Membrane Trafficking and Vesicle Fusion
Indian Academy of Sciences (India)
IAS Admin
hemophagocytic syndrome) and metabolic (diabe- tes) disorders [2, 23, 33]. Mutations in the genes of the basic secretory protein machinery lead to a number of membrane trafficking diseases such as Charcot–Marie–Tooth disease, Cohen.
Membrane Trafficking and Vesicle Fusion
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 5. Membrane Trafficking and Vesicle Fusion: Post-Palade Era Researchers Win the Nobel Prize. Riddhi Atul Jani Subba Rao Gangi Setty. General Article Volume 19 Issue 5 May 2014 pp 421-445 ...
Chemical Genetic Dissection of Membrane Trafficking.
Norambuena, Lorena; Tejos, Ricardo
2017-04-28
The plant endomembrane system is an extensively connected functional unit for exchanging material between compartments. Secretory and endocytic pathways allow dynamic trafficking of proteins, lipids, and other molecules, regulating a myriad of biological processes. Chemical genetics-the use of compounds to perturb biological processes in a fast, tunable, and transient manner-provides elegant tools for investigating this system. Here, we review how chemical genetics has helped to elucidate different aspects of membrane trafficking. We discuss different strategies for uncovering the modes of action of such compounds and their use in unraveling membrane trafficking regulators. We also discuss how the bioactive chemicals that are currently used as probes to interrogate endomembrane trafficking were discovered and analyze the results regarding membrane trafficking and pathway crosstalk. The integration of different expertises and the rational implementation of chemical genetic strategies will improve the identification of molecular mechanisms that drive intracellular trafficking and our understanding of how trafficking interfaces with plant physiology and development.
Cellular membrane trafficking of mesoporous silica nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Fang, I-Ju [Iowa State Univ., Ames, IA (United States)
2012-01-01
This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulf some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand types, ligand conformation and ligand density were discussed in Chapter 2 and 3. Furthermore, the exocytosis of mesoporous silica nanoparticles is very attractive for biological applications. The cellular protein sequestration study of mesoporous silica nanoparticles was examined for further information of the intracellular pathway of endocytosed mesoporous silica nanoparticle materials. The surface functionality of mesoporous silica nanoparticle materials demonstrated selectivity among the materials and cancer and normal cell lines. We aimed to determine
Sarri, Elisabet; Sicart, Adrià; Lázaro-Diéguez, Francisco; Egea, Gustavo
2011-08-12
The lipid metabolite diacylglycerol (DAG) is required for transport carrier biogenesis at the Golgi, although how cells regulate its levels is not well understood. Phospholipid synthesis involves highly regulated pathways that consume DAG and can contribute to its regulation. Here we altered phosphatidylcholine (PC) and phosphatidylinositol synthesis for a short period of time in CHO cells to evaluate the changes in DAG and its effects in membrane trafficking at the Golgi. We found that cellular DAG rapidly increased when PC synthesis was inhibited at the non-permissive temperature for the rate-limiting step of PC synthesis in CHO-MT58 cells. DAG also increased when choline and inositol were not supplied. The major phospholipid classes and triacylglycerol remained unaltered for both experimental approaches. The analysis of Golgi ultrastructure and membrane trafficking showed that 1) the accumulation of the budding vesicular profiles induced by propanolol was prevented by inhibition of PC synthesis, 2) the density of KDEL receptor-containing punctated structures at the endoplasmic reticulum-Golgi interface correlated with the amount of DAG, and 3) the post-Golgi transport of the yellow fluorescent temperature-sensitive G protein of stomatitis virus and the secretion of a secretory form of HRP were both reduced when DAG was lowered. We confirmed that DAG-consuming reactions of lipid synthesis were present in Golgi-enriched fractions. We conclude that phospholipid synthesis pathways play a significant role to regulate the DAG required in Golgi-dependent membrane trafficking.
Endomembrane Cation Transporters and Membrane Trafficking
Energy Technology Data Exchange (ETDEWEB)
Sze, Heven [Univ. of Maryland, College Park, MD (United States). Dept. of Cell Biology & Molecular Genetics
2017-04-01
fertilization. Based on localization and mutant analyses, we conclude that CHXs modulate the ion balance, pH or both in micro-regions of endoplasmic reticulum, endosomes and prevacuolar compartment (PVC), and so influence membrane trafficking and signaling resulting in proper osmoregulation in guard cells and seed formation. We also demonstrated for the first time that AtKEA2 associates with chloroplasts, especially at the two poles of developing plastids. These results show that AtKEA1 and AtKEA2 transporters in specific microdomains of the inner envelope link local osmotic, ionic, and pH homeostasis to plastid division and thylakoid membrane formation. The first 3-D structure model of AtCHX was generated, and architecture-directed mutagenesis identified critical residues of the transport core giving insights to the transport mode of this family. Thus we have revealed for the first time crucial roles of an unknown K^{+}/H^{+} transport family on plant growth (KEA), gas exchange, pollen cell wall, and different phases of reproduction (CHXs). The dynamic endomembrane of plant cells is integral to cytokinesis, cell expansion, defense, and cell wall formation, thus these studies are directly relevant to the mission of the Department of Energy and to a better understanding of determinants for enhancing plant biomass and plant tolerance to abiotic stress.
Scaffolding proteins in membrane trafficking : the role of ELKS
Yu, K.L.
2015-01-01
Intracellular membrane trafficking is an essential cellular process that involves cooperation of many factors such as scaffolding proteins, GTPases and SNAREs. These proteins work together to ensure proper delivery of different membrane-enclosed cargoes to specific cellular destinations. In this
Cell biology symposium: Membrane trafficking and signal transduction
In general, membrane trafficking is a broad group of processes where proteins and other large molecules are distributed throughout the cell as well as adjacent extracellular spaces. Whereas signal transduction is a process where signals are transmitted through a series of chemical or molecular event...
Roles of membrane trafficking in plant cell wall dynamics
Directory of Open Access Journals (Sweden)
Kazuo eEbine
2015-10-01
Full Text Available The cell wall is one of the characteristic components of plant cells. The cell wall composition differs among cell types and is modified in response to various environmental conditions. To properly generate and modify the cell wall, many proteins are transported to the plasma membrane or extracellular space through membrane trafficking, which is one of the key protein transport mechanisms in eukaryotic cells. Given the diverse composition and functions of the cell wall in plants, the transport of the cell wall components and proteins that are involved in cell wall-related events could be specialized for each cell type, i.e., the machinery for cell wall biogenesis, modification, and maintenance could be transported via different trafficking pathways. In this review, we summarize the recent progress in the current understanding of the roles and mechanisms of membrane trafficking in plant cells and focus on the biogenesis and regulation of the cell wall.
Investigation of SNARE-Mediated Membrane Trafficking in Prostate Cancer Cells
National Research Council Canada - National Science Library
Li, Xin
2003-01-01
In order to better understand how polarized membrane trafficking pathways change during the loss of epithelial cell polarity during cancer progression we have studied syntaxins 3 and 4 in prostate cancer...
Neuron Membrane Trafficking and Protein Kinases Involved in Autism and ADHD
Directory of Open Access Journals (Sweden)
Yasuko Kitagishi
2015-01-01
Full Text Available A brain-enriched multi-domain scaffolding protein, neurobeachin has been identified as a candidate gene for autism patients. Mutations in the synaptic adhesion protein cell adhesion molecule 1 (CADM1 are also associated with autism spectrum disorder, a neurodevelopmental disorder of uncertain molecular origin. Potential roles of neurobeachin and CADM1 have been suggested to a function of vesicle transport in endosomal trafficking. It seems that protein kinase B (AKT and cyclic adenosine monophosphate (cAMP-dependent protein kinase A (PKA have key roles in the neuron membrane trafficking involved in the pathogenesis of autism. Attention deficit hyperactivity disorder (ADHD is documented to dopaminergic insufficiencies, which is attributed to synaptic dysfunction of dopamine transporter (DAT. AKT is also essential for the DAT cell-surface redistribution. In the present paper, we summarize and discuss the importance of several protein kinases that regulate the membrane trafficking involved in autism and ADHD, suggesting new targets for therapeutic intervention.
Distinct human and mouse membrane trafficking systems for sweet taste receptors T1r2 and T1r3.
Shimizu, Madoka; Goto, Masao; Kawai, Takayuki; Yamashita, Atsuko; Kusakabe, Yuko
2014-01-01
The sweet taste receptors T1r2 and T1r3 are included in the T1r taste receptor family that belongs to class C of the G protein-coupled receptors. Heterodimerization of T1r2 and T1r3 is required for the perception of sweet substances, but little is known about the mechanisms underlying this heterodimerization, including membrane trafficking. We developed tagged mouse T1r2 and T1r3, and human T1R2 and T1R3 and evaluated membrane trafficking in human embryonic kidney 293 (HEK293) cells. We found that human T1R3 surface expression was only observed when human T1R3 was coexpressed with human T1R2, whereas mouse T1r3 was expressed without mouse T1r2 expression. A domain-swapped chimera and truncated human T1R3 mutant showed that the Venus flytrap module and cysteine-rich domain (CRD) of human T1R3 contain a region related to the inhibition of human T1R3 membrane trafficking and coordinated regulation of human T1R3 membrane trafficking. We also found that the Venus flytrap module of both human T1R2 and T1R3 are needed for membrane trafficking, suggesting that the coexpression of human T1R2 and T1R3 is required for this event. These results suggest that the Venus flytrap module and CRD receive taste substances and play roles in membrane trafficking of human T1R2 and T1R3. These features are different from those of mouse receptors, indicating that human T1R2 and T1R3 are likely to have a novel membrane trafficking system.
HIV-1 Nef: a master manipulator of the membrane trafficking machinery mediating immune evasion.
Pawlak, Emily N; Dikeakos, Jimmy D
2015-04-01
Many viral genomes encode a limited number of proteins, illustrating their innate efficiency in bypassing host immune surveillance. This concept of genomic efficiency is exemplified by the 9 kb RNA genome of human immunodeficiency virus 1 (HIV-1), encoding 15 proteins sub-divided according to function. The enzymatic group includes proteins such as the drug targets reverse transcriptase and protease. In contrast, the accessory proteins lack any known enzymatic or structural function, yet are essential for viral fitness and HIV-1 pathogenesis. Of these, the HIV-1 accessory protein Nef is a master manipulator of host cellular processes, ensuring efficient counterattack against the host immune response, as well as long-term evasion of immune surveillance. In particular, the ability of Nef to downmodulate major histocompatibility complex class I (MHC-I) is a key cellular event that enables HIV-1 to bypass the host's defenses by evading the adaptive immune response. In this article, we briefly review how various pathogenic viruses control cell-surface MHC-I, and then focus on the mechanisms and implications of HIV-1 Nef-mediated MHC-I downregulation via modulation of the host membrane trafficking machinery. The extensive interaction network formed between Nef and numerous membrane trafficking regulators suggests that Nef's role in evading the immune surveillance system intersects multiple host membrane trafficking pathways. Nef's ability to evade the immune surveillance system is linked to AIDS pathogenesis. Thus, a complete understanding of the molecular pathways that are subverted by Nef in order to downregulate MHC-I will enhance our understanding of HIV-1's progression to AIDS. Copyright © 2015 Elsevier B.V. All rights reserved.
Cocucci, E; Kim, J Y; Bai, Y; Pabla, N
2017-01-01
Intracellular drug accumulation is thought to be dictated by two major processes, passive diffusion through the lipid membrane or membrane transporters. The relative role played by these distinct processes remains actively debated. Moreover, the role of membrane-trafficking in drug transport remains underappreciated and unexplored. Here we discuss the distinct processes involved in cellular drug distribution and propose that better experimental models are required to elucidate the differential contributions of various processes in intracellular drug accumulation. © 2016 American Society for Clinical Pharmacology and Therapeutics.
Glut4 Palmitoylation at Cys223 Plays a Critical Role in Glut4 Membrane Trafficking
Ren, Wenying; Sun, Yingmin; Du, Keyong
2015-01-01
Recently, we identified Glut4 as a palmitoylated protein in adipocytes. To understand the role of Glut4 palmitoylation in Glut4 membrane trafficking, a process that is essential for maintenance of whole body glucose homeostasis, we have characterized Glut4 palmitoylation. We found that Glut4 is palmitoylated at Cys223 and Glut4 palmitoylation at Cys223 is essential for insulin dependent Glut4 membrane translocation as substitution of Cys223 with a serine residue in Glut4 (C223S Glut4) diminis...
Organelle Size Scaling of the Budding Yeast Vacuole Is Tuned by Membrane Trafficking Rates
Chan, Yee-Hung Mark; Marshall, Wallace F.
2014-01-01
Organelles serve as biochemical reactors in the cell, and often display characteristic scaling trends with cell size, suggesting mechanisms that coordinate their sizes. In this study, we measure the vacuole-cell size scaling trends in budding yeast using optical microscopy and a novel, to our knowledge, image analysis algorithm. Vacuole volume and surface area both show characteristic scaling trends with respect to cell size that are consistent among different strains. Rapamycin treatment was found to increase vacuole-cell size scaling trends for both volume and surface area. Unexpectedly, these increases did not depend on macroautophagy, as similar increases in vacuole size were observed in the autophagy deficient mutants atg1Δ and atg5Δ. Rather, rapamycin appears to act on vacuole size by inhibiting retrograde membrane trafficking, as the atg18Δ mutant, which is defective in retrograde trafficking, shows similar vacuole size scaling to rapamycin-treated cells and is itself insensitive to rapamycin treatment. Disruption of anterograde membrane trafficking in the apl5Δ mutant leads to complementary changes in vacuole size scaling. These quantitative results lead to a simple model for vacuole size scaling based on proportionality between cell growth rates and vacuole growth rates. PMID:24806931
Functional links between mucolipin-1 and Ca2+-dependent membrane trafficking in mucolipidosis IV
International Nuclear Information System (INIS)
LaPlante, Janice M.; Ye, C.P.; Quinn, Stephen J.; Goldin, Ehud; Brown, Edward M.; Slaugenhaupt, Susan A.; Vassilev, Peter M.
2004-01-01
Most of the membrane trafficking phenomena including those involving the interactions between endosomes and lysosomes are regulated by changes in intracellular Ca 2+ (Ca i ). These processes are disturbed in some types of mucolipidoses and other lysosomal storage disorders, such as mucolipidosis IV (MLIV), a neurological disorder that usually presents during the first year of life with blindness, cognitive impairment, and psychomotor delays. It is caused by mutations in MCOLN1, the gene encoding mucolipin-1 (MLN1), which we have recently established to represent a Ca 2+ -permeable cation channel that is transiently modulated by changes in Ca i . The cells of MLIV patients contain enlarged lysosomes that are likely associated with abnormal sorting and trafficking of these and related organelles. We studied fibroblasts from MLIV patients and found disturbed Ca 2+ signaling and large acidic organelles such as late endosomes and lysosomes (LEL) with altered cellular localization in these cells. The fusion between LEL vesicles in these cells was defective. This is a Ca 2+ -dependent process related to signaling pathways involved in regulation of Ca 2+ homeostasis and trafficking. The MLN1 channels could play a key role in Ca 2+ release from LEL vesicles, which triggers the fusion and trafficking of these organelles. The characterization of this MLN1-mediated Ca 2+ -dependent process should provide new insights into the pathophysiological mechanisms that lead to the development of MLIV and other mucolipidoses associated with similar disturbances in membrane trafficking
Directory of Open Access Journals (Sweden)
De Craene Johan-Owen
2012-07-01
Full Text Available Abstract Background Membrane trafficking involves the complex regulation of proteins and lipids intracellular localization and is required for metabolic uptake, cell growth and development. Different trafficking pathways passing through the endosomes are coordinated by the ENTH/ANTH/VHS adaptor protein superfamily. The endosomes are crucial for eukaryotes since the acquisition of the endomembrane system was a central process in eukaryogenesis. Results Our in silico analysis of this ENTH/ANTH/VHS superfamily, consisting of proteins gathered from 84 complete genomes representative of the different eukaryotic taxa, revealed that genomic distribution of this superfamily allows to discriminate Fungi and Metazoa from Plantae and Protists. Next, in a four way genome wide comparison, we showed that this discriminative feature is observed not only for other membrane trafficking effectors, but also for proteins involved in metabolism and in cytokinesis, suggesting that metabolism, cytokinesis and intracellular trafficking pathways co-evolved. Moreover, some of the proteins identified were implicated in multiple functions, in either trafficking and metabolism or trafficking and cytokinesis, suggesting that membrane trafficking is central to this co-evolution process. Conclusions Our study suggests that membrane trafficking and compartmentalization were not only key features for the emergence of eukaryotic cells but also drove the separation of the eukaryotes in the different taxa.
Curran, Jerry; Mohler, Peter J
2015-01-01
Channelopathies are a diverse set of disorders associated with defects in ion channel (and transporter) function. Although the vast majority of channelopathies are linked with inherited mutations that alter ion channel biophysical properties, another group of similar disorders has emerged that alter ion channel synthesis, membrane trafficking, and/or posttranslational modifications. In fact, some electrical and episodic disorders have now been identified that are not defects in the ion channel but instead reflect dysfunction in an ion channel (or transporter) regulatory protein. This review focuses on alternative paradigms for physiological disorders associated with protein biosynthesis, folding, trafficking, and membrane retention. Furthermore, the review highlights the role of aberrant posttranslational modifications in acquired channelopathies.
A Step-by-Step Framework on Discrete Events Simulation in Emergency Department; A Systematic Review.
Dehghani, Mahsa; Moftian, Nazila; Rezaei-Hachesu, Peyman; Samad-Soltani, Taha
2017-04-01
To systematically review the current literature of simulation in healthcare including the structured steps in the emergency healthcare sector by proposing a framework for simulation in the emergency department. For the purpose of collecting the data, PubMed and ACM databases were used between the years 2003 and 2013. The inclusion criteria were to select English-written articles available in full text with the closest objectives from among a total of 54 articles retrieved from the databases. Subsequently, 11 articles were selected for further analysis. The studies focused on the reduction of waiting time and patient stay, optimization of resources allocation, creation of crisis and maximum demand scenarios, identification of overcrowding bottlenecks, investigation of the impact of other systems on the existing system, and improvement of the system operations and functions. Subsequently, 10 simulation steps were derived from the relevant studies after an expert's evaluation. The 10-steps approach proposed on the basis of the selected studies provides simulation and planning specialists with a structured method for both analyzing problems and choosing best-case scenarios. Moreover, following this framework systematically enables the development of design processes as well as software implementation of simulation problems.
Marzolo, María-Paz; Faundez, Victor; Galli, Thierry
2015-07-01
The EMBO worskhop at the "end of the world'" (al fin del mundo), a meeting on membrane trafficking and its implication for polarity and diseases, took place in the Chilean Patagonia surrounded by the landscapes once witnessed by Charles Darwin. The meeting showcased some of the best membrane trafficking science with an emphasis in neuroscience and disease models. Speakers from Europe, USA, South America and the graduate students behind it; embarked on an enthusiastic and eclectic dialog where a wide range of cell types, model genetic systems, and diseases where discussed. This meeting demonstrated the power of trafficking concepts to integrate diverse biology and to formulate mechanisms of normal and disease cells. © 2015 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.
Hardin, William R; Li, Renyu; Xu, Jason; Shelton, Andrew M; Alas, Germain C M; Minin, Vladimir N; Paredez, Alexander R
2017-07-18
Devoid of all known canonical actin-binding proteins, the prevalent parasite Giardia lamblia uses an alternative mechanism for cytokinesis. Unique aspects of this mechanism can potentially be leveraged for therapeutic development. Here, live-cell imaging methods were developed for Giardia to establish division kinetics and the core division machinery. Surprisingly, Giardia cytokinesis occurred with a median time that is ∼60 times faster than mammalian cells. In contrast to cells that use a contractile ring, actin was not concentrated in the furrow and was not directly required for furrow progression. Live-cell imaging and morpholino depletion of axonemal Paralyzed Flagella 16 indicated that flagella-based forces initiated daughter cell separation and provided a source for membrane tension. Inhibition of membrane partitioning blocked furrow progression, indicating a requirement for membrane trafficking to support furrow advancement. Rab11 was found to load onto the intracytoplasmic axonemes late in mitosis and to accumulate near the ends of nascent axonemes. These developing axonemes were positioned to coordinate trafficking into the furrow and mark the center of the cell in lieu of a midbody/phragmoplast. We show that flagella motility, Rab11, and actin coordination are necessary for proper abscission. Organisms representing three of the five eukaryotic supergroups lack myosin II of the actomyosin contractile ring. These results support an emerging view that flagella play a central role in cell division among protists that lack myosin II and additionally implicate the broad use of membrane tension as a mechanism to drive abscission.
Directory of Open Access Journals (Sweden)
Dongyan Chen
2015-01-01
Full Text Available This paper is concerned with the optimal Kalman filtering problem for a class of discrete stochastic systems with multiplicative noises and random two-step sensor delays. Three Bernoulli distributed random variables with known conditional probabilities are introduced to characterize the phenomena of the random two-step sensor delays which may happen during the data transmission. By using the state augmentation approach and innovation analysis technique, an optimal Kalman filter is constructed for the augmented system in the sense of the minimum mean square error (MMSE. Subsequently, the optimal Kalman filtering is derived for corresponding augmented system in initial instants. Finally, a simulation example is provided to demonstrate the feasibility and effectiveness of the proposed filtering method.
Kuech, Eva-Maria; Brogden, Graham; Naim, Hassan Y
2016-11-01
Lysosomal storage disorders are a heterogeneous group of more than 50 distinct inborn metabolic diseases affecting about 1 in 5000 to 7000 live births. The diseases often result from mutations followed by functional deficiencies of enzymes or transporters within the acidic environment of the lysosome, which mediate the degradation of a wide subset of substrates, including glycosphingolipids, glycosaminoglycans, cholesterol, glycogen, oligosaccharides, peptides and glycoproteins, or the export of the respective degradation products from the lysosomes. The progressive accumulation of uncleaved substrates occurs in multiple organs and finally causes a broad spectrum of different pathologies including visceral, neurological, skeletal and hematologic manifestations. Besides deficient lysosomal enzymes and transporters other defects may lead to lysosomal storage disorders, including activator defects, membrane defects or defects in modifier proteins. In this review we concentrate on four different lysosomal storage disorders: Niemann-Pick type C, Fabry disease, Gaucher disease and Pompe disease. While the last three are caused by defective lysosomal hydrolases, Niemann-Pick type C is caused by the inability to export LDL-derived cholesterol out of the lysosome. We want to emphasise potential implications of membrane trafficking defects on the pathology of these diseases, as many mutations interfere with correct lysosomal protein trafficking and alter cellular lipid homeostasis. Current therapeutic strategies are summarised, including substrate reduction therapy as well as pharmacological chaperone therapy which directly aim to improve folding and lysosomal transport of misfolded mutant proteins. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
International Nuclear Information System (INIS)
Chen Bingzhou; Zhang Conghua; Hou Qing; Tang Zhiquan
2008-01-01
The inverse planning for a step-and-shoot plan in intensity-modulated radiotherapy (IMRT) is usually a multiple step process. Before being converted into the MLC segments, the optimum intensity profiles of beams, which are generated by an optimization algorithm, shall be discretized into a few intensity levels. The discretization process of the optimum intensity profiles can induce deviations in the final dose distribution from the original optimum dose distribution. This paper describes a genetic algorithm for the discretization of given optimum intensity profiles. The algorithm minimizes an objective function written in terms of the intensity levels. Both the dose-based objective function, which is defined by the deviation between the dose distributions before and after the discretization, and the intensity-based objective function, which is defined by the deviation between the optimum intensity profiles and the discretization intensity profiles, have been adopted. To evaluate this algorithm, a series of simulation calculations had been carded out using the present algorithm, the even-spaced discretization and the k-means clustering algorithm respectively. By comparing the resultant discretization-induced deviations (DIDs) in intensity profiles and in dose distributions, we have found that the genetic algorithm induced less DIDs in comparison with that induced in the even-spaced discretization or the k-means clustering algorithm. Additionally, it has been found that the DIDs created in the genetic algorithm correlate with the complexity of the intensity profiles that is measured by the 'fluence map complexity'. (authors)
International Nuclear Information System (INIS)
Kita, Ayako; Higa, Mari; Doi, Akira; Satoh, Ryosuke; Sugiura, Reiko
2015-01-01
Cytokinesis is a highly ordered process that divides one cell into two cells, which is functionally linked to the dynamic remodeling of the plasma membrane coordinately with various events such as membrane trafficking. Calcineurin is a highly conserved serine/threonine protein phosphatase, which regulates multiple biological functions, such as membrane trafficking and cytokinesis. Here, we isolated imp2-c3, a mutant allele of the imp2 + gene, encoding a homolog of the mouse PSTPIP1 (proline-serine-threonine phosphatase interacting protein 1), using a genetic screen for mutations that are synthetically lethal with calcineurin deletion in fission yeast. The imp2-c3 mutants showed a defect in cytokinesis with multi-septated phenotypes, which was further enhanced upon treatment with the calcineurin inhibitor FK506. Notably, electron micrographs revealed that the imp2-c3 mutant cells accumulated aberrant multi-lamella Golgi structures and putative post-Golgi secretory vesicles, and exhibited fragmented vacuoles in addition to thickened septa. Consistently, imp2-c3 mutants showed a reduced secretion of acid phosphatase and defects in vacuole fusion. The imp2-c3 mutant cells exhibited a weakened cell wall, similar to the membrane trafficking mutants identified in the same genetic screen such as ypt3-i5. These findings implicate the PSTPIP1 homolog Imp2 in Golgi/vacuole function, thereby affecting various cellular processes, including cytokinesis and cell integrity. - Highlights: • We isolated imp2-c3, in a synthetic lethal screen with calcineurin in fission yeast. • The imp2 + gene encodes a component of the actin contractile ring similar to Cdc15. • The imp2-c3 mutants showed defects in cytokinesis, which were exacerbated by FK506. • The imp2-c3 mutants were defective in membrane trafficking and cell wall integrity. • Our study revealed a novel role for Imp2 in the Golgi/vacuolar membrane trafficking
Energy Technology Data Exchange (ETDEWEB)
Kita, Ayako; Higa, Mari [Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502 (Japan); Doi, Akira [Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502 (Japan); Japan Society for the Promotion of Science, 1-8 Chiyoda-ku, Tokyo 102-8472 (Japan); Satoh, Ryosuke [Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502 (Japan); Sugiura, Reiko, E-mail: sugiurar@phar.kindai.ac.jp [Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502 (Japan)
2015-02-13
Cytokinesis is a highly ordered process that divides one cell into two cells, which is functionally linked to the dynamic remodeling of the plasma membrane coordinately with various events such as membrane trafficking. Calcineurin is a highly conserved serine/threonine protein phosphatase, which regulates multiple biological functions, such as membrane trafficking and cytokinesis. Here, we isolated imp2-c3, a mutant allele of the imp2{sup +} gene, encoding a homolog of the mouse PSTPIP1 (proline-serine-threonine phosphatase interacting protein 1), using a genetic screen for mutations that are synthetically lethal with calcineurin deletion in fission yeast. The imp2-c3 mutants showed a defect in cytokinesis with multi-septated phenotypes, which was further enhanced upon treatment with the calcineurin inhibitor FK506. Notably, electron micrographs revealed that the imp2-c3 mutant cells accumulated aberrant multi-lamella Golgi structures and putative post-Golgi secretory vesicles, and exhibited fragmented vacuoles in addition to thickened septa. Consistently, imp2-c3 mutants showed a reduced secretion of acid phosphatase and defects in vacuole fusion. The imp2-c3 mutant cells exhibited a weakened cell wall, similar to the membrane trafficking mutants identified in the same genetic screen such as ypt3-i5. These findings implicate the PSTPIP1 homolog Imp2 in Golgi/vacuole function, thereby affecting various cellular processes, including cytokinesis and cell integrity. - Highlights: • We isolated imp2-c3, in a synthetic lethal screen with calcineurin in fission yeast. • The imp2{sup +} gene encodes a component of the actin contractile ring similar to Cdc15. • The imp2-c3 mutants showed defects in cytokinesis, which were exacerbated by FK506. • The imp2-c3 mutants were defective in membrane trafficking and cell wall integrity. • Our study revealed a novel role for Imp2 in the Golgi/vacuolar membrane trafficking.
Xu, Bin; Sun, Fuchun; Yang, Chenguang; Gao, Daoxiang; Ren, Jianxin
2011-09-01
In this article, the adaptive neural controller in discrete time is investigated for the longitudinal dynamics of a generic hypersonic flight vehicle. The dynamics are decomposed into the altitude subsystem and the velocity subsystem. The altitude subsystem is transformed into the strict-feedback form from which the discrete-time model is derived by the first-order Taylor expansion. The virtual control is designed with nominal feedback and neural network (NN) approximation via back-stepping. Meanwhile, one adaptive NN controller is designed for the velocity subsystem. To avoid the circular construction problem in the practical control, the design of coefficients adopts the upper bound instead of the nominal value. Under the proposed controller, the semiglobal uniform ultimate boundedness stability is guaranteed. The square and step responses are presented in the simulation studies to show the effectiveness of the proposed control approach.
Olivier-Mason, Anique; Wojtyniak, Martin; Bowie, Rachel V; Nechipurenko, Inna V; Blacque, Oliver E; Sengupta, Piali
2013-04-01
The structure and function of primary cilia are critically dependent on intracellular trafficking pathways that transport ciliary membrane and protein components. The mechanisms by which these trafficking pathways are regulated are not fully characterized. Here we identify the transmembrane protein OSTA-1 as a new regulator of the trafficking pathways that shape the morphology and protein composition of sensory cilia in C. elegans. osta-1 encodes an organic solute transporter alpha-like protein, mammalian homologs of which have been implicated in membrane trafficking and solute transport, although a role in regulating cilia structure has not previously been demonstrated. We show that mutations in osta-1 result in altered ciliary membrane volume, branch length and complexity, as well as defects in localization of a subset of ciliary transmembrane proteins in different sensory cilia types. OSTA-1 is associated with transport vesicles, localizes to a ciliary compartment shown to house trafficking proteins, and regulates both retrograde and anterograde flux of the endosome-associated RAB-5 small GTPase. Genetic epistasis experiments with sensory signaling, exocytic and endocytic proteins further implicate OSTA-1 as a crucial regulator of ciliary architecture via regulation of cilia-destined trafficking. Our findings suggest that regulation of transport pathways in a cell type-specific manner contributes to diversity in sensory cilia structure and might allow dynamic remodeling of ciliary architecture via multiple inputs.
Fast Step Transition and State Identification (STaSI) for Discrete Single-Molecule Data Analysis.
Shuang, Bo; Cooper, David; Taylor, J Nick; Kisley, Lydia; Chen, Jixin; Wang, Wenxiao; Li, Chun Biu; Komatsuzaki, Tamiki; Landes, Christy F
2014-09-18
We introduce a step transition and state identification (STaSI) method for piecewise constant single-molecule data with a newly derived minimum description length equation as the objective function. We detect the step transitions using the Student's t test and group the segments into states by hierarchical clustering. The optimum number of states is determined based on the minimum description length equation. This method provides comprehensive, objective analysis of multiple traces requiring few user inputs about the underlying physical models and is faster and more precise in determining the number of states than established and cutting-edge methods for single-molecule data analysis. Perhaps most importantly, the method does not require either time-tagged photon counting or photon counting in general and thus can be applied to a broad range of experimental setups and analytes.
The golgin GMAP-210 is required for efficient membrane trafficking in the early secretory pathway.
Roboti, Peristera; Sato, Keisuke; Lowe, Martin
2015-04-15
Golgins are coiled-coil proteins that participate in membrane-tethering events at the Golgi complex. Golgin-mediated tethering is thought to be important for vesicular trafficking and Golgi organization. However, the degree to which individual golgins contribute to these processes is poorly defined, and it has been proposed that golgins act in a largely redundant manner. Previous studies on the golgin GMAP-210 (also known as TRIP11), which is mutated in the rare skeletal disorder achondrogenesis type 1A, have yielded conflicting results regarding its involvement in trafficking. Here, we re-investigated the trafficking role of GMAP-210, and found that it is indeed required for efficient trafficking in the secretory pathway. GMAP-210 acts at both the endoplasmic reticulum (ER)-to-Golgi intermediate compartment (ERGIC) and Golgi complex during anterograde trafficking, and is also required for retrograde trafficking to the ER. Using co-depletion experiments, we also found that GMAP-210 acts in a partially redundant manner with the golgin GM130 to ensure efficient anterograde cargo delivery to the cis-Golgi. In summary, our results indicate a role for GMAP-210 in several trafficking steps at the ER-Golgi interface, some of which are partially redundant with another golgin, namely GM130 (also known as GOLGA2). © 2015. Published by The Company of Biologists Ltd.
Directory of Open Access Journals (Sweden)
Chu Justin
2010-02-01
Full Text Available Abstract Background Dengue virus (DENV is the causative agent of Dengue fever and the life-threatening Dengue Haemorrhagic fever or Dengue shock syndrome. In the absence of anti-viral agents or vaccine, there is an urgent need to develop an effective anti-viral strategy against this medically important viral pathogen. The initial interplay between DENV and the host cells may represent one of the potential anti-viral targeting sites. Currently the involvements of human membrane trafficking host genes or factors that mediate the infectious cellular entry of dengue virus are not well defined. Results In this study, we have used a targeted small interfering RNA (siRNA library to identify and profile key cellular genes involved in processes of endocytosis, cytoskeletal dynamics and endosome trafficking that are important and essential for DENV infection. The infectious entry of DENV into Huh7 cells was shown to be potently inhibited by siRNAs targeting genes associated with clathrin-mediated endocytosis. The important role of clathrin-mediated endocytosis was confirmed by the expression of well-characterized dominant-negative mutants of genes in this pathway and by using the clathrin endocytosis inhibitor chlorpromazine. Furthermore, DENV infection was shown to be sensitive to the disruption of human genes in regulating the early to late endosomal trafficking as well as the endosomal acidic pH. The importance and involvement of both actin and microtubule dynamics in mediating the infectious entry of DENV was also revealed in this study. Conclusions Together, the findings from this study have provided a detail profiling of the human membrane trafficking cellular genes and the mechanistic insight into the interplay of these host genes with DENV to initiate an infection, hence broadening our understanding on the entry pathway of this medically important viral pathogen. These data may also provide a new potential avenue for development of anti
Allet, L; Kim, H; Ashton-Miller, JA; De Mott, T; Richardson, JK
2013-01-01
Aims Distal symmetric polyneuropathy increases fall risk due to inability to cope with perturbations. We aimed to 1) identify the frontal plane lower limb sensorimotor functions which are necessary for robustness to a discrete, underfoot perturbation during gait; and 2) determine whether changes in the post-perturbed step parameters could distinguish between fallers and non fallers. Methods Forty-two subjects (16 healthy old and 26 with diabetic PN) participated. Frontal plane lower limb sensorimotor functions were determined using established laboratory-based techniques. The subjects' most extreme alterations in step width or step length in response to a perturbation were measured. In addition, falls and fall-related injuries were prospectively recorded. Results Ankle proprioceptive threshold (APrT; p=.025) and hip abduction rate of torque generation (RTG; p=.041) independently predicted extreme step length after medial perturbation, with precise APrT and greater hip RTG allowing maintenance of step length. Fallers demonstrated greater extreme step length changes after medial perturbation than non fallers (percent change = 16.41±8.42 vs 11.0±4.95; p=.06) Conclusions The ability to rapidly generate frontal plane hip strength and/or precisely perceive motion at the ankle is needed to maintain a normal step length after perturbation, a parameter, which distinguishes between fallers and non fallers. PMID:24183899
Membrane Trafficking and Vesicle Fusion
Indian Academy of Sciences (India)
IAS Admin
investigators were awarded the Nobel Prize in Physiology or. Medicine in 2013. Introduction. Membrane Transport: In the eukaryotic cell, a majority of proteins are made in the cytosol. But the transmembrane and secretory proteins are synthesized in an organelle called the rough endoplasmic reticulum (ER). These proteins ...
DEFF Research Database (Denmark)
Sørensen, John Aasted
2011-01-01
The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics......; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...
DEFF Research Database (Denmark)
Busch, Peter Andre; Zinner Henriksen, Helle
2018-01-01
discretion is suggested to reduce this footprint by influencing or replacing their discretionary practices using ICT. What is less researched is whether digital discretion can cause changes in public policy outcomes, and under what conditions such changes can occur. Using the concept of public service values......This study reviews 44 peer-reviewed articles on digital discretion published in the period from 1998 to January 2017. Street-level bureaucrats have traditionally had a wide ability to exercise discretion stirring debate since they can add their personal footprint on public policies. Digital......, we suggest that digital discretion can strengthen ethical and democratic values but weaken professional and relational values. Furthermore, we conclude that contextual factors such as considerations made by policy makers on the macro-level and the degree of professionalization of street...
DEFF Research Database (Denmark)
Sørensen, John Aasted
2010-01-01
The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Spring 2010 Ectent: 5 ects Class size: 18......The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Spring 2010 Ectent: 5 ects Class size: 18...
DEFF Research Database (Denmark)
Sørensen, John Aasted
2010-01-01
The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Autumn 2010 Ectent: 5 ects Class size: 15......The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Autumn 2010 Ectent: 5 ects Class size: 15...
Directory of Open Access Journals (Sweden)
Augusto Hernández Vidal
2011-12-01
Full Text Available In order to strengthen the concept of municipal autonomy, this essay proposes an extensive interpretation of administrative discretion. Discretion is the exercise of free judgment given by law to authorities for performing official acts. This legislative technique seems to be suitable whenever the legislative is intended to legislate over the essential core of municipal autonomy. This way, an eventual abuse of that autonomy could be avoided, for the disproportional restriction of the local faculty to oversee the local issues. This alternative is presented as a tool to provide with dynamism the performing of administrative activities as well, aiming to assimilate public administration new practices.
International Nuclear Information System (INIS)
Lee, T.D.
1985-01-01
This paper reviews the role of time throughout all phases of mechanics: classical mechanics, non-relativistic quantum mechanics, and relativistic quantum theory. As an example of the relativistic quantum field theory, the case of a massless scalar field interacting with an arbitrary external current is discussed. The comparison between the new discrete theory and the usual continuum formalism is presented. An example is given of a two-dimensional random lattice and its duel. The author notes that there is no evidence that the discrete mechanics is more appropriate than the usual continuum mechanics
DEFF Research Database (Denmark)
Sørensen, John Aasted
2011-01-01
The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able....... Having completed this the student is able to carry out the following: Expressions and sets: Define a set; define a logic expression; negate a logic expression; combine logic expressions; construct a truth table for a logic expression; apply reduction rules for logic expressions. Apply these concepts...
Caltagirone, Jean-Paul
2014-01-01
This book presents the fundamental principles of mechanics to re-establish the equations of Discrete Mechanics. It introduces physics and thermodynamics associated to the physical modeling. The development and the complementarity of sciences lead to review today the old concepts that were the basis for the development of continuum mechanics. The differential geometry is used to review the conservation laws of mechanics. For instance, this formalism requires a different location of vector and scalar quantities in space. The equations of Discrete Mechanics form a system of equations where the H
Membrane trafficking: ER export encounters dualism.
Barlowe, Charles
2015-02-16
Cytoplasmic coat protein complexes perform central roles in sorting protein constituents within the endomembrane system. A new study reveals that the COPII coat operates through dual recognition of signals in a sorting receptor and its bound cargo to promote efficient export from the endoplasmic reticulum. Copyright © 2015 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Sharpe, Eric
2003-01-01
In this article we explain discrete torsion. Put simply, discrete torsion is the choice of orbifold group action on the B field. We derive the classification H 2 (Γ,U(1)), the twisted sector phases appearing in string loop partition functions, Douglas's description of discrete torsion for D-branes in terms of a projective representation of the orbifold group, and outline how the results of Vafa and Witten fit into this framework. In addition, we observe that additional degrees of freedom (known as shift orbifolds) appear in describing orbifold group actions on B fields, in addition to those classified by H 2 (Γ,U(1)), and explain how these degrees of freedom appear in terms of twisted sector contributions to partition functions and in terms of orbifold actions on D-brane worldvolumes. This paper represents a technically simplified version of prior papers by the author on discrete torsion. We repeat here technically simplified versions of results from those papers, and have included some new material
Parker, R Gary
1988-01-01
This book treats the fundamental issues and algorithmic strategies emerging as the core of the discipline of discrete optimization in a comprehensive and rigorous fashion. Following an introductory chapter on computational complexity, the basic algorithmic results for the two major models of polynomial algorithms are introduced--models using matroids and linear programming. Further chapters treat the major non-polynomial algorithms: branch-and-bound and cutting planes. The text concludes with a chapter on heuristic algorithms.Several appendixes are included which review the fundamental ideas o
Salinelli, Ernesto
2014-01-01
This book provides an introduction to the analysis of discrete dynamical systems. The content is presented by an unitary approach that blends the perspective of mathematical modeling together with the ones of several discipline as Mathematical Analysis, Linear Algebra, Numerical Analysis, Systems Theory and Probability. After a preliminary discussion of several models, the main tools for the study of linear and non-linear scalar dynamical systems are presented, paying particular attention to the stability analysis. Linear difference equations are studied in detail and an elementary introduction of Z and Discrete Fourier Transform is presented. A whole chapter is devoted to the study of bifurcations and chaotic dynamics. One-step vector-valued dynamical systems are the subject of three chapters, where the reader can find the applications to positive systems, Markov chains, networks and search engines. The book is addressed mainly to students in Mathematics, Engineering, Physics, Chemistry, Biology and Economic...
Time Discretization Techniques
Gottlieb, S.
2016-10-12
The time discretization of hyperbolic partial differential equations is typically the evolution of a system of ordinary differential equations obtained by spatial discretization of the original problem. Methods for this time evolution include multistep, multistage, or multiderivative methods, as well as a combination of these approaches. The time step constraint is mainly a result of the absolute stability requirement, as well as additional conditions that mimic physical properties of the solution, such as positivity or total variation stability. These conditions may be required for stability when the solution develops shocks or sharp gradients. This chapter contains a review of some of the methods historically used for the evolution of hyperbolic PDEs, as well as cutting edge methods that are now commonly used.
Firth, Jean M
1992-01-01
The analysis of signals and systems using transform methods is a very important aspect of the examination of processes and problems in an increasingly wide range of applications. Whereas the initial impetus in the development of methods appropriate for handling discrete sets of data occurred mainly in an electrical engineering context (for example in the design of digital filters), the same techniques are in use in such disciplines as cardiology, optics, speech analysis and management, as well as in other branches of science and engineering. This text is aimed at a readership whose mathematical background includes some acquaintance with complex numbers, linear differen tial equations, matrix algebra, and series. Specifically, a familiarity with Fourier series (in trigonometric and exponential forms) is assumed, and an exposure to the concept of a continuous integral transform is desirable. Such a background can be expected, for example, on completion of the first year of a science or engineering degree cour...
Discretization vs. Rounding Error in Euler's Method
Borges, Carlos F.
2011-01-01
Euler's method for solving initial value problems is an excellent vehicle for observing the relationship between discretization error and rounding error in numerical computation. Reductions in stepsize, in order to decrease discretization error, necessarily increase the number of steps and so introduce additional rounding error. The problem is…
Discrete Curvatures and Discrete Minimal Surfaces
Sun, Xiang
2012-06-01
This thesis presents an overview of some approaches to compute Gaussian and mean curvature on discrete surfaces and discusses discrete minimal surfaces. The variety of applications of differential geometry in visualization and shape design leads to great interest in studying discrete surfaces. With the rich smooth surface theory in hand, one would hope that this elegant theory can still be applied to the discrete counter part. Such a generalization, however, is not always successful. While discrete surfaces have the advantage of being finite dimensional, thus easier to treat, their geometric properties such as curvatures are not well defined in the classical sense. Furthermore, the powerful calculus tool can hardly be applied. The methods in this thesis, including angular defect formula, cotangent formula, parallel meshes, relative geometry etc. are approaches based on offset meshes or generalized offset meshes. As an important application, we discuss discrete minimal surfaces and discrete Koenigs meshes.
Groupoids, Discrete Mechanics, and Discrete Variation
International Nuclear Information System (INIS)
Guo Jiafeng; Jia Xiaoyu; Wu Ke; Zhao Weizhong
2008-01-01
After introducing some of the basic definitions and results from the theory of groupoid and Lie algebroid, we investigate the discrete Lagrangian mechanics from the viewpoint of groupoid theory and give the connection between groupoids variation and the methods of the first and second discrete variational principles
Mohamed, Mamdouh S.
2016-02-11
A conservative discretization of incompressible Navier–Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a combinatorial discretization of the wedge product. The governing equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. The discretization is then carried out by substituting with the corresponding discrete operators based on the DEC framework. Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy for otherwise unstructured meshes. By construction, the method is conservative in that both mass and vorticity are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step.
Discrete dynamics of complex systems
Directory of Open Access Journals (Sweden)
Hermann Haken
1997-01-01
Full Text Available This article extends the slaving principle of synergetics to processes with discrete time steps. Starting point is a set of nonlinear difference equations which contain multiplicative noise and which refer to multidimensional state vectors. The system depends on a control parameter. When its value is changed beyond a critical value, an instability of the solution occurs. The stability analysis allows us to divide the system into stable and unstable modes. The original equations can be transformed to a set of difference equations for the unstable and stable modes. The extension of the slaving principle to the time-discrete case then states that all the stable modes can be explicitly expressed by the unstable modes or so-called order-parameters.
Energy Technology Data Exchange (ETDEWEB)
Wood, Claire [CTSI; Bremner, Brenda [CTSI
2013-08-09
The Siletz Tribal Energy Program (STEP), housed in the Tribe’s Planning Department, will hire a data entry coordinator to collect, enter, analyze and store all the current and future energy efficiency and renewable energy data pertaining to administrative structures the tribe owns and operates and for homes in which tribal members live. The proposed data entry coordinator will conduct an energy options analysis in collaboration with the rest of the Siletz Tribal Energy Program and Planning Department staff. An energy options analysis will result in a thorough understanding of tribal energy resources and consumption, if energy efficiency and conservation measures being implemented are having the desired effect, analysis of tribal energy loads (current and future energy consumption), and evaluation of local and commercial energy supply options. A literature search will also be conducted. In order to educate additional tribal members about renewable energy, we will send four tribal members to be trained to install and maintain solar panels, solar hot water heaters, wind turbines and/or micro-hydro.
Deep Discrete Supervised Hashing
Jiang, Qing-Yuan; Cui, Xue; Li, Wu-Jun
2017-01-01
Hashing has been widely used for large-scale search due to its low storage cost and fast query speed. By using supervised information, supervised hashing can significantly outperform unsupervised hashing. Recently, discrete supervised hashing and deep hashing are two representative progresses in supervised hashing. On one hand, hashing is essentially a discrete optimization problem. Hence, utilizing supervised information to directly guide discrete (binary) coding procedure can avoid sub-opti...
Positivity for Convective Semi-discretizations
Fekete, Imre
2017-04-19
We propose a technique for investigating stability properties like positivity and forward invariance of an interval for method-of-lines discretizations, and apply the technique to study positivity preservation for a class of TVD semi-discretizations of 1D scalar hyperbolic conservation laws. This technique is a generalization of the approach suggested in Khalsaraei (J Comput Appl Math 235(1): 137–143, 2010). We give more relaxed conditions on the time-step for positivity preservation for slope-limited semi-discretizations integrated in time with explicit Runge–Kutta methods. We show that the step-size restrictions derived are sharp in a certain sense, and that many higher-order explicit Runge–Kutta methods, including the classical 4th-order method and all non-confluent methods with a negative Butcher coefficient, cannot generally maintain positivity for these semi-discretizations under any positive step size. We also apply the proposed technique to centered finite difference discretizations of scalar hyperbolic and parabolic problems.
Okuyama, Yoshifumi
2014-01-01
Discrete Control Systems establishes a basis for the analysis and design of discretized/quantized control systemsfor continuous physical systems. Beginning with the necessary mathematical foundations and system-model descriptions, the text moves on to derive a robust stability condition. To keep a practical perspective on the uncertain physical systems considered, most of the methods treated are carried out in the frequency domain. As part of the design procedure, modified Nyquist–Hall and Nichols diagrams are presented and discretized proportional–integral–derivative control schemes are reconsidered. Schemes for model-reference feedback and discrete-type observers are proposed. Although single-loop feedback systems form the core of the text, some consideration is given to multiple loops and nonlinearities. The robust control performance and stability of interval systems (with multiple uncertainties) are outlined. Finally, the monograph describes the relationship between feedback-control and discrete ev...
On equivalence of discrete-discrete and continuum-discrete design sensitivity analysis
Choi, Kyung K.; Twu, Sung-Ling
1989-01-01
Developments in design sensitivity analysis (DSA) method have been made using two fundamentally different approaches as shown. In the first approach, a discretized structural finite element model is used to carry out DSA. There are three different methods in the discrete DSA approach: finite difference, semi-analytical, and analytical methods. The finite difference method is a popular one due to its simplicity, but a serious shortcoming of the method is the uncertainty in the choice of a perturbation step size of design variables. In the semi-analytical method, the derivatives of stiffness matrix is computed by finite differences, whereas in the analytical method, the derivatives are obtained analytically. For the shape design variable, computation of analytical derivative of stiffness matrix is quite costly. Because of this, the semi-analytical method is a popular choice in discrete shape DSA approach. However, recently, Barthelemy and Haftka presented that the semi-analytical method can have serious accuracy problems for shape design variables in structures modeled by beam, plate, truss, frame, and solid elements. They found that accuracy problems occur even for a simple cantilever beam. In the second approach, a continuum model of the structure is used to carry out DSA.
International Nuclear Information System (INIS)
Williams, Ruth M
2006-01-01
A review is given of a number of approaches to discrete quantum gravity, with a restriction to those likely to be relevant in four dimensions. This paper is dedicated to Rafael Sorkin on the occasion of his sixtieth birthday
Finite Discrete Gabor Analysis
DEFF Research Database (Denmark)
Søndergaard, Peter Lempel
2007-01-01
on the real line to be well approximated by finite and discrete Gabor frames. This method of approximation is especially attractive because efficient numerical methods exists for doing computations with finite, discrete Gabor systems. This thesis presents new algorithms for the efficient computation of finite......, discrete Gabor coefficients. Reconstruction of a signal from its Gabor coefficients is done by the use of a so-called dual window. This thesis presents a number of iterative algorithms to compute dual and self-dual windows. The Linear Time Frequency Toolbox is a Matlab/Octave/C toolbox for doing basic...... discrete time/frequency and Gabor analysis. It is intended to be both an educational and a computational tool. The toolbox was developed as part of this Ph.D. project to provide a solid foundation for the field of computational Gabor analysis....
Goodrich, Christopher
2015-01-01
This text provides the first comprehensive treatment of the discrete fractional calculus. Experienced researchers will find the text useful as a reference for discrete fractional calculus and topics of current interest. Students who are interested in learning about discrete fractional calculus will find this text to provide a useful starting point. Several exercises are offered at the end of each chapter and select answers have been provided at the end of the book. The presentation of the content is designed to give ample flexibility for potential use in a myriad of courses and for independent study. The novel approach taken by the authors includes a simultaneous treatment of the fractional- and integer-order difference calculus (on a variety of time scales, including both the usual forward and backwards difference operators). The reader will acquire a solid foundation in the classical topics of the discrete calculus while being introduced to exciting recent developments, bringing them to the frontiers of the...
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 1. Discrete Event Simulation. Matthew Jacob ... Keywords. Simulation; modelling; computer programming. Author Affiliations. Matthew Jacob1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012.
The Discrete Wavelet Transform
1991-06-01
B-1 ,.iii FIGURES 1.1 A wavelet filter bank structure ..................................... 2 2.1 Diagram illustrating the dialation and...abstract decompositions of discrete time series. Their wide sweeping significance, however, lies in their interpretation as wavelet transforms. In a general...parameter transform wn in the scale- time plane. Following terminology to be intro- duced, wi is the (decimated) discrete wavelet transform. become the
Indian Academy of Sciences (India)
\\;j t E ~. On the other hand, if the signal is defined only at discrete instants of time and not elsewhere i.e., t takes on only the discrete values t = kT for some range of integer values of k, the signal ... is applied to an electronic switch that is closed for a mo- ment every ... ture (T = 1 hour), banking transactions (T = ~ year), census.
Discrete computational structures
Korfhage, Robert R
1974-01-01
Discrete Computational Structures describes discrete mathematical concepts that are important to computing, covering necessary mathematical fundamentals, computer representation of sets, graph theory, storage minimization, and bandwidth. The book also explains conceptual framework (Gorn trees, searching, subroutines) and directed graphs (flowcharts, critical paths, information network). The text discusses algebra particularly as it applies to concentrates on semigroups, groups, lattices, propositional calculus, including a new tabular method of Boolean function minimization. The text emphasize
Discretizing the transcritical and pitchfork bifurcations – conjugacy results
Lóczi, Lajos
2015-01-07
© 2015 Taylor & Francis. We present two case studies in one-dimensional dynamics concerning the discretization of transcritical (TC) and pitchfork (PF) bifurcations. In the vicinity of a TC or PF bifurcation point and under some natural assumptions on the one-step discretization method of order (Formula presented.) , we show that the time- (Formula presented.) exact and the step-size- (Formula presented.) discretized dynamics are topologically equivalent by constructing a two-parameter family of conjugacies in each case. As a main result, we prove that the constructed conjugacy maps are (Formula presented.) -close to the identity and these estimates are optimal.
Exocyst and autophagy-related membrane trafficking in plants
Czech Academy of Sciences Publication Activity Database
Pečenková, Tamara; Marković, Vedrana; Sabol, P.; Kulich, I.; Žárský, Viktor
2018-01-01
Roč. 69, č. 1 (2018), s. 47-57 ISSN 0022-0957 R&D Projects: GA ČR(CZ) GA15-14886S Institutional support: RVO:61389030 Keywords : Autophagy * endomembranes * exocyst * plant defence * secretory transport * ups Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 5.830, year: 2016
Membrane Trafficking of Death Receptors: Implications on Signalling
Directory of Open Access Journals (Sweden)
Wulf Schneider-Brachert
2013-07-01
Full Text Available Death receptors were initially recognised as potent inducers of apoptotic cell death and soon ambitious attempts were made to exploit selective ignition of controlled cellular suicide as therapeutic strategy in malignant diseases. However, the complexity of death receptor signalling has increased substantially during recent years. Beyond activation of the apoptotic cascade, involvement in a variety of cellular processes including inflammation, proliferation and immune response was recognised. Mechanistically, these findings raised the question how multipurpose receptors can ensure selective activation of a particular pathway. A growing body of evidence points to an elegant spatiotemporal regulation of composition and assembly of the receptor-associated signalling complex. Upon ligand binding, receptor recruitment in specialized membrane compartments, formation of receptor-ligand clusters and internalisation processes constitute key regulatory elements. In this review, we will summarise the current concepts of death receptor trafficking and its implications on receptor-associated signalling events.
Membrane Trafficking in the Yeast Saccharomyces cerevisiae Model
Directory of Open Access Journals (Sweden)
Serge Feyder
2015-01-01
Full Text Available The yeast Saccharomyces cerevisiae is one of the best characterized eukaryotic models. The secretory pathway was the first trafficking pathway clearly understood mainly thanks to the work done in the laboratory of Randy Schekman in the 1980s. They have isolated yeast sec mutants unable to secrete an extracellular enzyme and these SEC genes were identified as encoding key effectors of the secretory machinery. For this work, the 2013 Nobel Prize in Physiology and Medicine has been awarded to Randy Schekman; the prize is shared with James Rothman and Thomas Südhof. Here, we present the different trafficking pathways of yeast S. cerevisiae. At the Golgi apparatus newly synthesized proteins are sorted between those transported to the plasma membrane (PM, or the external medium, via the exocytosis or secretory pathway (SEC, and those targeted to the vacuole either through endosomes (vacuolar protein sorting or VPS pathway or directly (alkaline phosphatase or ALP pathway. Plasma membrane proteins can be internalized by endocytosis (END and transported to endosomes where they are sorted between those targeted for vacuolar degradation and those redirected to the Golgi (recycling or RCY pathway. Studies in yeast S. cerevisiae allowed the identification of most of the known effectors, protein complexes, and trafficking pathways in eukaryotic cells, and most of them are conserved among eukaryotes.
Multigrid methods for isogeometric discretization.
Gahalaut, K P S; Kraus, J K; Tomar, S K
2013-01-01
We present (geometric) multigrid methods for isogeometric discretization of scalar second order elliptic problems. The smoothing property of the relaxation method, and the approximation property of the intergrid transfer operators are analyzed. These properties, when used in the framework of classical multigrid theory, imply uniform convergence of two-grid and multigrid methods. Supporting numerical results are provided for the smoothing property, the approximation property, convergence factor and iterations count for V -, W - and F -cycles, and the linear dependence of V -cycle convergence on the smoothing steps. For two dimensions, numerical results include the problems with variable coefficients, simple multi-patch geometry, a quarter annulus, and the dependence of convergence behavior on refinement levels [Formula: see text], whereas for three dimensions, only the constant coefficient problem in a unit cube is considered. The numerical results are complete up to polynomial order [Formula: see text], and for [Formula: see text] and [Formula: see text] smoothness.
Discrete systems and integrability
Hietarinta, J; Nijhoff, F W
2016-01-01
This first introductory text to discrete integrable systems introduces key notions of integrability from the vantage point of discrete systems, also making connections with the continuous theory where relevant. While treating the material at an elementary level, the book also highlights many recent developments. Topics include: Darboux and Bäcklund transformations; difference equations and special functions; multidimensional consistency of integrable lattice equations; associated linear problems (Lax pairs); connections with Padé approximants and convergence algorithms; singularities and geometry; Hirota's bilinear formalism for lattices; intriguing properties of discrete Painlevé equations; and the novel theory of Lagrangian multiforms. The book builds the material in an organic way, emphasizing interconnections between the various approaches, while the exposition is mostly done through explicit computations on key examples. Written by respected experts in the field, the numerous exercises and the thoroug...
Directory of Open Access Journals (Sweden)
Prateek Sharma
2015-04-01
Full Text Available Abstract Simulation can be regarded as the emulation of the behavior of a real-world system over an interval of time. The process of simulation relies upon the generation of the history of a system and then analyzing that history to predict the outcome and improve the working of real systems. Simulations can be of various kinds but the topic of interest here is one of the most important kind of simulation which is Discrete-Event Simulation which models the system as a discrete sequence of events in time. So this paper aims at introducing about Discrete-Event Simulation and analyzing how it is beneficial to the real world systems.
Introductory discrete mathematics
Balakrishnan, V K
2010-01-01
This concise text offers an introduction to discrete mathematics for undergraduate students in computer science and mathematics. Mathematics educators consider it vital that their students be exposed to a course in discrete methods that introduces them to combinatorial mathematics and to algebraic and logical structures focusing on the interplay between computer science and mathematics. The present volume emphasizes combinatorics, graph theory with applications to some stand network optimization problems, and algorithms to solve these problems.Chapters 0-3 cover fundamental operations involv
Galerkin v. discrete-optimal projection in nonlinear model reduction
Energy Technology Data Exchange (ETDEWEB)
Carlberg, Kevin Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barone, Matthew Franklin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Antil, Harbir [George Mason Univ., Fairfax, VA (United States)
2015-04-01
Discrete-optimal model-reduction techniques such as the Gauss{Newton with Approximated Tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale turbulent, compressible ow problems where standard Galerkin techniques have failed. However, there has been limited comparative analysis of the two approaches. This is due in part to difficulties arising from the fact that Galerkin techniques perform projection at the time-continuous level, while discrete-optimal techniques do so at the time-discrete level. This work provides a detailed theoretical and experimental comparison of the two techniques for two common classes of time integrators: linear multistep schemes and Runge{Kutta schemes. We present a number of new ndings, including conditions under which the discrete-optimal ROM has a time-continuous representation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and experimentally that decreasing the time step does not necessarily decrease the error for the discrete-optimal ROM; instead, the time step should be `matched' to the spectral content of the reduced basis. In numerical experiments carried out on a turbulent compressible- ow problem with over one million unknowns, we show that increasing the time step to an intermediate value decreases both the error and the simulation time of the discrete-optimal reduced-order model by an order of magnitude.
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 2. Discrete-Time Systems - Why do We Celebrate Birthdays Once a Year? A Ramakalyan P Kavitha S Harini Vijayalakshmi. General Article Volume 5 Issue 2 February 2000 pp 39-49 ...
Asymptotic analysis of spatial discretizations in implicit Monte Carlo
Energy Technology Data Exchange (ETDEWEB)
Densmore, Jeffery D [Los Alamos National Laboratory
2009-01-01
We perform an asymptotic analysis of spatial discretizations in Implicit Monte Carlo (IMC). We consider two asymptotic scalings: one that represents a time step that resolves the mean-free time, and one that corresponds to a fixed, optically large time step. We show that only the latter scaling results in a valid spatial discretization of the proper diffusion equation, and thus we conclude that IMC only yields accurate solutions when using optically large spatial cells if time steps are also optically large. We demonstrate the validity of our analysis with a set of numerical examples.
Asymptotic analysis of spatial discretizations in implicit Monte Carlo
Energy Technology Data Exchange (ETDEWEB)
Densmore, Jeffery D [Los Alamos National Laboratory
2008-01-01
We perform an asymptotic analysis of spatial discretizations in Implicit Monte Carlo (IMC). We consider two asymptotic scalings: one that represents a time step that resolves the mean-free time, and one that corresponds to a fixed, optically large time step. We show that only the latter scaling results in a valid spatial discretization of the proper diffusion equation, and thus we conclude that IMC only yields accurate solutions when using optically large spatial cells if time steps are also optically large, We demonstrate the validity of our analysis with a set of numerical examples.
Quantum cosmology based on discrete Feynman paths
International Nuclear Information System (INIS)
Chew, Geoffrey F.
2002-01-01
Although the rules for interpreting local quantum theory imply discretization of process, Lorentz covariance is usually regarded as precluding time quantization. Nevertheless a time-discretized quantum representation of redshifting spatially-homogeneous universe may be based on discrete-step Feynman paths carrying causal Lorentz-invariant action--paths that not only propagate the wave function but provide a phenomenologically-promising elementary-particle Hilbert-space basis. In a model under development, local path steps are at Planck scale while, at a much larger ''wave-function scale'', global steps separate successive wave-functions. Wave-function spacetime is but a tiny fraction of path spacetime. Electromagnetic and gravitational actions are ''at a distance'' in Wheeler-Feynman sense while strong (color) and weak (isospin) actions, as well as action of particle motion, are ''local'' in a sense paralleling the action of local field theory. ''Nonmaterial'' path segments and ''trivial events'' collaborate to define energy and gravity. Photons coupled to conserved electric charge enjoy privileged model status among elementary fermions and vector bosons. Although real path parameters provide no immediate meaning for ''measurement'', the phase of the complex wave function allows significance for ''information'' accumulated through ''gentle'' electromagnetic events involving charged matter and ''soft'' photons. Through its soft-photon content the wave function is an ''information reservoir''
Discrete mathematics with applications
Koshy, Thomas
2003-01-01
This approachable text studies discrete objects and the relationsips that bind them. It helps students understand and apply the power of discrete math to digital computer systems and other modern applications. It provides excellent preparation for courses in linear algebra, number theory, and modern/abstract algebra and for computer science courses in data structures, algorithms, programming languages, compilers, databases, and computation.* Covers all recommended topics in a self-contained, comprehensive, and understandable format for students and new professionals * Emphasizes problem-solving techniques, pattern recognition, conjecturing, induction, applications of varying nature, proof techniques, algorithm development and correctness, and numeric computations* Weaves numerous applications into the text* Helps students learn by doing with a wealth of examples and exercises: - 560 examples worked out in detail - More than 3,700 exercises - More than 150 computer assignments - More than 600 writing projects*...
2002-01-01
Discrete geometry investigates combinatorial properties of configurations of geometric objects. To a working mathematician or computer scientist, it offers sophisticated results and techniques of great diversity and it is a foundation for fields such as computational geometry or combinatorial optimization. This book is primarily a textbook introduction to various areas of discrete geometry. In each area, it explains several key results and methods, in an accessible and concrete manner. It also contains more advanced material in separate sections and thus it can serve as a collection of surveys in several narrower subfields. The main topics include: basics on convex sets, convex polytopes, and hyperplane arrangements; combinatorial complexity of geometric configurations; intersection patterns and transversals of convex sets; geometric Ramsey-type results; polyhedral combinatorics and high-dimensional convexity; and lastly, embeddings of finite metric spaces into normed spaces. Jiri Matousek is Professor of Com...
Indian Academy of Sciences (India)
the birth rate, d is the death rate and u(k) is the number of net immigrants entering the country in year k. We leave it to the reader to model the vacillating mathe- matician problem [3] as a discrete-time system. General Forms of Difference Equations. An nth order difference equation may be written, typically, either as y(k + n) + ...
International Nuclear Information System (INIS)
Jalnapurkar, Sameer M; Leok, Melvin; Marsden, Jerrold E; West, Matthew
2006-01-01
This paper develops the theory of Abelian Routh reduction for discrete mechanical systems and applies it to the variational integration of mechanical systems with Abelian symmetry. The reduction of variational Runge-Kutta discretizations is considered, as well as the extent to which symmetry reduction and discretization commute. These reduced methods allow the direct simulation of dynamical features such as relative equilibria and relative periodic orbits that can be obscured or difficult to identify in the unreduced dynamics. The methods are demonstrated for the dynamics of an Earth orbiting satellite with a non-spherical J 2 correction, as well as the double spherical pendulum. The J 2 problem is interesting because in the unreduced picture, geometric phases inherent in the model and those due to numerical discretization can be hard to distinguish, but this issue does not appear in the reduced algorithm, where one can directly observe interesting dynamical structures in the reduced phase space (the cotangent bundle of shape space), in which the geometric phases have been removed. The main feature of the double spherical pendulum example is that it has a non-trivial magnetic term in its reduced symplectic form. Our method is still efficient as it can directly handle the essential non-canonical nature of the symplectic structure. In contrast, a traditional symplectic method for canonical systems could require repeated coordinate changes if one is evoking Darboux' theorem to transform the symplectic structure into canonical form, thereby incurring additional computational cost. Our method allows one to design reduced symplectic integrators in a natural way, despite the non-canonical nature of the symplectic structure
Discrete variational Hamiltonian mechanics
International Nuclear Information System (INIS)
Lall, S; West, M
2006-01-01
The main contribution of this paper is to present a canonical choice of a Hamiltonian theory corresponding to the theory of discrete Lagrangian mechanics. We make use of Lagrange duality and follow a path parallel to that used for construction of the Pontryagin principle in optimal control theory. We use duality results regarding sensitivity and separability to show the relationship between generating functions and symplectic integrators. We also discuss connections to optimal control theory and numerical algorithms
Czech Academy of Sciences Publication Activity Database
Mesiar, Radko; Li, J.; Pap, E.
2013-01-01
Roč. 54, č. 3 (2013), s. 357-364 ISSN 0888-613X R&D Projects: GA ČR GAP402/11/0378 Institutional support: RVO:67985556 Keywords : concave integral * pseudo-addition * pseudo- multiplication Subject RIV: BA - General Mathematics Impact factor: 1.977, year: 2013 http://library.utia.cas.cz/separaty/2013/E/mesiar-discrete pseudo-integrals. pdf
Hamiltonian Mechanics on Discrete Manifolds
Talasila, V.; Clemente Gallardo, J.; Schaft, A.J. van der
2004-01-01
The mathematical/geometric structure of discrete models of systems, whether these models are obtained after discretization of a smooth system or as a direct result of modeling at the discrete level, have not been studied much. Mostly one is concerned regarding the nature of the solutions, but not
Towards coarse graining of discrete Lorentzian quantum gravity
Eichhorn, Astrid
2018-02-01
A first step towards implementing a notion of coarse graining in an intrinsically Lorentzian, discrete quantum-gravity approach, namely causal set quantum gravity, is taken. It makes use of an abstract notion of scale, based on counting the number of discrete elements. To that end, the space of actions for causal set quantum gravity is written in a matrix-model-like language, and a flow equation for the effective action of the model is derived from the path integral.
Discrete dynamic modeling of cellular signaling networks.
Albert, Réka; Wang, Rui-Sheng
2009-01-01
Understanding signal transduction in cellular systems is a central issue in systems biology. Numerous experiments from different laboratories generate an abundance of individual components and causal interactions mediating environmental and developmental signals. However, for many signal transduction systems there is insufficient information on the overall structure and the molecular mechanisms involved in the signaling network. Moreover, lack of kinetic and temporal information makes it difficult to construct quantitative models of signal transduction pathways. Discrete dynamic modeling, combined with network analysis, provides an effective way to integrate fragmentary knowledge of regulatory interactions into a predictive mathematical model which is able to describe the time evolution of the system without the requirement for kinetic parameters. This chapter introduces the fundamental concepts of discrete dynamic modeling, particularly focusing on Boolean dynamic models. We describe this method step-by-step in the context of cellular signaling networks. Several variants of Boolean dynamic models including threshold Boolean networks and piecewise linear systems are also covered, followed by two examples of successful application of discrete dynamic modeling in cell biology.
Brauer, Fred; Feng, Zhilan; Castillo-Chavez, Carlos
2010-01-01
The mathematical theory of single outbreak epidemic models really began with the work of Kermack and Mackendrick about decades ago. This gave a simple answer to the long-standing question of why epidemics woould appear suddenly and then disappear just as suddenly without having infected an entire population. Therefore it seemed natural to expect that theoreticians would immediately proceed to expand this mathematical framework both because the need to handle recurrent single infectious disease outbreaks has always been a priority for public health officials and because theoreticians often try to push the limits of exiting theories. However, the expansion of the theory via the inclusion of refined epidemiological classifications or through the incorporation of categories that are essential for the evaluation of intervention strategies, in the context of ongoing epidemic outbreaks, did not materialize. It was the global threat posed by SARS in that caused theoreticians to expand the Kermack-McKendrick single-outbreak framework. Most recently, efforts to connect theoretical work to data have exploded as attempts to deal with the threat of emergent and re-emergent diseases including the most recent H1N1 influenza pandemic, have marched to the forefront of our global priorities. Since data are collected and/or reported over discrete units of time, developing single outbreak models that fit collected data naturally is relevant. In this note, we introduce a discrete-epidemic framework and highlight, through our analyses, the similarities between single-outbreak comparable classical continuous-time epidemic models and the discrete-time models introduced in this note. The emphasis is on comparisons driven by expressions for the final epidemic size.
Wuensche, Andrew
DDLab is interactive graphics software for creating, visualizing, and analyzing many aspects of Cellular Automata, Random Boolean Networks, and Discrete Dynamical Networks in general and studying their behavior, both from the time-series perspective — space-time patterns, and from the state-space perspective — attractor basins. DDLab is relevant to research, applications, and education in the fields of complexity, self-organization, emergent phenomena, chaos, collision-based computing, neural networks, content addressable memory, genetic regulatory networks, dynamical encryption, generative art and music, and the study of the abstract mathematical/physical/dynamical phenomena in their own right.
Discrete mechanics Based on Finite Element Methods
Chen, Jing-bo; Guo, Han-Ying; Wu, Ke
2002-01-01
Discrete Mechanics based on finite element methods is presented in this paper. We also explore the relationship between this discrete mechanics and Veselov discrete mechanics. High order discretizations are constructed in terms of high order interpolations.
International Nuclear Information System (INIS)
Souza, Manoelito M. de
1997-01-01
We discuss the physical meaning and the geometric interpretation of implementation in classical field theories. The origin of infinities and other inconsistencies in field theories is traced to fields defined with support on the light cone; a finite and consistent field theory requires a light-cone generator as the field support. Then, we introduce a classical field theory with support on the light cone generators. It results on a description of discrete (point-like) interactions in terms of localized particle-like fields. We find the propagators of these particle-like fields and discuss their physical meaning, properties and consequences. They are conformally invariant, singularity-free, and describing a manifestly covariant (1 + 1)-dimensional dynamics in a (3 = 1) spacetime. Remarkably this conformal symmetry remains even for the propagation of a massive field in four spacetime dimensions. We apply this formalism to Classical electrodynamics and to the General Relativity Theory. The standard formalism with its distributed fields is retrieved in terms of spacetime average of the discrete field. Singularities are the by-products of the averaging process. This new formalism enlighten the meaning and the problem of field theory, and may allow a softer transition to a quantum theory. (author)
Discrete-time quantum walk with feed-forward quantum coin.
Shikano, Yutaka; Wada, Tatsuaki; Horikawa, Junsei
2014-03-21
Constructing a discrete model like a cellular automaton is a powerful method for understanding various dynamical systems. However, the relationship between the discrete model and its continuous analogue is, in general, nontrivial. As a quantum-mechanical cellular automaton, a discrete-time quantum walk is defined to include various quantum dynamical behavior. Here we generalize a discrete-time quantum walk on a line into the feed-forward quantum coin model, which depends on the coin state of the previous step. We show that our proposed model has an anomalous slow diffusion characterized by the porous-medium equation, while the conventional discrete-time quantum walk model shows ballistic transport.
Discretization of time series data.
Dimitrova, Elena S; Licona, M Paola Vera; McGee, John; Laubenbacher, Reinhard
2010-06-01
An increasing number of algorithms for biochemical network inference from experimental data require discrete data as input. For example, dynamic Bayesian network methods and methods that use the framework of finite dynamical systems, such as Boolean networks, all take discrete input. Experimental data, however, are typically continuous and represented by computer floating point numbers. The translation from continuous to discrete data is crucial in preserving the variable dependencies and thus has a significant impact on the performance of the network inference algorithms. We compare the performance of two such algorithms that use discrete data using several different discretization algorithms. One of the inference methods uses a dynamic Bayesian network framework, the other-a time-and state-discrete dynamical system framework. The discretization algorithms are quantile, interval discretization, and a new algorithm introduced in this article, SSD. SSD is especially designed for short time series data and is capable of determining the optimal number of discretization states. The experiments show that both inference methods perform better with SSD than with the other methods. In addition, SSD is demonstrated to preserve the dynamic features of the time series, as well as to be robust to noise in the experimental data. A C++ implementation of SSD is available from the authors at http://polymath.vbi.vt.edu/discretization .
Discrete Exterior Calculus Discretization of Incompressible Navier-Stokes Equations
Mohamed, Mamdouh S.
2017-05-23
A conservative discretization of incompressible Navier-Stokes equations over surface simplicial meshes is developed using discrete exterior calculus (DEC). Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy otherwise. The mimetic character of many of the DEC operators provides exact conservation of both mass and vorticity, in addition to superior kinetic energy conservation. The employment of barycentric Hodge star allows the discretization to admit arbitrary simplicial meshes. The discretization scheme is presented along with various numerical test cases demonstrating its main characteristics.
Poisson hierarchy of discrete strings
Energy Technology Data Exchange (ETDEWEB)
Ioannidou, Theodora, E-mail: ti3@auth.gr [Faculty of Civil Engineering, School of Engineering, Aristotle University of Thessaloniki, 54249, Thessaloniki (Greece); Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se [Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108, Uppsala (Sweden); Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200, Tours (France); Department of Physics, Beijing Institute of Technology, Haidian District, Beijing 100081 (China)
2016-01-28
The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.
Poisson hierarchy of discrete strings
International Nuclear Information System (INIS)
Ioannidou, Theodora; Niemi, Antti J.
2016-01-01
The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.
Advances in discrete differential geometry
2016-01-01
This is one of the first books on a newly emerging field of discrete differential geometry and an excellent way to access this exciting area. It surveys the fascinating connections between discrete models in differential geometry and complex analysis, integrable systems and applications in computer graphics. The authors take a closer look at discrete models in differential geometry and dynamical systems. Their curves are polygonal, surfaces are made from triangles and quadrilaterals, and time is discrete. Nevertheless, the difference between the corresponding smooth curves, surfaces and classical dynamical systems with continuous time can hardly be seen. This is the paradigm of structure-preserving discretizations. Current advances in this field are stimulated to a large extent by its relevance for computer graphics and mathematical physics. This book is written by specialists working together on a common research project. It is about differential geometry and dynamical systems, smooth and discrete theories, ...
Discrete Trial Training to Teach Alternative Communication: A Step-by-Step Guide
Rabideau, Lindsey K.; Stanton-Chapman, Tina L.; Brown, Tiara S.
2018-01-01
The most researched and effective practice for instructing children with Autism Spectrum Disorder (ASD) is applied behavior analysis (ABA; Baer, Wolf, & Risley, 1968; Reichow, 2012; Smith & Eikeseth, 2011; Virués-Ortega, 2010). ABA is a scientific approach to systematic instruction, data collection, and data analysis based on observable…
Dark discrete gauge symmetries
International Nuclear Information System (INIS)
Batell, Brian
2011-01-01
We investigate scenarios in which dark matter is stabilized by an Abelian Z N discrete gauge symmetry. Models are surveyed according to symmetries and matter content. Multicomponent dark matter arises when N is not prime and Z N contains one or more subgroups. The dark sector interacts with the visible sector through the renormalizable kinetic mixing and Higgs portal operators, and we highlight the basic phenomenology in these scenarios. In particular, multiple species of dark matter can lead to an unconventional nuclear recoil spectrum in direct detection experiments, while the presence of new light states in the dark sector can dramatically affect the decays of the Higgs at the Tevatron and LHC, thus providing a window into the gauge origin of the stability of dark matter.
Immigration and Prosecutorial Discretion.
Apollonio, Dorie; Lochner, Todd; Heddens, Myriah
Immigration has become an increasingly salient national issue in the US, and the Department of Justice recently increased federal efforts to prosecute immigration offenses. This shift, however, relies on the cooperation of US attorneys and their assistants. Traditionally federal prosecutors have enjoyed enormous discretion and have been responsive to local concerns. To consider how the centralized goal of immigration enforcement may have influenced federal prosecutors in regional offices, we review their prosecution of immigration offenses in California using over a decade's worth of data. Our findings suggest that although centralizing forces influence immigration prosecutions, individual US attorneys' offices retain distinct characteristics. Local factors influence federal prosecutors' behavior in different ways depending on the office. Contrary to expectations, unemployment rates did not affect prosecutors' willingness to pursue immigration offenses, nor did local popular opinion about illegal immigration.
Discrete Minimal Surface Algebras
Directory of Open Access Journals (Sweden)
Joakim Arnlind
2010-05-01
Full Text Available We consider discrete minimal surface algebras (DMSA as generalized noncommutative analogues of minimal surfaces in higher dimensional spheres. These algebras appear naturally in membrane theory, where sequences of their representations are used as a regularization. After showing that the defining relations of the algebra are consistent, and that one can compute a basis of the enveloping algebra, we give several explicit examples of DMSAs in terms of subsets of sl_n (any semi-simple Lie algebra providing a trivial example by itself. A special class of DMSAs are Yang-Mills algebras. The representation graph is introduced to study representations of DMSAs of dimension d ≤ 4, and properties of representations are related to properties of graphs. The representation graph of a tensor product is (generically the Cartesian product of the corresponding graphs. We provide explicit examples of irreducible representations and, for coinciding eigenvalues, classify all the unitary representations of the corresponding algebras.
Discrete Pearson distributions
Energy Technology Data Exchange (ETDEWEB)
Bowman, K.O. [Oak Ridge National Lab., TN (United States); Shenton, L.R. [Georgia Univ., Athens, GA (United States); Kastenbaum, M.A. [Kastenbaum (M.A.), Basye, VA (United States)
1991-11-01
These distributions are generated by a first order recursive scheme which equates the ratio of successive probabilities to the ratio of two corresponding quadratics. The use of a linearized form of this model will produce equations in the unknowns matched by an appropriate set of moments (assumed to exist). Given the moments we may find valid solutions. These are two cases; (1) distributions defined on the non-negative integers (finite or infinite) and (2) distributions defined on negative integers as well. For (1), given the first four moments, it is possible to set this up as equations of finite or infinite degree in the probability of a zero occurrence, the sth component being a product of s ratios of linear forms in this probability in general. For (2) the equation for the zero probability is purely linear but may involve slowly converging series; here a particular case is the discrete normal. Regions of validity are being studied. 11 refs.
Principles of discrete time mechanics
Jaroszkiewicz, George
2014-01-01
Could time be discrete on some unimaginably small scale? Exploring the idea in depth, this unique introduction to discrete time mechanics systematically builds the theory up from scratch, beginning with the historical, physical and mathematical background to the chronon hypothesis. Covering classical and quantum discrete time mechanics, this book presents all the tools needed to formulate and develop applications of discrete time mechanics in a number of areas, including spreadsheet mechanics, classical and quantum register mechanics, and classical and quantum mechanics and field theories. A consistent emphasis on contextuality and the observer-system relationship is maintained throughout.
Partition-based discrete-time quantum walks
Konno, Norio; Portugal, Renato; Sato, Iwao; Segawa, Etsuo
2018-04-01
We introduce a family of discrete-time quantum walks, called two-partition model, based on two equivalence-class partitions of the computational basis, which establish the notion of local dynamics. This family encompasses most versions of unitary discrete-time quantum walks driven by two local operators studied in literature, such as the coined model, Szegedy's model, and the 2-tessellable staggered model. We also analyze the connection of those models with the two-step coined model, which is driven by the square of the evolution operator of the standard discrete-time coined walk. We prove formally that the two-step coined model, an extension of Szegedy model for multigraphs, and the two-tessellable staggered model are unitarily equivalent. Then, selecting one specific model among those families is a matter of taste not generality.
Influence of discretization method on the digital control system performance
Directory of Open Access Journals (Sweden)
Futás József
2003-12-01
Full Text Available The design of control system can be divided into two steps. First the process or plant have to be convert into mathematical model form, so that its behavior can be analyzed. Then an appropriate controller have to be design in order to get the desired response of the controlled system. In the continuous time domain the system is represented by differential equations. Replacing a continuous system into discrete time form is always an approximation of the continuous system. The different discretization methods give different digital controller performance. The methods presented on the paper are Step Invariant or Zero Order Hold (ZOH Method, Matched Pole-Zero Method, Backward difference Method and Bilinear transformation. The above mentioned discretization methods are used in developing PI position controller of a dc motor. The motor model was converted by the ZOH method. The performances of the different methods are compared and the results are presented.
Finite strain discrete dislocation plasticity
Deshpande, VS; Needleman, A; Van der Giessen, E
2003-01-01
A framework for carrying out finite deformation discrete dislocation plasticity calculations is presented. The discrete dislocations are presumed to be adequately represented by the singular linear elastic fields so that the large deformations near dislocation cores are not modeled. The finite
Multiscale expansions in discrete world
Indian Academy of Sciences (India)
... multiscale expansions discretely. The power of this manageable method is confirmed by applying it to two selected nonlinear Schrödinger evolution equations. This approach can also be applied to other nonlinear discrete evolution equations. All the computations have been made with Maple computer packet program.
Multiscale expansions in discrete world
Indian Academy of Sciences (India)
This approach can also be applied to other nonlinear discrete evolution equations. All the computations have been made with Maple computer packet program. Keywords. Multiscale expansion; discrete evolution equation; modified nonlinear Schrödinger equation; third-order nonlinear Schrödinger equation; KdV equation.
Discrete Mathematics and Its Applications
Oxley, Alan
2010-01-01
The article gives ideas that lecturers of undergraduate Discrete Mathematics courses can use in order to make the subject more interesting for students and encourage them to undertake further studies in the subject. It is possible to teach Discrete Mathematics with little or no reference to computing. However, students are more likely to be…
Modern approaches to discrete curvature
Romon, Pascal
2017-01-01
This book provides a valuable glimpse into discrete curvature, a rich new field of research which blends discrete mathematics, differential geometry, probability and computer graphics. It includes a vast collection of ideas and tools which will offer something new to all interested readers. Discrete geometry has arisen as much as a theoretical development as in response to unforeseen challenges coming from applications. Discrete and continuous geometries have turned out to be intimately connected. Discrete curvature is the key concept connecting them through many bridges in numerous fields: metric spaces, Riemannian and Euclidean geometries, geometric measure theory, topology, partial differential equations, calculus of variations, gradient flows, asymptotic analysis, probability, harmonic analysis, graph theory, etc. In spite of its crucial importance both in theoretical mathematics and in applications, up to now, almost no books have provided a coherent outlook on this emerging field.
Convergence of Crank-Nicolson-Galerkin discrete scheme for ...
African Journals Online (AJOL)
We studied the maximum-norm error estimate for the Galerkin finite element discretization in time of a stochastic wave equation by the Crank-Nicolson time stepping finite difference method. The error estimate was obtained by using the notions of rational function and resolvent estimates.
Discrete computational mechanics for stiff phenomena
Michels, Dominik L.
2016-11-28
Many natural phenomena which occur in the realm of visual computing and computational physics, like the dynamics of cloth, fibers, fluids, and solids as well as collision scenarios are described by stiff Hamiltonian equations of motion, i.e. differential equations whose solution spectra simultaneously contain extremely high and low frequencies. This usually impedes the development of physically accurate and at the same time efficient integration algorithms. We present a straightforward computationally oriented introduction to advanced concepts from classical mechanics. We provide an easy to understand step-by-step introduction from variational principles over the Euler-Lagrange formalism and the Legendre transformation to Hamiltonian mechanics. Based on such solid theoretical foundations, we study the underlying geometric structure of Hamiltonian systems as well as their discrete counterparts in order to develop sophisticated structure preserving integration algorithms to efficiently perform high fidelity simulations.
International Nuclear Information System (INIS)
1980-10-01
This book is divided into three parts, which is about practical using of stepping motor. The first part has six chapters. The contents of the first part are about stepping motor, classification of stepping motor, basic theory og stepping motor, characteristic and basic words, types and characteristic of stepping motor in hybrid type and basic control of stepping motor. The second part deals with application of stepping motor with hardware of stepping motor control, stepping motor control by microcomputer and software of stepping motor control. The last part mentions choice of stepping motor system, examples of stepping motor, measurement of stepping motor and practical cases of application of stepping motor.
Discrete dynamics versus analytic dynamics
DEFF Research Database (Denmark)
Toxværd, Søren
2014-01-01
For discrete classical Molecular dynamics obtained by the “Verlet” algorithm (VA) with the time increment h there exists a shadow Hamiltonian H˜ with energy E˜(h) , for which the discrete particle positions lie on the analytic trajectories for H˜ . Here, we proof that there, independent of such a......For discrete classical Molecular dynamics obtained by the “Verlet” algorithm (VA) with the time increment h there exists a shadow Hamiltonian H˜ with energy E˜(h) , for which the discrete particle positions lie on the analytic trajectories for H˜ . Here, we proof that there, independent...... of such an analytic analogy, exists an exact hidden energy invariance E * for VA dynamics. The fact that the discrete VA dynamics has the same invariances as Newtonian dynamics raises the question, which of the formulations that are correct, or alternatively, the most appropriate formulation of classical dynamics....... In this context the relation between the discrete VA dynamics and the (general) discrete dynamics investigated by Lee [Phys. Lett. B122, 217 (1983)] is presented and discussed....
Exact analysis of discrete data
Hirji, Karim F
2005-01-01
Researchers in fields ranging from biology and medicine to the social sciences, law, and economics regularly encounter variables that are discrete or categorical in nature. While there is no dearth of books on the analysis and interpretation of such data, these generally focus on large sample methods. When sample sizes are not large or the data are otherwise sparse, exact methods--methods not based on asymptotic theory--are more accurate and therefore preferable.This book introduces the statistical theory, analysis methods, and computation techniques for exact analysis of discrete data. After reviewing the relevant discrete distributions, the author develops the exact methods from the ground up in a conceptually integrated manner. The topics covered range from univariate discrete data analysis, a single and several 2 x 2 tables, a single and several 2 x K tables, incidence density and inverse sampling designs, unmatched and matched case -control studies, paired binary and trinomial response models, and Markov...
Causal Dynamics of Discrete Surfaces
Directory of Open Access Journals (Sweden)
Pablo Arrighi
2014-03-01
Full Text Available We formalize the intuitive idea of a labelled discrete surface which evolves in time, subject to two natural constraints: the evolution does not propagate information too fast; and it acts everywhere the same.
Alfa, Attahiru S
2016-01-01
This book introduces the theoretical fundamentals for modeling queues in discrete-time, and the basic procedures for developing queuing models in discrete-time. There is a focus on applications in modern telecommunication systems. It presents how most queueing models in discrete-time can be set up as discrete-time Markov chains. Techniques such as matrix-analytic methods (MAM) that can used to analyze the resulting Markov chains are included. This book covers single node systems, tandem system and queueing networks. It shows how queues with time-varying parameters can be analyzed, and illustrates numerical issues associated with computations for the discrete-time queueing systems. Optimal control of queues is also covered. Applied Discrete-Time Queues targets researchers, advanced-level students and analysts in the field of telecommunication networks. It is suitable as a reference book and can also be used as a secondary text book in computer engineering and computer science. Examples and exercises are includ...
Discrete Curvature Theories and Applications
Sun, Xiang
2016-08-25
Discrete Di erential Geometry (DDG) concerns discrete counterparts of notions and methods in di erential geometry. This thesis deals with a core subject in DDG, discrete curvature theories on various types of polyhedral surfaces that are practically important for free-form architecture, sunlight-redirecting shading systems, and face recognition. Modeled as polyhedral surfaces, the shapes of free-form structures may have to satisfy di erent geometric or physical constraints. We study a combination of geometry and physics { the discrete surfaces that can stand on their own, as well as having proper shapes for the manufacture. These proper shapes, known as circular and conical meshes, are closely related to discrete principal curvatures. We study curvature theories that make such surfaces possible. Shading systems of freeform building skins are new types of energy-saving structures that can re-direct the sunlight. From these systems, discrete line congruences across polyhedral surfaces can be abstracted. We develop a new curvature theory for polyhedral surfaces equipped with normal congruences { a particular type of congruences de ned by linear interpolation of vertex normals. The main results are a discussion of various de nitions of normality, a detailed study of the geometry of such congruences, and a concept of curvatures and shape operators associated with the faces of a triangle mesh. These curvatures are compatible with both normal congruences and the Steiner formula. In addition to architecture, we consider the role of discrete curvatures in face recognition. We use geometric measure theory to introduce the notion of asymptotic cones associated with a singular subspace of a Riemannian manifold, which is an extension of the classical notion of asymptotic directions. We get a simple expression of these cones for polyhedral surfaces, as well as convergence and approximation theorems. We use the asymptotic cones as facial descriptors and demonstrate the
Quantum walks and non-Abelian discrete gauge theory
Arnault, Pablo; Di Molfetta, Giuseppe; Brachet, Marc; Debbasch, Fabrice
2016-07-01
A family of discrete-time quantum walks (DTQWs) on the line with an exact discrete U(N ) gauge invariance is introduced. It is shown that the continuous limit of these DTQWs, when it exists, coincides with the dynamics of a Dirac fermion coupled to usual U(N ) gauge fields in two-dimensional spacetime. A discrete generalization of the usual U(N ) curvature is also constructed. An alternate interpretation of these results in terms of superimposed U(1 ) Maxwell fields and SU(N ) gauge fields is discussed in the Appendix. Numerical simulations are also presented, which explore the convergence of the DTQWs towards their continuous limit and which also compare the DTQWs with classical (i.e., nonquantum) motions in classical SU(2 ) fields. The results presented in this paper constitute a first step towards quantum simulations of generic Yang-Mills gauge theories through DTQWs.
Analysis of Discrete Mittag - Leffler Functions
Directory of Open Access Journals (Sweden)
N. Shobanadevi
2015-03-01
Full Text Available Discrete Mittag - Leffler functions play a major role in the development of the theory of discrete fractional calculus. In the present article, we analyze qualitative properties of discrete Mittag - Leffler functions and establish sufficient conditions for convergence, oscillation and summability of the infinite series associated with discrete Mittag - Leffler functions.
Chaos in discrete fractional difference equations
Indian Academy of Sciences (India)
2016-09-07
Sep 7, 2016 ... logistics map and discrete sine map [14,15]. In this paper, we analyse numerically the chaotic behaviour of three maps viz., discrete tent map, discrete 2x(mod1) map and discrete Gauss map. Study of these maps is important as they are standard one-dimensional maps, well known to show characteristic ...
Foundations of a discrete physics
International Nuclear Information System (INIS)
McGoveran, D.; Noyes, P.
1988-01-01
Starting from the principles of finiteness, discreteness, finite computability and absolute nonuniqueness, we develop the ordering operator calculus, a strictly constructive mathematical system having the empirical properties required by quantum mechanical and special relativistic phenomena. We show how to construct discrete distance functions, and both rectangular and spherical coordinate systems(with a discrete version of ''π''). The richest discrete space constructible without a preferred axis and preserving translational and rotational invariance is shown to be a discrete 3-space with the usual symmetries. We introduce a local ordering parameter with local (proper) time-like properties and universal ordering parameters with global (cosmological) time-like properties. Constructed ''attribute velocities'' connect ensembles with attributes that are invariant as the appropriate time-like parameter increases. For each such attribute, we show how to construct attribute velocities which must satisfy the '' relativistic Doppler shift'' and the ''relativistic velocity composition law,'' as well as the Lorentz transformations. By construction, these velocities have finite maximum and minimum values. In the space of all attributes, the minimum of these maximum velocities will predominate in all multiple attribute computations, and hence can be identified as a fundamental limiting velocity, General commutation relations are constructed which under the physical interpretation are shown to reduce to the usual quantum mechanical commutation relations. 50 refs., 18 figs
Correlations and discreteness in nonlinear QCD evolution
International Nuclear Information System (INIS)
Armesto, N.; Milhano, J.
2006-01-01
We consider modifications of the standard nonlinear QCD evolution in an attempt to account for some of the missing ingredients discussed recently, such as correlations, discreteness in gluon emission and Pomeron loops. The evolution is numerically performed using the Balitsky-Kovchegov equation on individual configurations defined by a given initial value of the saturation scale, for reduced rapidities y=(α s N c /π)Y<10. We consider the effects of averaging over configurations as a way to implement correlations, using three types of Gaussian averaging around a mean saturation scale. Further, we heuristically mimic discreteness in gluon emission by considering a modified evolution in which the tails of the gluon distributions are cut off. The approach to scaling and the behavior of the saturation scale with rapidity in these modified evolutions are studied and compared with the standard mean-field results. For the large but finite values of rapidity explored, no strong quantitative difference in scaling for transverse momenta around the saturation scale is observed. At larger transverse momenta, the influence of the modifications in the evolution seems most noticeable in the first steps of the evolution. No influence on the rapidity behavior of the saturation scale due to the averaging procedure is found. In the cutoff evolution the rapidity evolution of the saturation scale is slowed down and strongly depends on the value of the cutoff. Our results stress the need to go beyond simple modifications of evolution by developing proper theoretical tools that implement such recently discussed ingredients
Rumor Processes on and Discrete Renewal Processes
Gallo, Sandro; Garcia, Nancy L.; Junior, Valdivino Vargas; Rodríguez, Pablo M.
2014-05-01
We study two rumor processes on , the dynamics of which are related to an SI epidemic model with long range transmission. Both models start with one spreader at site and ignorants at all the other sites of , but differ by the transmission mechanism. In one model, the spreaders transmit the information within a random distance on their right, and in the other the ignorants take the information from a spreader within a random distance on their left. We obtain the probability of survival, information on the distribution of the range of the rumor and limit theorems for the proportion of spreaders. The key step of our proofs is to show that, in each model, the position of the spreaders on can be related to a suitably chosen discrete renewal process.
Degree distribution in discrete case
International Nuclear Information System (INIS)
Wang, Li-Na; Chen, Bin; Yan, Zai-Zai
2011-01-01
Vertex degree of many network models and real-life networks is limited to non-negative integer. By means of measure and integral, the relation of the degree distribution and the cumulative degree distribution in discrete case is analyzed. The degree distribution, obtained by the differential of its cumulative, is only suitable for continuous case or discrete case with constant degree change. When degree change is not a constant but proportional to degree itself, power-law degree distribution and its cumulative have the same exponent and the mean value is finite for power-law exponent greater than 1. -- Highlights: → Degree change is the crux for using the cumulative degree distribution method. → It suits for discrete case with constant degree change. → If degree change is proportional to degree, power-law degree distribution and its cumulative have the same exponent. → In addition, the mean value is finite for power-law exponent greater than 1.
Geometry of discrete quantum computing
Hanson, Andrew J.; Ortiz, Gerardo; Sabry, Amr; Tai, Yu-Tsung
2013-05-01
Conventional quantum computing entails a geometry based on the description of an n-qubit state using 2n infinite precision complex numbers denoting a vector in a Hilbert space. Such numbers are in general uncomputable using any real-world resources, and, if we have the idea of physical law as some kind of computational algorithm of the universe, we would be compelled to alter our descriptions of physics to be consistent with computable numbers. Our purpose here is to examine the geometric implications of using finite fields Fp and finite complexified fields \\mathbf {F}_{p^2} (based on primes p congruent to 3 (mod4)) as the basis for computations in a theory of discrete quantum computing, which would therefore become a computable theory. Because the states of a discrete n-qubit system are in principle enumerable, we are able to determine the proportions of entangled and unentangled states. In particular, we extend the Hopf fibration that defines the irreducible state space of conventional continuous n-qubit theories (which is the complex projective space \\mathbf {CP}^{2^{n}-1}) to an analogous discrete geometry in which the Hopf circle for any n is found to be a discrete set of p + 1 points. The tally of unit-length n-qubit states is given, and reduced via the generalized Hopf fibration to \\mathbf {DCP}^{2^{n}-1}, the discrete analogue of the complex projective space, which has p^{2^{n}-1} (p-1)\\,\\prod _{k=1}^{n-1} ( p^{2^{k}}+1) irreducible states. Using a measure of entanglement, the purity, we explore the entanglement features of discrete quantum states and find that the n-qubit states based on the complexified field \\mathbf {F}_{p^2} have pn(p - 1)n unentangled states (the product of the tally for a single qubit) with purity 1, and they have pn + 1(p - 1)(p + 1)n - 1 maximally entangled states with purity zero.
Intelligent discrete particle swarm optimization for multiprocessor task scheduling problem
Directory of Open Access Journals (Sweden)
S Sarathambekai
2017-03-01
Full Text Available Discrete particle swarm optimization is one of the most recently developed population-based meta-heuristic optimization algorithm in swarm intelligence that can be used in any discrete optimization problems. This article presents a discrete particle swarm optimization algorithm to efficiently schedule the tasks in the heterogeneous multiprocessor systems. All the optimization algorithms share a common algorithmic step, namely population initialization. It plays a significant role because it can affect the convergence speed and also the quality of the final solution. The random initialization is the most commonly used method in majority of the evolutionary algorithms to generate solutions in the initial population. The initial good quality solutions can facilitate the algorithm to locate the optimal solution or else it may prevent the algorithm from finding the optimal solution. Intelligence should be incorporated to generate the initial population in order to avoid the premature convergence. This article presents a discrete particle swarm optimization algorithm, which incorporates opposition-based technique to generate initial population and greedy algorithm to balance the load of the processors. Make span, flow time, and reliability cost are three different measures used to evaluate the efficiency of the proposed discrete particle swarm optimization algorithm for scheduling independent tasks in distributed systems. Computational simulations are done based on a set of benchmark instances to assess the performance of the proposed algorithm.
The remarkable discreteness of being
Indian Academy of Sciences (India)
2014-03-15
Mar 15, 2014 ... atomistic theory and give a simple, elegant explanation to all these laws. Around 1900 AD, Planck, ... In none of the cases reviewed here is it claimed that a simple discrete theory will explain all the phenomena. ..... of migration a decreasing function of the distance; (iii) due to random sampling from one ...
Path integrals as discrete sums
Bitar, Khalil; Khuri, N. N.; Ren, H. C.
1991-08-01
We present a new formulation of Feynman's path integral, based on Voronin's theorems on the universality of the Riemann zeta function. The result is a discrete sum over ``paths,'' each given by a zeta function. A new measure which leads to the correct quantum mechanics is explicitly given.
Multiscale expansions in discrete world
Indian Academy of Sciences (India)
Multiscale expansions in discrete world. ÖMER ÜNSAL, FILIZ TASCAN. ∗ and MEHMET NACI ÖZER. Eskisehir Osmangazi University, Art-Science Faculty, Department of Mathematics and Computer. Sciences, Eskisehir-Türkiye. ∗. Corresponding author. E-mail: ftascan@ogu.edu.tr. MS received 12 April 2013; accepted 16 ...
The remarkable discreteness of being
Indian Academy of Sciences (India)
2014-03-15
Mar 15, 2014 ... ... examples where these facts play, or could play, important roles: the spatial distribution of species, the structuring of biodiversity and the. (Darwinian) evolution of altruistic behaviour. [Houchmandzadeh B 2014 The remarkable discreteness of being. J. Biosci. 39 249–258] DOI 10.1007/s12038-013-9350-7.
The remarkable discreteness of being
Indian Academy of Sciences (India)
Life is a discrete, stochastic phenomenon: for a biological organism, the time of the two most important events of its life (reproduction and death) is random and these events change the number of individuals of the species by single units. These facts can have surprising, counterintuitive consequences. I review here three ...
Discrete tomography in neutron radiography
International Nuclear Information System (INIS)
Kuba, Attila; Rodek, Lajos; Kiss, Zoltan; Rusko, Laszlo; Nagy, Antal; Balasko, Marton
2005-01-01
Discrete tomography (DT) is an imaging technique for reconstructing discrete images from their projections using the knowledge that the object to be reconstructed contains only a few homogeneous materials characterized by known discrete absorption values. One of the main reasons for applying DT is that we will hopefully require relatively few projections. Using discreteness and some a priori information (such as an approximate shape of the object) we can apply two DT methods in neutron imaging by reducing the problem to an optimization task. The first method is a special one because it is only suitable if the object is composed of cylinders and sphere shapes. The second method is a general one in the sense that it can be used for reconstructing objects of any shape. Software was developed and physical experiments performed in order to investigate the effects of several reconstruction parameters: the number of projections, noise levels, and complexity of the object to be reconstructed. We give a summary of the experimental results and make a comparison of the results obtained using a classical reconstruction technique (FBP). The programs we developed are available in our DT reconstruction program package DIRECT
Mixed Discretization of the Time Domain MFIE at Low Frequencies
Ulku, Huseyin Arda
2017-01-10
Solution of the magnetic field integral equation (MFIE), which is obtained by the classical marching on-in-time (MOT) scheme, becomes inaccurate when the time step is large, i.e., under low-frequency excitation. It is shown here that the inaccuracy stems from the classical MOT scheme’s failure to predict the correct scaling of the current’s Helmholtz components for large time steps. A recently proposed mixed discretization strategy is used to alleviate the inaccuracy problem by restoring the correct scaling of the current’s Helmholtz components under low-frequency excitation.
The way to collisions, step by step
2009-01-01
While the LHC sectors cool down and reach the cryogenic operating temperature, spirits are warming up as we all eagerly await the first collisions. No reason to hurry, though. Making particles collide involves the complex manoeuvring of thousands of delicate components. The experts will make it happen using a step-by-step approach.
Stille, J. K.
1981-01-01
Following a comparison of chain-growth and step-growth polymerization, focuses on the latter process by describing requirements for high molecular weight, step-growth polymerization kinetics, synthesis and molecular weight distribution of some linear step-growth polymers, and three-dimensional network step-growth polymers. (JN)
Bourret, Steven C.; Swansen, James E.
1984-01-01
A stepping motor is microprocessingly controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.
Discrete compactons: some exact results
International Nuclear Information System (INIS)
Kevrekidis, P G; Konotop, V V; Bishop, A R; Takeno, S
2002-01-01
In this letter, we use the method of constructing exact solutions on lattices proposed by Kinnersley and described in Schmidt (1979 Phys. Rev. B 20 4397), to obtain exact compacton solutions in discrete models. We examine the linear stability of such solutions, both for the bright compacton and for the dark compacton cases. We focus on a 'quantization condition' that the width of the profile should satisfy. We also use this quantization condition to examine the possibility of compact coherent structures travelling in discrete settings. Our results are obtained for sinusoidal profiles and then generalized to elliptic functions of arbitrary modulus. The possibility of multi-compacton solutions is considered. (letter to the editor)
Discrete mathematics using a computer
Hall, Cordelia
2000-01-01
Several areas of mathematics find application throughout computer science, and all students of computer science need a practical working understanding of them. These core subjects are centred on logic, sets, recursion, induction, relations and functions. The material is often called discrete mathematics, to distinguish it from the traditional topics of continuous mathematics such as integration and differential equations. The central theme of this book is the connection between computing and discrete mathematics. This connection is useful in both directions: • Mathematics is used in many branches of computer science, in applica tions including program specification, datastructures,design and analysis of algorithms, database systems, hardware design, reasoning about the correctness of implementations, and much more; • Computers can help to make the mathematics easier to learn and use, by making mathematical terms executable, making abstract concepts more concrete, and through the use of software tools su...
Quantum chaos on discrete graphs
Energy Technology Data Exchange (ETDEWEB)
Smilansky, Uzy [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel); Isaac Newton Institute for Mathematical Sciences, 20 Clarkson Road, Cambridge CB3 0EH (United Kingdom)
2007-07-06
Adapting a method developed for the study of quantum chaos on quantum (metric) graphs (Kottos and Smilansky 1997 Phys. Rev. Lett. 79 4794, Kottos and Smilansky 1999 Ann. Phys., NY 274 76), spectral {zeta} functions and trace formulae for discrete Laplacians on graphs are derived. This is achieved by expressing the spectral secular equation in terms of the periodic orbits of the graph and obtaining functions which belong to the class of {zeta} functions proposed originally by Ihara (1966 J. Mat. Soc. Japan 18 219) and expanded by subsequent authors (Stark and Terras 1996 Adv. Math. 121 124, Kotani and Sunada 2000 J. Math. Sci. Univ. Tokyo 7 7). Finally, a model of 'classical dynamics' on the discrete graph is proposed. It is analogous to the corresponding classical dynamics derived for quantum graphs (Kottos and Smilansky 1997 Phys. Rev. Lett. 79 4794, Kottos and Smilansky 1999 Ann. Phys., NY 274 76). (fast track communication)
Discrete symmetries in the MSSM
Energy Technology Data Exchange (ETDEWEB)
Schieren, Roland
2010-12-02
The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z{sup R}{sub 4} symmetry is discovered which solves the {mu}-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z{sup R}{sub 4} is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z{sup R}{sub 4} symmetry and other desirable features. (orig.)
Applied geometry and discrete mathematics
Sturm; Gritzmann, Peter; Sturmfels, Bernd
1991-01-01
This volume, published jointly with the Association for Computing Machinery, comprises a collection of research articles celebrating the occasion of Victor Klee's sixty-fifth birthday in September 1990. During his long career, Klee has made contributions to a wide variety of areas, such as discrete and computational geometry, convexity, combinatorics, graph theory, functional analysis, mathematical programming and optimization, and theoretical computer science. In addition, Klee made important contributions to mathematics education, mathematical methods in economics and the decision sciences, applications of discrete mathematics in the biological and social sciences, and the transfer of knowledge from applied mathematics to industry. In honor of Klee's achievements, this volume presents more than forty papers on topics related to Klee's research. While the majority of the papers are research articles, a number of survey articles are also included. Mirroring the breadth of Klee's mathematical contributions, th...
Dark energy from discrete spacetime.
Trout, Aaron D
2013-01-01
Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, [Formula: see text] in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies.
Discrete Choice and Rational Inattention
DEFF Research Database (Denmark)
Fosgerau, Mogens; Melo, Emerson; de Palma, André
2017-01-01
This paper establishes a general equivalence between discrete choice and rational inattention models. Matejka and McKay (2015, AER) showed that when information costs are modelled using the Shannon entropy, the result- ing choice probabilities in the rational inattention model take the multinomial...... logit form. We show that when information costs are modelled using a class of generalized entropies, then the choice probabilities in any rational inattention model are observationally equivalent to some additive random utility discrete choice model and vice versa. This equivalence arises from convex......- analytic properties of the random utility model. Thus any additive random utility model can be given an interpretation in terms of boundedly rational behavior. We provide examples of this equivalence utilizing the nested logit model, an empirically relevant random utility model allowing for flexible...
Duality for discrete integrable systems
International Nuclear Information System (INIS)
Quispel, G R W; Capel, H W; Roberts, J A G
2005-01-01
A new class of discrete dynamical systems is introduced via a duality relation for discrete dynamical systems with a number of explicitly known integrals. The dual equation can be defined via the difference of an arbitrary linear combination of integrals and its upshifted version. We give an example of an integrable mapping with two parameters and four integrals leading to a (four-dimensional) dual mapping with four parameters and two integrals. We also consider a more general class of higher-dimensional mappings arising via a travelling-wave reduction from the (integrable) MKdV partial-difference equation. By differencing the trace of the monodromy matrix we obtain a class of novel dual mappings which is shown to be integrable as level-set-dependent versions of the original ones
Plante, Jean-Sébastien; Devita, Lauren M.; Dubowsky, Steven
2007-04-01
Fundamental studies of Dielectric Elastomer Actuators (DEAs) using viscoelastic materials such as VHB 4905/4910 from 3M showed significant advantages at high stretch rates. The film's viscous forces increase actuator life and the short power-on times minimize energy losses through current leakage. This paper presents a design paradigm that exploits these fundamental properties of DEAs called discrete actuation. Discrete actuation uses DEAs at high stretch rates to change the states of robotic or mechatronic systems in discrete steps. Each state of the system is stable and can be maintained without actuator power. Discrete actuation can be used in robotic and mechatronic applications such as manipulation and locomotion. The resolution of such systems increases with the number of discrete states, 10 to 100 being sufficient for many applications. An MRI-guided needle positioning device for cancer treatments and a space exploration robot using hopping for locomotion are presented as examples of this concept.
Discrete fractional solutions of a Legendre equation
Yılmazer, Resat
2018-01-01
One of the most popular research interests of science and engineering is the fractional calculus theory in recent times. Discrete fractional calculus has also an important position in fractional calculus. In this work, we acquire new discrete fractional solutions of the homogeneous and non homogeneous Legendre differential equation by using discrete fractional nabla operator.
Microsoft Office professional 2010 step by step
Cox, Joyce; Frye, Curtis
2011-01-01
Teach yourself exactly what you need to know about using Office Professional 2010-one step at a time! With STEP BY STEP, you build and practice new skills hands-on, at your own pace. Covering Microsoft Word, PowerPoint, Outlook, Excel, Access, Publisher, and OneNote, this book will help you learn the core features and capabilities needed to: Create attractive documents, publications, and spreadsheetsManage your e-mail, calendar, meetings, and communicationsPut your business data to workDevelop and deliver great presentationsOrganize your ideas and notes in one placeConnect, share, and accom
On Computational Small Steps and Big Steps
DEFF Research Database (Denmark)
Johannsen, Jacob
rules in the small-step semantics cause the refocusing step of the syntactic correspondence to be inapplicable. Second, we propose two solutions to overcome this in-applicability: backtracking and rule generalization. Third, we show how these solutions affect the other transformations of the two......We study the relationship between small-step semantics, big-step semantics and abstract machines, for programming languages that employ an outermost reduction strategy, i.e., languages where reductions near the root of the abstract syntax tree are performed before reductions near the leaves....... In particular, we investigate how Biernacka and Danvy’s syntactic correspondence and Reynolds’s functional correspondence can be applied to interderive semantic specifications for such languages. The main contribution of this dissertation is three-fold: First, we identify that backward overlapping reduction...
Time-Discrete Higher-Order ALE Formulations: Stability
Bonito, Andrea
2013-01-01
Arbitrary Lagrangian Eulerian (ALE) formulations deal with PDEs on deformable domains upon extending the domain velocity from the boundary into the bulk with the purpose of keeping mesh regularity. This arbitrary extension has no effect on the stability of the PDE but may influence that of a discrete scheme. We examine this critical issue for higher-order time stepping without space discretization. We propose time-discrete discontinuous Galerkin (dG) numerical schemes of any order for a time-dependent advection-diffusion-model problem in moving domains, and study their stability properties. The analysis hinges on the validity of the Reynold\\'s identity for dG. Exploiting the variational structure and assuming exact integration, we prove that our conservative and nonconservative dG schemes are equivalent and unconditionally stable. The same results remain true for piecewise polynomial ALE maps of any degree and suitable quadrature that guarantees the validity of the Reynold\\'s identity. This approach generalizes the so-called geometric conservation law to higher-order methods. We also prove that simpler Runge-Kutta-Radau methods of any order are conditionally stable, that is, subject to a mild ALE constraint on the time steps. Numerical experiments corroborate and complement our theoretical results. © 2013 Society for Industrial and Applied Mathematics.
Eck peak in underdamped discrete superconducting vortex flow devices
van der Zant, H. S. J.; Orlando, T. P.
1994-12-01
We have measured vortex motion in a long one-dimensional array of small underdamped niobium tunnel junctions which are coupled in parallel by superconducting wires. In the current-voltage characteristic, a resonant step occurs similar to the Eck peak in long continuous junctions. Due to the discrete nature of our samples, the voltage of this resonant step follows a sinusoidal dependence on the magnetic field rather than the linear dependence found in long continuous junctions. With a control current applied parallel to the array of junctions, the device can be operated as a vortex-flow transistor or as a tunable vortex-flow oscillator. Compared to long continuous junctions, the performance of discrete transistors is better with regard to the threshold currrent and transresistance, but worse with regard to the output resistance. Discrete oscillators have the advantage over their continuous counterparts in that the output impedance is of the order of 10 ohms. Numerical simulations indicate power levels around 0.5 micro Watts and frequencies above 500 GHz.
Discrete geometric structures for architecture
Pottmann, Helmut
2010-06-13
The emergence of freeform structures in contemporary architecture raises numerous challenging research problems, most of which are related to the actual fabrication and are a rich source of research topics in geometry and geometric computing. The talk will provide an overview of recent progress in this field, with a particular focus on discrete geometric structures. Most of these result from practical requirements on segmenting a freeform shape into planar panels and on the physical realization of supporting beams and nodes. A study of quadrilateral meshes with planar faces reveals beautiful relations to discrete differential geometry. In particular, we discuss meshes which discretize the network of principal curvature lines. Conical meshes are among these meshes; they possess conical offset meshes at a constant face/face distance, which in turn leads to a supporting beam layout with so-called torsion free nodes. This work can be generalized to a variety of multilayer structures and laid the ground for an adapted curvature theory for these meshes. There are also efforts on segmenting surfaces into planar hexagonal panels. Though these are less constrained than planar quadrilateral panels, this problem is still waiting for an elegant solution. Inspired by freeform designs in architecture which involve circles and spheres, we present a new kind of triangle mesh whose faces\\' in-circles form a packing, i.e., the in-circles of two triangles with a common edge have the same contact point on that edge. These "circle packing (CP) meshes" exhibit an aesthetic balance of shape and size of their faces. They are closely tied to sphere packings on surfaces and to various remarkable structures and patterns which are of interest in art, architecture, and design. CP meshes constitute a new link between architectural freeform design and computational conformal geometry. Recently, certain timber structures motivated us to study discrete patterns of geodesics on surfaces. This
Radiative transfer on discrete spaces
Preisendorfer, Rudolph W; Stark, M; Ulam, S
1965-01-01
Pure and Applied Mathematics, Volume 74: Radiative Transfer on Discrete Spaces presents the geometrical structure of natural light fields. This book describes in detail with mathematical precision the radiometric interactions of light-scattering media in terms of a few well established principles.Organized into four parts encompassing 15 chapters, this volume begins with an overview of the derivations of the practical formulas and the arrangement of formulas leading to numerical solution procedures of radiative transfer problems in plane-parallel media. This text then constructs radiative tran
Parrondo's game using a discrete-time quantum walk
International Nuclear Information System (INIS)
Chandrashekar, C.M.; Banerjee, Subhashish
2011-01-01
We present a new form of a Parrondo game using discrete-time quantum walk on a line. The two players A and B with different quantum coins operators, individually losing the game can develop a strategy to emerge as joint winners by using their coins alternatively, or in combination for each step of the quantum walk evolution. We also present a strategy for a player A (B) to have a winning probability more than player B (A). Significance of the game strategy in information theory and physical applications are also discussed. - Highlights: → Novel form of Parrondo's game on a single particle discrete-time quantum walk. → Strategies for players to emerge as individual winners or as joint winners. → General framework for controlling and using quantum walk with multiple coins. → Strategies can be used in algorithms and situations involving directed motion.
Maximum Principles for Discrete and Semidiscrete Reaction-Diffusion Equation
Directory of Open Access Journals (Sweden)
Petr Stehlík
2015-01-01
Full Text Available We study reaction-diffusion equations with a general reaction function f on one-dimensional lattices with continuous or discrete time ux′ (or Δtux=k(ux-1-2ux+ux+1+f(ux, x∈Z. We prove weak and strong maximum and minimum principles for corresponding initial-boundary value problems. Whereas the maximum principles in the semidiscrete case (continuous time exhibit similar features to those of fully continuous reaction-diffusion model, in the discrete case the weak maximum principle holds for a smaller class of functions and the strong maximum principle is valid in a weaker sense. We describe in detail how the validity of maximum principles depends on the nonlinearity and the time step. We illustrate our results on the Nagumo equation with the bistable nonlinearity.
Mechanisms with discrete nitrene species
Indian Academy of Sciences (India)
CASPT2//CASSCF studies on N2 extrusion from HN3, MeN3and EtN3 predicted spin-allowed and. 681 ... the Curtius rearrangement of ClF2C-CO-N3 predicted a concerted pathway as preferred pathway over a step- ..... position of methyl azide via extrusion of N2. A step- wise route giving triplet Me-N and N2was located,.
Application of an enhanced discrete element method to oil and gas drilling processes
Ubach, Pere Andreu; Arrufat, Ferran; Ring, Lev; Gandikota, Raju; Zárate, Francisco; Oñate, Eugenio
2016-03-01
The authors present results on the use of the discrete element method (DEM) for the simulation of drilling processes typical in the oil and gas exploration industry. The numerical method uses advanced DEM techniques using a local definition of the DEM parameters and combined FEM-DEM procedures. This paper presents a step-by-step procedure to build a DEM model for analysis of the soil region coupled to a FEM model for discretizing the drilling tool that reproduces the drilling mechanics of a particular drill bit. A parametric study has been performed to determine the model parameters in order to maintain accurate solutions with reduced computational cost.
Step by Step Microsoft Office Visio 2003
Lemke, Judy
2004-01-01
Experience learning made easy-and quickly teach yourself how to use Visio 2003, the Microsoft Office business and technical diagramming program. With STEP BY STEP, you can take just the lessons you need, or work from cover to cover. Either way, you drive the instruction-building and practicing the skills you need, just when you need them! Produce computer network diagrams, organization charts, floor plans, and moreUse templates to create new diagrams and drawings quicklyAdd text, color, and 1-D and 2-D shapesInsert graphics and pictures, such as company logosConnect shapes to create a basic f
Discrete interferometer with individual trapped atoms
Steffen, Andreas; Alberti, Andrea; Alt, Wolfgang; Belmechri, Noomen; Hild, Sebastian; Karski, Michal; Widera, Artur; Meschede, Dieter; Quantum Technology Team
2011-05-01
Coherent control and delocalization of individual atoms is a pivotal challenge in quantum technologies. As a new step on this road, we present an individual atom interferometer that is capable of splitting a trapped Cs atom by up to 10 μm , allowing us to measure potential gradients on the microscale. The atom is confined in a 1D optical lattice, which is capable of performing discrete state-dependent shifts to split the atom by the desired number of sites. We establish a high degree of control, as the initial atom position, vibrational state and spin state can all be prepared with above 95% fidelity. To unravel decoherence effects and phase influences, we have explored several basic interferometer geometries, among other things demonstrating a positional spin echo to cancel background effects. As a test case, an inertial force has been applied and successfully measured using the atomic phase. This will offer us a new tool to investigate the interaction between two atoms in a controlled model system.
On discrete cosine transform | Zhou | Nigerian Journal of ...
African Journals Online (AJOL)
A new type of discrete cosine transform is proposed and its orthogonality is proved. Finally, we propose a generalized discrete W transform with three parameters, and prove its orthogonality for some new cases. Keywords: Discrete Fourier transform, discrete sine transform, discrete cosine transform, discrete W transform
Diabetes PSA (:30) Step By Step
Centers for Disease Control (CDC) Podcasts
2009-10-24
First steps to preventing diabetes. For Hispanic and Latino American audiences. Created: 10/24/2009 by National Diabetes Education Program (NDEP), a joint program of the Centers for Disease Control and Prevention and the National Institutes of Health. Date Released: 10/24/2009.
Diabetes PSA (:60) Step By Step
Centers for Disease Control (CDC) Podcasts
2009-10-24
First steps to preventing diabetes. For Hispanic and Latino American audiences. Created: 10/24/2009 by National Diabetes Education Program (NDEP), a joint program of the Centers for Disease Control and Prevention and the National Institutes of Health. Date Released: 10/24/2009.
Filtser, Omrit; Katz, Matthew J.
2015-01-01
We introduce the discrete Fr\\'echet gap and its variants as an alternative measure of similarity between polygonal curves. We believe that for some applications the new measure (and its variants) may better reflect our intuitive notion of similarity than the discrete Fr\\'echet distance (and its variants), since the latter measure is indifferent to (matched) pairs of points that are relatively close to each other. Referring to the frogs analogy by which the discrete Fr\\'echet distance is often...
Discrete calculus methods for counting
Mariconda, Carlo
2016-01-01
This book provides an introduction to combinatorics, finite calculus, formal series, recurrences, and approximations of sums. Readers will find not only coverage of the basic elements of the subjects but also deep insights into a range of less common topics rarely considered within a single book, such as counting with occupancy constraints, a clear distinction between algebraic and analytical properties of formal power series, an introduction to discrete dynamical systems with a thorough description of Sarkovskii’s theorem, symbolic calculus, and a complete description of the Euler-Maclaurin formulas and their applications. Although several books touch on one or more of these aspects, precious few cover all of them. The authors, both pure mathematicians, have attempted to develop methods that will allow the student to formulate a given problem in a precise mathematical framework. The aim is to equip readers with a sound strategy for classifying and solving problems by pursuing a mathematically rigorous yet ...
Quantum evolution by discrete measurements
International Nuclear Information System (INIS)
Roa, L; Guevara, M L Ladron de; Delgado, A; Olivares-RenterIa, G; Klimov, A B
2007-01-01
In this article we review two ways of driving a quantum system to a known pure state via a sequence discrete of von Neumann measurements. The first of them assumes that the initial state of the system is unknown, and the evolution is attained only with the help of two non-commuting observables. For this method, the overall success probability is maximized when the eigentstates of the involved observables constitute mutually unbiased bases. The second method assumes the initial state is known and it uses N observables which are consecutively measured to make the state of the system approach the target state. The probability of success of this procedure converges to 1 as the number of observables increases
Quantum evolution by discrete measurements
Energy Technology Data Exchange (ETDEWEB)
Roa, L [Center for Quantum Optics and Quantum Information, Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile); Guevara, M L Ladron de [Departamento de Fisica, Universidad Catolica del Norte, Casilla 1280, Antofagasta (Chile); Delgado, A [Center for Quantum Optics and Quantum Information, Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile); Olivares-RenterIa, G [Center for Quantum Optics and Quantum Information, Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile); Klimov, A B [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44420 Guadalajara, Jalisco (Mexico)
2007-10-15
In this article we review two ways of driving a quantum system to a known pure state via a sequence discrete of von Neumann measurements. The first of them assumes that the initial state of the system is unknown, and the evolution is attained only with the help of two non-commuting observables. For this method, the overall success probability is maximized when the eigentstates of the involved observables constitute mutually unbiased bases. The second method assumes the initial state is known and it uses N observables which are consecutively measured to make the state of the system approach the target state. The probability of success of this procedure converges to 1 as the number of observables increases.
Modeling discrete competitive facility location
Karakitsiou, Athanasia
2015-01-01
This book presents an up-to-date review of modeling and optimization approaches for location problems along with a new bi-level programming methodology which captures the effect of competition of both producers and customers on facility location decisions. While many optimization approaches simplify location problems by assuming decision making in isolation, this monograph focuses on models which take into account the competitive environment in which such decisions are made. New insights in modeling, algorithmic and theoretical possibilities are opened by this approach and new applications are possible. Competition on equal term plus competition between market leader and followers are considered in this study, consequently bi-level optimization methodology is emphasized and further developed. This book provides insights regarding modeling complexity and algorithmic approaches to discrete competitive location problems. In traditional location modeling, assignment of customer demands to supply sources are made ...
Discrete modelling of drapery systems
Thoeni, Klaus; Giacomini, Anna
2016-04-01
Drapery systems are an efficient and cost-effective measure in preventing and controlling rockfall hazards on rock slopes. The simplest form consists of a row of ground anchors along the top of the slope connected to a horizontal support cable from which a wire mesh is suspended down the face of the slope. Such systems are generally referred to as simple or unsecured draperies (Badger and Duffy 2012). Variations such as secured draperies, where a pattern of ground anchors is incorporated within the field of the mesh, and hybrid systems, where the upper part of an unsecured drapery is elevated to intercept rockfalls originating upslope of the installation, are becoming more and more popular. This work presents a discrete element framework for simulation of unsecured drapery systems and its variations. The numerical model is based on the classical discrete element method (DEM) and implemented into the open-source framework YADE (Šmilauer et al., 2010). The model takes all relevant interactions between block, drapery and slope into account (Thoeni et al., 2014) and was calibrated and validated based on full-scale experiments (Giacomini et al., 2012).The block is modelled as a rigid clump made of spherical particles which allows any shape to be approximated. The drapery is represented by a set of spherical particle with remote interactions. The behaviour of the remote interactions is governed by the constitutive behaviour of the wire and generally corresponds to a piecewise linear stress-strain relation (Thoeni et al., 2013). The same concept is used to model wire ropes. The rock slope is represented by rigid triangular elements where material properties (e.g., normal coefficient of restitution, friction angle) are assigned to each triangle. The capabilities of the developed model to simulate drapery systems and estimate the residual hazard involved with such systems is shown. References Badger, T.C., Duffy, J.D. (2012) Drapery systems. In: Turner, A.K., Schuster R
Discrete stochastic processes and applications
Collet, Jean-François
2018-01-01
This unique text for beginning graduate students gives a self-contained introduction to the mathematical properties of stochastics and presents their applications to Markov processes, coding theory, population dynamics, and search engine design. The book is ideal for a newly designed course in an introduction to probability and information theory. Prerequisites include working knowledge of linear algebra, calculus, and probability theory. The first part of the text focuses on the rigorous theory of Markov processes on countable spaces (Markov chains) and provides the basis to developing solid probabilistic intuition without the need for a course in measure theory. The approach taken is gradual beginning with the case of discrete time and moving on to that of continuous time. The second part of this text is more applied; its core introduces various uses of convexity in probability and presents a nice treatment of entropy.
Directory of Open Access Journals (Sweden)
I. V. Dainiak
2014-01-01
Full Text Available The paper proposes a method of taking into account accumulated and temperature errors while forming coordinate discrete grid of a linear stepping drive. An algorithm for determination of optimal quantization levels of control currents of drive's phases has been developed in the paper; it minimizes an error of positioning that forms correction files for application of a control system in the software. Investigations on stability of discrete grid nodes coordinates have been carried our with the help of a monitoring station for accurate parameters of linear stepping drive. The investigations have proved an efficiency of the proposed algorithm and methodology for forming coordinate discrete grid.
High order backward discretization of the neutron diffusion equation
International Nuclear Information System (INIS)
Ginestar, D.; Bru, R.; Marin, J.; Verdu, G.; Munoz-Cobo, J.L.; Vidal, V.
1997-01-01
Fast codes capable of dealing with three-dimensional geometries, are needed to be able to simulate spatially complicated transients in a nuclear reactor. We propose a new discretization technique for the time integration of the neutron diffusion equation, based on the backward difference formulas for systems of stiff ordinary differential equations. This method needs to solve a system of linear equations for each integration step, and for this purpose, we have developed an iterative block algorithm combined with a variational acceleration technique. We tested the algorithm with two benchmark problems, and compared the results with those provided by other codes, concluding that the performance and overall agreement are very good. (author)
Multiple Discrete Endogenous Variables in Weakly-Separable Triangular Models
Directory of Open Access Journals (Sweden)
Sung Jae Jun
2016-02-01
Full Text Available We consider a model in which an outcome depends on two discrete treatment variables, where one treatment is given before the other. We formulate a three-equation triangular system with weak separability conditions. Without assuming assignment is random, we establish the identification of an average structural function using two-step matching. We also consider decomposing the effect of the first treatment into direct and indirect effects, which are shown to be identified by the proposed methodology. We allow for both of the treatment variables to be non-binary and do not appeal to an identification-at-infinity argument.
Control of discrete event systems modeled as hierarchical state machines
Brave, Y.; Heymann, M.
1991-01-01
The authors examine a class of discrete event systems (DESs) modeled as asynchronous hierarchical state machines (AHSMs). For this class of DESs, they provide an efficient method for testing reachability, which is an essential step in many control synthesis procedures. This method utilizes the asynchronous nature and hierarchical structure of AHSMs, thereby illustrating the advantage of the AHSM representation as compared with its equivalent (flat) state machine representation. An application of the method is presented where an online minimally restrictive solution is proposed for the problem of maintaining a controlled AHSM within prescribed legal bounds.
High order backward discretization of the neutron diffusion equation
Energy Technology Data Exchange (ETDEWEB)
Ginestar, D.; Bru, R.; Marin, J. [Universidad Politecnica de Valencia (Spain). Departamento de Matematica Aplicada; Verdu, G.; Munoz-Cobo, J.L. [Universidad Politecnica de Valencia (Spain). Departamento de Ingenieria Quimica y Nuclear; Vidal, V. [Universidad Politecnica de Valencia (Spain). Departamento de Sistemas Informaticos y Computacion
1997-11-21
Fast codes capable of dealing with three-dimensional geometries, are needed to be able to simulate spatially complicated transients in a nuclear reactor. We propose a new discretization technique for the time integration of the neutron diffusion equation, based on the backward difference formulas for systems of stiff ordinary differential equations. This method needs to solve a system of linear equations for each integration step, and for this purpose, we have developed an iterative block algorithm combined with a variational acceleration technique. We tested the algorithm with two benchmark problems, and compared the results with those provided by other codes, concluding that the performance and overall agreement are very good. (author).
Microsoft Office Word 2007 step by step
Cox, Joyce
2007-01-01
Experience learning made easy-and quickly teach yourself how to create impressive documents with Word 2007. With Step By Step, you set the pace-building and practicing the skills you need, just when you need them!Apply styles and themes to your document for a polished lookAdd graphics and text effects-and see a live previewOrganize information with new SmartArt diagrams and chartsInsert references, footnotes, indexes, a table of contentsSend documents for review and manage revisionsTurn your ideas into blogs, Web pages, and moreYour all-in-one learning experience includes:Files for building sk
The discrete Laplace exponential family and estimation of Y-STR haplotype frequencies
DEFF Research Database (Denmark)
Andersen, Mikkel Meyer; Eriksen, Poul Svante; Morling, Niels
2013-01-01
of the Fisher-Wright model of evolution for haploid lineage DNA markers. An exponential family (a class of probability distributions that is well understood in probability theory such that inference is easily made by using existing software) called the 'discrete Laplace distribution' is described. We illustrate...... how well the discrete Laplace distribution approximates a more complicated distribution that arises by investigating the well-known population genetic Fisher-Wright model of evolution by a single-step mutation process. It was shown how the discrete Laplace distribution can be used to estimate...... haplotype frequencies for haploid lineage DNA markers (such as Y-chromosomal short tandem repeats), which in turn can be used to assess the evidential weight of a DNA profile found at a crime scene. This was done by making inference in a mixture of multivariate, marginally independent, discrete Laplace...
DISCRETE ELEMENT MODELLING OF THE COMPRESSIVE ...
African Journals Online (AJOL)
Discrete element modelling is a numerical method capable of tracking the movement of individual objects within a bulk system and compute the resulting force and deformation as well as other parameters. The Discrete Element Method (DEM) has been used in this study to investigate the deformation of individual particles ...
Geometry and Hamiltonian mechanics on discrete spaces
Talasila, V.; Clemente-Gallardo, J.; Schaft, A.J. van der
2004-01-01
Numerical simulation is often crucial for analysing the behaviour of many complex systems which do not admit analytic solutions. To this end, one either converts a ‘smooth’ model into a discrete (in space and time) model, or models systems directly at a discrete level. The goal of this paper is to
Discrete/PWM Ballast-Resistor Controller
King, Roger J.
1994-01-01
Circuit offers low switching loss and automatic compensation for failure of ballast resistor. Discrete/PWM ballast-resistor controller improved shunt voltage-regulator circuit designed to supply power from high-resistance source to low-impedance bus. Provides both coarse discrete voltage levels (by switching of ballast resistors) and continuous fine control of voltage via pulse-width modulation.
Discrete Fourier analysis of multigrid algorithms
van der Vegt, Jacobus J.W.; Rhebergen, Sander
2011-01-01
The main topic of this report is a detailed discussion of the discrete Fourier multilevel analysis of multigrid algorithms. First, a brief overview of multigrid methods is given for discretizations of both linear and nonlinear partial differential equations. Special attention is given to the
Geometry and Hamiltonian mechanics on discrete spaces
International Nuclear Information System (INIS)
Talasila, V; Clemente-Gallardo, J; Schaft, A J van der
2004-01-01
Numerical simulation is often crucial for analysing the behaviour of many complex systems which do not admit analytic solutions. To this end, one either converts a 'smooth' model into a discrete (in space and time) model, or models systems directly at a discrete level. The goal of this paper is to provide a discrete analogue of differential geometry, and to define on these discrete models a formal discrete Hamiltonian structure-in doing so we try to bring together various fundamental concepts from numerical analysis, differential geometry, algebraic geometry, simplicial homology and classical Hamiltonian mechanics. For example, the concept of a twisted derivation is borrowed from algebraic geometry for developing a discrete calculus. The theory is applied to a nonlinear pendulum and we compare the dynamics obtained through a discrete modelling approach with the dynamics obtained via the usual discretization procedures. Also an example of an energy-conserving algorithm on a simple harmonic oscillator is presented, and its effect on the Poisson structure is discussed
Discrete Riccati equation solutions: Distributed algorithms
Directory of Open Access Journals (Sweden)
D. G. Lainiotis
1996-01-01
Full Text Available In this paper new distributed algorithms for the solution of the discrete Riccati equation are introduced. The algorithms are used to provide robust and computational efficient solutions to the discrete Riccati equation. The proposed distributed algorithms are theoretically interesting and computationally attractive.
Cuspidal discrete series for semisimple symmetric spaces
DEFF Research Database (Denmark)
Andersen, Nils Byrial; Flensted-Jensen, Mogens; Schlichtkrull, Henrik
2012-01-01
We propose a notion of cusp forms on semisimple symmetric spaces. We then study the real hyperbolic spaces in detail, and show that there exists both cuspidal and non-cuspidal discrete series. In particular, we show that all the spherical discrete series are non-cuspidal. (C) 2012 Elsevier Inc. All...
Current Density and Continuity in Discretized Models
Boykin, Timothy B.; Luisier, Mathieu; Klimeck, Gerhard
2010-01-01
Discrete approaches have long been used in numerical modelling of physical systems in both research and teaching. Discrete versions of the Schrodinger equation employing either one or several basis functions per mesh point are often used by senior undergraduates and beginning graduate students in computational physics projects. In studying…
Variance Swap Replication: Discrete or Continuous?
Directory of Open Access Journals (Sweden)
Fabien Le Floc’h
2018-02-01
Full Text Available The popular replication formula to price variance swaps assumes continuity of traded option strikes. In practice, however, there is only a discrete set of option strikes traded on the market. We present here different discrete replication strategies and explain why the continuous replication price is more relevant.
Geometry and Hamiltonian mechanics on discrete spaces
Talasila, V.; Clemente Gallardo, J.J.; Clemente-Gallardo, J.; van der Schaft, Arjan
2004-01-01
Numerical simulation is often crucial for analysing the behaviour of many complex systems which do not admit analytic solutions. To this end, one either converts a 'smooth' model into a discrete (in space and time) model, or models systems directly at a discrete level. The goal of this paper is to
Handbook on modelling for discrete optimization
Pitsoulis, Leonidas; Williams, H
2006-01-01
The primary objective underlying the Handbook on Modelling for Discrete Optimization is to demonstrate and detail the pervasive nature of Discrete Optimization. While its applications cut across an incredibly wide range of activities, many of the applications are only known to specialists. It is the aim of this handbook to correct this. It has long been recognized that "modelling" is a critically important mathematical activity in designing algorithms for solving these discrete optimization problems. Nevertheless solving the resultant models is also often far from straightforward. In recent years it has become possible to solve many large-scale discrete optimization problems. However, some problems remain a challenge, even though advances in mathematical methods, hardware, and software technology have pushed the frontiers forward. This handbook couples the difficult, critical-thinking aspects of mathematical modeling with the hot area of discrete optimization. It will be done in an academic handbook treatment...
Component Evaluation of a Computer Based Format for Teaching Discrete Trial and Backward Chaining
Nosik, Melissa R.; Williams, W. Larry
2011-01-01
The effectiveness of a multi-component computer based training package that consisted of competency based instructions, video modeling, and two forms of feedback was evaluated in terms of treatment integrity of two procedures across four staff. Treatment integrity in completing critical steps of discrete-trial and backward chaining procedures were…
Naz, Rehana
2018-01-01
Pontrygin-type maximum principle is extended for the present value Hamiltonian systems and current value Hamiltonian systems of nonlinear difference equations for uniform time step $h$. A new method termed as a discrete time current value Hamiltonian method is established for the construction of first integrals for current value Hamiltonian systems of ordinary difference equations arising in Economic growth theory.
Discrete element simulation of internal stress in SiCp/aluminum ...
African Journals Online (AJOL)
When the calculation loop reaches 210,000 time steps, the contact pressure tends to uniformity, but the distribution of contact tension becomes sparser. The contacts between the discrete units are approximately scattered and the contact tension is close to zero and the contact pressure is evenly even-distributed. Keywords: ...
International Nuclear Information System (INIS)
Duwel, A.E.; Watanabe, S.; Trias, E.; Orlando, T.P.; van der Zant, H.S.; Strogatz, S.H.
1997-01-01
New resonance steps are found in the experimental current-voltage characteristics of long, discrete, one-dimensional Josephson junction arrays with open boundaries and in an external magnetic field. The junctions are underdamped, connected in parallel, and dc biased. Numerical simulations based on the discrete sine-Gordon model are carried out, and show that the solutions on the steps are periodic trains of fluxons, phase locked by a finite amplitude radiation. Power spectra of the voltages consist of a small number of harmonic peaks, which may be exploited for possible oscillator applications. The steps form a family that can be numbered by the harmonic content of the radiation, the first member corresponding to the Eck step. Discreteness of the arrays is shown to be essential for appearance of the higher order steps. We use a multimode extension of the harmonic balance analysis, and estimate the resonance frequencies, the ac voltage amplitudes, and the theoretical limit on the output power on the first two steps. copyright 1997 American Institute of Physics
Discrete frequency slice wavelet transform
Yan, Zhonghong; Tao, Ting; Jiang, Zhongwei; Wang, Haibin
2017-11-01
This paper introduces a new kind of Time-Frequency Representation (TFR) method called Discrete Frequency Slice Wavelet Transform (DFSWT). It is an improved version of Frequency Slice Wavelet Transform (FSWT). The previous researches on FSWT show that it is a new efficient TFR in an easy way without strict limitation as traditional wavelet theory. DFSWT as well as FSWT are defined directly in frequency domain, and still keep its properties in time-frequency domain as FSWT decomposition, reconstruction and filter design, etc. However, the original signal is decomposed and reconstructed on a Chosen Frequency Domains (CFD) as need of application. CFD means that the decomposition and reconstruction are not completed on all frequency components. At first, it is important to discuss the necessary condition of CFD to reconstruct the original signal. And then based on norm l2, an optimization algorithm is introduced to reconstruct the original signal even accurately. Finally, for a test example, the TFR analysis of a real life signal is shown. Some conclusions are drawn that the concept of CFD is very useful to application, and the DFSWT can become a simple and easy tool of TFR method, and also provide a new idea of low speed sampling of high frequency signal in applications.
Succinct Sampling from Discrete Distributions
DEFF Research Database (Denmark)
Bringmann, Karl; Larsen, Kasper Green
2013-01-01
We revisit the classic problem of sampling from a discrete distribution: Given n non-negative w-bit integers x_1,...,x_n, the task is to build a data structure that allows sampling i with probability proportional to x_i. The classic solution is Walker's alias method that takes, when implemented...... on a Word RAM, O(n) preprocessing time, O(1) expected query time for one sample, and n(w+2 lg n+o(1)) bits of space. Using the terminology of succinct data structures, this solution has redundancy 2n lg n+o(n) bits, i.e., it uses 2n lg n+o(n) bits in addition to the information theoretic minimum required...... requirement of the classic solution for a fundamental sampling problem, on the other hand, they provide the strongest known separation between the systematic and non-systematic case for any data structure problem. Finally, we also believe our upper bounds are practically efficient and simpler than Walker...
Computational Abstraction Steps
DEFF Research Database (Denmark)
Thomsen, Lone Leth; Thomsen, Bent; Nørmark, Kurt
2010-01-01
and class instantiations. Our teaching experience shows that many novice programmers find it difficult to write programs with abstractions that materialise to concrete objects later in the development process. The contribution of this paper is the idea of initiating a programming process by creating......In this paper we discuss computational abstraction steps as a way to create class abstractions from concrete objects, and from examples. Computational abstraction steps are regarded as symmetric counterparts to computational concretisation steps, which are well-known in terms of function calls...
Gidon, Alexandre; Bardin, Sabine; Cinquin, Bertrand; Boulanger, Jerome; Waharte, François; Heliot, Laurent; de la Salle, Henri; Hanau, Daniel; Kervrann, Charles; Goud, Bruno; Salamero, Jean
2012-06-01
A large body of knowledge relating to the constitution of Rab GTPase/Rab effector complexes and their impact on both membrane domain organization and overall membrane trafficking has been built up in recent years. However in the context of the live cell there are still many questions that remain to be answered, such as where and when these complexes assemble and where they perform their primary function(s). We describe here the dynamic processes that take place in the final steps of the Rab11A dependent recycling pathway, in the context of the membrane platform constituted by Myosin Vb, Rab11A, and Rab11-FIP2. We first confirm that a series of previously reported observations obtained during the study of a number of trafficking cargoes also apply to langerin. Langerin is a cargo molecule that traffics through Rab11A-positive membrane domains of the endosomal recycling pathway. In order to explore the relative dynamics of this set of partners, we make extensive use of a combinatory approach of Live-FRET, fast FRAP video, fast confocal and TIRF microscopy modalities. Our data show that the Myosin Vb/Rab11A/Rab11-FIP2 platform is spatially involved in the regulation of langerin trafficking at two distinct sites within live cells, first at the sorting site in the endosomal recycling compartment (ERC) where transport vesicles are formed, and subsequently, in a strict time-defined order, at the very late stage of docking/tethering and fusion of these langerin recycling vesicles to the plasma membrane. © 2012 John Wiley & Sons A/S.
Compatible Spatial Discretizations for Partial Differential Equations
Energy Technology Data Exchange (ETDEWEB)
Arnold, Douglas, N, ed.
2004-11-25
From May 11--15, 2004, the Institute for Mathematics and its Applications held a hot topics workshop on Compatible Spatial Discretizations for Partial Differential Equations. The numerical solution of partial differential equations (PDE) is a fundamental task in science and engineering. The goal of the workshop was to bring together a spectrum of scientists at the forefront of the research in the numerical solution of PDEs to discuss compatible spatial discretizations. We define compatible spatial discretizations as those that inherit or mimic fundamental properties of the PDE such as topology, conservation, symmetries, and positivity structures and maximum principles. A wide variety of discretization methods applied across a wide range of scientific and engineering applications have been designed to or found to inherit or mimic intrinsic spatial structure and reproduce fundamental properties of the solution of the continuous PDE model at the finite dimensional level. A profusion of such methods and concepts relevant to understanding them have been developed and explored: mixed finite element methods, mimetic finite differences, support operator methods, control volume methods, discrete differential forms, Whitney forms, conservative differencing, discrete Hodge operators, discrete Helmholtz decomposition, finite integration techniques, staggered grid and dual grid methods, etc. This workshop seeks to foster communication among the diverse groups of researchers designing, applying, and studying such methods as well as researchers involved in practical solution of large scale problems that may benefit from advancements in such discretizations; to help elucidate the relations between the different methods and concepts; and to generally advance our understanding in the area of compatible spatial discretization methods for PDE. Particular points of emphasis included: + Identification of intrinsic properties of PDE models that are critical for the fidelity of numerical
Focal cryotherapy: step by step technique description.
Redondo, Cristina; Srougi, Victor; da Costa, José Batista; Baghdad, Mohammed; Velilla, Guillermo; Nunes-Silva, Igor; Bergerat, Sebastien; Garcia-Barreras, Silvia; Rozet, François; Ingels, Alexandre; Galiano, Marc; Sanchez-Salas, Rafael; Barret, Eric; Cathelineau, Xavier
2017-01-01
Focal cryotherapy emerged as an efficient option to treat favorable and localized prostate cancer (PCa). The purpose of this video is to describe the procedure step by step. We present the case of a 68 year-old man with localized PCa in the anterior aspect of the prostate. The procedure is performed under general anesthesia, with the patient in lithotomy position. Briefly, the equipament utilized includes the cryotherapy console coupled with an ultrasound system, argon and helium gas bottles, cryoprobes, temperature probes and an urethral warming catheter. The procedure starts with a real-time trans-rectal prostate ultrasound, which is used to outline the prostate, the urethra and the rectal wall. The cryoprobes are pretested and placed in to the prostate through the perineum, following a grid template, along with the temperature sensors under ultrasound guidance. A cystoscopy confirms the right positioning of the needles and the urethral warming catheter is installed. Thereafter, the freeze sequence with argon gas is started, achieving extremely low temperatures (-40ºC) to induce tumor cell lysis. Sequentially, the thawing cycle is performed using helium gas. This process is repeated one time. Results among several series showed a biochemical disease-free survival between 71-93% at 9-70 month- follow-up, incontinence rates between 0-3.6% and erectile dysfunction between 0-42% (1-5). Focal cryotherapy is a feasible procedure to treat anterior PCa that may offer minimal morbidity, allowing good cancer control and better functional outcomes when compared to whole-gland treatment. Copyright® by the International Brazilian Journal of Urology.
Focal cryotherapy: step by step technique description
Directory of Open Access Journals (Sweden)
Cristina Redondo
Full Text Available ABSTRACT Introduction and objective: Focal cryotherapy emerged as an efficient option to treat favorable and localized prostate cancer (PCa. The purpose of this video is to describe the procedure step by step. Materials and methods: We present the case of a 68 year-old man with localized PCa in the anterior aspect of the prostate. Results: The procedure is performed under general anesthesia, with the patient in lithotomy position. Briefly, the equipment utilized includes the cryotherapy console coupled with an ultrasound system, argon and helium gas bottles, cryoprobes, temperature probes and an urethral warming catheter. The procedure starts with a real-time trans-rectal prostate ultrasound, which is used to outline the prostate, the urethra and the rectal wall. The cryoprobes are pretested and placed in to the prostate through the perineum, following a grid template, along with the temperature sensors under ultrasound guidance. A cystoscopy confirms the right positioning of the needles and the urethral warming catheter is installed. Thereafter, the freeze sequence with argon gas is started, achieving extremely low temperatures (-40°C to induce tumor cell lysis. Sequentially, the thawing cycle is performed using helium gas. This process is repeated one time. Results among several series showed a biochemical disease-free survival between 71-93% at 9-70 month- follow-up, incontinence rates between 0-3.6% and erectile dysfunction between 0-42% (1–5. Conclusions: Focal cryotherapy is a feasible procedure to treat anterior PCa that may offer minimal morbidity, allowing good cancer control and better functional outcomes when compared to whole-gland treatment.
On the definition of discrete hydrodynamic variables
Español, Pep; Zúñiga, Ignacio
2009-10-01
The Green-Kubo formula for discrete hydrodynamic variables involves information about not only the fluid transport coefficients but also about discrete versions of the differential operators that govern the evolution of the discrete variables. This gives an intimate connection between discretization procedures in fluid dynamics and coarse-graining procedures used to obtain hydrodynamic behavior of molecular fluids. We observed that a natural definition of discrete hydrodynamic variables in terms of Voronoi cells leads to a Green-Kubo formula which is divergent, rendering the full coarse-graining strategy useless. In order to understand this subtle issue, in the present paper we consider the coarse graining of noninteracting Brownian particles. The discrete hydrodynamic variable for this problem is the number of particles within Voronoi cells. Thanks to the simplicity of the model we spot the origin of the singular behavior of the correlation functions. We offer an alternative definition, based on the concept of a Delaunay cell that behaves properly, suggesting the use of the Delaunay construction for the coarse graining of molecular fluids at the discrete hydrodynamic level.
Higher dimensional discrete Cheeger inequalities
Directory of Open Access Journals (Sweden)
Anna Gundert
2015-01-01
Full Text Available For graphs there exists a strong connection between spectral and combinatorial expansion properties. This is expressed, e.g., by the discrete Cheeger inequality, the lower bound of which states that $\\lambda(G \\leq h(G$, where $\\lambda(G$ is the second smallest eigenvalue of the Laplacian of a graph $G$ and $h(G$ is the Cheeger constant measuring the edge expansion of $G$. We are interested in generalizations of expansion properties to finite simplicial complexes of higher dimension (or uniform hypergraphs. Whereas higher dimensional Laplacians were introduced already in 1945 by Eckmann, the generalization of edge expansion to simplicial complexes is not straightforward. Recently, a topologically motivated notion analogous to edge expansion that is based on $\\mathbb{Z}_2$-cohomology was introduced by Gromov and independently by Linial, Meshulam and Wallach. It is known that for this generalization there is no direct higher dimensional analogue of the lower bound of the Cheeger inequality. A different, combinatorially motivated generalization of the Cheeger constant, denoted by $h(X$, was studied by Parzanchevski, Rosenthal and Tessler. They showed that indeed $\\lambda(X \\leq h(X$, where $\\lambda(X$ is the smallest non-trivial eigenvalue of the ($(k-1$-dimensional upper Laplacian, for the case of $k$-dimensional simplicial complexes $X$ with complete $(k-1$-skeleton. Whether this inequality also holds for $k$-dimensional complexes with non-com\\-plete$(k-1$-skeleton has been an open question.We give two proofs of the inequality for arbitrary complexes. The proofs differ strongly in the methods and structures employed,and each allows for a different kind of additional strengthening of the original result.
Thermodynamics of discrete-charge quantum circuits
Energy Technology Data Exchange (ETDEWEB)
Utreras-Díaz, C.A., E-mail: cutreras@uach.cl [Instituto de Ciencias Físicas y Matemáticas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja s/n, Casilla 567, Valdivia (Chile); Laroze, D., E-mail: dlarozen@uta.cl [Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica (Chile); SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)
2015-11-01
We study a dilute gas made of quantum circuits with discrete charge, interacting with a thermal reservoir at absolute temperature T, using Boltzmann statistics. This system is described by a quantum Hamiltonian that explicitly includes the effect of the discrete nature of the electric charge within a circuit approach. The eigenfunctions can be expressed as solutions of the Mathieu equation, and the energy spectrum is related to its characteristic values. We also make a comparative numerical study of the thermal properties, between the quantum case with discrete charge, and the so-called semiclassical approximation.
Discrete Flavour Symmetries from the Heisenberg Group
Floratos, E.G.
2016-01-01
Non-abelian discrete symmetries are of particular importance in model building. They are mainly invoked to explain the various fermion mass hierarchies and forbid dangerous superpotential terms. In string models they are usually associated to the geometry of the compactification manifold and more particularly to the magnetised branes in toroidal compactifications. Motivated by these facts, in this note we propose a unified framework to construct representations of finite discrete family groups based on the automorphisms of the discrete and finite Heisenberg group. We focus in particular in the $PSL_2(p)$ groups which contain the phenomenologically interesting cases.
Discrete-Time Biomedical Signal Encryption
Directory of Open Access Journals (Sweden)
Victor Grigoraş
2017-12-01
Full Text Available Chaotic modulation is a strong method of improving communication security. Analog and discrete chaotic systems are presented in actual literature. Due to the expansion of digital communication, discrete-time systems become more efficient and closer to actual technology. The present contribution offers an in-depth analysis of the effects chaos encryption produce on 1D and 2D biomedical signals. The performed simulations show that modulating signals are precisely recovered by the synchronizing receiver if discrete systems are digitally implemented and the coefficients precisely correspond. Channel noise is also applied and its effects on biomedical signal demodulation are highlighted.
Ensemble simulations with discrete classical dynamics
DEFF Research Database (Denmark)
Toxværd, Søren
2013-01-01
{E}(h)$ is employed to determine the relation with the corresponding energy, $E$ for the analytic dynamics with $h=0$ and the zero-order estimate $E_0(h)$ of the energy for discrete dynamics, appearing in the literature for MD with VA. We derive a corresponding time reversible VA algorithm for canonical dynamics......For discrete classical Molecular dynamics (MD) obtained by the "Verlet" algorithm (VA) with the time increment $h$ there exist a shadow Hamiltonian $\\tilde{H}$ with energy $\\tilde{E}(h)$, for which the discrete particle positions lie on the analytic trajectories for $\\tilde{H}$. $\\tilde...
Discrete Tomography and Imaging of Polycrystalline Structures
DEFF Research Database (Denmark)
Alpers, Andreas
Laboratory for Sustainable Energy), for instance, we study polycrystalline materials via synchrotron X-ray diffraction. Several reconstruction problems arise, most of them exhibit inherently discrete aspects. In this talk I want to give a concise mathematical introduction to some of these reconstruction...... problems. Special focus is on their relationship to classical discrete tomography. Several open mathematical questions will be mentioned along the way.......High resolution transmission electron microscopy is commonly considered as the standard application for discrete tomography. While this has yet to be technically realized, new applications with a similar flavor have emerged in materials science. In our group at Ris� DTU (Denmark's National...
Hairs of discrete symmetries and gravity
Directory of Open Access Journals (Sweden)
Kang Sin Choi
2017-06-01
Full Text Available Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete symmetries in the Universe must involve the vacuum expectation values of Higgs fields, a string-like configuration (hair at the intersection of domain walls in the Higgs vacua can be realized. Therefore, we argue that discrete charges are also respected by gravity.
Hairs of discrete symmetries and gravity
Energy Technology Data Exchange (ETDEWEB)
Choi, Kang Sin [Scranton Honors Program, Ewha Womans University, Seodaemun-Gu, Seoul 03760 (Korea, Republic of); Center for Fields, Gravity and Strings, CTPU, Institute for Basic Sciences, Yuseong-Gu, Daejeon 34047 (Korea, Republic of); Kim, Jihn E., E-mail: jihnekim@gmail.com [Department of Physics, Kyung Hee University, 26 Gyungheedaero, Dongdaemun-Gu, Seoul 02447 (Korea, Republic of); Center for Axion and Precision Physics Research (IBS), 291 Daehakro, Yuseong-Gu, Daejeon 34141 (Korea, Republic of); Kyae, Bumseok [Department of Physics, Pusan National University, 2 Busandaehakro-63-Gil, Geumjeong-Gu, Busan 46241 (Korea, Republic of); Nam, Soonkeon [Department of Physics, Kyung Hee University, 26 Gyungheedaero, Dongdaemun-Gu, Seoul 02447 (Korea, Republic of)
2017-06-10
Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete symmetries in the Universe must involve the vacuum expectation values of Higgs fields, a string-like configuration (hair) at the intersection of domain walls in the Higgs vacua can be realized. Therefore, we argue that discrete charges are also respected by gravity.
The golgin GMAP-210 is required for efficient membrane trafficking in the early secretory pathway
Roboti, Peristera; Sato, Keisuke; Lowe, Martin
2015-01-01
Golgins are coiled-coil proteins that participate in membrane-tethering events at the Golgi complex. Golgin-mediated tethering is thought to be important for vesicular trafficking and Golgi organization. However, the degree to which individual golgins contribute to these processes is poorly defined, and it has been proposed that golgins act in a largely redundant manner. Previous studies on the golgin GMAP-210 (also known as TRIP11), which is mutated in the rare skeletal disorder achondrogene...
Temkin, Paul; Lauffer, Ben; Jäger, Stefanie; Cimermancic, Peter; Krogan, Nevan J; von Zastrow, Mark
2011-06-01
Endocytic sorting of signalling receptors between recycling and degradative pathways is a key cellular process controlling the surface complement of receptors and, accordingly, the cell's ability to respond to specific extracellular stimuli. The β2 adrenergic receptor (β2AR) is a prototypical seven-transmembrane signalling receptor that recycles rapidly and efficiently to the plasma membrane after ligand-induced endocytosis. β2AR recycling is dependent on the receptor's carboxy-terminal PDZ ligand and Rab4. This active sorting process is required for functional resensitization of β2AR-mediated signalling. Here we show that sequence-directed sorting occurs at the level of entry into retromer tubules and that retromer tubules are associated with Rab4. Furthermore, we show that sorting nexin 27 (SNX27) serves as an essential adaptor protein linking β2ARs to the retromer tubule. SNX27 does not seem to directly interact with the retromer core complex, but does interact with the retromer-associated Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) complex. The present results identify a role for retromer in endocytic trafficking of signalling receptors, in regulating a receptor-linked signalling pathway, and in mediating direct endosome-to-plasma membrane traffic.
Cholesterol depletion of enterocytes. Effect on the Golgi complex and apical membrane trafficking
DEFF Research Database (Denmark)
Hansen, Gert Helge; Niels-Christiansen, L L; Thorsen, Evy
2000-01-01
Intestinal brush border enzymes, including aminopeptidase N and sucrase-isomaltase, are associated with "rafts" (membrane microdomains rich in cholesterol and sphingoglycolipids). To assess the functional role of rafts in the present work, we studied the effect of cholesterol depletion on apical......, the rates of the Golgi-associated complex glycosylation and association with rafts of newly synthesized aminopeptidase N were reduced, and less of the enzyme had reached the brush border membrane after 2 h of labeling. In contrast, the basolateral Na(+)/K(+)-ATPase was neither missorted nor raft...
The Golgi puppet master: COG complex at center stage of membrane trafficking interactions.
Willett, Rose; Ungar, Daniel; Lupashin, Vladimir
2013-09-01
The central organelle within the secretory pathway is the Golgi apparatus, a collection of flattened membranes organized into stacks. The cisternal maturation model of intra-Golgi transport depicts Golgi cisternae that mature from cis to medial to trans by receiving resident proteins, such as glycosylation enzymes via retrograde vesicle-mediated recycling. The conserved oligomeric Golgi (COG) complex, a multi-subunit tethering complex of the complexes associated with tethering containing helical rods family, organizes vesicle targeting during intra-Golgi retrograde transport. The COG complex, both physically and functionally, interacts with all classes of molecules maintaining intra-Golgi trafficking, namely SNAREs, SNARE-interacting proteins, Rabs, coiled-coil tethers, vesicular coats, and molecular motors. In this report, we will review the current state of the COG interactome and analyze possible scenarios for the molecular mechanism of the COG orchestrated vesicle targeting, which plays a central role in maintaining glycosylation homeostasis in all eukaryotic cells.
Vergne, Isabelle; Chua, Jennifer; Deretic, Vojo
2003-09-01
The ability of Mycobacterium tuberculosis to enter host macrophages, and reside in a phagosome, which does not mature into a phagolysosome, is central to the spread of tuberculosis and the associated pandemic involving billions of people worldwide. Tuberculosis can be viewed as a disease with a significant intracellular trafficking and organellar biogenesis component. Current understanding of the block in M. tuberculosis phagosome maturation also sheds light on fundamental aspects of phagolysosome biogenesis. The maturation block involves interference with the recruitment and function of rabs, rab effectors (phosphatidylinositol 3-kinases and tethering molecules such as EEA1), SNAREs (Syntaxin 6 and cellubrevin) and Ca2+/calmodulin signaling. M. tuberculosis analogs of mammalian phosphatidylinositols interfere with these systems and associated processes.
Ankyrin regulates KATP channel membrane trafficking and gating in excitable cells
Kline, Crystal F.; Hund, Thomas J.; Mohler, Peter J.
2013-01-01
K(ATP) channels play critical roles in many cellular functions by coupling cell metabolic status to electrical activity. First discovered in cardiomyocytes,1 KATP channels (comprised of Kir6.x and SUR subunits) have since been found in many other tissues, including pancreatic beta cells, skeletal muscle, smooth muscle, brain, pituitary and kidney. By linking cellular metabolic state with membrane potential, KATP channels are able to regulate a number of cellular functions such as hormone secretion, vascular tone and excitability. Specifically, a reduction in metabolism causes a decrease in the ATP:ADP ratio, opening of KATP channels, K+ efflux, membrane hyperpolarization, and suppression of electrical activity. Conversely, increased cellular metabolism causes an increase in the ATP:ADP ratio that leads to closure of the KATP channel, membrane depolarization, and stimulation of cell electrical activity. PMID:19901534
Mulder, W.A.; Zhebel, E.; Minisini, S.
2013-01-01
We analyse the time-stepping stability for the 3-D acoustic wave equation, discretized on tetrahedral meshes. Two types of methods are considered: mass-lumped continuous finite elements and the symmetric interior-penalty discontinuous Galerkin method. Combining the spatial discretization with the
Space-time adaptive solution of inverse problems with the discrete adjoint method
Alexe, Mihai; Sandu, Adrian
2014-08-01
This paper develops a framework for the construction and analysis of discrete adjoint sensitivities in the context of time dependent, adaptive grid, adaptive step models. Discrete adjoints are attractive in practice since they can be generated with low effort using automatic differentiation. However, this approach brings several important challenges. The space-time adjoint of the forward numerical scheme may be inconsistent with the continuous adjoint equations. A reduction in accuracy of the discrete adjoint sensitivities may appear due to the inter-grid transfer operators. Moreover, the optimization algorithm may need to accommodate state and gradient vectors whose dimensions change between iterations. This work shows that several of these potential issues can be avoided through a multi-level optimization strategy using discontinuous Galerkin (DG) hp-adaptive discretizations paired with Runge-Kutta (RK) time integration. We extend the concept of dual (adjoint) consistency to space-time RK-DG discretizations, which are then shown to be well suited for the adaptive solution of time-dependent inverse problems. Furthermore, we prove that DG mesh transfer operators on general meshes are also dual consistent. This allows the simultaneous derivation of the discrete adjoint for both the numerical solver and the mesh transfer logic with an automatic code generation mechanism such as algorithmic differentiation (AD), potentially speeding up development of large-scale simulation codes. The theoretical analysis is supported by numerical results reported for a two-dimensional non-stationary inverse problem.
Comparing the Discrete and Continuous Logistic Models
Gordon, Sheldon P.
2008-01-01
The solutions of the discrete logistic growth model based on a difference equation and the continuous logistic growth model based on a differential equation are compared and contrasted. The investigation is conducted using a dynamic interactive spreadsheet. (Contains 5 figures.)
Can time be a discrete dynamical variable
International Nuclear Information System (INIS)
Lee, T.D.
1983-01-01
The possibility that time can be regarded as a discrete dynamical variable is examined through all phases of mechanics: from classical mechanics to nonrelativistic quantum mechanics, and to relativistic quantum field theories. (orig.)
Breatherlike impurity modes in discrete nonlinear lattices
DEFF Research Database (Denmark)
Hennig, D.; Rasmussen, Kim; Tsironis, G. P.
1995-01-01
We investigate the properties of a disordered generalized discrete nonlinear Schrodinger equation, containing both diagonal and nondiagonal nonlinear terms. The equation models a Linear host lattice doped with nonlinear impurities. We find different types of impurity states that form itinerant...
Confining and Structuring Discretion: Discretionary Justice
Davis, Kenneth Culp
1971-01-01
Locate the injustice in our entire government and legal system in order to best improve the quality of justice to individuals where decisions are made by discretion and not by rule or principles. (Editor/IR)
Running Parallel Discrete Event Simulators on Sierra
Energy Technology Data Exchange (ETDEWEB)
Barnes, P. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jefferson, D. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-12-03
In this proposal we consider porting the ROSS/Charm++ simulator and the discrete event models that run under its control so that they run on the Sierra architecture and make efficient use of the Volta GPUs.
Quotient of manifolds by discrete groups
International Nuclear Information System (INIS)
Ardalan, F.; Arfaei, H.
1985-09-01
Quotient of manifolds by discrete subgroups of their isometry group are considered. In particular, symmetry breaking due to the quotient structure, topological properties and harmonic analysis of the resultant manifolds are discussed and illustrated by two dimensional examples. (author)
Memorized discrete systems and time-delay
Luo, Albert C J
2017-01-01
This book examines discrete dynamical systems with memory—nonlinear systems that exist extensively in biological organisms and financial and economic organizations, and time-delay systems that can be discretized into the memorized, discrete dynamical systems. It book further discusses stability and bifurcations of time-delay dynamical systems that can be investigated through memorized dynamical systems as well as bifurcations of memorized nonlinear dynamical systems, discretization methods of time-delay systems, and periodic motions to chaos in nonlinear time-delay systems. The book helps readers find analytical solutions of MDS, change traditional perturbation analysis in time-delay systems, detect motion complexity and singularity in MDS; and determine stability, bifurcation, and chaos in any time-delay system.
On organizing principles of discrete differential geometry. Geometry of spheres
International Nuclear Information System (INIS)
Bobenko, Alexander I; Suris, Yury B
2007-01-01
Discrete differential geometry aims to develop discrete equivalents of the geometric notions and methods of classical differential geometry. This survey contains a discussion of the following two fundamental discretization principles: the transformation group principle (smooth geometric objects and their discretizations are invariant with respect to the same transformation group) and the consistency principle (discretizations of smooth parametrized geometries can be extended to multidimensional consistent nets). The main concrete geometric problem treated here is discretization of curvature-line parametrized surfaces in Lie geometry. Systematic use of the discretization principles leads to a discretization of curvature-line parametrization which unifies circular and conical nets.
Definable maximal discrete sets in forcing extensions
DEFF Research Database (Denmark)
Törnquist, Asger Dag; Schrittesser, David
2018-01-01
Let be a Σ11 binary relation, and recall that a set A is -discrete if no two elements of A are related by . We show that in the Sacks and Miller forcing extensions of L there is a Δ12 maximal -discrete set. We use this to answer in the negative the main question posed in [5] by showing...
Nonlinear integrodifferential equations as discrete systems
Tamizhmani, K. M.; Satsuma, J.; Grammaticos, B.; Ramani, A.
1999-06-01
We analyse a class of integrodifferential equations of the `intermediate long wave' (ILW) type. We show that these equations can be formally interpreted as discrete, differential-difference systems. This allows us to link equations of this type with previous results of ours involving differential-delay equations and, on the basis of this, propose new integrable equations of ILW type. Finally, we extend this approach to pure difference equations and propose ILW forms for the discrete lattice KdV equation.
't Hooft anomaly matching for discrete symmetries
International Nuclear Information System (INIS)
Csaki, C.; Murayama, Hitoshi; Lawrence Berkeley National Lab., CA
1998-05-01
The authors show how to extend the 't Hooft anomaly matching conditions to discrete symmetries. They check these discrete anomally matching conditions on several proposed low-energy spectra of certain strongly interacting gauge theories. The excluded examples include the proposed chirally symmetric vacuum of pure N = 1 supersymmetric yang-Mills theories, certain non-supersymmetric confining theories and some self-dual N = 1 supersymmetric theories based on exceptional groups
Quadratic Term Structure Models in Discrete Time
Marco Realdon
2006-01-01
This paper extends the results on quadratic term structure models in continuos time to the discrete time setting. The continuos time setting can be seen as a special case of the discrete time one. Recursive closed form solutions for zero coupon bonds are provided even in the presence of multiple correlated underlying factors. Pricing bond options requires simple integration. Model parameters may well be time dependent without scuppering such tractability. Model estimation does not require a r...
Discrete symmetries and solar neutrino mixing
Energy Technology Data Exchange (ETDEWEB)
Kapetanakis, D.; Mayr, P.; Nilles, H.P. (Physik Dept., Technische Univ. Muenchen, Garching (Germany) Max-Planck-Inst. fuer Physik, Werner-Heisenberg-Inst., Muenchen (Germany))
1992-05-21
We study the question of resonant solar neutrino mixing in the framework of the supersymmetric extension of the standard model. Discrete symmetries that are consistent with solar neutrino mixing and proton stability are classified. In the minimal model they are shown to lead to two distinct patterns of allowed dimension-four operators. Imposing anomaly freedom, only three different discrete Z{sub N}-symmetries (with N=2, 3, 6) are found to be phenomenologically acceptable. (orig.).
Discrete symmetries and solar neutrino mixing
International Nuclear Information System (INIS)
Kapetanakis, D.; Mayr, P.; Nilles, H.P.
1992-01-01
We study the question of resonant solar neutrino mixing in the framework of the supersymmetric extension of the standard model. Discrete symmetries that are consistent with solar neutrino mixing and proton stability are classified. In the minimal model they are shown to lead to two distinct patterns of allowed dimension-four operators. Imposing anomaly freedom, only three different discrete Z N -symmetries (with N=2, 3, 6) are found to be phenomenologically acceptable. (orig.)
Discrete symmetries and coset space dimensional reduction
International Nuclear Information System (INIS)
Kapetanakis, D.; Zoupanos, G.
1989-01-01
We consider the discrete symmetries of all the six-dimensional coset spaces and we apply them in gauge theories defined in ten dimensions which are dimensionally reduced over these homogeneous spaces. Particular emphasis is given in the consequences of the discrete symmetries on the particle content as well as on the symmetry breaking a la Hosotani of the resulting four-dimensional theory. (orig.)
On discrete models of space-time
International Nuclear Information System (INIS)
Horzela, A.; Kempczynski, J.; Kapuscik, E.; Georgia Univ., Athens, GA; Uzes, Ch.
1992-02-01
Analyzing the Einstein radiolocation method we come to the conclusion that results of any measurement of space-time coordinates should be expressed in terms of rational numbers. We show that this property is Lorentz invariant and may be used in the construction of discrete models of space-time different from the models of the lattice type constructed in the process of discretization of continuous models. (author)
Application of multivariate splines to discrete mathematics
Xu, Zhiqiang
2005-01-01
Using methods developed in multivariate splines, we present an explicit formula for discrete truncated powers, which are defined as the number of non-negative integer solutions of linear Diophantine equations. We further use the formula to study some classical problems in discrete mathematics as follows. First, we extend the partition function of integers in number theory. Second, we exploit the relation between the relative volume of convex polytopes and multivariate truncated powers and giv...
Theoretical Basics of Teaching Discrete Mathematics
Directory of Open Access Journals (Sweden)
Y. A. Perminov
2012-01-01
Full Text Available The paper deals with the research findings concerning the process of mastering the theoretical basics of discrete mathematics by the students of vocational pedagogic profile. The methodological analysis is based on the subject and functions of the modern discrete mathematics and its role in mathematical modeling and computing. The modern discrete mathematics (i.e. mathematics of the finite type structures plays the important role in modernization of vocational training. It is especially rele- vant to training students for vocational pedagogic qualifications, as in the future they will be responsible for training the middle and the senior level specialists in engineer- ing and technical spheres. Nowadays in different industries, there arise the problems which require for their solving both continual – based on the classical mathematical methods – and discrete modeling. The teaching course of discrete mathematics for the future vocational teachers should be relevant to the target qualification and aimed at mastering the mathematical modeling, systems of computer mathematics and computer technologies. The author emphasizes the fundamental role of mastering the language of algebraic and serial structures, as well as the logical, algorithmic, combinatory schemes dominating in dis- crete mathematics. The guidelines for selecting the content of the course in discrete mathematics are specified. The theoretical findings of the research can be put into practice whilst developing curricula and working programs for bachelors and masters’ training.
Recent developments in discrete ordinates electron transport
International Nuclear Information System (INIS)
Morel, J.E.; Lorence, L.J. Jr.
1986-01-01
The discrete ordinates method is a deterministic method for numerically solving the Boltzmann equation. It was originally developed for neutron transport calculations, but is routinely used for photon and coupled neutron-photon transport calculations as well. The computational state of the art for coupled electron-photon transport (CEPT) calculations is not as developed as that for neutron transport calculations. The only production codes currently available for CEPT calculations are condensed-history Monte Carlo codes such as the ETRAN and ITS codes. A deterministic capability for production calculations is clearly needed. In response to this need, we have begun the development of a production discrete ordinates code for CEPT calculations. The purpose of this paper is to describe the basic approach we are taking, discuss the current status of the project, and present some new computational results. Although further characterization of the coupled electron-photon discrete ordinates method remains to be done, the results to date indicate that the discrete ordinates method can be just as accurate and from 10 to 100 times faster than the Monte Carlo method for a wide variety of problems. We stress that these results are obtained with standard discrete ordinates codes such as ONETRAN. It is clear that even greater efficiency can be obtained by developing a new generation of production discrete ordinates codes specifically designed to solve the Boltzmann-Fokker-Planck equation. However, the prospects for such development in the near future appear to be remote
Discrete modeling considerations in multiphase fluid dynamics
International Nuclear Information System (INIS)
Ransom, V.H.; Ramshaw, J.D.
1988-01-01
The modeling of multiphase flows play a fundamental role in light water reactor safety. The main ingredients in our discrete modeling Weltanschauung are the following considerations: (1) Any physical model must be cast into discrete form for a digital computer. (2) The usual approach of formulating models in differential form and then discretizing them is potentially hazardous. It may be preferable to formulate the model in discrete terms from the outset. (3) Computer time and storage constraints limit the resolution that can be employed in practical calculations. These limits effectively define the physical phenomena, length scales, and time scales which cannot be directly represented in the calculation and therefore must be modeled. This information should be injected into the model formulation process at an early stage. (4) Practical resolution limits are generally so coarse that traditional convergence and truncation-error analyses become irrelevant. (5) A discrete model constitutes a reduced description of a physical system, from which fine-scale details are eliminated. This elimination creates a statistical closure problem. Methods from statistical physics may therefore be useful in the formulation of discrete models. In the present paper we elaborate on these themes and illustrate them with simple examples. 48 refs
Discrete symmetries and their stringy origin
International Nuclear Information System (INIS)
Mayorga Pena, Damian Kaloni
2014-05-01
Discrete symmetries have proven to be very useful in controlling the phenomenology of theories beyond the standard model. In this work we explore how these symmetries emerge from string compactifications. Our approach is twofold: On the one hand, we consider the heterotic string on orbifold backgrounds. In this case the discrete symmetries can be derived from the orbifold conformal field theory, and it can be shown that they are in close relation with the orbifold geometry. We devote special attention to R-symmetries, which arise from discrete remnants of the Lorentz group in compact space. Further we discuss the physical implications of these symmetries both in the heterotic mini-landscape and in newly constructed models based on the Z 2 x Z 4 orbifold. In both cases we observe that the discrete symmetries favor particular locations in the orbifold where the particles of standard model should live. On the other hand we consider a class of F-theory models exhibiting an SU(5) gauge group, times additional U(1) symmetries. In this case, the smooth compactification background does not permit us to track the discrete symmetries as transparently as in orbifold models. Hence, we follow a different approach and search for discrete subgroups emerging after the U(1)s are broken. We observe that in this approach it is possible to obtain the standard Z 2 matter parity of the MSSM.
Directory of Open Access Journals (Sweden)
Philip Garner
2015-08-01
Full Text Available Learning SQL is a common problem for many Computer Science (CS students, the steps involved are quite different to those mastered when learning procedural or object-oriented programming languages. The introduction of commercial products that include shortcuts into the learning environment can initially appear to benefit the student, however, transferring these skills to a textual environment can be difficult for many students. Computer Science students are required to build textual SQL queries because the demands of complex queries can quickly out grow the capabilities of graphical query builders available in many software packages. SQL in Steps (SiS is a graphical user interface centred around the textual translation of a query; this combination of a GUI and a clear representation of its textual meaning has the potential to improve the way in which users gain an understanding of SQL. SiS allows for an incremental and evolutionary development of queries by enabling students to build queries step by step until their goal is reached. A planned evaluation of SiS hopes to quantify the extent to which the introduction of such a user interface into the learning environment can improve the students' understanding of the language.
Melin, Mats H.
2007-01-01
n/a Dance devised by Mats Melin in October 2007 whilst teaching Ceilidh dancing on board the cruise ship Queen Mary 2 crossing the Atlantic from Southampton to New York and back with the Ian Muir Sound from Prestwick. The segment of music featured is from Ian Muir Scottish Dance Band's recording of an Eva Three step.
Directory of Open Access Journals (Sweden)
Julie Kearney
2016-11-01
Full Text Available 'Stepping in the River' is about the cultural misunderstandings and small betrayals that arise when First World tourists visit Third World countries. It is also about the enduring love that people in these countries can inspire, imperfect though that love may be.
Babah Daouda, Falylath; Ingenbleek, P.T.M.; Trijp, van H.C.M.
2016-01-01
With upcoming middle classes in Africa, micro-entrepreneurs witness new opportunities that can potentially lift them out of poverty. Exploiting these opportunities requires entrepreneurs to make a ‘step-change’ away from the bottom of the pyramid to middle-class markets. This process hosts
Single Molecule FRET Analysis of the 11 Discrete Steps of a DNA Actuator
DEFF Research Database (Denmark)
Hildebrandt, Lasse; Preus, Søren; Zhang, Zhao
2014-01-01
DNA hybridization allows the design and assembly of dynamic DNA-based molecular devices. Such structures usually accomplish their function by the addition of fuel strands that drive the structure from one conformation to a new one or by internal changes in DNA hybridization. We report here...... and nonautonomously. The 11 states of the actuator were investigated by single molecule Forster Resonance Energy Transfer (smFRET) microscopy to obtain information on the static and dynamic heterogeneities of the device. Our results show that the DNA actuator can be effectively locked in several conformations...... with the help of well-designed DNA lock strands. However, the device also shows pronounced static and dynamic heterogeneities both in the unlocked and locked modes, and we suggest possible structural models. Our study allows for the direct visualization of the conformational diversity and movement...
Time-stepped & discrete-event simulations of electromagnetic propulsion systems Project
National Aeronautics and Space Administration — The existing plasma codes are ill suited for modeling of mixed resolution problems, such as the plasma sail, where the system under study comprises subsystems with...
Time-stepped & discrete-event simulations of electromagnetic propulsion systems, Phase II
National Aeronautics and Space Administration — The existing plasma codes are ill suited for modeling of mixed resolution problems, such as the plasma sail, where the system under study comprises subsystems with...
Time-stepped & discrete-event simulations of electromagnetic propulsion systems, Phase I
National Aeronautics and Space Administration — We propose to develop a new generation of electromagnetic simulation codes with mixed resolution modeling capabilities. The need for such codes arises in many fields...
Toward Optimal Manifold Hashing via Discrete Locally Linear Embedding.
Rongrong Ji; Hong Liu; Liujuan Cao; Di Liu; Yongjian Wu; Feiyue Huang
2017-11-01
Binary code learning, also known as hashing, has received increasing attention in large-scale visual search. By transforming high-dimensional features to binary codes, the original Euclidean distance is approximated via Hamming distance. More recently, it is advocated that it is the manifold distance, rather than the Euclidean distance, that should be preserved in the Hamming space. However, it retains as an open problem to directly preserve the manifold structure by hashing. In particular, it first needs to build the local linear embedding in the original feature space, and then quantize such embedding to binary codes. Such a two-step coding is problematic and less optimized. Besides, the off-line learning is extremely time and memory consuming, which needs to calculate the similarity matrix of the original data. In this paper, we propose a novel hashing algorithm, termed discrete locality linear embedding hashing (DLLH), which well addresses the above challenges. The DLLH directly reconstructs the manifold structure in the Hamming space, which learns optimal hash codes to maintain the local linear relationship of data points. To learn discrete locally linear embeddingcodes, we further propose a discrete optimization algorithm with an iterative parameters updating scheme. Moreover, an anchor-based acceleration scheme, termed Anchor-DLLH, is further introduced, which approximates the large similarity matrix by the product of two low-rank matrices. Experimental results on three widely used benchmark data sets, i.e., CIFAR10, NUS-WIDE, and YouTube Face, have shown superior performance of the proposed DLLH over the state-of-the-art approaches.
International Nuclear Information System (INIS)
Haniger, L.; Elger, R.; Kocandrle, L.; Zdebor, J.
1986-01-01
A linear step drive is described developed in Czechoslovak-Soviet cooperation and intended for driving WWER-1000 control rods. The functional principle is explained of the motor and the mechanical and electrical parts of the drive, power control, and the indicator of position are described. The motor has latches situated in the reactor at a distance of 3 m from magnetic armatures, it has a low structural height above the reactor cover, which suggests its suitability for seismic localities. Its magnetic circuits use counterpoles; the mechanical shocks at the completion of each step are damped using special design features. The position indicator is of a special design and evaluates motor position within ±1% of total travel. A drive diagram and the flow chart of both the control electronics and the position indicator are presented. (author) 4 figs
Correction terms for propagators and d’Alembertians due to spacetime discreteness
International Nuclear Information System (INIS)
Johnston, Steven
2015-01-01
The causal set approach to quantum gravity models spacetime as a discrete structure—a causal set. Recent research has led to causal set models for the retarded propagator for the Klein–Gordon equation and the d’Alembertian operator. These models can be compared to their continuum counterparts via a sprinkling process. It has been shown that the models agree exactly with the continuum quantities in the limit of an infinite sprinkling density—the continuum limit. This paper obtains the correction terms for these models for sprinkled causal sets with a finite sprinkling density. These correction terms are an important step towards testable differences between the continuum and discrete models that could provide evidence of spacetime discreteness. (paper)
Discrete Feature Model (DFM) User Documentation
International Nuclear Information System (INIS)
Geier, Joel
2008-06-01
This manual describes the Discrete-Feature Model (DFM) software package for modelling groundwater flow and solute transport in networks of discrete features. A discrete-feature conceptual model represents fractures and other water-conducting features around a repository as discrete conductors surrounded by a rock matrix which is usually treated as impermeable. This approximation may be valid for crystalline rocks such as granite or basalt, which have very low permeability if macroscopic fractures are excluded. A discrete feature is any entity that can conduct water and permit solute transport through bedrock, and can be reasonably represented as a piecewise-planar conductor. Examples of such entities may include individual natural fractures (joints or faults), fracture zones, and disturbed-zone features around tunnels (e.g. blasting-induced fractures or stress-concentration induced 'onion skin' fractures around underground openings). In a more abstract sense, the effectively discontinuous nature of pathways through fractured crystalline bedrock may be idealized as discrete, equivalent transmissive features that reproduce large-scale observations, even if the details of connective paths (and unconnected domains) are not precisely known. A discrete-feature model explicitly represents the fundamentally discontinuous and irregularly connected nature of systems of such systems, by constraining flow and transport to occur only within such features and their intersections. Pathways for flow and solute transport in this conceptualization are a consequence not just of the boundary conditions and hydrologic properties (as with continuum models), but also the irregularity of connections between conductive/transmissive features. The DFM software package described here is an extensible code for investigating problems of flow and transport in geological (natural or human-altered) systems that can be characterized effectively in terms of discrete features. With this software, the
Discrete Feature Model (DFM) User Documentation
Energy Technology Data Exchange (ETDEWEB)
Geier, Joel (Clearwater Hardrock Consulting, Corvallis, OR (United States))
2008-06-15
This manual describes the Discrete-Feature Model (DFM) software package for modelling groundwater flow and solute transport in networks of discrete features. A discrete-feature conceptual model represents fractures and other water-conducting features around a repository as discrete conductors surrounded by a rock matrix which is usually treated as impermeable. This approximation may be valid for crystalline rocks such as granite or basalt, which have very low permeability if macroscopic fractures are excluded. A discrete feature is any entity that can conduct water and permit solute transport through bedrock, and can be reasonably represented as a piecewise-planar conductor. Examples of such entities may include individual natural fractures (joints or faults), fracture zones, and disturbed-zone features around tunnels (e.g. blasting-induced fractures or stress-concentration induced 'onion skin' fractures around underground openings). In a more abstract sense, the effectively discontinuous nature of pathways through fractured crystalline bedrock may be idealized as discrete, equivalent transmissive features that reproduce large-scale observations, even if the details of connective paths (and unconnected domains) are not precisely known. A discrete-feature model explicitly represents the fundamentally discontinuous and irregularly connected nature of systems of such systems, by constraining flow and transport to occur only within such features and their intersections. Pathways for flow and solute transport in this conceptualization are a consequence not just of the boundary conditions and hydrologic properties (as with continuum models), but also the irregularity of connections between conductive/transmissive features. The DFM software package described here is an extensible code for investigating problems of flow and transport in geological (natural or human-altered) systems that can be characterized effectively in terms of discrete features. With this
Jovanovic, B.; Nyarko, Y.
1996-01-01
People at the top of an occupational ladder earn more partly because they have spent time on lower rungs, where they have learned something. But what precisely do they learn? There are two contrasting views: First, the Bandit model assumes that people are different, that experience reveals their characteristics, and that consequently an occupational switch can result. Second, in our Stepping Stone model, experience raises a worker's productivity on a given task and the acquired skill can in p...
Philip Garner; John Mariani
2015-01-01
Learning SQL is a common problem for many Computer Science (CS) students, the steps involved are quite different to those mastered when learning procedural or object-oriented programming languages. The introduction of commercial products that include shortcuts into the learning environment can initially appear to benefit the student, however, transferring these skills to a textual environment can be difficult for many students. Computer Science students are required to build textual SQL queri...
Heller, Yuval
2012-01-01
We study a variant of the repeated Prisoner's Dilemma with uncertain horizon, in which each player chooses his foresight ability: that is, the timing in which he is informed about the realized length of the interaction. In addition, each player has an independent probability to observe the opponent's foresight ability. We show that if this probability is not too close to zero or one, then the game admits an evolutionarily stable strategy, in which agents who look one step ahead and agents who...
Convergence of posteriors for discretized log Gaussian Cox processes
DEFF Research Database (Denmark)
Waagepetersen, Rasmus Plenge
2004-01-01
In Markov chain Monte Carlo posterior computation for log Gaussian Cox processes (LGCPs) a discretization of the continuously indexed Gaussian field is required. It is demonstrated that approximate posterior expectations computed from discretized LGCPs converge to the exact posterior expectations...... when the cell sizes of the discretization tends to zero. The effect of discretization is studied in a data example....
Continuum limit of discrete Sommerfeld problems on square lattice
Indian Academy of Sciences (India)
A low-frequency approximation of the discrete Sommerfeld diffraction problems, involving the scattering of a time harmonic lattice wave incident on square lattice by a discrete Dirichlet or a discrete Neumann half-plane, is investigated. It is established that the exact solution of the discrete model converges to the solution of ...
Discrete Localized States and Localization Dynamics in Discrete Nonlinear Schrödinger Equations
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Gaididei, Yu.B.; Mezentsev, V.K.
1996-01-01
Dynamics of two-dimensional discrete structures is studied in the framework of the generalized two-dimensional discrete nonlinear Schrodinger equation. The nonlinear coupling in the form of the Ablowitz-Ladik nonlinearity is taken into account. Stability properties of the stationary solutions...
On the FACR( l) algorithm for the discrete Poisson equation
Temperton, Clive
1980-03-01
Direct methods for the solution of the discrete Poisson equation over a rectangle are commonly based either on Fourier transforms or on block-cyclic reduction. The relationship between these two approaches is demonstrated explicitly, and used to derive the FACR( l) algorithm in which the Fourier transform approach is combined with l preliminary steps of cyclic reduction. It is shown that the optimum choice of l leads to an algorithm for which the operation count per mesh point is almost independent of the mesh size. Numerical results concerning timing and round-off error are presented for the N × N Dirichlet problem for various values of N and l. Extensions to more general problems, and to implementation on parallel or vector computers are briefly discussed.
Improved stochastic approximation methods for discretized parabolic partial differential equations
Guiaş, Flavius
2016-12-01
We present improvements of the stochastic direct simulation method, a known numerical scheme based on Markov jump processes which is used for approximating solutions of ordinary differential equations. This scheme is suited especially for spatial discretizations of evolution partial differential equations (PDEs). By exploiting the full path simulation of the stochastic method, we use this first approximation as a predictor and construct improved approximations by Picard iterations, Runge-Kutta steps, or a combination. This has as consequence an increased order of convergence. We illustrate the features of the improved method at a standard benchmark problem, a reaction-diffusion equation modeling a combustion process in one space dimension (1D) and two space dimensions (2D).
A practical guide for operational validation of discrete simulation models
Directory of Open Access Journals (Sweden)
Fabiano Leal
2011-04-01
Full Text Available As the number of simulation experiments increases, the necessity for validation and verification of these models demands special attention on the part of the simulation practitioners. By analyzing the current scientific literature, it is observed that the operational validation description presented in many papers does not agree on the importance designated to this process and about its applied techniques, subjective or objective. With the expectation of orienting professionals, researchers and students in simulation, this article aims to elaborate a practical guide through the compilation of statistical techniques in the operational validation of discrete simulation models. Finally, the guide's applicability was evaluated by using two study objects, which represent two manufacturing cells, one from the automobile industry and the other from a Brazilian tech company. For each application, the guide identified distinct steps, due to the different aspects that characterize the analyzed distributions
Modeling discrete time-to-event data
Tutz, Gerhard
2016-01-01
This book focuses on statistical methods for the analysis of discrete failure times. Failure time analysis is one of the most important fields in statistical research, with applications affecting a wide range of disciplines, in particular, demography, econometrics, epidemiology and clinical research. Although there are a large variety of statistical methods for failure time analysis, many techniques are designed for failure times that are measured on a continuous scale. In empirical studies, however, failure times are often discrete, either because they have been measured in intervals (e.g., quarterly or yearly) or because they have been rounded or grouped. The book covers well-established methods like life-table analysis and discrete hazard regression models, but also introduces state-of-the art techniques for model evaluation, nonparametric estimation and variable selection. Throughout, the methods are illustrated by real life applications, and relationships to survival analysis in continuous time are expla...
Designing perturbative metamaterials from discrete models.
Matlack, Kathryn H; Serra-Garcia, Marc; Palermo, Antonio; Huber, Sebastian D; Daraio, Chiara
2018-04-01
Identifying material geometries that lead to metamaterials with desired functionalities presents a challenge for the field. Discrete, or reduced-order, models provide a concise description of complex phenomena, such as negative refraction, or topological surface states; therefore, the combination of geometric building blocks to replicate discrete models presenting the desired features represents a promising approach. However, there is no reliable way to solve such an inverse problem. Here, we introduce 'perturbative metamaterials', a class of metamaterials consisting of weakly interacting unit cells. The weak interaction allows us to associate each element of the discrete model with individual geometric features of the metamaterial, thereby enabling a systematic design process. We demonstrate our approach by designing two-dimensional elastic metamaterials that realize Veselago lenses, zero-dispersion bands and topological surface phonons. While our selected examples are within the mechanical domain, the same design principle can be applied to acoustic, thermal and photonic metamaterials composed of weakly interacting unit cells.
Symmetric, discrete fractional splines and Gabor systems
DEFF Research Database (Denmark)
Søndergaard, Peter Lempel
2006-01-01
In this paper we consider fractional splines as windows for Gabor frames. We introduce two new types of symmetric, fractional splines in addition to one found by Unser and Blu. For the finite, discrete case we present two families of splines: One is created by sampling and periodizing the continu......In this paper we consider fractional splines as windows for Gabor frames. We introduce two new types of symmetric, fractional splines in addition to one found by Unser and Blu. For the finite, discrete case we present two families of splines: One is created by sampling and periodizing...... the continuous splines, and one is a truly finite, discrete construction. We discuss the properties of these splines and their usefulness as windows for Gabor frames and Wilson bases....
The ultimatum game: Discrete vs. continuous offers
Dishon-Berkovits, Miriam; Berkovits, Richard
2014-09-01
In many experimental setups in social-sciences, psychology and economy the subjects are requested to accept or dispense monetary compensation which is usually given in discrete units. Using computer and mathematical modeling we show that in the framework of studying the dynamics of acceptance of proposals in the ultimatum game, the long time dynamics of acceptance of offers in the game are completely different for discrete vs. continuous offers. For discrete values the dynamics follow an exponential behavior. However, for continuous offers the dynamics are described by a power-law. This is shown using an agent based computer simulation as well as by utilizing an analytical solution of a mean-field equation describing the model. These findings have implications to the design and interpretation of socio-economical experiments beyond the ultimatum game.
Is Fitts' law continuous in discrete aiming?
Directory of Open Access Journals (Sweden)
Rita Sleimen-Malkoun
Full Text Available The lawful continuous linear relation between movement time and task difficulty (i.e., index of difficulty; ID in a goal-directed rapid aiming task (Fitts' law has been recently challenged in reciprocal performance. Specifically, a discontinuity was observed at critical ID and was attributed to a transition between two distinct dynamic regimes that occurs with increasing difficulty. In the present paper, we show that such a discontinuity is also present in discrete aiming when ID is manipulated via target width (experiment 1 but not via target distance (experiment 2. Fitts' law's discontinuity appears, therefore, to be a suitable indicator of the underlying functional adaptations of the neuro-muscular-skeletal system to task properties/requirements, independently of reciprocal or discrete nature of the task. These findings open new perspectives to the study of dynamic regimes involved in discrete aiming and sensori-motor mechanisms underlying the speed-accuracy trade-off.
Chen, Dongyan; Xu, Long; Du, Junhua
2016-03-01
The optimal filtering problem is investigated for a class of discrete stochastic systems with finite-step autocorrelated process noises, random one-step sensor delay and missing measurements. The random disturbances existing in the system are characterized by the multiplicative noises and the phenomena of sensor delay and missing measurements occur in a random way. The random sensor delay and missing measurements are described by two Bernoulli distributed random variables with known conditional probabilities. By using the state augmentation approach, the original system is converted into a new discrete system where the random one-step sensor delay and missing measurements exist in the sensor output. The new process noises and observation noises consist of the original stochastic terms, and the process noises are still autocorrelated. Then, based on the minimum mean square error (MMSE) principle, a new linear optimal filter is designed such that, for the finite-step autocorrelated process noises, random one-step sensor delay and missing measurements, the estimation error is minimized. By solving the recursive matrix equation, the filter gain is designed. Finally, a simulation example is given to illustrate the feasibility and effectiveness of the proposed filtering scheme.
Euler-Poincare reduction for discrete field theories
International Nuclear Information System (INIS)
Vankerschaver, Joris
2007-01-01
In this note, we develop a theory of Euler-Poincare reduction for discrete Lagrangian field theories. We introduce the concept of Euler-Poincare equations for discrete field theories, as well as a natural extension of the Moser-Veselov scheme, and show that both are equivalent. The resulting discrete field equations are interpreted in terms of discrete differential geometry. An application to the theory of discrete harmonic mappings is also briefly discussed
Thinning, photonic beamsplitting, and a general discrete entropy power inequality
Guha, Saikat; Shapiro, Jeffrey H.; Sanchez, Raul Garcia-Patron
2016-01-01
Many partially-successful attempts have been made to find the most natural discrete-variable version of Shannon's entropy power inequality (EPI). We develop an axiomatic framework from which we deduce the natural form of a discrete-variable EPI and an associated entropic monotonicity in a discrete-variable central limit theorem. In this discrete EPI, the geometric distribution, which has the maximum entropy among all discrete distributions with a given mean, assumes a role analogous to the Ga...
Cortical Neural Computation by Discrete Results Hypothesis.
Castejon, Carlos; Nuñez, Angel
2016-01-01
One of the most challenging problems we face in neuroscience is to understand how the cortex performs computations. There is increasing evidence that the power of the cortical processing is produced by populations of neurons forming dynamic neuronal ensembles. Theoretical proposals and multineuronal experimental studies have revealed that ensembles of neurons can form emergent functional units. However, how these ensembles are implicated in cortical computations is still a mystery. Although cell ensembles have been associated with brain rhythms, the functional interaction remains largely unclear. It is still unknown how spatially distributed neuronal activity can be temporally integrated to contribute to cortical computations. A theoretical explanation integrating spatial and temporal aspects of cortical processing is still lacking. In this Hypothesis and Theory article, we propose a new functional theoretical framework to explain the computational roles of these ensembles in cortical processing. We suggest that complex neural computations underlying cortical processing could be temporally discrete and that sensory information would need to be quantized to be computed by the cerebral cortex. Accordingly, we propose that cortical processing is produced by the computation of discrete spatio-temporal functional units that we have called "Discrete Results" (Discrete Results Hypothesis). This hypothesis represents a novel functional mechanism by which information processing is computed in the cortex. Furthermore, we propose that precise dynamic sequences of "Discrete Results" is the mechanism used by the cortex to extract, code, memorize and transmit neural information. The novel "Discrete Results" concept has the ability to match the spatial and temporal aspects of cortical processing. We discuss the possible neural underpinnings of these functional computational units and describe the empirical evidence supporting our hypothesis. We propose that fast-spiking (FS
Discrete quantum geometries and their effective dimension
International Nuclear Information System (INIS)
Thuerigen, Johannes
2015-01-01
In several approaches towards a quantum theory of gravity, such as group field theory and loop quantum gravity, quantum states and histories of the geometric degrees of freedom turn out to be based on discrete spacetime. The most pressing issue is then how the smooth geometries of general relativity, expressed in terms of suitable geometric observables, arise from such discrete quantum geometries in some semiclassical and continuum limit. In this thesis I tackle the question of suitable observables focusing on the effective dimension of discrete quantum geometries. For this purpose I give a purely combinatorial description of the discrete structures which these geometries have support on. As a side topic, this allows to present an extension of group field theory to cover the combinatorially larger kinematical state space of loop quantum gravity. Moreover, I introduce a discrete calculus for fields on such fundamentally discrete geometries with a particular focus on the Laplacian. This permits to define the effective-dimension observables for quantum geometries. Analysing various classes of quantum geometries, I find as a general result that the spectral dimension is more sensitive to the underlying combinatorial structure than to the details of the additional geometric data thereon. Semiclassical states in loop quantum gravity approximate the classical geometries they are peaking on rather well and there are no indications for stronger quantum effects. On the other hand, in the context of a more general model of states which are superposition over a large number of complexes, based on analytic solutions, there is a flow of the spectral dimension from the topological dimension d on low energy scales to a real number between 0 and d on high energy scales. In the particular case of 1 these results allow to understand the quantum geometry as effectively fractal.
Digital and discrete geometry theory and algorithms
Chen, Li
2014-01-01
This book provides comprehensive coverage of the modern methods for geometric problems in the computing sciences. It also covers concurrent topics in data sciences including geometric processing, manifold learning, Google search, cloud data, and R-tree for wireless networks and BigData.The author investigates digital geometry and its related constructive methods in discrete geometry, offering detailed methods and algorithms. The book is divided into five sections: basic geometry; digital curves, surfaces and manifolds; discretely represented objects; geometric computation and processing; and a
Hybrid Discrete-Continuous Markov Decision Processes
Feng, Zhengzhu; Dearden, Richard; Meuleau, Nicholas; Washington, Rich
2003-01-01
This paper proposes a Markov decision process (MDP) model that features both discrete and continuous state variables. We extend previous work by Boyan and Littman on the mono-dimensional time-dependent MDP to multiple dimensions. We present the principle of lazy discretization, and piecewise constant and linear approximations of the model. Having to deal with several continuous dimensions raises several new problems that require new solutions. In the (piecewise) linear case, we use techniques from partially- observable MDPs (POMDPS) to represent value functions as sets of linear functions attached to different partitions of the state space.
Logic and discrete mathematics a concise introduction
Conradie, Willem
2015-01-01
A concise yet rigorous introduction to logic and discrete mathematics. This book features a unique combination of comprehensive coverage of logic with a solid exposition of the most important fields of discrete mathematics, presenting material that has been tested and refined by the authors in university courses taught over more than a decade. The chapters on logic - propositional and first-order - provide a robust toolkit for logical reasoning, emphasizing the conceptual understanding of the language and the semantics of classical logic as well as practical applications through the easy
Synchronization Of Parallel Discrete Event Simulations
Steinman, Jeffrey S.
1992-01-01
Adaptive, parallel, discrete-event-simulation-synchronization algorithm, Breathing Time Buckets, developed in Synchronous Parallel Environment for Emulation and Discrete Event Simulation (SPEEDES) operating system. Algorithm allows parallel simulations to process events optimistically in fluctuating time cycles that naturally adapt while simulation in progress. Combines best of optimistic and conservative synchronization strategies while avoiding major disadvantages. Algorithm processes events optimistically in time cycles adapting while simulation in progress. Well suited for modeling communication networks, for large-scale war games, for simulated flights of aircraft, for simulations of computer equipment, for mathematical modeling, for interactive engineering simulations, and for depictions of flows of information.
Efficient discrete Gabor functions for robot vision
Weiman, Carl F. R.
1994-03-01
A new discrete Gabor function provides subpixel resolution of phase while overcoming many of the computational burdens of current approaches to Gabor function implementation. Applications include hyperacuity measurement of binocular disparity and optic flow for stereo vision. Convolution is avoided by exploiting band-pass to subsample the image plane. A general purpose front end processor for robot vision, based on a wavelet interpretation of this discrete Gabor function, can be constructed by tessellating and pyramiding the elementary filter. Computational efficiency opens the door to real-time implementation which mimics many properties of the simple and complex cells in the visual cortex.
Modeling and simulation of discrete event systems
Choi, Byoung Kyu
2013-01-01
Computer modeling and simulation (M&S) allows engineers to study and analyze complex systems. Discrete-event system (DES)-M&S is used in modern management, industrial engineering, computer science, and the military. As computer speeds and memory capacity increase, so DES-M&S tools become more powerful and more widely used in solving real-life problems. Based on over 20 years of evolution within a classroom environment, as well as on decades-long experience in developing simulation-based solutions for high-tech industries, Modeling and Simulation of Discrete-Event Systems is the only book on
SYSTEMATIZATION OF THE BASIC STEPS OF THE STEP-AEROBICS
Directory of Open Access Journals (Sweden)
Darinka Korovljev
2011-03-01
Full Text Available Following the development of the powerful sport industry, in front of us appeared a lot of new opportunities for creating of the new programmes of exercising with certain requisites. One of such programmes is certainly step-aerobics. Step-aerobics can be defined as a type of aerobics consisting of the basic aerobic steps (basic steps applied in exercising on stepper (step bench, with a possibility to regulate its height. Step-aerobics itself can be divided into several groups, depending on the following: type of music, working methods and adopted knowledge of the attendants. In this work, the systematization of the basic steps in step-aerobics was made on the basis of the following criteria: steps origin, number of leg motions in stepping and relating the body support at the end of the step. Systematization of the basic steps of the step-aerobics is quite significant for making a concrete review of the existing basic steps, thus making creation of the step-aerobics lesson easier
Directory of Open Access Journals (Sweden)
Emily Lyle
2012-03-01
Full Text Available Indo-European mythology is known only through written records but it needs to be understood in terms of the preliterate oral-cultural context in which it was rooted. It is proposed that this world was conceptually organized through a memory-capsule consisting of the current generation and the three before it, and that there was a system of alternate generations with each generation taking a step into the future under the leadership of a white or red king.
A discrete classical space-time could require 6 extra-dimensions
Guillemant, Philippe; Medale, Marc; Abid, Cherifa
2018-01-01
We consider a discrete space-time in which conservation laws are computed in such a way that the density of information is kept bounded. We use a 2D billiard as a toy model to compute the uncertainty propagation in ball positions after every shock and the corresponding loss of phase information. Our main result is the computation of a critical time step above which billiard calculations are no longer deterministic, meaning that a multiverse of distinct billiard histories begins to appear, caused by the lack of information. Then, we highlight unexpected properties of this critical time step and the subsequent exponential evolution of the number of histories with time, to observe that after certain duration all billiard states could become possible final states, independent of initial conditions. We conclude that if our space-time is really a discrete one, one would need to introduce extra-dimensions in order to provide supplementary constraints that specify which history should be played.
Time-discrete higher order ALE formulations: a priori error analysis
Bonito, Andrea
2013-03-16
We derive optimal a priori error estimates for discontinuous Galerkin (dG) time discrete schemes of any order applied to an advection-diffusion model defined on moving domains and written in the Arbitrary Lagrangian Eulerian (ALE) framework. Our estimates hold without any restrictions on the time steps for dG with exact integration or Reynolds\\' quadrature. They involve a mild restriction on the time steps for the practical Runge-Kutta-Radau methods of any order. The key ingredients are the stability results shown earlier in Bonito et al. (Time-discrete higher order ALE formulations: stability, 2013) along with a novel ALE projection. Numerical experiments illustrate and complement our theoretical results. © 2013 Springer-Verlag Berlin Heidelberg.
Energy Technology Data Exchange (ETDEWEB)
W. J. Galyean; A. M. Whaley; D. L. Kelly; R. L. Boring
2011-05-01
This guide provides step-by-step guidance on the use of the SPAR-H method for quantifying Human Failure Events (HFEs). This guide is intended to be used with the worksheets provided in: 'The SPAR-H Human Reliability Analysis Method,' NUREG/CR-6883, dated August 2005. Each step in the process of producing a Human Error Probability (HEP) is discussed. These steps are: Step-1, Categorizing the HFE as Diagnosis and/or Action; Step-2, Rate the Performance Shaping Factors; Step-3, Calculate PSF-Modified HEP; Step-4, Accounting for Dependence, and; Step-5, Minimum Value Cutoff. The discussions on dependence are extensive and include an appendix that describes insights obtained from the psychology literature.
Radiation forces in the discrete dipole approximation
Hoekstra, A.G.; Frijlink, M.O.; Waters, L.B.F.M.; Sloot, P.M.A.
2001-01-01
The theory of the discrete-dipole approximation (DDA) for light scattering is extended to allow for the calculation of radiation forces on each dipole in the DDA model. Starting with the theory of Draine and Weingartner [Astrophys. J. 470, 551 (1996)] we derive an expression for the radiation force
Discrete objects, splitting closure and connectedness | Castellini ...
African Journals Online (AJOL)
Notions of discrete and indiscrete classes with respect to a closure operator are introduced and studied. These notions are strongly related to splitting and cosplitting closure operators. By linking the above concepts, two Galois connections arise whose composition provides a third Galois connection that can be used as a ...
DISCRETE ELEMENT MODELLING OF THE COMPRESSIVE ...
African Journals Online (AJOL)
Having developed and validated a code based on the Discrete Element Method principle with physical experiments the code was used to study and predict the behaviour (parametric changes) during compression of four bulk systems of particulates with the properties of canola seed, palm kernel and soyabean. The porosity ...
Discrete elements in structural concrete design
Blaauwendraad, J.; Hoogenboom, P.C.J.
1997-01-01
In the sixties Prof. J. Witteveen introduced a discrete model for the elastic analysis of slabs (Heron 1966). This article presents a similar approach for the design of reinforced concrete walls and deep beams, with holes or otherwise. The model – which is called stringer-panel model – combines the
Discretization Based on Entropy and Multiple Scanning
Directory of Open Access Journals (Sweden)
Jerzy W. Grzymala-Busse
2013-04-01
Full Text Available In this paper we present entropy driven methodology for discretization. Recently, the original entropy based discretization was enhanced by including two options of selecting the best numerical attribute. In one option, Dominant Attribute, an attribute with the smallest conditional entropy of the concept given the attribute is selected for discretization and then the best cut point is determined. In the second option, Multiple Scanning, all attributes are scanned a number of times, and at the same time the best cut points are selected for all attributes. The results of experiments on 17 benchmark data sets, including large data sets, with 175 attributes or 25,931 cases, are presented. For comparison, the results of experiments on the same data sets using the global versions of well-known discretization methods of Equal Interval Width and Equal Frequency per Interval are also included. The entropy driven technique enhanced both of these methods by converting them into globalized methods. Results of our experiments show that the Multiple Scanning methodology is significantly better than both: Dominant Attribute and the better results of Globalized Equal Interval Width and Equal Frequency per Interval methods (using two-tailed test and 0.01 level of significance.
Discrete-Time Systems -RE-SONANCEI
Indian Academy of Sciences (India)
systems, robots, space applications, farming, biotech- nology and even medicine. The disciplines of continuous-time and discrete-time sig- nals and systems have become increasingly entwined. Without any doubt, it is advantageous to process conti- nuous-time signals by sampling them. The computer control system for a ...
Electroless plating apparatus for discrete microsized particles
International Nuclear Information System (INIS)
Mayer, A.
1978-01-01
Method and apparatus are disclosed for producing very uniform coatings of a desired material on discrete microsized particles by electroless techniques. Agglomeration or bridging of the particles during the deposition process is prevented by imparting a sufficiently random motion to the particles that they are not in contact with each other for a time sufficient for such to occur
Discrete structures in F-theory compactifications
Energy Technology Data Exchange (ETDEWEB)
Till, Oskar
2016-05-04
In this thesis we study global properties of F-theory compactifications on elliptically and genus-one fibered Calabi-Yau varieties. This is motivated by phenomenological considerations as well as by the need for a deeper understanding of the set of consistent F-theory vacua. The global geometric features arise from discrete and arithmetic structures in the torus fiber and can be studied in detail for fibrations over generic bases. In the case of elliptic fibrations we study the role of the torsion subgroup of the Mordell-Weil group of sections in four dimensional compactifications. We show how the existence of a torsional section restricts the admissible matter representations in the theory. This is shown to be equivalent to inducing a non-trivial fundamental group of the gauge group. Compactifying F-theory on genus-one fibrations with multisections gives rise to discrete selection rules. In field theory the discrete symmetry is a broken U(1) symmetry. In the geometry the higgsing corresponds to a conifold transition. We explain in detail the origin of the discrete symmetry from two different M-theory phases and put the result into the context of torsion homology. Finally we systematically construct consistent gauge fluxes on genus-one fibrations and show that these induce an anomaly free chiral spectrum.
Discrete control of resonant wave energy devices.
Clément, A H; Babarit, A
2012-01-28
Aiming at amplifying the energy productive motion of wave energy converters (WECs) in response to irregular sea waves, the strategies of discrete control presented here feature some major advantages over continuous control, which is known to require, for optimal operation, a bidirectional power take-off able to re-inject energy into the WEC system during parts of the oscillation cycles. Three different discrete control strategies are described: latching control, declutching control and the combination of both, which we term latched-operating-declutched control. It is shown that any of these methods can be applied with great benefit, not only to mono-resonant WEC oscillators, but also to bi-resonant and multi-resonant systems. For some of these applications, it is shown how these three discrete control strategies can be optimally defined, either by analytical solution for regular waves, or numerically, by applying the optimal command theory in irregular waves. Applied to a model of a seven degree-of-freedom system (the SEAREV WEC) to estimate its annual production on several production sites, the most efficient of these discrete control strategies was shown to double the energy production, regardless of the resource level of the site, which may be considered as a real breakthrough, rather than a marginal improvement.
About Multi-Heston SDE Discretization
Directory of Open Access Journals (Sweden)
Tiberiu Socaciu
2013-07-01
Full Text Available Abstract: in this paper we show how can estimate a financial derivative based on a support if assume for the support a Multi-Heston model.Keywords: Euler Maruyama discretization method, Monte Carlo simulation, Heston model, Double-Heston model, Multi-Heston model.
Conservation of wave action under multisymplectic discretizations
J.E. Frank (Jason)
2006-01-01
textabstractIn this paper we discuss the conservation of wave action under numerical discretization by variational and multisymplectic methods. Both the general wave action conservation defined with respect to a smooth, periodic, one-parameter ensemble of flow realizations and the specific wave
Neutrino mass and mixing with discrete symmetry
King, Stephen F.; Luhn, Christoph
2013-05-01
This is a review paper about neutrino mass and mixing and flavour model building strategies based on discrete family symmetry. After a pedagogical introduction and overview of the whole of neutrino physics, we focus on the PMNS mixing matrix and the latest global fits following the Daya Bay and RENO experiments which measure the reactor angle. We then describe the simple bimaximal, tri-bimaximal and golden ratio patterns of lepton mixing and the deviations required for a non-zero reactor angle, with solar or atmospheric mixing sum rules resulting from charged lepton corrections or residual trimaximal mixing. The different types of see-saw mechanism are then reviewed as well as the sequential dominance mechanism. We then give a mini-review of finite group theory, which may be used as a discrete family symmetry broken by flavons either completely, or with different subgroups preserved in the neutrino and charged lepton sectors. These two approaches are then reviewed in detail in separate chapters including mechanisms for flavon vacuum alignment and different model building strategies that have been proposed to generate the reactor angle. We then briefly review grand unified theories (GUTs) and how they may be combined with discrete family symmetry to describe all quark and lepton masses and mixing. Finally, we discuss three model examples which combine an SU(5) GUT with the discrete family symmetries A4, S4 and Δ(96).
Enriched vibrational resonance in certain discrete systems
Indian Academy of Sciences (India)
We wish to report the occurrence of vibrational resonance in certain discrete systems like sine square map and sine circle map, in a unique fashion, comprising of multiple resonant peaks which pave the way for enrichment. As the systems of our choice are capable of exhibiting vibrational resonance behaviour unlike the ...
Discrete-time rewards model-checked
Larsen, K.G.; Andova, S.; Niebert, Peter; Hermanns, H.; Katoen, Joost P.
2003-01-01
This paper presents a model-checking approach for analyzing discrete-time Markov reward models. For this purpose, the temporal logic probabilistic CTL is extended with reward constraints. This allows to formulate complex measures – involving expected as well as accumulated rewards – in a precise and
Discrete dispersion models and their Tweedie asymptotics
DEFF Research Database (Denmark)
Jørgensen, Bent; Kokonendji, Célestin C.
2016-01-01
The paper introduce a class of two-parameter discrete dispersion models, obtained by combining convolution with a factorial tilting operation, similar to exponential dispersion models which combine convolution and exponential tilting. The equidispersed Poisson model has a special place in this ap......The paper introduce a class of two-parameter discrete dispersion models, obtained by combining convolution with a factorial tilting operation, similar to exponential dispersion models which combine convolution and exponential tilting. The equidispersed Poisson model has a special place...... in this approach, whereas several overdispersed discrete distributions, such as the Neyman Type A, Pólya-Aeppli, negative binomial and Poisson-inverse Gaussian, turn out to be Poisson-Tweedie factorial dispersion models with power dispersion functions, analogous to ordinary Tweedie exponential dispersion models...... with power variance functions. Using the factorial cumulant generating function as tool, we introduce a dilation operation as a discrete analogue of scaling, generalizing binomial thinning. The Poisson-Tweedie factorial dispersion models are closed under dilation, which in turn leads to a Poisson...
Geometric phases in discrete dynamical systems
Energy Technology Data Exchange (ETDEWEB)
Cartwright, Julyan H.E., E-mail: julyan.cartwright@csic.es [Instituto Andaluz de Ciencias de la Tierra, CSIC–Universidad de Granada, E-18100 Armilla, Granada (Spain); Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada (Spain); Piro, Nicolas, E-mail: nicolas.piro@epfl.ch [École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Piro, Oreste, E-mail: piro@imedea.uib-csic.es [Departamento de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Tuval, Idan, E-mail: ituval@imedea.uib-csic.es [Mediterranean Institute for Advanced Studies, CSIC–Universitat de les Illes Balears, E-07190 Mallorca (Spain)
2016-10-14
In order to study the behaviour of discrete dynamical systems under adiabatic cyclic variations of their parameters, we consider discrete versions of adiabatically-rotated rotators. Parallelling the studies in continuous systems, we generalize the concept of geometric phase to discrete dynamics and investigate its presence in these rotators. For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number of the system. For the discrete version of the rotated rotator considered by Berry, the rotated standard map, we further explore this connection as well as the role of the geometric phase at the onset of chaos. Further into the chaotic regime, we show that the geometric phase is also related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent. - Highlights: • We extend the concept of geometric phase to maps. • For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number. • For the rotated standard map, we explore the role of the geometric phase at the onset of chaos. • We show that the geometric phase is related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent.
A Note on Discrete Mathematics and Calculus.
O'Reilly, Thomas J.
1987-01-01
Much of the current literature on the topic of discrete mathematics and calculus during the first two years of an undergraduate mathematics curriculum is cited. A relationship between the recursive integration formulas and recursively defined polynomials is described. A Pascal program is included. (Author/RH)
Applied Behavior Analysis: Beyond Discrete Trial Teaching
Steege, Mark W.; Mace, F. Charles; Perry, Lora; Longenecker, Harold
2007-01-01
We discuss the problem of autism-specific special education programs representing themselves as Applied Behavior Analysis (ABA) programs when the only ABA intervention employed is Discrete Trial Teaching (DTT), and often for limited portions of the school day. Although DTT has many advantages to recommend its use, it is not well suited to teach…
Chaos in discrete fractional difference equations
Indian Academy of Sciences (India)
2016-09-07
Sep 7, 2016 ... tions in the mathematical modelling of real-world phenomena with memory effects. In the present paper, the chaotic behaviour of ... tives allow us to deal comfortably with memory effects in dynamical systems [2]. Discrete ..... House, Reading, Connecticut, USA, 2006). [6] F Mainardi, Fractional calculus and ...
Discrete groups, Mumford curves and Theta functions
Put, Marius van der
1992-01-01
A discrete group Γ given over some complete non archimedean valued field defines a curve X. The theta functions for Γ provide an analytic construction for the Jacobian variety of X. A theory of theta functions is developed with the help of currents on trees and graphs and the cohomology for Γ. In
Fair value accounting and managerial discretion
Byrne, A.; Clacher, I.; Hillier, D.; Hodgson, A.
2008-01-01
We analyse the extent to which managers exercise discretion under fair value accounting and the value relevance of these disclosures. Utilising a sample of firms that apply the UK fair value pension accounting standard, (FRS-17), we examine the main determinants of the assumptions managers use to
Discrete variable representation for singular Hamiltonians
DEFF Research Database (Denmark)
Schneider, B. I.; Nygaard, Nicolai
2004-01-01
We discuss the application of the discrete variable representation (DVR) to Schrodinger problems which involve singular Hamiltonians. Unlike recent authors who invoke transformations to rid the eigenvalue equation of singularities at the cost of added complexity, we show that an approach based...
Constructing an automorphism with discrete spectrum | Isere ...
African Journals Online (AJOL)
This work is a desire to construct an automorphism with discrete spectrum using a numerical example. We briefly discuss how some of the definitions and theorems about its behaviour can be implemented and verified numerically. While it is not intended as a complete introduction to measure theory, only the definitions ...
Discrete Mathematics Course Supported by CAS MATHEMATICA
Ivanov, O. A.; Ivanova, V. V.; Saltan, A. A.
2017-01-01
In this paper, we discuss examples of assignments for a course in discrete mathematics for undergraduate students majoring in business informatics. We consider several problems with computer-based solutions and discuss general strategies for using computers in teaching mathematics and its applications. In order to evaluate the effectiveness of our…
Cuspidal discrete series for projective hyperbolic spaces
DEFF Research Database (Denmark)
Andersen, Nils Byrial; Flensted-Jensen, Mogens
2013-01-01
Abstract. We have in [1] proposed a definition of cusp forms on semisimple symmetric spaces G/H, involving the notion of a Radon transform and a related Abel transform. For the real non-Riemannian hyperbolic spaces, we showed that there exists an infinite number of cuspidal discrete series, and a...
The Pairing Matrix in Discrete Electromagnetism On the Geometry of Discrete de Rham Currents
Auchmann, B
2007-01-01
We introduce pairing matrices on simplicial cell complexes in discrete electromagnetism as a means to avoid the explicit construction of a topologically dual complex. Interestingly, the Finite Element Method with first-order Whitney elements â when it is looked upon from a cell-method perspective â features pairing matrices and thus an implicitly defined dual mesh. We show that the pairing matrix can be used to construct discrete energy products. In this exercise we find that different formalisms lead to equivalent matrix representations. Discrete de Rham currents are an elegant way to subsume these geometrically equivalent but formally distinct ways of defining energy-products.
International Nuclear Information System (INIS)
Feng Baofeng; Maruno, Ken-ichi; Inoguchi, Jun-ichi; Kajiwara, Kenji; Ohta, Yasuhiro
2011-01-01
We consider integrable discretizations of some soliton equations associated with the motions of plane curves: the Wadati-Konno-Ichikawa elastic beam equation, the complex Dym equation and the short pulse equation. They are related to the modified KdV or the sine-Gordon equations by the hodograph transformations. Based on the observation that the hodograph transformations are regarded as the Euler-Lagrange transformations of the curve motions, we construct the discrete analogues of the hodograph transformations, which yield integrable discretizations of those soliton equations. (paper)
Kim, Jeong Han; Montenegro, Ravi; Peres, Yuval; Tetali, Prasad
2010-01-01
We show a Birthday Paradox for self-intersections of Markov chains with uniform stationary distribution. As an application, we analyze Pollard's Rho algorithm for finding the discrete logarithm in a cyclic group $G$ and find that if the partition in the algorithm is given by a random oracle, then with high probability a collision occurs in $\\Theta(\\sqrt{|G|})$ steps. Moreover, for the parallelized distinguished points algorithm on $J$ processors we find that $\\Theta(\\sqrt{|G|}/J)$ steps suffi...
Hippocampus discovery First steps
Directory of Open Access Journals (Sweden)
Eliasz Engelhardt
Full Text Available The first steps of the discovery, and the main discoverers, of the hippocampus are outlined. Arantius was the first to describe a structure he named "hippocampus" or "white silkworm". Despite numerous controversies and alternate designations, the term hippocampus has prevailed until this day as the most widely used term. Duvernoy provided an illustration of the hippocampus and surrounding structures, considered the first by most authors, which appeared more than one and a half century after Arantius' description. Some authors have identified other drawings and texts which they claim predate Duvernoy's depiction, in studies by Vesalius, Varolio, Willis, and Eustachio, albeit unconvincingly. Considering the definition of the hippocampal formation as comprising the hippocampus proper, dentate gyrus and subiculum, Arantius and Duvernoy apparently described the gross anatomy of this complex. The pioneering studies of Arantius and Duvernoy revealed a relatively small hidden formation that would become one of the most valued brain structures.
Infant differential behavioral responding to discrete emotions.
Walle, Eric A; Reschke, Peter J; Camras, Linda A; Campos, Joseph J
2017-10-01
Emotional communication regulates the behaviors of social partners. Research on individuals' responding to others' emotions typically compares responses to a single negative emotion compared with responses to a neutral or positive emotion. Furthermore, coding of such responses routinely measure surface level features of the behavior (e.g., approach vs. avoidance) rather than its underlying function (e.g., the goal of the approach or avoidant behavior). This investigation examined infants' responding to others' emotional displays across 5 discrete emotions: joy, sadness, fear, anger, and disgust. Specifically, 16-, 19-, and 24-month-old infants observed an adult communicate a discrete emotion toward a stimulus during a naturalistic interaction. Infants' responses were coded to capture the function of their behaviors (e.g., exploration, prosocial behavior, and security seeking). The results revealed a number of instances indicating that infants use different functional behaviors in response to discrete emotions. Differences in behaviors across emotions were clearest in the 24-month-old infants, though younger infants also demonstrated some differential use of behaviors in response to discrete emotions. This is the first comprehensive study to identify differences in how infants respond with goal-directed behaviors to discrete emotions. Additionally, the inclusion of a function-based coding scheme and interpersonal paradigms may be informative for future emotion research with children and adults. Possible developmental accounts for the observed behaviors and the benefits of coding techniques emphasizing the function of social behavior over their form are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Astronomical sketching a step-by-step introduction
Handy, Richard; Perez, Jeremy; Rix, Erika; Robbins, Sol
2007-01-01
This book presents the amateur with fine examples of astronomical sketches and step-by-step tutorials in each medium, from pencil to computer graphics programs. This unique book can teach almost anyone to create beautiful sketches of celestial objects.
Subramanian, Ramanathan Vishnampet Ganapathi
Methods and computing hardware advances have enabled accurate predictions of complex compressible turbulence phenomena, such as the generation of jet noise that motivates the present effort. However, limited understanding of underlying physical mechanisms restricts the utility of such predictions since they do not, by themselves, indicate a route to design improvement. Gradient-based optimization using adjoints can circumvent the flow complexity to guide designs. Such methods have enabled sensitivity analysis and active control of turbulence at engineering flow conditions by providing gradient information at computational cost comparable to that of simulating the flow. They accelerate convergence of numerical design optimization algorithms, though this is predicated on the availability of an accurate gradient of the discretized flow equations. This is challenging to obtain, since both the chaotic character of the turbulence and the typical use of discretizations near their resolution limits in order to efficiently represent its smaller scales will amplify any approximation errors made in the adjoint formulation. Formulating a practical exact adjoint that avoids such errors is especially challenging if it is to be compatible with state-of-the-art simulation methods used for the turbulent flow itself. Automatic differentiation (AD) can provide code to calculate a nominally exact adjoint, but existing general-purpose AD codes are inefficient to the point of being prohibitive for large-scale turbulence simulations. We analyze the compressible flow equations as discretized using the same high-order workhorse methods used for many high-fidelity compressible turbulence simulations, and formulate a practical space--time discrete-adjoint method without changing the basic discretization. A key step is the definition of a particular discrete analog of the continuous norm that defines our cost functional; our selection leads directly to an efficient Runge--Kutta-like scheme
Application of an efficient Bayesian discretization method to biomedical data
Directory of Open Access Journals (Sweden)
Gopalakrishnan Vanathi
2011-07-01
Full Text Available Abstract Background Several data mining methods require data that are discrete, and other methods often perform better with discrete data. We introduce an efficient Bayesian discretization (EBD method for optimal discretization of variables that runs efficiently on high-dimensional biomedical datasets. The EBD method consists of two components, namely, a Bayesian score to evaluate discretizations and a dynamic programming search procedure to efficiently search the space of possible discretizations. We compared the performance of EBD to Fayyad and Irani's (FI discretization method, which is commonly used for discretization. Results On 24 biomedical datasets obtained from high-throughput transcriptomic and proteomic studies, the classification performances of the C4.5 classifier and the naïve Bayes classifier were statistically significantly better when the predictor variables were discretized using EBD over FI. EBD was statistically significantly more stable to the variability of the datasets than FI. However, EBD was less robust, though not statistically significantly so, than FI and produced slightly more complex discretizations than FI. Conclusions On a range of biomedical datasets, a Bayesian discretization method (EBD yielded better classification performance and stability but was less robust than the widely used FI discretization method. The EBD discretization method is easy to implement, permits the incorporation of prior knowledge and belief, and is sufficiently fast for application to high-dimensional data.
A Global Step Planning Method for Biped Robot Considering Obstacles
Tsuji, Toshiaki; Ohnishi, Kouhei
This paper discusses about step planning of a biped robot in an environment with obstacles. Biped robot has a mechanical advantage to work in human surroundings. This is accomplished by its capability to select the discrete contact point with the ground. Though its foot placement should be discussed to step over obstacles, it is difficult because dynamic biped locomotion is a complex interaction system between upper body motion and stepping point. Applying the idea of virtual supporting point, this complex interaction is solved. The collision detection is easily achieved through modeling the obstacles to an off-limits on the horizontal plane. A stamp area is set in order to avoid the extreme stride alteration. Through these methods, the robot can prepare for the obstacle beforehand and select a series of footsteps that provides stable locomotion. Experimental results are shown to confirm the validity of the proposed methods.
Kahlen, Franz-Josef; Sankaranarayanan, Srikanth; Kar, Aravinda
1997-09-01
Subject of this investigation is a one-step rapid machining process to create miniaturized 3D parts, using the original sample material. An experimental setup where metal powder is fed to the laser beam-material interaction region has been built. The powder is melted and forms planar, 2D geometries as the substrate is moved under the laser beam in XY- direction. After completing the geometry in the plane, the substrate is displaced in Z-direction, and a new layer of material is placed on top of the just completed deposit. By continuous repetition of this process, 3D parts wee created. In particular, the impact of the focal spot size of the high power laser beam on the smallest achievable structures was investigated. At a translation speed of 51 mm/s a minimum material thickness of 590 micrometers was achieved. Also, it was shown that a small Z-displacement has a negligible influence on the continuity of the material deposition over this power range. A high power CO2 laser was used as energy source, the material powder under investigation was stainless steel SS304L. Helium was used as shield gas at a flow rate of 15 1/min. The incident CO2 laser beam power was varied between 300 W and 400 W, with the laser beam intensity distribute in a donut mode. The laser beam was focused to a focal diameter of 600 (Mu) m.
A semi-Lagrangian method for DNS with large time-stepping
Xiu, Dongbin; Karniadakis, George
2000-11-01
An efficient time-step discretization based on semi-Lagrangian methods, often used in metereology, is proposed for direct numerical simulations. It is unconditionally stable and retains high-order accuracy comparable to Eulerian schemes. The structure of the total error is analyzed in detail, and shows a non-monotonic trend with the size of the time-step. Numerical experiments for a variety of flows shows that stable and accurate results are obtained with time steps more than fifty times the CFL-bound time step used in current semi-implicit DNS.
Energy Technology Data Exchange (ETDEWEB)
April M. Whaley; Dana L. Kelly; Ronald L. Boring; William J. Galyean
2012-06-01
Step-by-step guidance was developed recently at Idaho National Laboratory for the US Nuclear Regulatory Commission on the use of the Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H) method for quantifying Human Failure Events (HFEs). This work was done to address SPAR-H user needs, specifically requests for additional guidance on the proper application of various aspects of the methodology. This paper overviews the steps of the SPAR-H analysis process and highlights some of the most important insights gained during the development of the step-by-step directions. This supplemental guidance for analysts is applicable when plant-specific information is available, and goes beyond the general guidance provided in existing SPAR-H documentation. The steps highlighted in this paper are: Step-1, Categorizing the HFE as Diagnosis and/or Action; Step-2, Rate the Performance Shaping Factors; Step-3, Calculate PSF-Modified HEP; Step-4, Accounting for Dependence, and; Step-5, Minimum Value Cutoff.
An adaptive discretization of incompressible flow using a multitude of moving Cartesian grids
English, R. Elliot; Qiu, Linhai; Yu, Yue; Fedkiw, Ronald
2013-12-01
We present a novel method for discretizing the incompressible Navier-Stokes equations on a multitude of moving and overlapping Cartesian grids each with an independently chosen cell size to address adaptivity. Advection is handled with first and second order accurate semi-Lagrangian schemes in order to alleviate any time step restriction associated with small grid cell sizes. Likewise, an implicit temporal discretization is used for the parabolic terms including Navier-Stokes viscosity which we address separately through the development of a method for solving the heat diffusion equations. The most intricate aspect of any such discretization is the method used in order to solve the elliptic equation for the Navier-Stokes pressure or that resulting from the temporal discretization of parabolic terms. We address this by first removing any degrees of freedom which duplicately cover spatial regions due to overlapping grids, and then providing a discretization for the remaining degrees of freedom adjacent to these regions. We observe that a robust second order accurate symmetric positive definite readily preconditioned discretization can be obtained by constructing a local Voronoi region on the fly for each degree of freedom in question in order to obtain both its stencil (logically connected neighbors) and stencil weights. Internal curved boundaries such as at solid interfaces are handled using a simple immersed boundary approach which is directly applied to the Voronoi mesh in both the viscosity and pressure solves. We independently demonstrate each aspect of our approach on test problems in order to show efficacy and convergence before finally addressing a number of common test cases for incompressible flow with stationary and moving solid bodies.
An Arbitrary Lagrangian-Eulerian Discretization of MHD on 3D Unstructured Grids
Energy Technology Data Exchange (ETDEWEB)
Rieben, R N; White, D A; Wallin, B K; Solberg, J M
2006-06-12
We present an arbitrary Lagrangian-Eulerian (ALE) discretization of the equations of resistive magnetohydrodynamics (MHD) on unstructured hexahedral grids. The method is formulated using an operator-split approach with three distinct phases: electromagnetic diffusion, Lagrangian motion, and Eulerian advection. The resistive magnetic dynamo equation is discretized using a compatible mixed finite element method with a 2nd order accurate implicit time differencing scheme which preserves the divergence-free nature of the magnetic field. At each discrete time step, electromagnetic force and heat terms are calculated and coupled to the hydrodynamic equations to compute the Lagrangian motion of the conducting materials. By virtue of the compatible discretization method used, the invariants of Lagrangian MHD motion are preserved in a discrete sense. When the Lagrangian motion of the mesh causes significant distortion, that distortion is corrected with a relaxation of the mesh, followed by a 2nd order monotonic remap of the electromagnetic state variables. The remap is equivalent to Eulerian advection of the magnetic flux density with a fictitious mesh relaxation velocity. The magnetic advection is performed using a novel variant of constrained transport (CT) that is valid for unstructured hexahedral grids with arbitrary mesh velocities. The advection method maintains the divergence free nature of the magnetic field and is second order accurate in regions where the solution is sufficiently smooth. For regions in which the magnetic field is discontinuous (e.g. MHD shocks) the method is limited using a novel variant of algebraic flux correction (AFC) which is local extremum diminishing (LED) and divergence preserving. Finally, we verify each stage of the discretization via a set of numerical experiments.
Dimension Reduction and Discretization in Stochastic Problems by Regression Method
DEFF Research Database (Denmark)
Ditlevsen, Ove Dalager
1996-01-01
The chapter mainly deals with dimension reduction and field discretizations based directly on the concept of linear regression. Several examples of interesting applications in stochastic mechanics are also given.Keywords: Random fields discretization, Linear regression, Stochastic interpolation...
Breatherlike excitations in discrete lattices with noise and nonlinear damping
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Gaididei, Yuri B.; Johansson, Magnus
1997-01-01
We discuss the stability of highly localized, ''breatherlike,'' excitations in discrete nonlinear lattices under the influence of thermal fluctuations. The particular model considered is the discrete nonlinear Schrodinger equation in the regime of high nonlinearity, where temperature effects...
Nonlinear Control and Discrete Event Systems
Meyer, George; Null, Cynthia H. (Technical Monitor)
1995-01-01
As the operation of large systems becomes ever more dependent on extensive automation, the need for an effective solution to the problem of design and validation of the underlying software becomes more critical. Large systems possesses much detailed structure, typically hierarchical, and they are hybrid. Information processing at the top of the hierarchy is by means of formal logic and sentences; on the bottom it is by means of simple scalar differential equations and functions of time; and in the middle it is by an interacting mix of nonlinear multi-axis differential equations and automata, and functions of time and discrete events. The lecture will address the overall problem as it relates to flight vehicle management, describe the middle level, and offer a design approach that is based on Differential Geometry and Discrete Event Dynamic Systems Theory.
Discrete and continuous simulation theory and practice
Bandyopadhyay, Susmita
2014-01-01
When it comes to discovering glitches inherent in complex systems-be it a railway or banking, chemical production, medical, manufacturing, or inventory control system-developing a simulation of a system can identify problems with less time, effort, and disruption than it would take to employ the original. Advantageous to both academic and industrial practitioners, Discrete and Continuous Simulation: Theory and Practice offers a detailed view of simulation that is useful in several fields of study.This text concentrates on the simulation of complex systems, covering the basics in detail and exploring the diverse aspects, including continuous event simulation and optimization with simulation. It explores the connections between discrete and continuous simulation, and applies a specific focus to simulation in the supply chain and manufacturing field. It discusses the Monte Carlo simulation, which is the basic and traditional form of simulation. It addresses future trends and technologies for simulation, with par...
Integral and discrete inequalities and their applications
Qin, Yuming
2016-01-01
This book focuses on one- and multi-dimensional linear integral and discrete Gronwall-Bellman type inequalities. It provides a useful collection and systematic presentation of known and new results, as well as many applications to differential (ODE and PDE), difference, and integral equations. With this work the author fills a gap in the literature on inequalities, offering an ideal source for researchers in these topics. The present volume is part 1 of the author’s two-volume work on inequalities. Integral and discrete inequalities are a very important tool in classical analysis and play a crucial role in establishing the well-posedness of the related equations, i.e., differential, difference and integral equations.
Discrete Spectrum Reconstruction Using Integral Approximation Algorithm.
Sizikov, Valery; Sidorov, Denis
2017-07-01
An inverse problem in spectroscopy is considered. The objective is to restore the discrete spectrum from observed spectrum data, taking into account the spectrometer's line spread function. The problem is reduced to solution of a system of linear-nonlinear equations (SLNE) with respect to intensities and frequencies of the discrete spectral lines. The SLNE is linear with respect to lines' intensities and nonlinear with respect to the lines' frequencies. The integral approximation algorithm is proposed for the solution of this SLNE. The algorithm combines solution of linear integral equations with solution of a system of linear algebraic equations and avoids nonlinear equations. Numerical examples of the application of the technique, both to synthetic and experimental spectra, demonstrate the efficacy of the proposed approach in enabling an effective enhancement of the spectrometer's resolution.
Probabilistic Discrete Mixtures Colour Texture Models
Czech Academy of Sciences Publication Activity Database
Haindl, Michal; Havlíček, Vojtěch; Grim, Jiří
2008-01-01
Roč. 2008, č. 5197 (2008), s. 675-682 ISSN 0302-9743. [Iberoamerican Congress on Pattern Recognition /13./. Havana, 09.092008-12.09.2008] R&D Projects: GA AV ČR 1ET400750407; GA MŠk 1M0572; GA ČR GA102/07/1594; GA ČR GA102/08/0593 Grant - others:GA MŠk(CZ) 2C06019 Institutional research plan: CEZ:AV0Z10750506 Keywords : Discrete distribution mixtures * EM algorithm * texture modeling Subject RIV: BD - Theory of Information http://library.utia.cas.cz/separaty/2008/RO/haindl-havlicek-grim-probabilistic%20discrete%20mixtures%20colour%20texture%20models.pdf
Discrete event systems diagnosis and diagnosability
Sayed-Mouchaweh, Moamar
2014-01-01
Discrete Event Systems: Diagnosis and Diagnosability addresses the problem of fault diagnosis of Discrete Event Systems (DES). This book provides the basic techniques and approaches necessary for the design of an efficient fault diagnosis system for a wide range of modern engineering applications. The different techniques and approaches are classified according to several criteria such as: modeling tools (Automata, Petri nets) that is used to construct the model; the information (qualitative based on events occurrences and/or states outputs, quantitative based on signal processing and data analysis) that is needed to analyze and achieve the diagnosis; the decision structure (centralized, decentralized) that is required to achieve the diagnosis. The goal of this classification is to select the efficient method to achieve the fault diagnosis according to the application constraints. This book focuses on the centralized and decentralized event based diagnosis approaches using formal language and automata as mode...
Gauged discrete symmetries and proton stability
International Nuclear Information System (INIS)
Mohapatra, Rabindra N.; Ratz, Michael
2007-01-01
We discuss the results of a search for anomaly-free Abelian Z N discrete symmetries that lead to automatic R-parity conservation and prevent dangerous higher-dimensional proton decay operators in simple extensions of minimal supersymmetric extension of the standard model based on the left-right symmetric group, the Pati-Salam group and SO(10). We require that the superpotential for the models have enough structures to be able to give correct symmetry breaking to minimal supersymmetric extension of the standard model and potentially realistic fermion masses. We find viable models in each of the extensions, and for all the cases, anomaly freedom of the discrete symmetry restricts the number of generations
Finite Volumes Discretization of Topology Optimization Problems
DEFF Research Database (Denmark)
Evgrafov, Anton; Gregersen, Misha Marie; Sørensen, Mads Peter
, FVMs represent a standard method of discretization within engineering communities dealing with computational uid dy- namics, transport, and convection-reaction problems. Among various avours of FVMs, cell based approaches, where all variables are associated only with cell centers, are particularly...... computations is done using nite element methods (FEMs). Despite some limited recent eorts [1, 2], we have only started to develop our understanding of the interplay between the control in the coecients and FVMs. Recent advances in discrete functional analysis allow us to analyze convergence of FVM...... of the induced parametrization of the design space that allows optimization algorithms to eciently explore it, and the ease of integration with existing computational codes in a variety of application areas, the simplicity and eciency of sensitivity analyses|all stemming from the use of the same grid throughout...
Testing Preference Axioms in Discrete Choice experiments
DEFF Research Database (Denmark)
Hougaard, Jens Leth; Østerdal, Lars Peter; Tjur, Tue
Recent studies have tested the preference axioms of completeness and transitivity, and have detected other preference phenomena such as unstability, learning- and tiredness effects, ordering effects and dominance, in stated preference discrete choice experiments. However, it has not been explicitly...... addressed in these studies which preference models are actually being tested, and the connection between the statistical tests performed and the relevant underlying models of respondent behavior has not been explored further. This paper tries to fill that gap. We specifically analyze the meaning and role...... of the preference axioms and other preference phenomena in the context of stated preference discrete choice experiments, and examine whether or how these can be subject to meaningful (statistical) tests...
PHASE CHAOS IN THE DISCRETE KURAMOTO MODEL
DEFF Research Database (Denmark)
Maistrenko, V.; Vasylenko, A.; Maistrenko, Y.
2010-01-01
The paper describes the appearance of a novel, high-dimensional chaotic regime, called phase chaos, in a time-discrete Kuramoto model of globally coupled phase oscillators. This type of chaos is observed at small and intermediate values of the coupling strength. It arises from the nonlinear...... interaction among the oscillators, while the individual oscillators behave periodically when left uncoupled. For the four-dimensional time-discrete Kuramoto model, we outline the region of phase chaos in the parameter plane and determine the regions where phase chaos coexists with different periodic...... attractors. We also study the subcritical frequency-splitting bifurcation at the onset of desynchronization and demonstrate that the transition to phase chaos takes place via a torus destruction process....
Discrete approach to complex planar geometries
International Nuclear Information System (INIS)
Cupini, E.; De Matteis, A.
1974-01-01
Planar regions in Monte Carlo transport problems have been represented by a finite set of points with a corresponding region index for each. The simulation of particle free-flight reduces then to the simple operations necessary for scanning appropriate grid points to determine whether a region other than the starting one is encountered. When the complexity of the geometry is restricted to only some regions of the assembly examined, a mixed discrete-continuous philosophy may be adopted. By this approach, the lattice of a thermal reactor has been treated, discretizing only the central regions of the cell containing the fuel rods. Excellent agreement with experimental results has been obtained in the computation of cell parameters in the energy range from fission to thermalization through the 238 U resonance region. (U.S.)
Juxtaposed color halftoning relying on discrete lines.
Babaei, Vahid; Hersch, Roger D
2013-02-01
Most halftoning techniques allow screen dots to overlap. They rely on the assumption that the inks are transparent, i.e., the inks do not scatter a significant portion of the light back to the air. However, many special effect inks, such as metallic inks, iridescent inks, or pigmented inks, are not transparent. In order to create halftone images, halftone dots formed by such inks should be juxtaposed, i.e., printed side by side. We propose an efficient juxtaposed color halftoning technique for placing any desired number of colorant layers side by side without overlapping. The method uses a monochrome library of screen elements made of discrete lines with rational thicknesses. Discrete line juxtaposed color halftoning is performed efficiently by multiple accesses to the screen element library.
Geometric theory of discrete nonautonomous dynamical systems
Pötzsche, Christian
2010-01-01
Nonautonomous dynamical systems provide a mathematical framework for temporally changing phenomena, where the law of evolution varies in time due to seasonal, modulation, controlling or even random effects. Our goal is to provide an approach to the corresponding geometric theory of nonautonomous discrete dynamical systems in infinite-dimensional spaces by virtue of 2-parameter semigroups (processes). These dynamical systems are generated by implicit difference equations, which explicitly depend on time. Compactness and dissipativity conditions are provided for such problems in order to have attractors using the natural concept of pullback convergence. Concerning a necessary linear theory, our hyperbolicity concept is based on exponential dichotomies and splittings. This concept is in turn used to construct nonautonomous invariant manifolds, so-called fiber bundles, and deduce linearization theorems. The results are illustrated using temporal and full discretizations of evolutionary differential equations.
Hydraulically controlled discrete sampling from open boreholes
Harte, Philip T.
2013-01-01
Groundwater sampling from open boreholes in fractured-rock aquifers is particularly challenging because of mixing and dilution of fluid within the borehole from multiple fractures. This note presents an alternative to traditional sampling in open boreholes with packer assemblies. The alternative system called ZONFLO (zonal flow) is based on hydraulic control of borehole flow conditions. Fluid from discrete fractures zones are hydraulically isolated allowing for the collection of representative samples. In rough-faced open boreholes and formations with less competent rock, hydraulic containment may offer an attractive alternative to physical containment with packers. Preliminary test results indicate a discrete zone can be effectively hydraulically isolated from other zones within a borehole for the purpose of groundwater sampling using this new method.
Discrete PID Tuning Using Artificial Intelligence Techniques
Directory of Open Access Journals (Sweden)
Petr DOLEŽEL
2009-06-01
Full Text Available PID controllers are widely used in industry these days due to their useful properties such as simple tuning or robustness. While they are applicable to many control problems, they can perform poorly in some applications. Highly nonlinear system control with constrained manipulated variable can be mentioned as an example. The point of the paper is to string together convenient qualities of conventional PID control and progressive techniques based on Artificial Intelligence. Proposed control method should deal with even highly nonlinear systems. To be more specific, there is described new method of discrete PID controller tuning in this paper. This method tunes discrete PID controller parameters online through the use of genetic algorithm and neural model of controlled system in order to control successfully even highly nonlinear systems. After method description and some discussion, there is performed control simulation and comparison to one chosen conventional control method.
Data bases and discrete event simulation
Boubetra, Abdelhak; Belouadah, Hocine; Mouhoub, Nassreddine
2007-01-01
This paper is an attempt to define how a specific data structure might be used to store, in a persistent manner, temporal information during a computer simulation. In particular, it considers the sort of temporal information generated during a discrete event simulation of a system to which a relational data base exists and considers the demands this data makes on data base design. Facultad de Informática
Discrete time analysis of a repairable machine
Alfa, Attahiru Sule; Castro, I. T.
2002-01-01
We consider, in discrete time, a single machine system that operates for a period of time represented by a general distribution. This machine is subject to failures during operations and the occurrence of these failures depends on how many times the machine has previously failed. Some failures are repairable and the repair times may or may not depend on the number of times the machine was previously repaired. Repair times also have a general distribution. The operating times...
Texture modelling by discrete distribution mixtures
Czech Academy of Sciences Publication Activity Database
Grim, Jiří; Haindl, Michal
2003-01-01
Roč. 41, 3-4 (2003), s. 603-615 ISSN 0167-9473 R&D Projects: GA ČR GA102/00/0030; GA AV ČR KSK1019101 Institutional research plan: CEZ:AV0Z1075907 Keywords : discrete distribution mixtures * EM algorithm * texture modelling Subject RIV: JC - Computer Hardware ; Software Impact factor: 0.711, year: 2003
Exponential-modified discrete Lindley distribution.
Yilmaz, Mehmet; Hameldarbandi, Monireh; Acik Kemaloglu, Sibel
2016-01-01
In this study, we have considered a series system composed of stochastically independent M-component where M is a random variable having the zero truncated modified discrete Lindley distribution. This distribution is newly introduced by transforming on original parameter. The properties of the distribution of the lifetime of above system have been examined under the given circumstances and also parameters of this new lifetime distribution are estimated by using moments, maximum likelihood and EM-algorithm.
Discrete Alfven waves in the TORTUS tokamak
International Nuclear Information System (INIS)
Amagishi, Y.; Ballico, M.J.; Cross, R.C.; Donnely, I.J.
1989-01-01
Discrete Alfven Waves (DAWs) have been observed as antenna resistance peaks and as enhanced edge fields in the TORTUS tokamak during Alfven wave heating experiments. A kinetic theory code has been used to calculate the antenna loading and the structure of the DAW fields for a range of plasma current and density profiles. There is fair agreement between the measured and predicted amplitude of the DAW fields in the plasma edge when both are normalized to the same antenna power
Quantifying Discretization Effects on Brain Trauma Simulations
2016-01-01
toward equilibrium from the inflection point (displaced 15.7° from equilibrium). One immediately visible result is that the pressure, stress , and strain...are 10.1° from equilibrium, 0.9° back toward equilibrium from the inflection point (displaced 59.1° from equilibrium), and 44.3° back toward...equilibrium from the inflection point (displaced 15.7° from equilibrium). ...........................................10 Fig. 8 Effect of discretization
Discrete Tolerance Allocation for Product Families
2011-01-01
Abstract This paper extends earlier research on the discrete tolerance allocation problem in order to optimize an entire product family simultaneously. This methodology enables top-down tolerancing approach where requirements on assembly level on products within a family are allocated to single part requirements. The proposed solution has been implemented as an interface with an optimization algorithm coupled with a variation simulation software. The paper also consists of an exten...
A variational synthesis nodal discrete ordinates method
International Nuclear Information System (INIS)
Favorite, J.A.; Stacey, W.M.
1999-01-01
A self-consistent nodal approximation method for computing discrete ordinates neutron flux distributions has been developed from a variational functional for neutron transport theory. The advantage of the new nodal method formulation is that it is self-consistent in its definition of the homogenized nodal parameters, the construction of the global nodal equations, and the reconstruction of the detailed flux distribution. The efficacy of the method is demonstrated by two-dimensional test problems
Bounded solutions and wavefronts for discrete dynamics
Czech Academy of Sciences Publication Activity Database
Malaguti, L.; Řehák, Pavel; Taddei, V.
2004-01-01
Roč. 47, - (2004), s. 1079-1094 ISSN 0898-1221 R&D Projects: GA ČR GA201/01/0079; GA ČR GP201/01/P041 Institutional research plan: CEZ:AV0Z1019905 Keywords : nonlinear difference equation * bounded solution * discrete travelling waves Subject RIV: BA - General Mathematics Impact factor: 0.431, year: 2004
Hyponormal differential operators with discrete spectrum
Directory of Open Access Journals (Sweden)
Zameddin I. Ismailov
2010-01-01
Full Text Available In this work, we first describe all the maximal hyponormal extensions of a minimal operator generated by a linear differential-operator expression of the first-order in the Hilbert space of vector-functions in a finite interval. Next, we investigate the discreteness of the spectrum and the asymptotical behavior of the modules of the eigenvalues for these maximal hyponormal extensions.
Steps towards silicon optoelectronics
Energy Technology Data Exchange (ETDEWEB)
Starovoytov, A
1999-07-01
This thesis addresses the issue of a potential future microelectronics technology, namely the possibility of utilising the optical properties of nanocrystalline silicon for optoelectronic circuits. The subject is subdivided into three chapters. Chapter 1 is an introduction. It formulates the oncoming problem for microelectronic development, explains the basics of Integrated Optoelectronics, introduces porous silicon as a new light-emitting material and gives a brief review of other competing light-emitting material systems currently under investigation. Examples of existing porous silicon devices are given. Chapter 2 reviews the basic physics relevant to the subject of this thesis and in-forms on the present situation in this field of research, including both experimental and theoretical knowledge gained up-to-date. The chapter provides the necessary background for correct interpretation of the results reported in Chapter 3 and for a realistic decision on the direction for future work. Chapter 3 describes my own experimental and computational results within the framework of the subject, obtained at De Montfort University. These include: one-step preparation of laterally structured porous silicon with photoluminescence and microscopy characterisation, Raman spectroscopy of porous silicon, a polarisation study of the photoluminescence from porous silicon, computer simulations of the conductivity of two-component media and of laser focused atomic deposition for nanostructure fabrication. Thus, this thesis makes a dual contribution to the chosen field: it summarises the present knowledge on the possibility of utilising optical properties of nanocrystalline silicon in silicon-based electronics, and it reports new results within the framework of the subject. The main conclusion is that due to its promising optoelectronic properties nanocrystalline silicon remains a prospective competitor for the cheapest and fastest microelectronics of the next century. (author)
Inferring gene networks from discrete expression data
Zhang, L.
2013-07-18
The modeling of gene networks from transcriptional expression data is an important tool in biomedical research to reveal signaling pathways and to identify treatment targets. Current gene network modeling is primarily based on the use of Gaussian graphical models applied to continuous data, which give a closedformmarginal likelihood. In this paper,we extend network modeling to discrete data, specifically data from serial analysis of gene expression, and RNA-sequencing experiments, both of which generate counts of mRNAtranscripts in cell samples.We propose a generalized linear model to fit the discrete gene expression data and assume that the log ratios of the mean expression levels follow a Gaussian distribution.We restrict the gene network structures to decomposable graphs and derive the graphs by selecting the covariance matrix of the Gaussian distribution with the hyper-inverse Wishart priors. Furthermore, we incorporate prior network models based on gene ontology information, which avails existing biological information on the genes of interest. We conduct simulation studies to examine the performance of our discrete graphical model and apply the method to two real datasets for gene network inference. © The Author 2013. Published by Oxford University Press. All rights reserved.
An essay on discrete foundations for physics
International Nuclear Information System (INIS)
Noyes, H.P.; McGoveran, D.O.
1988-01-01
We base our theory of physics and cosmology on the five principles of finiteness, discreteness, finite computability, absolute non- uniqueness, and strict construction. Our modeling methodology starts from the current practice of physics, constructs a self-consistent representation based on the ordering operator calculus and provides rules of correspondence that allow us to test the theory by experiment. We use program universe to construct a growing collection of bit strings whose initial portions (labels) provide the quantum numbers that are conserved in the events defined by the construction. The labels are followed by content strings which are used to construct event-based finite and discrete coordinates. On general grounds such a theory has a limiting velocity, and positions and velocities do not commute. We therefore reconcile quantum mechanics with relativity at an appropriately fundamental stage in the construction. We show that events in different coordinate systems are connected by the appropriate finite and discrete version of the Lorentz transformation, that 3-momentum is conserved in events, and that this conservation law is the same as the requirement that different paths can ''interfere'' only when they differ by an integral number of deBroglie wavelengths. 38 refs., 12 figs., 3 tabs
Police investigations: discretion denied yet undeniably exercised
Belur, J.; Tilley, N.; Osrin, D.; Daruwalla, N.; Kumar, M.; Tiwari, V.
2014-01-01
Police investigations involve determining whether a crime has been committed, and if so what type of crime, who has committed it and whether there is the evidence to charge the perpetrators. Drawing on fieldwork in Delhi and Mumbai, this paper explores how police investigations unfolded in the specific context of women’s deaths by burning in India. In particular, it focuses on the use of discretion despite its denial by those exercising it. In India, there are distinctive statutes relating to women’s suspicious deaths, reflecting the widespread expectation that the bride’s family will pay a dowry to the groom’s family and the tensions to which this may on occasion give rise in the early years of a marriage. Often, there are conflicting claims influencing how the woman’s death is classified. These in turn affect police investigation. The nature and direction of police discretion in investigating women’s deaths by burning reflect in part the unique nature of the legislation and the particular sensitivities in relation to these types of death. They also highlight processes that are liable to be at work in any crime investigation. It was found that police officers exercised unacknowledged discretion at seven specific points in the investigative process, with potentially significant consequences for the achievement of just outcomes: first response, recording the victim’s ‘dying declaration’, inquest, registering of the ‘First Information Report’, collecting evidence, arrest and framing of the charges. PMID:26376482
Meshes optimized for discrete exterior calculus (DEC).
Energy Technology Data Exchange (ETDEWEB)
Mousley, Sarah C. [Univ. of Illinois, Urbana-Champaign, IL (United States); Deakin, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knupp, Patrick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Scott A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-12-01
We study the optimization of an energy function used by the meshing community to measure and improve mesh quality. This energy is non-traditional because it is dependent on both the primal triangulation and its dual Voronoi (power) diagram. The energy is a measure of the mesh's quality for usage in Discrete Exterior Calculus (DEC), a method for numerically solving PDEs. In DEC, the PDE domain is triangulated and this mesh is used to obtain discrete approximations of the continuous operators in the PDE. The energy of a mesh gives an upper bound on the error of the discrete diagonal approximation of the Hodge star operator. In practice, one begins with an initial mesh and then makes adjustments to produce a mesh of lower energy. However, we have discovered several shortcomings in directly optimizing this energy, e.g. its non-convexity, and we show that the search for an optimized mesh may lead to mesh inversion (malformed triangles). We propose a new energy function to address some of these issues.
An essay on discrete foundations for physics
International Nuclear Information System (INIS)
Noyes, H.P.; McGoveran, D.O.
1988-07-01
We base our theory of physics and cosmology on the five principles of finiteness, discreteness, finite computability, absolute non-uniqueness, and strict construction. Our modeling methodology starts from the current practice of physics, constructs a self-consistent representation based on the ordering operator calculus and provides rules of correspondence that allow us to test the theory by experiment. We use program universe to construct a growing collection of bit strings whose initial portions (labels) provide the quantum numbers that are conserved in the events defined by the construction. The labels are followed by content strings which are used to construct event-based finite and discrete coordinates. On general grounds such a theory has a limiting velocity, and positions and velocities do not commute. We therefore reconcile quantum mechanics with relativity at an appropriately fundamental stage in the construction. We show that events in different coordinate systems are connected by the appropriate finite and discrete version of the Lorentz transformation, that 3-momentum is conserved in events, and that this conservation law is the same as the requirement that different paths can ''interfere'' only when they differ by an integral number of deBroglie wavelengths. 38 refs., 12 figs., 3 tabs
An essay on discrete foundations for physics
Energy Technology Data Exchange (ETDEWEB)
Noyes, H.P.; McGoveran, D.O.
1988-07-01
We base our theory of physics and cosmology on the five principles of finiteness, discreteness, finite computability, absolute non-uniqueness, and strict construction. Our modeling methodology starts from the current practice of physics, constructs a self-consistent representation based on the ordering operator calculus and provides rules of correspondence that allow us to test the theory by experiment. We use program universe to construct a growing collection of bit strings whose initial portions (labels) provide the quantum numbers that are conserved in the events defined by the construction. The labels are followed by content strings which are used to construct event-based finite and discrete coordinates. On general grounds such a theory has a limiting velocity, and positions and velocities do not commute. We therefore reconcile quantum mechanics with relativity at an appropriately fundamental stage in the construction. We show that events in different coordinate systems are connected by the appropriate finite and discrete version of the Lorentz transformation, that 3-momentum is conserved in events, and that this conservation law is the same as the requirement that different paths can ''interfere'' only when they differ by an integral number of deBroglie wavelengths. 38 refs., 12 figs., 3 tabs.
An essay on discrete foundations for physics
Energy Technology Data Exchange (ETDEWEB)
Noyes, H.P.; McGoveran, D.O.
1988-10-05
We base our theory of physics and cosmology on the five principles of finiteness, discreteness, finite computability, absolute non- uniqueness, and strict construction. Our modeling methodology starts from the current practice of physics, constructs a self-consistent representation based on the ordering operator calculus and provides rules of correspondence that allow us to test the theory by experiment. We use program universe to construct a growing collection of bit strings whose initial portions (labels) provide the quantum numbers that are conserved in the events defined by the construction. The labels are followed by content strings which are used to construct event-based finite and discrete coordinates. On general grounds such a theory has a limiting velocity, and positions and velocities do not commute. We therefore reconcile quantum mechanics with relativity at an appropriately fundamental stage in the construction. We show that events in different coordinate systems are connected by the appropriate finite and discrete version of the Lorentz transformation, that 3-momentum is conserved in events, and that this conservation law is the same as the requirement that different paths can ''interfere'' only when they differ by an integral number of deBroglie wavelengths. 38 refs., 12 figs., 3 tabs.
Physical models on discrete space and time
International Nuclear Information System (INIS)
Lorente, M.
1986-01-01
The idea of space and time quantum operators with a discrete spectrum has been proposed frequently since the discovery that some physical quantities exhibit measured values that are multiples of fundamental units. This paper first reviews a number of these physical models. They are: the method of finite elements proposed by Bender et al; the quantum field theory model on discrete space-time proposed by Yamamoto; the finite dimensional quantum mechanics approach proposed by Santhanam et al; the idea of space-time as lattices of n-simplices proposed by Kaplunovsky et al; and the theory of elementary processes proposed by Weizsaecker and his colleagues. The paper then presents a model proposed by the authors and based on the (n+1)-dimensional space-time lattice where fundamental entities interact among themselves 1 to 2n in order to build up a n-dimensional cubic lattice as a ground field where the physical interactions take place. The space-time coordinates are nothing more than the labelling of the ground field and take only discrete values. 11 references
Discrete phase space based on finite fields
International Nuclear Information System (INIS)
Gibbons, Kathleen S.; Hoffman, Matthew J.; Wootters, William K.
2004-01-01
The original Wigner function provides a way of representing in phase space the quantum states of systems with continuous degrees of freedom. Wigner functions have also been developed for discrete quantum systems, one popular version being defined on a 2Nx2N discrete phase space for a system with N orthogonal states. Here we investigate an alternative class of discrete Wigner functions, in which the field of real numbers that labels the axes of continuous phase space is replaced by a finite field having N elements. There exists such a field if and only if N is a power of a prime; so our formulation can be applied directly only to systems for which the state-space dimension takes such a value. Though this condition may seem limiting, we note that any quantum computer based on qubits meets the condition and can thus be accommodated within our scheme. The geometry of our NxN phase space also leads naturally to a method of constructing a complete set of N+1 mutually unbiased bases for the state space
Drop Pinch-Off for Discrete Flows from a Capillary
Directory of Open Access Journals (Sweden)
Wilson M.C.T.
2013-07-01
Full Text Available The problem of drop formation and pinch-off from a capillary tube under the influence of gravity has been extensively studied when the internal capillary pressure gradient is constant. This ensures a continuous time independent flow field inside the capillary tube typically of the Poiseuille flow type. Characteristic drop ejection behaviour includes: periodic drop ejection, drop ejection with associated satellite production, complex dripping, chaotic behaviour and jetting. It is well known that this characteristic behaviour is governed by the Weber (We and Ohnesorge (Oh numbers (for a given Bond number and may be delineated in a We verses Oh operability diagram. An in-depth physical understanding of drop ejection is also of great importance to industry where the tight control of drop size and ejection velocity are of critical importance in industrial processes such as sealants used in electronics assembly and inkjet printing. However, the use of such a continuous flow approach for drop ejection in industry is often impractical since such flows cannot be operator controlled. For this reason it is important to investigate so-called discrete pipe flows where the flow can be turned on and off at will. This means the flow inside the pipe is now time-dependent being controlled in a step-wise fashion. As a first stage in the investigation of drop pinch-off behaviour in discrete pipe flows this paper will study the critical pinch-off time required for drop ejection starting from a pendant drop. This is the discrete amount of time the pipe flow is turned on for in order for a drop to be ejected from the capillary. A Newtonian incompressible free-surface CFD flow code developed at the University of Leeds is used to investigate the critical pinch-off time for a range of internal pipe velocities (the central flow maximum in Poiseuille flow. It is found that the time required for drop ejection to occur decreases exponentially with internal pipe velocity
A Lax pair of the discrete Euler top
International Nuclear Information System (INIS)
Kimura, Kinji
2017-01-01
We proposed the discrete Euler top in 2000. In that paper, exact solutions and conserved quantities are described. However, a Lax pair of our proposed discrete Euler top is not contained. Moreover, the Lax pair is still unknown. In this paper, from a generalized eigenvalue problem, we obtain the Lax pair of the discrete Euler top. (paper)
A Variational Approach to Perturbed Discrete Anisotropic Equations
Directory of Open Access Journals (Sweden)
Amjad Salari
2016-01-01
Full Text Available We continue the study of discrete anisotropic equations and we will provide new multiplicity results of the solutions for a discrete anisotropic equation. We investigate the existence of infinitely many solutions for a perturbed discrete anisotropic boundary value problem. The approach is based on variational methods and critical point theory.
A Baecklund transformation between two integrable discrete hungry systems
International Nuclear Information System (INIS)
Fukuda, Akiko; Yamamoto, Yusaku; Iwasaki, Masashi; Ishiwata, Emiko; Nakamura, Yoshimasa
2011-01-01
The discrete hungry Toda (dhToda) equation and the discrete hungry Lotka-Volterra (dhLV) system are known as integrable discrete hungry systems. In this Letter, through finding the LR transformations associated with the dhToda equation and the dhLV system, we present a Baecklund transformation between these integrable systems.
Finite-dimensional reductions of the discrete Toda chain
Kazakova, T. G.
2004-08-01
The problem of construction of integrable boundary conditions for the discrete Toda chain is considered. The restricted chains for properly chosen closure conditions are reduced to the well-known discrete Painlevé equations dPIII, dPV, dPVI. Lax representations for these discrete Painlevé equations are found.
Discrete frequency identification using the HP 5451B Fourier analyser
International Nuclear Information System (INIS)
Holland, L.; Barry, P.
1977-01-01
The frequency analysis by the HP5451B discrete frequency Fourier analyser is studied. The advantages of cross correlation analysis to identify discrete frequencies in a background noise are discussed in conjuction with the elimination of aliasing and wraparound error. Discrete frequency identification is illustrated by a series of graphs giving the results of analysing 'electrical' and 'acoustical' white noise and sinusoidal signals [pt
Mittag-Leffler function for discrete fractional modelling
Directory of Open Access Journals (Sweden)
Guo-Cheng Wu
2016-01-01
Full Text Available From the difference equations on discrete time scales, this paper numerically investigates one discrete fractional difference equation in the Caputo delta’s sense which has an explicit solution in form of the discrete Mittag-Leffler function. The exact numerical values of the solutions are given in comparison with the truncated Mittag-Leffler function.
Process algebra with timing: Real time and discrete time
Baeten, J.C.M.; Middelburg, C.A.
1999-01-01
We present real time and discrete time versions of ACP with absolute timing and relative timing. The startingpoint is a new real time version with absolute timing, called ACPsat , featuring urgent actions and a delay operator. The discrete time versions are conservative extensions of the discrete
Influence of the random walk finite step on the first-passage probability
Klimenkova, Olga; Menshutin, Anton; Shchur, Lev
2018-01-01
A well known connection between first-passage probability of random walk and distribution of electrical potential described by Laplace equation is studied. We simulate random walk in the plane numerically as a discrete time process with fixed step length. We measure first-passage probability to touch the absorbing sphere of radius R in 2D. We found a regular deviation of the first-passage probability from the exact function, which we attribute to the finiteness of the random walk step.
GDSCalc: A Web-Based Application for Evaluating Discrete Graph Dynamical Systems
Elmeligy Abdelhamid, Sherif H.; Kuhlman, Chris J.; Marathe, Madhav V.; Mortveit, Henning S.; Ravi, S. S.
2015-01-01
Discrete dynamical systems are used to model various realistic systems in network science, from social unrest in human populations to regulation in biological networks. A common approach is to model the agents of a system as vertices of a graph, and the pairwise interactions between agents as edges. Agents are in one of a finite set of states at each discrete time step and are assigned functions that describe how their states change based on neighborhood relations. Full characterization of state transitions of one system can give insights into fundamental behaviors of other dynamical systems. In this paper, we describe a discrete graph dynamical systems (GDSs) application called GDSCalc for computing and characterizing system dynamics. It is an open access system that is used through a web interface. We provide an overview of GDS theory. This theory is the basis of the web application; i.e., an understanding of GDS provides an understanding of the software features, while abstracting away implementation details. We present a set of illustrative examples to demonstrate its use in education and research. Finally, we compare GDSCalc with other discrete dynamical system software tools. Our perspective is that no single software tool will perform all computations that may be required by all users; tools typically have particular features that are more suitable for some tasks. We situate GDSCalc within this space of software tools. PMID:26263006
Energy Technology Data Exchange (ETDEWEB)
Jemcov, A.; Matovic, M.D. [Queen`s Univ., Kingston, Ontario (Canada)
1996-12-31
This paper examines the sparse representation and preconditioning of a discrete Steklov-Poincare operator which arises in domain decomposition methods. A non-overlapping domain decomposition method is applied to a second order self-adjoint elliptic operator (Poisson equation), with homogeneous boundary conditions, as a model problem. It is shown that the discrete Steklov-Poincare operator allows sparse representation with a bounded condition number in wavelet basis if the transformation is followed by thresholding and resealing. These two steps combined enable the effective use of Krylov subspace methods as an iterative solution procedure for the system of linear equations. Finding the solution of an interface problem in domain decomposition methods, known as a Schur complement problem, has been shown to be equivalent to the discrete form of Steklov-Poincare operator. A common way to obtain Schur complement matrix is by ordering the matrix of discrete differential operator in subdomain node groups then block eliminating interface nodes. The result is a dense matrix which corresponds to the interface problem. This is equivalent to reducing the original problem to several smaller differential problems and one boundary integral equation problem for the subdomain interface.
Rational solutions of the discrete time Toda lattice and the alternate discrete Painleve II equation
International Nuclear Information System (INIS)
Common, Alan K; Hone, Andrew N W
2008-01-01
The Yablonskii-Vorob'ev polynomials y n (t), which are defined by a second-order bilinear differential-difference equation, provide rational solutions of the Toda lattice. They are also polynomial tau-functions for the rational solutions of the second Painleve equation (P II ). Here we define two-variable polynomials Y n (t, h) on a lattice with spacing h, by considering rational solutions of the discrete time Toda lattice as introduced by Suris. These polynomials are shown to have many properties that are analogous to those of the Yablonskii-Vorob'ev polynomials, to which they reduce when h = 0. They also provide rational solutions for a particular discretization of P II , namely the so-called alternate discrete P II , and this connection leads to an expression in terms of the Umemura polynomials for the third Painleve equation (P III ). It is shown that the Baecklund transformation for the alternate discrete Painleve equation is a symplectic map, and the shift in time is also symplectic. Finally we present a Lax pair for the alternate discrete P II , which recovers Jimbo and Miwa's Lax pair for P II in the continuum limit h → 0
Projected discrete ordinates methods for numerical transport problems
Energy Technology Data Exchange (ETDEWEB)
Larsen, E.W.
1985-01-01
A class of Projected Discrete-Ordinates (PDO) methods is described for obtaining iterative solutions of discrete-ordinates problems with convergence rates comparable to those observed using Diffusion Synthetic Acceleration (DSA). The spatially discretized PDO solutions are generally not equal to the DSA solutions, but unlike DSA, which requires great care in the use of spatial discretizations to preserve stability, the PDO solutions remain stable and rapidly convergent with essentially arbitrary spatial discretizations. Numerical results are presented which illustrate the rapid convergence and the accuracy of solutions obtained using PDO methods with commonplace differencing methods.
Comparison of discrete event simulation tools in an academic environment
Directory of Open Access Journals (Sweden)
Mario Jadrić
2014-12-01
Full Text Available A new research model for simulation software evaluation is proposed consisting of three main categories of criteria: modeling and simulation capabilities of the explored tools, and tools’ input/output analysis possibilities, all with respective sub-criteria. Using the presented model, two discrete event simulation tools are evaluated in detail using the task-centred scenario. Both tools (Arena and ExtendSim were used for teaching discrete event simulation in preceding academic years. With the aim to inspect their effectiveness and to help us determine which tool is more suitable for students i.e. academic purposes, we used a simple simulation model of entities competing for limited resources. The main goal was to measure subjective (primarily attitude and objective indicators while using the tools when the same simulation scenario is given. The subjects were first year students of Master studies in Information Management at the Faculty of Economics in Split taking a course in Business Process Simulations (BPS. In a controlled environment – in a computer lab, two groups of students were given detailed, step-by-step instructions for building models using both tools - first using ExtendSim then Arena or vice versa. Subjective indicators (students’ attitudes were collected using an online survey completed immediately upon building each model. Subjective indicators primarily include students’ personal estimations of Arena and ExtendSim capabilities/features for model building, model simulation and result analysis. Objective indicators were measured using specialised software that logs information on user's behavior while performing a particular task on their computer such as distance crossed by mouse during model building, the number of mouse clicks, usage of the mouse wheel and speed achieved. The results indicate that ExtendSim is well preferred comparing to Arena with regards to subjective indicators while the objective indicators are
Liang, Hongjing; Zhang, Huaguang; Wang, Zhanshan
2015-11-01
This paper considers output synchronization of discrete-time multi-agent systems with directed communication topologies. The directed communication graph contains a spanning tree and the exosystem as its root. Distributed observer-based consensus protocols are proposed, based on the relative outputs of neighboring agents. A multi-step algorithm is presented to construct the observer-based protocols. In light of the discrete-time algebraic Riccati equation and internal model principle, synchronization problem is completed. At last, numerical simulation is provided to verify the effectiveness of the theoretical results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Bahi, Jacques M; Contassot-Vivier, Sylvain
2009-08-01
This paper brings a correction to the formulation of the basins of fixed-point states of fully asynchronous discrete-time discrete-state dynamic networks presented in our paper that appeared in the IEEE Transactions on Neural Networks, vol. 17, no. 2, pp. 397-408, March 2006. In our subsequent works on totally asynchronous systems, we have discovered that the formulation given in that previous paper lacks an additional condition. We present in this paper why the previous formulation is incomplete and give the correct formulation.
Interventional tool tracking using discrete optimization.
Heibel, Hauke; Glocker, Ben; Groher, Martin; Pfister, Marcus; Navab, Nassir
2013-03-01
This work presents a novel scheme for tracking of motion and deformation of interventional tools such as guide-wires and catheters in fluoroscopic X-ray sequences. Being able to track and thus to estimate the correct positions of these tools is crucial in order to offer guidance enhancement during interventions. The task of estimating the apparent motion is particularly challenging due to the low signal-to-noise ratio (SNR) of fluoroscopic images and due to combined motion components originating from patient breathing and tool interactions performed by the physician. The presented approach is based on modeling interventional tools with B-splines whose optimal configuration of control points is determined through efficient discrete optimization. Each control point corresponds to a discrete random variable in a Markov random field (MRF) formulation where a set of labels represents the deformation space. In this context, the optimal curve corresponds to the maximum a posteriori (MAP) estimate of the MRF energy. The main motivation for employing a discrete approach is the possibility to incorporate a multi-directional search space which is robust to local minima. This is of particular interest for curve tracking under large deformation. This work analyzes feasibility of employing efficient first-order MRFs for tracking. In particular it shows how to achieve a good compromise between energy approximations and computational efficiency. Experimental results suggest to define both the external and internal energy in terms of pairwise potential functions. The method was successfully applied to the tracking of guide-wires in fluoroscopic X-ray sequences of several hundred frames which requires extremely robust techniques. Comparisons with state-of-the-art guide-wire tracking algorithms confirm the effectiveness of the proposed method.
International Nuclear Information System (INIS)
Herrmann, K.
1994-03-01
In this work the properties of josephson step contacts are investigated. After a short introduction into Josephson step contacts the structure, properties and the Josphson contacts of YBa 2 Cu 3 O 7-x high-T c superconductors is presented. The fabrication of HTSC step contacts and the microstructure is discussed. The electric properties of these contacts are measured together with the Josephson emission and the magnetic field dependence. The temperature dependence of the stationary transport properties is given. (WL)
An Einstein equation for discrete quantum gravity
Gudder, Stan
2012-01-01
The basic framework for this article is the causal set approach to discrete quantum gravity (DQG). Let $Q_n$ be the collection of causal sets with cardinality not greater than $n$ and let $K_n$ be the standard Hilbert space of complex-valued functions on $Q_n$. The formalism of DQG presents us with a decoherence matrix $D_n(x,y)$, $x,y\\in Q_n$. There is a growth order in $Q_n$ and a path in $Q_n$ is a maximal chain relative to this order. We denote the set of paths in $Q_n$ by $\\Omega_n$. For...
Newnes passive and discrete circuits pocket book
MARSTON, R M
2000-01-01
Newnes Passive and Discrete Circuits Pocket Book is aimed at all engineers, technicians, students and experimenters who can build a design directly from a circuit diagram. In a highly concise form Ray Marston presents a huge compendium of circuits that can be built as they appear, adapted or used as building blocks. The devices used have been carefully chosen for their ease of availability and reasonable price. The selection of devices has been thoroughly updated for the second edition, which has also been expanded to cover the latest ICs.The three sections of the book cover: Moder
Discrete time modelization of human pilot behavior
Cavalli, D.; Soulatges, D.
1975-01-01
This modelization starts from the following hypotheses: pilot's behavior is a time discrete process, he can perform only one task at a time and his operating mode depends on the considered flight subphase. Pilot's behavior was observed using an electro oculometer and a simulator cockpit. A FORTRAN program has been elaborated using two strategies. The first one is a Markovian process in which the successive instrument readings are governed by a matrix of conditional probabilities. In the second one, strategy is an heuristic process and the concepts of mental load and performance are described. The results of the two aspects have been compared with simulation data.
A discrete transition to advanced mathematics
Richmond, Bettina
2009-01-01
As the title indicates, this book is intended for courses aimed at bridging the gap between lower-level mathematics and advanced mathematics. The text provides a careful introduction to techniques for writing proofs and a logical development of topics based on intuitive understanding of concepts. The authors utilize a clear writing style and a wealth of examples to develop an understanding of discrete mathematics and critical thinking skills. While including many traditional topics, the text offers innovative material throughout. Surprising results are used to motivate the reader. The last thr
Generalized reciprocity principle for discrete symplectic systems
Directory of Open Access Journals (Sweden)
Julia Elyseeva
2015-12-01
Full Text Available This paper studies transformations for conjoined bases of symplectic difference systems $Y_{i+1}=\\mathcal S_{i}Y_{i}$ with the symplectic coefficient matrices $\\mathcal S_i.$ For an arbitrary symplectic transformation matrix $P_{i}$ we formulate most general sufficient conditions for $\\mathcal S_{i},\\, P_{i}$ which guarantee that $P_{i}$ preserves oscillatory properties of conjoined bases $Y_{i}.$ We present examples which show that our new results extend the applicability of the discrete transformation theory.
Time-delay analyzer with continuous discretization
International Nuclear Information System (INIS)
Bayatyan, G.L.; Darbinyan, K.T.; Mkrtchyan, K.K.; Stepanyan, S.S.
1988-01-01
A time-delay analyzer is described which when triggered by a start pulse of adjustable duration performs continuous discretization of the analyzed signal within nearly 22 ns time intervals, the recording in a memory unit with following slow read-out of the information to the computer and its processing. The time-delay analyzer consists of four CAMAC-VECTOR systems of unit width. With its help one can separate comparatively short, small-amplitude rare signals against the background of quasistationary noise processes. 4 refs.; 3 figs
Kolmogorov-Smirnov Test for Discrete Distributions
1976-03-01
34 v *v t ’c */* *v *v -v* -v* nr* "i* *t* "t* *r- *v* *v Tr T* *r» -nr "p -v- *i* *** *r *r* "V* t- FDMNS = 0.0 PDPLS = 0.0 PCP = 0.0 FDM = 0.0 CC 38...34Heuristic Approach to the Kolmogorov-Smirnov Theorems ," Annals of Mathematical Statistics , v. 20, p. 393-^03, 19^9. 7. Massey, F. J., "The Kolmogorov...Statistic in the Discrete Case," Metrika , v. 7, No. 2, p. 115-116, I963. 9. Schmid, P., "On the Kolmogorov and Smirnov Limit Theorems for
Compartmentalization analysis using discrete fracture network models
Energy Technology Data Exchange (ETDEWEB)
La Pointe, P.R.; Eiben, T.; Dershowitz, W. [Golder Associates, Redmond, VA (United States); Wadleigh, E. [Marathon Oil Co., Midland, TX (United States)
1997-08-01
This paper illustrates how Discrete Fracture Network (DFN) technology can serve as a basis for the calculation of reservoir engineering parameters for the development of fractured reservoirs. It describes the development of quantitative techniques for defining the geometry and volume of structurally controlled compartments. These techniques are based on a combination of stochastic geometry, computational geometry, and graph the theory. The parameters addressed are compartment size, matrix block size and tributary drainage volume. The concept of DFN models is explained and methodologies to compute these parameters are demonstrated.
A conceptual modeling framework for discrete event simulation using hierarchical control structures.
Furian, N; O'Sullivan, M; Walker, C; Vössner, S; Neubacher, D
2015-08-01
Conceptual Modeling (CM) is a fundamental step in a simulation project. Nevertheless, it is only recently that structured approaches towards the definition and formulation of conceptual models have gained importance in the Discrete Event Simulation (DES) community. As a consequence, frameworks and guidelines for applying CM to DES have emerged and discussion of CM for DES is increasing. However, both the organization of model-components and the identification of behavior and system control from standard CM approaches have shortcomings that limit CM's applicability to DES. Therefore, we discuss the different aspects of previous CM frameworks and identify their limitations. Further, we present the Hierarchical Control Conceptual Modeling framework that pays more attention to the identification of a models' system behavior, control policies and dispatching routines and their structured representation within a conceptual model. The framework guides the user step-by-step through the modeling process and is illustrated by a worked example.
Su, Yuanchao; Sun, Xu; Gao, Lianru; Li, Jun; Zhang, Bing
2016-10-01
Endmember extraction is a key step in hyperspectral unmixing. A new endmember extraction framework is proposed for hyperspectral endmember extraction. The proposed approach is based on the swarm intelligence (SI) algorithm, where discretization is used to solve the SI algorithm because pixels in a hyperspectral image are naturally defined within a discrete space. Moreover, a "distance" factor is introduced into the objective function to limit the endmember numbers which is generally limited in real scenarios, while traditional SI algorithms likely produce superabundant spectral signatures, which generally belong to the same classes. Three endmember extraction methods are proposed based on the artificial bee colony, ant colony optimization, and particle swarm optimization algorithms. Experiments with both simulated and real hyperspectral images indicate that the proposed framework can improve the accuracy of endmember extraction.
Comparison of the methods for discrete approximation of the fractional-order operator
Directory of Open Access Journals (Sweden)
Zborovjan Martin
2003-12-01
Full Text Available In this paper we will present some alternative types of discretization methods (discrete approximation for the fractional-order (FO differentiator and their application to the FO dynamical system described by the FO differential equation (FDE. With analytical solution and numerical solution by power series expansion (PSE method are compared two effective methods - the Muir expansion of the Tustin operator and continued fraction expansion method (CFE with the Tustin operator and the Al-Alaoui operator. Except detailed mathematical description presented are also simulation results. From the Bode plots of the FO differentiator and FDE and from the solution in the time domain we can see, that the CFE is a more effective method according to the PSE method, but there are some restrictions for the choice of the time step. The Muir expansion is almost unusable.
El-Amin, Mohamed F.
2017-06-06
Recently, applications of nanoparticles have been considered in many branches of petroleum engineering, especially, enhanced oil recovery. The current paper is devoted to investigate the problem of nanoparticles transport in fractured porous media, numerically. We employed the discrete-fracture model (DFM) to represent the flow and transport in the fractured formations. The system of the governing equations consists of the mass conservation law, Darcy\\'s law, nanoparticles concentration in water, deposited nanoparticles concentration on the pore-wall, and entrapped nanoparticles concentration in the pore-throat. The variation of porosity and permeability due to the nanoparticles deposition/entrapment on/in the pores is also considered. We employ the multiscale time-splitting strategy to control different time-step sizes for different physics, such as pressure and concentration. The cell-centered finite difference (CCFD) method is used for the spatial discretization. Numerical examples are provided to demonstrate the efficiency of the proposed multiscale time splitting approach.
Discrete quantum spectrum of black holes
Energy Technology Data Exchange (ETDEWEB)
Lochan, Kinjalk, E-mail: kinjalk@iucaa.in; Chakraborty, Sumanta, E-mail: sumanta@iucaa.in
2016-04-10
The quantum genesis of Hawking radiation is a long-standing puzzle in black hole physics. Semi-classically one can argue that the spectrum of radiation emitted by a black hole look very much sparse unlike what is expected from a thermal object. It was demonstrated through a simple quantum model that a quantum black hole will retain a discrete profile, at least in the weak energy regime. However, it was suggested that this discreteness might be an artifact of the simplicity of eigen-spectrum of the model considered. Different quantum theories can, in principle, give rise to different complicated spectra and make the radiation from black hole dense enough in transition lines, to make them look continuous in profile. We show that such a hope from a geometry-quantized black hole is not realized as long as large enough black holes are dubbed with a classical mass area relation in any gravity theory ranging from GR, Lanczos–Lovelock to f(R) gravity. We show that the smallest frequency of emission from black hole in any quantum description, is bounded from below, to be of the order of its inverse mass. That leaves the emission with only two possibilities. It can either be non-thermal, or it can be thermal only with the temperature being much larger than 1/M.
Discrete quantum spectrum of black holes
International Nuclear Information System (INIS)
Lochan, Kinjalk; Chakraborty, Sumanta
2016-01-01
The quantum genesis of Hawking radiation is a long-standing puzzle in black hole physics. Semi-classically one can argue that the spectrum of radiation emitted by a black hole look very much sparse unlike what is expected from a thermal object. It was demonstrated through a simple quantum model that a quantum black hole will retain a discrete profile, at least in the weak energy regime. However, it was suggested that this discreteness might be an artifact of the simplicity of eigen-spectrum of the model considered. Different quantum theories can, in principle, give rise to different complicated spectra and make the radiation from black hole dense enough in transition lines, to make them look continuous in profile. We show that such a hope from a geometry-quantized black hole is not realized as long as large enough black holes are dubbed with a classical mass area relation in any gravity theory ranging from GR, Lanczos–Lovelock to f(R) gravity. We show that the smallest frequency of emission from black hole in any quantum description, is bounded from below, to be of the order of its inverse mass. That leaves the emission with only two possibilities. It can either be non-thermal, or it can be thermal only with the temperature being much larger than 1/M.
Focusing properties of discrete RF quadrupoles
Li, Zhi-Hui; Wang, Zhi-Jun
2017-08-01
The particle motion equation for a Radio Frequency (RF) quadrupole is derived. The motion equation shows that the general transform matrix of a RF quadrupole with length less than or equal to 0.5βλ (β is the relativistic velocity of particles and λ is wavelength of radio frequency electromagnetic field) can describe the particle motion in an arbitrarily long RF quadrupole. By iterative integration, the general transform matrix of a discrete RF quadrupole is derived from the motion equation. The transform matrix is in form of a power series of focusing parameter B. It shows that for length less than βλ, the series up to the 2nd order of B agrees well with the direct integration results for B up to 30, while for length less than 0.5βλ, the series up to 1st order is already a good approximation of the real solution for B less than 30. The formula of the transform matrix can be integrated into linac or beam line design code to deal with the focusing of discrete RF quadrupoles. Supported by National Natural Science Foundation of China (11375122, 11511140277) and Strategic Priority Research Program of the Chinese Academy of Sciences (XDA03020705)
Dynamical Localization for Discrete Anderson Dirac Operators
Prado, Roberto A.; de Oliveira, César R.; Carvalho, Silas L.
2017-04-01
We establish dynamical localization for random Dirac operators on the d-dimensional lattice, with d\\in { 1, 2, 3} , in the three usual regimes: large disorder, band edge and 1D. These operators are discrete versions of the continuous Dirac operators and consist in the sum of a discrete free Dirac operator with a random potential. The potential is a diagonal matrix formed by different scalar potentials, which are sequences of independent and identically distributed random variables according to an absolutely continuous probability measure with bounded density and of compact support. We prove the exponential decay of fractional moments of the Green function for such models in each of the above regimes, i.e., (j) throughout the spectrum at larger disorder, (jj) for energies near the band edges at arbitrary disorder and (jjj) in dimension one, for all energies in the spectrum and arbitrary disorder. Dynamical localization in theses regimes follows from the fractional moments method. The result in the one-dimensional regime contrast with one that was previously obtained for 1D Dirac model with Bernoulli potential.
A Discrete Model for Color Naming
Menegaz, G.; Le Troter, A.; Sequeira, J.; Boi, J. M.
2006-12-01
The ability to associate labels to colors is very natural for human beings. Though, this apparently simple task hides very complex and still unsolved problems, spreading over many different disciplines ranging from neurophysiology to psychology and imaging. In this paper, we propose a discrete model for computational color categorization and naming. Starting from the 424 color specimens of the OSA-UCS set, we propose a fuzzy partitioning of the color space. Each of the 11 basic color categories identified by Berlin and Kay is modeled as a fuzzy set whose membership function is implicitly defined by fitting the model to the results of an ad hoc psychophysical experiment (Experiment 1). Each OSA-UCS sample is represented by a feature vector whose components are the memberships to the different categories. The discrete model consists of a three-dimensional Delaunay triangulation of the CIELAB color space which associates each OSA-UCS sample to a vertex of a 3D tetrahedron. Linear interpolation is used to estimate the membership values of any other point in the color space. Model validation is performed both directly, through the comparison of the predicted membership values to the subjective counterparts, as evaluated via another psychophysical test (Experiment 2), and indirectly, through the investigation of its exploitability for image segmentation. The model has proved to be successful in both cases, providing an estimation of the membership values in good agreement with the subjective measures as well as a semantically meaningful color-based segmentation map.
Discrete hierarchical organization of social group sizes.
Zhou, W-X; Sornette, D; Hill, R A; Dunbar, R I M
2005-02-22
The 'social brain hypothesis' for the evolution of large brains in primates has led to evidence for the coevolution of neocortical size and social group sizes, suggesting that there is a cognitive constraint on group size that depends, in some way, on the volume of neural material available for processing and synthesizing information on social relationships. More recently, work on both human and non-human primates has suggested that social groups are often hierarchically structured. We combine data on human grouping patterns in a comprehensive and systematic study. Using fractal analysis, we identify, with high statistical confidence, a discrete hierarchy of group sizes with a preferred scaling ratio close to three: rather than a single or a continuous spectrum of group sizes, humans spontaneously form groups of preferred sizes organized in a geometrical series approximating 3-5, 9-15, 30-45, etc. Such discrete scale invariance could be related to that identified in signatures of herding behaviour in financial markets and might reflect a hierarchical processing of social nearness by human brains.
Discrete Fractional COSHAD Transform and Its Application
Directory of Open Access Journals (Sweden)
Hongqing Zhu
2014-01-01
Full Text Available In recent years, there has been a renewed interest in finding methods to construct orthogonal transforms. This interest is driven by the large number of applications of the orthogonal transforms in image analysis and compression, especially for colour images. Inspired by this motivation, this paper first introduces a new orthogonal transform known as a discrete fractional COSHAD (FrCOSHAD using the Kronecker product of eigenvectors and the eigenvalues of the COSHAD kernel functions. Next, this study discusses the properties of the FrCOSHAD kernel function, such as angle additivity. Using the algebra of quaternions, the study presents quaternion COSHAD/FrCOSHAD transforms to represent colour images in a holistic manner. This paper also develops an inverse polynomial reconstruction method (IPRM in the discrete COSHAD/FrCOSHAD domains. This method can effectively recover a piecewise smooth signal from the finite set of its COSHAD/FrCOSHAD coefficients, with high accuracy. The convergence theorem has proved that the partial sum of COSHAD provides a spectrally accurate approximation to the underlying piecewise smooth signal. The experimental results verify the numerical stability and accuracy of the proposed methods.
Discretization analysis of bifurcation based nonlinear amplifiers
Feldkord, Sven; Reit, Marco; Mathis, Wolfgang
2017-09-01
Recently, for modeling biological amplification processes, nonlinear amplifiers based on the supercritical Andronov-Hopf bifurcation have been widely analyzed analytically. For technical realizations, digital systems have become the most relevant systems in signal processing applications. The underlying continuous-time systems are transferred to the discrete-time domain using numerical integration methods. Within this contribution, effects on the qualitative behavior of the Andronov-Hopf bifurcation based systems concerning numerical integration methods are analyzed. It is shown exemplarily that explicit Runge-Kutta methods transform the truncated normalform equation of the Andronov-Hopf bifurcation into the normalform equation of the Neimark-Sacker bifurcation. Dependent on the order of the integration method, higher order terms are added during this transformation.A rescaled normalform equation of the Neimark-Sacker bifurcation is introduced that allows a parametric design of a discrete-time system which corresponds to the rescaled Andronov-Hopf system. This system approximates the characteristics of the rescaled Hopf-type amplifier for a large range of parameters. The natural frequency and the peak amplitude are preserved for every set of parameters. The Neimark-Sacker bifurcation based systems avoid large computational effort that would be caused by applying higher order integration methods to the continuous-time normalform equations.
Discretization analysis of bifurcation based nonlinear amplifiers
Directory of Open Access Journals (Sweden)
S. Feldkord
2017-09-01
Full Text Available Recently, for modeling biological amplification processes, nonlinear amplifiers based on the supercritical Andronov–Hopf bifurcation have been widely analyzed analytically. For technical realizations, digital systems have become the most relevant systems in signal processing applications. The underlying continuous-time systems are transferred to the discrete-time domain using numerical integration methods. Within this contribution, effects on the qualitative behavior of the Andronov–Hopf bifurcation based systems concerning numerical integration methods are analyzed. It is shown exemplarily that explicit Runge–Kutta methods transform the truncated normalform equation of the Andronov–Hopf bifurcation into the normalform equation of the Neimark–Sacker bifurcation. Dependent on the order of the integration method, higher order terms are added during this transformation.A rescaled normalform equation of the Neimark–Sacker bifurcation is introduced that allows a parametric design of a discrete-time system which corresponds to the rescaled Andronov–Hopf system. This system approximates the characteristics of the rescaled Hopf-type amplifier for a large range of parameters. The natural frequency and the peak amplitude are preserved for every set of parameters. The Neimark–Sacker bifurcation based systems avoid large computational effort that would be caused by applying higher order integration methods to the continuous-time normalform equations.
Discrete quantum spectrum of black holes
Directory of Open Access Journals (Sweden)
Kinjalk Lochan
2016-04-01
Full Text Available The quantum genesis of Hawking radiation is a long-standing puzzle in black hole physics. Semi-classically one can argue that the spectrum of radiation emitted by a black hole look very much sparse unlike what is expected from a thermal object. It was demonstrated through a simple quantum model that a quantum black hole will retain a discrete profile, at least in the weak energy regime. However, it was suggested that this discreteness might be an artifact of the simplicity of eigen-spectrum of the model considered. Different quantum theories can, in principle, give rise to different complicated spectra and make the radiation from black hole dense enough in transition lines, to make them look continuous in profile. We show that such a hope from a geometry-quantized black hole is not realized as long as large enough black holes are dubbed with a classical mass area relation in any gravity theory ranging from GR, Lanczos–Lovelock to f(R gravity. We show that the smallest frequency of emission from black hole in any quantum description, is bounded from below, to be of the order of its inverse mass. That leaves the emission with only two possibilities. It can either be non-thermal, or it can be thermal only with the temperature being much larger than 1/M.
Discrete Bubble Modeling for Cavitation Bubbles
Choi, Jin-Keun; Chahine, Georges; Hsiao, Chao-Tsung
2007-03-01
Dynaflow, Inc. has conducted extensive studies on non-spherical bubble dynamics and interactions with solid and free boundaries, vortical flow structures, and other bubbles. From these studies, emerged a simplified Surface Averaged Pressure (SAP) spherical bubble dynamics model and a Lagrangian bubble tracking scheme. In this SAP scheme, the pressure and velocity of the surrounding flow field are averaged on the bubble surface, and then used for the bubble motion and volume dynamics calculations. This model is implemented using the Fluent User Defined Function (UDF) as Discrete Bubble Model (DBM). The Bubble dynamics portion can be solved using an incompressible liquid modified Rayleigh-Plesset equation or a compressible liquid modified Gilmore equation. The Discrete Bubble Model is a very suitable tool for the studies on cavitation inception of foils and turbo machinery, bubble nuclei effects, noise from the bubbles, and can be used in many practical problems in industrial and naval applications associated with flows in pipes, jets, pumps, propellers, ships, and the ocean. Applications to propeller cavitation, wake signatures of waterjet propelled ships, bubble-wake interactions, modeling of cavitating jets, and bubble entrainments around a ship will be presented.
Energy Technology Data Exchange (ETDEWEB)
Hartley, Lee; Roberts, David
2013-04-15
The Swedish Nuclear Fuel and Waste Management Company (SKB) is responsible for the development of a deep geological repository for spent nuclear fuel. The permitting of such a repository is informed by assessment studies to estimate the risks of the disposal method. One of the potential risks involves the transport of radionuclides in groundwater from defective canisters in the repository to the accessible environment. The Swedish programme for geological disposal of spent nuclear fuel has involved undertaking detailed surface-based site characterisation studies at two different sites, Forsmark and Laxemar-Simpevarp. A key component of the hydrogeological modelling of these two sites has been the development of Discrete Fracture Network (DFN) concepts of groundwater flow through the fractures in the crystalline rocks present. A discrete fracture network model represents some of the characteristics of fractures explicitly, such as their, orientation, intensity, size, spatial distribution, shape and transmissivity. This report summarises how the discrete fracture network methodology has been applied to model groundwater flow and transport at Forsmark and Laxemar. The account has involved summarising reports previously published by SKB between 2001 and 2011. The report describes the conceptual framework and assumptions used in interpreting site data, and in particular how data has been used to calibrate the various parameters that define the discrete fracture network representation of bedrock hydrogeology against borehole geologic and hydraulic data. Steps taken to confirm whether the developed discrete fracture network models provide a description of regional-scale groundwater flow and solute transport consistent with wider hydraulic tests hydrochemical data from Forsmark and Laxemar are discussed. It illustrates the use of derived hydrogeological DFN models in the simulations of the temperate period hydrogeology that provided input to radionuclide transport
ASOP, Shield Calculation, 1-D, Discrete Ordinates Transport
International Nuclear Information System (INIS)
1993-01-01
1 - Nature of physical problem solved: ASOP is a shield optimization calculational system based on the one-dimensional discrete ordinates transport program ANISN. It has been used to design optimum shields for space applications of SNAP zirconium-hydride-uranium- fueled reactors and uranium-oxide fueled thermionic reactors and to design beam stops for the ORELA facility. 2 - Method of solution: ASOP generates coefficients of linear equations describing the logarithm of the dose and dose-weight derivatives as functions of position from data obtained in an automated sequence of ANISN calculations. With the dose constrained to a design value and all dose-weight derivatives required to be equal, the linear equations may be solved for a new set of shield dimensions. Since changes in the shield dimensions may cause the linear functions to change, the entire procedure is repeated until convergence is obtained. The detailed calculations of the radiation transport through shield configurations for every step in the procedure distinguish ASOP from other shield optimization computer code systems which rely on multiple component sources and attenuation coefficients to describe the transport. 3 - Restrictions on the complexity of the problem: Problem size is limited only by machine size
Model of the discrete destruction process of a solid body
Glagolev, V. V.; Markin, A. A.
2018-03-01
Destruction is considered as a discrete thermomechanical process, in which the deformation of a solid body is achieved by changing the boundary stresses acting on the part of the volume being destroyed with the external load unchanged. On the basis of the proposed concept, a model for adhesive stratification of a composite material is constructed. When adhesive stratification is used, the stress state of one or two boundaries of the adhesive layer changes to zero if the bonds with the joined body are broken. As a result of the stratification, the interaction between the part of the composite, which may include an adhesive layer and the rest of the body stops. When solving the elastoplastic problem of cohesive stratification, the region in which the destruction criterion is achieved is identified. With the help of a repeated solution of the problem of subcritical deformation with the known law of motion of the boundary of the region, the distribution of the load (nodal forces) acting from the region to the body is located. The next step considers the change in the stress–strain state of the body in the process of destruction of the selected area. The elastoplastic problem is solved with a simple unloading of the formed surface of the body and preservation of the external load corresponding to the beginning of the process of destruction.
Device Fabrication and Probing of Discrete Carbon Nanostructures
Batra, Nitin M
2015-05-06
Device fabrication on multi walled carbon nanotubes (MWCNTs) using electrical beam lithography (EBL), electron beam induced deposition (EBID), ion beam induced deposition (IBID) methods was carried out, followed by device electrical characterization using a conventional probe station. A four-probe configuration was utilized to measure accurately the electrical resistivity of MWCNTs with similar results obtained from devices fabricated by different methods. In order to reduce the contact resistance of the beam deposited platinum electrodes, single step vacuum thermal annealing was performed. Microscopy and spectroscopy were carried out on the beam deposited electrodes to follow the structural and chemical changes occurring during the vacuum thermal annealing. For the first time, a core-shell type structure was identified on EBID Pt and IBID Pt annealed electrodes and analogous free standing nanorods previously exposed to high temperature. We believe this observation has important implications for transport properties studies of carbon materials. Apart from that, contamination of carbon nanostructure, originating from the device fabrication methods, was also studied. Finally, based on the observations of faster processing time together with higher yield and flexibility for device preparation, we investigated EBID to fabricate devices for other discrete carbon nanostructures.
Parametric Deformation of Discrete Geometry for Aerodynamic Shape Design
Anderson, George R.; Aftosmis, Michael J.; Nemec, Marian
2012-01-01
We present a versatile discrete geometry manipulation platform for aerospace vehicle shape optimization. The platform is based on the geometry kernel of an open-source modeling tool called Blender and offers access to four parametric deformation techniques: lattice, cage-based, skeletal, and direct manipulation. Custom deformation methods are implemented as plugins, and the kernel is controlled through a scripting interface. Surface sensitivities are provided to support gradient-based optimization. The platform architecture allows the use of geometry pipelines, where multiple modelers are used in sequence, enabling manipulation difficult or impossible to achieve with a constructive modeler or deformer alone. We implement an intuitive custom deformation method in which a set of surface points serve as the design variables and user-specified constraints are intrinsically satisfied. We test our geometry platform on several design examples using an aerodynamic design framework based on Cartesian grids. We examine inverse airfoil design and shape matching and perform lift-constrained drag minimization on an airfoil with thickness constraints. A transport wing-fuselage integration problem demonstrates the approach in 3D. In a final example, our platform is pipelined with a constructive modeler to parabolically sweep a wingtip while applying a 1-G loading deformation across the wingspan. This work is an important first step towards the larger goal of leveraging the investment of the graphics industry to improve the state-of-the-art in aerospace geometry tools.
Grief: Difficult Times, Simple Steps.
Waszak, Emily Lane
This guide presents techniques to assist others in coping with the loss of a loved one. Using the language of 9 layperson, the book contains more than 100 tips for caregivers or loved ones. A simple step is presented on each page, followed by reasons and instructions for each step. Chapters include: "What to Say"; "Helpful Things to Do"; "Dealing…
Mishchenko, Michael I.; Dlugach, Janna M.; Yurkin, Maxim A.; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R. Lee; Travis, Larry D.; Yang, Ping; Zakharova, Nadezhda T.
2016-01-01
A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ, or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell's equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell- Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell-Lorentz equations, we trace the development of
International Nuclear Information System (INIS)
Mishchenko, Michael I.; Dlugach, Janna M.; Yurkin, Maxim A.; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R. Lee; Travis, Larry D.; Yang, Ping; Zakharova, Nadezhda T.
2016-01-01
A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ, or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell’s equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell–Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell–Lorentz equations, we trace the development
Mishchenko, Michael I.; Dlugach, Janna M.; Yurkin, Maxim A.; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R. Lee; Travis, Larry D.; Yang, Ping; Zakharova, Nadezhda T.
2018-01-01
A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ, or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell’s equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell–Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell–Lorentz equations, we trace the development
Model Predictive Control of a Wave Energy Converter with Discrete Fluid Power Power Take-Off System
Directory of Open Access Journals (Sweden)
Anders Hedegaard Hansen
2018-03-01
Full Text Available Wave power extraction algorithms for wave energy converters are normally designed without taking system losses into account leading to suboptimal power extraction. In the current work, a model predictive power extraction algorithm is designed for a discretized power take of system. It is shown how the quantized nature of a discrete fluid power system may be included in a new model predictive control algorithm leading to a significant increase in the harvested power. A detailed investigation of the influence of the prediction horizon and the time step is reported. Furthermore, it is shown how the inclusion of a loss model may increase the energy output. Based on the presented results it is concluded that power extraction algorithms based on model predictive control principles are both feasible and favorable for use in a discrete fluid power power take-off system for point absorber wave energy converters.
Strong Stability Preserving Two-step Runge–Kutta Methods
Ketcheson, David I.
2011-12-22
We investigate the strong stability preserving (SSP) property of two-step Runge–Kutta (TSRK) methods. We prove that all SSP TSRK methods belong to a particularly simple subclass of TSRK methods, in which stages from the previous step are not used. We derive simple order conditions for this subclass. Whereas explicit SSP Runge–Kutta methods have order at most four, we prove that explicit SSP TSRK methods have order at most eight. We present explicit TSRK methods of up to eighth order that were found by numerical search. These methods have larger SSP coefficients than any known methods of the same order of accuracy and may be implemented in a form with relatively modest storage requirements. The usefulness of the TSRK methods is demonstrated through numerical examples, including integration of very high order weighted essentially non-oscillatory discretizations.
Lu, Junjie; She, Zhikun
2016-11-01
In this paper, we investigate sufficient and necessary conditions of uniform local exponential stability (ULES) for the discrete-time nonlinear switched system (DTNSS). We start with the definition of T-step common Lyapunov functions (CLFs), which is a relaxation of traditional CLFs. Then, for a time-varying DTNSS, by constructing such a T-step CLF, a necessary and sufficient condition for its ULES is provided. Afterwards, we strengthen it based on a T-step Lipschitz continuous CLF. Especially, when the system is time-invariant, by the smooth approximation theorem, the Lipschitz continuity condition of T-step CLFs can further be replaced by continuous differentiability; and when the system is time-invariant and homogeneous, due to the extension of Weierstrass approximation theorem, T-step continuously differentiable CLFs can even be strengthened to be T-step polynomial CLFs. Furthermore, three illustrative examples are additionally used to explain our main contribution. In the end, an equivalence between time-varying DTNSSs and their corresponding linearisations is discussed.
On the Linear Stability of the Fifth-Order WENO Discretization
Motamed, Mohammad
2010-10-03
We study the linear stability of the fifth-order Weighted Essentially Non-Oscillatory spatial discretization (WENO5) combined with explicit time stepping applied to the one-dimensional advection equation. We show that it is not necessary for the stability domain of the time integrator to include a part of the imaginary axis. In particular, we show that the combination of WENO5 with either the forward Euler method or a two-stage, second-order Runge-Kutta method is linearly stable provided very small time step-sizes are taken. We also consider fifth-order multistep time discretizations whose stability domains do not include the imaginary axis. These are found to be linearly stable with moderate time steps when combined with WENO5. In particular, the fifth-order extrapolated BDF scheme gave superior results in practice to high-order Runge-Kutta methods whose stability domain includes the imaginary axis. Numerical tests are presented which confirm the analysis. © Springer Science+Business Media, LLC 2010.
Discrete-Time Nonlinear Control of VSC-HVDC System
Directory of Open Access Journals (Sweden)
TianTian Qian
2015-01-01
Full Text Available Because VSC-HVDC is a kind of strong nonlinear, coupling, and multi-input multioutput (MIMO system, its control problem is always attracting much attention from scholars. And a lot of papers have done research on its control strategy in the continuous-time domain. But the control system is implemented through the computer discrete sampling in practical engineering. It is necessary to study the mathematical model and control algorithm in the discrete-time domain. The discrete mathematical model based on output feedback linearization and discrete sliding mode control algorithm is proposed in this paper. And to ensure the effectiveness of the control system in the quasi sliding mode state, the fast output sampling method is used in the output feedback. The results from simulation experiment in MATLAB/SIMULINK prove that the proposed discrete control algorithm can make the VSC-HVDC system have good static, dynamic, and robust characteristics in discrete-time domain.
How Triage Nurses Use Discretion: a Literature Review
Directory of Open Access Journals (Sweden)
Lars Emil Fagernes Johannessen
2016-02-01
Full Text Available Discretion is quintessential for professional work. This review aims to understand how nurses use discretion when they perform urgency assessments in emergency departments with formalised triage systems—systems that are intended to reduce nurses’ use of discretion. Because little research has dealt explicitly with this topic, this review addresses the discretionary aspects of triage by reinterpreting qualitative studies of how triage nurses perform urgency assessments. The review shows (a how inexhaustive guidelines and a hectic work environment are factors that necessitate nurses’ use of discretion and (b how nurses reason within this discretionary space by relying on their experience and intuition, judging patients according to criteria such as appropriateness and believability, and creating urgency ratings together with their patients. The review also offers a synthesis of the findings’ discretionary aspects and suggests a new interactionist dimension of discretion.Keywords: Triage, discretion, emergency department, meta-ethnography, review, decision-making
Microprocessor controller for stepping motors
International Nuclear Information System (INIS)
Strait, B.G.; Thuot, M.E.
1977-01-01
A new concept for digital computer control of multiple stepping motors which operate in a severe electromagnetic pulse environment is presented. The motors position mirrors in the beam-alignment system of a 100-kJ CO 2 laser. An asynchronous communications channel of a computer is used to send coded messages, containing the motor address and stepping-command information, to the stepping-motor controller in a bit serial format over a fiber-optics communications link. The addressed controller responds by transmitting to the computer its address and other motor information, thus confirming the received message. Each controller is capable of controlling three stepping motors. The controller contains the fiber-optics interface, a microprocessor, and the stepping-motor driven circuits. The microprocessor program, which resides in an EPROM, decodes the received messages, transmits responses, performs the stepping-motor sequence logic, maintains motor-position information, and monitors the motor's reference switch. For multiple stepping-motor application, the controllers are connected in a daisy chain providing control of many motors from one asynchronous communications channel of the computer
Discrete wavelet transformations an elementary approach with applications
Van Fleet, Patrick
2008-01-01
An "applications first" approach to discrete wavelet transformations. Discrete Wavelet Transformations provides readers with a broad elementary introduction to discrete wavelet transformations and their applications. With extensive graphical displays, this self-contained book integrates concepts from calculus and linear algebra into the construction of wavelet transformations and their various applications, including data compression, edge detection in images, and signal and image denoising. The book begins with a cursory look at wavelet transformation development and illustrates its
A note on inconsistent families of discrete multivariate distributions
Ghosh, Sugata
2017-07-05
We construct a d-dimensional discrete multivariate distribution for which any proper subset of its components belongs to a specific family of distributions. However, the joint d-dimensional distribution fails to belong to that family and in other words, it is ‘inconsistent’ with the distribution of these subsets. We also address preservation of this ‘inconsistency’ property for the symmetric Binomial distribution, and some discrete distributions arising from the multivariate discrete normal distribution.
Discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities
DEFF Research Database (Denmark)
Khare, A.; Rasmussen, Kim Ø; Salerno, M.
2006-01-01
A class of discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities is introduced. These equations are derived from the same Hamiltonian using different Poisson brackets and include as particular cases the saturable discrete nonlinear Schrodinger equation and the Ablowitz......-Ladik equation. As a common property, these equations possess three kinds of exact analytical stationary solutions for which the Peierls-Nabarro barrier is zero. Several properties of these solutions, including stability, discrete breathers, and moving solutions, are investigated....
Chaos of discrete dynamical systems in complete metric spaces
International Nuclear Information System (INIS)
Shi Yuming; Chen Guanrong
2004-01-01
This paper is concerned with chaos of discrete dynamical systems in complete metric spaces. Discrete dynamical systems governed by continuous maps in general complete metric spaces are first discussed, and two criteria of chaos are then established. As a special case, two corresponding criteria of chaos for discrete dynamical systems in compact subsets of metric spaces are obtained. These results have extended and improved the existing relevant results of chaos in finite-dimensional Euclidean spaces
Network Science Research Laboratory (NSRL) Discrete Event Toolkit
2016-01-01
3. API Class Structure 3 3.1 Experiment_Driver 3 3.2 Discrete_Event_Base 5 3.3 Event_Logger_Base 6 4. Discrete Event Simulation Lifecycle 7 5...application programming interface ( API ) for developing real-time discrete event simulation (DES) systems, which simulate inputs, outputs, or services...the worker thread pool for execution. The number of worker threads is specified by the user application using the NDET API and is bound only by the
Jung, Segun; Bi, Yingtao; Davuluri, Ramana V
2015-01-01
Many supervised learning algorithms have been applied in deriving gene signatures for patient stratification from gene expression data. However, transferring the multi-gene signatures from one analytical platform to another without loss of classification accuracy is a major challenge. Here, we compared three unsupervised data discretization methods--Equal-width binning, Equal-frequency binning, and k-means clustering--in accurately classifying the four known subtypes of glioblastoma multiforme (GBM) when the classification algorithms were trained on the isoform-level gene expression profiles from exon-array platform and tested on the corresponding profiles from RNA-seq data. We applied an integrated machine learning framework that involves three sequential steps; feature selection, data discretization, and classification. For models trained and tested on exon-array data, the addition of data discretization step led to robust and accurate predictive models with fewer number of variables in the final models. For models trained on exon-array data and tested on RNA-seq data, the addition of data discretization step dramatically improved the classification accuracies with Equal-frequency binning showing the highest improvement with more than 90% accuracies for all the models with features chosen by Random Forest based feature selection. Overall, SVM classifier coupled with Equal-frequency binning achieved the best accuracy (> 95%). Without data discretization, however, only 73.6% accuracy was achieved at most. The classification algorithms, trained and tested on data from the same platform, yielded similar accuracies in predicting the four GBM subgroups. However, when dealing with cross-platform data, from exon-array to RNA-seq, the classifiers yielded stable models with highest classification accuracies on data transformed by Equal frequency binning. The approach presented here is generally applicable to other cancer types for classification and identification of
Discrete element modeling of subglacial sediment deformation
DEFF Research Database (Denmark)
Damsgaard, Anders; Egholm, David L.; Piotrowski, Jan A.
arithmetic potential of modern general-purpose GPUs. Using the Nvidia CUDA C toolkit, the algorithm is formulated for spherical particles in three dimensions with a linear-elastic soft-body contact model. We have coupled the DEM model to a model for porewater flow, and we present early results of particle......The Discrete Element Method (DEM) is used to explore the highly nonlinear dynamics of a granular bed when exposed to stress conditions comparable to those at the bed of warm-based glaciers. In the DEM, the material is simulated on a grain-by-grain basis, and defining the micromechanical properties...... of the inter-particle contacts parameterizes the model. For validating the numerical approach, the macromechanical behavior of the numerical material is compared to the results from successive laboratory ring-shear experiments. Overall, there is a good agreement between the geotechnical behavior of the real...
Choice certainty in Discrete Choice Experiments
DEFF Research Database (Denmark)
Uggeldahl, Kennet Christian; Jacobsen, Catrine; Lundhede, Thomas
2016-01-01
In this study, we conduct a Discrete Choice Experiment (DCE) using eye tracking technology to investigate if eye movements during the completion of choice sets reveal information about respondents’ choice certainty. We hypothesise that the number of times that respondents shift their visual...... attention between the alternatives in a choice set reflects their stated choice certainty. Based on one of the largest samples of eye tracking data in a DCE to date, we find evidence in favor of our hypothesis. We also link eye tracking observations to model-based choice certainty through parameterization...... of the scale function in a random parameters logit model. We find that choices characterized by more frequent gaze shifting do indeed exhibit a higher degree of error variance, however, this effects is insignificant once response time is controlled for. Overall, findings suggest that eye tracking can provide...
Discrete cosine transform using modified DPCM
Pogribny, Wlodzimierz; Drechny, Marcin
2004-07-01
Differential modulations such as Delta Modulation (DM) are used for representing digital signals in small word length codes. They allow high fast acting and simplicity of specialized processors. The use of DM for the economical representation and efficient processing of the signals needs the development of the existing methods and the working out of simple and fast processing methods in real time. Therefore Discrete Cosine Transform (DCT) methods were proposed in mixed formats which have the advantages both DCT with PCM and DCT with DM. In this work there have been studied the ways of choosing DM parameters in order to use them in these methods. On the basis of the worked out computer simulation program, the accuracy of DCT with DM algorithms has been examined by means of processing signals like noise and voice. The use of DCT algorithms in DM formats is expedient to realization of neural systems.
Discrete and Continuous Models for Partitioning Problems
Lellmann, Jan
2013-04-11
Recently, variational relaxation techniques for approximating solutions of partitioning problems on continuous image domains have received considerable attention, since they introduce significantly less artifacts than established graph cut-based techniques. This work is concerned with the sources of such artifacts. We discuss the importance of differentiating between artifacts caused by discretization and those caused by relaxation and provide supporting numerical examples. Moreover, we consider in depth the consequences of a recent theoretical result concerning the optimality of solutions obtained using a particular relaxation method. Since the employed regularizer is quite tight, the considered relaxation generally involves a large computational cost. We propose a method to significantly reduce these costs in a fully automatic way for a large class of metrics including tree metrics, thus generalizing a method recently proposed by Strekalovskiy and Cremers (IEEE conference on computer vision and pattern recognition, pp. 1905-1911, 2011). © 2013 Springer Science+Business Media New York.
Discrete motor coordinates for vowel production.
Directory of Open Access Journals (Sweden)
María Florencia Assaneo
Full Text Available Current models of human vocal production that capture peripheral dynamics in speech require large dimensional measurements of the neural activity, which are mapped into equally complex motor gestures. In this work we present a motor description for vowels as points in a discrete low-dimensional space. We monitor the dynamics of 3 points at the oral cavity using Hall-effect transducers and magnets, describing the resulting signals during normal utterances in terms of active/inactive patterns that allow a robust vowel classification in an abstract binary space. We use simple matrix algebra to link this representation to the anatomy of the vocal tract and to recent reports of highly tuned neuronal activations for vowel production, suggesting a plausible global strategy for vowel codification and motor production.
Ordinal Welfare Comparisons with Multiple Discrete Indicators
DEFF Research Database (Denmark)
Arndt, Channing; Distante, Roberta; Hussain, M. Azhar
We develop an ordinal method for making welfare comparisons between populations with multidimensional discrete well-being indicators observed at the micro level. The approach assumes that, for each well-being indicator, the levels can be ranked from worse to better; however, no assumptions are made...... about relative importance of any dimension nor about complementarity/substitutability relationships between dimensions. The method is based on the concept of multidimensional first order dominance. We introduce a rapid and reliable algorithm for empirically determining whether one population dominates...... another on the basis of available binary indicators by drawing upon linear programming theory. These approaches are applied to household survey data from Vietnam and Mozambique with a focus on child poverty comparisons over time and between regions....
Discrete canonical transforms that are Hadamard matrices
International Nuclear Information System (INIS)
Healy, John J; Wolf, Kurt Bernardo
2011-01-01
The group Sp(2,R) of symplectic linear canonical transformations has an integral kernel which has quadratic and linear phases, and which is realized by the geometric paraxial optical model. The discrete counterpart of this model is a finite Hamiltonian system that acts on N-point signals through N x N matrices whose elements also have a constant absolute value, although they do not form a representation of that group. Those matrices that are also unitary are Hadamard matrices. We investigate the manifolds of these N x N matrices under the Sp(2,R) equivalence imposed by the model, and find them to be on two-sided cosets. By means of an algorithm we determine representatives that lead to collections of mutually unbiased bases.
Discrete Line Congruences for Shading and Lighting
Wang, Jun
2013-07-01
Two-parameter families of straight lines (line congruences) are implicitly present in graphics and geometry processing in several important ways including lighting and shape analysis. In this paper we make them accessible to optimization and geometric computing, by introducing a general discrete version of congruences based on piecewise-linear correspondences between triangle meshes. Our applications of congruences are based on the extraction of a so-called torsion-free support structure, which is a procedure analogous to remeshing a surface along its principal curvature lines. A particular application of such structures are freeform shading and lighting systems for architecture. We combine interactive design of such systems with global optimization in order to satisfy geometric constraints. In this way we explore a new area where architecture can greatly benefit from graphics.
Discrete optimization in architecture extremely modular systems
Zawidzki, Machi
2017-01-01
This book is comprised of two parts, both of which explore modular systems: Pipe-Z (PZ) and Truss-Z (TZ), respectively. It presents several methods of creating PZ and TZ structures subjected to discrete optimization. The algorithms presented employ graph-theoretic and heuristic methods. The underlying idea of both systems is to create free-form structures using the minimal number of types of modular elements. PZ is more conceptual, as it forms single-branch mathematical knots with a single type of module. Conversely, TZ is a skeletal system for creating free-form pedestrian ramps and ramp networks among any number of terminals in space. In physical space, TZ uses two types of modules that are mirror reflections of each other. The optimization criteria discussed include: the minimal number of units, maximal adherence to the given guide paths, etc.
Discrete Dynamical Models of Walking Droplets
Rahman, Aminur
2017-11-01
In recent years discrete planar dynamical models of walking droplets (walkers) on a billiards table (Shirokoff, Chaos 2013) and walking in a straight-line confined geometry (Gilet, PRE 2014) have been developed. Gilet's model was then analyzed via dynamical systems theory (Rahman-Blackmore, C,S& F 2016). From the analysis it was shown that while Gilet's walker is confined under the threshold for chaos, it does escape the boundary once the system becomes chaotic. We modify the model to trap the walker in an annulur domain. This allows for connections between the dynamics, statistics, and experimental works (Filoux et al., PRE 2015). From this connection we derive a kicked rotator-like model for a walker in an annulus. We endeavor to manipulate the dynamics of the model to produce statistics similar to that of experiments.
Perceptual image coding with discrete cosine transform
Tan, Ee-Leng
2015-01-01
This book first introduces classic as well as recent computational models for just-noticeable-difference (JND) applications. Since the discrete cosine transform (DCT) is applied in many image and video standards (JPEG, MPEG-1/2/4, H.261/3), the book also includes a comprehensive survey of computational models for JND that are based on DCT. The visual factors used in these computational models are reviewed in detail. Further, an extensive comparative analysis of these models using quantitative and qualitative performance criteria is presented, which compares the noise shaping performance of these models with subjective evaluation and the accuracy between the estimated JND thresholds and subjective evaluation. There are many surveys available on computational models for JND; however, these surveys seldom compare the performance of computational models that are based on DCT. The authors’ survey of the computational models and their in-depth review of the visual factors used in them will help readers understand...
Discrete symmetries: A broken look at QCD
International Nuclear Information System (INIS)
Goldman, T.
1996-01-01
The alphabet soup of discrete symmetries is briefly surveyed with a view towards those which can be tested at LISS and two particularly interesting cases are called out. A LISS experiment may be able to distinguish CP violation that is not due to the QCD θ term. The elements of a model of parity violation in proton-nucleon scattering, which is consistent with lower energy LAMPF and ANL results, are reviewed in the light of new information on diquarks and the proton spin fraction carried by quarks. The prediction that the parity violating total cross section asymmetry should be large at LISS energies is confirmed. The results of such an experiment can be used both to obtain new information about the diquark substructure of the nucleon and to provide bounds on new right-chiral weak interactions
Discrete optimization in architecture architectural & urban layout
Zawidzki, Machi
2016-01-01
This book presents three projects that demonstrate the fundamental problems of architectural design and urban composition – the layout design, evaluation and optimization. Part I describes the functional layout design of a residential building, and an evaluation of the quality of a town square (plaza). The algorithm for the functional layout design is based on backtracking using a constraint satisfaction approach combined with coarse grid discretization. The algorithm for the town square evaluation is based on geometrical properties derived directly from its plan. Part II introduces a crowd-simulation application for the analysis of escape routes on floor plans, and optimization of a floor plan for smooth crowd flow. The algorithms presented employ agent-based modeling and cellular automata.
Discrete-event control of stochastic networks multimodularity and regularity
Altman, Eitan; Hordijk, Arie
2003-01-01
Opening new directions in research in both discrete event dynamic systems as well as in stochastic control, this volume focuses on a wide class of control and of optimization problems over sequences of integer numbers. This is a counterpart of convex optimization in the setting of discrete optimization. The theory developed is applied to the control of stochastic discrete-event dynamic systems. Some applications are admission, routing, service allocation and vacation control in queueing networks. Pure and applied mathematicians will enjoy reading the book since it brings together many disciplines in mathematics: combinatorics, stochastic processes, stochastic control and optimization, discrete event dynamic systems, algebra.
Discrete Wavelet Transform-Partial Least Squares Versus Derivative ...
African Journals Online (AJOL)
Discrete Wavelet Transform-Partial Least Squares Versus Derivative Ratio Spectrophotometry for Simultaneous Determination of Chlorpheniramine Maleate and Dexamethasone in the Presence of Parabens in Pharmaceutical Dosage Form.
Distributed discrete event simulation. Final report
Energy Technology Data Exchange (ETDEWEB)
De Vries, R.C. [Univ. of New Mexico, Albuquerque, NM (United States). EECE Dept.
1988-02-01
The presentation given here is restricted to discrete event simulation. The complexity of and time required for many present and potential discrete simulations exceeds the reasonable capacity of most present serial computers. The desire, then, is to implement the simulations on a parallel machine. However, certain problems arise in an effort to program the simulation on a parallel machine. In one category of methods deadlock care arise and some method is required to either detect deadlock and recover from it or to avoid deadlock through information passing. In the second category of methods, potentially incorrect simulations are allowed to proceed. If the situation is later determined to be incorrect, recovery from the error must be initiated. In either case, computation and information passing are required which would not be required in a serial implementation. The net effect is that the parallel simulation may not be much better than a serial simulation. In an effort to determine alternate approaches, important papers in the area were reviewed. As a part of that review process, each of the papers was summarized. The summary of each paper is presented in this report in the hopes that those doing future work in the area will be able to gain insight that might not otherwise be available, and to aid in deciding which papers would be most beneficial to pursue in more detail. The papers are broken down into categories and then by author. Conclusions reached after examining the papers and other material, such as direct talks with an author, are presented in the last section. Also presented there are some ideas that surfaced late in the research effort. These promise to be of some benefit in limiting information which must be passed between processes and in better understanding the structure of a distributed simulation. Pursuit of these ideas seems appropriate.
A Preliminary Investigation of the Effects of Discrete Virtual Rotation on Cybersickness
DEFF Research Database (Denmark)
Ryge, Andreas Nicolaj; Vollmers, Casper Gade Kranker; Hvass, Jonatan Salling
2018-01-01
Most virtual reality (VR) applications require the user to travel through the virtual environment (VE). However, some users are susceptible to cybersickness, and this issue is particularly prominent if the user is physically stationary while virtually moving. One approach to minimizing...... cybersickness is to rotate the user in discrete steps. This poster presents a between-subjects study (n=42) comparing this approach to smooth virtual rotation. The results revealed a statistically significant increase in self-reported sickness after exposure to the VE in case of both conditions...
Discretization of Lévy semistationary processes with application to estimation
DEFF Research Database (Denmark)
Bennedsen, Mikkel; Lunde, Asger; Pakkanen, Mikko
Motivated by the construction of the Ito stochastic integral, we consider a step function method to discretize and simulate volatility modulated Lévy semistationary processes. Moreover, we assess the accuracy of the method with a particular focus on integrating kernels with a singularity...... at the origin. Using the simulation method, we study the finite sample properties of some recently developed estimators of realized volatility and associated parametric estimators for Brownian semistationary processes. Although the theoretical properties of these estimators have been established under high...
Bounded Model Checking and Inductive Verification of Hybrid Discrete-Continuous Systems
DEFF Research Database (Denmark)
Becker, Bernd; Behle, Markus; Eisenbrand, Fritz
2004-01-01
verication, bounded plan- ning and heuristic search, combinatorial optimization and integer programming. Af- ter sketching the overall verication ow we present rst results indicating that the combination and tight integration of dierent verication engines is a rst step to pave the way to fully automated BMC......We present a concept to signicantly advance the state of the art for bounded model checking (BMC) and inductive verication (IV) of hybrid discrete-continuous systems. Our approach combines the expertise of partners coming from dierent domains, like hybrid systems modeling and digital circuit...
... JavaScript on. Feature: Type 2 Diabetes Step 1: Learn About Diabetes Past Issues / Fall 2014 Table of ... fewer problems with your eyesight, feet, and gums. Learn how caring for your diabetes helps you feel ...
Step sites in syngas catalysis
DEFF Research Database (Denmark)
Rostrup-Nielsen, J.; Nørskov, Jens Kehlet
2006-01-01
Step sites play an important role in many catalytic reactions. This paper reviews recent results on metal catalysts for syngas reactions with emphasis on steam reforming. Modern characterization techniques (STEM, HREM...) and theoretical calculations (DFT) has allowed a more quantitative...
National Aeronautics and Space Administration — Through the public-private partnerships enabled by the Next Space Technologies for Exploration Partnerships - 2 (NextSTEP-2) Broad Agency Announcement, NASA has...
... Issue Past Issues Special Section 7 Steps to Aging Well Past Issues / Winter 2007 Table of Contents ... Exercise: A Guide from the National Institute on Aging is a publication from NIA that has strength, ...
Directory of Open Access Journals (Sweden)
Arnot Komárek
2014-09-01
Full Text Available R package mixAK originally implemented routines primarily for Bayesian estimation of finite normal mixture models for possibly interval-censored data. The functionality of the package was considerably enhanced by implementing methods for Bayesian estimation of mixtures of multivariate generalized linear mixed models proposed in Komrek and Komrkov (2013. Among other things, this allows for a cluster analysis (classification based on multivariate continuous and discrete longitudinal data that arise whenever multiple outcomes of a different nature are recorded in a longitudinal study. This package also allows for a data-driven selection of a number of clusters as methods for selecting a number of mixture components were implemented. A model and clustering methodology for multivariate continuous and discrete longitudinal data is overviewed. Further, a step-by-step cluster analysis based jointly on three longitudinal variables of different types (continuous, count, dichotomous is given, which provides a user manual for using the package for similar problems.
Directory of Open Access Journals (Sweden)
AMBIKA DORAISAMY
2017-06-01
Full Text Available A digital watermark is defined as inaudible data, permanently embedded in a speech file for authenticating the secret data. The main goal of this paper is to embed a watermark in the speech signal without any degradation. Here the hybrid watermarking is performed based on the three techniques such as Discrete Cosine Transform (DCT with Singular Value Decomposition (SVD and Discrete Wavelet Transform (DWT and it is optimized by performing the separation of speech and silent regions using a voice activity detection algorithm. The performances were evaluated based on Peak Signal to Noise Ratio (PSNR and Normalized Cross Correlation (NCC. The result shows that the optimization method performs better than the existing algorithm and it is robust against different kinds of attacks. It also shows that the algorithm is efficient in terms of robustness, security, and imperceptibility and also the watermarked signal is perceptually similar to the original audio signal.
Directory of Open Access Journals (Sweden)
SERGIY KOZERENKO
2016-04-01
Full Text Available One feature of the famous Sharkovsky’s theorem is that it can be proved using digraphs of a special type (the so–called Markov graphs. The most general definition assigns a Markov graph to every continuous map from the topological graph to itself. We show that this definition is too broad, i.e. every finite digraph can be viewed as a Markov graph of some one–dimensional dynamical system on a tree. We therefore consider discrete analogues of Markov graphs for vertex maps on combinatorial trees and characterize all maps on trees whose discrete Markov graphs are of the following types: complete, complete bipartite, the disjoint union of cycles, with every arc being a loop.
Effective Local-Global Upscaling of Fractured Reservoirs under Discrete Fractured Discretization
Directory of Open Access Journals (Sweden)
Junchao Li
2015-09-01
Full Text Available The subsurface flow in fractured reservoirs is strongly affected by the distribution of fracture networks. Discrete fracture models, which represent all fractures individually by unstructured grid systems, are thus developed and act as a more accurate way for fractured reservoir simulation. However, it is usually not realistic to directly apply discrete fracture models to simulate field scale models for efficiency reasons. There is a need for upscaling techniques to coarsen the high resolution fracture descriptions to sizes that can be accommodated by reservoir simulators. In this paper, we extended the adaptive local-global upscaling technique to construct a transmissibility-based dual-porosity dual-permeability model from discrete fracture characterizations. An underlying unstructured fine-scale grid is firstly generated as a base grid. A global coarse-scale simulation is performed to provide boundary conditions for local regions and local upscaling procedures are carried out in every local region for transmissibility calculations. Iterations are performed until the consistency between the global and local properties is achieved. The procedure is applied to provide dual-porosity dual-permeability (DPDK parameters including coarse-scale matrix-matrix, fracture-fracture and matrix-fracture flux transmissibilities. The methodology is applied to several cases. The simulation results demonstrate the accuracy, efficiency and robustness of the proposed method.
Directory of Open Access Journals (Sweden)
Renxin Wang
2016-10-01
Full Text Available Silicon microneedle arrays (MNAs have been widely studied due to their potential in various transdermal applications. However, discrete MNAs, as a preferred choice to fabricate flexible penetrating devices that could adapt curved and elastic tissue, are rarely reported. Furthermore, the reported discrete MNAs have disadvantages lying in uniformity and height-pitch ratio. Therefore, an improved technique is developed to manufacture discrete MNA with tunable height-pitch ratio, which involves KOH-dicing-KOH process. The detailed process is sketched and simulated to illustrate the formation of microneedles. Furthermore, the undercutting of convex mask in two KOH etching steps are mathematically analyzed, in order to reveal the relationship between etching depth and mask dimension. Subsequently, fabrication results demonstrate KOH-dicing-KOH process. {321} facet is figured out as the surface of octagonal pyramid microneedle. MNAs with diverse height and pitch are also presented to identify the versatility of this approach. At last, the metallization is realized via successive electroplating.
Microsoft Office SharePoint Designer 2007 Step by Step
Coventry, Penelope
2008-01-01
The smart way to learn Office SharePoint Designer 2007-one step at a time! Work at your own pace through the easy numbered steps, practice files on CD, helpful hints, and troubleshooting tips to master the fundamentals of building customized SharePoint sites and applications. You'll learn how to work with Windows® SharePoint Services 3.0 and Office SharePoint Server 2007 to create Web pages complete with Cascading Style Sheets, Lists, Libraries, and customized Web parts. Then, make your site really work for you by adding data sources, including databases, XML data and Web services, and RSS fe
Information marketing business entrepreneur's step-by-step startup guide
magazine, Entrepreneur
2012-01-01
A six-figure income from information? Yes! It sounds easy because it is. You've got information that millions of others are looking for and now you can learn how to package, price and sell it.The experts at Entrepreneur take you step by step, jumpstarting your thinking about your area of expertise and showing you how to convert it into a high-demand information product. Following the example set by today's most successful information marketers, you learn the ins and outs of running your own information marketing business using proven strategies and effective marketing techniques.
Microsoft Windows Sharepoint Services 3.0 Step by Step
Londer, Olga; Bleeker, Todd; Coventry, Penelope
2007-01-01
Experience learning made easy-and quickly teach yourself how to use Windows SharePoint Services to enable effective team collaboration. With Step By Step, you set the pace-building and practicing the skills you need, just when you need them! Build your own SharePoint site with easy-to-use templatesCreate lists and libraries to store informationAdd discussion boards, wikis, and blogsSet up Document and Meeting Workspaces for easy collaborationShare calendars, contacts, and data from Microsoft Office programsCustomize your pages with Web Parts Your all-in-one learning experience includes: Fi
A step-by-step methodology for enterprise interoperability projects
Chalmeta, Ricardo; Pazos, Verónica
2015-05-01
Enterprise interoperability is one of the key factors for enhancing enterprise competitiveness. Achieving enterprise interoperability is an extremely complex process which involves different technological, human and organisational elements. In this paper we present a framework to help enterprise interoperability. The framework has been developed taking into account the three domains of interoperability: Enterprise Modelling, Architecture and Platform and Ontologies. The main novelty of the framework in comparison to existing ones is that it includes a step-by-step methodology that explains how to carry out an enterprise interoperability project taking into account different interoperability views, like business, process, human resources, technology, knowledge and semantics.
Microsoft® Office Access™ 2007 Step by Step
Lambert, Steve; Lambert, Joan
2009-01-01
Experience learning made easy-and quickly teach yourself how to build database solutions with Access 2007. With Step By Step, you set the pace-building and practicing the skills you need, just when you need them! Build databases from scratch or from templatesExchange data with other databases and Office documentsCreate forms to simplify data entryUse filters and queries to find and analyze informationDesign rich reports that help make your data meaningfulHelp prevent data corruption and unauthorized access Your all-in-one learning experience includes: Files for building skills and practic
A Two-Step RKC Method for Time-Dependent PDEs
International Nuclear Information System (INIS)
Sommeijer, Ben; Verwer, Jan
2008-01-01
An integration method is discussed which has been designed to treat parabolic and hyperbolic terms explicitly and stiff reaction terms implicitly. The method is a special two-step form of the one-step IMEX (IMplicit-EXplicit) RKC (Runge-Kutta-Chebyshev) method. The special two-step form is introduced with the aim of getting a non-zero imaginary stability boundary which is zero for the one-step method. Having a non-zero imaginary stability boundary allows, for example, the integration of pure advection equations space-discretized with centered schemes, the integration of damped or viscous wave equations, the integration of coupled sound and heat flow equations, etc. For our class of methods it also simplifies the choice of temporal step sizes satisfying the von Neumann stability criterion, by embedding a thin long rectangle inside the stability region.
Two-dimensional modeling of stepped planing hulls with open and pressurized air cavities
Directory of Open Access Journals (Sweden)
Konstantin I. Matveev
2012-06-01
Full Text Available A method of hydrodynamic discrete sources is applied for two-dimensional modeling of stepped planing surfaces. The water surface deformations, wetted hull lengths, and pressure distribution are calculated at given hull attitude and Froude number. Pressurized air cavities that improve hydrodynamic performance can also be modeled with the current method. Presented results include validation examples, parametric calculations of a single-step hull, effect of trim tabs, and performance of an infinite series of periodic stepped surfaces. It is shown that transverse steps can lead to higher lift-drag ratio, although at reduced lift capability, in comparison with a stepless hull. Performance of a multi-step configuration is sensitive to the wave pattern between hulls, which depends on Froude number and relative hull spacing.
Pollution free discretization of Maxwell's equations in terms of potentials
International Nuclear Information System (INIS)
Jaun, A.; Appert, K.; Vaclavik, J.
1994-03-01
A 2D discretization of Maxwell's equations is studied in terms of the electromagnetic potentials using linear and cubic finite elements. The formulation is first analyzed with respect to the discrete dispersion properties to show that it is pollution free. It is then further applied to a simple cylindrical waveguide problem, showing good convergence to the analytical eigenfrequencies. (author) 6 figs., 13 refs
Discrete inverse scattering theory and the continuum limit
International Nuclear Information System (INIS)
Berryman, J.G.; Greene, R.R.
1978-01-01
The class of satisfactory difference approximations for the Schroedinger equation in discrete inverse scattering theory is shown smaller than previously supposed. A fast algorithm (analogous to the Levinson algorithm for Toeplitz matrices) is found for solving the discrete inverse problem. (Auth.)
ON DISTRIBUTIONS OF ORDER STATISTICS FROM NONIDENTICAL DISCRETE VARIABLES
Directory of Open Access Journals (Sweden)
Mehmet GÜNGÖR
2011-04-01
Full Text Available In this study, the distributions of X_r:n order statistic of innid discrete random variables are obtained.In addition, the distributions are also expressed in the form of an integral. Then, the results related to pf and dfof minimum and maximum order statistics of innid discrete random variables are given.
Characterization of Stochastic Dominance for Discrete Random Variable
Courtault, Jean-Michel; Crettez, Bertrand; Hayek, Naïla
2006-01-01
Working paper; Available characterizations of the various notions of stochastic dominance concern continuous random variables. Yet, discrete random variables are often used either in pedagogical presentations of stochastic dominance or in experimental tests of this notion. This note provides complete characterizations of the various notions of stochastic dominance for discrete random variables.
On order statistics from nonidentical discrete random variables
Directory of Open Access Journals (Sweden)
Yüzbaşı Bahadır
2016-01-01
Full Text Available In this study, pf and df of single order statistic of nonidentical discrete random variables are obtained. These functions are also expressed in integral form. Finally, pf and df of extreme of order statistics of random variables for the nonidentical discrete case are given.
Discreteness criteria in PU(1,n;C)
Indian Academy of Sciences (India)
Introduction. The discreteness of Möbius groups is a fundamental problem, which have been discussed by many authors. In 1976, Jørgensen [10] proved a necessary condition for a non-elementary two generator subgroup of SL(2,C) to be discrete, which is called Jørgensen's inequality. By using this inequality, Jørgensen ...
On approximation of Lie groups by discrete subgroups
Indian Academy of Sciences (India)
voila.fr; salah.suissi@yahoo.fr. MS received 11 August 2012; revised 27 January 2013. Abstract. A locally compact group G is said to be approximated by discrete sub- groups (in the sense of Tôyama) if there is a sequence of discrete subgroups ...
GENERATION ALGORITHM OF DISCRETE LINE IN MULTI-DIMENSIONAL GRIDS
Directory of Open Access Journals (Sweden)
L. Du
2017-09-01
Full Text Available Discrete Global Grids System (DGGS is a kind of digital multi-resolution earth reference model, in terms of structure, it is conducive to the geographical spatial big data integration and mining. Vector is one of the important types of spatial data, only by discretization, can it be applied in grids system to make process and analysis. Based on the some constraint conditions, this paper put forward a strict definition of discrete lines, building a mathematic model of the discrete lines by base vectors combination method. Transforming mesh discrete lines issue in n-dimensional grids into the issue of optimal deviated path in n-minus-one dimension using hyperplane, which, therefore realizing dimension reduction process in the expression of mesh discrete lines. On this basis, we designed a simple and efficient algorithm for dimension reduction and generation of the discrete lines. The experimental results show that our algorithm not only can be applied in the two-dimensional rectangular grid, also can be applied in the two-dimensional hexagonal grid and the three-dimensional cubic grid. Meanwhile, when our algorithm is applied in two-dimensional rectangular grid, it can get a discrete line which is more similar to the line in the Euclidean space.
Generation Algorithm of Discrete Line in Multi-Dimensional Grids
Du, L.; Ben, J.; Li, Y.; Wang, R.
2017-09-01
Discrete Global Grids System (DGGS) is a kind of digital multi-resolution earth reference model, in terms of structure, it is conducive to the geographical spatial big data integration and mining. Vector is one of the important types of spatial data, only by discretization, can it be applied in grids system to make process and analysis. Based on the some constraint conditions, this paper put forward a strict definition of discrete lines, building a mathematic model of the discrete lines by base vectors combination method. Transforming mesh discrete lines issue in n-dimensional grids into the issue of optimal deviated path in n-minus-one dimension using hyperplane, which, therefore realizing dimension reduction process in the expression of mesh discrete lines. On this basis, we designed a simple and efficient algorithm for dimension reduction and generation of the discrete lines. The experimental results show that our algorithm not only can be applied in the two-dimensional rectangular grid, also can be applied in the two-dimensional hexagonal grid and the three-dimensional cubic grid. Meanwhile, when our algorithm is applied in two-dimensional rectangular grid, it can get a discrete line which is more similar to the line in the Euclidean space.
On the application of Discrete Time Optimal Control Concepts to ...
African Journals Online (AJOL)
On the application of Discrete Time Optimal Control Concepts to Economic Problems. ... Journal of the Nigerian Association of Mathematical Physics ... Abstract. An extension of the use of the maximum principle to solve Discrete-time Optimal Control Problems (DTOCP), in which the state equations are in the form of general ...
Discretion in Student Discipline: Insight into Elementary Principals' Decision Making
Findlay, Nora M.
2015-01-01
Little research exists that examines the exercise of discretion by principals in their disciplinary decision making. This study sought to understand the application of values by principals as they engage in student disciplinary decision making within legally fixed parameters of their administrative discretion. This qualitative methodology used…
FPGA implementation of fractional-order discrete memristor chaotic ...
Indian Academy of Sciences (India)
Anitha Karthikeyan
2017-12-30
Dec 30, 2017 ... ing DDR clocks help in reducing the route delays. 7. Conclusions. In this paper, we investigated the discrete fractional- order model of a fourth-order memristor chaotic system. The discrete model is formed by transforming the dif- ferential version of the system using finite truncation method. The Lyapunov ...
On approximation of Lie groups by discrete subgroups
Indian Academy of Sciences (India)
2016-08-26
Aug 26, 2016 ... The notion of approximation of Lie groups by discrete subgroups was introduced by Tôyama in Kodai Math. Sem. Rep. 1 (1949) 36–37 and investigated in detail by Kuranishi in Nagoya Math. J. 2 (1951) 63–71. It is known as a theorem of Tôyama that any connected Lie group approximated by discrete ...
Resolving ambiguities in reconstructed grain maps using discrete tomography
DEFF Research Database (Denmark)
Alpers, A.; Knudsen, E.; Poulsen, H.F.
2005-01-01
reconstruct the image from diffraction data, but they are often unable to assign unambiguous values to all pixels. We present an approach that resolves these ambiguous pixels by using a Monte Carlo technique that exploits the discrete nature of the problem and utilizes proven methods of discrete tomography...
Discrete wavelet transforms over finite sets which are translation invariant
L. Kamstra
2001-01-01
textabstractThe discrete wavelet transform was originally a linear operator that works on signals that are modeled as functions from the integers into the real or complex numbers. However, many signals have discrete function values. This paper builds on two recent developments: the extension of
A discrete-space urban model with environmental amenities
Liaila Tajibaeva; Robert G. Haight; Stephen Polasky
2008-01-01
This paper analyzes the effects of providing environmental amenities associated with open space in a discrete-space urban model and characterizes optimal provision of open space across a metropolitan area. The discrete-space model assumes distinct neighborhoods in which developable land is homogeneous within a neighborhood but heterogeneous across neighborhoods. Open...
CDM: Teaching Discrete Mathematics to Computer Science Majors
Sutner, Klaus
2005-01-01
CDM, for computational discrete mathematics, is a course that attempts to teach a number of topics in discrete mathematics to computer science majors. The course abandons the classical definition-theorem-proof model, and instead relies heavily on computation as a source of motivation and also for experimentation and illustration. The emphasis on…
Preservation properties for the discrete mean residual life ordering
Directory of Open Access Journals (Sweden)
Abdulhakim Al-Babtain
2015-04-01
Full Text Available The purpose of this paper is to prove several preservation properties of stochastic comparisons based on the discrete mean residual life ordering d-MRL under the reliability operations of convolutions, mixtures. Fi nally we introduce a discrete renewal process application
Absolute Stability of Discrete-Time Systems with Delay
Directory of Open Access Journals (Sweden)
Medina Rigoberto
2008-01-01
Full Text Available We investigate the stability of nonlinear nonautonomous discrete-time systems with delaying arguments, whose linear part has slowly varying coefficients, and the nonlinear part has linear majorants. Based on the "freezing" technique to discrete-time systems, we derive explicit conditions for the absolute stability of the zero solution of such systems.
Models for the discrete berth allocation problem: A computational comparison
DEFF Research Database (Denmark)
Buhrkal, Katja Frederik; Zuglian, Sara; Røpke, Stefan
2011-01-01
In this paper we consider the problem of allocating arriving ships to discrete berth locations at container terminals. This problem is recognized as one of the most important processes for any container terminal. We review and describe three main models of the discrete dynamic berth allocation...
Models for the Discrete Berth Allocation Problem: A Computational Comparison
DEFF Research Database (Denmark)
Buhrkal, Katja; Zuglian, Sara; Røpke, Stefan
In this paper we consider the problem of allocating arriving ships to discrete berth locations at container terminals. This problem is recognized as one of the most important processes for any container terminal. We review and describe the three main models of the discrete dynamic berth allocation...
Finite Mathematics and Discrete Mathematics: Is There a Difference?
Johnson, Marvin L.
Discrete mathematics and finite mathematics differ in a number of ways. First, finite mathematics has a longer history and is therefore more stable in terms of course content. Finite mathematics courses emphasize certain particular mathematical tools which are useful in solving the problems of business and the social sciences. Discrete mathematics…
Geometric interpretations of the Discrete Fourier Transform (DFT)
Campbell, C. W.
1984-01-01
One, two, and three dimensional Discrete Fourier Transforms (DFT) and geometric interpretations of their periodicities are presented. These operators are examined for their relationship with the two sided, continuous Fourier transform. Discrete or continuous transforms of real functions have certain symmetry properties. The symmetries are examined for the one, two, and three dimensional cases. Extension to higher dimension is straight forward.
Medical images storage using discrete cosine transform
International Nuclear Information System (INIS)
Arhouma, Ali M.; Ajaal, Tawfik; Marghani, Khaled
2010-01-01
The advances in technology during the last decades have made the use of digital images as one of the common things in everyday life. While the application of digital images in communicating information is very important, the cost of storing and transmitting images is much larger compared to storage and transmission of text. The main problem with all of the images was the fact that they take large size of memory space, large transmission bandwidth and long transmission time. Image data compression is needed to reduce the storage space,transmission bandwidth and transmission time. Medical image compression plays a key role as hospitals move towards filmless imaging and go completely digital. Image compression allows Picture Archiving and Communication Systems (PACS) to reduce the file size on their storage requirements while maintaining relevant diagnostic information. The reduced image file size yield reduced transmission times. Even as the capacity of storage media continues to increase, it is expected that the volume of uncompressed data produced by hospitals will exceed capacity of storage and drive up costs. This paper proposes a Discrete Cosine Transform (DCT) algorithm which can help to solve the image storage and transmission time problem in hospitals. Discrete cosine transform (DCT) has become the most popular technique for image compression over the past several years. One of the major reasons for its popularity is its selection as the standard for JPEG. DCTs are most commonly used for non-analytical applications such as image processing and digital signal-processing (DSP) applications such as video conferencing, fax systems, video disks, and high-definition television HDTV. They also can be used on a matrix of practically any dimension. The proposed (DCT) algorithm improves the performance of medical image compression while satisfying both the medical image quality, and the high compression ratio. Application of DCT coding algorithm to actual still images
Classical and quantum discrete dynamical systems
Kornyak, V. V.
2013-01-01
We study deterministic and quantum dynamics from a constructive "finite" point of view, since the introduction of the continuum or other actual infinities in physics poses severe conceptual and technical difficulties, and while all of these concepts are not really needed in physics, which is in fact an empirical science. Particular attention is paid to the symmetry properties of discrete systems. For a consistent description of the symmetries of dynamical systems at different time instants and the symmetries of various parts of such systems, we introduce discrete analogs of gauge connections. These gauge structures are particularly important to describe the quantum behavior. The symmetries govern the fundamental properties of the behavior of dynamical systems. In particular, we can show that the moving soliton-like structures are inevitable in a deterministic (classical) dynamical system, whose symmetry group breaks the set of states into a finite number of orbits of the group. We demonstrate that the quantum behavior is a natural consequence of symmetries of dynamical systems. This behavior is a result of the fundamental inability to trace the identity of indistinguish-able objects during their evolution. Information is only available on invariant statements and values related with such objects. Using general mathematical arguments, any quantum dynamics can be shown to reduce to a sequence of permutations. The quantum interferences occur in the invariant subspaces of permutation representations of the symmetry groups of dynamical systems. The observables can be expressed in terms of permutation invariants. We also show that in order to describe quantum phenomena it is sufficient to use cyclotomic fields—the minimal extensions of natural numbers suitable for quantum mechanics, instead of a non-constructive number system—the field of complex numbers. The finite groups of symmetries play the central role in this review. In physics there is an additional reason
FIRST STEP towards ICF commercialization
International Nuclear Information System (INIS)
Saylor, W.W.; Pendergrass, J.H.; Dudziak, D.J.
1984-01-01
Production of tritium for weapons and fusion R and D programs and successful development of Inertial Confinement Fusion (ICF) technologies are important national goals. A conceptual design for an ICF facility to meet these goals is presented. FIRST STEP (Fusion, Inertial, Reduced-Requirements Systems Test for Special Nuclear Material, Tritium, and Energy Production) is a concept for a plant to produce SNM, tritium, and energy while serving as a test bed for ICF technology development. A credible conceptual design for an ICF SNM and tritium production facility that competes favorably with fission technology on the bases of cost, production quality, and safety was sought. FIRST STEP is also designed to be an engineering test facility that integrates systems required for an ICF power plant and that is intermediate in scale between proof-of-principle experiment and commercial power plant. FIRST STEP driver and pellet performance requirements are moderate and represent reasonable intermediate goals in an R and D plan for ICF commercialization. Repetition rate requirements for FIRST STEP are similar to those of commercial size plants and FIRST STEP can be used to integrate systems under realistic ICF conditions
Use Cases of Discrete Event Simulation Appliance and Research
2012-01-01
Over the last decades Discrete Event Simulation has conquered many different application areas. This trend is, on the one hand, driven by an ever wider use of this technology in different fields of science and on the other hand by an incredibly creative use of available software programs through dedicated experts. This book contains articles from scientists and experts from 10 countries. They illuminate the width of application of this technology and the quality of problems solved using Discrete Event Simulation. Practical applications of simulation dominate in the present book. The book is aimed to researchers and students who deal in their work with Discrete Event Simulation and which want to inform them about current applications. By focusing on discrete event simulation, this book can also serve as an inspiration source for practitioners for solving specific problems during their work. Decision makers who deal with the question of the introduction of discrete event simulation for planning support and o...
Discrete-time optimal control and games on large intervals
Zaslavski, Alexander J
2017-01-01
Devoted to the structure of approximate solutions of discrete-time optimal control problems and approximate solutions of dynamic discrete-time two-player zero-sum games, this book presents results on properties of approximate solutions in an interval that is independent lengthwise, for all sufficiently large intervals. Results concerning the so-called turnpike property of optimal control problems and zero-sum games in the regions close to the endpoints of the time intervals are the main focus of this book. The description of the structure of approximate solutions on sufficiently large intervals and its stability will interest graduate students and mathematicians in optimal control and game theory, engineering, and economics. This book begins with a brief overview and moves on to analyze the structure of approximate solutions of autonomous nonconcave discrete-time optimal control Lagrange problems.Next the structures of approximate solutions of autonomous discrete-time optimal control problems that are discret...
Discretized representations of harmonic variables by bilateral Jacobi operators
Directory of Open Access Journals (Sweden)
Andreas Ruffing
2000-01-01
Full Text Available Starting from a discrete Heisenberg algebra we solve several representation problems for a discretized quantum oscillator in a weighted sequence space. The Schrödinger operator for a discrete harmonic oscillator is derived. The representation problem for a q-oscillator algebra is studied in detail. The main result of the article is the fact that the energy representation for the discretized momentum operator can be interpreted as follows: It allows to calculate quantum properties of a large number of non-interacting harmonic oscillators at the same time. The results can be directly related to current research on squeezed laser states in quantum optics. They reveal and confirm the observation that discrete versions of continuum Schrodinger operators allow more structural freedom than their continuum analogs do.
Generalized Reduction Formula for Discrete Wigner Functions of Multiqubit Systems
Srinivasan, K.; Raghavan, G.
2017-12-01
Density matrices and Discrete Wigner Functions are equally valid representations of multiqubit quantum states. For density matrices, the partial trace operation is used to obtain the quantum state of subsystems, but an analogous prescription is not available for discrete Wigner Functions. Further, the discrete Wigner function corresponding to a density matrix is not unique but depends on the choice of the quantum net used for its reconstruction. In the present work, we derive a reduction formula for discrete Wigner functions of a general multiqubit state which works for arbitrary quantum nets. These results would be useful for the analysis and classification of entangled states and the study of decoherence purely in a discrete phase space setting and also in applications to quantum computing.
String constraints on discrete symmetries in MSSM type II quivers
Energy Technology Data Exchange (ETDEWEB)
Anastasopoulos, Pascal [Technische Univ. Wien (Austria). Inst. fur Theor. Phys.; Cvetic, Mirjam [Univ. of Pennsylvania, Philadelphia PA (United States). Dept. of Physics and Astronomy; Univ. of Maribor (Slovenia). Center for Applied Mathematics and Theoretical Physics; Richter, Robert [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-11-15
We study the presence of discrete gauge symmetries in D-brane semirealistic compactifications. After establishing the constraints on the transformation behaviour of the chiral matter for the presence of a discrete gauge symmetry we perform a systematic search for discrete gauge symmetries within semi-realistic D-brane realizations, based on four D-brane stacks, of the MSSM and the MSSM with three right-handed neutrinos. The systematic search reveals that Proton hexality, a discrete symmetry which ensures the absence of R-parity violating terms as well as the absence of dangerous dimension 5 proton decay operators, is only rarely realized. Moreover, none of the semi-realistic local D-brane configurations exhibit any family dependent discrete gauge symmetry.
Sample Size Requirements for Discrete-Choice Experiments in Healthcare: a Practical Guide.
de Bekker-Grob, Esther W; Donkers, Bas; Jonker, Marcel F; Stolk, Elly A
2015-10-01
Discrete-choice experiments (DCEs) have become a commonly used instrument in health economics and patient-preference analysis, addressing a wide range of policy questions. An important question when setting up a DCE is the size of the sample needed to answer the research question of interest. Although theory exists as to the calculation of sample size requirements for stated choice data, it does not address the issue of minimum sample size requirements in terms of the statistical power of hypothesis tests on the estimated coefficients. The purpose of this paper is threefold: (1) to provide insight into whether and how researchers have dealt with sample size calculations for healthcare-related DCE studies; (2) to introduce and explain the required sample size for parameter estimates in DCEs; and (3) to provide a step-by-step guide for the calculation of the minimum sample size requirements for DCEs in health care.
A practical discrete-adjoint method for high-fidelity compressible turbulence simulations
International Nuclear Information System (INIS)
Vishnampet, Ramanathan; Bodony, Daniel J.; Freund, Jonathan B.
2015-01-01
Methods and computing hardware advances have enabled accurate predictions of complex compressible turbulence phenomena, such as the generation of jet noise that motivates the present effort. However, limited understanding of underlying physical mechanisms restricts the utility of such predictions since they do not, by themselves, indicate a route to design improvements. Gradient-based optimization using adjoints can circumvent the flow complexity to guide designs, though this is predicated on the availability of a sufficiently accurate solution of the forward and adjoint systems. These are challenging to obtain, since both the chaotic character of the turbulence and the typical use of discretizations near their resolution limits in order to efficiently represent its smaller scales will amplify any approximation errors made in the adjoint formulation. Formulating a practical exact adjoint that avoids such errors is especially challenging if it is to be compatible with state-of-the-art simulation methods used for the turbulent flow itself. Automatic differentiation (AD) can provide code to calculate a nominally exact adjoint, but existing general-purpose AD codes are inefficient to the point of being prohibitive for large-scale turbulence simulations. Here, we analyze the compressible flow equations as discretized using the same high-order workhorse methods used for many high-fidelity compressible turbulence simulations, and formulate a practical space–time discrete-adjoint method without changing the basic discretization. A key step is the definition of a particular discrete analog of the continuous norm that defines our cost functional; our selection leads directly to an efficient Runge–Kutta-like scheme, though it would be just first-order accurate if used outside the adjoint formulation for time integration, with finite-difference spatial operators for the adjoint system. Its computational cost only modestly exceeds that of the flow equations. We confirm that
Marketing dental implants: a step-by-step approach.
Schwab, D P
1995-03-01
Introducing dental implants into a practice requires planning and commitment. Part of the planning process is learning new clinical skills, but another essential component is developing a marketing approach. The author offers a seven-step plan for adding dental implants to your repertoire.
Publishing Ethical Research: A Step-by-Step Overview
Wester, Kelly L.
2011-01-01
To publish ethical research, one must conduct research responsibly, making ethical choices from the inception of the research idea and throughout the research process. Conducting and publishing ethical research is important because of the impact the results will have on the counseling profession. Steps to consider are discussed.
Simulating Electrophoresis with Discrete Charge and Drag
Mowitz, Aaron J.; Witten, Thomas A.
A charged asymmetric rigid cluster of colloidal particles in saline solution can respond in exotic ways to an electric field: it may spin or move transversely. These distinctive motions arise from the drag force of the neutralizing countercharge surrounding the cluster. Because of this drag, calculating the motion of arbitrary asymmetric objects with nonuniform charge is impractical by conventional methods. Here we present a new method of simulating electrophoresis, in which we replace the continuous object and the surrounding countercharge with discrete point-draggers, called Stokeslets. The balance of forces imposes a linear, self-consistent relation among the drag and Coulomb forces on the Stokeslets, which allows us to easily determine the object's motion via matrix inversion. By explicitly enforcing charge+countercharge neutrality, the simulation recovers the distinctive features of electrophoretic motion to few-percent accuracy using as few as 1000 Stokeslets. In particular, for uniformly charged objects, we observe the characteristic Smoluchowski independence of mobility on object size and shape. We then discuss electrophoretic motion of asymmetric objects, where our simulation method is particularly advantageous. This work is supported by a Grant from the US-Israel Binational Science Foundation.
About SIC POVMs and discrete Wigner distributions
International Nuclear Information System (INIS)
Colin, Samuel; Corbett, John; Durt, Thomas; Gross, David
2005-01-01
A set of d 2 vectors in a Hilbert space of dimension d is called equiangular if each pair of vectors encloses the same angle. The projection operators onto these vectors define a POVM which is distinguished by its high degree of symmetry. Measures of this kind are called symmetric informationally complete, or SIC POVMs for short, and could be applied for quantum state tomography. Despite its simple geometrical description, the problem of constructing SIC POVMs or even proving their existence seems to be very hard. It is our purpose to introduce two applications of discrete Wigner functions to the analysis of the problem at hand. First, we will present a method for identifying symmetries of SIC POVMs under Clifford operations. This constitutes an alternative approach to a structure described before by Zauner and Appleby. Further, a simple and geometrically motivated construction for an SIC POVM in dimensions two and three is given (which, unfortunately, allows no generalization). Even though no new structures are found, we hope that the re-formulation of the problem may prove useful for future inquiries
Discrete-time modelling of musical instruments
International Nuclear Information System (INIS)
Vaelimaeki, Vesa; Pakarinen, Jyri; Erkut, Cumhur; Karjalainen, Matti
2006-01-01
This article describes physical modelling techniques that can be used for simulating musical instruments. The methods are closely related to digital signal processing. They discretize the system with respect to time, because the aim is to run the simulation using a computer. The physics-based modelling methods can be classified as mass-spring, modal, wave digital, finite difference, digital waveguide and source-filter models. We present the basic theory and a discussion on possible extensions for each modelling technique. For some methods, a simple model example is chosen from the existing literature demonstrating a typical use of the method. For instance, in the case of the digital waveguide modelling technique a vibrating string model is discussed, and in the case of the wave digital filter technique we present a classical piano hammer model. We tackle some nonlinear and time-varying models and include new results on the digital waveguide modelling of a nonlinear string. Current trends and future directions in physical modelling of musical instruments are discussed
A discrete structure of the brain waves.
Dabaghian, Yuri; Perotti, Luca; oscillons in biological rhythms Collaboration; physics of biological rhythms Team
A physiological interpretation of the biological rhythms, e.g., of the local field potentials (LFP) depends on the mathematical approaches used for the analysis. Most existing mathematical methods are based on decomposing the signal into a set of ``primitives,'' e.g., sinusoidal harmonics, and correlating them with different cognitive and behavioral phenomena. A common feature of all these methods is that the decomposition semantics is presumed from the onset, and the goal of the subsequent analysis reduces merely to identifying the combination that best reproduces the original signal. We propose a fundamentally new method in which the decomposition components are discovered empirically, and demonstrate that it is more flexible and more sensitive to the signal's structure than the standard Fourier method. Applying this method to the rodent LFP signals reveals a fundamentally new structure of these ``brain waves.'' In particular, our results suggest that the LFP oscillations consist of a superposition of a small, discrete set of frequency modulated oscillatory processes, which we call ``oscillons''. Since these structures are discovered empirically, we hypothesize that they may capture the signal's actual physical structure, i.e., the pattern of synchronous activity in neuronal ensembles. Proving this hypothesis will help to advance our principal understanding of the neuronal synchronization mechanisms and reveal new structure within the LFPs and other biological oscillations. NSF 1422438 Grant, Houston Bioinformatics Endowment Fund.
Discrete Wigner functions and quantum computation
International Nuclear Information System (INIS)
Galvao, E.
2005-01-01
Full text: Gibbons et al. have recently defined a class of discrete Wigner functions W to represent quantum states in a finite Hilbert space dimension d. I characterize the set C d of states having non-negative W simultaneously in all definitions of W in this class. I then argue that states in this set behave classically in a well-defined computational sense. I show that one-qubit states in C 2 do not provide for universal computation in a recent model proposed by Bravyi and Kitaev [quant-ph/0403025]. More generally, I show that the only pure states in C d are stabilizer states, which have an efficient description using the stabilizer formalism. This result shows that two different notions of 'classical' states coincide: states with non-negative Wigner functions are those which have an efficient description. This suggests that negativity of W may be necessary for exponential speed-up in pure-state quantum computation. (author)
Lectures on financial mathematics discrete asset pricing
Anderson, Greg
2010-01-01
This is a short book on the fundamental concepts of the no-arbitrage theory of pricing financial derivatives. Its scope is limited to the general discrete setting of models for which the set of possible states is finite and so is the set of possible trading times--this includes the popular binomial tree model. This setting has the advantage of being fairly general while not requiring a sophisticated understanding of analysis at the graduate level. Topics include understanding the several variants of "arbitrage", the fundamental theorems of asset pricing in terms of martingale measures, and applications to forwards and futures. The authors' motivation is to present the material in a way that clarifies as much as possible why the often confusing basic facts are true. Therefore the ideas are organized from a mathematical point of view with the emphasis on understanding exactly what is under the hood and how it works. Every effort is made to include complete explanations and proofs, and the reader is encouraged t...
On discrete geometrodynamical theories in physics
International Nuclear Information System (INIS)
Towe, J.P.
1988-01-01
In this dissertation the author considers two topological-geometrical models (based upon a single suggestive formalism) in which a geometrodynamics is both feasible and pedagogically advantageous. Specifically he considers the topology which is constituted by the real domains of the two broad classes of rotation groups: those characterized by the commutator and anti-commutator algebras. He then adopts a Riemannian geometric structure and shows that the monistically geometric interpretation of this formalism restricts displacements on the proposed manifold to integral multiples of universal constant. Secondly, he demonstrates that in the context under consideration, this constraint affects a very interesting ontological reduction: the unification of quantum mechanics with a discrete, multidimensional extension of general relativity. A particularly interesting features of this unification is that is includes and requires the choice of an SL (2,R) direct-product SU (3)-symmetric realization of the proposed, generic formalism which is a lattice of spins ℎ and ℎ/2. If the vertices of this lattice are associated with the fundamental particles, then the resulting theory predicts and precludes the same interactions as the standard supersymmetry theory. In addition to the ontological reduction which is provided, and the restriction to supersymmetry, the proposed theory may also represent a scientifically useful extension of conventional theory in that it suggests a means of understanding the apparently large energy productions of the quasars and relates Planck's constant to the size of the universe
Discrete element simulation of crushable rockfill materials
Directory of Open Access Journals (Sweden)
Lei Shao
2013-04-01
Full Text Available A discrete element method was used to study the evolution of particle crushing in a rockfill sample subjected to triaxial shear. A simple procedure was developed to generate clusters with arbitrary shapes, which resembled real rockfill particles. A theoretical method was developed to define the failure criterion for an individual particle subjected to an arbitrary set of contact forces. Then, a series of numerical tests of large-scale drained triaxial tests were conducted to simulate the behaviors of the rockfill sample. Finally, we examined the development of micro-characteristics such as particle crushing, contact characteristics, porosity, deformation, movement, and energy dissipation. The simulation results were partially compared with the laboratory experiments, and good agreement was achieved, demonstrating that the particle crushing model proposed can be used to simulate the drained triaxial test of rockfill materials. Based on a comparison of macro behaviors of the rockfill sample and micro structures of the particles, the microscopic mechanism of the rockfill materials subjected to triaxial shear was determined qualitatively. It is shown that the crushing rate, rather than the number of crushed particles, can be used to reflect the relationship between macro- and micro-mechanical characteristics of rockfill materials. These research results further develop our understanding of the deformation mechanism of rockfill materials.
Information storage capacity of discrete spin systems
Energy Technology Data Exchange (ETDEWEB)
Yoshida, Beni, E-mail: rouge@caltech.edu
2013-11-15
Understanding the limits imposed on information storage capacity of physical systems is a problem of fundamental and practical importance which bridges physics and information science. There is a well-known upper bound on the amount of information that can be stored reliably in a given volume of discrete spin systems which are supported by gapped local Hamiltonians. However, all the previously known systems were far below this theoretical bound, and it remained open whether there exists a gapped spin system that saturates this bound. Here, we present a construction of spin systems which saturate this theoretical limit asymptotically by borrowing an idea from fractal properties arising in the Sierpinski triangle. Our construction provides not only the best classical error-correcting code which is physically realizable as the energy ground space of gapped frustration-free Hamiltonians, but also a new research avenue for correlated spin phases with fractal spin configurations. -- Highlights: •We propose a spin model with fractal ground states and study its coding properties. •We show that the model asymptotically saturates a theoretical limit on information storage capacity. •We discuss its relations to various theoretical physics problems.
Discrete element modeling of microstructure of nacre
Chandler, Mei Qiang; Cheng, Jing-Ru C.
2018-04-01
The microstructure of nacre consists of polygon-shaped aragonite mineral tablets bonded by very thin layers of organic materials and is organized in a brick-mortar morphology. In this research, the discrete element method was utilized to model this structure. The aragonite mineral tablets were modeled with three-dimensional polygon particles generated by the Voronoi tessellation method to represent the Voronoi-like patterns of mineral tablets assembly observed in experiments. The organic matrix was modeled with a group of spring elements. The constitutive relations of the spring elements were inspired from the experimental results of organic molecules from the literature. The mineral bridges were modeled with simple elastic bonds with the parameters based on experimental data from the literature. The bulk stress-strain responses from the models agreed well with experimental results. The model results show that the mineral bridges play important roles in providing the stiffness and yield strength for the nacre, while the organic matrix in providing the ductility for the nacre. This work demonstrated the suitability of particle methods for modeling microstructures of nacre.
Better relaxations of classical discrete optimization problems.
Energy Technology Data Exchange (ETDEWEB)
Lancia, Giuseppe; Konjevod, Goran; Carr, Robert D.; Parehk, Ojas
2008-08-01
A mathematical program is an optimization problem expressed as an objective function of multiple variables subject to set of constraints. When the optimization problem has specific structure, the problem class usually has a special name. A linear program is the optimization of a linear objective function subject to linear constraints. An integer program is a linear program where some of the variables must take only integer values. A semidefinite program is a linear program where the variables are arranged in a matrix and for all feasible solutions, this matrix must be positive semidefinite. There are general-purpose solvers for each of these classes of mathematical program. There are usually many ways to express a problem as a correct, say, linear program. However, equivalent formulations can have significantly different practical tractability. In this poster, we present new formulations for two classic discrete optimization problems, maximum cut (max cut) and the graphical traveling salesman problem (GTSP), that are significantly stronger, and hence more computationally tractable, than any previous formulations of their class. Both partially answer longstanding open theoretical questions in polyhedral combinatorics.
Step by step male to female transsexual surgery.
da Silva, Rodrigo Uliano Moser; Abreu, Fernando Jahn da Silva; da Silva, Gabriel M V; Dos Santos, João Vitor Quadra Vieira; Batezini, Nelson Sivonei da Silva; Silva, Brasil; Rosito, Tiago Elias
2018-01-01
After the diagnosis of transsexualism is confirmed therapy commences with psychotherapeutic preparation for the conversion, and after conversion, long-term patient rehabilitation is maintained for at least two years. The indication for surgery is chronic discomfort caused by discord with the patient's natural gender, intense dislike of developing secondary sex characteristics and the onset of puberty. The surgical conversion of transsexuals is the main step in the complex care of these problematic patients (1). This surgery was first described by Benjamin H, using a flap of inverted penile skin (2) and is considered the gold standard since then. Male-to-female transsexual surgical techniques are well defined and give good cosmetic and functional results. Sex reassignment surgery promotes the improvement of psychological aspects and social relationships as shown in the World Health Organization Quality of Life Assessment applied in the patients submitted to this procedure (3). Techniques include the creation of a normal appearing female introitus, a vaginoplasty allowing sexual intercourse and the capability of clitoral orgasm (4). Various methods for neovaginoplasty have been described and can be classified into five categories, i.e. pedicled intestinal transplants, penile skin grafts, penile skin flaps, non-genital skin flaps and non-genital skin grafts (5). In our Hospital, we use penile and scrotal skin flaps. Until now, 174 procedures have been performed by our team using this technique with high rates of satisfaction (3). We present a step-by-step male to female transsexual surgery. Surgical gender reassignment of male transsexuals resulted in replicas of female genitalia which enabled coitus with orgasm (1). With this video we show step by step that a surgery using penile skin flaps is able to be performed with good cosmetic results. Copyright® by the International Brazilian Journal of Urology.