidis serogroup C diseases, is approved in several countries; and Hib-MenCY-TT vaccine, which adds N. meningitidis serogroup Y antigen, is currently in the final stages of development. Additionally, a tetravalent conjugate vaccine (MenACWY-TT designed to help protect against four meningococcal serogroups is presently being evaluated for global use in all age groups. All of these vaccines were shown to be highly immunogenic and to have clinically acceptable safety profiles.
125I Radioimmunoassay of serum ursodeoxycholyl conjugates
Hill, A.; Ross, P.E.; Bouchier, I.A.D.
1983-01-01
A radioimmunoassay for serum ursodeoxycholic conjugates using an iodine-125 ligand has been developed. The bile acid was present in normal fasting serum (0.19 +- SD 0.19 μmol/l, n=24) and 2-hour post-prandial serum (0.8 +- SD 0.8 μmol/l, n=16). Gallstone patients undergoing oral ursodeoxycholic acid therapy had significantly higher post-prandial serum levels (21.5 +- SD 14.0 μmol/l, n=15) by radioimmunoassay. Gas liquid chromatography analysis indicated that in normal serum ursodeoxycholic acid was totally conjugated, whereas sera from gallstone patients contained a proportion as the free bile acid (10.2 +- SD 8.1 μmol/l, n=15). Following an oral dose of ursodeoxycholic acid, both unconjugated and conjugated forms of the bile acid appeared in the serum of healthy individuals. (Auth.)
Novel β-cyclodextrin–eosin conjugates
Gábor Benkovics
2017-03-01
Full Text Available Eosin B (EoB and eosin Y (EoY, two xanthene dye derivatives with photosensitizing ability were prepared in high purity through an improved synthetic route. The dyes were grafted to a 6-monoamino-β-cyclodextrin scaffold under mild reaction conditions through a stable amide linkage using the coupling agent 4-(4,6-dimethoxy-1,3,5-triazin-2-yl-4-methylmorpholinium chloride. The molecular conjugates, well soluble in aqueous medium, were extensively characterized by 1D and 2D NMR spectroscopy and mass spectrometry. Preliminary spectroscopic investigations showed that the β-cyclodextrin–EoY conjugate retains both the fluorescence properties and the capability to photogenerate singlet oxygen of the unbound chromophore. In contrast, the corresponding β-cyclodextrin–EoB conjugate did not show either relevant emission or photosensitizing activity probably due to aggregation in aqueous medium, which precludes any response to light excitation.
Novel β-cyclodextrin-eosin conjugates.
Benkovics, Gábor; Afonso, Damien; Darcsi, András; Béni, Szabolcs; Conoci, Sabrina; Fenyvesi, Éva; Szente, Lajos; Malanga, Milo; Sortino, Salvatore
2017-01-01
Eosin B (EoB) and eosin Y (EoY), two xanthene dye derivatives with photosensitizing ability were prepared in high purity through an improved synthetic route. The dyes were grafted to a 6-monoamino-β-cyclodextrin scaffold under mild reaction conditions through a stable amide linkage using the coupling agent 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride. The molecular conjugates, well soluble in aqueous medium, were extensively characterized by 1D and 2D NMR spectroscopy and mass spectrometry. Preliminary spectroscopic investigations showed that the β-cyclodextrin-EoY conjugate retains both the fluorescence properties and the capability to photogenerate singlet oxygen of the unbound chromophore. In contrast, the corresponding β-cyclodextrin-EoB conjugate did not show either relevant emission or photosensitizing activity probably due to aggregation in aqueous medium, which precludes any response to light excitation.
Deciphering conjugative plasmid permissiveness in wastewater microbiomes
Jacquiod, Samuel Jehan Auguste; Brejnrod, Asker Daniel; Milani, Stefan Morberg
2017-01-01
Wastewater treatment plants (WWTPs) are designed to robustly treat polluted water. They are characterized by ceaseless flows of organic, chemical and microbial matter, followed by treatment steps before environmental release. WWTPs are hotspots of horizontal gene transfer between bacteria via...... still remains largely uncharted. Furthermore, current in vitro methods used to assess conjugation in complex microbiomes do not include in situ behaviours of recipient cells, resulting in partial understanding of transfers. We investigated the in vitro conjugation capacities of WWTP microbiomes from...... inlet sewage and outlet treated water using the broad-host range IncP-1 conjugative plasmid, pKJK5. A thorough molecular approach coupling metagenomes to 16S rRNA DNA/cDNA amplicon sequencing was established to characterize microbiomes using the ecological concept of functional response groups. A broad...
Conjugate gradient algorithms using multiple recursions
Barth, T.; Manteuffel, T.
1996-12-31
Much is already known about when a conjugate gradient method can be implemented with short recursions for the direction vectors. The work done in 1984 by Faber and Manteuffel gave necessary and sufficient conditions on the iteration matrix A, in order for a conjugate gradient method to be implemented with a single recursion of a certain form. However, this form does not take into account all possible recursions. This became evident when Jagels and Reichel used an algorithm of Gragg for unitary matrices to demonstrate that the class of matrices for which a practical conjugate gradient algorithm exists can be extended to include unitary and shifted unitary matrices. The implementation uses short double recursions for the direction vectors. This motivates the study of multiple recursion algorithms.
METHOD OF CONJUGATED CIRCULAR ARCS TRACING
N. Ageyev Vladimir
2017-01-01
Full Text Available The geometric properties of conjugated circular arcs connecting two points on the plane with set directions of tan- gent vectors are studied in the work. It is shown that pairs of conjugated circular arcs with the same conditions in frontier points create one-parameter set of smooth curves tightly filling all the plane. One of the basic properties of this set is the fact that all coupling points of circular arcs are on the circular curve going through the initially given points. The circle radius depends on the direction of tangent vectors. Any point of the circle curve, named auxiliary in this work, determines a pair of conjugated arcs with given boundary conditions. One more condition of the auxiliary circle curve is that it divides the plane into two parts. The arcs going from the initial point are out of the circle limited by this circle curve and the arcs coming to the final point are inside it. These properties are the basis for the method of conjugated circular arcs tracing pro- posed in this article. The algorithm is rather simple and allows to fulfill all the needed plottings using only the divider and ruler. Two concrete examples are considered. The first one is related to the problem of tracing of a pair of conjugated arcs with the minimal curve jump when going through the coupling point. The second one demonstrates the possibility of trac- ing of the smooth curve going through any three points on the plane under condition that in the initial and final points the directions of tangent vectors are given. The proposed methods of conjugated circular arcs tracing can be applied in solving of a wide variety of problems connected with the tracing of cam contours, for example pattern curves in textile industry or in computer-aided-design systems when programming of looms with numeric control.
Conjugated Polymers as Actuators: Modes of Actuation
Skaarup, Steen
2004-01-01
The physical and chemical properties of conjugated polymers often depend very strongly on the degree of doping with anions or cations. The movement of ions in and out of the polymer matrix as it is redox cycled is also accompanied by mechanical changes. Both the volume and the stiffness can exhibit...... significant differences between the oxidized and reduced states. These effects form the basis of the use of conjugated polymers as actuators (or “artificial muscles”) controllable by a small (1-10 V) voltage. Three basic modes of actuation (bending, linear extension and stiffness change) have been proposed...
Conjugated polymers as actuators: modes of actuation
Skaarup, Steen
2007-01-01
The physical and chemical properties of conjugated polymers often depend very strongly on the degree of doping with anions or cations. The movement of ions in and out of the polymer matrix as it is redox cycled is also accompanied by mechanical changes. Both the volume and the stiffness can exhibit...... significant differences between the oxidized and reduced states. These effects form the basis of the use of conjugated polymers as actuators (or “artificial muscles”) controllable by a small (1-10 V) voltage. Three basic modes of actuation (bending, linear extension and stiffness change) have been proposed...
Functionalized conjugated polyelectrolytes design and biomedical applications
Wang, Shu
2014-01-01
Functionalized Conjugated Polyelectrolytes presents a comprehensive review of these polyelectrolytes and their biomedical applications. Basic aspects like molecular design and optoelectronic properties are covered in the first chapter. Emphasis is placed on the various applications including sensing (chemical and biological), disease diagnosis, cell imaging, drug/gene delivery and disease treatment. This book explores a multi-disciplinary topic of interest to researchers working in the fields of chemistry, materials, biology and medicine. It also offers an integrated perspective on both basic research and application issues. Functionalized conjugated polyelectrolyte materials, which have already drawn considerable interest, will become a major new direction for biomedicine development.
A Discrete Spectral Problem and Related Hierarchy of Discrete Hamiltonian Lattice Equations
Xu Xixiang; Cao Weili
2007-01-01
Staring from a discrete matrix spectral problem, a hierarchy of lattice soliton equations is presented though discrete zero curvature representation. The resulting lattice soliton equations possess non-local Lax pairs. The Hamiltonian structures are established for the resulting hierarchy by the discrete trace identity. Liouville integrability of resulting hierarchy is demonstrated.
Geometry and Hamiltonian mechanics on discrete spaces
Talasila, V; Clemente-Gallardo, J; Schaft, A J van der
2004-01-01
Numerical simulation is often crucial for analysing the behaviour of many complex systems which do not admit analytic solutions. To this end, one either converts a 'smooth' model into a discrete (in space and time) model, or models systems directly at a discrete level. The goal of this paper is to provide a discrete analogue of differential geometry, and to define on these discrete models a formal discrete Hamiltonian structure-in doing so we try to bring together various fundamental concepts from numerical analysis, differential geometry, algebraic geometry, simplicial homology and classical Hamiltonian mechanics. For example, the concept of a twisted derivation is borrowed from algebraic geometry for developing a discrete calculus. The theory is applied to a nonlinear pendulum and we compare the dynamics obtained through a discrete modelling approach with the dynamics obtained via the usual discretization procedures. Also an example of an energy-conserving algorithm on a simple harmonic oscillator is presented, and its effect on the Poisson structure is discussed
Cuspidal discrete series for semisimple symmetric spaces
Andersen, Nils Byrial; Flensted-Jensen, Mogens; Schlichtkrull, Henrik
2012-01-01
We propose a notion of cusp forms on semisimple symmetric spaces. We then study the real hyperbolic spaces in detail, and show that there exists both cuspidal and non-cuspidal discrete series. In particular, we show that all the spherical discrete series are non-cuspidal. (C) 2012 Elsevier Inc. All...
Discrete Riccati equation solutions: Distributed algorithms
D. G. Lainiotis
1996-01-01
Full Text Available In this paper new distributed algorithms for the solution of the discrete Riccati equation are introduced. The algorithms are used to provide robust and computational efficient solutions to the discrete Riccati equation. The proposed distributed algorithms are theoretically interesting and computationally attractive.
Painleve test and discrete Boltzmann equations
Euler, N.; Steeb, W.H.
1989-01-01
The Painleve test for various discrete Boltzmann equations is performed. The connection with integrability is discussed. Furthermore the Lie symmetry vector fields are derived and group-theoretical reduction of the discrete Boltzmann equations to ordinary differentiable equations is performed. Lie Backlund transformations are gained by performing the Painleve analysis for the ordinary differential equations. 16 refs
Variance Swap Replication: Discrete or Continuous?
Fabien Le Floc’h
2018-02-01
Full Text Available The popular replication formula to price variance swaps assumes continuity of traded option strikes. In practice, however, there is only a discrete set of option strikes traded on the market. We present here different discrete replication strategies and explain why the continuous replication price is more relevant.
Discretization vs. Rounding Error in Euler's Method
Borges, Carlos F.
2011-01-01
Euler's method for solving initial value problems is an excellent vehicle for observing the relationship between discretization error and rounding error in numerical computation. Reductions in stepsize, in order to decrease discretization error, necessarily increase the number of steps and so introduce additional rounding error. The problem is…
Discrete/PWM Ballast-Resistor Controller
King, Roger J.
1994-01-01
Circuit offers low switching loss and automatic compensation for failure of ballast resistor. Discrete/PWM ballast-resistor controller improved shunt voltage-regulator circuit designed to supply power from high-resistance source to low-impedance bus. Provides both coarse discrete voltage levels (by switching of ballast resistors) and continuous fine control of voltage via pulse-width modulation.
Current Density and Continuity in Discretized Models
Boykin, Timothy B.; Luisier, Mathieu; Klimeck, Gerhard
2010-01-01
Discrete approaches have long been used in numerical modelling of physical systems in both research and teaching. Discrete versions of the Schrodinger equation employing either one or several basis functions per mesh point are often used by senior undergraduates and beginning graduate students in computational physics projects. In studying…
Geometry and Hamiltonian mechanics on discrete spaces
Talasila, V.; Clemente-Gallardo, J.; Schaft, A.J. van der
2004-01-01
Numerical simulation is often crucial for analysing the behaviour of many complex systems which do not admit analytic solutions. To this end, one either converts a ‘smooth’ model into a discrete (in space and time) model, or models systems directly at a discrete level. The goal of this paper is to
Geometry and Hamiltonian mechanics on discrete spaces
Talasila, V.; Clemente Gallardo, J.J.; Clemente-Gallardo, J.; van der Schaft, Arjan
2004-01-01
Numerical simulation is often crucial for analysing the behaviour of many complex systems which do not admit analytic solutions. To this end, one either converts a 'smooth' model into a discrete (in space and time) model, or models systems directly at a discrete level. The goal of this paper is to
Discrete mathematics in the high school curriculum
Anderson, I.; Asch, van A.G.; van Lint, J.H.
2004-01-01
In this paper we present some topics from the field of discrete mathematics which might be suitable for the high school curriculum. These topics yield both easy to understand challenging problems and important applications of discrete mathematics. We choose elements from number theory and various
Discrete Fourier analysis of multigrid algorithms
van der Vegt, Jacobus J.W.; Rhebergen, Sander
2011-01-01
The main topic of this report is a detailed discussion of the discrete Fourier multilevel analysis of multigrid algorithms. First, a brief overview of multigrid methods is given for discretizations of both linear and nonlinear partial differential equations. Special attention is given to the
Handbook on modelling for discrete optimization
Pitsoulis, Leonidas; Williams, H
2006-01-01
The primary objective underlying the Handbook on Modelling for Discrete Optimization is to demonstrate and detail the pervasive nature of Discrete Optimization. While its applications cut across an incredibly wide range of activities, many of the applications are only known to specialists. It is the aim of this handbook to correct this. It has long been recognized that "modelling" is a critically important mathematical activity in designing algorithms for solving these discrete optimization problems. Nevertheless solving the resultant models is also often far from straightforward. In recent years it has become possible to solve many large-scale discrete optimization problems. However, some problems remain a challenge, even though advances in mathematical methods, hardware, and software technology have pushed the frontiers forward. This handbook couples the difficult, critical-thinking aspects of mathematical modeling with the hot area of discrete optimization. It will be done in an academic handbook treatment...
Discrete elements method of neutral particle transport
Mathews, K.A.
1983-01-01
A new discrete elements (L/sub N/) transport method is derived and compared to the discrete ordinates S/sub N/ method, theoretically and by numerical experimentation. The discrete elements method is more accurate than discrete ordinates and strongly ameliorates ray effects for the practical problems studied. The discrete elements method is shown to be more cost effective, in terms of execution time with comparable storage to attain the same accuracy, for a one-dimensional test case using linear characteristic spatial quadrature. In a two-dimensional test case, a vacuum duct in a shield, L/sub N/ is more consistently convergent toward a Monte Carlo benchmark solution than S/sub N/, using step characteristic spatial quadrature. An analysis of the interaction of angular and spatial quadrature in xy-geometry indicates the desirability of using linear characteristic spatial quadrature with the L/sub N/ method
Spatially localized, temporally quasiperiodic, discrete nonlinear excitations
Cai, D.; Bishop, A.R.; Gronbech-Jensen, N.
1995-01-01
In contrast to the commonly discussed discrete breather, which is a spatially localized, time-periodic solution, we present an exact solution of a discrete nonlinear Schroedinger breather which is a spatially localized, temporally quasiperiodic nonlinear coherent excitation. This breather is a multiple-soliton solution in the sense of the inverse scattering transform. A discrete breather of multiple frequencies is conceptually important in studies of nonlinear lattice systems. We point out that, for this breather, the incommensurability of its frequencies is a discrete lattice effect and these frequencies become commensurate in the continuum limit. To understand the dynamical properties of the breather, we also discuss its stability and its behavior in the presence of an external potential. Finally, we indicate how to obtain an exact N-soliton breather as a discrete generalization of the continuum multiple-soliton solution
Laplacians on discrete and quantum geometries
Calcagni, Gianluca; Oriti, Daniele; Thürigen, Johannes
2013-01-01
We extend discrete calculus for arbitrary (p-form) fields on embedded lattices to abstract discrete geometries based on combinatorial complexes. We then provide a general definition of discrete Laplacian using both the primal cellular complex and its combinatorial dual. The precise implementation of geometric volume factors is not unique and, comparing the definition with a circumcentric and a barycentric dual, we argue that the latter is, in general, more appropriate because it induces a Laplacian with more desirable properties. We give the expression of the discrete Laplacian in several different sets of geometric variables, suitable for computations in different quantum gravity formalisms. Furthermore, we investigate the possibility of transforming from position to momentum space for scalar fields, thus setting the stage for the calculation of heat kernel and spectral dimension in discrete quantum geometries. (paper)
Discrete breathers in graphane: Effect of temperature
Baimova, J. A., E-mail: julia.a.baimova@gmail.com [Russian Academy of Sciences, Institute of Metal Physics, Ural Branch (Russian Federation); Murzaev, R. T.; Lobzenko, I. P.; Dmitriev, S. V. [Russian Academy of Sciences, Institute for Metals Superplasticity Problems (Russian Federation); Zhou, Kun [Nanyang Technological University, School of Mechanical and Aerospace Engineering (Singapore)
2016-05-15
The discrete breathers in graphane in thermodynamic equilibrium in the temperature range 50–600 K are studied by molecular dynamics simulation. A discrete breather is a hydrogen atom vibrating along the normal to a sheet of graphane at a high amplitude. As was found earlier, the lifetime of a discrete breather at zero temperature corresponds to several tens of thousands of vibrations. The effect of temperature on the decay time of discrete breathers and the probability of their detachment from a sheet of graphane are studied in this work. It is shown that closely spaced breathers can exchange energy with each other at zero temperature. The data obtained suggest that thermally activated discrete breathers can be involved in the dehydrogenation of graphane, which is important for hydrogen energetics.
Ding Qing
2007-01-01
We prove that the integrable-nonintegrable discrete nonlinear Schroedinger equation (AL-DNLS) introduced by Cai, Bishop and Gronbech-Jensen (Phys. Rev. Lett. 72 591(1994)) is the discrete gauge equivalent to an integrable-nonintegrable discrete Heisenberg model from the geometric point of view. Then we study whether the transmission and bifurcation properties of the AL-DNLS equation are preserved under the action of discrete gauge transformations. Our results reveal that the transmission property of the AL-DNLS equation is completely preserved and the bifurcation property is conditionally preserved to those of the integrable-nonintegrable discrete Heisenberg model
Plasmid transfer by conjugation in Xylella fastidiosa.
Recombination and horizontal gene transfer have been implicated in the adaption of Xylella fastidiosa (Xf) to infect a wide variety of different plant species. There is evidence that certain strains of Xf carry native plasmids equipped with transfer and mobilization genes, suggesting conjugation as ...
Theory of periodic conjugate heat transfer
Zudin, Yuri B
2016-01-01
This book presents the theory of periodic conjugate heat transfer in detail. It offers a simplified description of the interaction between a solid body and a fluid as a boundary value problem of the heat conduction equation for the solid body.
Conjugate Problems in Convective Heat Transfer: Review
Abram Dorfman
2009-01-01
Full Text Available A review of conjugate convective heat transfer problems solved during the early and current time of development of this modern approach is presented. The discussion is based on analytical solutions of selected typical relatively simple conjugate problems including steady-state and transient processes, thermal material treatment, and heat and mass transfer in drying. This brief survey is accompanied by the list of almost two hundred publications considering application of different more and less complex analytical and numerical conjugate models for simulating technology processes and industrial devices from aerospace systems to food production. The references are combined in the groups of works studying similar problems so that each of the groups corresponds to one of selected analytical solutions considered in detail. Such structure of review gives the reader the understanding of early and current situation in conjugate convective heat transfer modeling and makes possible to use the information presented as an introduction to this area on the one hand, and to find more complicated publications of interest on the other hand.
Stochastic differential equations used to model conjugation
Philipsen, Kirsten Riber; Christiansen, Lasse Engbo
Stochastic differential equations (SDEs) are used to model horizontal transfer of antibiotic resis- tance by conjugation. The model describes the concentration of donor, recipient, transconjugants and substrate. The strength of the SDE model over the traditional ODE models is that the noise can...
Immunogenicity of novel sulfadimethoxide conjugates | Chen ...
Immunogenicity of novel sulfadimethoxide conjugates. L Chen, J Su, X Zhang, L Li, X He. Abstract. Sulfadimethoxine (SDM) is an antibiotic commonly added to animal feeds. Anti-SDM antibodies are useful for the detection of residual SDM in foods, feeds and biological fluids by ELISA. In this study, we show that SDM is ...
Women experiencing the intergenerationality of conjugal violence
Gilvânia Patrícia do Nascimento Paixão
2015-10-01
Full Text Available Objective: to analyze the family relationship, in childhood and adolescence, of women who experience conjugal violence.Method: qualitative study. Interviews were held with 19 women, who were experiencing conjugal violence, and who were resident in a community in Salvador, Bahia, Brazil. The project was approved by the Research Ethics Committee (N. 42/2011.Results: the data was organized using the Discourse of the Collective Subject, identifying the summary central ideas: they witnessed violence between their parents; they suffered repercussions from the violence between their parents: they were angry about the mother's submission to her partner; and they reproduced the conjugal violence. The discourse showed that the women witnessed, in childhood and adolescence, violence between their parents, and were injured both physically and psychologically. As a result of the mother's submission, feelings of anger arose in the children. However, in the adult phase of their own lives, they noticed that their conjugal life resembled that of their parents, reproducing the violence.Conclusion: investment is necessary in strategies designed to break inter-generational violence, and the health professionals are important in this process, as it is a phenomenon with repercussions in health. Because they work in the Family Health Strategy, which focuses on the prevention of harm and illness, health promotion and interdepartmentality, the nurses are essential in the process of preventing and confronting this phenomenon.
Conjugate problems in convective heat transfer
Dorfman, Abram S
2009-01-01
The conjugate heat transfer (CHT) problem takes into account the thermal interaction between a body and fluid flowing over or through it, a key consideration in both mechanical and aerospace engineering. Presenting more than 100 solutions of non-isothermal and CHT problems, this title considers the approximate solutions of CHT problems.
Compositions for directed alignment of conjugated polymers
Kim, Jinsang; Kim, Bong-Gi; Jeong, Eun Jeong
2016-04-19
Conjugated polymers (CPs) achieve directed alignment along an applied flow field and a dichroic ratio of as high as 16.67 in emission from well-aligned thin films and fully realized anisotropic optoelectronic properties of CPs in field-effect transistor (FET).
Conjugate Gradient Algorithms For Manipulator Simulation
Fijany, Amir; Scheid, Robert E.
1991-01-01
Report discusses applicability of conjugate-gradient algorithms to computation of forward dynamics of robotic manipulators. Rapid computation of forward dynamics essential to teleoperation and other advanced robotic applications. Part of continuing effort to find algorithms meeting requirements for increased computational efficiency and speed. Method used for iterative solution of systems of linear equations.
Conjugated Polymer Actuators: Prospects and Limitations
Skaarup, Steen
2007-01-01
Actuators constructed with a conjugated polymer as the active part have been predicted to have a number of highly desirable properties: Large mechanical strength, high power density, i.e. high actuation speeds possible, sufficient maximum strain values, high reversibility and safe, low voltages (1...
Some aspects of geomagnetically conjugate phenomena
Rycroft, M.J.
1987-12-01
Both charged particles and waves convey information about the thermosphere, ionosphere and magnetosphere from the Northern to the Southern Hemisphere and vice versa, along geomagnetic flux tubes.The interhemispheric travel time of electrons or ions, being dependent upon L-value , pitch angle and energy (which may lie between less than or equal to 1 eV and greater than or equal to 1 MeV) may be many hours, ranging down to less than or equal to 1 s. However, the one-hop propagation time for magnetohydrodynamic or whistler mode waves generally lies between 10/sup 2/s and 1 s. Such times, therefore, give the time scales of transient phenomena that are geomagnetically conjugate and of changes in steady-state plasma processes occurring in geomagnetically conjugate regions. Contrasting examples are presented of conjugate physical phenomena, obtained using satellite, rocket, aircraft and ground-based observations; the latter capitalise upon the rather rare disposition of land - rather than ocean - at each end of a geophysically interesting flux tube. Particular attention is paid to the interactions between whistler mode waves and energetic electrons. Geomagnetic, radio, optical and plasma observations, taken together with model computations, provide a wealth of knowledge on conjugate phenomena and their dependence on conditions in the solar wind, substorms, L-value, etc... Finally, some suggestions are made for future lines of research.
Cross-Conjugated n-Dopable Aromatic Polyketone
Voortman, Thomas P.; Bartesaghi, Davide; Koster, L. Jan Anton; Chiechi, Ryan C.
2015-01-01
This paper describes the synthesis and characterization of a high molecular weight cross-conjugated polyketone synthesized via scalable Friedel Crafts chemistry. Cross-conjugated polyketones are precursors to conjugated polyions; they become orders of magnitude more conductive after a two-electron
Bis-polymer lipid-peptide conjugates and nanoparticles thereof
Xu, Ting; Dong, He; Shu, Jessica; Dube, Nikhil
2018-04-24
The present invention provides bis-polymer lipid-peptide conjugates containing a hydrophobic block and headgroup containing a helical peptide and two polymer blocks. The conjugates can self-assemble to form helix bundle subunits, which in turn assemble to provide micellar nanocarriers for drug cargos and other agents. Particles containing the conjugates and methods for forming the particles are also disclosed.
Compatible Spatial Discretizations for Partial Differential Equations
Arnold, Douglas, N, ed.
2004-11-25
From May 11--15, 2004, the Institute for Mathematics and its Applications held a hot topics workshop on Compatible Spatial Discretizations for Partial Differential Equations. The numerical solution of partial differential equations (PDE) is a fundamental task in science and engineering. The goal of the workshop was to bring together a spectrum of scientists at the forefront of the research in the numerical solution of PDEs to discuss compatible spatial discretizations. We define compatible spatial discretizations as those that inherit or mimic fundamental properties of the PDE such as topology, conservation, symmetries, and positivity structures and maximum principles. A wide variety of discretization methods applied across a wide range of scientific and engineering applications have been designed to or found to inherit or mimic intrinsic spatial structure and reproduce fundamental properties of the solution of the continuous PDE model at the finite dimensional level. A profusion of such methods and concepts relevant to understanding them have been developed and explored: mixed finite element methods, mimetic finite differences, support operator methods, control volume methods, discrete differential forms, Whitney forms, conservative differencing, discrete Hodge operators, discrete Helmholtz decomposition, finite integration techniques, staggered grid and dual grid methods, etc. This workshop seeks to foster communication among the diverse groups of researchers designing, applying, and studying such methods as well as researchers involved in practical solution of large scale problems that may benefit from advancements in such discretizations; to help elucidate the relations between the different methods and concepts; and to generally advance our understanding in the area of compatible spatial discretization methods for PDE. Particular points of emphasis included: + Identification of intrinsic properties of PDE models that are critical for the fidelity of numerical
Bayesian inference from count data using discrete uniform priors.
Federico Comoglio
Full Text Available We consider a set of sample counts obtained by sampling arbitrary fractions of a finite volume containing an homogeneously dispersed population of identical objects. We report a Bayesian derivation of the posterior probability distribution of the population size using a binomial likelihood and non-conjugate, discrete uniform priors under sampling with or without replacement. Our derivation yields a computationally feasible formula that can prove useful in a variety of statistical problems involving absolute quantification under uncertainty. We implemented our algorithm in the R package dupiR and compared it with a previously proposed Bayesian method based on a Gamma prior. As a showcase, we demonstrate that our inference framework can be used to estimate bacterial survival curves from measurements characterized by extremely low or zero counts and rather high sampling fractions. All in all, we provide a versatile, general purpose algorithm to infer population sizes from count data, which can find application in a broad spectrum of biological and physical problems.
Dennis, T.; Scatton, B.
1982-01-01
A simple, sensitive and specific radioenzymatic assay for the measurement of 3,4-dihydroxyphenylethyleneglycol (DOPEG) was developed. The assay is based on the conversion of the compound to its O-methylated derivative in the presence of catechol-O-methyltransferase and [ 3 H]S-adenosyl-methionine. The tritiated 3-methoxy-4-hydroxyphenylethyleneglycol formed is selectively extracted in organic solvents and isolated by thin layer chromatography. After oxidation to vanillin the O-methylated compound is extracted and measured by liquid scintillation spectrophotometry. This assay has been applied to the measurement of free and conjugated DOPEG is a variety of biological tissues and fluids. Both free and conjugated DOPEG were readily detected in discrete rat brain areas. Substantial amounts of free and conjugated DOPEG were also measured in ventricular perfusates from freely moving rats. Finally, the presence of DOPEG was also demonstrated in human cerebrospinal fluid, plasma and urine. Only the free form of DOPEG was found in cerebrospinal fluid, whereas both unconjugated and conjugated forms were present in plasma and urine. (Auth.)
Perfect discretization of reparametrization invariant path integrals
Bahr, Benjamin; Dittrich, Bianca; Steinhaus, Sebastian
2011-01-01
To obtain a well-defined path integral one often employs discretizations. In the case of gravity and reparametrization-invariant systems, the latter of which we consider here as a toy example, discretizations generically break diffeomorphism and reparametrization symmetry, respectively. This has severe implications, as these symmetries determine the dynamics of the corresponding system. Indeed we will show that a discretized path integral with reparametrization-invariance is necessarily also discretization independent and therefore uniquely determined by the corresponding continuum quantum mechanical propagator. We use this insight to develop an iterative method for constructing such a discretized path integral, akin to a Wilsonian RG flow. This allows us to address the problem of discretization ambiguities and of an anomaly-free path integral measure for such systems. The latter is needed to obtain a path integral, that can act as a projector onto the physical states, satisfying the quantum constraints. We will comment on implications for discrete quantum gravity models, such as spin foams.
Perfect discretization of reparametrization invariant path integrals
Bahr, Benjamin; Dittrich, Bianca; Steinhaus, Sebastian
2011-05-01
To obtain a well-defined path integral one often employs discretizations. In the case of gravity and reparametrization-invariant systems, the latter of which we consider here as a toy example, discretizations generically break diffeomorphism and reparametrization symmetry, respectively. This has severe implications, as these symmetries determine the dynamics of the corresponding system. Indeed we will show that a discretized path integral with reparametrization-invariance is necessarily also discretization independent and therefore uniquely determined by the corresponding continuum quantum mechanical propagator. We use this insight to develop an iterative method for constructing such a discretized path integral, akin to a Wilsonian RG flow. This allows us to address the problem of discretization ambiguities and of an anomaly-free path integral measure for such systems. The latter is needed to obtain a path integral, that can act as a projector onto the physical states, satisfying the quantum constraints. We will comment on implications for discrete quantum gravity models, such as spin foams.
Higher dimensional discrete Cheeger inequalities
Anna Gundert
2015-01-01
Full Text Available For graphs there exists a strong connection between spectral and combinatorial expansion properties. This is expressed, e.g., by the discrete Cheeger inequality, the lower bound of which states that $\\lambda(G \\leq h(G$, where $\\lambda(G$ is the second smallest eigenvalue of the Laplacian of a graph $G$ and $h(G$ is the Cheeger constant measuring the edge expansion of $G$. We are interested in generalizations of expansion properties to finite simplicial complexes of higher dimension (or uniform hypergraphs. Whereas higher dimensional Laplacians were introduced already in 1945 by Eckmann, the generalization of edge expansion to simplicial complexes is not straightforward. Recently, a topologically motivated notion analogous to edge expansion that is based on $\\mathbb{Z}_2$-cohomology was introduced by Gromov and independently by Linial, Meshulam and Wallach. It is known that for this generalization there is no direct higher dimensional analogue of the lower bound of the Cheeger inequality. A different, combinatorially motivated generalization of the Cheeger constant, denoted by $h(X$, was studied by Parzanchevski, Rosenthal and Tessler. They showed that indeed $\\lambda(X \\leq h(X$, where $\\lambda(X$ is the smallest non-trivial eigenvalue of the ($(k-1$-dimensional upper Laplacian, for the case of $k$-dimensional simplicial complexes $X$ with complete $(k-1$-skeleton. Whether this inequality also holds for $k$-dimensional complexes with non-com\\-plete$(k-1$-skeleton has been an open question.We give two proofs of the inequality for arbitrary complexes. The proofs differ strongly in the methods and structures employed,and each allows for a different kind of additional strengthening of the original result.
Maruno, Ken-ichi; Biondini, Gino
2004-01-01
We present a class of solutions of the two-dimensional Toda lattice equation, its fully discrete analogue and its ultra-discrete limit. These solutions demonstrate the existence of soliton resonance and web-like structure in discrete integrable systems such as differential-difference equations, difference equations and cellular automata (ultra-discrete equations)
Hairs of discrete symmetries and gravity
Choi, Kang Sin [Scranton Honors Program, Ewha Womans University, Seodaemun-Gu, Seoul 03760 (Korea, Republic of); Center for Fields, Gravity and Strings, CTPU, Institute for Basic Sciences, Yuseong-Gu, Daejeon 34047 (Korea, Republic of); Kim, Jihn E., E-mail: jihnekim@gmail.com [Department of Physics, Kyung Hee University, 26 Gyungheedaero, Dongdaemun-Gu, Seoul 02447 (Korea, Republic of); Center for Axion and Precision Physics Research (IBS), 291 Daehakro, Yuseong-Gu, Daejeon 34141 (Korea, Republic of); Kyae, Bumseok [Department of Physics, Pusan National University, 2 Busandaehakro-63-Gil, Geumjeong-Gu, Busan 46241 (Korea, Republic of); Nam, Soonkeon [Department of Physics, Kyung Hee University, 26 Gyungheedaero, Dongdaemun-Gu, Seoul 02447 (Korea, Republic of)
2017-06-10
Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete symmetries in the Universe must involve the vacuum expectation values of Higgs fields, a string-like configuration (hair) at the intersection of domain walls in the Higgs vacua can be realized. Therefore, we argue that discrete charges are also respected by gravity.
Hairs of discrete symmetries and gravity
Kang Sin Choi
2017-06-01
Full Text Available Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete symmetries in the Universe must involve the vacuum expectation values of Higgs fields, a string-like configuration (hair at the intersection of domain walls in the Higgs vacua can be realized. Therefore, we argue that discrete charges are also respected by gravity.
Discrete Morse functions for graph configuration spaces
Sawicki, A
2012-01-01
We present an alternative application of discrete Morse theory for two-particle graph configuration spaces. In contrast to previous constructions, which are based on discrete Morse vector fields, our approach is through Morse functions, which have a nice physical interpretation as two-body potentials constructed from one-body potentials. We also give a brief introduction to discrete Morse theory. Our motivation comes from the problem of quantum statistics for particles on networks, for which generalized versions of anyon statistics can appear. (paper)
Discrete Tomography and Imaging of Polycrystalline Structures
Alpers, Andreas
High resolution transmission electron microscopy is commonly considered as the standard application for discrete tomography. While this has yet to be technically realized, new applications with a similar flavor have emerged in materials science. In our group at Ris� DTU (Denmark's National...... Laboratory for Sustainable Energy), for instance, we study polycrystalline materials via synchrotron X-ray diffraction. Several reconstruction problems arise, most of them exhibit inherently discrete aspects. In this talk I want to give a concise mathematical introduction to some of these reconstruction...... problems. Special focus is on their relationship to classical discrete tomography. Several open mathematical questions will be mentioned along the way....
Ensemble simulations with discrete classical dynamics
Toxværd, Søren
2013-01-01
For discrete classical Molecular dynamics (MD) obtained by the "Verlet" algorithm (VA) with the time increment $h$ there exist a shadow Hamiltonian $\\tilde{H}$ with energy $\\tilde{E}(h)$, for which the discrete particle positions lie on the analytic trajectories for $\\tilde{H}$. $\\tilde......{E}(h)$ is employed to determine the relation with the corresponding energy, $E$ for the analytic dynamics with $h=0$ and the zero-order estimate $E_0(h)$ of the energy for discrete dynamics, appearing in the literature for MD with VA. We derive a corresponding time reversible VA algorithm for canonical dynamics...
Stochastic Kuramoto oscillators with discrete phase states
Jörg, David J.
2017-09-01
We present a generalization of the Kuramoto phase oscillator model in which phases advance in discrete phase increments through Poisson processes, rendering both intrinsic oscillations and coupling inherently stochastic. We study the effects of phase discretization on the synchronization and precision properties of the coupled system both analytically and numerically. Remarkably, many key observables such as the steady-state synchrony and the quality of oscillations show distinct extrema while converging to the classical Kuramoto model in the limit of a continuous phase. The phase-discretized model provides a general framework for coupled oscillations in a Markov chain setting.
Stochastic Kuramoto oscillators with discrete phase states.
Jörg, David J
2017-09-01
We present a generalization of the Kuramoto phase oscillator model in which phases advance in discrete phase increments through Poisson processes, rendering both intrinsic oscillations and coupling inherently stochastic. We study the effects of phase discretization on the synchronization and precision properties of the coupled system both analytically and numerically. Remarkably, many key observables such as the steady-state synchrony and the quality of oscillations show distinct extrema while converging to the classical Kuramoto model in the limit of a continuous phase. The phase-discretized model provides a general framework for coupled oscillations in a Markov chain setting.
Discrete-Time Biomedical Signal Encryption
Victor Grigoraş
2017-12-01
Full Text Available Chaotic modulation is a strong method of improving communication security. Analog and discrete chaotic systems are presented in actual literature. Due to the expansion of digital communication, discrete-time systems become more efficient and closer to actual technology. The present contribution offers an in-depth analysis of the effects chaos encryption produce on 1D and 2D biomedical signals. The performed simulations show that modulating signals are precisely recovered by the synchronizing receiver if discrete systems are digitally implemented and the coefficients precisely correspond. Channel noise is also applied and its effects on biomedical signal demodulation are highlighted.
Discrete symmetries and de Sitter spacetime
Cotăescu, Ion I., E-mail: gpascu@physics.uvt.ro; Pascu, Gabriel, E-mail: gpascu@physics.uvt.ro [West University of Timişoara, V. Pârvan Ave. 4, RO-300223 Timişoara (Romania)
2014-11-24
Aspects of the ambiguity in defining quantum modes on de Sitter spacetime using a commuting system composed only of differential operators are discussed. Discrete symmetries and their actions on the wavefunction in commonly used coordinate charts are reviewed. It is argued that the system of commuting operators can be supplemented by requiring the invariance of the wavefunction to combined discrete symmetries- a criterion which selects a single state out of the α-vacuum family. Two such members of this family are singled out by particular combined discrete symmetries- states between which exists a well-known thermality relation.
Exterior difference systems and invariance properties of discrete mechanics
Xie Zheng; Xie Duanqiang; Li Hongbo
2008-01-01
Invariance properties describe the fundamental physical laws in discrete mechanics. Can those properties be described in a geometric way? We investigate an exterior difference system called the discrete Euler-Lagrange system, whose solution has one-to-one correspondence with solutions of discrete Euler-Lagrange equations, and use it to define the first integrals. The preservation of the discrete symplectic form along the discrete Hamilton phase flows and the discrete Noether's theorem is also described in the language of difference forms
Application of optical phase conjugation to plasma diagnostics (invited)
Jahoda, F.C.; Anderson, B.T.; Forman, P.R.; Weber, P.G.
1985-01-01
Several possibilities for plasma diagnostics provided by optical phase conjugation and, in particular, self-pumped phase conjugation in barium titanate (BaTiO 3 ) are discussed. These include placing a plasma within a dye laser cavity equipped with a phase conjugate mirror for intracavity absorption measurements, time differential refractometry with high spatial resolution, and simplified real-time holographic interferometry. The principles of phase conjugation with particular reference to photorefractive media and the special advantages of self-pumped phase conjugation are reviewed prior to the discussion of the applications. Distinctions are made in the applications between those for which photorefractive conjugators are essential and those for which they only offer experimental simplification relative to other types of phase conjugators
On organizing principles of discrete differential geometry. Geometry of spheres
Bobenko, Alexander I; Suris, Yury B
2007-01-01
Discrete differential geometry aims to develop discrete equivalents of the geometric notions and methods of classical differential geometry. This survey contains a discussion of the following two fundamental discretization principles: the transformation group principle (smooth geometric objects and their discretizations are invariant with respect to the same transformation group) and the consistency principle (discretizations of smooth parametrized geometries can be extended to multidimensional consistent nets). The main concrete geometric problem treated here is discretization of curvature-line parametrized surfaces in Lie geometry. Systematic use of the discretization principles leads to a discretization of curvature-line parametrization which unifies circular and conical nets.
Can time be a discrete dynamical variable
Lee, T.D.
1983-01-01
The possibility that time can be regarded as a discrete dynamical variable is examined through all phases of mechanics: from classical mechanics to nonrelativistic quantum mechanics, and to relativistic quantum field theories. (orig.)
Local discrete symmetries from superstring derived models
Faraggi, A.E.
1996-10-01
Discrete and global symmetries play an essential role in many extensions of the Standard Model, for example, to preserve the proton lifetime, to prevent flavor changing neutral currents, etc. An important question is how can such symmetries survive in a theory of quantum gravity, like superstring theory. In a specific string model the author illustrates how local discrete symmetries may arise in string models and play an important role in preventing fast proton decay and flavor changing neutral currents. The local discrete symmetry arises due to the breaking of the non-Abelian gauge symmetries by Wilson lines in the superstring models and forbids, for example dimension five operators which mediate rapid proton decay, to all orders of nonrenormalizable terms. In the context of models of unification of the gauge and gravitational interactions, it is precisely this type of local discrete symmetries that must be found in order to insure that a given model is not in conflict with experimental observations
Breatherlike impurity modes in discrete nonlinear lattices
Hennig, D.; Rasmussen, Kim; Tsironis, G. P.
1995-01-01
We investigate the properties of a disordered generalized discrete nonlinear Schrodinger equation, containing both diagonal and nondiagonal nonlinear terms. The equation models a Linear host lattice doped with nonlinear impurities. We find different types of impurity states that form itinerant...
Inferring gene networks from discrete expression data
Zhang, L.; Mallick, B. K.
2013-01-01
graphical models applied to continuous data, which give a closedformmarginal likelihood. In this paper,we extend network modeling to discrete data, specifically data from serial analysis of gene expression, and RNA-sequencing experiments, both of which
A discrete control model of PLANT
Mitchell, C. M.
1985-01-01
A model of the PLANT system using the discrete control modeling techniques developed by Miller is described. Discrete control models attempt to represent in a mathematical form how a human operator might decompose a complex system into simpler parts and how the control actions and system configuration are coordinated so that acceptable overall system performance is achieved. Basic questions include knowledge representation, information flow, and decision making in complex systems. The structure of the model is a general hierarchical/heterarchical scheme which structurally accounts for coordination and dynamic focus of attention. Mathematically, the discrete control model is defined in terms of a network of finite state systems. Specifically, the discrete control model accounts for how specific control actions are selected from information about the controlled system, the environment, and the context of the situation. The objective is to provide a plausible and empirically testable accounting and, if possible, explanation of control behavior.
Running Parallel Discrete Event Simulators on Sierra
Barnes, P. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jefferson, D. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-12-03
In this proposal we consider porting the ROSS/Charm++ simulator and the discrete event models that run under its control so that they run on the Sierra architecture and make efficient use of the Volta GPUs.
Effective Hamiltonian for travelling discrete breathers
MacKay, Robert S.; Sepulchre, Jacques-Alexandre
2002-05-01
Hamiltonian chains of oscillators in general probably do not sustain exact travelling discrete breathers. However solutions which look like moving discrete breathers for some time are not difficult to observe in numerics. In this paper we propose an abstract framework for the description of approximate travelling discrete breathers in Hamiltonian chains of oscillators. The method is based on the construction of an effective Hamiltonian enabling one to describe the dynamics of the translation degree of freedom of moving breathers. Error estimate on the approximate dynamics is also studied. The concept of the Peierls-Nabarro barrier can be made clear in this framework. We illustrate the method with two simple examples, namely the Salerno model which interpolates between the Ablowitz-Ladik lattice and the discrete nonlinear Schrödinger system, and the Fermi-Pasta-Ulam chain.
Comparing the Discrete and Continuous Logistic Models
Gordon, Sheldon P.
2008-01-01
The solutions of the discrete logistic growth model based on a difference equation and the continuous logistic growth model based on a differential equation are compared and contrasted. The investigation is conducted using a dynamic interactive spreadsheet. (Contains 5 figures.)
Discrete-time nonlinear sliding mode controller
user
Keywords: Discrete-time delay system, Sliding mode control, nonlinear sliding ... of engineering systems such as chemical process control, delay in the actuator ...... instrumentation from Motilal Nehru National Institute of Technology (MNNIT),.
Rich dynamics of discrete delay ecological models
Peng Mingshu
2005-01-01
We study multiple bifurcations and chaotic behavior of a discrete delay ecological model. New form of chaos for the 2-D map is observed: the combination of potential period doubling and reverse period-doubling leads to cascading bubbles
Discrete and Continuous Models for Partitioning Problems
Lellmann, Jan; Lellmann, Bjö rn; Widmann, Florian; Schnö rr, Christoph
2013-01-01
-based techniques. This work is concerned with the sources of such artifacts. We discuss the importance of differentiating between artifacts caused by discretization and those caused by relaxation and provide supporting numerical examples. Moreover, we consider
Memorized discrete systems and time-delay
Luo, Albert C J
2017-01-01
This book examines discrete dynamical systems with memory—nonlinear systems that exist extensively in biological organisms and financial and economic organizations, and time-delay systems that can be discretized into the memorized, discrete dynamical systems. It book further discusses stability and bifurcations of time-delay dynamical systems that can be investigated through memorized dynamical systems as well as bifurcations of memorized nonlinear dynamical systems, discretization methods of time-delay systems, and periodic motions to chaos in nonlinear time-delay systems. The book helps readers find analytical solutions of MDS, change traditional perturbation analysis in time-delay systems, detect motion complexity and singularity in MDS; and determine stability, bifurcation, and chaos in any time-delay system.
Testing Preference Axioms in Discrete Choice experiments
Hougaard, Jens Leth; Østerdal, Lars Peter; Tjur, Tue
Recent studies have tested the preference axioms of completeness and transitivity, and have detected other preference phenomena such as unstability, learning- and tiredness effects, ordering effects and dominance, in stated preference discrete choice experiments. However, it has not been explicitly...... of the preference axioms and other preference phenomena in the context of stated preference discrete choice experiments, and examine whether or how these can be subject to meaningful (statistical) tests...
Quadratic Term Structure Models in Discrete Time
Marco Realdon
2006-01-01
This paper extends the results on quadratic term structure models in continuos time to the discrete time setting. The continuos time setting can be seen as a special case of the discrete time one. Recursive closed form solutions for zero coupon bonds are provided even in the presence of multiple correlated underlying factors. Pricing bond options requires simple integration. Model parameters may well be time dependent without scuppering such tractability. Model estimation does not require a r...
Symmetries in discrete-time mechanics
Khorrami, M.
1996-01-01
Based on a general formulation for discrete-time quantum mechanics, introduced by M. Khorrami (Annals Phys. 224 (1995), 101), symmetries in discrete-time quantum mechanics are investigated. It is shown that any classical continuous symmetry leads to a conserved quantity in classical mechanics, as well as quantum mechanics. The transformed wave function, however, has the correct evolution if and only if the symmetry is nonanomalous. Copyright copyright 1996 Academic Press, Inc
Nonlinear integrodifferential equations as discrete systems
Tamizhmani, K. M.; Satsuma, J.; Grammaticos, B.; Ramani, A.
1999-06-01
We analyse a class of integrodifferential equations of the `intermediate long wave' (ILW) type. We show that these equations can be formally interpreted as discrete, differential-difference systems. This allows us to link equations of this type with previous results of ours involving differential-delay equations and, on the basis of this, propose new integrable equations of ILW type. Finally, we extend this approach to pure difference equations and propose ILW forms for the discrete lattice KdV equation.
Definable maximal discrete sets in forcing extensions
Törnquist, Asger Dag; Schrittesser, David
2018-01-01
Let be a Σ11 binary relation, and recall that a set A is -discrete if no two elements of A are related by . We show that in the Sacks and Miller forcing extensions of L there is a Δ12 maximal -discrete set. We use this to answer in the negative the main question posed in [5] by showing...
Application of multivariate splines to discrete mathematics
Xu, Zhiqiang
2005-01-01
Using methods developed in multivariate splines, we present an explicit formula for discrete truncated powers, which are defined as the number of non-negative integer solutions of linear Diophantine equations. We further use the formula to study some classical problems in discrete mathematics as follows. First, we extend the partition function of integers in number theory. Second, we exploit the relation between the relative volume of convex polytopes and multivariate truncated powers and giv...
Discrete symmetries and solar neutrino mixing
Kapetanakis, D.; Mayr, P.; Nilles, H.P. (Physik Dept., Technische Univ. Muenchen, Garching (Germany) Max-Planck-Inst. fuer Physik, Werner-Heisenberg-Inst., Muenchen (Germany))
1992-05-21
We study the question of resonant solar neutrino mixing in the framework of the supersymmetric extension of the standard model. Discrete symmetries that are consistent with solar neutrino mixing and proton stability are classified. In the minimal model they are shown to lead to two distinct patterns of allowed dimension-four operators. Imposing anomaly freedom, only three different discrete Z{sub N}-symmetries (with N=2, 3, 6) are found to be phenomenologically acceptable. (orig.).
Discrete symmetries and solar neutrino mixing
Kapetanakis, D.; Mayr, P.; Nilles, H.P.
1992-01-01
We study the question of resonant solar neutrino mixing in the framework of the supersymmetric extension of the standard model. Discrete symmetries that are consistent with solar neutrino mixing and proton stability are classified. In the minimal model they are shown to lead to two distinct patterns of allowed dimension-four operators. Imposing anomaly freedom, only three different discrete Z N -symmetries (with N=2, 3, 6) are found to be phenomenologically acceptable. (orig.)
Discrete symmetries and coset space dimensional reduction
Kapetanakis, D.; Zoupanos, G.
1989-01-01
We consider the discrete symmetries of all the six-dimensional coset spaces and we apply them in gauge theories defined in ten dimensions which are dimensionally reduced over these homogeneous spaces. Particular emphasis is given in the consequences of the discrete symmetries on the particle content as well as on the symmetry breaking a la Hosotani of the resulting four-dimensional theory. (orig.)
On discrete models of space-time
Horzela, A.; Kempczynski, J.; Kapuscik, E.; Georgia Univ., Athens, GA; Uzes, Ch.
1992-02-01
Analyzing the Einstein radiolocation method we come to the conclusion that results of any measurement of space-time coordinates should be expressed in terms of rational numbers. We show that this property is Lorentz invariant and may be used in the construction of discrete models of space-time different from the models of the lattice type constructed in the process of discretization of continuous models. (author)
Discrete approximations to vector spin models
Van Enter, Aernout C D [University of Groningen, Johann Bernoulli Institute of Mathematics and Computing Science, Postbus 407, 9700 AK Groningen (Netherlands); Kuelske, Christof [Ruhr-Universitaet Bochum, Fakultaet fuer Mathematik, D44801 Bochum (Germany); Opoku, Alex A, E-mail: A.C.D.v.Enter@math.rug.nl, E-mail: Christof.Kuelske@ruhr-uni-bochum.de, E-mail: opoku@math.leidenuniv.nl [Mathematisch Instituut, Universiteit Leiden, Postbus 9512, 2300 RA, Leiden (Netherlands)
2011-11-25
We strengthen a result from Kuelske and Opoku (2008 Electron. J. Probab. 13 1307-44) on the existence of effective interactions for discretized continuous-spin models. We also point out that such an interaction cannot exist at very low temperatures. Moreover, we compare two ways of discretizing continuous-spin models, and show that except for very low temperatures, they behave similarly in two dimensions. We also discuss some possibilities in higher dimensions. (paper)
Discrete approximations to vector spin models
Van Enter, Aernout C D; Külske, Christof; Opoku, Alex A
2011-01-01
We strengthen a result from Külske and Opoku (2008 Electron. J. Probab. 13 1307–44) on the existence of effective interactions for discretized continuous-spin models. We also point out that such an interaction cannot exist at very low temperatures. Moreover, we compare two ways of discretizing continuous-spin models, and show that except for very low temperatures, they behave similarly in two dimensions. We also discuss some possibilities in higher dimensions. (paper)
A study of discrete nonlinear systems
Dhillon, H.S.
2001-04-01
An investigation of various spatially discrete time-independent nonlinear models was undertaken. These models are generically applicable to many different physical systems including electron-phonon interactions in solids, magnetic multilayers, layered superconductors and classical lattice systems. To characterise the possible magnetic structures created on magnetic multilayers a model has been formulated and studied. The Euler-Lagrange equation for this model is a discrete version of the Sine-Gordon equation. Solutions of this equation are generated by applying the methods of Chaotic Dynamics - treating the space variable associated with the layer number as a discrete time variable. The states found indicate periodic, quasiperiodic and chaotic structures. Analytic solutions to the discrete nonlinear Schroedinger Equation (DNSE) with cubic nonlinearity are presented in the strong coupling limit. Using these as a starting point, a procedure is developed to determine the wave function and the energy eigenvalue for moderate coupling. The energy eigenvalues of the different structures of the wave function are found to be in excellent agreement with the exact strong coupling result. The solutions to the DNSE indicate commensurate and incommensurate spatial structures associated with different localisation patterns of the wave function. The states which arise may be fractal, periodic, quasiperiodic or chaotic. This work is then extended to solve a first order discrete nonlinear equation. The exact solutions for both the first and second order discrete nonlinear equations with cubic nonlinearity suggests that this method of studying discrete nonlinear equations may be applied to solve discrete equations with any order difference and cubic nonlinearity. (author)
Mohamed, Mamdouh S.
2016-02-11
A conservative discretization of incompressible Navier–Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a combinatorial discretization of the wedge product. The governing equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. The discretization is then carried out by substituting with the corresponding discrete operators based on the DEC framework. Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy for otherwise unstructured meshes. By construction, the method is conservative in that both mass and vorticity are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step.
Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi
2016-05-01
A conservative discretization of incompressible Navier-Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a combinatorial discretization of the wedge product. The governing equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. The discretization is then carried out by substituting with the corresponding discrete operators based on the DEC framework. Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy for otherwise unstructured meshes. By construction, the method is conservative in that both mass and vorticity are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step.
Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves
Inoguchi, Jun-ichi; Kajiwara, Kenji; Matsuura, Nozomu; Ohta, Yasuhiro
2012-01-01
We construct explicit solutions to continuous motion of discrete plane curves described by a semi-discrete potential modified KdV equation. Explicit formulas in terms of the τ function are presented. Bäcklund transformations of the discrete curves are also discussed. We finally consider the continuous limit of discrete motion of discrete plane curves described by the discrete potential modified KdV equation to motion of smooth plane curves characterized by the potential modified KdV equation. (paper)
Discrete modeling considerations in multiphase fluid dynamics
Ransom, V.H.; Ramshaw, J.D.
1988-01-01
The modeling of multiphase flows play a fundamental role in light water reactor safety. The main ingredients in our discrete modeling Weltanschauung are the following considerations: (1) Any physical model must be cast into discrete form for a digital computer. (2) The usual approach of formulating models in differential form and then discretizing them is potentially hazardous. It may be preferable to formulate the model in discrete terms from the outset. (3) Computer time and storage constraints limit the resolution that can be employed in practical calculations. These limits effectively define the physical phenomena, length scales, and time scales which cannot be directly represented in the calculation and therefore must be modeled. This information should be injected into the model formulation process at an early stage. (4) Practical resolution limits are generally so coarse that traditional convergence and truncation-error analyses become irrelevant. (5) A discrete model constitutes a reduced description of a physical system, from which fine-scale details are eliminated. This elimination creates a statistical closure problem. Methods from statistical physics may therefore be useful in the formulation of discrete models. In the present paper we elaborate on these themes and illustrate them with simple examples. 48 refs
Theoretical Basics of Teaching Discrete Mathematics
Y. A. Perminov
2012-01-01
Full Text Available The paper deals with the research findings concerning the process of mastering the theoretical basics of discrete mathematics by the students of vocational pedagogic profile. The methodological analysis is based on the subject and functions of the modern discrete mathematics and its role in mathematical modeling and computing. The modern discrete mathematics (i.e. mathematics of the finite type structures plays the important role in modernization of vocational training. It is especially rele- vant to training students for vocational pedagogic qualifications, as in the future they will be responsible for training the middle and the senior level specialists in engineer- ing and technical spheres. Nowadays in different industries, there arise the problems which require for their solving both continual – based on the classical mathematical methods – and discrete modeling. The teaching course of discrete mathematics for the future vocational teachers should be relevant to the target qualification and aimed at mastering the mathematical modeling, systems of computer mathematics and computer technologies. The author emphasizes the fundamental role of mastering the language of algebraic and serial structures, as well as the logical, algorithmic, combinatory schemes dominating in dis- crete mathematics. The guidelines for selecting the content of the course in discrete mathematics are specified. The theoretical findings of the research can be put into practice whilst developing curricula and working programs for bachelors and masters’ training.
Current density and continuity in discretized models
Boykin, Timothy B; Luisier, Mathieu; Klimeck, Gerhard
2010-01-01
Discrete approaches have long been used in numerical modelling of physical systems in both research and teaching. Discrete versions of the Schroedinger equation employing either one or several basis functions per mesh point are often used by senior undergraduates and beginning graduate students in computational physics projects. In studying discrete models, students can encounter conceptual difficulties with the representation of the current and its divergence because different finite-difference expressions, all of which reduce to the current density in the continuous limit, measure different physical quantities. Understanding these different discrete currents is essential and requires a careful analysis of the current operator, the divergence of the current and the continuity equation. Here we develop point forms of the current and its divergence valid for an arbitrary mesh and basis. We show that in discrete models currents exist only along lines joining atomic sites (or mesh points). Using these results, we derive a discrete analogue of the divergence theorem and demonstrate probability conservation in a purely localized-basis approach.
Discrete Calculus as a Bridge between Scales
Degiuli, Eric; McElwaine, Jim
2012-02-01
Understanding how continuum descriptions of disordered media emerge from the microscopic scale is a fundamental challenge in condensed matter physics. In many systems, it is necessary to coarse-grain balance equations at the microscopic scale to obtain macroscopic equations. We report development of an exact, discrete calculus, which allows identification of discrete microscopic equations with their continuum equivalent [1]. This allows the application of powerful techniques of calculus, such as the Helmholtz decomposition, the Divergence Theorem, and Stokes' Theorem. We illustrate our results with granular materials. In particular, we show how Newton's laws for a single grain reproduce their continuum equivalent in the calculus. This allows introduction of a discrete Airy stress function, exactly as in the continuum. As an application of the formalism, we show how these results give the natural mean-field variation of discrete quantities, in agreement with numerical simulations. The discrete calculus thus acts as a bridge between discrete microscale quantities and continuous macroscale quantities. [4pt] [1] E. DeGiuli & J. McElwaine, PRE 2011. doi: 10.1103/PhysRevE.84.041310
Recent developments in discrete ordinates electron transport
Morel, J.E.; Lorence, L.J. Jr.
1986-01-01
The discrete ordinates method is a deterministic method for numerically solving the Boltzmann equation. It was originally developed for neutron transport calculations, but is routinely used for photon and coupled neutron-photon transport calculations as well. The computational state of the art for coupled electron-photon transport (CEPT) calculations is not as developed as that for neutron transport calculations. The only production codes currently available for CEPT calculations are condensed-history Monte Carlo codes such as the ETRAN and ITS codes. A deterministic capability for production calculations is clearly needed. In response to this need, we have begun the development of a production discrete ordinates code for CEPT calculations. The purpose of this paper is to describe the basic approach we are taking, discuss the current status of the project, and present some new computational results. Although further characterization of the coupled electron-photon discrete ordinates method remains to be done, the results to date indicate that the discrete ordinates method can be just as accurate and from 10 to 100 times faster than the Monte Carlo method for a wide variety of problems. We stress that these results are obtained with standard discrete ordinates codes such as ONETRAN. It is clear that even greater efficiency can be obtained by developing a new generation of production discrete ordinates codes specifically designed to solve the Boltzmann-Fokker-Planck equation. However, the prospects for such development in the near future appear to be remote
Discrete symmetries and their stringy origin
Mayorga Pena, Damian Kaloni
2014-05-01
Discrete symmetries have proven to be very useful in controlling the phenomenology of theories beyond the standard model. In this work we explore how these symmetries emerge from string compactifications. Our approach is twofold: On the one hand, we consider the heterotic string on orbifold backgrounds. In this case the discrete symmetries can be derived from the orbifold conformal field theory, and it can be shown that they are in close relation with the orbifold geometry. We devote special attention to R-symmetries, which arise from discrete remnants of the Lorentz group in compact space. Further we discuss the physical implications of these symmetries both in the heterotic mini-landscape and in newly constructed models based on the Z 2 x Z 4 orbifold. In both cases we observe that the discrete symmetries favor particular locations in the orbifold where the particles of standard model should live. On the other hand we consider a class of F-theory models exhibiting an SU(5) gauge group, times additional U(1) symmetries. In this case, the smooth compactification background does not permit us to track the discrete symmetries as transparently as in orbifold models. Hence, we follow a different approach and search for discrete subgroups emerging after the U(1)s are broken. We observe that in this approach it is possible to obtain the standard Z 2 matter parity of the MSSM.
Stochastic Spectral and Conjugate Descent Methods
Kovalev, Dmitry
2018-02-11
The state-of-the-art methods for solving optimization problems in big dimensions are variants of randomized coordinate descent (RCD). In this paper we introduce a fundamentally new type of acceleration strategy for RCD based on the augmentation of the set of coordinate directions by a few spectral or conjugate directions. As we increase the number of extra directions to be sampled from, the rate of the method improves, and interpolates between the linear rate of RCD and a linear rate independent of the condition number. We develop and analyze also inexact variants of these methods where the spectral and conjugate directions are allowed to be approximate only. We motivate the above development by proving several negative results which highlight the limitations of RCD with importance sampling.
Stochastic Spectral and Conjugate Descent Methods
Kovalev, Dmitry; Gorbunov, Eduard; Gasanov, Elnur; Richtarik, Peter
2018-01-01
The state-of-the-art methods for solving optimization problems in big dimensions are variants of randomized coordinate descent (RCD). In this paper we introduce a fundamentally new type of acceleration strategy for RCD based on the augmentation of the set of coordinate directions by a few spectral or conjugate directions. As we increase the number of extra directions to be sampled from, the rate of the method improves, and interpolates between the linear rate of RCD and a linear rate independent of the condition number. We develop and analyze also inexact variants of these methods where the spectral and conjugate directions are allowed to be approximate only. We motivate the above development by proving several negative results which highlight the limitations of RCD with importance sampling.
Phase-conjugate optical coherence tomography
Erkmen, Baris I.; Shapiro, Jeffrey H.
2006-01-01
Quantum optical coherence tomography (Q-OCT) offers a factor-of-2 improvement in axial resolution and the advantage of even-order dispersion cancellation when it is compared to conventional OCT (C-OCT). These features have been ascribed to the nonclassical nature of the biphoton state employed in the former, as opposed to the classical state used in the latter. Phase-conjugate OCT (PC-OCT) shows that nonclassical light is not necessary to reap Q-OCT's advantages. PC-OCT uses classical-state signal and reference beams, which have a phase-sensitive cross correlation, together with phase conjugation to achieve the axial resolution and even-order dispersion cancellation of Q-OCT with a signal-to-noise ratio that can be comparable to that of C-OCT
Antibody conjugate radioimmunotherapy of superficial bladder cancer
Perkins, Alan; Hopper, Melanie; Murray, Andrea; Frier, Malcolm; Bishop, Mike
2002-01-01
The administration of antibody conjugates for cancer therapy is now proving to be of clinical value. We are currently undertaking a programme of clinical studies using the monoclonal antibody C 595 (gG3) which reacts with the MUC1 glycoprotein antigen that is aberrantly expressed in a high proportion of bladder tumours. Radio immuno conjugates of the C 595 antibody have been produced with high radiolabelling efficiency and immuno reactivity using Tc-99 m and In-111 for diagnostic imaging, and disease staging and the cytotoxic radionuclides Cu-67 and Re-188 for therapy of superficial bladder cancer. A Phase I/II therapeutic trail involving the intravesical administration of antibody directly into the bladder has now begun. (author)
Charge conjugation invariance of the spectator equations
Gross, F.
1999-01-01
In response to recent criticism, the authors show how to define the spectator equations for negative energies so that charge conjugation invariance is preserved. The result, which emerges naturally from the application of spectator principles to systems of particles with negative energies, is to replace all factors of the external energies W iota by √ W 2 iota , insuring that the amplitudes are independent of the sign of the energies W iota
Conjugated Linoleic Acid: good or bad nutrient
Gonçalves Daniela C
2010-10-01
Full Text Available Abstract Conjugated linoleic acid (CLA is a class of 28 positional and geometric isomers of linoleic acid octadecadienoic.Currently, it has been described many benefits related to the supplementation of CLA in animals and humans, as in the treatment of cancer, oxidative stress, in atherosclerosis, in bone formation and composition in obesity, in diabetes and the immune system. However, our results show that, CLA appears to be not a good supplement in patients with cachexia.
Error Estimation in Preconditioned Conjugate Gradients
Strakoš, Zdeněk; Tichý, Petr
2005-01-01
Roč. 45, - (2005), s. 789-817 ISSN 0006-3835 R&D Projects: GA AV ČR 1ET400300415; GA AV ČR KJB1030306 Institutional research plan: CEZ:AV0Z10300504 Keywords : preconditioned conjugate gradient method * error bounds * stopping criteria * evaluation of convergence * numerical stability * finite precision arithmetic * rounding errors Subject RIV: BA - General Mathematics Impact factor: 0.509, year: 2005
Conjugate gradient optimization programs for shuttle reentry
Powers, W. F.; Jacobson, R. A.; Leonard, D. A.
1972-01-01
Two computer programs for shuttle reentry trajectory optimization are listed and described. Both programs use the conjugate gradient method as the optimization procedure. The Phase 1 Program is developed in cartesian coordinates for a rotating spherical earth, and crossrange, downrange, maximum deceleration, total heating, and terminal speed, altitude, and flight path angle are included in the performance index. The programs make extensive use of subroutines so that they may be easily adapted to other atmospheric trajectory optimization problems.
M-step preconditioned conjugate gradient methods
Adams, L.
1983-01-01
Preconditioned conjugate gradient methods for solving sparse symmetric and positive finite systems of linear equations are described. Necessary and sufficient conditions are given for when these preconditioners can be used and an analysis of their effectiveness is given. Efficient computer implementations of these methods are discussed and results on the CYBER 203 and the Finite Element Machine under construction at NASA Langley Research Center are included.
Canonical quantum gravity and consistent discretizations
Abstract. This paper covers some developments in canonical quantum gravity that ... derstanding the real Ashtekar variables four dimensionally [4], or the recent work ... Traditionally, canonical formulations of general relativity considered as canonical variables the metric on a spatial slice qab and a canonically conjugate.
Discrete integrable systems and deformations of associative algebras
Konopelchenko, B G
2009-01-01
Interrelations between discrete deformations of the structure constants for associative algebras and discrete integrable systems are reviewed. Theory of deformations for associative algebras is presented. Closed left ideal generated by the elements representing the multiplication table plays a central role in this theory. Deformations of the structure constants are generated by the deformation driving algebra and governed by the central system of equations. It is demonstrated that many discrete equations such as discrete Boussinesq equation, discrete WDVV equation, discrete Schwarzian KP and BKP equations, discrete Hirota-Miwa equations for KP and BKP hierarchies are particular realizations of the central system. An interaction between the theories of discrete integrable systems and discrete deformations of associative algebras is reciprocal and fruitful. An interpretation of the Menelaus relation (discrete Schwarzian KP equation), discrete Hirota-Miwa equation for KP hierarchy, consistency around the cube as the associativity conditions and the concept of gauge equivalence, for instance, between the Menelaus and KP configurations are particular examples.
Shi, Ying; Zhang, Da-jun; Nimmo, Jonathan J C
2014-01-01
The Hirota–Miwa equation can be written in ‘nonlinear’ form in two ways: the discrete KP equation and, by using a compatible continuous variable, the discrete potential KP equation. For both systems, we consider the Darboux and binary Darboux transformations, expressed in terms of the continuous variable, and obtain exact solutions in Wronskian and Grammian form. We discuss reductions of both systems to the discrete KdV and discrete potential KdV equation, respectively, and exploit this connection to find the Darboux and binary Darboux transformations and exact solutions of these equations. (paper)
Dinh Nho Hao; Nguyen Trung Thanh; Sahli, Hichem
2008-01-01
In this paper we consider a multi-dimensional inverse heat conduction problem with time-dependent coefficients in a box, which is well-known to be severely ill-posed, by a variational method. The gradient of the functional to be minimized is obtained by aids of an adjoint problem and the conjugate gradient method with a stopping rule is then applied to this ill-posed optimization problem. To enhance the stability and the accuracy of the numerical solution to the problem we apply this scheme to the discretized inverse problem rather than to the continuous one. The difficulties with large dimensions of discretized problems are overcome by a splitting method which only requires the solution of easy-to-solve one-dimensional problems. The numerical results provided by our method are very good and the techniques seem to be very promising.
[Relationship between family variables and conjugal adjustment].
Jiménez-Picón, Nerea; Lima-Rodríguez, Joaquín-Salvador; Lima-Serrano, Marta
2018-04-01
To determine whether family variables, such as type of relationship, years of marriage, existence of offspring, number of members of family, stage of family life cycle, transition between stages, perceived social support, and/or stressful life events are related to conjugal adjustment. A cross-sectional and correlational study using questionnaires. Primary care and hospital units of selected centres in the province of Seville, Spain. Consecutive stratified sampling by quotas of 369 heterosexual couples over 18years of age, who maintained a relationship, with or without children, living in Seville. A self-report questionnaire for the sociodemographic variables, and the abbreviated version of the Dyadic Adjustment Scale, Questionnaire MOS Perceived Social Support, and Social Readjustment Rating Scale, were used. Descriptive and inferential statistics were performed with correlation analysis and multivariate regression. Statistically significant associations were found between conjugal adjustment and marriage years (r=-10: Pfamily life cycle (F=2.65; Pfamily life cycle stage (mature-aged stage) on conjugal adjustment (R2=.21; F=9.9; df=356; Prelationship. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.
Cancer Chemopreventive Ability of Conjugated Linolenic Acids
Kazuo Miyashita
2011-11-01
Full Text Available Conjugated fatty acids (CFA have received increased interest because of their beneficial effects on human health, including preventing cancer development. Conjugated linoleic acids (CLA are such CFA, and have been reviewed extensively for their multiple biological activities. In contrast to other types of CFAs including CLA that are found at low concentrations (less than 1% in natural products, conjugated linolenic acids (CLN are the only CFAs that occur in higher quantities in natural products. Some plant seeds contain a considerably high concentration of CLN (30 to 70 wt% lipid. Our research group has screened CLN from different plant seed oils to determine their cancer chemopreventive ability. This review describes the physiological functions of CLN isomers that occur in certain plant seeds. CLN are able to induce apoptosis through decrease of Bcl-2 protein in certain human cancer cell lines, increase expression of peroxisome proliferator-activated receptor (PPAR-γ, and up-regulate gene expression of p53. Findings in our preclinical animal studies have indicated that feeding with CLN resulted in inhibition of colorectal tumorigenesis through modulation of apoptosis and expression of PPARγ and p53. In this review, we summarize chemopreventive efficacy of CLN against cancer development, especially colorectal cancer.
Preconditioned Conjugate Gradient methods for low speed flow calculations
Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing
1993-01-01
An investigation is conducted into the viability of using a generalized Conjugate Gradient-like method as an iterative solver to obtain steady-state solutions of very low-speed fluid flow problems. Low-speed flow at Mach 0.1 over a backward-facing step is chosen as a representative test problem. The unsteady form of the two dimensional, compressible Navier-Stokes equations are integrated in time using discrete time-steps. The Navier-Stokes equations are cast in an implicit, upwind finite-volume, flux split formulation. The new iterative solver is used to solve a linear system of equations at each step of the time-integration. Preconditioning techniques are used with the new solver to enhance the stability and the convergence rate of the solver and are found to be critical to the overall success of the solver. A study of various preconditioners reveals that a preconditioner based on the lower-upper (L-U)-successive symmetric over-relaxation iterative scheme is more efficient than a preconditioner based on incomplete L-U factorizations of the iteration matrix. The performance of the new preconditioned solver is compared with a conventional line Gauss-Seidel relaxation (LGSR) solver. Overall speed-up factors of 28 (in terms of global time-steps required to converge to a steady-state solution) and 20 (in terms of total CPU time on one processor of a CRAY-YMP) are found in favor of the new preconditioned solver, when compared with the LGSR solver.
Blockwise conjugate gradient methods for image reconstruction in volumetric CT.
Qiu, W; Titley-Peloquin, D; Soleimani, M
2012-11-01
Cone beam computed tomography (CBCT) enables volumetric image reconstruction from 2D projection data and plays an important role in image guided radiation therapy (IGRT). Filtered back projection is still the most frequently used algorithm in applications. The algorithm discretizes the scanning process (forward projection) into a system of linear equations, which must then be solved to recover images from measured projection data. The conjugate gradients (CG) algorithm and its variants can be used to solve (possibly regularized) linear systems of equations Ax=b and linear least squares problems minx∥b-Ax∥2, especially when the matrix A is very large and sparse. Their applications can be found in a general CT context, but in tomography problems (e.g. CBCT reconstruction) they have not widely been used. Hence, CBCT reconstruction using the CG-type algorithm LSQR was implemented and studied in this paper. In CBCT reconstruction, the main computational challenge is that the matrix A usually is very large, and storing it in full requires an amount of memory well beyond the reach of commodity computers. Because of these memory capacity constraints, only a small fraction of the weighting matrix A is typically used, leading to a poor reconstruction. In this paper, to overcome this difficulty, the matrix A is partitioned and stored blockwise, and blockwise matrix-vector multiplications are implemented within LSQR. This implementation allows us to use the full weighting matrix A for CBCT reconstruction without further enhancing computer standards. Tikhonov regularization can also be implemented in this fashion, and can produce significant improvement in the reconstructed images. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Swami, Rajan; Singh, Indu [National Institute of Pharmaceutical Education & Research (NIPER), Department of Pharmaceutics (India); Kulhari, Hitesh [CSIR-Indian Institute of Chemical Technology, Medicinal Chemistry & Pharmacology Division (India); Jeengar, Manish Kumar [National Institute of Pharmaceutical Education & Research (NIPER), Departmentof Pharmacology (India); Khan, Wahid, E-mail: wahid@niperhyd.ac.in; Sistla, Ramakrishna, E-mail: sistla@iict.res.in, E-mail: rksistla@yahoo.com [National Institute of Pharmaceutical Education & Research (NIPER), Department of Pharmaceutics (India)
2015-06-15
Dendrimers which are discrete nanostructures/nanoparticles are emerging as promising candidates for many nanomedicine applications. Ligand-conjugated dendrimer facilitate the delivery of therapeutics in a targeted manner. Small molecules such as p-hydroxyl benzoic acid (pHBA) were found to have high affinity for sigma receptors which are prominent in most parts of central nervous system and tumors. The aim of this study was to synthesize pHBA-dendrimer conjugates as colloidal carrier for site-specific delivery of practically water insoluble drug, docetaxel (DTX) to brain tumors and to determine its targeting efficiency. pHBA, a small molecule ligand was coupled to the surface amine groups of generation 4-PAMAM dendrimer via a carbodiimide reaction and loaded with DTX. The conjugation was confirmed by {sup 1}HNMR and FT-IR spectroscopy. In vitro release of drug from DTX-loaded pHBA-conjugated dendrimer was found to be less as compared to unconjugated dendrimers. The prepared drug delivery system exhibited good physico-chemical stability and decrease in hemolytic toxicity. Cell viability and cell uptake studies were performed against U87MG human glioblastoma cells and formulations exerted considerable anticancer effect than plain drug. Conjugation of dendrimer with pHBA significantly enhanced the brain uptake of DTX which was shown by the recovery of a higher percentage of the dose from the brain following administration of pHBA-conjugated dendrimers compared with unconjugated dendrimer or formulation in clinical use (Taxotere{sup ®}). Therefore, pHBA conjugated dendrimers could be an efficient delivery vehicle for the targeting of anticancer drugs to brain tumors.
Swami, Rajan; Singh, Indu; Kulhari, Hitesh; Jeengar, Manish Kumar; Khan, Wahid; Sistla, Ramakrishna
2015-01-01
Dendrimers which are discrete nanostructures/nanoparticles are emerging as promising candidates for many nanomedicine applications. Ligand-conjugated dendrimer facilitate the delivery of therapeutics in a targeted manner. Small molecules such as p-hydroxyl benzoic acid (pHBA) were found to have high affinity for sigma receptors which are prominent in most parts of central nervous system and tumors. The aim of this study was to synthesize pHBA-dendrimer conjugates as colloidal carrier for site-specific delivery of practically water insoluble drug, docetaxel (DTX) to brain tumors and to determine its targeting efficiency. pHBA, a small molecule ligand was coupled to the surface amine groups of generation 4-PAMAM dendrimer via a carbodiimide reaction and loaded with DTX. The conjugation was confirmed by 1 HNMR and FT-IR spectroscopy. In vitro release of drug from DTX-loaded pHBA-conjugated dendrimer was found to be less as compared to unconjugated dendrimers. The prepared drug delivery system exhibited good physico-chemical stability and decrease in hemolytic toxicity. Cell viability and cell uptake studies were performed against U87MG human glioblastoma cells and formulations exerted considerable anticancer effect than plain drug. Conjugation of dendrimer with pHBA significantly enhanced the brain uptake of DTX which was shown by the recovery of a higher percentage of the dose from the brain following administration of pHBA-conjugated dendrimers compared with unconjugated dendrimer or formulation in clinical use (Taxotere ® ). Therefore, pHBA conjugated dendrimers could be an efficient delivery vehicle for the targeting of anticancer drugs to brain tumors
Swami, Rajan; Singh, Indu; Kulhari, Hitesh; Jeengar, Manish Kumar; Khan, Wahid; Sistla, Ramakrishna
2015-06-01
Dendrimers which are discrete nanostructures/nanoparticles are emerging as promising candidates for many nanomedicine applications. Ligand-conjugated dendrimer facilitate the delivery of therapeutics in a targeted manner. Small molecules such as p-hydroxyl benzoic acid (pHBA) were found to have high affinity for sigma receptors which are prominent in most parts of central nervous system and tumors. The aim of this study was to synthesize pHBA-dendrimer conjugates as colloidal carrier for site-specific delivery of practically water insoluble drug, docetaxel (DTX) to brain tumors and to determine its targeting efficiency. pHBA, a small molecule ligand was coupled to the surface amine groups of generation 4-PAMAM dendrimer via a carbodiimide reaction and loaded with DTX. The conjugation was confirmed by 1HNMR and FT-IR spectroscopy. In vitro release of drug from DTX-loaded pHBA-conjugated dendrimer was found to be less as compared to unconjugated dendrimers. The prepared drug delivery system exhibited good physico-chemical stability and decrease in hemolytic toxicity. Cell viability and cell uptake studies were performed against U87MG human glioblastoma cells and formulations exerted considerable anticancer effect than plain drug. Conjugation of dendrimer with pHBA significantly enhanced the brain uptake of DTX which was shown by the recovery of a higher percentage of the dose from the brain following administration of pHBA-conjugated dendrimers compared with unconjugated dendrimer or formulation in clinical use (Taxotere®). Therefore, pHBA conjugated dendrimers could be an efficient delivery vehicle for the targeting of anticancer drugs to brain tumors.
Convergence of posteriors for discretized log Gaussian Cox processes
Waagepetersen, Rasmus Plenge
2004-01-01
In Markov chain Monte Carlo posterior computation for log Gaussian Cox processes (LGCPs) a discretization of the continuously indexed Gaussian field is required. It is demonstrated that approximate posterior expectations computed from discretized LGCPs converge to the exact posterior expectations...... when the cell sizes of the discretization tends to zero. The effect of discretization is studied in a data example....
Wani, Manzoor Ahmad [Department of Chemistry, Dr. H. S. Gour Central University Sagar, MP 470003 (India); Singh, Pankaj Kumar [Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Pandey, Rampal, E-mail: rpvimlesh@gmail.com [Department of Chemistry, Dr. H. S. Gour Central University Sagar, MP 470003 (India); Pandey, Mrituanjay D., E-mail: mdpandey@dhsgsu.ac.in [Department of Chemistry, Dr. H. S. Gour Central University Sagar, MP 470003 (India)
2016-03-15
In this work, we report a coumarin–pyrene based fluorescent probes (E)-7-(diethylamino)-3-((pyren-1-ylimino)methyl)-2H-chromen-2-one (1) and (E)-7-(diethylamino)-3-((pyren-1-ylmethylimino)methyl)-2H-chromen-2-one (2) for the selective detection of Cu{sup 2+} ion. Receptor 1 upon binding with Cu{sup 2+} exhibited substantial fluorescence quenching as a detection response. Probe 1 induces green fluorescence in a cell lines derived from monkey kidney tissue and subsequent quenching of fluorescence in these cells manifest that 1 can probably be used as a potential fluorescent sensor for the detection of Cu{sup 2+} in biological samples too. However, 2 does not reveal any significant fluorescence change in presence of different metal ions. It is assumed that conjugation might be accountable for the discrete fluorescent behavior of 1 and 2.
Nielsen, K.T.; Spanggaard, H.; Krebs, Frederik C
2004-01-01
. Electroluminescent devices of the homopolymer itself and of the zinc-porphyrin containing polymer were prepared and the nature of the electroluminescence was characterized. The homopolymer segments were found to optically pump the emission of the zinc-porphyrin dye moities. The homopolymer exhibits blue......Zinc-porphyrin dye molecules were incorporated into the backbone of a conjugated polymer material by a method, which allowed for the incorporation of only one zinc-porphyrin dye molecule into the backbone of each conjugated polymer molecule. The electronic properties of the homopolymer were...
Jadhav, Swati B; Singhal, Rekha S
2013-10-15
Two enzymes, α-amylase and glucoamylase have been individually and co-conjugated to pectin by covalent binding. Both the enzyme systems showed better thermal and pH stability over the free enzyme system with the complete retention of original activities. Mixture of individually conjugated enzymes showed lower inactivation rate constant with longer half life than the co-conjugated enzyme system. Individually conjugated enzymes showed an increase of 56.48 kJ/mole and 38.22 kJ/mole in activation energy for denaturation than the free enzymes and co-conjugated enzymes, respectively. Km as well as Vmax of individually and co-conjugated enzymes was found to be higher than the free enzymes. SDS-polyacrylamide gel electrophoresis confirmed the formation of conjugate and co-conjugate as evident by increased molecular weight. Both the enzyme systems were used for starch hydrolysis where individually conjugated enzymes showed highest release of glucose at 60 °C and pH 5.0 as compared to free and co-conjugated enzyme. Copyright © 2013 Elsevier Ltd. All rights reserved.
Discrete Feature Model (DFM) User Documentation
Geier, Joel
2008-06-01
This manual describes the Discrete-Feature Model (DFM) software package for modelling groundwater flow and solute transport in networks of discrete features. A discrete-feature conceptual model represents fractures and other water-conducting features around a repository as discrete conductors surrounded by a rock matrix which is usually treated as impermeable. This approximation may be valid for crystalline rocks such as granite or basalt, which have very low permeability if macroscopic fractures are excluded. A discrete feature is any entity that can conduct water and permit solute transport through bedrock, and can be reasonably represented as a piecewise-planar conductor. Examples of such entities may include individual natural fractures (joints or faults), fracture zones, and disturbed-zone features around tunnels (e.g. blasting-induced fractures or stress-concentration induced 'onion skin' fractures around underground openings). In a more abstract sense, the effectively discontinuous nature of pathways through fractured crystalline bedrock may be idealized as discrete, equivalent transmissive features that reproduce large-scale observations, even if the details of connective paths (and unconnected domains) are not precisely known. A discrete-feature model explicitly represents the fundamentally discontinuous and irregularly connected nature of systems of such systems, by constraining flow and transport to occur only within such features and their intersections. Pathways for flow and solute transport in this conceptualization are a consequence not just of the boundary conditions and hydrologic properties (as with continuum models), but also the irregularity of connections between conductive/transmissive features. The DFM software package described here is an extensible code for investigating problems of flow and transport in geological (natural or human-altered) systems that can be characterized effectively in terms of discrete features. With this software, the
Discrete Feature Model (DFM) User Documentation
Geier, Joel (Clearwater Hardrock Consulting, Corvallis, OR (United States))
2008-06-15
This manual describes the Discrete-Feature Model (DFM) software package for modelling groundwater flow and solute transport in networks of discrete features. A discrete-feature conceptual model represents fractures and other water-conducting features around a repository as discrete conductors surrounded by a rock matrix which is usually treated as impermeable. This approximation may be valid for crystalline rocks such as granite or basalt, which have very low permeability if macroscopic fractures are excluded. A discrete feature is any entity that can conduct water and permit solute transport through bedrock, and can be reasonably represented as a piecewise-planar conductor. Examples of such entities may include individual natural fractures (joints or faults), fracture zones, and disturbed-zone features around tunnels (e.g. blasting-induced fractures or stress-concentration induced 'onion skin' fractures around underground openings). In a more abstract sense, the effectively discontinuous nature of pathways through fractured crystalline bedrock may be idealized as discrete, equivalent transmissive features that reproduce large-scale observations, even if the details of connective paths (and unconnected domains) are not precisely known. A discrete-feature model explicitly represents the fundamentally discontinuous and irregularly connected nature of systems of such systems, by constraining flow and transport to occur only within such features and their intersections. Pathways for flow and solute transport in this conceptualization are a consequence not just of the boundary conditions and hydrologic properties (as with continuum models), but also the irregularity of connections between conductive/transmissive features. The DFM software package described here is an extensible code for investigating problems of flow and transport in geological (natural or human-altered) systems that can be characterized effectively in terms of discrete features. With this
Discrete stochastic analogs of Erlang epidemic models.
Getz, Wayne M; Dougherty, Eric R
2018-12-01
Erlang differential equation models of epidemic processes provide more realistic disease-class transition dynamics from susceptible (S) to exposed (E) to infectious (I) and removed (R) categories than the ubiquitous SEIR model. The latter is itself is at one end of the spectrum of Erlang SE[Formula: see text]I[Formula: see text]R models with [Formula: see text] concatenated E compartments and [Formula: see text] concatenated I compartments. Discrete-time models, however, are computationally much simpler to simulate and fit to epidemic outbreak data than continuous-time differential equations, and are also much more readily extended to include demographic and other types of stochasticity. Here we formulate discrete-time deterministic analogs of the Erlang models, and their stochastic extension, based on a time-to-go distributional principle. Depending on which distributions are used (e.g. discretized Erlang, Gamma, Beta, or Uniform distributions), we demonstrate that our formulation represents both a discretization of Erlang epidemic models and generalizations thereof. We consider the challenges of fitting SE[Formula: see text]I[Formula: see text]R models and our discrete-time analog to data (the recent outbreak of Ebola in Liberia). We demonstrate that the latter performs much better than the former; although confining fits to strict SEIR formulations reduces the numerical challenges, but sacrifices best-fit likelihood scores by at least 7%.
Positivity for Convective Semi-discretizations
Fekete, Imre
2017-04-19
We propose a technique for investigating stability properties like positivity and forward invariance of an interval for method-of-lines discretizations, and apply the technique to study positivity preservation for a class of TVD semi-discretizations of 1D scalar hyperbolic conservation laws. This technique is a generalization of the approach suggested in Khalsaraei (J Comput Appl Math 235(1): 137–143, 2010). We give more relaxed conditions on the time-step for positivity preservation for slope-limited semi-discretizations integrated in time with explicit Runge–Kutta methods. We show that the step-size restrictions derived are sharp in a certain sense, and that many higher-order explicit Runge–Kutta methods, including the classical 4th-order method and all non-confluent methods with a negative Butcher coefficient, cannot generally maintain positivity for these semi-discretizations under any positive step size. We also apply the proposed technique to centered finite difference discretizations of scalar hyperbolic and parabolic problems.
Noether symmetries of discrete mechanico–electrical systems
Fu Jingli; Xie Fengping; Chen Benyong
2008-01-01
This paper focuses on studying Noether symmetries and conservation laws of the discrete mechanico-electrical systems with the nonconservative and the dissipative forces. Based on the invariance of discrete Hamilton action of the systems under the infinitesimal transformation with respect to the generalized coordinates, the generalized electrical quantities and time, it presents the discrete analogue of variational principle, the discrete analogue of Lagrange–Maxwell equations, the discrete analogue of Noether theorems for Lagrange–Maxwell and Lagrange mechanico-electrical systems. Also, the discrete Noether operator identity and the discrete Noether-type conservation laws are obtained for these systems. An actual example is given to illustrate these results. (general)
Discrete breathers for a discrete nonlinear Schrödinger ring coupled to a central site.
Jason, Peter; Johansson, Magnus
2016-01-01
We examine the existence and properties of certain discrete breathers for a discrete nonlinear Schrödinger model where all but one site are placed in a ring and coupled to the additional central site. The discrete breathers we focus on are stationary solutions mainly localized on one or a few of the ring sites and possibly also the central site. By numerical methods, we trace out and study the continuous families the discrete breathers belong to. Our main result is the discovery of a split bifurcation at a critical value of the coupling between neighboring ring sites. Below this critical value, families form closed loops in a certain parameter space, implying that discrete breathers with and without central-site occupation belong to the same family. Above the split bifurcation the families split up into several separate ones, which bifurcate with solutions with constant ring amplitudes. For symmetry reasons, the families have different properties below the split bifurcation for even and odd numbers of sites. It is also determined under which conditions the discrete breathers are linearly stable. The dynamics of some simpler initial conditions that approximate the discrete breathers are also studied and the parameter regimes where the dynamics remain localized close to the initially excited ring site are related to the linear stability of the exact discrete breathers.
Discrete Localized States and Localization Dynamics in Discrete Nonlinear Schrödinger Equations
Christiansen, Peter Leth; Gaididei, Yu.B.; Mezentsev, V.K.
1996-01-01
Dynamics of two-dimensional discrete structures is studied in the framework of the generalized two-dimensional discrete nonlinear Schrodinger equation. The nonlinear coupling in the form of the Ablowitz-Ladik nonlinearity is taken into account. Stability properties of the stationary solutions...
Rosenstein, Joseph G., Ed.; Franzblau, Deborah S., Ed.; Roberts, Fred S., Ed.
This book is a collection of articles by experienced educators and explains why and how discrete mathematics should be taught in K-12 classrooms. It includes evidence for "why" and practical guidance for "how" and also discusses how discrete mathematics can be used as a vehicle for achieving the broader goals of the major…
Minimizing inner product data dependencies in conjugate gradient iteration
Vanrosendale, J.
1983-01-01
The amount of concurrency available in conjugate gradient iteration is limited by the summations required in the inner product computations. The inner product of two vectors of length N requires time c log(N), if N or more processors are available. This paper describes an algebraic restructuring of the conjugate gradient algorithm which minimizes data dependencies due to inner product calculations. After an initial start up, the new algorithm can perform a conjugate gradient iteration in time c*log(log(N)).
Limit sets for the discrete spectrum of complex Jacobi matrices
Golinskii, L B; Egorova, I E
2005-01-01
The discrete spectrum of complex Jacobi matrices that are compact perturbations of the discrete Laplacian is studied. The precise stabilization rate (in the sense of order) of the matrix elements ensuring the finiteness of the discrete spectrum is found. An example of a Jacobi matrix with discrete spectrum having a unique limit point is constructed. These results are discrete analogues of Pavlov's well-known results on Schroedinger operators with complex potential on a half-axis.
Euler-Poincare reduction for discrete field theories
Vankerschaver, Joris
2007-01-01
In this note, we develop a theory of Euler-Poincare reduction for discrete Lagrangian field theories. We introduce the concept of Euler-Poincare equations for discrete field theories, as well as a natural extension of the Moser-Veselov scheme, and show that both are equivalent. The resulting discrete field equations are interpreted in terms of discrete differential geometry. An application to the theory of discrete harmonic mappings is also briefly discussed
Integrals of Motion for Discrete-Time Optimal Control Problems
Torres, Delfim F. M.
2003-01-01
We obtain a discrete time analog of E. Noether's theorem in Optimal Control, asserting that integrals of motion associated to the discrete time Pontryagin Maximum Principle can be computed from the quasi-invariance properties of the discrete time Lagrangian and discrete time control system. As corollaries, results for first-order and higher-order discrete problems of the calculus of variations are obtained.
The ultimatum game: Discrete vs. continuous offers
Dishon-Berkovits, Miriam; Berkovits, Richard
2014-09-01
In many experimental setups in social-sciences, psychology and economy the subjects are requested to accept or dispense monetary compensation which is usually given in discrete units. Using computer and mathematical modeling we show that in the framework of studying the dynamics of acceptance of proposals in the ultimatum game, the long time dynamics of acceptance of offers in the game are completely different for discrete vs. continuous offers. For discrete values the dynamics follow an exponential behavior. However, for continuous offers the dynamics are described by a power-law. This is shown using an agent based computer simulation as well as by utilizing an analytical solution of a mean-field equation describing the model. These findings have implications to the design and interpretation of socio-economical experiments beyond the ultimatum game.
Symmetric, discrete fractional splines and Gabor systems
Søndergaard, Peter Lempel
2006-01-01
In this paper we consider fractional splines as windows for Gabor frames. We introduce two new types of symmetric, fractional splines in addition to one found by Unser and Blu. For the finite, discrete case we present two families of splines: One is created by sampling and periodizing the continu......In this paper we consider fractional splines as windows for Gabor frames. We introduce two new types of symmetric, fractional splines in addition to one found by Unser and Blu. For the finite, discrete case we present two families of splines: One is created by sampling and periodizing...... the continuous splines, and one is a truly finite, discrete construction. We discuss the properties of these splines and their usefulness as windows for Gabor frames and Wilson bases....
Sputtering calculations with the discrete ordinated method
Hoffman, T.J.; Dodds, H.L. Jr.; Robinson, M.T.; Holmes, D.K.
1977-01-01
The purpose of this work is to investigate the applicability of the discrete ordinates (S/sub N/) method to light ion sputtering problems. In particular, the neutral particle discrete ordinates computer code, ANISN, was used to calculate sputtering yields. No modifications to this code were necessary to treat charged particle transport. However, a cross section processing code was written for the generation of multigroup cross sections; these cross sections include a modification to the total macroscopic cross section to account for electronic interactions and small-scattering-angle elastic interactions. The discrete ordinates approach enables calculation of the sputtering yield as functions of incident energy and angle and of many related quantities such as ion reflection coefficients, angular and energy distributions of sputtering particles, the behavior of beams penetrating thin foils, etc. The results of several sputtering problems as calculated with ANISN are presented
Modeling discrete time-to-event data
Tutz, Gerhard
2016-01-01
This book focuses on statistical methods for the analysis of discrete failure times. Failure time analysis is one of the most important fields in statistical research, with applications affecting a wide range of disciplines, in particular, demography, econometrics, epidemiology and clinical research. Although there are a large variety of statistical methods for failure time analysis, many techniques are designed for failure times that are measured on a continuous scale. In empirical studies, however, failure times are often discrete, either because they have been measured in intervals (e.g., quarterly or yearly) or because they have been rounded or grouped. The book covers well-established methods like life-table analysis and discrete hazard regression models, but also introduces state-of-the art techniques for model evaluation, nonparametric estimation and variable selection. Throughout, the methods are illustrated by real life applications, and relationships to survival analysis in continuous time are expla...
Direct Discrete Method for Neutronic Calculations
Vosoughi, Naser; Akbar Salehi, Ali; Shahriari, Majid
2002-01-01
The objective of this paper is to introduce a new direct method for neutronic calculations. This method which is named Direct Discrete Method, is simpler than the neutron Transport equation and also more compatible with physical meaning of problems. This method is based on physic of problem and with meshing of the desired geometry, writing the balance equation for each mesh intervals and with notice to the conjunction between these mesh intervals, produce the final discrete equations series without production of neutron transport differential equation and mandatory passing from differential equation bridge. We have produced neutron discrete equations for a cylindrical shape with two boundary conditions in one group energy. The correction of the results from this method are tested with MCNP-4B code execution. (authors)
An algebra of discrete event processes
Heymann, Michael; Meyer, George
1991-01-01
This report deals with an algebraic framework for modeling and control of discrete event processes. The report consists of two parts. The first part is introductory, and consists of a tutorial survey of the theory of concurrency in the spirit of Hoare's CSP, and an examination of the suitability of such an algebraic framework for dealing with various aspects of discrete event control. To this end a new concurrency operator is introduced and it is shown how the resulting framework can be applied. It is further shown that a suitable theory that deals with the new concurrency operator must be developed. In the second part of the report the formal algebra of discrete event control is developed. At the present time the second part of the report is still an incomplete and occasionally tentative working paper.
Is Fitts' law continuous in discrete aiming?
Rita Sleimen-Malkoun
Full Text Available The lawful continuous linear relation between movement time and task difficulty (i.e., index of difficulty; ID in a goal-directed rapid aiming task (Fitts' law has been recently challenged in reciprocal performance. Specifically, a discontinuity was observed at critical ID and was attributed to a transition between two distinct dynamic regimes that occurs with increasing difficulty. In the present paper, we show that such a discontinuity is also present in discrete aiming when ID is manipulated via target width (experiment 1 but not via target distance (experiment 2. Fitts' law's discontinuity appears, therefore, to be a suitable indicator of the underlying functional adaptations of the neuro-muscular-skeletal system to task properties/requirements, independently of reciprocal or discrete nature of the task. These findings open new perspectives to the study of dynamic regimes involved in discrete aiming and sensori-motor mechanisms underlying the speed-accuracy trade-off.
Acceleration techniques for the discrete ordinate method
Efremenko, Dmitry; Doicu, Adrian; Loyola, Diego; Trautmann, Thomas
2013-01-01
In this paper we analyze several acceleration techniques for the discrete ordinate method with matrix exponential and the small-angle modification of the radiative transfer equation. These techniques include the left eigenvectors matrix approach for computing the inverse of the right eigenvectors matrix, the telescoping technique, and the method of false discrete ordinate. The numerical simulations have shown that on average, the relative speedup of the left eigenvector matrix approach and the telescoping technique are of about 15% and 30%, respectively. -- Highlights: ► We presented the left eigenvector matrix approach. ► We analyzed the method of false discrete ordinate. ► The telescoping technique is applied for matrix operator method. ► Considered techniques accelerate the computations by 20% in average.
Self/anti-self charge conjugate states in the helicity basis
Dvoeglazov, Valeriy V.
2013-01-01
We construct self/anti-self charge conjugate (Majorana-like) states for the (1/2,0)⊕(0,1/2) representation of the Lorentz group, and their analogs for higher spins within the quantum field theory. The problem of the basis rotations and that of the selection of phases in the Dirac-like and Majorana-like field operators are considered. The discrete symmetries properties (P, C, T) are studied. Particular attention has been paid to the question of (anti)commutation of the Charge conjugation operator and the Parity in the helicity basis. Dynamical equations have also been presented. In the (1/2,0)⊕(0,1/2) representation they obey the Dirac-like equation with eight components, which has been first introduced by Markov. Thus, the Fock space for corresponding quantum fields is doubled (as shown by Ziino). The chirality and the helicity (two concepts which are frequently confused in the literature) for Dirac and Majorana states have been discussed
Methotrexate and epirubicin conjugates as potential antitumor drugs
Szymon Wojciech Kmiecik
2017-07-01
Full Text Available Introduction: The use of hybrid molecules has become one of the most significant approaches in new cytotoxic drug design. This study describes synthesis and characterization of conjugates consisting of two well-known and characterized chemotherapeutic agents: methotrexate (MTX and epirubicin (EPR. The synthesized conjugates combine two significant anticancer strategies: combinatory therapy and targeted therapy. These two drugs were chosen because they have different mechanisms of action, which can increase the anticancer effect of the obtained conjugates. MTX, which is a folic acid analog, has high cytotoxic properties and can serve as a targeting moiety that can reach folate receptors (FRs overexpresing tumor cells. Combination of nonselective drugs such as EPR with MTX can increase the selectivity of the obtained conjugates, while maintaining the high cytotoxic properties.Materials and methods: Conjugates were purified by RP-HPLC and the structure was investigated by MS and MS/MS methods. The effect of the conjugates on proliferation of LoVo, LoVo/Dx, MCF-7 and MV-4-11 human cancer cell lines was determined by SRB or MTT assay.Results: The conjugation reaction results in the formation of monosubstituted (α, γ and disubstituted MTX derivatives. In vitro proliferation data demonstrate that the conjugates synthesized in our study show lower cytotoxic properties than both chemotherapeutics used alone.Discussion: Epirubicin cytotoxicity was not observed in obtained conjugates. Effective drugs release after internalization needs further investigation.
Poly(2-oxazoline)-Antibiotic Conjugates with Penicillins.
Schmidt, Martin; Bast, Livia K; Lanfer, Franziska; Richter, Lena; Hennes, Elisabeth; Seymen, Rana; Krumm, Christian; Tiller, Joerg C
2017-09-20
The conjugation of antibiotics with polymers is rarely done, but it might be a promising alternative to low-molecular-weight derivatization. The two penicillins penicillin G (PenG) and penicillin V (PenV) were attached to the end groups of different water-soluble poly(2-oxazoline)s (POx) via their carboxylic acid function. This ester group was shown to be more stable against hydrolysis than the β-lactam ring of the penicillins. The conjugates are still antimicrobially active and up to 20 times more stable against penicillinase catalyzed hydrolysis. The antibiotic activity of the conjugates against Staphylococcus aureus in the presence of penicillinase is up to 350 times higher compared with the free antibiotics. Conjugates with a second antimicrobial function, a dodecyltrimethylammonium group (DDA-X), at the starting end of the PenG and PenV POx conjugates are more antimicrobially active than the conjugates without DDA-X and show high activity in the presence of penicillinase. For example, the conjugates DDA-X-PEtOx-PenG and DDA-X-PEtOx-PenV are 200 to 350 times more active against S. aureus in the presence of penicillinase and almost as effective as the penicillinase stable cloxacollin (Clox) under these conditions. These conjugates show even greater activity compared to cloxacollin without this enzyme present. Further, both conjugates kill Escherichia coli more effectively than PenG and Clox.
Sources and Bioactive Properties of Conjugated Dietary Fatty Acids.
Hennessy, Alan A; Ross, Paul R; Fitzgerald, Gerald F; Stanton, Catherine
2016-04-01
The group of conjugated fatty acids known as conjugated linoleic acid (CLA) isomers have been extensively studied with regard to their bioactive potential in treating some of the most prominent human health malignancies. However, CLA isomers are not the only group of potentially bioactive conjugated fatty acids currently undergoing study. In this regard, isomers of conjugated α-linolenic acid, conjugated nonadecadienoic acid and conjugated eicosapentaenoic acid, to name but a few, have undergone experimental assessment. These studies have indicated many of these conjugated fatty acid isomers commonly possess anti-carcinogenic, anti-adipogenic, anti-inflammatory and immune modulating properties, a number of which will be discussed in this review. The mechanisms through which these bioactivities are mediated have not yet been fully elucidated. However, existing evidence indicates that these fatty acids may play a role in modulating the expression of several oncogenes, cell cycle regulators, and genes associated with energy metabolism. Despite such bioactive potential, interest in these conjugated fatty acids has remained low relative to the CLA isomers. This may be partly attributed to the relatively recent emergence of these fatty acids as bioactives, but also due to a lack of awareness regarding sources from which they can be produced. In this review, we will also highlight the common sources of these conjugated fatty acids, including plants, algae, microbes and chemosynthesis.
Discrete quantum geometries and their effective dimension
Thuerigen, Johannes
2015-01-01
In several approaches towards a quantum theory of gravity, such as group field theory and loop quantum gravity, quantum states and histories of the geometric degrees of freedom turn out to be based on discrete spacetime. The most pressing issue is then how the smooth geometries of general relativity, expressed in terms of suitable geometric observables, arise from such discrete quantum geometries in some semiclassical and continuum limit. In this thesis I tackle the question of suitable observables focusing on the effective dimension of discrete quantum geometries. For this purpose I give a purely combinatorial description of the discrete structures which these geometries have support on. As a side topic, this allows to present an extension of group field theory to cover the combinatorially larger kinematical state space of loop quantum gravity. Moreover, I introduce a discrete calculus for fields on such fundamentally discrete geometries with a particular focus on the Laplacian. This permits to define the effective-dimension observables for quantum geometries. Analysing various classes of quantum geometries, I find as a general result that the spectral dimension is more sensitive to the underlying combinatorial structure than to the details of the additional geometric data thereon. Semiclassical states in loop quantum gravity approximate the classical geometries they are peaking on rather well and there are no indications for stronger quantum effects. On the other hand, in the context of a more general model of states which are superposition over a large number of complexes, based on analytic solutions, there is a flow of the spectral dimension from the topological dimension d on low energy scales to a real number between 0 and d on high energy scales. In the particular case of 1 these results allow to understand the quantum geometry as effectively fractal.
Quantitative clinical uptake measurements using conjugate counting
Lathrop, K.A.; Bartlett, R.D.; Chen, C.T.; Chou, J.S.; Faulhaber, P.F.; Harper, P.V.; Stark, V.J.
1986-01-01
While the use of conjugate counting for determination of organ uptake in human subjects has been extensively described, in the present study the determination of the organ uptake of ortho-iodohippurate presented several opportunities for validation of the in vivo counting data. Ortho-iodohippurate is distributed in the extracellular space, is largely extracted on each pass through the kidneys, and is not significantly deiodinated in vivo. Thus, the kidney uptake rate should be proportional to the blood level, the appearance rate of activity in the bladder is equal to the disappearance rate from the kidneys, and direct measurement of activity in the urine after voiding provides an internal standard for imaging measurements of bladder activity. Since the activity levels in the kidneys, bladder, and remainder of the body changed fairly rapidly, especially in the first 20 to 30 minutes following injection, posterior images of the trunk including kidneys and bladder were obtained continuously using a gamma camera fitted with a diverging collimator for 30 minutes and then at intervals for several hours. Simultaneous conjugate counting determinations were made using a whole body scanning system previously described at these meetings. Imaging data corrected for decay and adjacent background were fitted by least squares methods to curves representing a sum of exponentials, and the curves were normalized to the conjugate uptake measurements. The uptake curves of the kidneys and bladder matched well with the direct measurements of the urinary excretion. Data were collected in 16 normal subjects, and the estimated absorbed dose was calculated for the kidneys, the bladder and the remainder of the body for seven radioisotopes of iodine. 4 references, 6 figures, 2 tables
Lima, Igo T.; Risko, Chad; Aziz, Saadullah Gary; Da Silva Filho, Demé trio A Da Silva; Bredas, Jean-Luc
2014-01-01
Donor-acceptor π-conjugated copolymers are of interest for a wide range of electronic applications, including field-effect transistors and solar cells. Here, we present a density functional theory (DFT) study of the impact of varying the conjugation pathway on the geometric, electronic, and optical properties of donor-acceptor systems. We consider both linear ("in series"), traditional conjugation among the donor-acceptor moieties versus structures where the acceptor units are appended orthogonally to the linear, donor-only conjugated backbone. Long-range-corrected hybrid functionals are used in the investigation with the values of the tuned long-range separation parameters providing an estimate of the extent of conjugation as a function of the oligomer architecture. Considerable differences in the electronic and optical properties are determined as a function of the nature of the conjugation pathway, features that should be taken into account in the design of donor-acceptor copolymers.
Measurement Uncertainty Relations for Discrete Observables: Relative Entropy Formulation
Barchielli, Alberto; Gregoratti, Matteo; Toigo, Alessandro
2018-02-01
We introduce a new information-theoretic formulation of quantum measurement uncertainty relations, based on the notion of relative entropy between measurement probabilities. In the case of a finite-dimensional system and for any approximate joint measurement of two target discrete observables, we define the entropic divergence as the maximal total loss of information occurring in the approximation at hand. For fixed target observables, we study the joint measurements minimizing the entropic divergence, and we prove the general properties of its minimum value. Such a minimum is our uncertainty lower bound: the total information lost by replacing the target observables with their optimal approximations, evaluated at the worst possible state. The bound turns out to be also an entropic incompatibility degree, that is, a good information-theoretic measure of incompatibility: indeed, it vanishes if and only if the target observables are compatible, it is state-independent, and it enjoys all the invariance properties which are desirable for such a measure. In this context, we point out the difference between general approximate joint measurements and sequential approximate joint measurements; to do this, we introduce a separate index for the tradeoff between the error of the first measurement and the disturbance of the second one. By exploiting the symmetry properties of the target observables, exact values, lower bounds and optimal approximations are evaluated in two different concrete examples: (1) a couple of spin-1/2 components (not necessarily orthogonal); (2) two Fourier conjugate mutually unbiased bases in prime power dimension. Finally, the entropic incompatibility degree straightforwardly generalizes to the case of many observables, still maintaining all its relevant properties; we explicitly compute it for three orthogonal spin-1/2 components.
An inherently parallel method for solving discretized diffusion equations
Eccleston, B.R.; Palmer, T.S.
1999-01-01
A Monte Carlo approach to solving linear systems of equations is being investigated in the context of the solution of discretized diffusion equations. While the technique was originally devised decades ago, changes in computer architectures (namely, massively parallel machines) have driven the authors to revisit this technique. There are a number of potential advantages to this approach: (1) Analog Monte Carlo techniques are inherently parallel; this is not necessarily true to today's more advanced linear equation solvers (multigrid, conjugate gradient, etc.); (2) Some forms of this technique are adaptive in that they allow the user to specify locations in the problem where resolution is of particular importance and to concentrate the work at those locations; and (3) These techniques permit the solution of very large systems of equations in that matrix elements need not be stored. The user could trade calculational speed for storage if elements of the matrix are calculated on the fly. The goal of this study is to compare the parallel performance of Monte Carlo linear solvers to that of a more traditional parallelized linear solver. The authors observe the linear speedup that they expect from the Monte Carlo algorithm, given that there is no domain decomposition to cause significant communication overhead. Overall, PETSc outperforms the Monte Carlo solver for the test problem. The PETSc parallel performance improves with larger numbers of unknowns for a given number of processors. Parallel performance of the Monte Carlo technique is independent of the size of the matrix and the number of processes. They are investigating modifications to the scheme to accommodate matrix problems with positive off-diagonal elements. They are also currently coding an on-the-fly version of the algorithm to investigate the solution of very large linear systems
Synchronization Of Parallel Discrete Event Simulations
Steinman, Jeffrey S.
1992-01-01
Adaptive, parallel, discrete-event-simulation-synchronization algorithm, Breathing Time Buckets, developed in Synchronous Parallel Environment for Emulation and Discrete Event Simulation (SPEEDES) operating system. Algorithm allows parallel simulations to process events optimistically in fluctuating time cycles that naturally adapt while simulation in progress. Combines best of optimistic and conservative synchronization strategies while avoiding major disadvantages. Algorithm processes events optimistically in time cycles adapting while simulation in progress. Well suited for modeling communication networks, for large-scale war games, for simulated flights of aircraft, for simulations of computer equipment, for mathematical modeling, for interactive engineering simulations, and for depictions of flows of information.
Speeding Up Network Simulations Using Discrete Time
Lucas, Aaron; Armbruster, Benjamin
2013-01-01
We develop a way of simulating disease spread in networks faster at the cost of some accuracy. Instead of a discrete event simulation (DES) we use a discrete time simulation. This aggregates events into time periods. We prove a bound on the accuracy attained. We also discuss the choice of step size and do an analytical comparison of the computational costs. Our error bound concept comes from the theory of numerical methods for SDEs and the basic proof structure comes from the theory of numeri...
PHASE CHAOS IN THE DISCRETE KURAMOTO MODEL
Maistrenko, V.; Vasylenko, A.; Maistrenko, Y.
2010-01-01
The paper describes the appearance of a novel, high-dimensional chaotic regime, called phase chaos, in a time-discrete Kuramoto model of globally coupled phase oscillators. This type of chaos is observed at small and intermediate values of the coupling strength. It arises from the nonlinear...... interaction among the oscillators, while the individual oscillators behave periodically when left uncoupled. For the four-dimensional time-discrete Kuramoto model, we outline the region of phase chaos in the parameter plane and determine the regions where phase chaos coexists with different periodic...
Digital and discrete geometry theory and algorithms
Chen, Li
2014-01-01
This book provides comprehensive coverage of the modern methods for geometric problems in the computing sciences. It also covers concurrent topics in data sciences including geometric processing, manifold learning, Google search, cloud data, and R-tree for wireless networks and BigData.The author investigates digital geometry and its related constructive methods in discrete geometry, offering detailed methods and algorithms. The book is divided into five sections: basic geometry; digital curves, surfaces and manifolds; discretely represented objects; geometric computation and processing; and a
A Low Complexity Discrete Radiosity Method
Chatelier , Pierre Yves; Malgouyres , Rémy
2006-01-01
International audience; Rather than using Monte Carlo sampling techniques or patch projections to compute radiosity, it is possible to use a discretization of a scene into voxels and perform some discrete geometry calculus to quickly compute visibility information. In such a framework , the radiosity method may be as precise as a patch-based radiosity using hemicube computation for form-factors, but it lowers the overall theoretical complexity to an O(N log N) + O(N), where the O(N) is largel...
Modeling and simulation of discrete event systems
Choi, Byoung Kyu
2013-01-01
Computer modeling and simulation (M&S) allows engineers to study and analyze complex systems. Discrete-event system (DES)-M&S is used in modern management, industrial engineering, computer science, and the military. As computer speeds and memory capacity increase, so DES-M&S tools become more powerful and more widely used in solving real-life problems. Based on over 20 years of evolution within a classroom environment, as well as on decades-long experience in developing simulation-based solutions for high-tech industries, Modeling and Simulation of Discrete-Event Systems is the only book on
Logic and discrete mathematics a concise introduction
Conradie, Willem
2015-01-01
A concise yet rigorous introduction to logic and discrete mathematics. This book features a unique combination of comprehensive coverage of logic with a solid exposition of the most important fields of discrete mathematics, presenting material that has been tested and refined by the authors in university courses taught over more than a decade. The chapters on logic - propositional and first-order - provide a robust toolkit for logical reasoning, emphasizing the conceptual understanding of the language and the semantics of classical logic as well as practical applications through the easy
Semiclassical expanding discrete space-times
Cobb, W.K.; Smalley, L.L.
1981-01-01
Given the close ties between general relativity and geometry one might reasonably expect that quantum effects associated with gravitation might also be tied to the geometry of space-time, namely, to some sort of discreteness in space-time itself. In particular it is supposed that space-time consists of a discrete lattice of points rather than the usual continuum. Since astronomical evidence seems to suggest that the universe is expanding, the lattice must also expand. Some of the implications of such a model are that the proton should presently be stable, and the universe should be closed although the mechanism for closure is quantum mechanical. (author)
Systematization of Accurate Discrete Optimization Methods
V. A. Ovchinnikov
2015-01-01
Full Text Available The object of study of this paper is to define accurate methods for solving combinatorial optimization problems of structural synthesis. The aim of the work is to systemize the exact methods of discrete optimization and define their applicability to solve practical problems.The article presents the analysis, generalization and systematization of classical methods and algorithms described in the educational and scientific literature.As a result of research a systematic presentation of combinatorial methods for discrete optimization described in various sources is given, their capabilities are described and properties of the tasks to be solved using the appropriate methods are specified.
Multiband discrete ordinates method: formalism and results
Luneville, L.
1998-06-01
The multigroup discrete ordinates method is a classical way to solve transport equation (Boltzmann) for neutral particles. Self-shielding effects are not correctly treated due to large variations of cross sections in a group (in the resonance range). To treat the resonance domain, the multiband method is introduced. The main idea is to divide the cross section domain into bands. We obtain the multiband parameters using the moment method; the code CALENDF provides probability tables for these parameters. We present our implementation in an existing discrete ordinates code: SN1D. We study deep penetration benchmarks and show the improvement of the method in the treatment of self-shielding effects. (author)
Conjugated polymer photovoltaic devices and materials
Mozer, A.J.; Niyazi, Serdar Sariciftci
2006-01-01
The science and technology of conjugated polymer-based photovoltaic devices (bulk heterojunction solar cells) is highlighted focusing on three major issues, i.e. (i) nano-morphology optimization, (ii) improving charge carrier mobility, (iii) improving spectral sensitivity. Successful strategies towards improved photovoltaic performance are presented using various novel materials, including double-cable polymers, regioregular polymers and low bandgap polymers. The examples presented herein demonstrate that the bulk heterojunction concept is a viable approach towards developing photovoltaic systems by inexpensive solution-based fabrication technologies. (authors)
Complex conjugate poles and parton distributions
Tiburzi, B.C.; Detmold, W.; Miller, G.A.
2003-01-01
We calculate parton and generalized parton distributions in Minkowski space using a scalar propagator with a pair of complex conjugate poles. Correct spectral and support properties are obtained only after careful analytic continuation from Euclidean space. Alternately the quark distribution function can be calculated from modified cutting rules, which put the intermediate state on its complex mass shells. Distribution functions agree with those resulting from the model's Euclidean space double distribution which we calculate via nondiagonal matrix elements of twist-two operators. Thus one can use a wide class of analytic parametrizations of the quark propagator to connect Euclidean space Green functions to light-cone dominated amplitudes
PET regularization by envelope guided conjugate gradients
Kaufman, L.; Neumaier, A.
1996-01-01
The authors propose a new way to iteratively solve large scale ill-posed problems and in particular the image reconstruction problem in positron emission tomography by exploiting the relation between Tikhonov regularization and multiobjective optimization to obtain iteratively approximations to the Tikhonov L-curve and its corner. Monitoring the change of the approximate L-curves allows us to adjust the regularization parameter adaptively during a preconditioned conjugate gradient iteration, so that the desired solution can be reconstructed with a small number of iterations
Rhenium 188 labelling of peptide conjugates
Melendez-Alafort, Laura
2001-01-01
Many human tumours express high levels, of somatostatin receptors. In order to make possible a radiotherapeutic treatment of this kind for tumour a series of somatostatin analogues that can tightly chelate beta emitting isotopes have been developed in recent years. The work carried out for this thesis has been aimed towards development of a new therapeutic radiopharmaceutical for treatment of somatostatin receptor positive tumours. The first chapters describe work with technetium-99m to establish the labelling and analytical conditions for a somatostatin analogue, [Tyr 3 ]-octreotide (TOC), as a precursor to undertaking labelling studies with the beta emitter rhenium-188. 6-Hydrazinopyridine-3-carboxylic acid (HYNIC) was conjugated to TOC and labelled with 99m using different coligands. Then the stability, receptor binding and biodistribution of each complex were assessed. 99m Tc-HYNIC-TOC using EDDA as coligand showed the best characteristics, and was superior for tumour imaging in humans than the commercially available 111 In-DTPA-octreotide. The conditions for labelling the HYNIC-TOC conjugate with 188 Re were then optimised using tricine as a co-ligand. A labelling yield of ∼80% was achieved. After purification however, the stability of the complex was low. The use of other coligand systems which had proved useful for 99m Tc labelling was explored, but yields were very poor. Other chelators such as diethylenetriamine pentaacetic acid (DTPA), dimercaptosuccinic acid (DMSA) and mercaptoacetyltriglycine (MAG 3 ) were studied as potential co-ligand agents to label the HYNIC-TOC conjugate with 188 Re but, again low yields of the labelled peptide complexes were achieved. A novel 188 Re-HYNIC complex was prepared in high yields using N-N-disubstituted dithiocarbamates as coligands. However to date, the specific activities achieved with this system are relatively low. The use of the [ 99m Tc(CO) 3 (H 2 O) 3 ] complex to label the HYNIC-TOC conjugate was investigated
Côrtes, A.M.A.
2015-02-20
The recently introduced divergence-conforming B-spline discretizations allow the construction of smooth discrete velocity–pressure pairs for viscous incompressible flows that are at the same time inf-sup stable and pointwise divergence-free. When applied to discretized Stokes equations, these spaces generate a symmetric and indefinite saddle-point linear system. Krylov subspace methods are usually the most efficient procedures to solve such systems. One of such methods, for symmetric systems, is the Minimum Residual Method (MINRES). However, the efficiency and robustness of Krylov subspace methods is closely tied to appropriate preconditioning strategies. For the discrete Stokes system, in particular, block-diagonal strategies provide efficient preconditioners. In this article, we compare the performance of block-diagonal preconditioners for several block choices. We verify how the eigenvalue clustering promoted by the preconditioning strategies affects MINRES convergence. We also compare the number of iterations and wall-clock timings. We conclude that among the building blocks we tested, the strategy with relaxed inner conjugate gradients preconditioned with incomplete Cholesky provided the best results.
Cô rtes, A.M.A.; Coutinho, A.L.G.A.; Dalcin, L.; Calo, Victor M.
2015-01-01
The recently introduced divergence-conforming B-spline discretizations allow the construction of smooth discrete velocity–pressure pairs for viscous incompressible flows that are at the same time inf-sup stable and pointwise divergence-free. When applied to discretized Stokes equations, these spaces generate a symmetric and indefinite saddle-point linear system. Krylov subspace methods are usually the most efficient procedures to solve such systems. One of such methods, for symmetric systems, is the Minimum Residual Method (MINRES). However, the efficiency and robustness of Krylov subspace methods is closely tied to appropriate preconditioning strategies. For the discrete Stokes system, in particular, block-diagonal strategies provide efficient preconditioners. In this article, we compare the performance of block-diagonal preconditioners for several block choices. We verify how the eigenvalue clustering promoted by the preconditioning strategies affects MINRES convergence. We also compare the number of iterations and wall-clock timings. We conclude that among the building blocks we tested, the strategy with relaxed inner conjugate gradients preconditioned with incomplete Cholesky provided the best results.
Complex dynamics of a delayed discrete neural network of two nonidentical neurons
Chen, Yuanlong [Mathematics Department, GuangDong University of Finance, Guangzhou 510521 (China); Huang, Tingwen [Mathematics Department, Texas A and M University at Qatar, P. O. Box 23874, Doha (Qatar); Huang, Yu, E-mail: stshyu@mail.sysu.edu.cn [Mathematics Department, Sun Yat-Sen University, Guangzhou 510275, People' s Republic China (China)
2014-03-15
In this paper, we discover that a delayed discrete Hopfield neural network of two nonidentical neurons with self-connections and no self-connections can demonstrate chaotic behaviors. To this end, we first transform the model, by a novel way, into an equivalent system which has some interesting properties. Then, we identify the chaotic invariant set for this system and show that the dynamics of this system within this set is topologically conjugate to the dynamics of the full shift map with two symbols. This confirms chaos in the sense of Devaney. Our main results generalize the relevant results of Huang and Zou [J. Nonlinear Sci. 15, 291–303 (2005)], Kaslik and Balint [J. Nonlinear Sci. 18, 415–432 (2008)] and Chen et al. [Sci. China Math. 56(9), 1869–1878 (2013)]. We also give some numeric simulations to verify our theoretical results.
Complex dynamics of a delayed discrete neural network of two nonidentical neurons
Chen, Yuanlong; Huang, Tingwen; Huang, Yu
2014-01-01
In this paper, we discover that a delayed discrete Hopfield neural network of two nonidentical neurons with self-connections and no self-connections can demonstrate chaotic behaviors. To this end, we first transform the model, by a novel way, into an equivalent system which has some interesting properties. Then, we identify the chaotic invariant set for this system and show that the dynamics of this system within this set is topologically conjugate to the dynamics of the full shift map with two symbols. This confirms chaos in the sense of Devaney. Our main results generalize the relevant results of Huang and Zou [J. Nonlinear Sci. 15, 291–303 (2005)], Kaslik and Balint [J. Nonlinear Sci. 18, 415–432 (2008)] and Chen et al. [Sci. China Math. 56(9), 1869–1878 (2013)]. We also give some numeric simulations to verify our theoretical results
Complex dynamics of a delayed discrete neural network of two nonidentical neurons.
Chen, Yuanlong; Huang, Tingwen; Huang, Yu
2014-03-01
In this paper, we discover that a delayed discrete Hopfield neural network of two nonidentical neurons with self-connections and no self-connections can demonstrate chaotic behaviors. To this end, we first transform the model, by a novel way, into an equivalent system which has some interesting properties. Then, we identify the chaotic invariant set for this system and show that the dynamics of this system within this set is topologically conjugate to the dynamics of the full shift map with two symbols. This confirms chaos in the sense of Devaney. Our main results generalize the relevant results of Huang and Zou [J. Nonlinear Sci. 15, 291-303 (2005)], Kaslik and Balint [J. Nonlinear Sci. 18, 415-432 (2008)] and Chen et al. [Sci. China Math. 56(9), 1869-1878 (2013)]. We also give some numeric simulations to verify our theoretical results.
Discrete gravity as a topological field theorywith light-like curvature defects
Wieland, Wolfgang [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada)
2017-05-29
I present a model of discrete gravity as a topological field theory with defects. The theory has no local degrees of freedom and the gravitational field is trivial everywhere except at a number of intersecting null surfaces. At these null surfaces, the gravitational field can be singular, representing a curvature defect propagating at the speed of light. The underlying action is local and it is studied in both its Lagrangian and Hamiltonian formulation. The canonically conjugate variables on the null surfaces are a spinor and a spinor-valued two-surface density, which are coupled to a topological field theory for the Lorentz connection in the bulk. I discuss the relevance of the model for non-perturbative approaches to quantum gravity, such as loop quantum gravity, where similar variables have recently appeared as well.
Ching, J.; Oblow, E.M.; Goldstein, H.
1976-01-01
An algebraic equivalence between the point-energy and multigroup forms of the Boltzmann transport equation is demonstrated that allows the development of a discrete energy, discrete ordinates method for the solution of radiation transport problems. In the discrete energy method, the group averaging required in the cross-section processing for multigroup calculations is replaced by a faster numerical quadrature scheme capable of generating transfer cross sections describing all the physical processes of interest on a fine point-energy grid. Test calculations in which the discrete energy method is compared with the multigroup method show that, for the same energy grid, the discrete energy method is much faster, although somewhat less accurate, than the multigroup method. However, the accuracy of the discrete energy method increases rapidly as the spacing between energy grid points is decreased, approaching that of multigroup calculations. For problems requiring great detail in the energy spectrum, the discrete energy method is therefore expected to be far more economical than the multigroup technique for equivalent accuracy solutions. This advantage of the point method is demonstrated by application to the study of neutron transport in a thick iron slab
In Vitro Evaluation of Third Generation PAMAM Dendrimer Conjugates
Mohammad Najlah
2017-10-01
Full Text Available The present study compares the use of high generation G3 and low generation G0 Polyamidoamine (PAMAM dendrimers as drug carriers of naproxen (NAP, a poorly water soluble drug. Naproxen was conjugated to G3 in different ratios and to G0 in a 1:1 ratio via a diethylene glycol linker. A lauroyl chain (L, a lipophilic permeability enhancer, was attached to G3 and G0 prodrugs. The G3 and G0 conjugates were more hydrophilic than naproxen as evaluated by the measurement of partitioning between 1-octanol and a phosphate buffer at pH 7.4 and pH 1.2. The unmodified surface PAMAM-NAP conjugates showed significant solubility enhancements of NAP at pH 1.2; however, with the number of NAP conjugated to G3, this was limited to 10 molecules. The lactate dehydrogenase (LDH assay indicated that the G3 dendrimer conjugates had a concentration dependent toxicity towards Caco-2 cells. Attaching naproxen to the surface of the dendrimer increased the IC50 of the resulting prodrugs towards Caco-2 cells. The lauroyl G3 conjugates showed the highest toxicity amongst the PAMAM dendrimer conjugates investigated and were significantly more toxic than the lauroyl-G0-naproxen conjugates. The permeability of naproxen across monolayers of Caco-2 cells was significantly increased by its conjugation to either G3 or G0 PAMAM dendrimers. Lauroyl-G0 conjugates displayed considerably lower cytotoxicity than G3 conjugates and may be preferable for use as a drug carrier for low soluble drugs such as naproxen.
Antibody-Conjugated Nanoparticles for Biomedical Applications
Manuel Arruebo
2009-01-01
Full Text Available Nanoscience and Nanotechnology have found their way into the fields of Biotechnology and Medicine. Nanoparticles by themselves offer specific physicochemical properties that they do not exhibit in bulk form, where materials show constant physical properties regardless of size. Antibodies are nanosize biological products that are part of the specific immune system. In addition to their own properties as pathogens or toxin neutralizers, as well as in the recruitment of immune elements (complement, improving phagocytosis, cytotoxicity antibody dependent by natural killer cells, etc., they could carry several elements (toxins, drugs, fluorochroms, or even nanoparticles, etc. and be used in several diagnostic procedures, or even in therapy to destroy a specific target. The conjugation of antibodies to nanoparticles can generate a product that combines the properties of both. For example, they can combine the small size of nanoparticles and their special thermal, imaging, drug carrier, or magnetic characteristics with the abilities of antibodies, such as specific and selective recognition. The hybrid product will show versatility and specificity. In this review, we analyse both antibodies and nanoparticles, focusing especially on the recent developments for antibody-conjugated nanoparticles, offering the researcher an overview of the different applications and possibilities of these hybrid carriers.
π-Clamp-mediated cysteine conjugation
Zhang, Chi; Welborn, Matthew; Zhu, Tianyu; Yang, Nicole J.; Santos, Michael S.; van Voorhis, Troy; Pentelute, Bradley L.
2016-02-01
Site-selective functionalization of complex molecules is one of the most significant challenges in chemistry. Typically, protecting groups or catalysts must be used to enable the selective modification of one site among many that are similarly reactive, and general strategies that selectively tune the local chemical environment around a target site are rare. Here, we show a four-amino-acid sequence (Phe-Cys-Pro-Phe), which we call the ‘π-clamp’, that tunes the reactivity of its cysteine thiol for site-selective conjugation with perfluoroaromatic reagents. We use the π-clamp to selectively modify one cysteine site in proteins containing multiple endogenous cysteine residues. These examples include antibodies and cysteine-based enzymes that would be difficult to modify selectively using standard cysteine-based methods. Antibodies modified using the π-clamp retained binding affinity to their targets, enabling the synthesis of site-specific antibody-drug conjugates for selective killing of HER2-positive breast cancer cells. The π-clamp is an unexpected approach to mediate site-selective chemistry and provides new avenues to modify biomolecules for research and therapeutics.
The multigrid preconditioned conjugate gradient method
Tatebe, Osamu
1993-01-01
A multigrid preconditioned conjugate gradient method (MGCG method), which uses the multigrid method as a preconditioner of the PCG method, is proposed. The multigrid method has inherent high parallelism and improves convergence of long wavelength components, which is important in iterative methods. By using this method as a preconditioner of the PCG method, an efficient method with high parallelism and fast convergence is obtained. First, it is considered a necessary condition of the multigrid preconditioner in order to satisfy requirements of a preconditioner of the PCG method. Next numerical experiments show a behavior of the MGCG method and that the MGCG method is superior to both the ICCG method and the multigrid method in point of fast convergence and high parallelism. This fast convergence is understood in terms of the eigenvalue analysis of the preconditioned matrix. From this observation of the multigrid preconditioner, it is realized that the MGCG method converges in very few iterations and the multigrid preconditioner is a desirable preconditioner of the conjugate gradient method.
Feng Baofeng; Maruno, Ken-ichi; Inoguchi, Jun-ichi; Kajiwara, Kenji; Ohta, Yasuhiro
2011-01-01
We consider integrable discretizations of some soliton equations associated with the motions of plane curves: the Wadati-Konno-Ichikawa elastic beam equation, the complex Dym equation and the short pulse equation. They are related to the modified KdV or the sine-Gordon equations by the hodograph transformations. Based on the observation that the hodograph transformations are regarded as the Euler-Lagrange transformations of the curve motions, we construct the discrete analogues of the hodograph transformations, which yield integrable discretizations of those soliton equations. (paper)
An innovative discrete multilevel sampler design
Marvin, B.K.; De Clercq, P.J.; Taylor, B.B.; Mauro, D.M.
1995-01-01
An innovative, small-diameter PVC discrete multilevel sampler (DMLS) was designed for the Electric Power Research Institute (EPRI) to provide low-cost, discrete groundwater samples from shallow aquifers. When combined with appropriately-sized direct push soil sampling technologies, high resolution aquifer characterization can be achieved during initial site assessment or remediation monitoring activities. The sampler is constructed from 1-inch diameter PVC well materials, containing polyethylene tubing threaded through PVC disks. Self-expanding annular and internal bentonite seals were developed which isolate discrete sampling zones. The DMLS design allows customization of sampling and isolation zone lengths to suit site-specific goals. Installation of the DMLS is achieved using a temporary, expendable-tipped casting driven by direct push methods. This technique minimizes mobilization costs, site and soil column disturbances, and allows rapid installation in areas of limited overhead clearance. Successful pilot installations of the DMLS prototype have been made at a former manufactured gas plant (MGP) site and a diesel fuel spill site. Analysis of groundwater samples from these sites, using relative compound distributions and contaminant concentration profiling, confirmed that representative discrete samples were collected. This design provides both economical and versatile groundwater monitoring during all phases of site assessment and remediation
Integrated two-section discrete mode laser
Anandarajah, P.M.; Latkowski, S.; Browning, C.; Zhou, R.; O'Carroll, J.; Phelan, R.; Kelly, B.; O'Gorman, J.; Barry, L.P.
2012-01-01
The authors present the design and characterization of a novel integrated two-section discrete mode index patterned diode laser source. The two slotted regions etched into the laser ridge waveguide are formed in the same fabrication step as the ridge, thus avoiding the requirement for complex
About Multi-Heston SDE Discretization
Tiberiu Socaciu
2013-07-01
Full Text Available Abstract: in this paper we show how can estimate a financial derivative based on a support if assume for the support a Multi-Heston model.Keywords: Euler Maruyama discretization method, Monte Carlo simulation, Heston model, Double-Heston model, Multi-Heston model.
Transversals in non-discrete groups
Transversals in non-discrete groups. RAMJI LAL and R P SHUKLA. Department of Mathematics, University of Allahabad, Allahabad 211 002, India. E-mail: ramjilal@mri.ernet.in; rps@mri.ernet.in. MS received 2 August 2004; revised 4 August 2005. Abstract. The concept of 'topological right transversal' is introduced to study ...
Attractors for discrete periodic dynamical systems
John E. Franke; James F. Selgrade
2003-01-01
A mathematical framework is introduced to study attractors of discrete, nonautonomous dynamical systems which depend periodically on time. A structure theorem for such attractors is established which says that the attractor of a time-periodic dynamical system is the unin of attractors of appropriate autonomous maps. If the nonautonomous system is a perturbation of an...
Model-Checking Discrete Duration Calculus
Hansen, Michael Reichhardt
1994-01-01
can do model-checking. The subset we consider is expressive enough to formalize the requirements to the gas burner system given by A.P. Ravn (1993); but only for a discrete time domain. Model-checking is done by reducing the correctness problem ℳ|=𝒟 to the inclusion problem of regular...
Discrete Events as Units of Perceived Time
Liverence, Brandon M.; Scholl, Brian J.
2012-01-01
In visual images, we perceive both space (as a continuous visual medium) and objects (that inhabit space). Similarly, in dynamic visual experience, we perceive both continuous time and discrete events. What is the relationship between these units of experience? The most intuitive answer may be similar to the spatial case: time is perceived as an…
Discrete dispersion models and their Tweedie asymptotics
Jørgensen, Bent; Kokonendji, Célestin C.
2016-01-01
The paper introduce a class of two-parameter discrete dispersion models, obtained by combining convolution with a factorial tilting operation, similar to exponential dispersion models which combine convolution and exponential tilting. The equidispersed Poisson model has a special place in this ap......The paper introduce a class of two-parameter discrete dispersion models, obtained by combining convolution with a factorial tilting operation, similar to exponential dispersion models which combine convolution and exponential tilting. The equidispersed Poisson model has a special place...... in this approach, whereas several overdispersed discrete distributions, such as the Neyman Type A, Pólya-Aeppli, negative binomial and Poisson-inverse Gaussian, turn out to be Poisson-Tweedie factorial dispersion models with power dispersion functions, analogous to ordinary Tweedie exponential dispersion models...... with power variance functions. Using the factorial cumulant generating function as tool, we introduce a dilation operation as a discrete analogue of scaling, generalizing binomial thinning. The Poisson-Tweedie factorial dispersion models are closed under dilation, which in turn leads to a Poisson...
Multivariate Discrete First Order Stochastic Dominance
Tarp, Finn; Østerdal, Lars Peter
This paper characterizes the principle of first order stochastic dominance in a multivariate discrete setting. We show that a distribution f first order stochastic dominates distribution g if and only if f can be obtained from g by iteratively shifting density from one outcome to another...
Discrete element modeling of subglacial sediment deformation
Damsgaard, Anders; Egholm, David L.; Piotrowski, Jan A.
2013-01-01
The Discrete Element Method (DEM) is used in this study to explore the highly nonlinear dynamics of a granular bed when exposed to stress conditions comparable to those at the bed of warm-based glaciers. Complementary to analog experiments, the numerical approach allows a detailed analysis...
Discrete variable representation for singular Hamiltonians
Schneider, B. I.; Nygaard, Nicolai
2004-01-01
We discuss the application of the discrete variable representation (DVR) to Schrodinger problems which involve singular Hamiltonians. Unlike recent authors who invoke transformations to rid the eigenvalue equation of singularities at the cost of added complexity, we show that an approach based...
Discrete choice models with multiplicative error terms
Fosgerau, Mogens; Bierlaire, Michel
2009-01-01
The conditional indirect utility of many random utility maximization (RUM) discrete choice models is specified as a sum of an index V depending on observables and an independent random term ε. In general, the universe of RUM consistent models is much larger, even fixing some specification of V due...
Choice certainty in Discrete Choice Experiments
Uggeldahl, Kennet Christian; Jacobsen, Catrine; Lundhede, Thomas
2016-01-01
In this study, we conduct a Discrete Choice Experiment (DCE) using eye tracking technology to investigate if eye movements during the completion of choice sets reveal information about respondents’ choice certainty. We hypothesise that the number of times that respondents shift their visual...
Ordinal Welfare Comparisons with Multiple Discrete Indicators
Arndt, Channing; Distante, Roberta; Hussain, M. Azhar
We develop an ordinal method for making welfare comparisons between populations with multidimensional discrete well-being indicators observed at the micro level. The approach assumes that, for each well-being indicator, the levels can be ranked from worse to better; however, no assumptions are made...
Discrete element modeling of subglacial sediment deformation
Damsgaard, Anders; Egholm, David L.; Piotrowski, Jan A.
The Discrete Element Method (DEM) is used to explore the highly nonlinear dynamics of a granular bed when exposed to stress conditions comparable to those at the bed of warm-based glaciers. In the DEM, the material is simulated on a grain-by-grain basis, and defining the micromechanical properties...
Discrete breathers in Bose–Einstein condensates
Franzosi, Roberto; Politi, Antonio; Livi, Roberto; Oppo, Gian-Luca
2011-01-01
Discrete breathers, originally introduced in the context of biopolymers and coupled nonlinear oscillators, are also localized modes of excitation of Bose–Einstein condensates (BEC) in periodic potentials such as those generated by counter-propagating laser beams in an optical lattice. Static and dynamical properties of breather states are analysed in the discrete nonlinear Schrödinger equation that is derived in the limit of deep potential wells, tight-binding and the superfluid regime of the condensate. Static and mobile breathers can be formed by progressive re-shaping of initial Gaussian wave-packets or by transporting atomic density towards dissipative boundaries of the lattice. Static breathers generated via boundary dissipations are determined via a transfer-matrix approach and discussed in the two analytic limits of highly localized and very broad profiles. Mobile breathers that move across the lattice are well approximated by modified analytical expressions derived from integrable models with two independent parameters: the core-phase gradient and the peak amplitude. Finally, possible experimental realizations of discrete breathers in BEC in optical lattices are discussed in the presence of residual harmonic trapping and in interferometry configurations suitable to investigate discrete breathers' interactions. (invited article)
Discrete Event Simulation of Distributed Team Communication
2012-03-22
performs, and auditory information that is provided through multiple audio devices with speech response. This paper extends previous discrete event workload...2008, pg. 1) notes that “Architecture modeling furnishes abstrac- tions for use in managing complexities, allowing engineers to visualise the proposed
Discrete expansions of continuum wave functions
Bang, J.; Ershov, S.N.; Gareev, F.A.; Kazacha, G.S.
1980-01-01
Different methods of expanding continuum wave functions in terms of discrete basis sets are discussed. The convergence properties of these expansions are investigated, both from a mathematical and a numerical point of view, for the case of potentials of Woods-Saxon and square well type. (orig.)
Failure diagnosis using discrete event models
Sampath, M.; Sengupta, R.; Lafortune, S.; Teneketzis, D.; Sinnamohideen, K.
1994-01-01
We propose a Discrete Event Systems (DES) approach to the failure diagnosis problem. We present a methodology for modeling physical systems in a DES framework. We discuss the notion of diagnosability and present the construction procedure of the diagnoser. Finally, we illustrate our approach using a Heating, Ventilation and Air Conditioning (HVAC) system
A Discrete Dynamical Model of Signed Partitions
G. Chiaselotti
2013-01-01
Full Text Available We use a discrete dynamical model with three evolution rules in order to analyze the structure of a partially ordered set of signed integer partitions whose main properties are actually not known. This model is related to the study of some extremal combinatorial sum problems.
A Note on Discrete Mathematics and Calculus.
O'Reilly, Thomas J.
1987-01-01
Much of the current literature on the topic of discrete mathematics and calculus during the first two years of an undergraduate mathematics curriculum is cited. A relationship between the recursive integration formulas and recursively defined polynomials is described. A Pascal program is included. (Author/RH)
Analysis hierarchical model for discrete event systems
Ciortea, E. M.
2015-11-01
The This paper presents the hierarchical model based on discrete event network for robotic systems. Based on the hierarchical approach, Petri network is analysed as a network of the highest conceptual level and the lowest level of local control. For modelling and control of complex robotic systems using extended Petri nets. Such a system is structured, controlled and analysed in this paper by using Visual Object Net ++ package that is relatively simple and easy to use, and the results are shown as representations easy to interpret. The hierarchical structure of the robotic system is implemented on computers analysed using specialized programs. Implementation of hierarchical model discrete event systems, as a real-time operating system on a computer network connected via a serial bus is possible, where each computer is dedicated to local and Petri model of a subsystem global robotic system. Since Petri models are simplified to apply general computers, analysis, modelling, complex manufacturing systems control can be achieved using Petri nets. Discrete event systems is a pragmatic tool for modelling industrial systems. For system modelling using Petri nets because we have our system where discrete event. To highlight the auxiliary time Petri model using transport stream divided into hierarchical levels and sections are analysed successively. Proposed robotic system simulation using timed Petri, offers the opportunity to view the robotic time. Application of goods or robotic and transmission times obtained by measuring spot is obtained graphics showing the average time for transport activity, using the parameters sets of finished products. individually.
Fair value accounting and managerial discretion
Byrne, A.; Clacher, I.; Hillier, D.; Hodgson, A.
2008-01-01
We analyse the extent to which managers exercise discretion under fair value accounting and the value relevance of these disclosures. Utilising a sample of firms that apply the UK fair value pension accounting standard, (FRS-17), we examine the main determinants of the assumptions managers use to
Electroless plating apparatus for discrete microsized particles
Mayer, A.
1978-01-01
Method and apparatus are disclosed for producing very uniform coatings of a desired material on discrete microsized particles by electroless techniques. Agglomeration or bridging of the particles during the deposition process is prevented by imparting a sufficiently random motion to the particles that they are not in contact with each other for a time sufficient for such to occur
Discrete structures in F-theory compactifications
Till, Oskar
2016-05-04
In this thesis we study global properties of F-theory compactifications on elliptically and genus-one fibered Calabi-Yau varieties. This is motivated by phenomenological considerations as well as by the need for a deeper understanding of the set of consistent F-theory vacua. The global geometric features arise from discrete and arithmetic structures in the torus fiber and can be studied in detail for fibrations over generic bases. In the case of elliptic fibrations we study the role of the torsion subgroup of the Mordell-Weil group of sections in four dimensional compactifications. We show how the existence of a torsional section restricts the admissible matter representations in the theory. This is shown to be equivalent to inducing a non-trivial fundamental group of the gauge group. Compactifying F-theory on genus-one fibrations with multisections gives rise to discrete selection rules. In field theory the discrete symmetry is a broken U(1) symmetry. In the geometry the higgsing corresponds to a conifold transition. We explain in detail the origin of the discrete symmetry from two different M-theory phases and put the result into the context of torsion homology. Finally we systematically construct consistent gauge fluxes on genus-one fibrations and show that these induce an anomaly free chiral spectrum.
Geometric phases in discrete dynamical systems
Cartwright, Julyan H.E., E-mail: julyan.cartwright@csic.es [Instituto Andaluz de Ciencias de la Tierra, CSIC–Universidad de Granada, E-18100 Armilla, Granada (Spain); Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada (Spain); Piro, Nicolas, E-mail: nicolas.piro@epfl.ch [École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Piro, Oreste, E-mail: piro@imedea.uib-csic.es [Departamento de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Tuval, Idan, E-mail: ituval@imedea.uib-csic.es [Mediterranean Institute for Advanced Studies, CSIC–Universitat de les Illes Balears, E-07190 Mallorca (Spain)
2016-10-14
In order to study the behaviour of discrete dynamical systems under adiabatic cyclic variations of their parameters, we consider discrete versions of adiabatically-rotated rotators. Parallelling the studies in continuous systems, we generalize the concept of geometric phase to discrete dynamics and investigate its presence in these rotators. For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number of the system. For the discrete version of the rotated rotator considered by Berry, the rotated standard map, we further explore this connection as well as the role of the geometric phase at the onset of chaos. Further into the chaotic regime, we show that the geometric phase is also related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent. - Highlights: • We extend the concept of geometric phase to maps. • For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number. • For the rotated standard map, we explore the role of the geometric phase at the onset of chaos. • We show that the geometric phase is related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent.
Geometric Representations for Discrete Fourier Transforms
Cambell, C. W.
1986-01-01
Simple geometric representations show symmetry and periodicity of discrete Fourier transforms (DFT's). Help in visualizing requirements for storing and manipulating transform value in computations. Representations useful in any number of dimensions, but particularly in one-, two-, and three-dimensional cases often encountered in practice.
Discrete-time rewards model-checked
Larsen, K.G.; Andova, S.; Niebert, Peter; Hermanns, H.; Katoen, Joost P.
2003-01-01
This paper presents a model-checking approach for analyzing discrete-time Markov reward models. For this purpose, the temporal logic probabilistic CTL is extended with reward constraints. This allows to formulate complex measures – involving expected as well as accumulated rewards – in a precise and
Discrete Mathematics Course Supported by CAS MATHEMATICA
Ivanov, O. A.; Ivanova, V. V.; Saltan, A. A.
2017-01-01
In this paper, we discuss examples of assignments for a course in discrete mathematics for undergraduate students majoring in business informatics. We consider several problems with computer-based solutions and discuss general strategies for using computers in teaching mathematics and its applications. In order to evaluate the effectiveness of our…
Electrolytic plating apparatus for discrete microsized particles
Mayer, A.
1976-01-01
Method and apparatus are disclosed for electrolytically producing very uniform coatings of a desired material on discrete microsized particles. Agglomeration or bridging of the particles during the deposition process is prevented by imparting a sufficiently random motion to the particles that they are not in contact with a powered cathode for a time sufficient for such to occur. 4 claims, 2 figures
Neutrino mass and mixing with discrete symmetry
King, Stephen F; Luhn, Christoph
2013-01-01
This is a review paper about neutrino mass and mixing and flavour model building strategies based on discrete family symmetry. After a pedagogical introduction and overview of the whole of neutrino physics, we focus on the PMNS mixing matrix and the latest global fits following the Daya Bay and RENO experiments which measure the reactor angle. We then describe the simple bimaximal, tri-bimaximal and golden ratio patterns of lepton mixing and the deviations required for a non-zero reactor angle, with solar or atmospheric mixing sum rules resulting from charged lepton corrections or residual trimaximal mixing. The different types of see-saw mechanism are then reviewed as well as the sequential dominance mechanism. We then give a mini-review of finite group theory, which may be used as a discrete family symmetry broken by flavons either completely, or with different subgroups preserved in the neutrino and charged lepton sectors. These two approaches are then reviewed in detail in separate chapters including mechanisms for flavon vacuum alignment and different model building strategies that have been proposed to generate the reactor angle. We then briefly review grand unified theories (GUTs) and how they may be combined with discrete family symmetry to describe all quark and lepton masses and mixing. Finally, we discuss three model examples which combine an SU(5) GUT with the discrete family symmetries A 4 , S 4 and Δ(96). (review article)
Reproductive Health Services Discrete-Event Simulation
Lee, Sungjoo; Giles, Denise F.; Goldsman, David; Cook, Douglas A.; Mishra, Ninad; McCarthy, Brian
2006-01-01
Low resource healthcare environments are often characteristic of patient flow patterns with varying patient risks, extensive patient waiting times, uneven workload distributions, and inefficient service delivery. Models from industrial and systems engineering allow for a greater examination of processes by applying discrete-event computer simulation techniques to evaluate and optimize hospital performance.
Hybrid discrete-time neural networks.
Cao, Hongjun; Ibarz, Borja
2010-11-13
Hybrid dynamical systems combine evolution equations with state transitions. When the evolution equations are discrete-time (also called map-based), the result is a hybrid discrete-time system. A class of biological neural network models that has recently received some attention falls within this category: map-based neuron models connected by means of fast threshold modulation (FTM). FTM is a connection scheme that aims to mimic the switching dynamics of a neuron subject to synaptic inputs. The dynamic equations of the neuron adopt different forms according to the state (either firing or not firing) and type (excitatory or inhibitory) of their presynaptic neighbours. Therefore, the mathematical model of one such network is a combination of discrete-time evolution equations with transitions between states, constituting a hybrid discrete-time (map-based) neural network. In this paper, we review previous work within the context of these models, exemplifying useful techniques to analyse them. Typical map-based neuron models are low-dimensional and amenable to phase-plane analysis. In bursting models, fast-slow decomposition can be used to reduce dimensionality further, so that the dynamics of a pair of connected neurons can be easily understood. We also discuss a model that includes electrical synapses in addition to chemical synapses with FTM. Furthermore, we describe how master stability functions can predict the stability of synchronized states in these networks. The main results are extended to larger map-based neural networks.
Web-Based Implementation of Discrete Mathematics
Love, Tanzy; Keinert, Fritz; Shelley, Mack
2006-01-01
The Department of Mathematics at Iowa State University teaches a freshman-level Discrete Mathematics course with total enrollment of about 1,800 students per year. The traditional format includes large lectures, with about 150 students each, taught by faculty and temporary instructors in two class sessions per week and recitation sections, with…
Discrete Mathematics and the Secondary Mathematics Curriculum.
Dossey, John
Discrete mathematics, the mathematics of decision making for finite settings, is a topic of great interest in mathematics education at all levels. Attention is being focused on resolving the diversity of opinion concerning the exact nature of the subject, what content the curriculum should contain, who should study that material, and how that…
Applied Behavior Analysis: Beyond Discrete Trial Teaching
Steege, Mark W.; Mace, F. Charles; Perry, Lora; Longenecker, Harold
2007-01-01
We discuss the problem of autism-specific special education programs representing themselves as Applied Behavior Analysis (ABA) programs when the only ABA intervention employed is Discrete Trial Teaching (DTT), and often for limited portions of the school day. Although DTT has many advantages to recommend its use, it is not well suited to teach…
Discrete dislocation modelling of submicron indentation
Widjaja, A; Van der Giessen, E; Needleman, A
2005-01-01
Indentation of a planar single crystal by a circular rigid indenter is analyzed using discrete dislocation plasticity. The crystal has three slip systems and is initially dislocation-free, but edge dislocations can nucleate from point sources inside the crystal. The lattice resistance to dislocation
Embedding SAS approach into conjugate gradient algorithms for asymmetric 3D elasticity problems
Chen, Hsin-Chu; Warsi, N.A. [Clark Atlanta Univ., GA (United States); Sameh, A. [Univ. of Minnesota, Minneapolis, MN (United States)
1996-12-31
In this paper, we present two strategies to embed the SAS (symmetric-and-antisymmetric) scheme into conjugate gradient (CG) algorithms to make solving 3D elasticity problems, with or without global reflexive symmetry, more efficient. The SAS approach is physically a domain decomposition scheme that takes advantage of reflexive symmetry of discretized physical problems, and algebraically a matrix transformation method that exploits special reflexivity properties of the matrix resulting from discretization. In addition to offering large-grain parallelism, which is valuable in a multiprocessing environment, the SAS scheme also has the potential for reducing arithmetic operations in the numerical solution of a reasonably wide class of scientific and engineering problems. This approach can be applied directly to problems that have global reflexive symmetry, yielding smaller and independent subproblems to solve, or indirectly to problems with partial symmetry, resulting in loosely coupled subproblems. The decomposition is achieved by separating the reflexive subspace from the antireflexive one, possessed by a special class of matrices A, A {element_of} C{sup n x n} that satisfy the relation A = PAP where P is a reflection matrix (symmetric signed permutation matrix).
Infant differential behavioral responding to discrete emotions.
Walle, Eric A; Reschke, Peter J; Camras, Linda A; Campos, Joseph J
2017-10-01
Emotional communication regulates the behaviors of social partners. Research on individuals' responding to others' emotions typically compares responses to a single negative emotion compared with responses to a neutral or positive emotion. Furthermore, coding of such responses routinely measure surface level features of the behavior (e.g., approach vs. avoidance) rather than its underlying function (e.g., the goal of the approach or avoidant behavior). This investigation examined infants' responding to others' emotional displays across 5 discrete emotions: joy, sadness, fear, anger, and disgust. Specifically, 16-, 19-, and 24-month-old infants observed an adult communicate a discrete emotion toward a stimulus during a naturalistic interaction. Infants' responses were coded to capture the function of their behaviors (e.g., exploration, prosocial behavior, and security seeking). The results revealed a number of instances indicating that infants use different functional behaviors in response to discrete emotions. Differences in behaviors across emotions were clearest in the 24-month-old infants, though younger infants also demonstrated some differential use of behaviors in response to discrete emotions. This is the first comprehensive study to identify differences in how infants respond with goal-directed behaviors to discrete emotions. Additionally, the inclusion of a function-based coding scheme and interpersonal paradigms may be informative for future emotion research with children and adults. Possible developmental accounts for the observed behaviors and the benefits of coding techniques emphasizing the function of social behavior over their form are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Preparation and biodistribution study of 99Tcm labelled dextran conjugates
Yang Chunhui; Li Hongyu; Liang Jixin; Lu Jia; Luo Hongyi; Zheng Deqiang; Sun Guiquan
2012-01-01
99 Tc m Mannosylated dextran conjugates were prepared through [ 99 Tc m (CO) 3 ] + precursor synthesized by carbonyl Isolink kit. The labelled conjugates were injected sub-dermally into the rear foots of the mice, and the patent blue solution was injected at the same site 10 min before sacrifice. The mice were killed at 1 h and 4 h postinjection, and the samples of different tissues including SLN, 2LN, injection site, liver, spleen, blood were dissected and counted. The uptake in terms was calculated. The results of biodistribution demonstrated that the SLN uptakes of radiopharmaceutical (without mannose in the molecules) were rather low and in vivo excretion of these conjugates were comparatively faster, and the uptake of injection site was also low; on the other hand, the SLN uptakes of radio pharmaceutical (with mannose in their molecules) were much higher than those of their corresponding dextran conjugates without mannose, but the retention in the injection site of these conjugates increased too. The results indicated that the affinity of mannosyl-dextran conjugates to the receptors on the surface of macrophages in the lymph node. In addition, the different relative molecular mass of dextran conjugates also cause different biodistribution results, the major one had higher SLN uptake, the difference was significant (P 99 Tc m (CO) 3 ] + labelled mannosylated dextran conjugates showed promising properties as SLN imaging agent and worth further investigation. (authors)
PREPARATION OF CHEMICALLY WELL-DEFINED CARBOHYDRATE DENDRIMER CONJUGATES
2004-01-01
A method for the synthesis of dendrimer conjugates having a well-defined chemical structure, comprising one or more carbohydrate moieties and one or more immunomodulating substances coupled to a dendrimer, is presented. First, the carbohydrate is bound to the dendrimer in a chemoselective manner...... conjugates and their use in vaccination, production of antibodies, high throughput screening, diagnostic assays and libraries....
Cross-conjugation and quantum interference: a general correlation?
Valkenier, Hennie; Guedon, Constant M.; Markussen, Troels
2014-01-01
We discuss the relationship between the pi-conjugation pattern, molecular length, and charge transport properties of molecular wires, both from an experimental and a theoretical viewpoint. Specifically, we focus on the role of quantum interference in the conductance properties of cross-conjugated...
The Synthesis of Substituted Piperazine-cholesterol Conjugates for ...
A small library of cholesterol-piperazine conjugates were synthesized by the reaction of cholesteryl chloroformate with a set of substituted piperazines in dichloromethane at room temperature. The conjugates, all obtained in good to excellent yields, were synthesized to be key components of nucleic acid transfection ...
New preconditioned conjugate gradient algorithms for nonlinear unconstrained optimization problems
Al-Bayati, A.; Al-Asadi, N.
1997-01-01
This paper presents two new predilection conjugate gradient algorithms for nonlinear unconstrained optimization problems and examines their computational performance. Computational experience shows that the new proposed algorithms generally imp lone the efficiency of Nazareth's [13] preconditioned conjugate gradient algorithm. (authors). 16 refs., 1 tab
Preparation and characterization of microspheres of albumin-heparin conjugates
Kwon, Glen S.; Bae, You Han; Kim, Sung Wan; Cremers, Harry; Cremers, H.F.M.; Feijen, Jan
1991-01-01
Albumin-heparin microspheres have been prepared as a new drug carrier. A soluble albumin-heparin conjugate was synthesized by forming amide bonds between human serum albumin and heparin. After purification the albumin-heparin conjugate was crosslinked in a water-in-oil emulsion to form
Discretization of four types of Weyl group orbit functions
Hrivnák, Jiří
2013-01-01
The discrete Fourier calculus of the four families of special functions, called C–, S–, S s – and S l -functions, is summarized. Functions from each of the four families of special functions are discretely orthogonal over a certain finite set of points. The generalizations of discrete cosine and sine transforms of one variable — the discrete S s – and S l -transforms of the group F 4 — are considered in detail required for their exploitation in discrete Fourier spectral methods. The continuous interpolations, induced by the discrete expansions, are presented
Enhanced photodynamic efficacy of zinc phthalocyanine by conjugating to heptalysine.
Li, Linsen; Luo, Zhipu; Chen, Zhuo; Chen, Jincan; Zhou, Shanyong; Xu, Peng; Hu, Ping; Wang, Jundong; Chen, Naisheng; Huang, Jinling; Huang, Mingdong
2012-11-21
Zinc phthalocyanine (ZnPc) is a promising photosensitizer for photodynamic therapy, but faces some challenges: ZnPc is insoluble in water and thus requires either special formulation of ZnPc by, e.g., liposome or Cremophor EL, or chemical modification of Pc ring to enhance its bioavailability and photodynamic efficacy. Here, we conjugated monosubstituted ZnPc-COOH with a series of oligolysine moieties with different numbers of lysine residues (ZnPc-(Lys)(n) (n = 1, 3, 5, 7, 9) to improve the water solubility of the ZnPc conjugates. We measured the photosensitizing efficacies and the cellular uptakes of this series of conjugates on a normal and a cancerous cell line. In addition, we developed a sensitive in situ method to distinguish the difference in photodynamic efficacy among conjugates. Our results showed that ZnPc-(Lys)(7) has the highest photodynamic efficacy compared to the other conjugates investigated.
A 2+1 non-isospectral discrete integrable system and its discrete integrable coupling system
Yu Fajun; Zhang Hongqing
2006-01-01
In this Letter by considering a (2+1)-dimensional discrete non-isospectral linear problem, a new (2+1)-dimensional integrable lattice hierarchy is constructed. It shows that generalization of the Blaszak-Marciniak lattice hierarchy can be obtained as a reduction. Then an extended algebraic system X-bar of X is presented, from which the integrable coupling system of the (2+1)-dimensional discrete non-isospectral Blaszak-Marciniak lattice equations are obtained
Application of an efficient Bayesian discretization method to biomedical data
Gopalakrishnan Vanathi
2011-07-01
Full Text Available Abstract Background Several data mining methods require data that are discrete, and other methods often perform better with discrete data. We introduce an efficient Bayesian discretization (EBD method for optimal discretization of variables that runs efficiently on high-dimensional biomedical datasets. The EBD method consists of two components, namely, a Bayesian score to evaluate discretizations and a dynamic programming search procedure to efficiently search the space of possible discretizations. We compared the performance of EBD to Fayyad and Irani's (FI discretization method, which is commonly used for discretization. Results On 24 biomedical datasets obtained from high-throughput transcriptomic and proteomic studies, the classification performances of the C4.5 classifier and the naïve Bayes classifier were statistically significantly better when the predictor variables were discretized using EBD over FI. EBD was statistically significantly more stable to the variability of the datasets than FI. However, EBD was less robust, though not statistically significantly so, than FI and produced slightly more complex discretizations than FI. Conclusions On a range of biomedical datasets, a Bayesian discretization method (EBD yielded better classification performance and stability but was less robust than the widely used FI discretization method. The EBD discretization method is easy to implement, permits the incorporation of prior knowledge and belief, and is sufficiently fast for application to high-dimensional data.
Usta, M.; Wortelboer, H.M.; Vervoort, J.; Boersma, M.G.; Rietjens, I.M.C.M.; Bladeren, P.J. van; Cnubben, N.H.P.
2007-01-01
Curcumin, an α,β-unsaturated carbonyl compound, reacts with glutathione, leading to the formation of two monoglutathionyl curcumin conjugates. In the present study, the structures of both glutathione conjugates of curcumin were identified by LC-MS and one- and two-dimensional 1H NMR analysis, and
Usta, M.; Wortelboer, H.M.; Vervoort, J.J.M.; Boersma, M.G.; Rietjens, I.M.C.M.; Bladeren, van P.J.; Cnubben, N.H.P.
2007-01-01
Curcumin, an alpha,beta-unsaturated carbonyl compound, reacts with glutathione, leading to the formation of two monoglutathionyl curcumin conjugates. In the present study, the structures of both glutathione conjugates of curcumin were identified by LC-MS and one- and two-dimensional H-1 NMR
Miranda, Jonatan; Arias, Noemi; Fernández-Quintela, Alfredo; del Puy Portillo, María
2014-04-01
Despite its benefits, conjugated linoleic acid (CLA) may cause side effects after long-term administration. Because of this and the controversial efficacy of CLA in humans, alternative biomolecules that may be used as functional ingredients have been studied in recent years. Thus, conjugated linolenic acid (CLNA) has been reported to be a potential anti-obesity molecule which may have additional positive effects related to obesity. According to the results reported in obesity, CLNA needs to be given at higher doses than CLA to be effective. However, because of the few studies conducted so far, it is still difficult to reach clear conclusions about the potential use of these CLNAs in obesity and its related changes (insulin resistance, dyslipidemia, or inflammation). Copyright © 2012 SEEN. Published by Elsevier Espana. All rights reserved.
Conjugate Heat Transfer Study in Hypersonic Flows
Sahoo, Niranjan; Kulkarni, Vinayak; Peetala, Ravi Kumar
2018-04-01
Coupled and decoupled conjugate heat transfer (CHT) studies are carried out to imitate experimental studies for heat transfer measurement in hypersonic flow regime. The finite volume based solvers are used for analyzing the heat interaction between fluid and solid domains. Temperature and surface heat flux signals are predicted by both coupled and decoupled CHT analysis techniques for hypersonic Mach numbers. These two methodologies are also used to study the effect of different wall materials on surface parameters. Effectiveness of these CHT solvers has been verified for the inverse problem of wall heat flux recovery using various techniques reported in the literature. Both coupled and decoupled CHT techniques are seen to be equally useful for prediction of local temperature and heat flux signals prior to the experiments in hypersonic flows.
A fast, preconditioned conjugate gradient Toeplitz solver
Pan, Victor; Schrieber, Robert
1989-01-01
A simple factorization is given of an arbitrary hermitian, positive definite matrix in which the factors are well-conditioned, hermitian, and positive definite. In fact, given knowledge of the extreme eigenvalues of the original matrix A, an optimal improvement can be achieved, making the condition numbers of each of the two factors equal to the square root of the condition number of A. This technique is to applied to the solution of hermitian, positive definite Toeplitz systems. Large linear systems with hermitian, positive definite Toeplitz matrices arise in some signal processing applications. A stable fast algorithm is given for solving these systems that is based on the preconditioned conjugate gradient method. The algorithm exploits Toeplitz structure to reduce the cost of an iteration to O(n log n) by applying the fast Fourier Transform to compute matrix-vector products. Matrix factorization is used as a preconditioner.
Double diffusive conjugate heat transfer: Part I
Azeem, Soudagar, Manzoor Elahi M.
2018-05-01
The present work is undertaken to investigate the effect of solid wall being placed at left of square cavity filled with porous medium. The presence of a solid wall in the porous medium turns the situation into a conjugate heat transfer problem. The boundary conditions are such that the left vertical surface is maintained at highest temperature and concentration whereas right vertical surface at lowest temperature and concentration in the medium. The top and bottom surfaces are adiabatic. The additional conduction equation along with the regular momentum and energy equations of porous medium are solved in an iterative manner with the help of finite element method. It is seen that the heat and mass transfer rate is lesser due to smaller thermal and concentration gradients.
Conjugated Polymers Atypically Prepared in Water
Invernale, Michael A.; Pendergraph, Samuel A.; Yavuz, Mustafa S.; Ombaba, Matthew; Sotzing, Gregory A.
2010-01-01
Processability remains a fundamental issue for the implementation of conducting polymer technology. A simple synthetic route towards processable precursors to conducting polymers (main chain and side chain) was developed using commercially available materials. These soluble precursor systems were converted to conjugated polymers electrochemically in aqueous media, offering a cheaper and greener method of processing. Oxidative conversion in aqueous and organic media each produced equivalent electrochromics. The precursor method enhances the yield of the electrochromic polymer obtained over that of electrodeposition, and it relies on a less corruptible electrolyte bath. However, electrochemical conversion of the precursor polymers often relies on organic salts and solvents. The ability to achieve oxidative conversion in brine offers a less costly and a more environmentally friendly processing step. It is also beneficial for biological applications. The electrochromics obtained herein were evaluated for electronic, spectral, and morphological properties. PMID:20959869
Is Discrete Mathematics the New Math of the Eighties?
Hart, Eric W.
1985-01-01
Considered are what discrete mathematics includes, some parallels and differences between new math and discrete mathematics (listed in a table), and lessons to be learned. A list of references is included. (MNS)
Comparison of discrete Hodge star operators for surfaces
Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi
2016-01-01
We investigate the performance of various discrete Hodge star operators for discrete exterior calculus (DEC) using circumcentric and barycentric dual meshes. The performance is evaluated through the DEC solution of Darcy and incompressible Navier
Supporting scalable Bayesian networks using configurable discretizer actuators
Osunmakinde, I
2009-04-01
Full Text Available The authors propose a generalized model with configurable discretizer actuators as a solution to the problem of the discretization of massive numerical datasets. Their solution is based on a concurrent distribution of the actuators and uses dynamic...
Dimension Reduction and Discretization in Stochastic Problems by Regression Method
Ditlevsen, Ove Dalager
1996-01-01
The chapter mainly deals with dimension reduction and field discretizations based directly on the concept of linear regression. Several examples of interesting applications in stochastic mechanics are also given.Keywords: Random fields discretization, Linear regression, Stochastic interpolation, ...
On some properties of the discrete Lyapunov exponent
Amigo, Jose M.; Kocarev, Ljupco; Szczepanski, Janusz
2008-01-01
One of the possible by-products of discrete chaos is the application of its tools, in particular of the discrete Lyapunov exponent, to cryptography. In this Letter we explore this question in a very general setting
Breatherlike excitations in discrete lattices with noise and nonlinear damping
Christiansen, Peter Leth; Gaididei, Yuri B.; Johansson, Magnus
1997-01-01
We discuss the stability of highly localized, ''breatherlike,'' excitations in discrete nonlinear lattices under the influence of thermal fluctuations. The particular model considered is the discrete nonlinear Schrodinger equation in the regime of high nonlinearity, where temperature effects...
Discretely tunable micromachined injection-locked lasers
Cai, H; Yu, M B; Lo, G Q; Kwong, D L; Zhang, X M; Liu, A Q; Liu, B
2010-01-01
This paper reports a micromachined injection-locked laser (ILL) to provide tunable discrete wavelengths. It utilizes a non-continuously tunable laser as the master to lock a Fabry–Pérot semiconductor laser chip. Both lasers are integrated into a deep-etched silicon chip with dimensions of 3 mm × 3 mm × 0.8 mm. Based on the experimental results, significant improvements in the optical power and spectral purity have been achieved in the fully locked state, and optical hysteresis and bistability have also been observed in response to the changes of the output wavelength and optical power of the master laser. As a whole system, the micromachined ILL is able to provide single mode, discrete wavelength tuning, high power and direct modulation with small size and single-chip solution, making it promising for advanced optical communications such as wavelength division multiplexing optical access networks.
Discrete instability in the DNA double helix
Tabi, Conrad Bertrand; Mohamadou, Alidou; Kofane, Timoleon Crepin
2009-06-01
Modulational instability (MI) is explored in the framework of the base-rotor model of DNA dynamics. We show in fact that, the helicoidal coupling introduced in the spin model of DNA reduces the system to a modified discrete sine-Gordon (sG) equation. The MI criterion is thus modified and displays interesting features because of the helicoidal coupling. This is confirmed in the numerical analysis where a critical value of the helicoidal coupling constant is derived. In the simulations, we have found that a train of pulses are generated when the lattice is subjected to MI, in agreement with analytical results obtained in a modified discrete sG equation. Also, the competitive effects of the harmonic longitudinal and helicoidal constants on the dynamics of the system are notably pointed out. In the same way, it is shown that MI can lead to energy localization which is high for some values of the helicoidal coupling constant. (author)
Vortices trapped in discrete Josephson rings
Van der Zanta, H.S.J.; Orlando, T.P.; Watanabe, Shinya; Strogatz, S.H.
1994-01-01
We report the first measurements of current- (I-V) characteristics of discrete rings of Josephson junctions. As I is increased, resonant steps appear in the I-V curve, due to phase-locking between a propagating, trapped vortex and the linear waves excited in its wake. Unexpectedly, the phase velocity of the linear waves, not the group velocity, is the physically important quantity and mode numbers outside the Brillouin zone are relevant. Our measurements show that away from the resonant steps, a single vortex can move in an environment with very little damping, making the discrete one-dimensional ring a well-defined model system for the study of ballistic and quantum vortex experiments. ((orig.))
Vortices trapped in discrete Josephson rings
Van der Zanta, H.S.J. [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Orlando, T.P. [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Watanabe, Shinya [Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Strogatz, S.H. [Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)
1994-12-01
We report the first measurements of current- (I-V) characteristics of discrete rings of Josephson junctions. As I is increased, resonant steps appear in the I-V curve, due to phase-locking between a propagating, trapped vortex and the linear waves excited in its wake. Unexpectedly, the phase velocity of the linear waves, not the group velocity, is the physically important quantity and mode numbers outside the Brillouin zone are relevant. Our measurements show that away from the resonant steps, a single vortex can move in an environment with very little damping, making the discrete one-dimensional ring a well-defined model system for the study of ballistic and quantum vortex experiments. ((orig.)).
Discrete and continuous simulation theory and practice
Bandyopadhyay, Susmita
2014-01-01
When it comes to discovering glitches inherent in complex systems-be it a railway or banking, chemical production, medical, manufacturing, or inventory control system-developing a simulation of a system can identify problems with less time, effort, and disruption than it would take to employ the original. Advantageous to both academic and industrial practitioners, Discrete and Continuous Simulation: Theory and Practice offers a detailed view of simulation that is useful in several fields of study.This text concentrates on the simulation of complex systems, covering the basics in detail and exploring the diverse aspects, including continuous event simulation and optimization with simulation. It explores the connections between discrete and continuous simulation, and applies a specific focus to simulation in the supply chain and manufacturing field. It discusses the Monte Carlo simulation, which is the basic and traditional form of simulation. It addresses future trends and technologies for simulation, with par...
Juxtaposed color halftoning relying on discrete lines.
Babaei, Vahid; Hersch, Roger D
2013-02-01
Most halftoning techniques allow screen dots to overlap. They rely on the assumption that the inks are transparent, i.e., the inks do not scatter a significant portion of the light back to the air. However, many special effect inks, such as metallic inks, iridescent inks, or pigmented inks, are not transparent. In order to create halftone images, halftone dots formed by such inks should be juxtaposed, i.e., printed side by side. We propose an efficient juxtaposed color halftoning technique for placing any desired number of colorant layers side by side without overlapping. The method uses a monochrome library of screen elements made of discrete lines with rational thicknesses. Discrete line juxtaposed color halftoning is performed efficiently by multiple accesses to the screen element library.
Finite Volumes Discretization of Topology Optimization Problems
Evgrafov, Anton; Gregersen, Misha Marie; Sørensen, Mads Peter
, FVMs represent a standard method of discretization within engineering communities dealing with computational uid dy- namics, transport, and convection-reaction problems. Among various avours of FVMs, cell based approaches, where all variables are associated only with cell centers, are particularly...... computations is done using nite element methods (FEMs). Despite some limited recent eorts [1, 2], we have only started to develop our understanding of the interplay between the control in the coecients and FVMs. Recent advances in discrete functional analysis allow us to analyze convergence of FVM...... of the induced parametrization of the design space that allows optimization algorithms to eciently explore it, and the ease of integration with existing computational codes in a variety of application areas, the simplicity and eciency of sensitivity analyses|all stemming from the use of the same grid throughout...
Integral and discrete inequalities and their applications
Qin, Yuming
2016-01-01
This book focuses on one- and multi-dimensional linear integral and discrete Gronwall-Bellman type inequalities. It provides a useful collection and systematic presentation of known and new results, as well as many applications to differential (ODE and PDE), difference, and integral equations. With this work the author fills a gap in the literature on inequalities, offering an ideal source for researchers in these topics. The present volume is part 1 of the author’s two-volume work on inequalities. Integral and discrete inequalities are a very important tool in classical analysis and play a crucial role in establishing the well-posedness of the related equations, i.e., differential, difference and integral equations.
Semi-Discrete Ingham-Type Inequalities
Komornik, Vilmos; Loreti, Paola
2007-01-01
One of the general methods in linear control theory is based on harmonic and non-harmonic Fourier series. The key of this approach is the establishment of various suitable adaptations and generalizations of the classical Parseval equality. A new and systematic approach was begun in our papers in collaboration with Baiocchi. Many recent results of this kind, obtained through various Ingham-type theorems, were exposed recently. Although this work concentrated on continuous models, in connection with numerical simulations a natural question is whether these results also admit useful discrete versions. The purpose of this paper is to establish discrete versions of various Ingham-type theorems by using our approach. They imply the earlier continuous results by a simple limit process
Quantum RLC circuits: Charge discreteness and resonance
Utreras-Diaz, Constantino A. [Instituto de Fisica, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja s/n, Casilla 567, Valdivia (Chile)], E-mail: cutreras@uach.cl
2008-10-20
In a recent article [C.A. Utreras-Diaz, Phys. Lett. A 372 (2008) 5059], we have advanced a semiclassical theory of quantum circuits with discrete charge and electrical resistance. In this work, we present a few elementary applications of this theory. For the zero resistance inductive circuit, we obtain the Stark ladder energies in yet another way; for the circuit driven by a combination d.c. plus a.c. electromotive force (emf) we generalize earlier results by Chandia et al. [K. Chandia, J.C. Flores, E. Lazo, Phys. Lett. A 359 (2006) 693]. As a second application, we investigate the effect of electrical resistance and charge discreteness, in the resonance conditions of a series RLC quantum circuit.
Quantum RLC circuits: Charge discreteness and resonance
Utreras-Diaz, Constantino A.
2008-01-01
In a recent article [C.A. Utreras-Diaz, Phys. Lett. A 372 (2008) 5059], we have advanced a semiclassical theory of quantum circuits with discrete charge and electrical resistance. In this work, we present a few elementary applications of this theory. For the zero resistance inductive circuit, we obtain the Stark ladder energies in yet another way; for the circuit driven by a combination d.c. plus a.c. electromotive force (emf) we generalize earlier results by Chandia et al. [K. Chandia, J.C. Flores, E. Lazo, Phys. Lett. A 359 (2006) 693]. As a second application, we investigate the effect of electrical resistance and charge discreteness, in the resonance conditions of a series RLC quantum circuit
Discrete approach to complex planar geometries
Cupini, E.; De Matteis, A.
1974-01-01
Planar regions in Monte Carlo transport problems have been represented by a finite set of points with a corresponding region index for each. The simulation of particle free-flight reduces then to the simple operations necessary for scanning appropriate grid points to determine whether a region other than the starting one is encountered. When the complexity of the geometry is restricted to only some regions of the assembly examined, a mixed discrete-continuous philosophy may be adopted. By this approach, the lattice of a thermal reactor has been treated, discretizing only the central regions of the cell containing the fuel rods. Excellent agreement with experimental results has been obtained in the computation of cell parameters in the energy range from fission to thermalization through the 238 U resonance region. (U.S.)
Discrete event systems diagnosis and diagnosability
Sayed-Mouchaweh, Moamar
2014-01-01
Discrete Event Systems: Diagnosis and Diagnosability addresses the problem of fault diagnosis of Discrete Event Systems (DES). This book provides the basic techniques and approaches necessary for the design of an efficient fault diagnosis system for a wide range of modern engineering applications. The different techniques and approaches are classified according to several criteria such as: modeling tools (Automata, Petri nets) that is used to construct the model; the information (qualitative based on events occurrences and/or states outputs, quantitative based on signal processing and data analysis) that is needed to analyze and achieve the diagnosis; the decision structure (centralized, decentralized) that is required to achieve the diagnosis. The goal of this classification is to select the efficient method to achieve the fault diagnosis according to the application constraints. This book focuses on the centralized and decentralized event based diagnosis approaches using formal language and automata as mode...
Discrete PID Tuning Using Artificial Intelligence Techniques
Petr DOLEŽEL
2009-06-01
Full Text Available PID controllers are widely used in industry these days due to their useful properties such as simple tuning or robustness. While they are applicable to many control problems, they can perform poorly in some applications. Highly nonlinear system control with constrained manipulated variable can be mentioned as an example. The point of the paper is to string together convenient qualities of conventional PID control and progressive techniques based on Artificial Intelligence. Proposed control method should deal with even highly nonlinear systems. To be more specific, there is described new method of discrete PID controller tuning in this paper. This method tunes discrete PID controller parameters online through the use of genetic algorithm and neural model of controlled system in order to control successfully even highly nonlinear systems. After method description and some discussion, there is performed control simulation and comparison to one chosen conventional control method.
Discrete variable theory of triatomic photodissociation
Heather, R.W.; Light, J.C.
1983-01-01
The coupled equations describing the photodissociation process are expressed in the discrete variable representation (DVR) in which the coupled equations are labeled by quadrature points rather than by internal basis functions. A large reduction in the dimensionality of the coupled equations can be realized since the spatially localized bound state nuclear wave function vanishes at most of the quadrature points, making only certain orientations of the fragments important in the region of strong interaction (small separation). The discrete variable theory of photodissociation is applied to the model dissociation of bent HCN in which the CN fragment is treated as a rigid rotor. The truncated DVR rotational distributions are compared with the exact close coupled rotational distributions, and excellent agreement with greatly reduced dimensionality of the equations is found
Lax Pairs for Discrete Integrable Equations via Darboux Transformations
Cao Ce-Wen; Zhang Guang-Yao
2012-01-01
A method is developed to construct discrete Lax pairs using Darboux transformations. More kinds of Lax pairs are found for some newly appeared discrete integrable equations, including the H1, the special H3 and the Q1 models in the Adler—Bobenko—Suris list and the closely related discrete and semi-discrete pKdV, pMKdV, SG and Liouville equations. (general)
Discrete time analysis of a repairable machine
Alfa, Attahiru Sule; Castro, I. T.
2002-01-01
We consider, in discrete time, a single machine system that operates for a period of time represented by a general distribution. This machine is subject to failures during operations and the occurrence of these failures depends on how many times the machine has previously failed. Some failures are repairable and the repair times may or may not depend on the number of times the machine was previously repaired. Repair times also have a general distribution. The operating times...
Program For Parallel Discrete-Event Simulation
Beckman, Brian C.; Blume, Leo R.; Geiselman, John S.; Presley, Matthew T.; Wedel, John J., Jr.; Bellenot, Steven F.; Diloreto, Michael; Hontalas, Philip J.; Reiher, Peter L.; Weiland, Frederick P.
1991-01-01
User does not have to add any special logic to aid in synchronization. Time Warp Operating System (TWOS) computer program is special-purpose operating system designed to support parallel discrete-event simulation. Complete implementation of Time Warp mechanism. Supports only simulations and other computations designed for virtual time. Time Warp Simulator (TWSIM) subdirectory contains sequential simulation engine interface-compatible with TWOS. TWOS and TWSIM written in, and support simulations in, C programming language.
Discrete Alfven waves in the TORTUS tokamak
Amagishi, Y.; Ballico, M.J.; Cross, R.C.; Donnely, I.J.
1989-01-01
Discrete Alfven Waves (DAWs) have been observed as antenna resistance peaks and as enhanced edge fields in the TORTUS tokamak during Alfven wave heating experiments. A kinetic theory code has been used to calculate the antenna loading and the structure of the DAW fields for a range of plasma current and density profiles. There is fair agreement between the measured and predicted amplitude of the DAW fields in the plasma edge when both are normalized to the same antenna power
Nuclear data preparation and discrete ordinates calculation
Carmignani, B.
1980-01-01
These lectures deal with the use of the GAM-GATHER and GAM-THERMOS chains for the calculation of lattice cross sections and within use of the discrete ordinates one dimensional ANISN code for the calculation of criticality and flux distribution of the cell and of the whole reactor. As an example the codes are applied to the calculation of a PWR. Results of different approximations are compared. (author)
Discrete Ricci Flow in Higher Dimensions
2015-02-01
recently, we showed analytically that the SRF equations converged to the continuum RF equations for the neck-pinch 3- geometry [10]. In this analysis we also...Hamilton’s RF. It is the first dimensionally agnostic generalization of RF for PL geometries . We refer to our approach as simplicial Ricci flow (SRF). For a...Discrete Exterior Calculus , Regge Calculus , Piecewise Linear Complex 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER
Discrete mathematics course supported by CAS MATHEMATICA
Ivanov, O. A.; Ivanova, V. V.; Saltan, A. A.
2017-08-01
In this paper, we discuss examples of assignments for a course in discrete mathematics for undergraduate students majoring in business informatics. We consider several problems with computer-based solutions and discuss general strategies for using computers in teaching mathematics and its applications. In order to evaluate the effectiveness of our approach, we conducted an anonymous survey. The results of the survey provide evidence that our approach contributes to high outcomes and aligns with the course aims and objectives.
"Minesweeper" and spectrum of discrete Laplacians
German, Oleg; Lakshtanov, Evgeny
2008-01-01
The paper is devoted to a problem inspired by the "Minesweeper" computer game. It is shown that certain configurations of open cells guarantee the existence and the uniqueness of solution. Mathematically the problem is reduced to some spectral properties of discrete differential operators. It is shown how the uniqueness can be used to create a new game which preserves the spirit of "Minesweeper" but does not require a computer.
A variational synthesis nodal discrete ordinates method
Favorite, J.A.; Stacey, W.M.
1999-01-01
A self-consistent nodal approximation method for computing discrete ordinates neutron flux distributions has been developed from a variational functional for neutron transport theory. The advantage of the new nodal method formulation is that it is self-consistent in its definition of the homogenized nodal parameters, the construction of the global nodal equations, and the reconstruction of the detailed flux distribution. The efficacy of the method is demonstrated by two-dimensional test problems
Flexible Visual Quality Inspection in Discrete Manufacturing
Petković, Tomislav; Jurić, Darko; Lončarić, Sven
2013-01-01
Most visual quality inspections in discrete manufacturing are composed of length, surface, angle or intensity measurements. Those are implemented as end-user configurable inspection tools that should not require an image processing expert to set up. Currently available software solutions providing such capability use a flowchart based programming environment, but do not fully address an inspection flowchart robustness and can require a redefinition of the flowchart if a small variation is int...
Hyponormal differential operators with discrete spectrum
Zameddin I. Ismailov
2010-01-01
Full Text Available In this work, we first describe all the maximal hyponormal extensions of a minimal operator generated by a linear differential-operator expression of the first-order in the Hilbert space of vector-functions in a finite interval. Next, we investigate the discreteness of the spectrum and the asymptotical behavior of the modules of the eigenvalues for these maximal hyponormal extensions.
Physical models on discrete space and time
Lorente, M.
1986-01-01
The idea of space and time quantum operators with a discrete spectrum has been proposed frequently since the discovery that some physical quantities exhibit measured values that are multiples of fundamental units. This paper first reviews a number of these physical models. They are: the method of finite elements proposed by Bender et al; the quantum field theory model on discrete space-time proposed by Yamamoto; the finite dimensional quantum mechanics approach proposed by Santhanam et al; the idea of space-time as lattices of n-simplices proposed by Kaplunovsky et al; and the theory of elementary processes proposed by Weizsaecker and his colleagues. The paper then presents a model proposed by the authors and based on the (n+1)-dimensional space-time lattice where fundamental entities interact among themselves 1 to 2n in order to build up a n-dimensional cubic lattice as a ground field where the physical interactions take place. The space-time coordinates are nothing more than the labelling of the ground field and take only discrete values. 11 references
Generalized Detectability for Discrete Event Systems
Shu, Shaolong; Lin, Feng
2011-01-01
In our previous work, we investigated detectability of discrete event systems, which is defined as the ability to determine the current and subsequent states of a system based on observation. For different applications, we defined four types of detectabilities: (weak) detectability, strong detectability, (weak) periodic detectability, and strong periodic detectability. In this paper, we extend our results in three aspects. (1) We extend detectability from deterministic systems to nondeterministic systems. Such a generalization is necessary because there are many systems that need to be modeled as nondeterministic discrete event systems. (2) We develop polynomial algorithms to check strong detectability. The previous algorithms are based on observer whose construction is of exponential complexity, while the new algorithms are based on a new automaton called detector. (3) We extend detectability to D-detectability. While detectability requires determining the exact state of a system, D-detectability relaxes this requirement by asking only to distinguish certain pairs of states. With these extensions, the theory on detectability of discrete event systems becomes more applicable in solving many practical problems. PMID:21691432
Entropic Phase Maps in Discrete Quantum Gravity
Benjamin F. Dribus
2017-06-01
Full Text Available Path summation offers a flexible general approach to quantum theory, including quantum gravity. In the latter setting, summation is performed over a space of evolutionary pathways in a history configuration space. Discrete causal histories called acyclic directed sets offer certain advantages over similar models appearing in the literature, such as causal sets. Path summation defined in terms of these histories enables derivation of discrete Schrödinger-type equations describing quantum spacetime dynamics for any suitable choice of algebraic quantities associated with each evolutionary pathway. These quantities, called phases, collectively define a phase map from the space of evolutionary pathways to a target object, such as the unit circle S 1 ⊂ C , or an analogue such as S 3 or S 7 . This paper explores the problem of identifying suitable phase maps for discrete quantum gravity, focusing on a class of S 1 -valued maps defined in terms of “structural increments” of histories, called terminal states. Invariants such as state automorphism groups determine multiplicities of states, and induce families of natural entropy functions. A phase map defined in terms of such a function is called an entropic phase map. The associated dynamical law may be viewed as an abstract combination of Schrödinger’s equation and the second law of thermodynamics.
New formulation of the discrete element method
Rojek, Jerzy; Zubelewicz, Aleksander; Madan, Nikhil; Nosewicz, Szymon
2018-01-01
A new original formulation of the discrete element method based on the soft contact approach is presented in this work. The standard DEM has heen enhanced by the introduction of the additional (global) deformation mode caused by the stresses in the particles induced by the contact forces. Uniform stresses and strains are assumed for each particle. The stresses are calculated from the contact forces. The strains are obtained using an inverse constitutive relationship. The strains allow us to obtain deformed particle shapes. The deformed shapes (ellipses) are taken into account in contact detection and evaluation of the contact forces. A simple example of a uniaxial compression of a rectangular specimen, discreti.zed with equal sized particles is simulated to verify the DDEM algorithm. The numerical example shows that a particle deformation changes the particle interaction and the distribution of forces in the discrete element assembly. A quantitative study of micro-macro elastic properties proves the enhanced capabilities of the DDEM as compared to standard DEM.
Inferring gene networks from discrete expression data
Zhang, L.
2013-07-18
The modeling of gene networks from transcriptional expression data is an important tool in biomedical research to reveal signaling pathways and to identify treatment targets. Current gene network modeling is primarily based on the use of Gaussian graphical models applied to continuous data, which give a closedformmarginal likelihood. In this paper,we extend network modeling to discrete data, specifically data from serial analysis of gene expression, and RNA-sequencing experiments, both of which generate counts of mRNAtranscripts in cell samples.We propose a generalized linear model to fit the discrete gene expression data and assume that the log ratios of the mean expression levels follow a Gaussian distribution.We restrict the gene network structures to decomposable graphs and derive the graphs by selecting the covariance matrix of the Gaussian distribution with the hyper-inverse Wishart priors. Furthermore, we incorporate prior network models based on gene ontology information, which avails existing biological information on the genes of interest. We conduct simulation studies to examine the performance of our discrete graphical model and apply the method to two real datasets for gene network inference. © The Author 2013. Published by Oxford University Press. All rights reserved.
Police investigations: discretion denied yet undeniably exercised
Belur, J.; Tilley, N.; Osrin, D.; Daruwalla, N.; Kumar, M.; Tiwari, V.
2014-01-01
Police investigations involve determining whether a crime has been committed, and if so what type of crime, who has committed it and whether there is the evidence to charge the perpetrators. Drawing on fieldwork in Delhi and Mumbai, this paper explores how police investigations unfolded in the specific context of women’s deaths by burning in India. In particular, it focuses on the use of discretion despite its denial by those exercising it. In India, there are distinctive statutes relating to women’s suspicious deaths, reflecting the widespread expectation that the bride’s family will pay a dowry to the groom’s family and the tensions to which this may on occasion give rise in the early years of a marriage. Often, there are conflicting claims influencing how the woman’s death is classified. These in turn affect police investigation. The nature and direction of police discretion in investigating women’s deaths by burning reflect in part the unique nature of the legislation and the particular sensitivities in relation to these types of death. They also highlight processes that are liable to be at work in any crime investigation. It was found that police officers exercised unacknowledged discretion at seven specific points in the investigative process, with potentially significant consequences for the achievement of just outcomes: first response, recording the victim’s ‘dying declaration’, inquest, registering of the ‘First Information Report’, collecting evidence, arrest and framing of the charges. PMID:26376482
Meshes optimized for discrete exterior calculus (DEC).
Mousley, Sarah C. [Univ. of Illinois, Urbana-Champaign, IL (United States); Deakin, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knupp, Patrick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Scott A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-12-01
We study the optimization of an energy function used by the meshing community to measure and improve mesh quality. This energy is non-traditional because it is dependent on both the primal triangulation and its dual Voronoi (power) diagram. The energy is a measure of the mesh's quality for usage in Discrete Exterior Calculus (DEC), a method for numerically solving PDEs. In DEC, the PDE domain is triangulated and this mesh is used to obtain discrete approximations of the continuous operators in the PDE. The energy of a mesh gives an upper bound on the error of the discrete diagonal approximation of the Hodge star operator. In practice, one begins with an initial mesh and then makes adjustments to produce a mesh of lower energy. However, we have discovered several shortcomings in directly optimizing this energy, e.g. its non-convexity, and we show that the search for an optimized mesh may lead to mesh inversion (malformed triangles). We propose a new energy function to address some of these issues.
Adaptive discrete-ordinates algorithms and strategies
Stone, J.C.; Adams, M.L.
2005-01-01
We present our latest algorithms and strategies for adaptively refined discrete-ordinates quadrature sets. In our basic strategy, which we apply here in two-dimensional Cartesian geometry, the spatial domain is divided into regions. Each region has its own quadrature set, which is adapted to the region's angular flux. Our algorithms add a 'test' direction to the quadrature set if the angular flux calculated at that direction differs by more than a user-specified tolerance from the angular flux interpolated from other directions. Different algorithms have different prescriptions for the method of interpolation and/or choice of test directions and/or prescriptions for quadrature weights. We discuss three different algorithms of different interpolation orders. We demonstrate through numerical results that each algorithm is capable of generating solutions with negligible angular discretization error. This includes elimination of ray effects. We demonstrate that all of our algorithms achieve a given level of error with far fewer unknowns than does a standard quadrature set applied to an entire problem. To address a potential issue with other algorithms, we present one algorithm that retains exact integration of high-order spherical-harmonics functions, no matter how much local refinement takes place. To address another potential issue, we demonstrate that all of our methods conserve partial currents across interfaces where quadrature sets change. We conclude that our approach is extremely promising for solving the long-standing problem of angular discretization error in multidimensional transport problems. (authors)
Single-crossover recombination in discrete time.
von Wangenheim, Ute; Baake, Ellen; Baake, Michael
2010-05-01
Modelling the process of recombination leads to a large coupled nonlinear dynamical system. Here, we consider a particular case of recombination in discrete time, allowing only for single crossovers. While the analogous dynamics in continuous time admits a closed solution (Baake and Baake in Can J Math 55:3-41, 2003), this no longer works for discrete time. A more general model (i.e. without the restriction to single crossovers) has been studied before (Bennett in Ann Hum Genet 18:311-317, 1954; Dawson in Theor Popul Biol 58:1-20, 2000; Linear Algebra Appl 348:115-137, 2002) and was solved algorithmically by means of Haldane linearisation. Using the special formalism introduced by Baake and Baake (Can J Math 55:3-41, 2003), we obtain further insight into the single-crossover dynamics and the particular difficulties that arise in discrete time. We then transform the equations to a solvable system in a two-step procedure: linearisation followed by diagonalisation. Still, the coefficients of the second step must be determined in a recursive manner, but once this is done for a given system, they allow for an explicit solution valid for all times.
Discrete dynamic modeling of cellular signaling networks.
Albert, Réka; Wang, Rui-Sheng
2009-01-01
Understanding signal transduction in cellular systems is a central issue in systems biology. Numerous experiments from different laboratories generate an abundance of individual components and causal interactions mediating environmental and developmental signals. However, for many signal transduction systems there is insufficient information on the overall structure and the molecular mechanisms involved in the signaling network. Moreover, lack of kinetic and temporal information makes it difficult to construct quantitative models of signal transduction pathways. Discrete dynamic modeling, combined with network analysis, provides an effective way to integrate fragmentary knowledge of regulatory interactions into a predictive mathematical model which is able to describe the time evolution of the system without the requirement for kinetic parameters. This chapter introduces the fundamental concepts of discrete dynamic modeling, particularly focusing on Boolean dynamic models. We describe this method step-by-step in the context of cellular signaling networks. Several variants of Boolean dynamic models including threshold Boolean networks and piecewise linear systems are also covered, followed by two examples of successful application of discrete dynamic modeling in cell biology.
An essay on discrete foundations for physics
Noyes, H.P.; McGoveran, D.O.
1988-07-01
We base our theory of physics and cosmology on the five principles of finiteness, discreteness, finite computability, absolute non-uniqueness, and strict construction. Our modeling methodology starts from the current practice of physics, constructs a self-consistent representation based on the ordering operator calculus and provides rules of correspondence that allow us to test the theory by experiment. We use program universe to construct a growing collection of bit strings whose initial portions (labels) provide the quantum numbers that are conserved in the events defined by the construction. The labels are followed by content strings which are used to construct event-based finite and discrete coordinates. On general grounds such a theory has a limiting velocity, and positions and velocities do not commute. We therefore reconcile quantum mechanics with relativity at an appropriately fundamental stage in the construction. We show that events in different coordinate systems are connected by the appropriate finite and discrete version of the Lorentz transformation, that 3-momentum is conserved in events, and that this conservation law is the same as the requirement that different paths can ''interfere'' only when they differ by an integral number of deBroglie wavelengths. 38 refs., 12 figs., 3 tabs
An essay on discrete foundations for physics
Noyes, H.P.; McGoveran, D.O.
1988-07-01
We base our theory of physics and cosmology on the five principles of finiteness, discreteness, finite computability, absolute non-uniqueness, and strict construction. Our modeling methodology starts from the current practice of physics, constructs a self-consistent representation based on the ordering operator calculus and provides rules of correspondence that allow us to test the theory by experiment. We use program universe to construct a growing collection of bit strings whose initial portions (labels) provide the quantum numbers that are conserved in the events defined by the construction. The labels are followed by content strings which are used to construct event-based finite and discrete coordinates. On general grounds such a theory has a limiting velocity, and positions and velocities do not commute. We therefore reconcile quantum mechanics with relativity at an appropriately fundamental stage in the construction. We show that events in different coordinate systems are connected by the appropriate finite and discrete version of the Lorentz transformation, that 3-momentum is conserved in events, and that this conservation law is the same as the requirement that different paths can ''interfere'' only when they differ by an integral number of deBroglie wavelengths. 38 refs., 12 figs., 3 tabs.
An essay on discrete foundations for physics
Noyes, H.P.; McGoveran, D.O.
1988-10-05
We base our theory of physics and cosmology on the five principles of finiteness, discreteness, finite computability, absolute non- uniqueness, and strict construction. Our modeling methodology starts from the current practice of physics, constructs a self-consistent representation based on the ordering operator calculus and provides rules of correspondence that allow us to test the theory by experiment. We use program universe to construct a growing collection of bit strings whose initial portions (labels) provide the quantum numbers that are conserved in the events defined by the construction. The labels are followed by content strings which are used to construct event-based finite and discrete coordinates. On general grounds such a theory has a limiting velocity, and positions and velocities do not commute. We therefore reconcile quantum mechanics with relativity at an appropriately fundamental stage in the construction. We show that events in different coordinate systems are connected by the appropriate finite and discrete version of the Lorentz transformation, that 3-momentum is conserved in events, and that this conservation law is the same as the requirement that different paths can ''interfere'' only when they differ by an integral number of deBroglie wavelengths. 38 refs., 12 figs., 3 tabs.
Quantum cosmology based on discrete Feynman paths
Chew, Geoffrey F.
2002-01-01
Although the rules for interpreting local quantum theory imply discretization of process, Lorentz covariance is usually regarded as precluding time quantization. Nevertheless a time-discretized quantum representation of redshifting spatially-homogeneous universe may be based on discrete-step Feynman paths carrying causal Lorentz-invariant action--paths that not only propagate the wave function but provide a phenomenologically-promising elementary-particle Hilbert-space basis. In a model under development, local path steps are at Planck scale while, at a much larger ''wave-function scale'', global steps separate successive wave-functions. Wave-function spacetime is but a tiny fraction of path spacetime. Electromagnetic and gravitational actions are ''at a distance'' in Wheeler-Feynman sense while strong (color) and weak (isospin) actions, as well as action of particle motion, are ''local'' in a sense paralleling the action of local field theory. ''Nonmaterial'' path segments and ''trivial events'' collaborate to define energy and gravity. Photons coupled to conserved electric charge enjoy privileged model status among elementary fermions and vector bosons. Although real path parameters provide no immediate meaning for ''measurement'', the phase of the complex wave function allows significance for ''information'' accumulated through ''gentle'' electromagnetic events involving charged matter and ''soft'' photons. Through its soft-photon content the wave function is an ''information reservoir''
An essay on discrete foundations for physics
Noyes, H.P.; McGoveran, D.O.
1988-01-01
We base our theory of physics and cosmology on the five principles of finiteness, discreteness, finite computability, absolute non- uniqueness, and strict construction. Our modeling methodology starts from the current practice of physics, constructs a self-consistent representation based on the ordering operator calculus and provides rules of correspondence that allow us to test the theory by experiment. We use program universe to construct a growing collection of bit strings whose initial portions (labels) provide the quantum numbers that are conserved in the events defined by the construction. The labels are followed by content strings which are used to construct event-based finite and discrete coordinates. On general grounds such a theory has a limiting velocity, and positions and velocities do not commute. We therefore reconcile quantum mechanics with relativity at an appropriately fundamental stage in the construction. We show that events in different coordinate systems are connected by the appropriate finite and discrete version of the Lorentz transformation, that 3-momentum is conserved in events, and that this conservation law is the same as the requirement that different paths can ''interfere'' only when they differ by an integral number of deBroglie wavelengths. 38 refs., 12 figs., 3 tabs
Discrete phase space based on finite fields
Gibbons, Kathleen S.; Hoffman, Matthew J.; Wootters, William K.
2004-01-01
The original Wigner function provides a way of representing in phase space the quantum states of systems with continuous degrees of freedom. Wigner functions have also been developed for discrete quantum systems, one popular version being defined on a 2Nx2N discrete phase space for a system with N orthogonal states. Here we investigate an alternative class of discrete Wigner functions, in which the field of real numbers that labels the axes of continuous phase space is replaced by a finite field having N elements. There exists such a field if and only if N is a power of a prime; so our formulation can be applied directly only to systems for which the state-space dimension takes such a value. Though this condition may seem limiting, we note that any quantum computer based on qubits meets the condition and can thus be accommodated within our scheme. The geometry of our NxN phase space also leads naturally to a method of constructing a complete set of N+1 mutually unbiased bases for the state space
Discrete convolution-operators and radioactive disintegration. [Numerical solution
Kalla, S L; VALENTINUZZI, M E [UNIVERSIDAD NACIONAL DE TUCUMAN (ARGENTINA). FACULTAD DE CIENCIAS EXACTAS Y TECNOLOGIA
1975-08-01
The basic concepts of discrete convolution and discrete convolution-operators are briefly described. Then, using the discrete convolution - operators, the differential equations associated with the process of radioactive disintegration are numerically solved. The importance of the method is emphasized to solve numerically, differential and integral equations.
Discrete frequency identification using the HP 5451B Fourier analyser
Holland, L.; Barry, P.
1977-01-01
The frequency analysis by the HP5451B discrete frequency Fourier analyser is studied. The advantages of cross correlation analysis to identify discrete frequencies in a background noise are discussed in conjuction with the elimination of aliasing and wraparound error. Discrete frequency identification is illustrated by a series of graphs giving the results of analysing 'electrical' and 'acoustical' white noise and sinusoidal signals [pt
Time-Discrete Higher-Order ALE Formulations: Stability
Bonito, Andrea; Kyza, Irene; Nochetto, Ricardo H.
2013-01-01
on the stability of the PDE but may influence that of a discrete scheme. We examine this critical issue for higher-order time stepping without space discretization. We propose time-discrete discontinuous Galerkin (dG) numerical schemes of any order for a time