Approximating the Analytic Fourier Transform with the Discrete Fourier Transform
Axelrod, Jeremy
2015-01-01
The Fourier transform is approximated over a finite domain using a Riemann sum. This Riemann sum is then expressed in terms of the discrete Fourier transform, which allows the sum to be computed with a fast Fourier transform algorithm more rapidly than via a direct matrix multiplication. Advantages and limitations of using this method to approximate the Fourier transform are discussed, and prototypical MATLAB codes implementing the method are presented.
Geometric Representations for Discrete Fourier Transforms
Cambell, C. W.
1986-01-01
Simple geometric representations show symmetry and periodicity of discrete Fourier transforms (DFT's). Help in visualizing requirements for storing and manipulating transform value in computations. Representations useful in any number of dimensions, but particularly in one-, two-, and three-dimensional cases often encountered in practice.
Discrete Fourier transform in nanostructures using scattering
International Nuclear Information System (INIS)
Leuenberger, Michael N.; Flatte, Michael E.; Loss, Daniel; Awschalom, D.D.
2004-01-01
In this article, we show that the discrete Fourier transform (DFT) can be performed by scattering a coherent particle or laser beam off an electrically controllable two-dimensional (2D) potential that has the shape of rings or peaks. After encoding the initial vector into the two-dimensional potential by means of electric gates, the Fourier-transformed vector can be read out by detectors surrounding the potential. The wavelength of the laser beam determines the necessary accuracy of the 2D potential, which makes our method very fault-tolerant. Since the time to perform the DFT is much smaller than the clock cycle of today's computers, our proposed device performs DFTs at the frequency of the computer clock speed
Implementation of quantum and classical discrete fractional Fourier transforms
Weimann, Steffen; Perez-Leija, Armando; Lebugle, Maxime; Keil, Robert; Tichy, Malte; Gräfe, Markus; Heilmann, René; Nolte, Stefan; Moya-Cessa, Hector; Weihs, Gregor; Christodoulides, Demetrios N.; Szameit, Alexander
2016-01-01
Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools. PMID:27006089
Implementation of quantum and classical discrete fractional Fourier transforms.
Weimann, Steffen; Perez-Leija, Armando; Lebugle, Maxime; Keil, Robert; Tichy, Malte; Gräfe, Markus; Heilmann, René; Nolte, Stefan; Moya-Cessa, Hector; Weihs, Gregor; Christodoulides, Demetrios N; Szameit, Alexander
2016-03-23
Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools.
On the physical relevance of the discrete Fourier transform
CSIR Research Space (South Africa)
Greben, JM
1991-11-01
Full Text Available This paper originated from the author's dissatisfaction with the way the discrete Fourier transform is usually presented in the literature. Although mathematically correct, the physical meaning of the common representation is unsatisfactory...
A discrete Fourier transform for virtual memory machines
Galant, David C.
1992-01-01
An algebraic theory of the Discrete Fourier Transform is developed in great detail. Examination of the details of the theory leads to a computationally efficient fast Fourier transform for the use on computers with virtual memory. Such an algorithm is of great use on modern desktop machines. A FORTRAN coded version of the algorithm is given for the case when the sequence of numbers to be transformed is a power of two.
Properties of the Simpson discrete fourier transform | Singh ...
African Journals Online (AJOL)
The Simpson discrete Fourier transform (SDFT) and its inverse are transformations relating the time and frequency domains. In this paper we state and prove the important properties of shift, circular convolution, conjugation, time reversal and Plancherel's theorem. In addition, we provide an alternative representation of the ...
Discrete Fourier Transform in a Complex Vector Space
Dean, Bruce H. (Inventor)
2015-01-01
An image-based phase retrieval technique has been developed that can be used on board a space based iterative transformation system. Image-based wavefront sensing is computationally demanding due to the floating-point nature of the process. The discrete Fourier transform (DFT) calculation is presented in "diagonal" form. By diagonal we mean that a transformation of basis is introduced by an application of the similarity transform of linear algebra. The current method exploits the diagonal structure of the DFT in a special way, particularly when parts of the calculation do not have to be repeated at each iteration to converge to an acceptable solution in order to focus an image.
Discrete Fourier Transform Analysis in a Complex Vector Space
Dean, Bruce H.
2009-01-01
Alternative computational strategies for the Discrete Fourier Transform (DFT) have been developed using analysis of geometric manifolds. This approach provides a general framework for performing DFT calculations, and suggests a more efficient implementation of the DFT for applications using iterative transform methods, particularly phase retrieval. The DFT can thus be implemented using fewer operations when compared to the usual DFT counterpart. The software decreases the run time of the DFT in certain applications such as phase retrieval that iteratively call the DFT function. The algorithm exploits a special computational approach based on analysis of the DFT as a transformation in a complex vector space. As such, this approach has the potential to realize a DFT computation that approaches N operations versus Nlog(N) operations for the equivalent Fast Fourier Transform (FFT) calculation.
The discrete Fourier transform theory, algorithms and applications
Sundaraajan, D
2001-01-01
This authoritative book provides comprehensive coverage of practical Fourier analysis. It develops the concepts right from the basics and gradually guides the reader to the advanced topics. It presents the latest and practically efficient DFT algorithms, as well as the computation of discrete cosine and Walsh-Hadamard transforms. The large number of visual aids such as figures, flow graphs and flow charts makes the mathematical topic easy to understand. In addition, the numerous examples and the set of C-language programs (a supplement to the book) help greatly in understanding the theory and
Discrete fourier transform (DFT) analysis for applications using iterative transform methods
Dean, Bruce H. (Inventor)
2012-01-01
According to various embodiments, a method is provided for determining aberration data for an optical system. The method comprises collecting a data signal, and generating a pre-transformation algorithm. The data is pre-transformed by multiplying the data with the pre-transformation algorithm. A discrete Fourier transform of the pre-transformed data is performed in an iterative loop. The method further comprises back-transforming the data to generate aberration data.
Fourier transformation for engineering and natural science
International Nuclear Information System (INIS)
Klingen, B.
2001-01-01
The following topics are covered: functions, Dirac delta function, Fourier operators, Fourier integrals, Fourier transformation and periodic functions, discrete Fourier transformations and discrete filters, applications. (WL)
The su(2)α Hahn oscillator and a discrete Fourier-Hahn transform
International Nuclear Information System (INIS)
Jafarov, E I; Stoilova, N I; Van der Jeugt, J
2011-01-01
We define the quadratic algebra su(2) α which is a one-parameter deformation of the Lie algebra su(2) extended by a parity operator. The odd-dimensional representations of su(2) (with representation label j, a positive integer) can be extended to representations of su(2) α . We investigate a model of the finite one-dimensional harmonic oscillator based upon this algebra su(2) α . It turns out that in this model the spectrum of the position and momentum operator can be computed explicitly, and that the corresponding (discrete) wavefunctions can be determined in terms of Hahn polynomials. The operation mapping position wavefunctions into momentum wavefunctions is studied, and this so-called discrete Fourier-Hahn transform is computed explicitly. The matrix of this discrete Fourier-Hahn transform has many interesting properties, similar to those of the traditional discrete Fourier transform. (paper)
Optical movie encryption based on a discrete multiple-parameter fractional Fourier transform
International Nuclear Information System (INIS)
Zhong, Zhi; Zhang, Yujie; Shan, Mingguang; Wang, Ying; Zhang, Yabin; Xie, Hong
2014-01-01
A movie encryption scheme is proposed using a discrete multiple-parameter fractional Fourier transform and theta modulation. After being modulated by sinusoidal amplitude grating, each frame of the movie is transformed by a filtering procedure and then multiplexed into a complex signal. The complex signal is multiplied by a pixel scrambling operation and random phase mask, and then encrypted by a discrete multiple-parameter fractional Fourier transform. The movie can be retrieved by using the correct keys, such as a random phase mask, a pixel scrambling operation, the parameters in a discrete multiple-parameter fractional Fourier transform and a time sequence. Numerical simulations have been performed to demonstrate the validity and the security of the proposed method. (paper)
Discrete quantum Fourier transform in coupled semiconductor double quantum dot molecules
International Nuclear Information System (INIS)
Dong Ping; Yang Ming; Cao Zhuoliang
2008-01-01
In this Letter, we present a physical scheme for implementing the discrete quantum Fourier transform in a coupled semiconductor double quantum dot system. The main controlled-R gate operation can be decomposed into many simple and feasible unitary transformations. The current scheme would be a useful step towards the realization of complex quantum algorithms in the quantum dot system
Goodman, Roe W
2016-01-01
This textbook for undergraduate mathematics, science, and engineering students introduces the theory and applications of discrete Fourier and wavelet transforms using elementary linear algebra, without assuming prior knowledge of signal processing or advanced analysis.It explains how to use the Fourier matrix to extract frequency information from a digital signal and how to use circulant matrices to emphasize selected frequency ranges. It introduces discrete wavelet transforms for digital signals through the lifting method and illustrates through examples and computer explorations how these transforms are used in signal and image processing. Then the general theory of discrete wavelet transforms is developed via the matrix algebra of two-channel filter banks. Finally, wavelet transforms for analog signals are constructed based on filter bank results already presented, and the mathematical framework of multiresolution analysis is examined.
Review of finite fields: Applications to discrete Fourier, transforms and Reed-Solomon coding
Wong, J. S. L.; Truong, T. K.; Benjauthrit, B.; Mulhall, B. D. L.; Reed, I. S.
1977-01-01
An attempt is made to provide a step-by-step approach to the subject of finite fields. Rigorous proofs and highly theoretical materials are avoided. The simple concepts of groups, rings, and fields are discussed and developed more or less heuristically. Examples are used liberally to illustrate the meaning of definitions and theories. Applications include discrete Fourier transforms and Reed-Solomon coding.
International Nuclear Information System (INIS)
Humbert, Ph.
2005-01-01
In this paper we consider the probability distribution of neutrons in a multiplying assembly. The problem is studied using a space independent one group neutron point reactor model without delayed neutrons. We recall the generating function methodology and analytical results obtained by G.I. Bell when the c 2 approximation is used and we present numerical solutions in the general case, without this approximation. The neutron source induced distribution is calculated using the single initial neutron distribution which satisfies a master (Kolmogorov backward) equation. This equation is solved using the generating function method. The generating function satisfies a differential equation and the probability distribution is derived by inversion of the generating function. Numerical results are obtained using the same methodology where the generating function is the Fourier transform of the probability distribution. Discrete Fourier transforms are used to calculate the discrete time dependent distributions and continuous Fourier transforms are used to calculate the asymptotic continuous probability distributions. Numerical applications are presented to illustrate the method. (author)
The Pegg–Barnett phase operator and the discrete Fourier transform
International Nuclear Information System (INIS)
Perez-Leija, Armando; Szameit, Alexander; Andrade-Morales, Luis A; Soto-Eguibar, Francisco; Moya-Cessa, Héctor M
2016-01-01
In quantum mechanics the position and momentum operators are related to each other via the Fourier transform. In the same way, here we show that the so-called Pegg–Barnett phase operator can be obtained by the application of the discrete Fourier transform to the number operators defined in a finite-dimensional Hilbert space. Furthermore, we show that the structure of the London–Susskind–Glogower phase operator, whose natural logarithm gives rise to the Pegg–Barnett phase operator, is contained in the Hamiltonian of circular waveguide arrays. Our results may find applications in the development of new finite-dimensional photonic systems with interesting phase-dependent properties. (invited comment)
Fedorenko, Sergei V.
2011-01-01
A novel method for computation of the discrete Fourier transform over a finite field with reduced multiplicative complexity is described. If the number of multiplications is to be minimized, then the novel method for the finite field of even extension degree is the best known method of the discrete Fourier transform computation. A constructive method of constructing for a cyclic convolution over a finite field is introduced.
Zhang, Leihong; Liang, Dong; Li, Bei; Kang, Yi; Pan, Zilan; Zhang, Dawei; Gao, Xiumin; Ma, Xiuhua
2016-07-01
On the basis of analyzing the cosine light field with determined analytic expression and the pseudo-inverse method, the object is illuminated by a presetting light field with a determined discrete Fourier transform measurement matrix, and the object image is reconstructed by the pseudo-inverse method. The analytic expression of the algorithm of computational ghost imaging based on discrete Fourier transform measurement matrix is deduced theoretically, and compared with the algorithm of compressive computational ghost imaging based on random measurement matrix. The reconstruction process and the reconstruction error are analyzed. On this basis, the simulation is done to verify the theoretical analysis. When the sampling measurement number is similar to the number of object pixel, the rank of discrete Fourier transform matrix is the same as the one of the random measurement matrix, the PSNR of the reconstruction image of FGI algorithm and PGI algorithm are similar, the reconstruction error of the traditional CGI algorithm is lower than that of reconstruction image based on FGI algorithm and PGI algorithm. As the decreasing of the number of sampling measurement, the PSNR of reconstruction image based on FGI algorithm decreases slowly, and the PSNR of reconstruction image based on PGI algorithm and CGI algorithm decreases sharply. The reconstruction time of FGI algorithm is lower than that of other algorithms and is not affected by the number of sampling measurement. The FGI algorithm can effectively filter out the random white noise through a low-pass filter and realize the reconstruction denoising which has a higher denoising capability than that of the CGI algorithm. The FGI algorithm can improve the reconstruction accuracy and the reconstruction speed of computational ghost imaging.
Directory of Open Access Journals (Sweden)
Pablo Soto-Quiros
2015-01-01
Full Text Available This paper presents a parallel implementation of a kind of discrete Fourier transform (DFT: the vector-valued DFT. The vector-valued DFT is a novel tool to analyze the spectra of vector-valued discrete-time signals. This parallel implementation is developed in terms of a mathematical framework with a set of block matrix operations. These block matrix operations contribute to analysis, design, and implementation of parallel algorithms in multicore processors. In this work, an implementation and experimental investigation of the mathematical framework are performed using MATLAB with the Parallel Computing Toolbox. We found that there is advantage to use multicore processors and a parallel computing environment to minimize the high execution time. Additionally, speedup increases when the number of logical processors and length of the signal increase.
Application of Discrete Fourier Transform in solving the inverse problem in gamma-ray logging
International Nuclear Information System (INIS)
Zorski, T.
1980-01-01
A new approach to the solution of inverse problem in gamma-ray logging is presented. The equation: I(z) = ∫sup(+infinite)sub(-infinite) phi (z-z')Isub(infinite)(z')dz', which relates the measured intensity I(z) with the intensity Isub(infinite)(z) not disturbed by finite thickness of an elementary layer, is solved for Isub(infinite)(z). Discrete Fourier Transform and convolution theorem are used. As a result of our solution discrete values of Isub(infinite)(z) given at a step of Δh are obtained. Examples of application of this method for Δh <= 4.5 cm and for the curves I(z) theoretically calculated are also discussed. (author)
International Nuclear Information System (INIS)
Vieira, Fabio P.B.; Bevilacqua, Joyce S.
2014-01-01
The use of electron paramagnetic resonance spectrometers - EPR - in radiation dosimetry is known for more than four decades. It is an important tool in the retrospective determination of doses absorbed. To estimate the dose absorbed by the sample, it is necessary to know the amplitude of the peak to peak signature of the substance in its EPR spectrum. This information can be compromised by the presence of spurious information: noise - of random and low intensity nature; and the behavior of the baseline - coming from the coupling between the resonator tube and the sample analyzed. Due to the intrinsic characteristics of the three main components of the signal, i.e. signature, noise, and baseline - the analysis in the frequency domain allows, through post-processing techniques to filter spurious information. In this work, an algorithm that retrieves the signature of a substance has been implemented. The Discrete Fourier Transform is applied to the signal and without user intervention, the noise is filtered. From the filtered signal, recovers the signature by Inverse Discrete Fourier Transform. The peak to peak amplitude, and the absorbed dose is calculated with an error of less than 1% for signals wherein the base line is linearized. Some more general cases are under investigation and with little user intervention, you can get the same error
Directory of Open Access Journals (Sweden)
Qiu Bo
2008-01-01
Full Text Available Binaural cue coding (BCC is an efficient technique for spatial audio rendering by using the side information such as interchannel level difference (ICLD, interchannel time difference (ICTD, and interchannel correlation (ICC. Of the side information, the ICTD plays an important role to the auditory spatial image. However, inaccurate estimation of the ICTD may lead to the audio quality degradation. In this paper, we develop a novel ICTD estimation algorithm based on the nonuniform discrete Fourier transform (NDFT and integrate it with the BCC approach to improve the decoded auditory image. Furthermore, a new subjective assessment method is proposed for the evaluation of auditory image widths of decoded signals. The test results demonstrate that the NDFT-based scheme can achieve much wider and more externalized auditory image than the existing BCC scheme based on the discrete Fourier transform (DFT. It is found that the present technique, regardless of the image width, does not deteriorate the sound quality at the decoder compared to the traditional scheme without ICTD estimation.
Firth, Jean M
1992-01-01
The analysis of signals and systems using transform methods is a very important aspect of the examination of processes and problems in an increasingly wide range of applications. Whereas the initial impetus in the development of methods appropriate for handling discrete sets of data occurred mainly in an electrical engineering context (for example in the design of digital filters), the same techniques are in use in such disciplines as cardiology, optics, speech analysis and management, as well as in other branches of science and engineering. This text is aimed at a readership whose mathematical background includes some acquaintance with complex numbers, linear differen tial equations, matrix algebra, and series. Specifically, a familiarity with Fourier series (in trigonometric and exponential forms) is assumed, and an exposure to the concept of a continuous integral transform is desirable. Such a background can be expected, for example, on completion of the first year of a science or engineering degree cour...
Yan, Xin-Zhong
2011-07-01
The discrete Fourier transform is approximated by summing over part of the terms with corresponding weights. The approximation reduces significantly the requirement for computer memory storage and enhances the numerical computation efficiency with several orders without losing accuracy. As an example, we apply the algorithm to study the three-dimensional interacting electron gas under the renormalized-ring-diagram approximation where the Green's function needs to be self-consistently solved. We present the results for the chemical potential, compressibility, free energy, entropy, and specific heat of the system. The ground-state energy obtained by the present calculation is compared with the existing results of Monte Carlo simulation and random-phase approximation.
Discrete Fourier transformation processor based on complex radix (−1 + j number system
Directory of Open Access Journals (Sweden)
Anidaphi Shadap
2017-02-01
Full Text Available Complex radix (−1 + j allows the arithmetic operations of complex numbers to be done without treating the divide and conquer rules, which offers the significant speed improvement of complex numbers computation circuitry. Design and hardware implementation of complex radix (−1 + j converter has been introduced in this paper. Extensive simulation results have been incorporated and an application of this converter towards the implementation of discrete Fourier transformation (DFT processor has been presented. The functionality of the DFT processor have been verified in Xilinx ISE design suite version 14.7 and performance parameters like propagation delay and dynamic switching power consumption have been calculated by Virtuoso platform in Cadence. The proposed DFT processor has been implemented through conversion, multiplication and addition. The performance parameter matrix in terms of delay and power consumption offered a significant improvement over other traditional implementation of DFT processor.
Zimmerman, G. A.; Gulkis, S.
1991-01-01
The sensitivity of a matched filter-detection system to a finite-duration continuous wave (CW) tone is compared with the sensitivities of a windowed discrete Fourier transform (DFT) system and an ideal bandpass filter-bank system. These comparisons are made in the context of the NASA Search for Extraterrestrial Intelligence (SETI) microwave observing project (MOP) sky survey. A review of the theory of polyphase-DFT filter banks and its relationship to the well-known windowed-DFT process is presented. The polyphase-DFT system approximates the ideal bandpass filter bank by using as few as eight filter taps per polyphase branch. An improvement in sensitivity of approx. 3 dB over a windowed-DFT system can be obtained by using the polyphase-DFT approach. Sidelobe rejection of the polyphase-DFT system is vastly superior to the windowed-DFT system, thereby improving its performance in the presence of radio frequency interference (RFI).
Truong, T. K.; Chang, J. J.; Hsu, I. S.; Pei, D. Y.; Reed, I. S.
1986-01-01
The complex integer multiplier and adder over the direct sum of two copies of finite field developed by Cozzens and Finkelstein (1985) is specialized to the direct sum of the rings of integers modulo Fermat numbers. Such multiplication over the rings of integers modulo Fermat numbers can be performed by means of two integer multiplications, whereas the complex integer multiplication requires three integer multiplications. Such multiplications and additions can be used in the implementation of a discrete Fourier transform (DFT) of a sequence of complex numbers. The advantage of the present approach is that the number of multiplications needed to compute a systolic array of the DFT can be reduced substantially. The architectural designs using this approach are regular, simple, expandable and, therefore, naturally suitable for VLSI implementation.
Fourier transforms principles and applications
Hansen, Eric W
2014-01-01
Fourier Transforms: Principles and Applications explains transform methods and their applications to electrical systems from circuits, antennas, and signal processors-ably guiding readers from vector space concepts through the Discrete Fourier Transform (DFT), Fourier series, and Fourier transform to other related transform methods. Featuring chapter end summaries of key results, over two hundred examples and four hundred homework problems, and a Solutions Manual this book is perfect for graduate students in signal processing and communications as well as practicing engineers.
DEFF Research Database (Denmark)
Da Ros, Francesco; Nolle, Markus; Meuer, C.
2014-01-01
We experimentally demonstrate the demultiplexing of 8×13.4 Gbaud OFDM-QPSK subcarriers using a silicon nanophotonic-based discrete Fourier transform (DFT) filter. All eight subcarriers showed less than 1.5 dB OSNR penalty compared to the theoretical limit.......We experimentally demonstrate the demultiplexing of 8×13.4 Gbaud OFDM-QPSK subcarriers using a silicon nanophotonic-based discrete Fourier transform (DFT) filter. All eight subcarriers showed less than 1.5 dB OSNR penalty compared to the theoretical limit....
International Nuclear Information System (INIS)
Marinescu, D.C.; Radulescu, T.G.
1977-06-01
The Integral Fourier Transform has a large range of applications in such areas as communication theory, circuit theory, physics, etc. In order to perform discrete Fourier Transform the Finite Fourier Transform is defined; it operates upon N samples of a uniformely sampled continuous function. All the properties known in the continuous case can be found in the discrete case also. The first part of the paper presents the relationship between the Finite Fourier Transform and the Integral one. The computing of a Finite Fourier Transform is a problem in itself since in order to transform a set of N data we have to perform N 2 ''operations'' if the transformation relations are used directly. An algorithm known as the Fast Fourier Transform (FFT) reduces this figure from N 2 to a more reasonable Nlog 2 N, when N is a power of two. The original Cooley and Tuckey algorithm for FFT can be further improved when higher basis are used. The price to be paid in this case is the increase in complexity of such algorithms. The recurrence relations and a comparation among such algorithms are presented. The key point in understanding the application of FFT resides in the convolution theorem which states that the convolution (an N 2 type procedure) of the primitive functions is equivalent to the ordinar multiplication of their transforms. Since filtering is actually a convolution process we present several procedures to perform digital filtering by means of FFT. The best is the one using the segmentation of records and the transformation of pairs of records. In the digital processing of signals, besides digital filtering a special attention is paid to the estimation of various statistical characteristics of a signal as: autocorrelation and correlation functions, periodiograms, density power sepctrum, etc. We give several algorithms for the consistent and unbiased estimation of such functions, by means of FFT. (author)
Kriegel, Fabian L; Köhler, Ralf; Bayat-Sarmadi, Jannike; Bayerl, Simon; Hauser, Anja E; Niesner, Raluca; Luch, Andreas; Cseresnyes, Zoltan
2018-03-01
Cells in their natural environment often exhibit complex kinetic behavior and radical adjustments of their shapes. This enables them to accommodate to short- and long-term changes in their surroundings under physiological and pathological conditions. Intravital multi-photon microscopy is a powerful tool to record this complex behavior. Traditionally, cell behavior is characterized by tracking the cells' movements, which yields numerous parameters describing the spatiotemporal characteristics of cells. Cells can be classified according to their tracking behavior using all or a subset of these kinetic parameters. This categorization can be supported by the a priori knowledge of experts. While such an approach provides an excellent starting point for analyzing complex intravital imaging data, faster methods are required for automated and unbiased characterization. In addition to their kinetic behavior, the 3D shape of these cells also provide essential clues about the cells' status and functionality. New approaches that include the study of cell shapes as well may also allow the discovery of correlations amongst the track- and shape-describing parameters. In the current study, we examine the applicability of a set of Fourier components produced by Discrete Fourier Transform (DFT) as a tool for more efficient and less biased classification of complex cell shapes. By carrying out a number of 3D-to-2D projections of surface-rendered cells, the applied method reduces the more complex 3D shape characterization to a series of 2D DFTs. The resulting shape factors are used to train a Self-Organizing Map (SOM), which provides an unbiased estimate for the best clustering of the data, thereby characterizing groups of cells according to their shape. We propose and demonstrate that such shape characterization is a powerful addition to, or a replacement for kinetic analysis. This would make it especially useful in situations where live kinetic imaging is less practical or not
Barigye, Stephen J; Freitas, Matheus P; Ausina, Priscila; Zancan, Patricia; Sola-Penna, Mauro; Castillo-Garit, Juan A
2018-02-12
We recently generalized the formerly alignment-dependent multivariate image analysis applied to quantitative structure-activity relationships (MIA-QSAR) method through the application of the discrete Fourier transform (DFT), allowing for its application to noncongruent and structurally diverse chemical compound data sets. Here we report the first practical application of this method in the screening of molecular entities of therapeutic interest, with human aromatase inhibitory activity as the case study. We developed an ensemble classification model based on the two-dimensional (2D) DFT MIA-QSAR descriptors, with which we screened the NCI Diversity Set V (1593 compounds) and obtained 34 chemical compounds with possible aromatase inhibitory activity. These compounds were docked into the aromatase active site, and the 10 most promising compounds were selected for in vitro experimental validation. Of these compounds, 7419 (nonsteroidal) and 89 201 (steroidal) demonstrated satisfactory antiproliferative and aromatase inhibitory activities. The obtained results suggest that the 2D-DFT MIA-QSAR method may be useful in ligand-based virtual screening of new molecular entities of therapeutic utility.
Chechetkin, V R; Lobzin, V V
2017-08-07
Using state-of-the-art techniques combining imaging methods and high-throughput genomic mapping tools leaded to the significant progress in detailing chromosome architecture of various organisms. However, a gap still remains between the rapidly growing structural data on the chromosome folding and the large-scale genome organization. Could a part of information on the chromosome folding be obtained directly from underlying genomic DNA sequences abundantly stored in the databanks? To answer this question, we developed an original discrete double Fourier transform (DDFT). DDFT serves for the detection of large-scale genome regularities associated with domains/units at the different levels of hierarchical chromosome folding. The method is versatile and can be applied to both genomic DNA sequences and corresponding physico-chemical parameters such as base-pairing free energy. The latter characteristic is closely related to the replication and transcription and can also be used for the assessment of temperature or supercoiling effects on the chromosome folding. We tested the method on the genome of E. coli K-12 and found good correspondence with the annotated domains/units established experimentally. As a brief illustration of further abilities of DDFT, the study of large-scale genome organization for bacteriophage PHIX174 and bacterium Caulobacter crescentus was also added. The combined experimental, modeling, and bioinformatic DDFT analysis should yield more complete knowledge on the chromosome architecture and genome organization. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vehicle Classification Using the Discrete Fourier Transform with Traffic Inductive Sensors
Directory of Open Access Journals (Sweden)
José J. Lamas-Seco
2015-10-01
Full Text Available Inductive Loop Detectors (ILDs are the most commonly used sensors in traffic management systems. This paper shows that some spectral features extracted from the Fourier Transform (FT of inductive signatures do not depend on the vehicle speed. Such a property is used to propose a novel method for vehicle classification based on only one signature acquired from a sensor single-loop, in contrast to standard methods using two sensor loops. Our proposal will be evaluated by means of real inductive signatures captured with our hardware prototype.
Vehicle Classification Using the Discrete Fourier Transform with Traffic Inductive Sensors.
Lamas-Seco, José J; Castro, Paula M; Dapena, Adriana; Vazquez-Araujo, Francisco J
2015-10-26
Inductive Loop Detectors (ILDs) are the most commonly used sensors in traffic management systems. This paper shows that some spectral features extracted from the Fourier Transform (FT) of inductive signatures do not depend on the vehicle speed. Such a property is used to propose a novel method for vehicle classification based on only one signature acquired from a sensor single-loop, in contrast to standard methods using two sensor loops. Our proposal will be evaluated by means of real inductive signatures captured with our hardware prototype.
Iterative algorithm of discrete Fourier transform for processing randomly sampled NMR data sets
International Nuclear Information System (INIS)
Stanek, Jan; Kozminski, Wiktor
2010-01-01
Spectra obtained by application of multidimensional Fourier Transformation (MFT) to sparsely sampled nD NMR signals are usually corrupted due to missing data. In the present paper this phenomenon is investigated on simulations and experiments. An effective iterative algorithm for artifact suppression for sparse on-grid NMR data sets is discussed in detail. It includes automated peak recognition based on statistical methods. The results enable one to study NMR spectra of high dynamic range of peak intensities preserving benefits of random sampling, namely the superior resolution in indirectly measured dimensions. Experimental examples include 3D 15 N- and 13 C-edited NOESY-HSQC spectra of human ubiquitin.
Directory of Open Access Journals (Sweden)
Robert W. Johnson
2013-06-01
Full Text Available The properties of the Gabor and Morlet transforms are examined with respect to the Fourier analysis of discretely sampled data. Forward and inverse transform pairs based on a fixed window with uniform sampling of the frequency axis can satisfy numerically the energy and reconstruction theorems; however, transform pairs based on a variable window or nonuniform frequency sampling in general do not. Instead of selecting the shape of the window as some function of the central frequency, we propose constructing a single window with unit energy from an arbitrary set of windows that is applied over the entire frequency axis. By virtue of using a fixed window with uniform frequency sampling, such a transform satisfies the energy and reconstruction theorems. The shape of the window can be tailored to meet the requirements of the investigator in terms of time/frequency resolution. The algorithm extends naturally to the case of nonuniform signal sampling without modification beyond identification of the Nyquist interval.
DEFF Research Database (Denmark)
2017-01-01
Systems, methods, apparatuses, and computer program products for generating sequences for zero-tail discrete fourier transform (DFT)-spread-orthogonal frequency division multiplexing (OFDM) (ZT DFT-s-OFDM) reference signals. One method includes adding a zero vector to an input sequence...... of each of the elements, converting the sequence to time domain, generating a zero-padded sequence by forcing a zero head and tail of the sequence, and repeating the steps until a final sequence with zero-tail and flat frequency response is obtained....
A planar waveguide optical discrete Fourier transformer design for 160 Gb/s all-optical OFDM systems
Li, Wei; Liang, Xiaojun; Ma, Weidong; Zhou, Tianhong; Huang, Benxiong; Liu, Deming
2010-01-01
A cost-effective all-optical discrete Fourier transformer (ODFT) is designed based on a silicon planar lightwave circuit (PLC), which can be applied to all-optical orthogonal frequency division multiplexing (OFDM) transmission systems and can be achieved by current techniques. It consists of 2 × 2 directional couplers, phase shifters and optical delay lines. Metal-film heaters are used as phase shifters, according to the thermooptic effect of SiO 2. Based on the ODFT, a 160 Gb/s OFDM system is set up. Simulation results show excellent bit error rate (BER) and optical signal-to-noise ratio (OSNR) performances after 400 km transmission.
Talhaoui, Hicham; Menacer, Arezki; Kessal, Abdelhalim; Kechida, Ridha
2014-09-01
This paper presents new techniques to evaluate faults in case of broken rotor bars of induction motors. Procedures are applied with closed-loop control. Electrical and mechanical variables are treated using fast Fourier transform (FFT), and discrete wavelet transform (DWT) at start-up and steady state. The wavelet transform has proven to be an excellent mathematical tool for the detection of the faults particularly broken rotor bars type. As a performance, DWT can provide a local representation of the non-stationary current signals for the healthy machine and with fault. For sensorless control, a Luenberger observer is applied; the estimation rotor speed is analyzed; the effect of the faults in the speed pulsation is compensated; a quadratic current appears and used for fault detection. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
3-D Discrete Analytical Ridgelet Transform
Helbert , David; Carré , Philippe; Andrès , Éric
2006-01-01
International audience; In this paper, we propose an implementation of the 3-D Ridgelet transform: the 3-D discrete analytical Ridgelet transform (3-D DART). This transform uses the Fourier strategy for the computation of the associated 3-D discrete Radon transform. The innovative step is the definition of a discrete 3-D transform with the discrete analytical geometry theory by the construction of 3-D discrete analytical lines in the Fourier domain. We propose two types of 3-D discrete lines:...
International Nuclear Information System (INIS)
Dai, Xianglu; Xie, Huimin; Wang, Huaixi; Li, Chuanwei; Wu, Lifu; Liu, Zhanwei
2014-01-01
The geometric phase analysis (GPA) method based on the local high resolution discrete Fourier transform (LHR-DFT) for deformation measurement, defined as LHR-DFT GPA, is proposed to improve the measurement accuracy. In the general GPA method, the fundamental frequency of the image plays a crucial role. However, the fast Fourier transform, which is generally employed in the general GPA method, could make it difficult to locate the fundamental frequency accurately when the fundamental frequency is not located at an integer pixel position in the Fourier spectrum. This study focuses on this issue and presents a LHR-DFT algorithm that can locate the fundamental frequency with sub-pixel precision in a specific frequency region for the GPA method. An error analysis is offered and simulation is conducted to verify the effectiveness of the proposed method; both results show that the LHR-DFT algorithm can accurately locate the fundamental frequency and improve the measurement accuracy of the GPA method. Furthermore, typical tensile and bending tests are carried out and the experimental results verify the effectiveness of the proposed method. (paper)
Bekkouche, Toufik; Bouguezel, Saad
2018-03-01
We propose a real-to-real image encryption method. It is a double random amplitude encryption method based on the parametric discrete Fourier transform coupled with chaotic maps to perform the scrambling. The main idea behind this method is the introduction of a complex-to-real conversion by exploiting the inherent symmetry property of the transform in the case of real-valued sequences. This conversion allows the encrypted image to be real-valued instead of being a complex-valued image as in all existing double random phase encryption methods. The advantage is to store or transmit only one image instead of two images (real and imaginary parts). Computer simulation results and comparisons with the existing double random amplitude encryption methods are provided for peak signal-to-noise ratio, correlation coefficient, histogram analysis, and key sensitivity.
Generalized Fourier transforms classes
DEFF Research Database (Denmark)
Berntsen, Svend; Møller, Steen
2002-01-01
The Fourier class of integral transforms with kernels $B(\\omega r)$ has by definition inverse transforms with kernel $B(-\\omega r)$. The space of such transforms is explicitly constructed. A slightly more general class of generalized Fourier transforms are introduced. From the general theory...
International Nuclear Information System (INIS)
Pang Chaoyang; Hu Benqiong
2008-01-01
The discrete Fourier transform (DFT) is the base of modern signal processing. 1-dimensional fast Fourier transform (ID FFT) and 2D FFT have time complexity O (N log N) and O (N 2 log N) respectively. Since 1965, there has been no more essential breakthrough for the design of fast DFT algorithm. DFT has two properties. One property is that DFT is energy conservation transform. The other property is that many DFT coefficients are close to zero. The basic idea of this paper is that the generalized Grover's iteration can perform the computation of DFT which acts on the entangled states to search the big DFT coefficients until these big coefficients contain nearly all energy. One-dimensional quantum DFT (ID QDFT) and two-dimensional quantum DFT (2D QDFT) are presented in this paper. The quantum algorithm for convolution estimation is also presented in this paper. Compared with FFT, ID and 2D QDFT have time complexity O(√N) and O (N) respectively. QDFT and quantum convolution demonstrate that quantum computation to process classical signal is possible. (general)
App. 1. Fourier series and Fourier transform
International Nuclear Information System (INIS)
Anon.
1977-01-01
Definitions, formulas and practical properties in quantum mechanics are presented: Fourier series (development of periodic function, Bessel-Parseval equality); Fourier transform (Parseval-Plancherel formula, Fourier transform in three-dimensional space) [fr
Generalized Fourier transforms classes
DEFF Research Database (Denmark)
Berntsen, Svend; Møller, Steen
2002-01-01
The Fourier class of integral transforms with kernels $B(\\omega r)$ has by definition inverse transforms with kernel $B(-\\omega r)$. The space of such transforms is explicitly constructed. A slightly more general class of generalized Fourier transforms are introduced. From the general theory foll...... follows that integral transform with kernels which are products of a Bessel and a Hankel function or which is of a certain general hypergeometric type have inverse transforms of the same structure....
Fractional finite Fourier transform.
Khare, Kedar; George, Nicholas
2004-07-01
We show that a fractional version of the finite Fourier transform may be defined by using prolate spheroidal wave functions of order zero. The transform is linear and additive in its index and asymptotically goes over to Namias's definition of the fractional Fourier transform. As a special case of this definition, it is shown that the finite Fourier transform may be inverted by using information over a finite range of frequencies in Fourier space, the inversion being sensitive to noise. Numerical illustrations for both forward (fractional) and inverse finite transforms are provided.
International Nuclear Information System (INIS)
Hallenga, K.
1991-01-01
This paper discusses the concept of Fourier transformation one of the many precious legacies of the French mathematician Jean Baptiste Joseph Fourier, essential for understanding the link between continuous-wave (CW) and Fourier transform (FT) NMR. Although in modern FT NMR the methods used to obtain a frequency spectrum from the time-domain signal may vary greatly, from the efficient Cooley-Tukey algorithm to very elaborate iterative least-square methods based other maximum entropy method or on linear prediction, the principles for Fourier transformation are unchanged and give invaluable insight into the interconnection of many pairs of physical entities called Fourier pairs
Gui, Tao; Lu, Chao; Lau, Alan Pak Tao; Wai, P K A
2017-08-21
In this paper, we experimentally investigate high-order modulation over a single discrete eigenvalue under the nonlinear Fourier transform (NFT) framework and exploit all degrees of freedom for encoding information. For a fixed eigenvalue, we compare different 4 bit/symbol modulation formats on the spectral amplitude and show that a 2-ring 16-APSK constellation achieves optimal performance. We then study joint spectral phase, spectral magnitude and eigenvalue modulation and found that while modulation on the real part of the eigenvalue induces pulse timing drift and leads to neighboring pulse interactions and nonlinear inter-symbol interference (ISI), it is more bandwidth efficient than modulation on the imaginary part of the eigenvalue in practical settings. We propose a spectral amplitude scaling method to mitigate such nonlinear ISI and demonstrate a record 4 GBaud 16-APSK on the spectral amplitude plus 2-bit eigenvalue modulation (total 6 bit/symbol at 24 Gb/s) transmission over 1000 km.
Formal degrees of unipotent discrete series representations and the exotic Fourier transform
Ciubotaru, D.; Opdam, E.
2015-01-01
We introduce a notion of elliptic fake degrees for unipotent elliptic representations of a semisimple p-adic group. We conjecture, and verify in some cases, that the relation between the formal degrees of unipotent discrete series representations of a semisimple p-adic group and the elliptic fake
Fourier Transform Mass Spectrometry
Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander
2011-01-01
This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook. PMID:21742802
International Nuclear Information System (INIS)
Zhang Zhaoyun; Gao Yang; Zhao Xinghai; Zhao Xiang
2011-01-01
Laser's optical output power and frequency are modulated when the optical beam is back-scattered into the active cavity of the laser. By signal processing, the Doppler frequency can be acquired, and the target's velocity can be calculated. Based on these properties, an interferometry velocity sensor can be designed. When target move in time-varying velocity mode, it is difficult to extract the target's velocity. Time-varying velocity measurement by self-mixing laser diode is explored. A mathematics model was proposed for the time-varying velocity (invariable acceleration) measurement by self-mixing laser diode. Based on this model, a Discrete Chirp-Fourier Transform (DCFT) method was applied, DCFT is analogous to DFT. We show that when the signal length N is prime, the magnitudes of all the side lobes are 1, whereas the magnitudes of the main lobe is √N, And the coordinates of the main lobe shows the target's velocity and acceleration information. The simulation results prove the validity of the algorithm even in the situation of low SNR when N is prime.
International Nuclear Information System (INIS)
Samadder, Swetadri; Ghosh, Koushik; Basu, Tapasendra
2015-01-01
The behaviour of Indian stock markets has a persistent close association with the behaviour of American stock exchange. The present work is an effort in this direction and the purpose of the present work is to investigate the periodicity of the two prime Indian stock market indices viz. SENSEX and NIFTY and the prime American stock market indices viz. DOW-JONES and S&P500. To serve the present purpose we have here used SENSEX logarithmic daily close data during the period from 1st January, 1990 to 31st December, 2013, NIFTY logarithmic daily close data during the period from 3rd July, 1990 to 31st December, 2013, DOW-JONES logarithmic daily close data during the period from 10th January, 1928 to 31st December, 2013 and S&P500 logarithmic daily close data during the period 3rd January, 1950 to 31st December, 2013. For the present analysis we have first used double exponential smoothing on all the four time series in order to remove the trend and next we have generated monthly averages of the smoothed time series in order to remove the irregular fluctuations. At the final stage Ferraz-Mello method of date-compensated discrete Fourier transform (DCDFT) has been applied on the present four double-smoothed monthly averaged time series. Study reveals periods for SENSEX of 11, 53 and 142 months; for NIFTY periods of 22, 38, 52 and 139 months; for DOW-JONES periods of 23, 25, 27, 30, 59, 107, 138, 194 and 494 months and for S&P500 periods of 28, 66, 74, 149 and 384 months. With this specific periodic behaviour we have also observed some pseudo-periods in the present four financial time series which certainly adds to the uncertainty in the process of prediction for the same
Fourier Transform Mass Spectrometry.
Gross, Michael L.; Rempel, Don L.
1984-01-01
Discusses the nature of Fourier transform mass spectrometry and its unique combination of high mass resolution, high upper mass limit, and multichannel advantage. Examines its operation, capabilities and limitations, applications (ion storage, ion manipulation, ion chemistry), and future applications and developments. (JN)
A new twist to fourier transforms
Meikle, Hamish D
2004-01-01
Making use of the inherent helix in the Fourier transform expression, this book illustrates both Fourier transforms and their properties in the round. The author draws on elementary complex algebra to manipulate the transforms, presenting the ideas in such a way as to avoid pages of complicated mathematics. Similarly, abbreviations are not used throughout and the language is kept deliberately clear so that the result is a text that is accessible to a much wider readership.The treatment is extended with the use of sampled data to finite and discrete transforms, the fast Fourier transform, or FFT, being a special case of a discrete transform. The application of Fourier transforms in statistics is illustrated for the first time using the examples operational research and later radar detection. In addition, a whole chapter on tapering or weighting functions is added for reference. The whole is rounded off by a glossary and examples of diagrams in three dimensions made possible by today's mathematics programs
An optical Fourier transform coprocessor with direct phase determination.
Macfaden, Alexander J; Gordon, George S D; Wilkinson, Timothy D
2017-10-20
The Fourier transform is a ubiquitous mathematical operation which arises naturally in optics. We propose and demonstrate a practical method to optically evaluate a complex-to-complex discrete Fourier transform. By implementing the Fourier transform optically we can overcome the limiting O(nlogn) complexity of fast Fourier transform algorithms. Efficiently extracting the phase from the well-known optical Fourier transform is challenging. By appropriately decomposing the input and exploiting symmetries of the Fourier transform we are able to determine the phase directly from straightforward intensity measurements, creating an optical Fourier transform with O(n) apparent complexity. Performing larger optical Fourier transforms requires higher resolution spatial light modulators, but the execution time remains unchanged. This method could unlock the potential of the optical Fourier transform to permit 2D complex-to-complex discrete Fourier transforms with a performance that is currently untenable, with applications across information processing and computational physics.
The fractional Fourier transform and applications
Bailey, David H.; Swarztrauber, Paul N.
1991-01-01
This paper describes the 'fractional Fourier transform', which admits computation by an algorithm that has complexity proportional to the fast Fourier transform algorithm. Whereas the discrete Fourier transform (DFT) is based on integral roots of unity e exp -2(pi)i/n, the fractional Fourier transform is based on fractional roots of unity e exp -2(pi)i(alpha), where alpha is arbitrary. The fractional Fourier transform and the corresponding fast algorithm are useful for such applications as computing DFTs of sequences with prime lengths, computing DFTs of sparse sequences, analyzing sequences with noninteger periodicities, performing high-resolution trigonometric interpolation, detecting lines in noisy images, and detecting signals with linearly drifting frequencies. In many cases, the resulting algorithms are faster by arbitrarily large factors than conventional techniques.
Alexandrov, Mikhail D.; Cairns, Brian; Mishchenko, Michael I.
2012-01-01
We present a novel technique for remote sensing of cloud droplet size distributions. Polarized reflectances in the scattering angle range between 135deg and 165deg exhibit a sharply defined rainbow structure, the shape of which is determined mostly by single scattering properties of cloud particles, and therefore, can be modeled using the Mie theory. Fitting the observed rainbow with such a model (computed for a parameterized family of particle size distributions) has been used for cloud droplet size retrievals. We discovered that the relationship between the rainbow structures and the corresponding particle size distributions is deeper than it had been commonly understood. In fact, the Mie theory-derived polarized reflectance as a function of reduced scattering angle (in the rainbow angular range) and the (monodisperse) particle radius appears to be a proxy to a kernel of an integral transform (similar to the sine Fourier transform on the positive semi-axis). This approach, called the rainbow Fourier transform (RFT), allows us to accurately retrieve the shape of the droplet size distribution by the application of the corresponding inverse transform to the observed polarized rainbow. While the basis functions of the proxy-transform are not exactly orthogonal in the finite angular range, this procedure needs to be complemented by a simple regression technique, which removes the retrieval artifacts. This non-parametric approach does not require any a priori knowledge of the droplet size distribution functional shape and is computationally fast (no look-up tables, no fitting, computations are the same as for the forward modeling).
Fourier transforms in spectroscopy
Kauppinen, Jyrki
2000-01-01
This modern approach to the subject is clearly and logically structured, and gives readers an understanding of the essence of Fourier transforms and their applications. All important aspects are included with respect to their use with optical spectroscopic data. Based on popular lectures, the authors provide the mathematical fundamentals and numerical applications which are essential in practical use. The main part of the book is dedicated to applications of FT in signal processing and spectroscopy, with IR and NIR, NMR and mass spectrometry dealt with both from a theoretical and practical poi
Fast Fourier transform telescope
International Nuclear Information System (INIS)
Tegmark, Max; Zaldarriaga, Matias
2009-01-01
We propose an all-digital telescope for 21 cm tomography, which combines key advantages of both single dishes and interferometers. The electric field is digitized by antennas on a rectangular grid, after which a series of fast Fourier transforms recovers simultaneous multifrequency images of up to half the sky. Thanks to Moore's law, the bandwidth up to which this is feasible has now reached about 1 GHz, and will likely continue doubling every couple of years. The main advantages over a single dish telescope are cost and orders of magnitude larger field-of-view, translating into dramatically better sensitivity for large-area surveys. The key advantages over traditional interferometers are cost (the correlator computational cost for an N-element array scales as Nlog 2 N rather than N 2 ) and a compact synthesized beam. We argue that 21 cm tomography could be an ideal first application of a very large fast Fourier transform telescope, which would provide both massive sensitivity improvements per dollar and mitigate the off-beam point source foreground problem with its clean beam. Another potentially interesting application is cosmic microwave background polarization.
Discrete Gabor transform and discrete Zak transform
Bastiaans, M.J.; Namazi, N.M.; Matthews, K.
1996-01-01
Gabor's expansion of a discrete-time signal into a set of shifted and modulated versions of an elementary signal or synthesis window is introduced, along with the inverse operation, i.e. the Gabor transform, which uses an analysis window that is related to the synthesis window and with the help of
Fourier Transform Spectrometer System
Campbell, Joel F. (Inventor)
2014-01-01
A Fourier transform spectrometer (FTS) data acquisition system includes an FTS spectrometer that receives a spectral signal and a laser signal. The system further includes a wideband detector, which is in communication with the FTS spectrometer and receives the spectral signal and laser signal from the FTS spectrometer. The wideband detector produces a composite signal comprising the laser signal and the spectral signal. The system further comprises a converter in communication with the wideband detector to receive and digitize the composite signal. The system further includes a signal processing unit that receives the composite signal from the converter. The signal processing unit further filters the laser signal and the spectral signal from the composite signal and demodulates the laser signal, to produce velocity corrected spectral data.
Replica Fourier Transform: Properties and applications
International Nuclear Information System (INIS)
Crisanti, A.; De Dominicis, C.
2015-01-01
The Replica Fourier Transform is the generalization of the discrete Fourier Transform to quantities defined on an ultrametric tree. It finds use in conjunction of the replica method used to study thermodynamics properties of disordered systems such as spin glasses. Its definition is presented in a systematic and simple form and its use illustrated with some representative examples. In particular we give a detailed discussion of the diagonalization in the Replica Fourier Space of the Hessian matrix of the Gaussian fluctuations about the mean field saddle point of spin glass theory. The general results are finally discussed for a generic spherical spin glass model, where the Hessian can be computed analytically
On fractional Fourier transform moments
Alieva, T.; Bastiaans, M.J.
2000-01-01
Based on the relation between the ambiguity function represented in a quasi-polar coordinate system and the fractional power spectra, the fractional Fourier transform moments are introduced. Important equalities for the global second-order fractional Fourier transform moments are derived and their
Discrete Fourier analysis of multigrid algorithms
van der Vegt, Jacobus J.W.; Rhebergen, Sander
2011-01-01
The main topic of this report is a detailed discussion of the discrete Fourier multilevel analysis of multigrid algorithms. First, a brief overview of multigrid methods is given for discretizations of both linear and nonlinear partial differential equations. Special attention is given to the
Directory of Open Access Journals (Sweden)
Maurice R. Kibler
2010-07-01
Full Text Available We propose a group-theoretical approach to the generalized oscillator algebra Aκ recently investigated in J. Phys. A: Math. Theor. 2010, 43, 115303. The case κ ≥ 0 corresponds to the noncompact group SU(1,1 (as for the harmonic oscillator and the Pöschl-Teller systems while the case κ < 0 is described by the compact group SU(2 (as for the Morse system. We construct the phase operators and the corresponding temporally stable phase eigenstates for Aκ in this group-theoretical context. The SU(2 case is exploited for deriving families of mutually unbiased bases used in quantum information. Along this vein, we examine some characteristics of a quadratic discrete Fourier transform in connection with generalized quadratic Gauss sums and generalized Hadamard matrices.
3-D discrete analytical ridgelet transform.
Helbert, David; Carré, Philippe; Andres, Eric
2006-12-01
In this paper, we propose an implementation of the 3-D Ridgelet transform: the 3-D discrete analytical Ridgelet transform (3-D DART). This transform uses the Fourier strategy for the computation of the associated 3-D discrete Radon transform. The innovative step is the definition of a discrete 3-D transform with the discrete analytical geometry theory by the construction of 3-D discrete analytical lines in the Fourier domain. We propose two types of 3-D discrete lines: 3-D discrete radial lines going through the origin defined from their orthogonal projections and 3-D planes covered with 2-D discrete line segments. These discrete analytical lines have a parameter called arithmetical thickness, allowing us to define a 3-D DART adapted to a specific application. Indeed, the 3-D DART representation is not orthogonal, It is associated with a flexible redundancy factor. The 3-D DART has a very simple forward/inverse algorithm that provides an exact reconstruction without any iterative method. In order to illustrate the potentiality of this new discrete transform, we apply the 3-D DART and its extension to the Local-DART (with smooth windowing) to the denoising of 3-D image and color video. These experimental results show that the simple thresholding of the 3-D DART coefficients is efficient.
Fourier transformations for difference analogs of the harmonic oscillator
International Nuclear Information System (INIS)
Askey, R.; Atakishiyev, N.M.
1995-01-01
The relation between the Mehler bilinear generating function for the Hermite polynomials and the kernel of the Fourier transformation that connect the spaces of coordinate and momentum is discussed. On the base of the relation the discrete analogs of the Fourier transformation for the Kravchuk and Charlier functions are considered. 6 refs
Fourier series, Fourier transform and their applications to mathematical physics
Serov, Valery
2017-01-01
This text serves as an introduction to the modern theory of analysis and differential equations with applications in mathematical physics and engineering sciences. Having outgrown from a series of half-semester courses given at University of Oulu, this book consists of four self-contained parts. The first part, Fourier Series and the Discrete Fourier Transform, is devoted to the classical one-dimensional trigonometric Fourier series with some applications to PDEs and signal processing. The second part, Fourier Transform and Distributions, is concerned with distribution theory of L. Schwartz and its applications to the Schrödinger and magnetic Schrödinger operations. The third part, Operator Theory and Integral Equations, is devoted mostly to the self-adjoint but unbounded operators in Hilbert spaces and their applications to integral equations in such spaces. The fourth and final part, Introduction to Partial Differential Equations, serves as an introduction to modern methods for classical theory o...
Fourier transform nuclear magnetic resonance
International Nuclear Information System (INIS)
Geick, R.
1981-01-01
This review starts with the basic principles of resonance phenomena in physical systems. Especially, the connection is shown between the properties of these systems and Fourier transforms. Next, we discuss the principles of nuclear magnetic resonance. Starting from the general properties of physical systems showing resonance phenomena and from the special properties of nuclear spin systems, the main part of this paper reviews pulse and Fourier methods in nuclear magnetic resonance. Among pulse methods, an introduction will be given to spin echoes, and, apart from the principle of Fourier transform nuclear magnetic resonance, an introduction to the technical problems of this method, e.g. resolution in the frequency domain, aliasing, phase and intensity errors, stationary state of the spin systems for repetitive measurements, proton decoupling, and application of Fourier methods to systems in a nonequilibrium state. The last section is devoted to special applications of Fourier methods and recent developments, e.g. measurement of relaxation times, solvent peak suppression, 'rapid scan'-method, methods for suppressing the effects of dipolar coupling in solids, two-dimensional Fourier transform nuclear magnetic resonance, and spin mapping or zeugmatography. (author)
General Correlation Theorem for Trinion Fourier Transform
Bahri, Mawardi
2017-01-01
- The trinion Fourier transform is an extension of the Fourier transform in the trinion numbers setting. In this work we derive the correlation theorem for the trinion Fourier transform by using the relation between trinion convolution and correlation definitions in the trinion Fourier transform domains.
The Fourier U(2 Group and Separation of Discrete Variables
Directory of Open Access Journals (Sweden)
Kurt Bernardo Wolf
2011-06-01
Full Text Available The linear canonical transformations of geometric optics on two-dimensional screens form the group Sp(4,R, whose maximal compact subgroup is the Fourier group U(2_F; this includes isotropic and anisotropic Fourier transforms, screen rotations and gyrations in the phase space of ray positions and optical momenta. Deforming classical optics into a Hamiltonian system whose positions and momenta range over a finite set of values, leads us to the finite oscillator model, which is ruled by the Lie algebra so(4. Two distinct subalgebra chains are used to model arrays of N^2 points placed along Cartesian or polar (radius and angle coordinates, thus realizing one case of separation in two discrete coordinates. The N^2-vectors in this space are digital (pixellated images on either of these two grids, related by a unitary transformation. Here we examine the unitary action of the analogue Fourier group on such images, whose rotations are particularly visible.
FOURIER SERIES MODELS THROUGH TRANSFORMATION
African Journals Online (AJOL)
DEPT
monthly temperature data (1996 – 2005) collected from the National Root ... KEY WORDS: Fourier series, square transformation, multiplicative model, ... fluctuations or movements are often periodic(Ekpeyong,2005). .... significant trend or not, if the trend is not significant, the grand mean may be used as an estimate of trend.
Discrete fourier transformations with weight
International Nuclear Information System (INIS)
Wang Qin; Jiang Yong
1988-01-01
DFT and FFT with weight were considered and their properties were studied. The usual DFT and FFT were modified by reducing the number of sample points within a certain error band and therefore speeded up the computation. Finally, the practical applications of the new method in the fields of spectrum analysis, pulse tracing research and so on were pointed out
Debnath, Lokenath
2012-01-01
This article deals with a brief biographical sketch of Joseph Fourier, his first celebrated work on analytical theory of heat, his first great discovery of Fourier series and Fourier transforms. Included is a historical development of Fourier series and Fourier transforms with their properties, importance and applications. Special emphasis is made…
Analog fourier transform channelizer and OFDM receiver
2007-01-01
An OFDM receiver having an analog multiplier based I-Q channelizing filter, samples and holds consecutive analog I-Q samples of an I-Q baseband, the I-Q basebands having OFDM sub-channels. A lattice of analog I-Q multipliers and analog I-Q summers concurrently receives the held analog I-Q samples, performs analog I-Q multiplications and analog I-Q additions to concurrently generate a plurality of analog I-Q output signals, representing an N-point discrete Fourier transform of the held analog ...
Properties of the distributional finite Fourier transform
Carmichael, Richard D.
2016-01-01
The analytic functions in tubes which obtain the distributional finite Fourier transform as boundary value are shown to have a strong boundedness property and to be recoverable as a Fourier-Laplace transform, a distributional finite Fourier transform, and as a Cauchy integral of a distribution associated with the boundary value.
Improved Fourier-transform profilometry
International Nuclear Information System (INIS)
Mao Xianfu; Chen Wenjing; Su Xianyu
2007-01-01
An improved optical geometry of the projected-fringe profilometry technique, in which the exit pupil of the projecting lens and the entrance pupil of the imaging lens are neither at the same height above the reference plane nor coplanar, is discussed and used in Fourier-transform profilometry. Furthermore, an improved fringe-pattern description and phase-height mapping formula based on the improved geometrical generalization is deduced. Employing the new optical geometry, it is easier for us to obtain the full-field fringe by moving either the projector or the imaging device. Therefore the new method offers a flexible way to obtain reliable height distribution of a measured object
Fourier-transform optical microsystems
Collins, S. D.; Smith, R. L.; Gonzalez, C.; Stewart, K. P.; Hagopian, J. G.; Sirota, J. M.
1999-01-01
The design, fabrication, and initial characterization of a miniature single-pass Fourier-transform spectrometer (FTS) that has an optical bench that measures 1 cm x 5 cm x 10 cm is presented. The FTS is predicated on the classic Michelson interferometer design with a moving mirror. Precision translation of the mirror is accomplished by microfabrication of dovetailed bearing surfaces along single-crystal planes in silicon. Although it is miniaturized, the FTS maintains a relatively high spectral resolution, 0.1 cm-1, with adequate optical throughput.
Fourier Transform Methods. Chapter 4
Kaplan, Simon G.; Quijada, Manuel A.
2015-01-01
This chapter describes the use of Fourier transform spectrometers (FTS) for accurate spectrophotometry over a wide spectral range. After a brief exposition of the basic concepts of FTS operation, we discuss instrument designs and their advantages and disadvantages relative to dispersive spectrometers. We then examine how common sources of error in spectrophotometry manifest themselves when using an FTS and ways to reduce the magnitude of these errors. Examples are given of applications to both basic and derived spectrophotometric quantities. Finally, we give recommendations for choosing the right instrument for a specific application, and how to ensure the accuracy of the measurement results..
Tunable fractional-order Fourier transformer
International Nuclear Information System (INIS)
Malyutin, A A
2006-01-01
A fractional two-dimensional Fourier transformer whose orders are tuned by means of optical quadrupoles is described. It is shown that in the optical scheme considered, the Fourier-transform order a element of [0,1] in one of the mutually orthogonal planes corresponds to the transform order (2-a) in another plane, i.e., to inversion and inverse Fourier transform of the order a. (laser modes and beams)
Baecklund transformations for discrete Painleve equations: Discrete PII-PV
International Nuclear Information System (INIS)
Sakka, A.; Mugan, U.
2006-01-01
Transformation properties of discrete Painleve equations are investigated by using an algorithmic method. This method yields explicit transformations which relates the solutions of discrete Painleve equations, discrete P II -P V , with different values of parameters. The particular solutions which are expressible in terms of the discrete analogue of the classical special functions of discrete Painleve equations can also be obtained from these transformations
Applications of Fourier transforms to generalized functions
Rahman, M
2011-01-01
This book explains how Fourier transforms can be applied to generalized functions. The generalized function is one of the important branches of mathematics and is applicable in many practical fields. Its applications to the theory of distribution and signal processing are especially important. The Fourier transform is a mathematical procedure that can be thought of as transforming a function from its time domain to the frequency domain.The book contains six chapters and three appendices. Chapter 1 deals with preliminary remarks on Fourier series from a general point of view and also contains an introduction to the first generalized function. Chapter 2 is concerned with the generalized functions and their Fourier transforms. Chapter 3 contains the Fourier transforms of particular generalized functions. The author has stated and proved 18 formulas dealing with the Fourier transforms of generalized functions, and demonstrated some important problems of practical interest. Chapter 4 deals with the asymptotic esti...
Quantum arithmetic with the Quantum Fourier Transform
Ruiz-Perez, Lidia; Garcia-Escartin, Juan Carlos
2014-01-01
The Quantum Fourier Transform offers an interesting way to perform arithmetic operations on a quantum computer. We review existing Quantum Fourier Transform adders and multipliers and propose some modifications that extend their capabilities. Among the new circuits, we propose a quantum method to compute the weighted average of a series of inputs in the transform domain.
Wigner distribution and fractional Fourier transform
Alieva, T.; Bastiaans, M.J.; Boashash, B.
2003-01-01
We have described the relationship between the fractional Fourier transform and the Wigner distribution by using the Radon-Wigner transform, which is a set of projections of the Wigner distribution as well as a set of squared moduli of the fractional Fourier transform. We have introduced the concept
The finite Fourier transform of classical polynomials
Dixit, Atul; Jiu, Lin; Moll, Victor H.; Vignat, Christophe
2014-01-01
The finite Fourier transform of a family of orthogonal polynomials $A_{n}(x)$, is the usual transform of the polynomial extended by $0$ outside their natural domain. Explicit expressions are given for the Legendre, Jacobi, Gegenbauer and Chebyshev families.
On the Scaled Fractional Fourier Transformation Operator
International Nuclear Information System (INIS)
Hong-Yi, Fan; Li-Yun, Hu
2008-01-01
Based on our previous study [Chin. Phys. Lett. 24 (2007) 2238] in which the Fresnel operator corresponding to classical Fresnel transform was introduced, we derive the fractional Fourier transformation operator, and the optical operator method is then enriched
On the inverse windowed Fourier transform
Rebollo Neira, Laura; Fernández Rubio, Juan Antonio
1999-01-01
The inversion problem concerning the windowed Fourier transform is considered. It is shown that, out of the infinite solutions that the problem admits, the windowed Fourier transform is the "optimal" solution according to a maximum-entropy selection criterion. Peer Reviewed
Discrete frequency identification using the HP 5451B Fourier analyser
International Nuclear Information System (INIS)
Holland, L.; Barry, P.
1977-01-01
The frequency analysis by the HP5451B discrete frequency Fourier analyser is studied. The advantages of cross correlation analysis to identify discrete frequencies in a background noise are discussed in conjuction with the elimination of aliasing and wraparound error. Discrete frequency identification is illustrated by a series of graphs giving the results of analysing 'electrical' and 'acoustical' white noise and sinusoidal signals [pt
The Geostationary Fourier Transform Spectrometer
Key, Richard; Sander, Stanley; Eldering, Annmarie; Blavier, Jean-Francois; Bekker, Dmitriy; Manatt, Ken; Rider, David; Wu, Yen-Hung
2012-01-01
The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for a geostationary orbit (GEO) earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. GEO allows GeoFTS to continuously stare at a region of the earth for frequent sampling to capture the variability of biogenic fluxes and anthropogenic emissions from city to continental spatial scales and temporal scales from diurnal, synoptic, seasonal to interannual. The measurement strategy provides a process based understanding of the carbon cycle from contiguous maps of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) collected many times per day at high spatial resolution (2.7kmx2.7km at nadir). The CO2/CH4/CO/CF measurement suite in the near infrared spectral region provides the information needed to disentangle natural and anthropogenic contributions to atmospheric carbon concentrations and to minimize uncertainties in the flow of carbon between the atmosphere and surface. The half meter cube size GeoFTS instrument is based on a Michelson interferometer design that uses all high TRL components in a modular configuration to reduce complexity and cost. It is self-contained and as independent of the spacecraft as possible with simple spacecraft interfaces, making it ideal to be a "hosted" payload on a commercial communications satellite mission. The hosted payload approach for measuring the major carbon-containing gases in the atmosphere from the geostationary vantage point will affordably advance the scientific understating of carbon cycle processes and climate change.
Symmetrized neutron transport equation and the fast Fourier transform method
International Nuclear Information System (INIS)
Sinh, N.Q.; Kisynski, J.; Mika, J.
1978-01-01
The differential equation obtained from the neutron transport equation by the application of the source iteration method in two-dimensional rectangular geometry is transformed into a symmetrized form with respect to one of the angular variables. The discretization of the symmetrized equation leads to finite difference equations based on the five-point scheme and solved by use of the fast Fourier transform method. Possible advantages of the approach are shown on test calculations
On the discrete Gabor transform and the discrete Zak transform
Bastiaans, M.J.; Geilen, M.C.W.
1996-01-01
Gabor's expansion of a discrete-time signal into a set of shifted and modulated versions of an elementary signal (or synthesis window) and the inverse operation -- the Gabor transform -- with which Gabor's expansion coefficients can be determined, are introduced. It is shown how, in the case of a
Fourier transforms in radar and signal processing
Brandwood, David
2011-01-01
Fourier transforms are used widely, and are of particular value in the analysis of single functions and combinations of functions found in radar and signal processing. Still, many problems that could have been tackled by using Fourier transforms may have gone unsolved because they require integration that is difficult and tedious. This newly revised and expanded edition of a classic Artech House book provides you with an up-to-date, coordinated system for performing Fourier transforms on a wide variety of functions. Along numerous updates throughout the book, the Second Edition includes a crit
Wigner distribution and fractional Fourier transform
Alieva, T.; Bastiaans, M.J.
2001-01-01
The connection between the Wigner distribution and the squared modulus of the fractional Fourier transform - which are both well-known time-frequency representations of a signal - is established. In particular the Radon-Wigner transform is used, which relates projections of the Wigner distribution
2017-08-01
Fourier transform, discrete Fourier transform, digital array processing , antenna beamformers 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...125 3.7 Simulation of 2-D Beams Cross Sections .................................................................... 125 3.7.1 8...unlimited. List of Figures Figure Page Figure 1: N-beam Array Processing System using a Linear Array
Pipeline Analyzer using the Fractional Fourier Transform for Engine Control and Satellites Data
Directory of Open Access Journals (Sweden)
Darian M. Onchiș
2011-09-01
Full Text Available The aim of this paper is to present an algorithm for computing the fractional Fourier transform integrated into the pipeline of processing multi-variate and distributed data recorded by the engine control unit (ECU of a car and its satellites. The role of this transform is vital in establishing a time-variant filter and therefore it must be computed in a fast way. But for large scale time series, the application of the discrete fractional Fourier transform involves the computations of a large number of Hermite polynomials of increasingly order. The parallel algorithm presented will optimally compute the discrete Fourier-type transform for any given angle.
On the raising and lowering difference operators for eigenvectors of the finite Fourier transform
International Nuclear Information System (INIS)
Atakishiyeva, M K; Atakishiyev, N M
2015-01-01
We construct explicit forms of raising and lowering difference operators that govern eigenvectors of the finite (discrete) Fourier transform. Some of the algebraic properties of these operators are also examined. (paper)
Group-invariant finite Fourier transforms
International Nuclear Information System (INIS)
Shenefelt, M.H.
1988-01-01
The computation of the finite Fourier transform of functions is one of the most used computations in crystallography. Since the Fourier transform involved in 3-dimensional, the size of the computation becomes very large even for relatively few sample points along each edge. In this thesis, there is a family of algorithms that reduce the computation of Fourier transform of functions respecting the symmetries. Some properties of these algorithms are: (1) The algorithms make full use of the group of symmetries of a crystal. (2) The algorithms can be factored and combined according to the prime factorization of the number of points in the sample space. (3) The algorithms are organized into a family using the group structure of the crystallographic groups to make iterative procedures possible
Connection between Fourier coefficient and Discretized Cartesian path integration
International Nuclear Information System (INIS)
Coalson, R.D.
1986-01-01
The relationship between so-called Discretized and Fourier coefficient formulations of Cartesian path integration is examined. In particular, an intimate connection between the two is established by rewriting the Discretized formulation in a manifestly Fourier-like way. This leads to improved understanding of both the limit behavior and the convergence properties of computational prescriptions based on the two formalisms. The performance of various prescriptions is compared with regard to calculation of on-diagonal statistical density matrix elements for a number of prototypical 1-d potentials. A consistent convergence order among these prescriptions is established
Fourier transforms and convolutions for the experimentalist
Jennison, RC
1961-01-01
Fourier Transforms and Convolutions for the Experimentalist provides the experimentalist with a guide to the principles and practical uses of the Fourier transformation. It aims to bridge the gap between the more abstract account of a purely mathematical approach and the rule of thumb calculation and intuition of the practical worker. The monograph springs from a lecture course which the author has given in recent years and for which he has drawn upon a number of sources, including a set of notes compiled by the late Dr. I. C. Browne from a series of lectures given by Mr. J . A. Ratcliffe of t
The short time Fourier transform and local signals
Okumura, Shuhei
In this thesis, I examine the theoretical properties of the short time discrete Fourier transform (STFT). The STFT is obtained by applying the Fourier transform by a fixed-sized, moving window to input series. We move the window by one time point at a time, so we have overlapping windows. I present several theoretical properties of the STFT, applied to various types of complex-valued, univariate time series inputs, and their outputs in closed forms. In particular, just like the discrete Fourier transform, the STFT's modulus time series takes large positive values when the input is a periodic signal. One main point is that a white noise time series input results in the STFT output being a complex-valued stationary time series and we can derive the time and time-frequency dependency structure such as the cross-covariance functions. Our primary focus is the detection of local periodic signals. I present a method to detect local signals by computing the probability that the squared modulus STFT time series has consecutive large values exceeding some threshold after one exceeding observation following one observation less than the threshold. We discuss a method to reduce the computation of such probabilities by the Box-Cox transformation and the delta method, and show that it works well in comparison to the Monte Carlo simulation method.
Clifford Fourier transform on vector fields.
Ebling, Julia; Scheuermann, Gerik
2005-01-01
Image processing and computer vision have robust methods for feature extraction and the computation of derivatives of scalar fields. Furthermore, interpolation and the effects of applying a filter can be analyzed in detail and can be advantages when applying these methods to vector fields to obtain a solid theoretical basis for feature extraction. We recently introduced the Clifford convolution, which is an extension of the classical convolution on scalar fields and provides a unified notation for the convolution of scalar and vector fields. It has attractive geometric properties that allow pattern matching on vector fields. In image processing, the convolution and the Fourier transform operators are closely related by the convolution theorem and, in this paper, we extend the Fourier transform to include general elements of Clifford Algebra, called multivectors, including scalars and vectors. The resulting convolution and derivative theorems are extensions of those for convolution and the Fourier transform on scalar fields. The Clifford Fourier transform allows a frequency analysis of vector fields and the behavior of vector-valued filters. In frequency space, vectors are transformed into general multivectors of the Clifford Algebra. Many basic vector-valued patterns, such as source, sink, saddle points, and potential vortices, can be described by a few multivectors in frequency space.
On the finite Fourier transforms of functions with infinite discontinuities
Directory of Open Access Journals (Sweden)
Branko Saric
2002-01-01
Full Text Available The introductory part of the paper is provided to give a brief review of the stability theory of a matrix pencil for discrete linear time-invariant singular control systems, based on the causal relationship between Jordan's theorem from the theory of Fourier series and Laurent's theorem from the calculus of residues. The main part is concerned with the theory of the integral transforms, which has proved to be a powerful tool in the control systems theory. On the basis of a newly defined notion of the total value of improper integrals, throughout the main part of the paper, an attempt has been made to present the global theory of the integral transforms, which are slightly more general with respect to the Laplace and Fourier transforms. The paper ends with examples by which the results of the theory are verified.
TMS320C25 Digital Signal Processor For 2-Dimensional Fast Fourier Transform Computation
International Nuclear Information System (INIS)
Ardisasmita, M. Syamsa
1996-01-01
The Fourier transform is one of the most important mathematical tool in signal processing and analysis, which converts information from the time/spatial domain into the frequency domain. Even with implementation of the Fast Fourier Transform algorithms in imaging data, the discrete Fourier transform execution consume a lot of time. Digital signal processors are designed specifically to perform computation intensive digital signal processing algorithms. By taking advantage of the advanced architecture. parallel processing, and dedicated digital signal processing (DSP) instruction sets. This device can execute million of DSP operations per second. The device architecture, characteristics and feature suitable for fast Fourier transform application and speed-up are discussed
Fourier transform based scalable image quality measure.
Narwaria, Manish; Lin, Weisi; McLoughlin, Ian; Emmanuel, Sabu; Chia, Liang-Tien
2012-08-01
We present a new image quality assessment (IQA) algorithm based on the phase and magnitude of the 2D (twodimensional) Discrete Fourier Transform (DFT). The basic idea is to compare the phase and magnitude of the reference and distorted images to compute the quality score. However, it is well known that the Human Visual Systems (HVSs) sensitivity to different frequency components is not the same. We accommodate this fact via a simple yet effective strategy of nonuniform binning of the frequency components. This process also leads to reduced space representation of the image thereby enabling the reduced-reference (RR) prospects of the proposed scheme. We employ linear regression to integrate the effects of the changes in phase and magnitude. In this way, the required weights are determined via proper training and hence more convincing and effective. Lastly, using the fact that phase usually conveys more information than magnitude, we use only the phase for RR quality assessment. This provides the crucial advantage of further reduction in the required amount of reference image information. The proposed method is therefore further scalable for RR scenarios. We report extensive experimental results using a total of 9 publicly available databases: 7 image (with a total of 3832 distorted images with diverse distortions) and 2 video databases (totally 228 distorted videos). These show that the proposed method is overall better than several of the existing fullreference (FR) algorithms and two RR algorithms. Additionally, there is a graceful degradation in prediction performance as the amount of reference image information is reduced thereby confirming its scalability prospects. To enable comparisons and future study, a Matlab implementation of the proposed algorithm is available at http://www.ntu.edu.sg/home/wslin/reduced_phase.rar.
Complex nonlinear Fourier transform and its inverse
International Nuclear Information System (INIS)
Saksida, Pavle
2015-01-01
We study the nonlinear Fourier transform associated to the integrable systems of AKNS-ZS type. Two versions of this transform appear in connection with the AKNS-ZS systems. These two versions can be considered as two real forms of a single complex transform F c . We construct an explicit algorithm for the calculation of the inverse transform (F c ) -1 (h) for an arbitrary argument h. The result is given in the form of a convergent series of functions in the domain space and the terms of this series can be computed explicitly by means of finitely many integrations. (paper)
Spectrums Transform Operators in Bases of Fourier and Walsh Functions
Directory of Open Access Journals (Sweden)
V. V. Syuzev
2017-01-01
Full Text Available The problems of synthesis of the efficient algorithms for digital processing of discrete signals require transforming the signal spectra from one basis system into other. The rational solution to this problem is to construct the Fourier kernel, which is a spectrum of some basis functions, according to the system of functions of the other basis. However, Fourier kernel properties are not equally studied and described for all basis systems of practical importance. The article sets a task and presents an original way to solve the problem of mutual transformation of trigonometric Fourier spectrum into Walsh spectrum of different basis systems.The relevance of this theoretical and applied problem is stipulated, on the one hand, by the prevalence of trigonometric Fourier basis for harmonic representation of digital signals, and, on the other hand, by the fact that Walsh basis systems allow us to have efficient algorithms to simulate signals. The problem solution is achieved through building the Fourier kernel of a special structure that allows us to establish independent groups of Fourier and Walsh spectrum coefficients for further reducing the computational complexity of the transform algorithms.The article analyzes the properties of the system of trigonometric Fourier functions and shows its completeness. Considers the Walsh function basis systems in three versions, namely those of Hadamard, Paley, and Hartmut giving different ordering and analytical descriptions of the functions that make up the basis. Proves a completeness of these systems.Sequentially, for each of the three Walsh systems the analytical curves for the Fourier kernel components are obtained, and Fourier kernel themselves are built with binary rational number of samples of basis functions. The kernels are presented in matrix form and, as an example, recorded for a particular value of the discrete interval of N, equal to 8. The analysis spectral coefficients of the Fourier kernel
Pi, Fourier Transform and Ludolph van Ceulen
Vajta, Miklos
2000-01-01
The paper describes an interesting (and unexpected) application of the Fast Fourier transform in number theory. Calculating more and more decimals of p (first by hand and then from the mid-20th century, by digital computers) not only fascinated mathematicians from ancient times but kept them busy as
Fourier transform infrared spectrometery: an undergraduate experiment
International Nuclear Information System (INIS)
Lerner, L
2016-01-01
Simple apparatus is developed, providing undergraduate students with a solid understanding of Fourier transform (FT) infrared (IR) spectroscopy in a hands on experiment. Apart from its application to measuring the mid-IR spectra of organic molecules, the experiment introduces several techniques with wide applicability in physics, including interferometry, the FT, digital data analysis, and control theory. (paper)
The Fourier transform of tubular densities
Prior, C B; Goriely, A
2012-01-01
molecules. We consider tubes of both finite radii and unrestricted radius. When there is overlap of the tube structure the net density is calculated using the super-position principle. The Fourier transform of this density is composed of two expressions, one
Fourier transforms on a semisimple symmetric space
Ban, E.P. van den; Schlichtkrull, H.
1994-01-01
Let G=H be a semisimple symmetric space, that is, G is a connected semisimple real Lie group with an involution ?, and H is an open subgroup of the group of xed points for ? in G. The main purpose of this paper is to study an explicit Fourier transform on G=H. In terms of general representation
Fourier transforms on a semisimple symmetric space
Ban, E.P. van den; Carmona, J.; Delorme, P.
1997-01-01
Let G=H be a semisimple symmetric space, that is, G is a connected semisimple real Lie group with an involution ?, and H is an open subgroup of the group of xed points for ? in G. The main purpose of this paper is to study an explicit Fourier transform on G=H. In terms of general representation
Precise and fast spatial-frequency analysis using the iterative local Fourier transform.
Lee, Sukmock; Choi, Heejoo; Kim, Dae Wook
2016-09-19
The use of the discrete Fourier transform has decreased since the introduction of the fast Fourier transform (fFT), which is a numerically efficient computing process. This paper presents the iterative local Fourier transform (ilFT), a set of new processing algorithms that iteratively apply the discrete Fourier transform within a local and optimal frequency domain. The new technique achieves 210 times higher frequency resolution than the fFT within a comparable computation time. The method's superb computing efficiency, high resolution, spectrum zoom-in capability, and overall performance are evaluated and compared to other advanced high-resolution Fourier transform techniques, such as the fFT combined with several fitting methods. The effectiveness of the ilFT is demonstrated through the data analysis of a set of Talbot self-images (1280 × 1024 pixels) obtained with an experimental setup using grating in a diverging beam produced by a coherent point source.
Universal discrete Fourier optics RF photonic integrated circuit architecture.
Hall, Trevor J; Hasan, Mehedi
2016-04-04
This paper describes a coherent electro-optic circuit architecture that generates a frequency comb consisting of N spatially separated orders using a generalised Mach-Zenhder interferometer (MZI) with its N × 1 combiner replaced by an optical N × N Discrete Fourier Transform (DFT). Advantage may be taken of the tight optical path-length control, component and circuit symmetries and emerging trimming algorithms offered by photonic integration in any platform that offers linear electro-optic phase modulation such as LiNbO3, silicon, III-V or hybrid technology. The circuit architecture subsumes all MZI-based RF photonic circuit architectures in the prior art given an appropriate choice of output port(s) and dimension N although the principal application envisaged is phase correlated subcarrier generation for all optical orthogonal frequency division multiplexing. A transfer matrix approach is used to model the operation of the architecture. The predictions of the model are validated by simulations performed using an industry standard software tool. Implementation is found to be practical.
The PROSAIC Laplace and Fourier Transform
International Nuclear Information System (INIS)
Smith, G.A.
1994-01-01
Integral Transform methods play an extremely important role in many branches of science and engineering. The ease with which many problems may be solved using these techniques is well known. In Electrical Engineering especially, Laplace and Fourier Transforms have been used for a long time as a way to change the solution of differential equations into trivial algebraic manipulations or to provide alternate representations of signals and data. These techniques, while seemingly overshadowed by today's emphasis on digital analysis, still form an invaluable basis in the understanding of systems and circuits. A firm grasp of the practical aspects of these subjects provides valuable conceptual tools. This tutorial paper is a review of Laplace and Fourier Transforms from an applied perspective with an emphasis on engineering applications. The interrelationship of the time and frequency domains will be stressed, in an attempt to comfort those who, after living so much of their lives in the time domain, find thinking in the frequency domain disquieting
Generalized Fourier transforms Fk,a
DEFF Research Database (Denmark)
Salem, Ben Said; Kobayashi, Toshiyuki; Ørsted, Bent
2009-01-01
We construct a two-parameter family of actions ωk,a of the Lie algebra by differential-difference operators on . Here, k is a multiplicity-function for the Dunkl operators, and a>0 arises from the interpolation of the Weil representation and the minimal unitary representation of the conformal gro...... of our semigroup Ωk,a provides us with (k,a) -generalized Fourier transforms , which includes the Dunkl transform ( a=2 ) and a new unitary operator ( a=1 ) as a Dunkl-type generalization of the classical Hankel transform....
Electro-optic imaging Fourier transform spectrometer
Chao, Tien-Hsin (Inventor); Znod, Hanying (Inventor)
2009-01-01
An Electro-Optic Imaging Fourier Transform Spectrometer (EOIFTS) for Hyperspectral Imaging is described. The EOIFTS includes an input polarizer, an output polarizer, and a plurality of birefringent phase elements. The relative orientations of the polarizers and birefringent phase elements can be changed mechanically or via a controller, using ferroelectric liquid crystals, to substantially measure the spectral Fourier components of light propagating through the EIOFTS. When achromatic switches are used as an integral part of the birefringent phase elements, the EIOFTS becomes suitable for broadband applications, with over 1 micron infrared bandwidth.
Plazas-Nossa, Leonardo; Torres, Andrés
2014-01-01
The objective of this work is to introduce a forecasting method for UV-Vis spectrometry time series that combines principal component analysis (PCA) and discrete Fourier transform (DFT), and to compare the results obtained with those obtained by using DFT. Three time series for three different study sites were used: (i) Salitre wastewater treatment plant (WWTP) in Bogotá; (ii) Gibraltar pumping station in Bogotá; and (iii) San Fernando WWTP in Itagüí (in the south part of Medellín). Each of these time series had an equal number of samples (1051). In general terms, the results obtained are hardly generalizable, as they seem to be highly dependent on specific water system dynamics; however, some trends can be outlined: (i) for UV range, DFT and PCA/DFT forecasting accuracy were almost the same; (ii) for visible range, the PCA/DFT forecasting procedure proposed gives systematically lower forecasting errors and variability than those obtained with the DFT procedure; and (iii) for short forecasting times the PCA/DFT procedure proposed is more suitable than the DFT procedure, according to processing times obtained.
Matrix-Vector Based Fast Fourier Transformations on SDR Architectures
Directory of Open Access Journals (Sweden)
Y. He
2008-05-01
Full Text Available Today Discrete Fourier Transforms (DFTs are applied in various radio standards based on OFDM (Orthogonal Frequency Division Multiplex. It is important to gain a fast computational speed for the DFT, which is usually achieved by using specialized Fast Fourier Transform (FFT engines. However, in face of the Software Defined Radio (SDR development, more general (parallel processor architectures are often desirable, which are not tailored to FFT computations. Therefore, alternative approaches are required to reduce the complexity of the DFT. Starting from a matrix-vector based description of the FFT idea, we will present different factorizations of the DFT matrix, which allow a reduction of the complexity that lies between the original DFT and the minimum FFT complexity. The computational complexities of these factorizations and their suitability for implementation on different processor architectures are investigated.
Realization of quantum Fourier transform over ZN
International Nuclear Information System (INIS)
Fu Xiang-Qun; Bao Wan-Su; Li Fa-Da; Zhang Yu-Chao
2014-01-01
Since the difficulty in preparing the equal superposition state of amplitude is 1/√N, we construct a quantile transform of quantum Fourier transform (QFT) over Z N based on the elementary transforms, such as Hadamard transform and Pauli transform. The QFT over Z N can then be realized by the quantile transform, and used to further design its quantum circuit and analyze the requirements for the quantum register and quantum gates. However, the transform needs considerable quantum computational resources and it is difficult to construct a high-dimensional quantum register. Hence, we investigate the design of t-bit quantile transform, and introduce the definition of t-bit semiclassical QFT over Z N . According to probability amplitude, we prove that the transform can be used to realize QFT over Z N and further design its quantum circuit. For this transform, the requirements for the quantum register, the one-qubit gate, and two-qubit gate reduce obviously when compared with those for the QFT over Z N . (general)
Multichannel Dynamic Fourier-Transform IR Spectrometer
Balashov, A. A.; Vaguine, V. A.; Golyak, Il. S.; Morozov, A. N.; Khorokhorin, A. I.
2017-09-01
A design of a multichannel continuous scan Fourier-transform IR spectrometer for simultaneous recording and analysis of the spectral characteristics of several objects is proposed. For implementing the design, a multi-probe fiber is used, constructed from several optical fibers connected into a single optical connector and attached at the output of the interferometer. The Fourier-transform spectrometer is used as a signal modulator. Each fiber is individually mated with an investigated sample and a dedicated radiation detector. For the developed system, the radiation intensity of the spectrometer is calculated from the condition of the minimum spectral resolution and parameters of the optical fibers. Using the proposed design, emission spectra of a gas-discharge neon lamp have been recorded using a single fiber 1 mm in diameter with a numerical aperture NA = 0.22.
Quantum Fourier Transform Over Galois Rings
Zhang, Yong
2009-01-01
Galois rings are regarded as "building blocks" of a finite commutative ring with identity. There have been many papers on classical error correction codes over Galois rings published. As an important warm-up before exploring quantum algorithms and quantum error correction codes over Galois rings, we study the quantum Fourier transform (QFT) over Galois rings and prove it can be efficiently preformed on a quantum computer. The properties of the QFT over Galois rings lead to the quantum algorit...
Fourier Transform Spectrometer Controller for Partitioned Architectures
DEFF Research Database (Denmark)
Tamas-Selicean, Domitian; Keymeulen, D.; Berisford, D.
2013-01-01
The current trend in spacecraft computing is to integrate applications of different criticality levels on the same platform using no separation. This approach increases the complexity of the development, verification and integration processes, with an impact on the whole system life cycle. Resear......, such as avionics and automotive. In this paper we investigate the challenges of developing and the benefits of integrating a scientific instrument, namely a Fourier Transform Spectrometer, in such a partitioned architecture....
Fourier transform resampling: Theory and application
International Nuclear Information System (INIS)
Hawkins, W.G.
1996-01-01
One of the most challenging problems in medical imaging is the development of reconstruction algorithms for nonstandard geometries. This work focuses on the application of Fourier analysis to the problem of resampling or rebinning. Conventional resampling methods utilizing some form of interpolation almost always result in a loss of resolution in the tomographic image. Fourier Transform Resampling (FTRS) offers potential improvement because the Modulation Transfer Function (MTF) of the process behaves like an ideal low pass filter. The MTF, however, is nonstationary if the coordinate transformation is nonlinear. FTRS may be viewed as a generalization of the linear coordinate transformations of standard Fourier analysis. Simulated MTF's were obtained by projecting point sources at different transverse positions in the flat fan beam detector geometry. These MTF's were compared to the closed form expression for FIRS. Excellent agreement was obtained for frequencies at or below the estimated cutoff frequency. The resulting FTRS algorithm is applied to simulations with symmetric fan beam geometry, an elliptical orbit and uniform attenuation, with a normalized root mean square error (NRME) of 0.036. Also, a Tc-99m point source study (1 cm dia., placed in air 10 cm from the COR) for a circular fan beam acquisition was reconstructed with a hybrid resampling method. The FWHM of the hybrid resampling method was 11.28 mm and compares favorably with a direct reconstruction (FWHM: 11.03 mm)
(Anti)symmetric multivariate exponential functions and corresponding Fourier transforms
International Nuclear Information System (INIS)
Klimyk, A U; Patera, J
2007-01-01
We define and study symmetrized and antisymmetrized multivariate exponential functions. They are defined as determinants and antideterminants of matrices whose entries are exponential functions of one variable. These functions are eigenfunctions of the Laplace operator on the corresponding fundamental domains satisfying certain boundary conditions. To symmetric and antisymmetric multivariate exponential functions there correspond Fourier transforms. There are three types of such Fourier transforms: expansions into the corresponding Fourier series, integral Fourier transforms and multivariate finite Fourier transforms. Eigenfunctions of the integral Fourier transforms are found
Fourier transform of momentum distribution in vanadium
International Nuclear Information System (INIS)
Singh, A.K.; Manuel, A.A.; Peter, M.; Singru, R.M.
1985-01-01
Experimental Compton profile and 2D-angular correlation of positron annihilation radiation data from vanadium are analyzed by the mean of their Fourier transform. They are compared with the functions calculated with the help of both the linear muffin-tin orbital and the Hubbard-Mijnarends band structure methods. The results show that the functions are influenced by the positron wave function, by the e + -e - many-body correlations and by the differences in the electron wave functions used for the band structure calculations. It is concluded that Fourier analysis is a sensitive approach to investigate the momentum distributions in transition metals and to understnad the effects of the positron. (Auth.)
The prosaic Laplace and Fourier transform
International Nuclear Information System (INIS)
Smith, G.A.
1995-01-01
Integral Transform methods play an extremely important role in many branches of science and engineering. The ease with which many problems may be solved using these techniques is well known. In Electrical Engineering especially, Laplace and Fourier Transforms have been used for a long time as a way to change the solution of differential equations into trivial algebraic manipulations or to provide alternate representations of signals and data. These techniques, while seemingly overshadowed by today's emphasis on digital analysis, still form an invaluable basis in the understanding of systems and circuits. A firm grasp of the practical aspects of these subjects provides valuable conceptual tools. This tutorial paper is a review of Laplace and Fourier Transforms from an applied perspective with an emphasis on engineering applications. The interrelationship of the time and frequency domains will be stressed, in an attempt to comfort those who, after living so much of their lives in the time domain, find thinking in the frequency domain disquieting. copyright 1995 American Institute of Physics
Alternating multivariate trigonometric functions and corresponding Fourier transforms
International Nuclear Information System (INIS)
Klimyk, A U; Patera, J
2008-01-01
We define and study multivariate sine and cosine functions, symmetric with respect to the alternating group A n , which is a subgroup of the permutation (symmetric) group S n . These functions are eigenfunctions of the Laplace operator. They determine Fourier-type transforms. There exist three types of such transforms: expansions into corresponding sine-Fourier and cosine-Fourier series, integral sine-Fourier and cosine-Fourier transforms, and multivariate finite sine and cosine transforms. In all these transforms, alternating multivariate sine and cosine functions are used as a kernel
Fourier transforms in the complex domain
Wiener, N
1934-01-01
With the aid of Fourier-Mellin transforms as a tool in analysis, the authors were able to attack such diverse analytic questions as those of quasi-analytic functions, Mercer's theorem on summability, Milne's integral equation of radiative equilibrium, the theorems of MÃ¼nz and SzÃ¡sz concerning the closure of sets of powers of an argument, Titchmarsh's theory of entire functions of semi-exponential type with real negative zeros, trigonometric interpolation and developments in polynomials of the form \\sum^N_1A_ne^{i\\lambda_nx}, lacunary series, generalized harmonic analysis in the complex domain,
Noise figure of amplified dispersive Fourier transformation
International Nuclear Information System (INIS)
Goda, Keisuke; Jalali, Bahram
2010-01-01
Amplified dispersive Fourier transformation (ADFT) is a powerful tool for fast real-time spectroscopy as it overcomes the limitations of traditional optical spectrometers. ADFT maps the spectrum of an optical pulse into a temporal waveform using group-velocity dispersion and simultaneously amplifies it in the optical domain. It greatly simplifies spectroscopy by replacing the diffraction grating and detector array in the conventional spectrometer with a dispersive fiber and single-pixel photodetector, enabling ultrafast real-time spectroscopic measurements. Following our earlier work on the theory of ADFT, here we study the effect of noise on ADFT. We derive the noise figure of ADFT and discuss its dependence on various parameters.
Fourier transform infrared spectroscopy of peptides.
Bakshi, Kunal; Liyanage, Mangala R; Volkin, David B; Middaugh, C Russell
2014-01-01
Fourier transform infrared (FTIR) spectroscopy provides data that are widely used for secondary structure characterization of peptides. A wide array of available sampling methods permits structural analysis of peptides in diverse environments such as aqueous solution (including optically turbid media), powders, detergent micelles, and lipid bilayers. In some cases, side chain vibrations can also be resolved and used for tertiary structure and chemical analysis. Data from several low-resolution spectroscopic techniques, including FTIR, can be combined to generate an empirical phase diagram, an overall picture of peptide structure as a function of environmental conditions that can aid in the global interpretation of large amounts of spectroscopic data.
Functional Fourier transforms and the loop equation
International Nuclear Information System (INIS)
Bershadskii, M.A.; Vaisburd, I.D.; Migdal, A.A.
1986-01-01
The Migdal-Makeenko momentum-space loop equation is investigated. This equation is derived from the ordinary loop equation by taking the Fourier transform of the Wilson functional. A perturbation theory is constructed for the new equation and it is proved that the action of the loop operator is determined by vertex functions which coincide with those of the previous equation. It is shown how the ghost loop arises in direct iterations of the momentum-space equation with respect to the coupling constant. A simple example is used to illustrate the mechanism of appearance of an integration in the interior loops in transition to observables
Fourier transform spectroscopy of six stars
Energy Technology Data Exchange (ETDEWEB)
Mendoza V, E E [Universidad Nacional Autonoma de Mexico, Mexico City. Inst. de Astronomia
1981-01-01
This paper outlines results from a digital analysis of the Fourier transform spectroscopy of six stars: ..sigma.. Aur, rho Ori, ..cap alpha.. Lyr, zeta Aql and ..cap alpha.. Cyg. Nearly 1200 different spectral lines have been identified in the spectra of these six stars in the wavelength interval 4800-10200 A where the spectra are of very high quality, less than the one per cent level of noise versus signal. ..cap alpha.. Lyr and ..cap alpha.. Cyg show spectral line and profile variations easily seen in their spectra.
Fourier-transforming with quantum annealers
Directory of Open Access Journals (Sweden)
Itay eHen
2014-07-01
Full Text Available We introduce a set of quantum adiabatic evolutions that we argue may be used as `building blocks', or subroutines, in the onstruction of an adiabatic algorithm that executes Quantum Fourier Transform (QFT with the same complexity and resources as its gate-model counterpart. One implication of the above construction is the theoretical feasibility of implementing Shor's algorithm for integer factorization in an optimal manner, and any other algorithm that makes use of QFT, on quantum annealing devices. We discuss the possible advantages, as well as the limitations, of the proposed approach as well as its relation to traditional adiabatic quantum computation.
Ma, Q.; Tipping, R. H.; Lavrentieva, N. N.
2012-01-01
By adopting a concept from signal processing, instead of starting from the correlation functions which are even, one considers the causal correlation functions whose Fourier transforms become complex. Their real and imaginary parts multiplied by 2 are the Fourier transforms of the original correlations and the subsequent Hilbert transforms, respectively. Thus, by taking this step one can complete the two previously needed transforms. However, to obviate performing the Cauchy principal integrations required in the Hilbert transforms is the greatest advantage. Meanwhile, because the causal correlations are well-bounded within the time domain and band limited in the frequency domain, one can replace their Fourier transforms by the discrete Fourier transforms and the latter can be carried out with the FFT algorithm. This replacement is justified by sampling theory because the Fourier transforms can be derived from the discrete Fourier transforms with the Nyquis rate without any distortions. We apply this method in calculating pressure induced shifts of H2O lines and obtain more reliable values. By comparing the calculated shifts with those in HITRAN 2008 and by screening both of them with the pair identity and the smooth variation rules, one can conclude many of shift values in HITRAN are not correct.
Two-dimensional fourier transform spectrometer
DeFlores, Lauren; Tokmakoff, Andrei
2013-09-03
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
The Fourier transform of tubular densities
Prior, C B
2012-05-18
We consider the Fourier transform of tubular volume densities, with arbitrary axial geometry and (possibly) twisted internal structure. This density can be used to represent, among others, magnetic flux or the electron density of biopolymer molecules. We consider tubes of both finite radii and unrestricted radius. When there is overlap of the tube structure the net density is calculated using the super-position principle. The Fourier transform of this density is composed of two expressions, one for which the radius of the tube is less than the curvature of the axis and one for which the radius is greater (which must have density overlap). This expression can accommodate an asymmetric density distribution and a tube structure which has non-uniform twisting. In addition we give several simpler expressions for isotropic densities, densities of finite radius, densities which decay at a rate sufficient to minimize local overlap and finally individual surfaces of the tube manifold. These simplified cases can often be expressed as arclength integrals and can be evaluated using a system of first-order ODEs. © 2012 IOP Publishing Ltd.
Fourier transform ion cyclotron resonance mass spectrometry
Marshall, Alan G.
1998-06-01
As for Fourier transform infrared (FT-IR) interferometry and nuclear magnetic resonance (NMR) spectroscopy, the introduction of pulsed Fourier transform techniques revolutionized ion cyclotron resonance mass spectrometry: increased speed (factor of 10,000), increased sensitivity (factor of 100), increased mass resolution (factor of 10,000-an improvement not shared by the introduction of FT techniques to IR or NMR spectroscopy), increased mass range (factor of 500), and automated operation. FT-ICR mass spectrometry is the most versatile technique for unscrambling and quantifying ion-molecule reaction kinetics and equilibria in the absence of solvent (i.e., the gas phase). In addition, FT-ICR MS has the following analytically important features: speed (~1 second per spectrum); ultrahigh mass resolution and ultrahigh mass accuracy for analysis of mixtures and polymers; attomole sensitivity; MSn with one spectrometer, including two-dimensional FT/FT-ICR/MS; positive and/or negative ions; multiple ion sources (especially MALDI and electrospray); biomolecular molecular weight and sequencing; LC/MS; and single-molecule detection up to 108 Dalton. Here, some basic features and recent developments of FT-ICR mass spectrometry are reviewed, with applications ranging from crude oil to molecular biology.
The Fourier transform of tubular densities
International Nuclear Information System (INIS)
Prior, C B; Goriely, A
2012-01-01
We consider the Fourier transform of tubular volume densities, with arbitrary axial geometry and (possibly) twisted internal structure. This density can be used to represent, among others, magnetic flux or the electron density of biopolymer molecules. We consider tubes of both finite radii and unrestricted radius. When there is overlap of the tube structure the net density is calculated using the super-position principle. The Fourier transform of this density is composed of two expressions, one for which the radius of the tube is less than the curvature of the axis and one for which the radius is greater (which must have density overlap). This expression can accommodate an asymmetric density distribution and a tube structure which has non-uniform twisting. In addition we give several simpler expressions for isotropic densities, densities of finite radius, densities which decay at a rate sufficient to minimize local overlap and finally individual surfaces of the tube manifold. These simplified cases can often be expressed as arclength integrals and can be evaluated using a system of first-order ODEs. (paper)
Fourier transform zero field NMR and NQR
International Nuclear Information System (INIS)
Zax, D.B.
1985-01-01
In many systems the chemical shifts measured by traditional high resolution solid state NMR methods are insufficiently sensitive, or the information contained in the dipole-dipole couplings is more important. In these cases, Fourier transform zero field magnetic resonance may make an important contribution. Zero field NMR and NQR is the subject of this thesis. Chapter I presents the quantum mechanical background and notational formalism for what follows. Chapter II gives a brief review of high resolution magnetic resonance methods, with particular emphasis on techniques applicable to dipole-dipole and quadrupolar couplings. Level crossings between spin-1/2 and quadrupolar spins during demagnetization transfer polarization from high to low λ nuclei. This is the basis of very high sensitivity zero field NQR measurements by field cycling. Chapter III provides a formal presentation of the high resolution Fourier transform zero field NMR method. Theoretical signal functions are calculated for common spin systems, and examples of typical spectra are presented. Chapters IV and V review the experimental progress in zero field NMR of dipole-dipole coupled spin-1/2 nuclei and for quadrupolar spin systems. Variations of the simple experiment describe in earlier chapters that use pulsed dc fields are presented in Chapter VI
Fourier transform spectra of quantum dots
Damian, V.; Ardelean, I.; Armăşelu, Anca; Apostol, D.
2010-05-01
Semiconductor quantum dots are nanometer-sized crystals with unique photochemical and photophysical properties that are not available from either isolated molecules or bulk solids. These nanocrystals absorb light over a very broad spectral range as compared to molecular fluorophores which have very narrow excitation spectra. High-quality QDs are proper to be use in different biological and medical applications (as fluorescent labels, the cancer treatment and the drug delivery). In this article, we discuss Fourier transform visible spectroscopy of commercial quantum dots. We reveal that QDs produced by Evident Technologies when are enlightened by laser or luminescent diode light provides a spectral shift of their fluorescence spectra correlated to exciting emission wavelengths, as shown by the ARCspectroNIR Fourier Transform Spectrometer. In the final part of this paper we show an important biological application of CdSe/ZnS core-shell ODs as microbial labeling both for pure cultures of cyanobacteria (Synechocystis PCC 6803) and for mixed cultures of phototrophic and heterotrophic microorganisms.
Directory of Open Access Journals (Sweden)
Ludwig Kohaupt
2015-12-01
Full Text Available The discrete Fourier series is a valuable tool developed and used by mathematicians and engineers alike. One of the most prominent applications is signal processing. Usually, it is important that the signals be transmitted fast, for example, when transmitting images over large distances such as between the moon and the earth or when generating images in computer tomography. In order to achieve this, appropriate algorithms are necessary. In this context, the fast Fourier transform (FFT plays a key role which is an algorithm for calculating the discrete Fourier transform (DFT; this, in turn, is tightly connected with the discrete Fourier series. The last one itself is the discrete analog of the common (continuous-time Fourier series and is usually learned by mathematics students from a theoretical point of view. The aim of this expository/pedagogical paper is to give an introduction to the discrete Fourier series for both mathematics and engineering students. It is intended to expand the purely mathematical view; the engineering aspect is taken into account by applying the FFT to an example from signal processing that is small enough to be used in class-room teaching and elementary enough to be understood also by mathematics students. The MATLAB program is employed to do the computations.
Fourier Transforms Simplified: Computing an Infrared Spectrum from an Interferogram
Hanley, Quentin S.
2012-01-01
Fourier transforms are used widely in chemistry and allied sciences. Examples include infrared, nuclear magnetic resonance, and mass spectroscopies. A thorough understanding of Fourier methods assists the understanding of microscopy, X-ray diffraction, and diffraction gratings. The theory of Fourier transforms has been presented in this "Journal",…
The gridding method for image reconstruction by Fourier transformation
International Nuclear Information System (INIS)
Schomberg, H.; Timmer, J.
1995-01-01
This paper explores a computational method for reconstructing an n-dimensional signal f from a sampled version of its Fourier transform f. The method involves a window function w and proceeds in three steps. First, the convolution g = w * f is computed numerically on a Cartesian grid, using the available samples of f. Then, g = wf is computed via the inverse discrete Fourier transform, and finally f is obtained as g/w. Due to the smoothing effect of the convolution, evaluating w * f is much less error prone than merely interpolating f. The method was originally devised for image reconstruction in radio astronomy, but is actually applicable to a broad range of reconstructive imaging methods, including magnetic resonance imaging and computed tomography. In particular, it provides a fast and accurate alternative to the filtered backprojection. The basic method has several variants with other applications, such as the equidistant resampling of arbitrarily sampled signals or the fast computation of the Radon (Hough) transform
Fourier transform inequalities for phylogenetic trees.
Matsen, Frederick A
2009-01-01
Phylogenetic invariants are not the only constraints on site-pattern frequency vectors for phylogenetic trees. A mutation matrix, by its definition, is the exponential of a matrix with non-negative off-diagonal entries; this positivity requirement implies non-trivial constraints on the site-pattern frequency vectors. We call these additional constraints "edge-parameter inequalities". In this paper, we first motivate the edge-parameter inequalities by considering a pathological site-pattern frequency vector corresponding to a quartet tree with a negative internal edge. This site-pattern frequency vector nevertheless satisfies all of the constraints described up to now in the literature. We next describe two complete sets of edge-parameter inequalities for the group-based models; these constraints are square-free monomial inequalities in the Fourier transformed coordinates. These inequalities, along with the phylogenetic invariants, form a complete description of the set of site-pattern frequency vectors corresponding to bona fide trees. Said in mathematical language, this paper explicitly presents two finite lists of inequalities in Fourier coordinates of the form "monomial < or = 1", each list characterizing the phylogenetically relevant semialgebraic subsets of the phylogenetic varieties.
Multicomplementary operators via finite Fourier transform
International Nuclear Information System (INIS)
Klimov, Andrei B; Sanchez-Soto, Luis L; Guise, Hubert de
2005-01-01
A complete set of d + 1 mutually unbiased bases exists in a Hilbert space of dimension d, whenever d is a power of a prime. We discuss a simple construction of d + 1 disjoint classes (each one having d - 1 commuting operators) such that the corresponding eigenstates form sets of unbiased bases. Such a construction works properly for prime dimension. We investigate an alternative construction in which the real numbers that label the classes are replaced by a finite field having d elements. One of these classes is diagonal, and can be mapped to cyclic operators by means of the finite Fourier transform, which allows one to understand complementarity in a similar way as for the position-momentum pair in standard quantum mechanics. The relevant examples of two and three qubits and two qutrits are discussed in detail
Fractional Fourier transform for confluent hypergeometric beams
International Nuclear Information System (INIS)
Tang, Bin; Jiang, Chun; Zhu, Haibin
2012-01-01
Based on the definition of the fractional Fourier transform (FRFT) in the cylindrical coordinate system, the propagation properties of a new family of paraxial laser beams named confluent hypergeometric (HyG) beams, of which intensity profile is similar to that for the Bessel modes, passing through FRFT optical systems have been studied in detail by some typical numerical examples. The results indicate that the normalized intensity distribution of a HyG beam in the FRFT plane is closely related to not only the fractional order p but also the beam parameters m,n, and focal length f. -- Highlights: ► We study the propagation of a HyG beam through FRFT optical systems. ► The intensity of the beam in the FRFT plane is closely related to some parameters. ► We can control the properties of HyG beams by properly choosing the parameters.
International Nuclear Information System (INIS)
Ji, X.; Chen, Y.M.
1989-01-01
The boundary element method (BEM) is developed from the boundary integral equation method and the discretization techniques. Compared with other numerical method, BEM has been shown to be a versatile and efficient method for a wide variety of engineering problems, including the wave propagation in elastic media. The first formulation and solution of the transient elastodynamic problem by combining BEM and Laplace transform is due to Cruse. Further improvement was achieved by introducing Durbin's method instead of Papoulis method of numerical Laplace inverse transform. However, a great deal of computer time is still needed for the inverse transformation. The alternative integral transform approach is BEM combining with Fourier transform. The numerical Fourier inverse transformation is also computer time consuming, even if the fast Fourier transform is used. In the present paper, the authors use BEM combining with Fourier transform and Fourier eigen transform (FET). The new approach is very attractive in saving on computer time. This paper illustrates the application of FET to BEM of 2-dimensional transient elastodynamic problem. The example of a half plane subjected to a discontinuous boundary load is solved on ELXSI 6400 computer. The CPU time is less than one minute. If Laplace or Fourier transform is adopted, the CPU time will be more than 10 minutes
Fourier transform and its application to 1D and 2D NMR
International Nuclear Information System (INIS)
Canet, D.
1988-01-01
In this review article, the following points are developed: Pulsed NMR and Fourier transform; Fourier transform and two-dimensional spectroscopy; Mathematical properties of Fourier transform; Fourier transform of a sine function- one dimensional NMR; Fourier transform of a product of sine functions - two-dimensional NMR; Data manipulations in the time domain; Numerical Fourier transform [fr
Large quantum Fourier transforms are never exactly realized by braiding conformal blocks
International Nuclear Information System (INIS)
Freedman, Michael H.; Wang, Zhenghan
2007-01-01
Fourier transform is an essential ingredient in Shor's factoring algorithm. In the standard quantum circuit model with the gate set {U(2), controlled-NOT}, the discrete Fourier transforms F N =(ω ij ) NxN , i,j=0,1,...,N-1, ω=e 2πi at ∼sol∼ at N , can be realized exactly by quantum circuits of size O(n 2 ), n=ln N, and so can the discrete sine or cosine transforms. In topological quantum computing, the simplest universal topological quantum computer is based on the Fibonacci (2+1)-topological quantum field theory (TQFT), where the standard quantum circuits are replaced by unitary transformations realized by braiding conformal blocks. We report here that the large Fourier transforms F N and the discrete sine or cosine transforms can never be realized exactly by braiding conformal blocks for a fixed TQFT. It follows that an approximation is unavoidable in the implementation of Fourier transforms by braiding conformal blocks
Vector Radix 2 × 2 Sliding Fast Fourier Transform
Directory of Open Access Journals (Sweden)
Keun-Yung Byun
2016-01-01
Full Text Available The two-dimensional (2D discrete Fourier transform (DFT in the sliding window scenario has been successfully used for numerous applications requiring consecutive spectrum analysis of input signals. However, the results of conventional sliding DFT algorithms are potentially unstable because of the accumulated numerical errors caused by recursive strategy. In this letter, a stable 2D sliding fast Fourier transform (FFT algorithm based on the vector radix (VR 2 × 2 FFT is presented. In the VR-2 × 2 FFT algorithm, each 2D DFT bin is hierarchically decomposed into four sub-DFT bins until the size of the sub-DFT bins is reduced to 2 × 2; the output DFT bins are calculated using the linear combination of the sub-DFT bins. Because the sub-DFT bins for the overlapped input signals between the previous and current window are the same, the proposed algorithm reduces the computational complexity of the VR-2 × 2 FFT algorithm by reusing previously calculated sub-DFT bins in the sliding window scenario. Moreover, because the resultant DFT bins are identical to those of the VR-2 × 2 FFT algorithm, numerical errors do not arise; therefore, unconditional stability is guaranteed. Theoretical analysis shows that the proposed algorithm has the lowest computational requirements among the existing stable sliding DFT algorithms.
Using the fast fourier transform in binding free energy calculations.
Nguyen, Trung Hai; Zhou, Huan-Xiang; Minh, David D L
2018-04-30
According to implicit ligand theory, the standard binding free energy is an exponential average of the binding potential of mean force (BPMF), an exponential average of the interaction energy between the unbound ligand ensemble and a rigid receptor. Here, we use the fast Fourier transform (FFT) to efficiently evaluate BPMFs by calculating interaction energies when rigid ligand configurations from the unbound ensemble are discretely translated across rigid receptor conformations. Results for standard binding free energies between T4 lysozyme and 141 small organic molecules are in good agreement with previous alchemical calculations based on (1) a flexible complex ( R≈0.9 for 24 systems) and (2) flexible ligand with multiple rigid receptor configurations ( R≈0.8 for 141 systems). While the FFT is routinely used for molecular docking, to our knowledge this is the first time that the algorithm has been used for rigorous binding free energy calculations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Seismic Shear Energy Reflection By Radon-Fourier Transform
Directory of Open Access Journals (Sweden)
Malik Umairia
2016-01-01
Full Text Available Seismic waves split in an anisotropic medium, instead of rotating horizontal component to principal direction, Radon-Fourier is derived to observe the signature of shear wave reflection. Synthetic model with fracture is built and discretized using finite difference scheme for spatial and time domain. Common depth point (CDP with single shot gives traces and automatic gain is preprocessed before Radon Transform (RT, a filtering technique gives radon domain. It makes easier to observe fractures at specific incidence and improves its quality in some way by removing the noise. A comparison of synthetic data and BF-data is performed on the basis of root means square error (RMS values. The RMS error is minimum at the 10th trace in radon domain.
Fourier transforms in NMR, optical, and mass spectrometry
International Nuclear Information System (INIS)
Marshall, A.G.; Verdun, F.R.; Ohio State Univ., Columbus, OH
1990-01-01
This book is a teaching and reference text for Fourier transform methods as they are applied in spectroscopy. It offers a unified treatment of the three most popular types of FT/spectroscopy. Non-ideal effects are treated in detail: noise (source- and detector-limited); non-linear response; limits to spectrometer performance based on finite detection period, finite data size, mis-phasing, etc. Common puzzles and paradoxes are explained: e.g., use of mathematically complex variables to represent physically real quantities; interpretation of negative frequency signals; on-resonance versus off-resonance response; interpolation; ultimate accuracy of discrete representation of an analog signal; differences between linearly- and circularly-polarized radiation; multiplex advantage or disadvantage, etc. (author). refs.; figs.; tabs
Directory of Open Access Journals (Sweden)
Fedotov A.
2017-02-01
Full Text Available The article proposes a method of mathematical simulation of electrical machines with thyristor exciters on the basis of the local Fourier transform. The present research demonstrates that this method allows switching from a variable structure model to a constant structure model. Transition from the continuous variables to the discrete variables is used. The numerical example is given in the paper.
The Fourier Transform for Certain HyperKähler Fourfolds
Shen, M.; Vial, C.
2016-01-01
Using a codimension-1 algebraic cycle obtained from the Poincaré line bundle, Beauville defined the Fourier transform on the Chow groups of an abelian variety A and showed that the Fourier transform induces a decomposition of the Chow ring CH∗(A). By using a codimension-2 algebraic cycle
Fourier transform in multimode systems in the Bargmann representation
International Nuclear Information System (INIS)
Lei, C; Vourdas, A
2007-01-01
A Fourier transform in a multimode system is studied, using the Bargmann representation. The growth of a Bargmann function is shown to be related to the second-order correlation of the corresponding state. Both the total growth and the total second-order correlation remain unchanged under the Fourier transform. Examples with coherent states, squeezed states and Mittag-Leffler states are discussed
Fourier transform n.m.r. spectroscopy
International Nuclear Information System (INIS)
Shaw, D.
1976-01-01
This book is orientated to techniques rather than applications. The basic theory of n.m.r. is dealt with in a unified approach to the Fourier theory. The middle section of the book concentrates on the practical aspects of Fourier n.m.r., both instrumental and experimental. The final chapters briefly cover general application of n.m.r., but concentrate strongly on those areas where Fourier n.m.r. can give information which is not available by conventional techniques
Fourier transform n. m. r. spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Shaw, D [Varian Ltd., Walton (UK)
1976-01-01
This book is orientated to techniques rather than applications. The basic theory of n.m.r. is dealt with in a unified approach to the Fourier theory. The middle section of the book concentrates on the practical aspects of Fourier n.m.r., both instrumental and experimental. The final chapters briefly cover general application of n.m.r., but concentrate strongly on those areas where Fourier n.m.r. can give information which is not available by conventional techniques.
The relationship between shock response spectrum and fast Fourier transform
International Nuclear Information System (INIS)
Zola, Maurizio
2001-01-01
In this paper the basic relationship between response spectrum and fast Fourier transform is laid down. Since a long time the response spectrum has been used by structural engineers in the seismic domain and nowadays it is going to be used to define transient motions. This way to define the excitation is more general and more real than the use of classical shape pulses for the reproduction of real environment. Nevertheless the response spectrum of a real excitation represents a loss of some information with respect to the Fourier transform. A useful discussion could arise from these observations. Appendix A gives the relationship between the mathematic Fourier transform and the digital Fourier transform given by computers, while Appendix B gives some examples of response spectra and Fourier transforms of simple functions. (author)
On the windowed Fourier transform as an interpolation of the Gabor transform
Bastiaans, M.J.; Prochßzka, A.; Uhlør, J.; Sovka, P.
1997-01-01
The windowed Fourier transform and its sampled version - the Gabor transform - are introduced. With the help of Gabor's signal expansion, an interpolation function is derived with which the windowed Fourier transform can be constructed from the Gabor transform. Using the Zak transform, it is shown
Cryogenic Scan Mechanism for Fourier Transform Spectrometer
Brasunas, John C.; Francis, John L.
2011-01-01
A compact and lightweight mechanism has been developed to accurately move a Fourier transform spectrometer (FTS) scan mirror (a cube corner) in a near-linear fashion with near constant speed at cryogenic temperatures. This innovation includes a slide mechanism to restrict motion to one dimension, an actuator to drive the motion, and a linear velocity transducer (LVT) to measure the speed. The cube corner mirror is double-passed in one arm of the FTS; double-passing is required to compensate for optical beam shear resulting from tilting of the moving cube corner. The slide, actuator, and LVT are off-the-shelf components that are capable of cryogenic vacuum operation. The actuator drives the slide for the required travel of 2.5 cm. The LVT measures translation speed. A proportional feedback loop compares the LVT voltage with the set voltage (speed) to derive an error signal to drive the actuator and achieve near constant speed. When the end of the scan is reached, a personal computer reverses the set voltage. The actuator and LVT have no moving parts in contact, and have magnetic properties consistent with cryogenic operation. The unlubricated slide restricts motion to linear travel, using crossed roller bearings consistent with 100-million- stroke operation. The mechanism tilts several arc seconds during transport of the FTS mirror, which would compromise optical fringe efficiency when using a flat mirror. Consequently, a cube corner mirror is used, which converts a tilt into a shear. The sheared beam strikes (at normal incidence) a flat mirror at the end of the FTS arm with the moving mechanism, thereby returning upon itself and compensating for the shear
Fourier Transform Mass Spectrometry: The Transformation of Modern Environmental Analyses
Lim, Lucy; Yan, Fangzhi; Bach, Stephen; Pihakari, Katianna; Klein, David
2016-01-01
Unknown compounds in environmental samples are difficult to identify using standard mass spectrometric methods. Fourier transform mass spectrometry (FTMS) has revolutionized how environmental analyses are performed. With its unsurpassed mass accuracy, high resolution and sensitivity, researchers now have a tool for difficult and complex environmental analyses. Two features of FTMS are responsible for changing the face of how complex analyses are accomplished. First is the ability to quickly and with high mass accuracy determine the presence of unknown chemical residues in samples. For years, the field has been limited by mass spectrometric methods that were based on knowing what compounds of interest were. Secondly, by utilizing the high resolution capabilities coupled with the low detection limits of FTMS, analysts also could dilute the sample sufficiently to minimize the ionization changes from varied matrices. PMID:26784175
Fourier Transform Mass Spectrometry: The Transformation of Modern Environmental Analyses
Directory of Open Access Journals (Sweden)
Lucy Lim
2016-01-01
Full Text Available Unknown compounds in environmental samples are difficult to identify using standard mass spectrometric methods. Fourier transform mass spectrometry (FTMS has revolutionized how environmental analyses are performed. With its unsurpassed mass accuracy, high resolution and sensitivity, researchers now have a tool for difficult and complex environmental analyses. Two features of FTMS are responsible for changing the face of how complex analyses are accomplished. First is the ability to quickly and with high mass accuracy determine the presence of unknown chemical residues in samples. For years, the field has been limited by mass spectrometric methods that were based on knowing what compounds of interest were. Secondly, by utilizing the high resolution capabilities coupled with the low detection limits of FTMS, analysts also could dilute the sample sufficiently to minimize the ionization changes from varied matrices.
From Fourier Transforms to Singular Eigenfunctions for Multigroup Transport
International Nuclear Information System (INIS)
Ganapol, B.D.
2001-01-01
A new Fourier transform approach to the solution of the multigroup transport equation with anisotropic scattering and isotropic source is presented. Through routine analytical continuation, the inversion contour is shifted from the real line to produce contributions from the poles and cuts in the complex plane. The integrand along the branch cut is then recast in terms of matrix continuum singular eigenfunctions, demonstrating equivalence of Fourier transform inversion and the singular eigenfunction expansion. The significance of this paper is that it represents the initial step in revealing the intimate connection between the Fourier transform and singular eigenfunction approaches as well as serves as a basis for a numerical algorithm
The application and improvement of Fourier transform spectrometer experiment
Liu, Zhi-min; Gao, En-duo; Zhou, Feng-qi; Wang, Lan-lan; Feng, Xiao-hua; Qi, Jin-quan; Ji, Cheng; Wang, Luning
2017-08-01
According to teaching and experimental requirements of Optoelectronic information science and Engineering, in order to consolidate theoretical knowledge and improve the students practical ability, the Fourier transform spectrometer ( FTS) experiment, its design, application and improvement are discussed in this paper. The measurement principle and instrument structure of Fourier transform spectrometer are introduced, and the spectrums of several common Laser devices are measured. Based on the analysis of spectrum and test, several possible improvement methods are proposed. It also helps students to understand the application of Fourier transform in physics.
Image reconstruction from pairs of Fourier-transform magnitude
International Nuclear Information System (INIS)
Hunt, B.R.; Overman, T.L.; Gough, P.
1998-01-01
The retrieval of phase information from only the magnitude of the Fourier transform of a signal remains an important problem for many applications. We present an algorithm for phase retrieval when there exist two related sets of Fourier-transform magnitude data. The data are assumed to come from a single object observed in two different polarizations through a distorting medium, so the phase component of the Fourier transform of the object is corrupted. Phase retrieval is accomplished by minimization of a suitable criterion function, which can take three different forms. copyright 1998 Optical Society of America
Direct fourier method reconstruction based on unequally spaced fast fourier transform
International Nuclear Information System (INIS)
Wu Xiaofeng; Zhao Ming; Liu Li
2003-01-01
First, We give an Unequally Spaced Fast Fourier Transform (USFFT) method, which is more exact and theoretically more comprehensible than its former counterpart. Then, with an interesting interpolation scheme, we discusse how to apply USFFT to Direct Fourier Method (DFM) reconstruction of parallel projection data. At last, an emulation experiment result is given. (authors)
Solution of 3-dimensional diffusion equation by finite Fourier transformation
International Nuclear Information System (INIS)
Krishnani, P.D.
1978-01-01
Three dimensional diffusion equation in Cartesian co-ordinates is solved by using the finite Fourier transformation. This method is different from the usual Fourier transformation method in the sense that the solutions are obtained without performing the inverse Fourier transformation. The advantage has been taken of the fact that the flux is finite and integrable in the finite region. By applying this condition, a two-dimensional integral equation, involving flux and its normal derivative at the boundary, is obtained. By solving this equation with given boundary conditions, all of the boundary values are determined. In order to calculate the flux inside the region, flux is expanded into three-dimensional Fourier series. The Fourier coefficients of the flux in the region are calculated from the boundary values. The advantage of this method is that the integrated flux is obtained without knowing the fluxes inside the region as in the case of finite difference method. (author)
The morphing of geographical features by Fourier transformation.
Li, Jingzhong; Liu, Pengcheng; Yu, Wenhao; Cheng, Xiaoqiang
2018-01-01
This paper presents a morphing model of vector geographical data based on Fourier transformation. This model involves three main steps. They are conversion from vector data to Fourier series, generation of intermediate function by combination of the two Fourier series concerning a large scale and a small scale, and reverse conversion from combination function to vector data. By mirror processing, the model can also be used for morphing of linear features. Experimental results show that this method is sensitive to scale variations and it can be used for vector map features' continuous scale transformation. The efficiency of this model is linearly related to the point number of shape boundary and the interceptive value n of Fourier expansion. The effect of morphing by Fourier transformation is plausible and the efficiency of the algorithm is acceptable.
Revisiting the quantum harmonic oscillator via unilateral Fourier transforms
International Nuclear Information System (INIS)
Nogueira, Pedro H F; Castro, Antonio S de
2016-01-01
The literature on the exponential Fourier approach to the one-dimensional quantum harmonic oscillator problem is revised and criticized. It is shown that the solution of this problem has been built on faulty premises. The problem is revisited via the Fourier sine and cosine transform method and the stationary states are properly determined by requiring definite parity and square-integrable eigenfunctions. (paper)
q-Generalization of the inverse Fourier transform
International Nuclear Information System (INIS)
Jauregui, M.; Tsallis, C.
2011-01-01
A wide class of physical distributions appears to follow the q-Gaussian form, which plays the role of attractor according to a q-generalized Central Limit Theorem, where a q-generalized Fourier transform plays an important role. We introduce here a method which determines a distribution from the knowledge of its q-Fourier transform and some supplementary information. This procedure involves a recently q-generalized representation of the Dirac delta and the class of functions on which it acts. The present method conveniently extends the inverse of the standard Fourier transform, and is therefore expected to be very useful in the study of many complex systems. - Highlights: → We present a method to invert the q-Fourier transform of a distribution. → We illustrate when Dirac delta can be represented using q-exponentials. → We describe a family of functions for which this new representation works.
A fourier transform quality measure for iris images
CSIR Research Space (South Africa)
Makinana, S
2014-08-01
Full Text Available to ensure that good quality images are selected for feature extraction, in order to improve iris recognition system. In addition, this research proposes a measure of iris image quality using a Fourier Transform. The experimental results demonstrate...
Surface Fourier-transform lens using a metasurface
International Nuclear Information System (INIS)
Li, Yun Bo; Cai, Ben Geng; Cheng, Qiang; Cui, Tie Jun
2015-01-01
We propose a surface (or 2D) Fourier-transform lens using a gradient refractive index (GRIN) metasurface in the microwave band, which is composed of sub-wavelength quasi-periodical metallic patches on a grounded dielectric substrate. Such a metasurface supports the transverse magnetic (TM) modes of surface waves. To gradually change the size of textures, we obtain different surface refractive indices, which can be tailored to fit the required refractive-index profile of a surface Fourier-transform lens. According to the theory of spatial Fourier transformation, we make use of the proposed lens to realize surface plane-wave scanning under different feeding locations. The simulation and experimental results jointly confirm the validity of the surface Fourier-transform lens. The proposed method can also be extended to the terahertz frequency. (paper)
Simple optical setup implementation for digital Fourier transform holography
Energy Technology Data Exchange (ETDEWEB)
De Oliveira, G N [Pos-graduacao em Engenharia Mecanica, TEM/PGMEC, Universidade Federal Fluminense, Rua Passo da Patria, 156, Niteroi, R.J., Cep.: 24.210-240 (Brazil); Rodrigues, D M C; Dos Santos, P A M, E-mail: pams@if.uff.br [Instituto de Fisica, Laboratorio de Optica Nao-linear e Aplicada, Universidade Federal Fluminense, Av. Gal. Nilton Tavares de Souza, s/n, Gragoata, Niteroi, R.J., Cep.:24.210-346 (Brazil)
2011-01-01
In the present work a simple implementation of Digital Fourier Transform Holography (DFTH) setup is discussed. This is obtained making a very simple modification in the classical setup arquiteture of the Fourier Transform holography. It is also demonstrated the easy and practical viability of the setup in an interferometric application for mechanical parameters determination. The work is also proposed as an interesting advanced introductory training for graduated students in digital holography.
Automatic Fourier transform and self-Fourier beams due to parabolic potential
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yiqi, E-mail: zhangyiqi@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Liu, Xing [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Belić, Milivoj R., E-mail: milivoj.belic@qatar.tamu.edu [Science Program, Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar); Zhong, Weiping [Department of Electronic and Information Engineering, Shunde Polytechnic, Shunde 528300 (China); Petrović, Milan S. [Institute of Physics, P.O. Box 68, 11001 Belgrade (Serbia); Zhang, Yanpeng, E-mail: ypzhang@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China)
2015-12-15
We investigate the propagation of light beams including Hermite–Gauss, Bessel–Gauss and finite energy Airy beams in a linear medium with parabolic potential. Expectedly, the beams undergo oscillation during propagation, but quite unexpectedly they also perform automatic Fourier transform, that is, periodic change from the beam to its Fourier transform and back. In addition to oscillation, the finite-energy Airy beams exhibit periodic inversion during propagation. The oscillating period of parity-asymmetric beams is twice that of the parity-symmetric beams. Based on the propagation in parabolic potential, we introduce a class of optically-interesting beams that are self-Fourier beams—that is, the beams whose Fourier transforms are the beams themselves.
Digital Watermarks Using Discrete Wavelet Transformation and Spectrum Spreading
Directory of Open Access Journals (Sweden)
Ryousuke Takai
2003-12-01
Full Text Available In recent tears, digital media makes rapid progress through the development of digital technology. Digital media normally assures fairly high quality, nevertheless can be easily reproduced in a perfect form. This perfect reproducibility takes and advantage from a certain point of view, while it produces an essential disadvantage, since digital media is frequently copied illegally. Thus the problem of the copyright protection becomes a very important issue. A solution of this problem is to embed digital watermarks that is not perceived clearly by usual people, but represents the proper right of original product. In our method, the images data in the frequency domain are transformed by the Discrete Wavelet Transform and analyzed by the multi resolution approximation, [1]. Further, the spectrum spreading is executed by using PN-sequences. Choi and Aizawa [7] embed watermarks by using block correlation of DCT coefficients. Thus, we apply Discrete Cosine Transformation, abbreviated to DCT, instead of the Fourier transformation in order to embed watermarks.If the value of this variance is high then we decide that the block has bigger magnitude for visual fluctuations. Henceforth, we may embed stronger watermarks, which gives resistance for images processing, such as attacks and/or compressions.
Fourier series models through transformation | Omekara | Global ...
African Journals Online (AJOL)
As a result, the square transformation which outperforms the others is adopted. Consequently, each of the multiplicative and additive FSA models fitted to the transformed data are then subjected to a test for white noise based on spectral analysis. The result of this test shows that only the multiplicative model is adequate.
Mezgebo, Biniyam; Nagib, Karim; Fernando, Namal; Kordi, Behzad; Sherif, Sherif
2018-02-01
Swept Source optical coherence tomography (SS-OCT) is an important imaging modality for both medical and industrial diagnostic applications. A cross-sectional SS-OCT image is obtained by applying an inverse discrete Fourier transform (DFT) to axial interferograms measured in the frequency domain (k-space). This inverse DFT is typically implemented as a fast Fourier transform (FFT) that requires the data samples to be equidistant in k-space. As the frequency of light produced by a typical wavelength-swept laser is nonlinear in time, the recorded interferogram samples will not be uniformly spaced in k-space. Many image reconstruction methods have been proposed to overcome this problem. Most such methods rely on oversampling the measured interferogram then use either hardware, e.g., Mach-Zhender interferometer as a frequency clock module, or software, e.g., interpolation in k-space, to obtain equally spaced samples that are suitable for the FFT. To overcome the problem of nonuniform sampling in k-space without any need for interferogram oversampling, an earlier method demonstrated the use of the nonuniform discrete Fourier transform (NDFT) for image reconstruction in SS-OCT. In this paper, we present a more accurate method for SS-OCT image reconstruction from nonuniform samples in k-space using a scaled nonuniform Fourier transform. The result is demonstrated using SS-OCT images of Axolotl salamander eggs.
Sparse-matrix factorizations for fast symmetric Fourier transforms
International Nuclear Information System (INIS)
Sequel, J.
1987-01-01
This work proposes new fast algorithms computing the discrete Fourier transform of certain families of symmetric sequences. Sequences commonly found in problems of structure determination by x-ray crystallography and in numerical solutions of boundary-value problems in partial differential equations are dealt with. In the algorithms presented, the redundancies in the input and output data, due to the presence of symmetries in the input data sequence, were eliminated. Using ring-theoretical methods a matrix representation is obtained for the remaining calculations; which factors as the product of a complex block-diagonal matrix times as integral matrix. A basic two-step algorithm scheme arises from this factorization with a first step consisting of pre-additions and a second step containing the calculations involved in computing with the blocks in the block-diagonal factor. These blocks are structured as block-Hankel matrices, and two sparse-matrix factoring formulas are developed in order to diminish their arithmetic complexity
The Fastest Fourier Transform in the West
National Research Council Canada - National Science Library
Frigo, Matteo; Johnson, Steven G
1997-01-01
.... Three main ideas are the keys to FFTW's performance. First, the computation of the transform is performed by an executor consisting of highly-optimized, composable blocks of C code called codelets...
Healy, John J.
2018-01-01
The linear canonical transforms (LCTs) are a parameterised group of linear integral transforms. The LCTs encompass a number of well-known transformations as special cases, including the Fourier transform, fractional Fourier transform, and the Fresnel integral. They relate the scalar wave fields at the input and output of systems composed of thin lenses and free space, along with other quadratic phase systems. In this paper, we perform a systematic search of all algorithms based on up to five stages of magnification, chirp multiplication and Fourier transforms. Based on that search, we propose a novel algorithm, for which we present numerical results. We compare the sampling requirements of three algorithms. Finally, we discuss some issues surrounding the composition of discrete LCTs.
Study on sampling of continuous linear system based on generalized Fourier transform
Li, Huiguang
2003-09-01
In the research of signal and system, the signal's spectrum and the system's frequency characteristic can be discussed through Fourier Transform (FT) and Laplace Transform (LT). However, some singular signals such as impulse function and signum signal don't satisfy Riemann integration and Lebesgue integration. They are called generalized functions in Maths. This paper will introduce a new definition -- Generalized Fourier Transform (GFT) and will discuss generalized function, Fourier Transform and Laplace Transform under a unified frame. When the continuous linear system is sampled, this paper will propose a new method to judge whether the spectrum will overlap after generalized Fourier transform (GFT). Causal and non-causal systems are studied, and sampling method to maintain system's dynamic performance is presented. The results can be used on ordinary sampling and non-Nyquist sampling. The results also have practical meaning on research of "discretization of continuous linear system" and "non-Nyquist sampling of signal and system." Particularly, condition for ensuring controllability and observability of MIMO continuous systems in references 13 and 14 is just an applicable example of this paper.
Electro-Optical Imaging Fourier-Transform Spectrometer
Chao, Tien-Hsin; Zhou, Hanying
2006-01-01
An electro-optical (E-O) imaging Fourier-transform spectrometer (IFTS), now under development, is a prototype of improved imaging spectrometers to be used for hyperspectral imaging, especially in the infrared spectral region. Unlike both imaging and non-imaging traditional Fourier-transform spectrometers, the E-O IFTS does not contain any moving parts. Elimination of the moving parts and the associated actuator mechanisms and supporting structures would increase reliability while enabling reductions in size and mass, relative to traditional Fourier-transform spectrometers that offer equivalent capabilities. Elimination of moving parts would also eliminate the vibrations caused by the motions of those parts. Figure 1 schematically depicts a traditional Fourier-transform spectrometer, wherein a critical time delay is varied by translating one the mirrors of a Michelson interferometer. The time-dependent optical output is a periodic representation of the input spectrum. Data characterizing the input spectrum are generated through fast-Fourier-transform (FFT) post-processing of the output in conjunction with the varying time delay.
3-D spherical harmonics code FFT3 by the finite Fourier transformation method
International Nuclear Information System (INIS)
Kobayashi, K.
1997-01-01
In the odd order spherical harmonics method, the rigorous boundary condition at the material interfaces is that the even moments of the angular flux and the normal components of the even order moments of current vectors must be continuous. However, it is difficult to derive spatial discretized equations by the finite difference or finite element methods, which satisfy this material interface condition. It is shown that using the finite Fourier transformation method, space discretized equations which satisfy this interface condition can be easily derived. The discrepancies of the flux distribution near void region between spherical harmonics method codes may be due to the difference of application of the material interface condition. (author)
Efficient Computer Implementations of Fast Fourier Transforms.
1980-12-01
fit in computer? Yes, continue (9) Determine fastest algorithm between WFTA and PFA from Table 4.6. For N=420, WFTA PFA Mult 1296 2528 Add 11352 10956...real adds = 24tN/4 + 2(3tN/4) = 15tN/2 (G.8) 260 All odd prime C<ictors ciual to or (,rater than 5 iso the general transform section. Based on the
Surface Design Based on Discrete Conformal Transformations
Duque, Carlos; Santangelo, Christian; Vouga, Etienne
Conformal transformations are angle-preserving maps from one domain to another. Although angles are preserved, the lengths between arbitrary points are not generally conserved. As a consequence there is always a given amount of distortion associated to any conformal map. Different uses of such transformations can be found in various fields, but have been used by us to program non-uniformly swellable gel sheets to buckle into prescribed three dimensional shapes. In this work we apply circle packings as a kind of discrete conformal map in order to find conformal maps from the sphere to the plane that can be used as nearly uniform swelling patterns to program non-Euclidean sheets to buckle into spheres. We explore the possibility of tuning the area distortion to fit the experimental range of minimum and maximum swelling by modifying the boundary of the planar domain through the introduction of different cutting schemes.
Energy Technology Data Exchange (ETDEWEB)
Rodriguez G, A.; Bowtell, R.; Mansfield, P. [Area de Procesamiento Digital de Senales e Imagenes Biomedicas. Universidad Autonoma Metropolitana Iztapalapa. Mexico D.F. 09340 Mexico (Mexico)
1998-12-31
Velocity maps were studied combining Doyle and Mansfield method (1986) with each of the following transforms: Fourier, window Fourier and wavelet (Mexican hat). Continuous wavelet transform was compared against the two Fourier transform to determine which technique is best suited to study blood maps generated by Half Fourier Echo-Planar Imaging. Coefficient images were calculated and plots of the pixel intensity variation are presented. Finally, contour maps are shown to visualize the behavior of the blood flow in the cardiac chambers for the wavelet technique. (Author)
International Nuclear Information System (INIS)
Rodriguez G, A.; Bowtell, R.; Mansfield, P.
1998-01-01
Velocity maps were studied combining Doyle and Mansfield method (1986) with each of the following transforms: Fourier, window Fourier and wavelet (Mexican hat). Continuous wavelet transform was compared against the two Fourier transform to determine which technique is best suited to study blood maps generated by Half Fourier Echo-Planar Imaging. Coefficient images were calculated and plots of the pixel intensity variation are presented. Finally, contour maps are shown to visualize the behavior of the blood flow in the cardiac chambers for the wavelet technique. (Author)
A Baecklund transformation between two integrable discrete hungry systems
Energy Technology Data Exchange (ETDEWEB)
Fukuda, Akiko, E-mail: j1409704@ed.kagu.tus.ac.j [Department of Mathematical Information Science, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Yamamoto, Yusaku [Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan); Iwasaki, Masashi [Department of Informatics and Environmental Science, Kyoto Prefectural University, 1-5, Nakaragi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522 (Japan); Ishiwata, Emiko [Department of Mathematical Information Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Nakamura, Yoshimasa [Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)
2011-01-17
The discrete hungry Toda (dhToda) equation and the discrete hungry Lotka-Volterra (dhLV) system are known as integrable discrete hungry systems. In this Letter, through finding the LR transformations associated with the dhToda equation and the dhLV system, we present a Baecklund transformation between these integrable systems.
A Baecklund transformation between two integrable discrete hungry systems
International Nuclear Information System (INIS)
Fukuda, Akiko; Yamamoto, Yusaku; Iwasaki, Masashi; Ishiwata, Emiko; Nakamura, Yoshimasa
2011-01-01
The discrete hungry Toda (dhToda) equation and the discrete hungry Lotka-Volterra (dhLV) system are known as integrable discrete hungry systems. In this Letter, through finding the LR transformations associated with the dhToda equation and the dhLV system, we present a Baecklund transformation between these integrable systems.
International Nuclear Information System (INIS)
Fan Hongyi; Hao Ren; Lu Hailiang
2008-01-01
Based on our previous paper (Commun. Theor. Phys. 39 (2003) 417) we derive the convolution theorem of fractional Fourier transformation in the context of quantum mechanics, which seems a convenient and neat way. Generalization of this method to the complex fractional Fourier transformation case is also possible
Vaibhav, V.K.
2017-01-01
This paper considers the non-Hermitian Zakharov-Shabat (ZS) scattering problem which forms the basis for defining the SU(2) nonlinear Fourier transformation (NFT). The theoretical underpinnings of this generalization of the conventional Fourier transformation are quite well established in the
The Scope Of Fourier Transform Infrared (FTIR)
Hirschfeld, T.
1981-10-01
Three auarters of a century after its inception, a generation after its advantages were recognized, and a decade after its first commercialization, FT-IR dominates the growth of the IR market, and reigns alone over its high performance end. What lies ahead for FT-IR now? On one hand, the boundary between it and the classical scanning spectrometers is becoming fuzzy, as gratings attempt to use as much of FT-IR's computer technology as they can handle, and smaller FT systems invade the medium cost instrument range. On the other hand, technology advances in IR detectors, non-Fourier interference devices, and the often announced tunable laser are at long last getting set to make serious inroads in the field (although not necessarily in the manner most of us expected). However, the dominance of FT-IR as the leading edge of IR spectroscopy seems assured for a good many years. The evolution of FT-IR will be dominated by demands not yet fully satisfied such as rapid sample turnover, better quantitation, automated interpretation, higher GC-IR sensitivity, improved LC-IR, and, above all else, reliability and ease of use. These developments will be based on multiple small advances in hardware, large advances in the way systems are put together, and the traditional yearly revolutionary advances of the computer industry. The big question in the field will, however, still be whether our ambition and our skill can continue to keep up with the advances of our tools. It will be fun.
Fourier transform infrared spectra applications to chemical systems
Ferraro, John R
1985-01-01
The final and largest volume to complete this four-volume treatise is published in response to the intense commercial and research interest in Fourier Transform Interferometry.Presenting current information from leading experts in the field, Volume 4 introduces new information on, for example, applications of Diffuse Reflectance Spectroscopy in the Far-Infrared Region. The editors place emphasis on surface studies and address advances in Capillary Gas Chromatography - Fourier Transform Interferometry.Volume 4 especially benefits spectroscopists and physicists, as well as researchers
Fourier transform infrared spectra applications to chemical systems
Ferraro, John R
1978-01-01
Fourier Transform Infrared Spectroscopy: Applications to Chemical Systems presents the chemical applications of the Fourier transform interferometry (FT-IR).The book contains discussions on the applications of FT-IR in the fields of chromatography FT-IR, polymers and biological macromolecules, emission spectroscopy, matrix isolation, high-pressure interferometry, and far infrared interferometry. The final chapter is devoted to the presentation of the use of FT-IR in solving national technical problems such as air pollution, space exploration, and energy related subjects.Researc
Decay of the Fourier transform analytic and geometric aspects
Iosevich, Alex
2014-01-01
The Plancherel formula says that the L2 norm of the function is equal to the L2 norm of its Fourier transform. This implies that at least on average, the Fourier transform of an L2 function decays at infinity. This book is dedicated to the study of the rate of this decay under various assumptions and circumstances, far beyond the original L2 setting. Analytic and geometric properties of the underlying functions interact in a seamless symbiosis which underlines the wide range influences and applications of the concepts under consideration.
Discrete Haar transform and protein structure.
Morosetti, S
1997-12-01
The discrete Haar transform of the sequence of the backbone dihedral angles (phi and psi) was performed over a set of X-ray protein structures of high resolution from the Brookhaven Protein Data Bank. Afterwards, the new dihedral angles were calculated by the inverse transform, using a growing number of Haar functions, from the lower to the higher degree. New structures were obtained using these dihedral angles, with standard values for bond lengths and angles, and with omega = 0 degree. The reconstructed structures were compared with the experimental ones, and analyzed by visual inspection and statistical analysis. When half of the Haar coefficients were used, all the reconstructed structures were not yet collapsed to a tertiary folding, but they showed yet realized most of the secondary motifs. These results indicate a substantial separation of structural information in the space of Haar transform, with the secondary structural information mainly present in the Haar coefficients of lower degrees, and the tertiary one present in the higher degree coefficients. Because of this separation, the representation of the folded structures in the space of Haar transform seems a promising candidate to encompass the problem of premature convergence in genetic algorithms.
Fourier transform spectroscopy of semiconductor materials
International Nuclear Information System (INIS)
Jonak-Auer, I.
1996-11-01
In order to determine the type of charge carriers, i.e. electrons or holes, participating in optical transitions, cyclotron resonance experiments using circularly polarized radiation were performed on strained-layer [111]-oriented InGaAs/(Al)GaAs multiple quantum wells and on a [100]-oriented InAs/GaSb double-heterostructure. Because of the rather complicated band-structures of these samples it is a priori unknown which carriers take part in transitions. The measurements yield the surprising result, that for the InGaAs/GaAs multiple quantum well the experimentally observed cyclotron resonance appears in the electron-active polarization in the frequency-regime of the Far Infrared (FIR), but in the hole-active polarization in the range of millimeter waves, whereas for the InGaAs/AlGaAs sample the resonance is caused by holes also in the FIR. Since by theoretical considerations the possibility of electrons causing the FIR cyclotron resonance could be excluded, the measurements are interpreted as being caused by holes due to broken selection rules. In the InAs/GaSb sample hole cyclotron resonance could for the first time be measured on a double-heterostructure. As for the application oriented measurements, they comprised a study of the hydrogen content of amorphous silicon nitride layers, and were performed in collaboration with Austria Mikro Systeme International AG. Fourier spectroscopy is a fast and non-destructive means for determining impurity concentrations. Radiation in the Mid Infrared regime stimulates N-H and Si-H stretching vibrations which lead to absorption peaks and can directly be attributed to the hydrogen concentration via calibration factors taken from the literature. In comparison with recommended procedures in the literature, a much higher accuracy in determining the areas of the absorption peaks could be gained in the course of this thesis by a proper polynomial fit of the background spectrum outside the absorption lines. The hydrogen content of
Fourier transform wavefront control with adaptive prediction of the atmosphere.
Poyneer, Lisa A; Macintosh, Bruce A; Véran, Jean-Pierre
2007-09-01
Predictive Fourier control is a temporal power spectral density-based adaptive method for adaptive optics that predicts the atmosphere under the assumption of frozen flow. The predictive controller is based on Kalman filtering and a Fourier decomposition of atmospheric turbulence using the Fourier transform reconstructor. It provides a stable way to compensate for arbitrary numbers of atmospheric layers. For each Fourier mode, efficient and accurate algorithms estimate the necessary atmospheric parameters from closed-loop telemetry and determine the predictive filter, adjusting as conditions change. This prediction improves atmospheric rejection, leading to significant improvements in system performance. For a 48x48 actuator system operating at 2 kHz, five-layer prediction for all modes is achievable in under 2x10(9) floating-point operations/s.
Transformation of a Free-Wilson matrix into Fourier coefficients
Czech Academy of Sciences Publication Activity Database
Holík, M.; Halámek, Josef
2002-01-01
Roč. 20, - (2002), s. 422 - 428 ISSN 0931-8771 Institutional research plan: CEZ:AV0Z2065902 Keywords : Free-Wilson matrix * Fourier transform * multivariate regression Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.558, year: 2002
Dual beam encoded extended fractional Fourier transform security ...
Indian Academy of Sciences (India)
This paper describes a simple method for making dual beam encoded extended fractional Fourier transform (EFRT) security holograms. The hologram possesses different stages of encoding so that security features are concealed and remain invisible to the counterfeiter. These concealed and encoded anticounterfeit ...
Application of Migration Velocity Using Fourier Transform Approach ...
African Journals Online (AJOL)
Application of velocity by Fourier transform to process 3-D unmigrated seismic sections has been carried out in Fabi Field, Niger Delta – Nigeria. Usually, all seismic events (sections) are characterized by spikes or noise (random or coherent), multiples and shear waves so that when a seismic bed is dipping, the apparent ...
Fourier transformation methods in the field of gamma spectrometry
Indian Academy of Sciences (India)
The basic principles of a new version of Fourier transformation is presented. This new version was applied to solve some main problems such as smoothing, and denoising in gamma spectroscopy. The mathematical procedures were first tested by simulated data and then by actual experimental data.
Fourier transform infrared spectrophotometry and X-ray powder ...
African Journals Online (AJOL)
This study aimed at demonstrating complementary roles offered by both Fourier transform infrared (FTIR) spectrophotometry and x-ray powder diffraction (XRPD) techniques in characterizing clay size fraction of kaolins. The clay size fraction of kaolin samples obtained from Kgwakgwe, Makoro, Lobatse and Serule kaolin ...
Fourier transform distribution function of relaxation times; application and limitations
Boukamp, Bernard A.
2015-01-01
A simple Fourier transform (FT) method is presented for obtaining a Distribution Function of Relaxation Times (DFRT) for electrochemical impedance spectroscopy (EIS) data. By using a special data extension procedure the FT is performed over the range from -∞ ≤ lnω ≤ + ∞. The integration procedure is
SPICA/SAFARI fourier transform spectrometer mechanism evolutionary design
Dool, T.C. van den; Kruizinga, B.; Braam, B.C.; Hamelinck, R.F.M.M.; Loix, N.; Loon, D. van; Dams, J.
2012-01-01
TNO, together with its partners, have designed a cryogenic scanning mechanism for use in the SAFARI Fourier Transform Spectrometer (FTS) on board of the SPICA mission. SPICA is one of the M-class missions competing to be launched in ESA's Cosmic Vision Programme in 2022. JAXA leads the development
Quaternion Fourier transforms for signal and image processing
Ell, Todd A; Sangwine, Stephen J
2014-01-01
Based on updates to signal and image processing technology made in the last two decades, this text examines the most recent research results pertaining to Quaternion Fourier Transforms. QFT is a central component of processing color images and complex valued signals. The book's attention to mathematical concepts, imaging applications, and Matlab compatibility render it an irreplaceable resource for students, scientists, researchers, and engineers.
The RC Circuit: An Approach with Fourier Transforms
Indian Academy of Sciences (India)
The RC Circuit: An Approach with Fourier Transforms. Classroom Volume 21 Issue 11 November 2016 pp 1029-1042 ... But a lot of things, (including the complex impedanceitself, and some insight into complex analysis) can be understoodbetter if we use the FT approach to solve the differentialequations that come up in ...
Fourier transform infrared (FTIR) spectroscopy for identification of ...
African Journals Online (AJOL)
Fourier transform infrared (FTIR) spectroscopy was used in this study to identify and determine spectral features of Chlorella vulgaris Beijerinck 1890 and Scenedesmus obliquus (Turpin) Kützing 1833. Two cultures were grown in a chemically-defined media under photoautotrophic culture conditions isolated from eutrophic ...
HEART ABNORMALITY CLASSIFICATIONS USING FOURIER TRANSFORMS METHOD AND NEURAL NETWORKS
Directory of Open Access Journals (Sweden)
Endah Purwanti
2014-05-01
Full Text Available Health problems with cardiovascular system disorder are still ranked high globally. One way to detect abnormalities in the cardiovascular system especially in the heart is through the electrocardiogram (ECG reading. However, reading ECG recording needs experience and expertise, software-based neural networks has designed to help identify any abnormalities ofthe heart through electrocardiogram digital image. This image is processed using image processing methods to obtain ordinate chart which representing the heart’s electrical potential. Feature extraction using Fourier transforms which are divided into several numbers of coefficients. As the software input, Fourier transforms coefficient have been normalized. Output of this software is divided into three classes, namely heart with atrial fibrillation, coronary heart disease and normal. Maximum accuracy rate ofthis software is 95.45%, with the distribution of the Fourier transform coefficients 1/8 and number of nodes 5, while minimum accuracy rate of this software at least 68.18% by distribution of the Fourier transform coefficients 1/32 and the number of nodes 32. Overall result accuracy rate of this software has an average of86.05% and standard deviation of7.82.
Nonlinear Fourier transform for dual-polarization optical communication system
DEFF Research Database (Denmark)
Gaiarin, Simone
communication is considered an emerging paradigm in fiber-optic communications that could potentially overcome these limitations. It relies on a mathematical technique called “inverse scattering transform” or “nonlinear Fourier transform (NFT)” to exploit the “hidden” linearity of the nonlinear Schrödinger...
Nonuniform fast Fourier transform method for numerical diffraction simulation on tilted planes.
Xiao, Yu; Tang, Xiahui; Qin, Yingxiong; Peng, Hao; Wang, Wei; Zhong, Lijing
2016-10-01
The method, based on the rotation of the angular spectrum in the frequency domain, is generally used for the diffraction simulation between the tilted planes. Due to the rotation of the angular spectrum, the interval between the sampling points in the Fourier domain is not even. For the conventional fast Fourier transform (FFT)-based methods, a spectrum interpolation is needed to get the approximate sampling value on the equidistant sampling points. However, due to the numerical error caused by the spectrum interpolation, the calculation accuracy degrades very quickly as the rotation angle increases. Here, the diffraction propagation between the tilted planes is transformed into a problem about the discrete Fourier transform on the uneven sampling points, which can be evaluated effectively and precisely through the nonuniform fast Fourier transform method (NUFFT). The most important advantage of this method is that the conventional spectrum interpolation is avoided and the high calculation accuracy can be guaranteed for different rotation angles, even when the rotation angle is close to π/2. Also, its calculation efficiency is comparable with that of the conventional FFT-based methods. Numerical examples as well as a discussion about the calculation accuracy and the sampling method are presented.
Discrete canonical transforms that are Hadamard matrices
International Nuclear Information System (INIS)
Healy, John J; Wolf, Kurt Bernardo
2011-01-01
The group Sp(2,R) of symplectic linear canonical transformations has an integral kernel which has quadratic and linear phases, and which is realized by the geometric paraxial optical model. The discrete counterpart of this model is a finite Hamiltonian system that acts on N-point signals through N x N matrices whose elements also have a constant absolute value, although they do not form a representation of that group. Those matrices that are also unitary are Hadamard matrices. We investigate the manifolds of these N x N matrices under the Sp(2,R) equivalence imposed by the model, and find them to be on two-sided cosets. By means of an algorithm we determine representatives that lead to collections of mutually unbiased bases.
Grimm, C. A.
This document contains two units that examine integral transforms and series expansions. In the first module, the user is expected to learn how to use the unified method presented to obtain Laplace transforms, Fourier transforms, complex Fourier series, real Fourier series, and half-range sine series for given piecewise continuous functions. In…
Holland, Alexander; Aboy, Mateo
2009-07-01
We present a novel method to iteratively calculate discrete Fourier transforms for discrete time signals with sample time intervals that may be widely nonuniform. The proposed recursive Fourier transform (RFT) does not require interpolation of the samples to uniform time intervals, and each iterative transform update of N frequencies has computational order N. Because of the inherent non-uniformity in the time between successive heart beats, an application particularly well suited for this transform is power spectral density (PSD) estimation for heart rate variability. We compare RFT based spectrum estimation with Lomb-Scargle Transform (LST) based estimation. PSD estimation based on the LST also does not require uniform time samples, but the LST has a computational order greater than Nlog(N). We conducted an assessment study involving the analysis of quasi-stationary signals with various levels of randomly missing heart beats. Our results indicate that the RFT leads to comparable estimation performance to the LST with significantly less computational overhead and complexity for applications requiring iterative spectrum estimations.
An introduction to Laplace transforms and Fourier series
Dyke, Phil
2014-01-01
Laplace transforms continue to be a very important tool for the engineer, physicist and applied mathematician. They are also now useful to financial, economic and biological modellers as these disciplines become more quantitative. Any problem that has underlying linearity and with solution based on initial values can be expressed as an appropriate differential equation and hence be solved using Laplace transforms. In this book, there is a strong emphasis on application with the necessary mathematical grounding. There are plenty of worked examples with all solutions provided. This enlarged new edition includes generalised Fourier series and a completely new chapter on wavelets. Only knowledge of elementary trigonometry and calculus are required as prerequisites. An Introduction to Laplace Transforms and Fourier Series will be useful for second and third year undergraduate students in engineering, physics or mathematics, as well as for graduates in any discipline such as financial mathematics, econometrics and ...
Limitations on continuous variable quantum algorithms with Fourier transforms
International Nuclear Information System (INIS)
Adcock, Mark R A; Hoeyer, Peter; Sanders, Barry C
2009-01-01
We study quantum algorithms implemented within a single harmonic oscillator, or equivalently within a single mode of the electromagnetic field. Logical states correspond to functions of the canonical position, and the Fourier transform to canonical momentum serves as the analogue of the Hadamard transform for this implementation. This continuous variable version of quantum information processing has widespread appeal because of advanced quantum optics technology that can create, manipulate and read Gaussian states of light. We show that, contrary to a previous claim, this implementation of quantum information processing has limitations due to a position-momentum trade-off of the Fourier transform, analogous to the famous time-bandwidth theorem of signal processing.
King, Brian R; Aburdene, Maurice; Thompson, Alex; Warres, Zach
2014-01-01
Digital signal processing (DSP) techniques for biological sequence analysis continue to grow in popularity due to the inherent digital nature of these sequences. DSP methods have demonstrated early success for detection of coding regions in a gene. Recently, these methods are being used to establish DNA gene similarity. We present the inter-coefficient difference (ICD) transformation, a novel extension of the discrete Fourier transformation, which can be applied to any DNA sequence. The ICD method is a mathematical, alignment-free DNA comparison method that generates a genetic signature for any DNA sequence that is used to generate relative measures of similarity among DNA sequences. We demonstrate our method on a set of insulin genes obtained from an evolutionarily wide range of species, and on a set of avian influenza viral sequences, which represents a set of highly similar sequences. We compare phylogenetic trees generated using our technique against trees generated using traditional alignment techniques for similarity and demonstrate that the ICD method produces a highly accurate tree without requiring an alignment prior to establishing sequence similarity.
Application of Fourier transform to MHD flow over an accelerated plate with partial-slippage
Directory of Open Access Journals (Sweden)
Salman Ahmad
2014-06-01
Full Text Available Magneto-Hydrodynamic (MHD flow over an accelerated plate is investigated with partial slip conditions. Generalized Fourier Transform is used to get the exact solution not only for uniform acceleration but also for variable acceleration. The numerical solution is obtained by using linear finite element method in space and One-Step-θ-scheme in time. The resulting discretized algebraic systems are solved by applying geometric-multigrid approach. Numerical solutions are compared with the obtained Fourier transform results. Many interesting results related with slippage and MHD effects are discussed in detail through graphical sketches and tables. Application of Dirac-Delta function is one of the main features of present work.
Zhang, Fang; Zhu, Jing; Song, Qiang; Yue, Weirui; Liu, Jingdan; Wang, Jian; Situ, Guohai; Huang, Huijie
2015-10-20
In general, Fourier transform lenses are considered as ideal in the design algorithms of diffractive optical elements (DOEs). However, the inherent aberrations of a real Fourier transform lens disturb the far field pattern. The difference between the generated pattern and the expected design will impact the system performance. Therefore, a method for modifying the Fourier spectrum of DOEs without introducing other optical elements to reduce the aberration effect of the Fourier transform lens is proposed. By applying this method, beam shaping performance is improved markedly for the optical system with a real Fourier transform lens. The experiments carried out with a commercial Fourier transform lens give evidence for this method. The method is capable of reducing the system complexity as well as improving its performance.
Directory of Open Access Journals (Sweden)
Wai Kuan Yip
2007-01-01
Full Text Available We introduce a novel method for secure computation of biometric hash on dynamic hand signatures using BioPhasor mixing and discretization. The use of BioPhasor as the mixing process provides a one-way transformation that precludes exact recovery of the biometric vector from compromised hashes and stolen tokens. In addition, our user-specific discretization acts both as an error correction step as well as a real-to-binary space converter. We also propose a new method of extracting compressed representation of dynamic hand signatures using discrete wavelet transform (DWT and discrete fourier transform (DFT. Without the conventional use of dynamic time warping, the proposed method avoids storage of user's hand signature template. This is an important consideration for protecting the privacy of the biometric owner. Our results show that the proposed method could produce stable and distinguishable bit strings with equal error rates (EERs of and for random and skilled forgeries for stolen token (worst case scenario, and for both forgeries in the genuine token (optimal scenario.
Medical images storage using discrete cosine transform
International Nuclear Information System (INIS)
Arhouma, Ali M.; Ajaal, Tawfik; Marghani, Khaled
2010-01-01
The advances in technology during the last decades have made the use of digital images as one of the common things in everyday life. While the application of digital images in communicating information is very important, the cost of storing and transmitting images is much larger compared to storage and transmission of text. The main problem with all of the images was the fact that they take large size of memory space, large transmission bandwidth and long transmission time. Image data compression is needed to reduce the storage space,transmission bandwidth and transmission time. Medical image compression plays a key role as hospitals move towards filmless imaging and go completely digital. Image compression allows Picture Archiving and Communication Systems (PACS) to reduce the file size on their storage requirements while maintaining relevant diagnostic information. The reduced image file size yield reduced transmission times. Even as the capacity of storage media continues to increase, it is expected that the volume of uncompressed data produced by hospitals will exceed capacity of storage and drive up costs. This paper proposes a Discrete Cosine Transform (DCT) algorithm which can help to solve the image storage and transmission time problem in hospitals. Discrete cosine transform (DCT) has become the most popular technique for image compression over the past several years. One of the major reasons for its popularity is its selection as the standard for JPEG. DCTs are most commonly used for non-analytical applications such as image processing and digital signal-processing (DSP) applications such as video conferencing, fax systems, video disks, and high-definition television HDTV. They also can be used on a matrix of practically any dimension. The proposed (DCT) algorithm improves the performance of medical image compression while satisfying both the medical image quality, and the high compression ratio. Application of DCT coding algorithm to actual still images
Application of Fourier transforms for microwave radiometric inversions
Holmes, J. J.; Balanis, C. A.; Truman, W. M.
1975-01-01
Existing microwave radiometer technology now provides a suitable method for remote determination of the ocean surface's absolute brightness temperature. To extract the brightness temperature of the water from the antenna temperature, an unstable Fredholm integral equation of the first kind is solved. Fourier transform techniques are used to invert the integral after it is placed into a cross correlation form. Application and verification of the methods to a two-dimensional modeling of a laboratory wave tank system are included. The instability of the ill-posed Fredholm equation is examined and a restoration procedure is included which smooths the resulting oscillations. With the recent availability and advances of fast Fourier transform (FFT) techniques, the method presented becomes very attractive in the evaluation of large quantities of data.
Fourier transform digital holographic adaptive optics imaging system
Liu, Changgeng; Yu, Xiao; Kim, Myung K.
2013-01-01
A Fourier transform digital holographic adaptive optics imaging system and its basic principles are proposed. The CCD is put at the exact Fourier transform plane of the pupil of the eye lens. The spherical curvature introduced by the optics except the eye lens itself is eliminated. The CCD is also at image plane of the target. The point-spread function of the system is directly recorded, making it easier to determine the correct guide-star hologram. Also, the light signal will be stronger at the CCD, especially for phase-aberration sensing. Numerical propagation is avoided. The sensor aperture has nothing to do with the resolution and the possibility of using low coherence or incoherent illumination is opened. The system becomes more efficient and flexible. Although it is intended for ophthalmic use, it also shows potential application in microscopy. The robustness and feasibility of this compact system are demonstrated by simulations and experiments using scattering objects. PMID:23262541
Meso-optical Fourier transform microscope with double focusing
International Nuclear Information System (INIS)
Batusov, Yu.A.; Soroko, L.M.; Tereshchenko, V.V.
1992-01-01
The meso-optical Fourier transform microscope (MFTM) with double focusing for particle tracks of low ionization level in the nuclear emulsion is described. It is shown experimentally that this device enables one to get high concentration of information about the position of the particle track in the nuclear emulsion and thus to increase the signal-to-noise ratio. It is shown that spreading of the meso-optical image of the particle track in the sagittal section of the MFTM can be eliminated completely in the frame of the diffraction limit. The number of the additional degrees of freedom in this new MFTM system along depth coordinate is equal to 20 in comparison to single degree of freedom in the Fourier transform microscope of the direct observation. 10 refs.; 15 figs
The Fourier transform for certain hyperkähler fourfolds
Shen, Mingmin
2016-01-01
Using a codimension-1 algebraic cycle obtained from the PoincarÃ© line bundle, Beauville defined the Fourier transform on the Chow groups of an abelian variety A and showed that the Fourier transform induces a decomposition of the Chow ring \\mathrm{CH}^*(A). By using a codimension-2 algebraic cycle representing the Beauvilleâe"Bogomolov class, the authors give evidence for the existence of a similar decomposition for the Chow ring of HyperkÃ¤hler varieties deformation equivalent to the Hilbert scheme of length-2 subschemes on a K3 surface. They indeed establish the existence of such a decomposition for the Hilbert scheme of length-2 subschemes on a K3 surface and for the variety of lines on a very general cubic fourfold.
Directory of Open Access Journals (Sweden)
Sarunya Kanjanawattana
2017-07-01
Full Text Available Image classification plays a vital role in many areas of study, such as data mining and image processing; however, serious problems collectively referred to as the course of dimensionality have been encountered in previous studies as factors that reduce system performance. Furthermore, we also confront the problem of different graph characteristics even if graphs belong to same types. In this study, we propose a novel method of graph-type classification. Using our approach, we open up a new solution of high-dimensional images and address problems of different characteristics by converting graph images to one dimension with a discrete Fourier transformation and creating numeric datasets using wavelet and Hough transformations. Moreover, we introduce a new classifier, which is a combination between artificial neuron networks (ANNs and support vector machines (SVMs, which we call ANNSVM, to enhance accuracy. The objectives of our study are to propose an effective graph-type classification method that includes finding a new data representative used for classification instead of two-dimensional images and to investigate what features make our data separable. To evaluate the method of our study, we conducted five experiments with different methods and datasets. The input dataset we focused on was a numeric dataset containing wavelet coefficients and outputs of a Hough transformation. From our experimental results, we observed that the highest accuracy was provided using our method with Coiflet 1, which achieved a 0.91 accuracy.
Lax Pairs for Discrete Integrable Equations via Darboux Transformations
International Nuclear Information System (INIS)
Cao Ce-Wen; Zhang Guang-Yao
2012-01-01
A method is developed to construct discrete Lax pairs using Darboux transformations. More kinds of Lax pairs are found for some newly appeared discrete integrable equations, including the H1, the special H3 and the Q1 models in the Adler—Bobenko—Suris list and the closely related discrete and semi-discrete pKdV, pMKdV, SG and Liouville equations. (general)
10th International Conference on Progress in Fourier Transform Spectroscopy
Keresztury, Gábor; Kellner, Robert
1997-01-01
19 plenary lectures and 203 poster papers presented at the 10th International Conference of Fourier Transform Spectroscopy in Budapest 1995 give an overview on the state-of-the art of this technology and its wide range of applications. The reader will get information on any aspects of FTS including the latest instrumental developments, e.g. in diode array detection, time resolution FTS, microscopy and spectral mapping, double modulation and two-dimensional FTS.
An algorithm for the basis of the finite Fourier transform
Santhanam, Thalanayar S.
1995-01-01
The Finite Fourier Transformation matrix (F.F.T.) plays a central role in the formulation of quantum mechanics in a finite dimensional space studied by the author over the past couple of decades. An outstanding problem which still remains open is to find a complete basis for F.F.T. In this paper we suggest a simple algorithm to find the eigenvectors of F.T.T.
Fast Fourier transformation results from gamma-ray burst profiles
Kouveliotou, Chryssa; Norris, Jay P.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.; Paciesas, W. S.
1992-01-01
Several gamma-ray bursts in the BATSE data have sufficiently long durations and complex temporal structures with pulses that appear to be spaced quasi-periodically. In order to test and quantify these periods we have applied fast Fourier transformations (FFT) to all these events. We have also performed cross spectral analyses of the FFT of the two extreme (high-low) energy bands in each case to determine the lead/lag of the pulses in different energies.
Calibration of the Herschel SPIRE Fourier Transform Spectrometer
Swinyard, Bruce; Polehampton, E. T.; Hopwood, R.; Valtchanov, I.; Lu, N.; Fulton, T.; Benielli, D.; Imhof, P.; Marchili, N.; Baluteau, J.- P.; Bendo, G. J.; Ferlet, M.; Griffin, Matthew Jason; Lim, T. L.; Makiwa, G.
2014-01-01
The Herschel Spectral and Photometric REceiver (SPIRE) instrument consists of an imaging photometric camera and an imaging Fourier Transform Spectrometer (FTS), both operating over a frequency range of ∼450–1550 GHz. In this paper, we briefly review the FTS design, operation, and data reduction, and describe in detail the approach taken to relative calibration (removal of instrument signatures) and absolute calibration against standard astronomical sources. The calibration scheme assumes a sp...
An OTDM-To-WDM Converter Using Optical Fourier Transformation
Khin Su Myat Min; Zaw Myo Lwin; Hla Myo Tun
2015-01-01
We demonstrate serial-to-parallel conversion of 40 Gbps optical time division multiplexed OTDM signal to 4x10 Gbps wavelength division-multiplexed WDM individual channels by using Optical Fourier Transformation OFT method. OFT is also called time lens technique and it is implemented by the combination of dispersive fiber and phase modulation. In this research electro-optic phase modulator EOM is used as time lens. As our investigations simulation results and bit error rate BER measurements ar...
Solving singular convolution equations using the inverse fast Fourier transform
Czech Academy of Sciences Publication Activity Database
Krajník, E.; Montesinos, V.; Zizler, P.; Zizler, Václav
2012-01-01
Roč. 57, č. 5 (2012), s. 543-550 ISSN 0862-7940 R&D Projects: GA AV ČR IAA100190901 Institutional research plan: CEZ:AV0Z10190503 Keywords : singular convolution equations * fast Fourier transform * tempered distribution Subject RIV: BA - General Mathematics Impact factor: 0.222, year: 2012 http://www.springerlink.com/content/m8437t3563214048/
Random sampling of evolution time space and Fourier transform processing
International Nuclear Information System (INIS)
Kazimierczuk, Krzysztof; Zawadzka, Anna; Kozminski, Wiktor; Zhukov, Igor
2006-01-01
Application of Fourier Transform for processing 3D NMR spectra with random sampling of evolution time space is presented. The 2D FT is calculated for pairs of frequencies, instead of conventional sequence of one-dimensional transforms. Signal to noise ratios and linewidths for different random distributions were investigated by simulations and experiments. The experimental examples include 3D HNCA, HNCACB and 15 N-edited NOESY-HSQC spectra of 13 C 15 N labeled ubiquitin sample. Obtained results revealed general applicability of proposed method and the significant improvement of resolution in comparison with conventional spectra recorded in the same time
Bouthéon, M; Potier, J P
1977-01-01
A novel procedure for evaluating directly the Fourier series coefficients of a function described by unequally spaced but symmetrically disposed interval discrete points is given and an example illustrated. The procedure's simplicity enables it to be used for harmonic analyses of non-equidistant interval data without using the intermediate curve-fitting techniques. (2 refs).
International Nuclear Information System (INIS)
Tam, K.C.; Perez-Mendez, V.
1981-01-01
The principles of limited-angle reconstruction of space-limited objects using the concepts of allowed cone and missing cone in Fourier space are discussed. The distortion of a point source resulting from setting the Fourier components in the missing cone to zero has been calculated mathematically, and its bearing on the convergence of an iteration scheme involving Fourier transforms has been analyzed in detail. it was found that the convergence rate is fairly insensitive to the position of the point source within the boundary of the object, apart from an edge effect which tends to enhance some parts of the boundary in reconstructing the object. Another iteration scheme involving Radon transforms was introduced and compared to the Fourier transform method in such areas as root mean square error, stability with respect to noise, and computer reconstruction time
Limited-angle 3-D reconstructions using Fourier transform iterations and Radon transform iterations
International Nuclear Information System (INIS)
Tam, K.C.; Perez-Mendez, V.
1979-12-01
The principles of limited-angle reconstruction of space-limited objects using the concepts of allowed cone and missing cone in Fourier space are discussed. The distortion of a point source resulting from setting the Fourier components in the missing cone to zero was calculated mathematically, and its bearing on the convergence of an iteration scheme involving Fourier transforms was analyzed in detail. It was found that the convergence rate is fairly insensitive to the position of the point source within the boundary of the object, apart from an edge effect that tends to enhance some parts of the boundary in reconstructing the object. Another iteration scheme involving Radon transforms was introduced and compared to the Fourier transform method in such areas as root mean square error, stability with respect to noise, and computer reconstruction time. 8 figures, 2 tables
[Continuum based fast Fourier transform processing of infrared spectrum].
Liu, Qing-Jie; Lin, Qi-Zhong; Wang, Qin-Jun; Li, Hui; Li, Shuai
2009-12-01
To recognize ground objects with infrared spectrum, high frequency noise removing is one of the most important phases in spectrum feature analysis and extraction. A new method for infrared spectrum preprocessing was given combining spectrum continuum processing and Fast Fourier Transform (CFFT). Continuum was firstly removed from the noise polluted infrared spectrum to standardize hyper-spectra. Then the spectrum was transformed into frequency domain (FD) with fast Fourier transform (FFT), separating noise information from target information After noise eliminating from useful information with a low-pass filter, the filtered FD spectrum was transformed into time domain (TD) with fast Fourier inverse transform. Finally the continuum was recovered to the spectrum, and the filtered infrared spectrum was achieved. Experiment was performed for chlorite spectrum in USGS polluted with two kinds of simulated white noise to validate the filtering ability of CFFT by contrast with cubic function of five point (CFFP) in time domain and traditional FFT in frequency domain. A circle of CFFP has limited filtering effect, so it should work much with more circles and consume more time to achieve better filtering result. As for conventional FFT, Gibbs phenomenon has great effect on preprocessing result at edge bands because of special character of rock or mineral spectra, while works well at middle bands. Mean squared error of CFFT is 0. 000 012 336 with cut-off frequency of 150, while that of FFT and CFFP is 0. 000 061 074 with cut-off frequency of 150 and 0.000 022 963 with 150 working circles respectively. Besides the filtering result of CFFT can be improved by adjusting the filter cut-off frequency, and has little effect on working time. The CFFT method overcomes the Gibbs problem of FFT in spectrum filtering, and can be more convenient, dependable, and effective than traditional TD filter methods.
International Nuclear Information System (INIS)
Feng Baofeng; Maruno, Ken-ichi; Inoguchi, Jun-ichi; Kajiwara, Kenji; Ohta, Yasuhiro
2011-01-01
We consider integrable discretizations of some soliton equations associated with the motions of plane curves: the Wadati-Konno-Ichikawa elastic beam equation, the complex Dym equation and the short pulse equation. They are related to the modified KdV or the sine-Gordon equations by the hodograph transformations. Based on the observation that the hodograph transformations are regarded as the Euler-Lagrange transformations of the curve motions, we construct the discrete analogues of the hodograph transformations, which yield integrable discretizations of those soliton equations. (paper)
Adaptive synchrosqueezing based on a quilted short-time Fourier transform
Berrian, Alexander; Saito, Naoki
2017-08-01
In recent years, the synchrosqueezing transform (SST) has gained popularity as a method for the analysis of signals that can be broken down into multiple components determined by instantaneous amplitudes and phases. One such version of SST, based on the short-time Fourier transform (STFT), enables the sharpening of instantaneous frequency (IF) information derived from the STFT, as well as the separation of amplitude-phase components corresponding to distinct IF curves. However, this SST is limited by the time-frequency resolution of the underlying window function, and may not resolve signals exhibiting diverse time-frequency behaviors with sufficient accuracy. In this work, we develop a framework for an SST based on a "quilted" short-time Fourier transform (SST-QSTFT), which allows adaptation to signal behavior in separate time-frequency regions through the use of multiple windows. This motivates us to introduce a discrete reassignment frequency formula based on a finite difference of the phase spectrum, ensuring computational accuracy for a wider variety of windows. We develop a theoretical framework for the SST-QSTFT in both the continuous and the discrete settings, and describe an algorithm for the automatic selection of optimal windows depending on the region of interest. Using synthetic data, we demonstrate the superior numerical performance of SST-QSTFT relative to other SST methods in a noisy context. Finally, we apply SST-QSTFT to audio recordings of animal calls to demonstrate the potential of our method for the analysis of real bioacoustic signals.
Closed contour fractal dimension estimation by the Fourier transform
International Nuclear Information System (INIS)
Florindo, J.B.; Bruno, O.M.
2011-01-01
Highlights: → A novel fractal dimension concept, based on Fourier spectrum, is proposed. → Computationally simple. Computational time smaller than conventional fractal methods. → Results are closer to Hausdorff-Besicovitch than conventional methods. → The method is more accurate and robustness to geometric operations and noise addition. - Abstract: This work proposes a novel technique for the numerical calculus of the fractal dimension of fractal objects which can be represented as a closed contour. The proposed method maps the fractal contour onto a complex signal and calculates its fractal dimension using the Fourier transform. The Fourier power spectrum is obtained and an exponential relation is verified between the power and the frequency. From the parameter (exponent) of the relation, is obtained the fractal dimension. The method is compared to other classical fractal dimension estimation methods in the literature, e.g., Bouligand-Minkowski, box-counting and classical Fourier. The comparison is achieved by the calculus of the fractal dimension of fractal contours whose dimensions are well-known analytically. The results showed the high precision and robustness of the proposed technique.
A transformada de Fourier em basic The Fourier transform (FFT in basic
Directory of Open Access Journals (Sweden)
Mauricio Gomes Constantino
2000-06-01
Full Text Available In this paper we describe three computer programs in Basic language about the Fourier transform (FFT which are available in the Internet site http://artemis.ffclrp.usp.br/SoftwareE.htm (in English or http://artemis.ffclrp.usp.br/softwareP.htm (in Portuguese since October 1998. Those are addresses to the Web Page of our Laboratory of Organic Synthesis. The programs can be downloaded and used by anyone who is interested on the subject. The texts, menus and captions in the programs are written in English.
International Nuclear Information System (INIS)
Shi, Ying; Zhang, Da-jun; Nimmo, Jonathan J C
2014-01-01
The Hirota–Miwa equation can be written in ‘nonlinear’ form in two ways: the discrete KP equation and, by using a compatible continuous variable, the discrete potential KP equation. For both systems, we consider the Darboux and binary Darboux transformations, expressed in terms of the continuous variable, and obtain exact solutions in Wronskian and Grammian form. We discuss reductions of both systems to the discrete KdV and discrete potential KdV equation, respectively, and exploit this connection to find the Darboux and binary Darboux transformations and exact solutions of these equations. (paper)
A discrete dislocation–transformation model for austenitic single crystals
International Nuclear Information System (INIS)
Shi, J; Turteltaub, S; Remmers, J J C; Van der Giessen, E
2008-01-01
A discrete model for analyzing the interaction between plastic flow and martensitic phase transformations is developed. The model is intended for simulating the microstructure evolution in a single crystal of austenite that transforms non-homogeneously into martensite. The plastic flow in the untransformed austenite is simulated using a plane-strain discrete dislocation model. The phase transformation is modeled via the nucleation and growth of discrete martensitic regions embedded in the austenitic single crystal. At each instant during loading, the coupled elasto-plasto-transformation problem is solved using the superposition of analytical solutions for the discrete dislocations and discrete transformation regions embedded in an infinite homogeneous medium and the numerical solution of a complementary problem used to enforce the actual boundary conditions and the heterogeneities in the medium. In order to describe the nucleation and growth of martensitic regions, a nucleation criterion and a kinetic law suitable for discrete regions are specified. The constitutive rules used in discrete dislocation simulations are supplemented with additional evolution rules to account for the phase transformation. To illustrate the basic features of the model, simulations of specimens under plane-strain uniaxial extension and contraction are analyzed. The simulations indicate that plastic flow reduces the average stress at which transformation begins, but it also reduces the transformation rate when compared with benchmark simulations without plasticity. Furthermore, due to local stress fluctuations caused by dislocations, martensitic systems can be activated even though transformation would not appear to be favorable based on the average stress. Conversely, the simulations indicate that the plastic hardening behavior is influenced by the reduction in the effective austenitic grain size due to the evolution of transformation. During cyclic simulations, the coupled plasticity-transformation
Discrete Ramanujan transform for distinguishing the protein coding regions from other regions.
Hua, Wei; Wang, Jiasong; Zhao, Jian
2014-01-01
Based on the study of Ramanujan sum and Ramanujan coefficient, this paper suggests the concepts of discrete Ramanujan transform and spectrum. Using Voss numerical representation, one maps a symbolic DNA strand as a numerical DNA sequence, and deduces the discrete Ramanujan spectrum of the numerical DNA sequence. It is well known that of discrete Fourier power spectrum of protein coding sequence has an important feature of 3-base periodicity, which is widely used for DNA sequence analysis by the technique of discrete Fourier transform. It is performed by testing the signal-to-noise ratio at frequency N/3 as a criterion for the analysis, where N is the length of the sequence. The results presented in this paper show that the property of 3-base periodicity can be only identified as a prominent spike of the discrete Ramanujan spectrum at period 3 for the protein coding regions. The signal-to-noise ratio for discrete Ramanujan spectrum is defined for numerical measurement. Therefore, the discrete Ramanujan spectrum and the signal-to-noise ratio of a DNA sequence can be used for distinguishing the protein coding regions from the noncoding regions. All the exon and intron sequences in whole chromosomes 1, 2, 3 and 4 of Caenorhabditis elegans have been tested and the histograms and tables from the computational results illustrate the reliability of our method. In addition, we have analyzed theoretically and gotten the conclusion that the algorithm for calculating discrete Ramanujan spectrum owns the lower computational complexity and higher computational accuracy. The computational experiments show that the technique by using discrete Ramanujan spectrum for classifying different DNA sequences is a fast and effective method. Copyright © 2014 Elsevier Ltd. All rights reserved.
Comparative study on γ energy spectrum denoise by fourier and wavelet transforms
International Nuclear Information System (INIS)
Shi Dongsheng; Di Yuming; Zhou Chunlin
2007-01-01
This paper introduces the basic principle of wavelet and Fourier transforms, applies wavelet transform method to denoise γ energy spectrum of 60 Co and compares it with Fourier transform method. The result of simulation with MATLAB software tool showed that as compared with traditional Fourier transform, wavelet transform has comparatively higher accuracy for γ energy spectrum denoising and is more feasible to γ energy spectrum denoising. (authors)
Hochauflösende Fourier-Transform-Emissionsspektroskopie
Uibel, Christian
2000-01-01
Mittels hochauflösender Fourier-Transform-Infrarot-Emissionsspektroskopie wurden tiefliegende elektronische Anregungszustände der mittelschweren zweiatomigen Radikale As2, Sb2 und TeF untersucht. Dabei lag das Interesse vor allem bei den Emissionen nicht voll erlaubter Übergänge wie beispielsweise der 3Σ +u → 1Σ +g- bzw. (1u) → (0+g)-Übergänge bei den Stickstoff-Homologen. Dieses besondere Interesse an der genauen Analyse der 3Σ +u-Zustände liegt in ihrem metastab...
Optical Two Dimensional Fourier Transform Spectroscopy of Layered Metal Dichalcogenides
Dey, P.; Paul, J.; Stevens, C. E.; Kovalyuk, Z. D.; Kudrynskyi, Z. R.; Romero, A. H.; Cantarero, A.; Hilton, D. J.; Shan, J.; Karaiskaj, D.; Z. D. Kovalyuk; Z. R. Kudrynskyi Collaboration; A. H. Romero Collaboration; A. Cantarero Collaboration; D. J. Hilton Collaboration; J. Shan Collaboration
2015-03-01
Nonlinear two-dimensional Fourier transform (2DFT) measurements were used to study the mechanism of excitonic dephasing and probe the electronic structure of the excitonic ground state in layered metal dichalcogenides. Temperature-dependent 2DFT measurements were performed to probe exciton-phonon interactions. Excitation density dependent 2DFT measurements reveal exciton-exciton and exciton-carrier scattering, and the lower limit for the homogeneous linewidth of excitons on positively and negatively doped samples. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0012635.
Multi-band Image Registration Method Based on Fourier Transform
Institute of Scientific and Technical Information of China (English)
庹红娅; 刘允才
2004-01-01
This paper presented a registration method based on Fourier transform for multi-band images which is involved in translation and small rotation. Although different band images differ a lot in the intensity and features,they contain certain common information which we can exploit. A model was given that the multi-band images have linear correlations under the least-square sense. It is proved that the coefficients have no effect on the registration progress if two images have linear correlations. Finally, the steps of the registration method were proposed. The experiments show that the model is reasonable and the results are satisfying.
An OTDM-To-WDM Converter Using Optical Fourier Transformation
Directory of Open Access Journals (Sweden)
Khin Su Myat Min
2015-08-01
Full Text Available We demonstrate serial-to-parallel conversion of 40 Gbps optical time division multiplexed OTDM signal to 4x10 Gbps wavelength division-multiplexed WDM individual channels by using Optical Fourier Transformation OFT method. OFT is also called time lens technique and it is implemented by the combination of dispersive fiber and phase modulation. In this research electro-optic phase modulator EOM is used as time lens. As our investigations simulation results and bit error rate BER measurements are expressed.
Directional short-time Fourier transform of distributions
Directory of Open Access Journals (Sweden)
Katerina Hadzi-Velkova Saneva
2016-04-01
Full Text Available Abstract In this paper we consider the directional short-time Fourier transform (DSTFT that was introduced and investigated in (Giv in J. Math. Anal. Appl. 399:100-107, 2013. We analyze the DSTFT and its transpose on test function spaces S ( R n $\\mathcal {S}(\\mathbb {R}^{n}$ and S ( Y 2 n $\\mathcal {S}(\\mathbb {Y}^{2n}$ , respectively, and prove the continuity theorems on these spaces. Then the obtained results are used to extend the DSTFT to spaces of distributions.
Hyperspectral imaging using the single-pixel Fourier transform technique
Jin, Senlin; Hui, Wangwei; Wang, Yunlong; Huang, Kaicheng; Shi, Qiushuai; Ying, Cuifeng; Liu, Dongqi; Ye, Qing; Zhou, Wenyuan; Tian, Jianguo
2017-03-01
Hyperspectral imaging technology is playing an increasingly important role in the fields of food analysis, medicine and biotechnology. To improve the speed of operation and increase the light throughput in a compact equipment structure, a Fourier transform hyperspectral imaging system based on a single-pixel technique is proposed in this study. Compared with current imaging spectrometry approaches, the proposed system has a wider spectral range (400-1100 nm), a better spectral resolution (1 nm) and requires fewer measurement data (a sample rate of 6.25%). The performance of this system was verified by its application to the non-destructive testing of potatoes.
Fourier transform infrared studies in solid egg white lysozyme
International Nuclear Information System (INIS)
Rivzi, T.Z.
1994-12-01
Fourier Transform Infrared (FTIR) Spectroscopy is the most recent addition to the arsenal of bioanalytical techniques capable of providing information about the secondary structure of proteins in a variety of environments. FTIR spectra have been obtained in solid egg white lysozyme. The spectra display the usual amide I, II and III bands. Secondary structural information obtained from the spectra after applying resolution enhancement techniques to the amide I band has been found consistent with the x-ray crystallographic data of the protein and also to the spectroscopic data of the protein in aqueous solution. (author). 17 refs, 6 figs, 2 tabs
Transfer Function Identification Using Orthogonal Fourier Transform Modeling Functions
Morelli, Eugene A.
2013-01-01
A method for transfer function identification, including both model structure determination and parameter estimation, was developed and demonstrated. The approach uses orthogonal modeling functions generated from frequency domain data obtained by Fourier transformation of time series data. The method was applied to simulation data to identify continuous-time transfer function models and unsteady aerodynamic models. Model fit error, estimated model parameters, and the associated uncertainties were used to show the effectiveness of the method for identifying accurate transfer function models from noisy data.
Capillary supercritical fluid chromatography - Fourier transform infrared spectrometry
International Nuclear Information System (INIS)
Olesik, S.V.; French, S.B.; Movotny, M.
1984-01-01
One of the most demanding tasks asked of an analytical chemist today is to separate and identify the components of a nonvolatile complex mixture. An efficient separation technique combined with a universal detector that provides structural information, therefore, would be a great asset to analytical chemists. Capillary supercritical fluid chromatography (SFC) - Fourier transform infrared spectrometry (FTIR) shows great potential for being such a technique. SFC-FTIR shows great potential as a very powerful technique for separation and identification of thermally labile and nonvolatile compounds. Research is continuing in these labs to further optimize the technique. 2 refs
Hoch, Jeffrey C.
2017-10-01
Non-Fourier methods of spectrum analysis are gaining traction in NMR spectroscopy, driven by their utility for processing nonuniformly sampled data. These methods afford new opportunities for optimizing experiment time, resolution, and sensitivity of multidimensional NMR experiments, but they also pose significant challenges not encountered with the discrete Fourier transform. A brief history of non-Fourier methods in NMR serves to place different approaches in context. Non-Fourier methods reflect broader trends in the growing importance of computation in NMR, and offer insights for future software development.
Hoch, Jeffrey C
2017-10-01
Non-Fourier methods of spectrum analysis are gaining traction in NMR spectroscopy, driven by their utility for processing nonuniformly sampled data. These methods afford new opportunities for optimizing experiment time, resolution, and sensitivity of multidimensional NMR experiments, but they also pose significant challenges not encountered with the discrete Fourier transform. A brief history of non-Fourier methods in NMR serves to place different approaches in context. Non-Fourier methods reflect broader trends in the growing importance of computation in NMR, and offer insights for future software development. Copyright © 2017 Elsevier Inc. All rights reserved.
Image Retrieval Algorithm Based on Discrete Fractional Transforms
Jindal, Neeru; Singh, Kulbir
2013-06-01
The discrete fractional transforms is a signal processing tool which suggests computational algorithms and solutions to various sophisticated applications. In this paper, a new technique to retrieve the encrypted and scrambled image based on discrete fractional transforms has been proposed. Two-dimensional image was encrypted using discrete fractional transforms with three fractional orders and two random phase masks placed in the two intermediate planes. The significant feature of discrete fractional transforms benefits from its extra degree of freedom that is provided by its fractional orders. Security strength was enhanced (1024!)4 times by scrambling the encrypted image. In decryption process, image retrieval is sensitive for both correct fractional order keys and scrambling algorithm. The proposed approach make the brute force attack infeasible. Mean square error and relative error are the recital parameters to verify validity of proposed method.
A high-resolution Fourier Transform Spectrometer for planetary spectroscopy
Cruikshank, D. P.; Sinton, W. M.
1973-01-01
The employment of a high-resolution Fourier Transform Spectrometer (FTS) is described for planetary and other astronomical spectroscopy in conjunction with the 88-inch telescope at Mauna Kea Observatory. The FTS system is designed for a broad range of uses, including double-beam laboratory spectroscopy, infrared gas chromatography, and nuclear magnetic resonance spectroscopy. The data system is well-suited to astronomical applications because of its great speed in acquiring and transforming data, and because of the enormous storage capability of the magnetic tape unit supplied with the system. The basic instrument is outlined 2nd some of the initial results from the first attempted use on the Mauna Kea 88-inch telescope are reported.
Quantum Fourier transform, Heisenberg groups and quasi-probability distributions
International Nuclear Information System (INIS)
Patra, Manas K; Braunstein, Samuel L
2011-01-01
This paper aims to explore the inherent connection between Heisenberg groups, quantum Fourier transform (QFT) and (quasi-probability) distribution functions. Distribution functions for continuous and finite quantum systems are examined from three perspectives and all of them lead to Weyl-Gabor-Heisenberg groups. The QFT appears as the intertwining operator of two equivalent representations arising out of an automorphism of the group. Distribution functions correspond to certain distinguished sets in the group algebra. The marginal properties of a particular class of distribution functions (Wigner distributions) arise from a class of automorphisms of the group algebra of the Heisenberg group. We then study the reconstruction of the Wigner function from the marginal distributions via inverse Radon transform giving explicit formulae. We consider some applications of our approach to quantum information processing and quantum process tomography.
Stupin, Daniil D.; Koniakhin, Sergei V.; Verlov, Nikolay A.; Dubina, Michael V.
2017-05-01
The time-domain technique for impedance spectroscopy consists of computing the excitation voltage and current response Fourier images by fast or discrete Fourier transformation and calculating their relation. Here we propose an alternative method for excitation voltage and current response processing for deriving a system impedance spectrum based on a fast and flexible adaptive filtering method. We show the equivalence between the problem of adaptive filter learning and deriving the system impedance spectrum. To be specific, we express the impedance via the adaptive filter weight coefficients. The noise-canceling property of adaptive filtering is also justified. Using the RLC circuit as a model system, we experimentally show that adaptive filtering yields correct admittance spectra and elements ratings in the high-noise conditions when the Fourier-transform technique fails. Providing the additional sensitivity of impedance spectroscopy, adaptive filtering can be applied to otherwise impossible-to-interpret time-domain impedance data. The advantages of adaptive filtering are justified with practical living-cell impedance measurements.
Valuation of European Call Option via Inverse Fourier Transform
Directory of Open Access Journals (Sweden)
Rubenis Oskars
2017-12-01
Full Text Available Very few models allow expressing European call option price in closed form. Out of them, the famous Black- Scholes approach sets strong constraints - innovations should be normally distributed and independent. Availability of a corresponding characteristic function of log returns of underlying asset in analytical form allows pricing European call option by application of inverse Fourier transform. Characteristic function corresponds to Normal Inverse Gaussian (NIG probability density function. NIG distribution is obtained based on assumption that time series of log returns follows APARCH process. Thus, volatility clustering and leptokurtic nature of log returns are taken into account. The Fast Fourier transform based on trapezoidal quadrature is numerically unstable if a standard cumulative probability function is used. To solve the problem, a dampened cumulative probability is introduced. As a computation tool Matlab framework is chosen because it contains many effective vectorization tools that greatly enhance code readability and maintenance. The characteristic function of Normal Inverse Gaussian distribution is taken and exercised with the chosen set of parameters. Finally, the call price dependence on strike price is obtained and rendered in XY plot. Valuation of European call option with analytical form of characteristic function allows further developing models with higher accuracy, as well as developing models for some exotic options.
Progress report of a static Fourier transform spectrometer breadboard
Rosak, A.; Tintó, F.
2017-11-01
MOLI instrument -for MOtionLess Interferometer- takes advantage of the new concept of static Fourier transform spectrometer. It is a high-resolution spectrometer working over a narrow bandwidth, which is adapted to a wide range of atmospheric sounding missions and compatible with micro-satellite platform. The core of this instrument is an echelette cube. Mirrors on the classical design are replaced by stepped mirrors -integrated into that interference cube- thus suppressing any moving part. The steps' directions being set over a perpendicular axis, the overlap of both stepped mirrors creates a cluster of so-called "echelettes", each one corresponding to a different optical path difference (OPD). Hence the Fourier transform of the incoming radiance is directly imaged on a CCD array in a single acquisition. The frequency domain of the measurements is selected by an interferential filter disposed on the incoming optical path. A rotating wheel equipped with several filters allows the successive measurement of spectra around some bands of interest, i.e. O2, CO2 and CO absorption bands.
Ultrafast and versatile spectroscopy by temporal Fourier transform
Zhang, Chi; Wei, Xiaoming; Marhic, Michel E.; Wong, Kenneth K. Y.
2014-06-01
One of the most remarkable and useful properties of a spatially converging lens system is its inherent ability to perform the Fourier transform; the same applies for the time-lens system. At the back focal plane of the time-lens, the spectral information can be instantaneously obtained in the time axis. By implementing temporal Fourier transform for spectroscopy applications, this time-lens-based architecture can provide orders of magnitude improvement over the state-of-art spatial-dispersion-based spectroscopy in terms of the frame rate. On the other hand, in addition to the single-lens structure, the multi-lens structures (e.g. telescope or wide-angle scope) will provide very versatile operating conditions. Leveraging the merit of instantaneous response, as well as the flexible lens structure, here we present a 100-MHz frame rate spectroscopy system - the parametric spectro-temporal analyzer (PASTA), which achieves 17 times zoom in/out ratio for different observation ranges.
Soft x-ray microscope using Fourier transform holography
International Nuclear Information System (INIS)
McNulty, I.; Kirz, J.; Jacobsen, C.; Anderson, E.; Howells, M.R.; Rarback, H.
1989-01-01
A Fourier transform holographic microscope with an anticipated resolution of better than 100 nm has been built. Extensive testing of the apparatus has begun. Preliminary results include the recording of interference fringes using 3.6 nm x-rays. The microscope employs a charge-coupled device (CCD) detector array of 576 x 384 elements. The system is illuminated by soft x-rays from a high brightness undulator. The reference point source is formed by a Fresnel zone plate with a finest outer zone width of 50 nm. Sufficient temporal coherence for hologram formation is obtained by a spherical grating monochromator. The x-ray hologram intensities at the recording plane are to be collected, digitized and reconstructed by computer. Data acquisition is under CAMAC control, while image display and off-line processing takes place on a VAX graphics workstation. Computational models of Fourier transform hologram synthesis, and reconstruction in the presence of noise, have demonstrated the feasibility of numerical methods in two dimensions, and that three-dimensional information is potentially recoverable. 13 refs., 3 figs
Gas Measurement Using Static Fourier Transform Infrared Spectrometers.
Köhler, Michael H; Schardt, Michael; Rauscher, Markus S; Koch, Alexander W
2017-11-13
Online monitoring of gases in industrial processes is an ambitious task due to adverse conditions such as mechanical vibrations and temperature fluctuations. Whereas conventional Fourier transform infrared (FTIR) spectrometers use rather complex optical and mechanical designs to ensure stable operation, static FTIR spectrometers do not require moving parts and thus offer inherent stability at comparatively low costs. Therefore, we present a novel, compact gas measurement system using a static single-mirror Fourier transform spectrometer (sSMFTS). The system works in the mid-infrared range from 650 cm - 1 to 1250 cm - 1 and can be operated with a customized White cell, yielding optical path lengths of up to 120 cm for highly sensitive quantification of gas concentrations. To validate the system, we measure different concentrations of 1,1,1,2-Tetrafluoroethane (R134a) and perform a PLS regression analysis of the acquired infrared spectra. Thereby, the measured absorption spectra show good agreement with reference data. Since the system additionally permits measurement rates of up to 200 Hz and high signal-to-noise ratios, an application in process analysis appears promising.
Discrete linear canonical transform computation by adaptive method.
Zhang, Feng; Tao, Ran; Wang, Yue
2013-07-29
The linear canonical transform (LCT) describes the effect of quadratic phase systems on a wavefield and generalizes many optical transforms. In this paper, the computation method for the discrete LCT using the adaptive least-mean-square (LMS) algorithm is presented. The computation approaches of the block-based discrete LCT and the stream-based discrete LCT using the LMS algorithm are derived, and the implementation structures of these approaches by the adaptive filter system are considered. The proposed computation approaches have the inherent parallel structures which make them suitable for efficient VLSI implementations, and are robust to the propagation of possible errors in the computation process.
The Fourier transform method for infinite medium resonance absorption problems
International Nuclear Information System (INIS)
Menon, S.V.G.; Sahni, D.C.
1978-01-01
A new method, using Fourier transforms, is developed for solving the integral equation of slowing down of neutrons in the resonance region. The transformations replace the slowing down equation with a discontinuous kernel by an integral equation with a continuous kernel over the interval (-infinity, infinity). Further the Doppler broadened line shape functions have simple analytical representations in the transform variable. In the limit of zero temperature, the integral equation reduces to a second order differential equation. Accurate expressions for the zero temperature resonance integrals are derived, using the WKB method. In general, the integral equation is seen to be amenable to solution by Ganss-Hermite quadrature formule. Doppler coefficients of 238 U resonances are given and compared with Monte Carlo calculations. The method is extended to include the effect of interference between neighbouring resonances of an absorber. For the case of two interfering resonances the slowing down equation is transformed to the coupled integral equations that are amenable to solution by methods indicated earlier. Numerical results presented for the low lying thorium-232 doublet show that the Doppler coefficients of the resonances are reduced considerably because of the overlap between them. (author)
Kumar, Sanjay
2018-01-01
In this paper, a new variant to fractional signal processing is proposed known as the Reduced Order Fractional Fourier Transform. Various properties satisfied by its transformation kernel is derived. The properties associated with the proposed Reduced Order Fractional Fourier Transform like shift, modulation, time-frequency shift property are also derived and it is shown mathematically that when the rotation angle of Reduced Order Fractional Fourier Transform approaches 90 degrees, the propos...
On integral and finite Fourier transforms of continuous q-Hermite polynomials
International Nuclear Information System (INIS)
Atakishiyeva, M. K.; Atakishiyev, N. M.
2009-01-01
We give an overview of the remarkably simple transformation properties of the continuous q-Hermite polynomials H n (x vertical bar q) of Rogers with respect to the classical Fourier integral transform. The behavior of the q-Hermite polynomials under the finite Fourier transform and an explicit form of the q-extended eigenfunctions of the finite Fourier transform, defined in terms of these polynomials, are also discussed.
Fast Algorithm for Computing the Discrete Hartley Transform of Type-II
Directory of Open Access Journals (Sweden)
Mounir Taha Hamood
2016-06-01
Full Text Available The generalized discrete Hartley transforms (GDHTs have proved to be an efficient alternative to the generalized discrete Fourier transforms (GDFTs for real-valued data applications. In this paper, the development of direct computation of radix-2 decimation-in-time (DIT algorithm for the fast calculation of the GDHT of type-II (DHT-II is presented. The mathematical analysis and the implementation of the developed algorithm are derived, showing that this algorithm possesses a regular structure and can be implemented in-place for efficient memory utilization.The performance of the proposed algorithm is analyzed and the computational complexity is calculated for different transform lengths. A comparison between this algorithm and existing DHT-II algorithms shows that it can be considered as a good compromise between the structural and computational complexities.
Energy Technology Data Exchange (ETDEWEB)
Bartosch, T. [Erlanger-Nuernberg Univ., Erlanger (Germany). Lehrstul fuer Nachrichtentechnik I; Seidl, D. [Seismologisches Zentralobservatorium Graefenberg, Erlanegen (Greece). Bundesanstalt fuer Geiwissenschaften und Rohstoffe
1999-06-01
Among a variety of spectrogram methods short-time Fourier transform (STFT) and continuous wavelet transform (CWT) were selected to analyse transients in non-stationary signals. Depending on the properties of the tremor signals from the volcanos Mt. Stromboli, Mt. Semeru and Mt. Pinatubo were analyzed using both methods. The CWT can also be used to extend the definition of coherency into a time-varying coherency spectrogram. An example is given using array data from the volcano Mt. Stromboli (Italy).
An analysis of the Simpson Discrete Hartley transform | Ramsunder ...
African Journals Online (AJOL)
The relatively new Simpson Discrete Hartley Transform (SDHT) has interesting mathematical properties, which are crucial for applications. These are developed and proved in this paper. This analysis gives one a comprehensive understanding of the transform. Mathematics Subject Classication (2010): 43A32. Key words: ...
High-Throughput Screening Using Fourier-Transform Infrared Imaging
Directory of Open Access Journals (Sweden)
Erdem Sasmaz
2015-06-01
Full Text Available Efficient parallel screening of combinatorial libraries is one of the most challenging aspects of the high-throughput (HT heterogeneous catalysis workflow. Today, a number of methods have been used in HT catalyst studies, including various optical, mass-spectrometry, and gas-chromatography techniques. Of these, rapid-scanning Fourier-transform infrared (FTIR imaging is one of the fastest and most versatile screening techniques. Here, the new design of the 16-channel HT reactor is presented and test results for its accuracy and reproducibility are shown. The performance of the system was evaluated through the oxidation of CO over commercial Pd/Al2O3 and cobalt oxide nanoparticles synthesized with different reducer-reductant molar ratios, surfactant types, metal and surfactant concentrations, synthesis temperatures, and ramp rates.
A Fourier transform with speed improvements for microprocessor applications
Lokerson, D. C.; Rochelle, R.
1980-01-01
A fast Fourier transform algorithm for the RCA 1802microprocessor was developed for spacecraft instrument applications. The computations were tailored for the restrictions an eight bit machine imposes. The algorithm incorporates some aspects of Walsh function sequency to improve operational speed. This method uses a register to add a value proportional to the period of the band being processed before each computation is to be considered. If the result overflows into the DF register, the data sample is used in computation; otherwise computation is skipped. This operation is repeated for each of the 64 data samples. This technique is used for both sine and cosine portions of the computation. The processing uses eight bit data, but because of the many computations that can increase the size of the coefficient, floating point form is used. A method to reduce the alias problem in the lower bands is also described.
Collision-induced dissociation with Fourier transform mass spectrometry
International Nuclear Information System (INIS)
Cody, R.B.; Burnier, R.C.; Freiser, B.S.
1982-01-01
Collision-induced dissociations (CID) is demonstrated on a number of primary and secondary ions using a Nicolet prototype Fourier transform mass spectrometer (FT-MS). Like the triple quadrupole technique, CID using FT-MS is a relatively low energy and efficient process. The ability to study a wide range of ion-molecule reaction products is exemplified by results on proton-bound dimers and transition metal containing ionic species. Variation of collision energy by varying the RF irradiation level can provide information about product distributions as a function of energy as well as yield ion structural information. Like the triple quadrupole technique, no slits are employed and virtually all of the fragment ions formed by the CID process may be detected. Unlike all previous mass spectrometric techniques for studying CID, a tandem instrument is not required, and different experiments are performed by making software modifications rather than hardware modifications
A rheumatoid arthritis study by Fourier transform infrared spectroscopy
Carvalho, Carolina S.; Silva, Ana Carla A.; Santos, Tatiano J. P. S.; Martin, Airton A.; dos Santos Fernandes, Ana Célia; Andrade, Luís E.; Raniero, Leandro
2012-01-01
Rheumatoid arthritis is a systemic inflammatory disease of unknown causes and a new methods to identify it in early stages are needed. The main purpose of this work is the biochemical differentiation of sera between normal and RA patients, through the establishment of a statistical method that can be appropriately used for serological analysis. The human sera from 39 healthy donors and 39 rheumatics donors were collected and analyzed by Fourier Transform Infrared Spectroscopy. The results show significant spectral variations with p<0.05 in regions corresponding to protein, lipids and immunoglobulins. The technique of latex particles, coated with human IgG and monoclonal anti-CRP by indirect agglutination known as FR and CRP, was performed to confirm possible false-negative results within the groups, facilitating the statistical interpretation and validation of the technique.
Analysis of cigarette smoke by Fourier transform infrared spectrometry
Energy Technology Data Exchange (ETDEWEB)
Maddox, W.L. (Oak Ridge National Lab., TN); Mamantov, G.
1977-02-01
The application of Fourier transform infrared spectrometry (FT-IR) to the quantitative determination of several components in the gas phase of whole, dilute tobacco smoke was demonstrated. The 18-cm absorption cell was part of a cigarette smoking system similar to the intermittent inhalation exposure devices used in smoking and health research with rodents. Concentrations were measured for carbon monoxide, carbon dioxide, methane, ethylene, and methanol in 7 to 22% smoke. The precision of a measurement in 22% smoke ranged from 3% for carbon dioxide to 34% for ethylene. Absorbances measured for isoprene and hydrogen cyanide followed expected concentrations in different cigarette smokes. It was shown that the concentrations of these components remain constant during a 30-s hold-up following each puff on the cigarettes.
Generation of Fourier-transform-limited heralded single photons
International Nuclear Information System (INIS)
U'Ren, Alfred B.; Jeronimo-Moreno, Yasser; Garcia-Gracia, Hipolito
2007-01-01
In this paper we study the spectral (temporal) properties of heralded single photon wave packets, triggered by the detection of an idler photon in the process of parametric down conversion. The generated single photons are studied within the framework of the chronocyclic Wigner function, from which the single photon spectral width and temporal duration can be computed. We derive specific conditions on the two-photon joint spectral amplitude which result in both pure and Fourier-transform-limited heralded single photons. Likewise, we present specific source geometries which lead to the fulfillment of these conditions and show that one of these geometries leads, for a given pump bandwidth, to the temporally shortest possible heralded single photon wave packets
Topography description of thin films by optical Fourier Transform
International Nuclear Information System (INIS)
Jaglarz, Janusz
2008-01-01
In this work, the main problems concerning the scattering of light by real surfaces and films are presented in view of results obtained with the bidirectional reflection distribution function (BRDF) method and optical profilometry (OP). The BRDF and OP studies, being complementary to the atomic force microscopy (AFM), allow one to get information about surface topography. From the optical data, the surface power spectral density (PSD) functions for absorbing and transparent rough films have been found. Both functions have been evaluated from the Fourier transform (FT) of the surface profiles. The usefulness of BRDF-and OP methods in characterization of real surfaces is demonstrated when analyzing the optical data obtained for metallic TiN-and organic PVK thin films deposited on various substrates
Topography description of thin films by optical Fourier Transform
Energy Technology Data Exchange (ETDEWEB)
Jaglarz, Janusz [Institute of Physics, Cracow University of Technology, ul. Podchoraz.ych 1, 30-084 Krakow (Poland)], E-mail: pujaglar@cyfronet.krakow.pl
2008-09-30
In this work, the main problems concerning the scattering of light by real surfaces and films are presented in view of results obtained with the bidirectional reflection distribution function (BRDF) method and optical profilometry (OP). The BRDF and OP studies, being complementary to the atomic force microscopy (AFM), allow one to get information about surface topography. From the optical data, the surface power spectral density (PSD) functions for absorbing and transparent rough films have been found. Both functions have been evaluated from the Fourier transform (FT) of the surface profiles. The usefulness of BRDF-and OP methods in characterization of real surfaces is demonstrated when analyzing the optical data obtained for metallic TiN-and organic PVK thin films deposited on various substrates.
Surface analysis by Fourier-transform infrared (FTIR) spectroscopy
International Nuclear Information System (INIS)
Powell, G.L.; Smyrl, N.R.; Fuller, E.L.
1981-01-01
A diffuse-reflectance capability for the Fourier transform infrared spectrometer at the Y-12 Plant Laboratory has been implemented. A sample cell with a 25 to 400 0 C temperature-controlled sample stage and an ultrahigh-vacuum-to-atmospheric pressure gas-handling capability has been developed. Absorbance of light from the spectrometer beam, resulting from the beam being scattered from a powder sample, can be measured. This capability of detecting molecular species on and in powders is to be used to study chemisorption on actinide and rare-earth metals, alloys, and compounds. Cell design is described along with experiments demonstrating its performance in detecting moisture absorption on uranium oxide, moisture and carbon dioxide absorption on the lithium hydride/hydroxide system, and carbon dioxide absorption on potassium borohydride. 13 figures
Quantum copying and simplification of the quantum Fourier transform
Niu, Chi-Sheng
Theoretical studies of quantum computation and quantum information theory are presented in this thesis. Three topics are considered: simplification of the quantum Fourier transform in Shor's algorithm, optimal eavesdropping in the BB84 quantum cryptographic protocol, and quantum copying of one qubit. The quantum Fourier transform preceding the final measurement in Shor's algorithm is simplified by replacing a network of quantum gates with one that has fewer and simpler gates controlled by classical signals. This simplification results from an analysis of the network using the consistent history approach to quantum mechanics. The optimal amount of information which an eavesdropper can gain, for a given level of noise in the communication channel, is worked out for the BB84 quantum cryptographic protocol. The optimal eavesdropping strategy is expressed in terms of various quantum networks. A consistent history analysis of these networks using two conjugate quantum bases shows how the information gain in one basis influences the noise level in the conjugate basis. The no-cloning property of quantum systems, which is the physics behind quantum cryptography, is studied by considering copying machines that generate two imperfect copies of one qubit. The best qualities these copies can have are worked out with the help of the Bloch sphere representation for one qubit, and a quantum network is worked out for an optimal copying machine. If the copying machine does not have additional ancillary qubits, the copying process can be viewed using a 2-dimensional subspace in a product space of two qubits. A special representation of such a two-dimensional subspace makes possible a complete characterization of this type of copying. This characterization in turn leads to simplified eavesdropping strategies in the BB84 and the B92 quantum cryptographic protocols.
International Nuclear Information System (INIS)
Vilardy, Juan M; Millán, María S; Pérez-Cabré, Elisabet; Torres, Yezid
2014-01-01
We propose a generalization of the encryption system based on double random phase encoding (DRPE) and a joint transform correlator (JTC), from the Fourier domain to the fractional Fourier domain (FrFD) by using the fractional Fourier operators, such as the fractional Fourier transform (FrFT), fractional traslation, fractional convolution and fractional correlation. Image encryption systems based on a JTC architecture in the FrFD usually produce low quality decrypted images. In this work, we present two approaches to improve the quality of the decrypted images, which are based on nonlinear processing applied to the encrypted function (that contains the joint fractional power spectrum, JFPS) and the nonzero-order JTC in the FrFD. When the two approaches are combined, the quality of the decrypted image is higher. In addition to the advantages introduced by the implementation of the DRPE using a JTC, we demonstrate that the proposed encryption system in the FrFD preserves the shift-invariance property of the JTC-based encryption system in the Fourier domain, with respect to the lateral displacement of both the key random mask in the decryption process and the retrieval of the primary image. The feasibility of this encryption system is verified and analyzed by computer simulations. (paper)
Invariant object recognition based on the generalized discrete radon transform
Easley, Glenn R.; Colonna, Flavia
2004-04-01
We introduce a method for classifying objects based on special cases of the generalized discrete Radon transform. We adjust the transform and the corresponding ridgelet transform by means of circular shifting and a singular value decomposition (SVD) to obtain a translation, rotation and scaling invariant set of feature vectors. We then use a back-propagation neural network to classify the input feature vectors. We conclude with experimental results and compare these with other invariant recognition methods.
Nuclear data compression and reconstruction via discrete wavelet transform
Energy Technology Data Exchange (ETDEWEB)
Park, Young Ryong; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1997-12-31
Discrete Wavelet Transforms (DWTs) are recent mathematics, and begin to be used in various fields. The wavelet transform can be used to compress the signal and image due to its inherent properties. We applied the wavelet transform compression and reconstruction to the neutron cross section data. Numerical tests illustrate that the signal compression using wavelet is very effective to reduce the data saving spaces. 7 refs., 4 figs., 3 tabs. (Author)
Nuclear data compression and reconstruction via discrete wavelet transform
Energy Technology Data Exchange (ETDEWEB)
Park, Young Ryong; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1998-12-31
Discrete Wavelet Transforms (DWTs) are recent mathematics, and begin to be used in various fields. The wavelet transform can be used to compress the signal and image due to its inherent properties. We applied the wavelet transform compression and reconstruction to the neutron cross section data. Numerical tests illustrate that the signal compression using wavelet is very effective to reduce the data saving spaces. 7 refs., 4 figs., 3 tabs. (Author)
Discrete Orthogonal Transforms and Neural Networks for Image Interpolation
Directory of Open Access Journals (Sweden)
J. Polec
1999-09-01
Full Text Available In this contribution we present transform and neural network approaches to the interpolation of images. From transform point of view, the principles from [1] are modified for 1st and 2nd order interpolation. We present several new interpolation discrete orthogonal transforms. From neural network point of view, we present interpolation possibilities of multilayer perceptrons. We use various configurations of neural networks for 1st and 2nd order interpolation. The results are compared by means of tables.
Fast Fourier transformation in vibration analysis of physically active systems
International Nuclear Information System (INIS)
Hafeez, T.; Amir, M.; Farooq, U.; Day, P.
2003-01-01
Vibration of all physical systems may be expressed as the summation of an infinite number of sine and cosine terms known as Fourier series. The basic vibration analysis tool used is the frequency 'spectrum' (a graph of vibration where the amplitude of vibration is plotted against frequency). When a particular rotating component begins to fail, its vibration tends to increase. Spectra graphs are powerful diagnostic tool for detecting components' degradation. Spectra obtained with accelerometers located at the various locations on the components and their analysis in practice from rotating machines enable early detecting of incipient failure. Consequence of unexpected failure can be catastrophic and costly. This study provides basis to relate defective component by its constituent frequencies and then to the known discrete frequency of its 'signature' or 'thumbprint' to predict and verify the sustained dynamic behavior of machine designs harmful effects of forced vibration. The spectra for gearbox of a vane with teeth damaged fault are presented here which signified the importance of FFT analysis as diagnostic tool. This may be helpful to predictive maintenance of the machinery. (author)
Generalized fiber Fourier optics.
Cincotti, Gabriella
2011-06-15
A twofold generalization of the optical schemes that perform the discrete Fourier transform (DFT) is given: new passive planar architectures are presented where the 2 × 2 3 dB couplers are replaced by M × M hybrids, reducing the number of required connections and phase shifters. Furthermore, the planar implementation of the discrete fractional Fourier transform (DFrFT) is also described, with a waveguide grating router (WGR) configuration and a properly modified slab coupler.
Methods for performing fast discrete curvelet transforms of data
Candes, Emmanuel; Donoho, David; Demanet, Laurent
2010-11-23
Fast digital implementations of the second generation curvelet transform for use in data processing are disclosed. One such digital transformation is based on unequally-spaced fast Fourier transforms (USFFT) while another is based on the wrapping of specially selected Fourier samples. Both digital transformations return a table of digital curvelet coefficients indexed by a scale parameter, an orientation parameter, and a spatial location parameter. Both implementations are fast in the sense that they run in about O(n.sup.2 log n) flops for n by n Cartesian arrays or about O(N log N) flops for Cartesian arrays of size N=n.sup.3; in addition, they are also invertible, with rapid inversion algorithms of about the same complexity.
Non-rigid registration of tomographic images with Fourier transforms
International Nuclear Information System (INIS)
Osorio, Ar; Isoardi, Ra; Mato, G
2007-01-01
Spatial image registration of deformable body parts such as thorax and abdomen has important medical applications, but at the same time, it represents an important computational challenge. In this work we propose an automatic algorithm to perform non-rigid registration of tomographic images using a non-rigid model based on Fourier transforms. As a measure of similarity, we use the correlation coefficient, finding that the optimal order of the transformation is n = 3 (36 parameters). We apply this method to a digital phantom and to 7 pairs of patient images corresponding to clinical CT scans. The preliminary results indicate a fairly good agreement according to medical experts, with an average registration error of 2 mm for the case of clinical images. For 2D images (dimensions 512x512), the average running time for the algorithm is 15 seconds using a standard personal computer. Summarizing, we find that intra-modality registration of the abdomen can be achieved with acceptable accuracy for slight deformations and can be extended to 3D with a reasonable execution time
Algorithm, applications and evaluation for protein comparison by Ramanujan Fourier transform.
Zhao, Jian; Wang, Jiasong; Hua, Wei; Ouyang, Pingkai
2015-12-01
The amino acid sequence of a protein determines its chemical properties, chain conformation and biological functions. Protein sequence comparison is of great importance to identify similarities of protein structures and infer their functions. Many properties of a protein correspond to the low-frequency signals within the sequence. Low frequency modes in protein sequences are linked to the secondary structures, membrane protein types, and sub-cellular localizations of the proteins. In this paper, we present Ramanujan Fourier transform (RFT) with a fast algorithm to analyze the low-frequency signals of protein sequences. The RFT method is applied to similarity analysis of protein sequences with the Resonant Recognition Model (RRM). The results show that the proposed fast RFT method on protein comparison is more efficient than commonly used discrete Fourier transform (DFT). RFT can detect common frequencies as significant feature for specific protein families, and the RFT spectrum heat-map of protein sequences demonstrates the information conservation in the sequence comparison. The proposed method offers a new tool for pattern recognition, feature extraction and structural analysis on protein sequences. Copyright © 2015 Elsevier Ltd. All rights reserved.
Radial artery pulse waveform analysis based on curve fitting using discrete Fourier series.
Jiang, Zhixing; Zhang, David; Lu, Guangming
2018-04-19
Radial artery pulse diagnosis has been playing an important role in traditional Chinese medicine (TCM). For its non-invasion and convenience, the pulse diagnosis has great significance in diseases analysis of modern medicine. The practitioners sense the pulse waveforms in patients' wrist to make diagnoses based on their non-objective personal experience. With the researches of pulse acquisition platforms and computerized analysis methods, the objective study on pulse diagnosis can help the TCM to keep up with the development of modern medicine. In this paper, we propose a new method to extract feature from pulse waveform based on discrete Fourier series (DFS). It regards the waveform as one kind of signal that consists of a series of sub-components represented by sine and cosine (SC) signals with different frequencies and amplitudes. After the pulse signals are collected and preprocessed, we fit the average waveform for each sample using discrete Fourier series by least squares. The feature vector is comprised by the coefficients of discrete Fourier series function. Compared with the fitting method using Gaussian mixture function, the fitting errors of proposed method are smaller, which indicate that our method can represent the original signal better. The classification performance of proposed feature is superior to the other features extracted from waveform, liking auto-regression model and Gaussian mixture model. The coefficients of optimized DFS function, who is used to fit the arterial pressure waveforms, can obtain better performance in modeling the waveforms and holds more potential information for distinguishing different psychological states. Copyright © 2018 Elsevier B.V. All rights reserved.
Discrete linear canonical transforms based on dilated Hermite functions.
Pei, Soo-Chang; Lai, Yun-Chiu
2011-08-01
Linear canonical transform (LCT) is very useful and powerful in signal processing and optics. In this paper, discrete LCT (DLCT) is proposed to approximate LCT by utilizing the discrete dilated Hermite functions. The Wigner distribution function is also used to investigate DLCT performances in the time-frequency domain. Compared with the existing digital computation of LCT, our proposed DLCT possess additivity and reversibility properties with no oversampling involved. In addition, the length of input/output signals will not be changed before and after the DLCT transformations, which is consistent with the time-frequency area-preserving nature of LCT; meanwhile, the proposed DLCT has very good approximation of continuous LCT.
The use of Fourier reverse transforms in crystallographic phase refinement
Energy Technology Data Exchange (ETDEWEB)
Ringrose, Sharon [Iowa State Univ., Ames, IA (United States)
1997-10-08
Often a crystallographer obtains an electron density map which shows only part of the structure. In such cases, the phasing of the trial model is poor enough that the electron density map may show peaks in some of the atomic positions, but other atomic positions are not visible. There may also be extraneous peaks present which are not due to atomic positions. A method for determination of crystal structures that have resisted solution through normal crystallographic methods has been developed. PHASER is a series of FORTRAN programs which aids in the structure solution of poorly phased electron density maps by refining the crystallographic phases. It facilitates the refinement of such poorly phased electron density maps for difficult structures which might otherwise not be solvable. The trial model, which serves as the starting point for the phase refinement, may be acquired by several routes such as direct methods or Patterson methods. Modifications are made to the reverse transform process based on several assumptions. First, the starting electron density map is modified based on the fact that physically the electron density map must be non-negative at all points. In practice a small positive cutoff is used. A reverse Fourier transform is computed based on the modified electron density map. Secondly, the authors assume that a better electron density map will result by using the observed magnitudes of the structure factors combined with the phases calculated in the reverse transform. After convergence has been reached, more atomic positions and less extraneous peaks are observed in the refined electron density map. The starting model need not be very large to achieve success with PHASER; successful phase refinement has been achieved with a starting model that consists of only 5% of the total scattering power of the full molecule. The second part of the thesis discusses three crystal structure determinations.
Alternatives to the discrete cosine transform for irreversible tomographic image compression
International Nuclear Information System (INIS)
Villasenor, J.D.
1993-01-01
Full-frame irreversible compression of medical images is currently being performed using the discrete cosine transform (DCT). Although the DCT is the optimum fast transform for video compression applications, the authors show here that it is out-performed by the discrete Fourier transform (DFT) and discrete Hartley transform (DHT) for images obtained using positron emission tomography (PET) and magnetic resonance imaging (MRI), and possibly for certain types of digitized radiographs. The difference occurs because PET and MRI images are characterized by a roughly circular region D of non-zero intensity bounded by a region R in which the Image intensity is essentially zero. Clipping R to its minimum extent can reduce the number of low-intensity pixels but the practical requirement that images be stored on a rectangular grid means that a significant region of zero intensity must remain an integral part of the image to be compressed. With this constraint imposed, the DCT loses its advantage over the DFT because neither transform introduces significant artificial discontinuities. The DFT and DHT have the further important advantage of requiring less computation time than the DCT
Fourier Transform Infrared and Resonance Raman Spectroscopic Studies of Bacteriorhodopsin.
Earnest, Thomas Nixon
Fourier transform infrared and resonance Raman spectroscopy were used to investigate the structure and function of the light-activated, transmembrane proton pump, bacteriorhodopsin, from the purple membrane of Halobacterium halobium. Bacteriorhodopsin (bR) is a 27,000 dalton integral membrane protein consisting of 248 amino acids with a retinylidene chromophore. Absorption of a photon leads to the translocation of one or two protons from the inside of the cell to the outside. Resonance Raman spectroscopy allows for the study of the configuration of retinal in bR and its photointermediates by the selective enhancement of vibrational modes of the chromophore. This technique was used to determine that the chromophore is attached to lysine-216 in both the bR _{570} and the M _{412} intermediates. In bR with tyrosine-64 selectively nitrated or aminated, the chromophore appears to have the same configuration in that bR _{570} (all- trans) and M _{412} (13- cis) states as it does in unmodified bR. Polarized Fourier transform infrared spectroscopy (FTIR) permits the study of the direction of transition dipole moments arising from molecular vibrations of the protein and the retinal chromophore. The orientation of alpha helical and beta sheet components was determined for bR with the average helical tilt found to lie mostly parallel to the membrane normal. The beta sheet structures also exhibit an IR linear dichroism for the amide I and amide II bands which suggest that the peptide backbone is mostly perpendicular to the membrane plane although it is difficult to determine whether the bands originate from sheet or turn components. The orientation of secondary structure components of the C-1 (residues 72-248) and C-2 (residues 1-71) fragments were also investigated to determine the structure of these putative membrane protein folding intermediates. Polarized, low temperature FTIR -difference spectroscopy was then used to investigate the structure of bR as it undergoes
Directory of Open Access Journals (Sweden)
D. Seidl
1999-06-01
Full Text Available Among a variety of spectrogram methods Short-Time Fourier Transform (STFT and Continuous Wavelet Transform (CWT were selected to analyse transients in non-stationary tremor signals. Depending on the properties of the tremor signal a more suitable representation of the signal is gained by CWT. Three selected broadband tremor signals from the volcanos Mt. Stromboli, Mt. Semeru and Mt. Pinatubo were analyzed using both methods. The CWT can also be used to extend the definition of coherency into a time-varying coherency spectrogram. An example is given using array data from the volcano Mt. Stromboli.
Fourier transform infrared spectroscopy for Kona coffee authentication.
Wang, Jun; Jun, Soojin; Bittenbender, H C; Gautz, Loren; Li, Qing X
2009-06-01
Kona coffee, the variety of "Kona typica" grown in the north and south districts of Kona-Island, carries a unique stamp of the region of Big Island of Hawaii, U.S.A. The excellent quality of Kona coffee makes it among the best coffee products in the world. Fourier transform infrared (FTIR) spectroscopy integrated with an attenuated total reflectance (ATR) accessory and multivariate analysis was used for qualitative and quantitative analysis of ground and brewed Kona coffee and blends made with Kona coffee. The calibration set of Kona coffee consisted of 10 different blends of Kona-grown original coffee mixture from 14 different farms in Hawaii and a non-Kona-grown original coffee mixture from 3 different sampling sites in Hawaii. Derivative transformations (1st and 2nd), mathematical enhancements such as mean centering and variance scaling, multivariate regressions by partial least square (PLS), and principal components regression (PCR) were implemented to develop and enhance the calibration model. The calibration model was successfully validated using 9 synthetic blend sets of 100% Kona coffee mixture and its adulterant, 100% non-Kona coffee mixture. There were distinct peak variations of ground and brewed coffee blends in the spectral "fingerprint" region between 800 and 1900 cm(-1). The PLS-2nd derivative calibration model based on brewed Kona coffee with mean centering data processing showed the highest degree of accuracy with the lowest standard error of calibration value of 0.81 and the highest R(2) value of 0.999. The model was further validated by quantitative analysis of commercial Kona coffee blends. Results demonstrate that FTIR can be a rapid alternative to authenticate Kona coffee, which only needs very quick and simple sample preparations.
X-ray Fourier-transform holographic microscope
International Nuclear Information System (INIS)
Haddad, W.S.; Cullen, D.; Solem, J.C.; Boyer, K.; Rhodes, C.K.
1988-01-01
The properties of an x-ray Fourier-transform holographic instrument suitable for imaging hydrated biological samples are described. Recent advances in coherent x-ray source technology are making diffraction-limited holograms of microscopic structures, with corresponding high spatial resolution, a reality. A high priority application of snapshot x-ray holography is the study of microscopic biological structures in the hydrated living state. X-rays offer both high resolution and high contrast for important structures within living organisms, thereby rendering unnecessary the staining of specimens, essential for optical and electron microscopy. If the wavelength is properly chosen. Furthermore, the snapshot feature, arising from picosecond or subpicosecond exposure times, eliminates blurring occurring from either thermal heating or normal biological activity of the sample. Finally, with sufficiently high photon fluxes, such as those available from x-ray lasers, the x-ray snapshot can be accomplished with a single pulse, thereby yielding complete three-dimensional information on a sample having normal biological integrity at the moment of exposure. 10 refs., 6 figs
Fourier Transform Infrared Imaging analysis of dental pulp inflammatory diseases.
Giorgini, E; Sabbatini, S; Conti, C; Rubini, C; Rocchetti, R; Fioroni, M; Memè, L; Orilisi, G
2017-05-01
Fourier Transform Infrared microspectroscopy let characterize the macromolecular composition and distribution of tissues and cells, by studying the interaction between infrared radiation and matter. Therefore, we hypothesize to exploit this analytical tool in the analysis of inflamed pulps, to detect the different biochemical features related to various degrees of inflammation. IR maps of 13 irreversible and 12 hyperplastic pulpitis, together with 10 normal pulps, were acquired, compared with histological findings and submitted to multivariate (HCA, PCA, SIMCA) and statistical (one-way ANOVA) analysis. The fit of convoluted bands let calculate meaningful band area ratios (means ± s.d., P < 0.05). The infrared imaging analysis pin-pointed higher amounts of water and lower quantities of type I collagen in all inflamed pulps. Specific vibrational markers were defined for irreversible pulpitis (Lipids/Total Biomass, PhII/Total Biomass, CH 2 /CH 3 , and Ty/AII) and hyperplastic ones (OH/Total Biomass, Collagen/Total Biomass, and CH 3 Collagen/Total Biomass). The study confirmed that FTIR microspectroscopy let discriminate tissues' biological features. The infrared imaging analysis evidenced, in inflamed pulps, alterations in tissues' structure and composition. Changes in lipid metabolism, increasing amounts of tyrosine, and the occurrence of phosphorylative processes were highlighted in irreversible pulpitis, while high amounts of water and low quantities of type I collagen were detected in hyperplastic samples. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Fourier Transform Infrared Spectroscopy and Photoacoustic Spectroscopy for Saliva Analysis.
Mikkonen, Jopi J W; Raittila, Jussi; Rieppo, Lassi; Lappalainen, Reijo; Kullaa, Arja M; Myllymaa, Sami
2016-09-01
Saliva provides a valuable tool for assessing oral and systemic diseases, but concentrations of salivary components are very small, calling the need for precise analysis methods. In this work, Fourier transform infrared (FT-IR) spectroscopy using transmission and photoacoustic (PA) modes were compared for quantitative analysis of saliva. The performance of these techniques was compared with a calibration series. The linearity of spectrum output was verified by using albumin-thiocyanate (SCN(-)) solution at different SCN(-) concentrations. Saliva samples used as a comparison were obtained from healthy subjects. Saliva droplets of 15 µL were applied on the silicon sample substrate, 6 drops for each specimen, and dried at 37 ℃ overnight. The measurements were carried out using an FT-IR spectrometer in conjunction with an accessory unit for PA measurements. The findings with both transmission and PA modes mirror each other. The major bands presented were 1500-1750 cm(-1) for proteins and 1050-1200 cm(-1) for carbohydrates. In addition, the distinct spectral band at 2050 cm(-1) derives from SCN(-) anions, which is converted by salivary peroxidases to hypothiocyanate (OSCN(-)). The correlation between the spectroscopic data with SCN(-) concentration (r > 0.990 for transmission and r = 0.967 for PA mode) was found to be significant (P < 0.01), thus promising to be utilized in future applications. © The Author(s) 2016.
Relativistic elliptic matrix tops and finite Fourier transformations
Zotov, A.
2017-10-01
We consider a family of classical elliptic integrable systems including (relativistic) tops and their matrix extensions of different types. These models can be obtained from the “off-shell” Lax pairs, which do not satisfy the Lax equations in general case but become true Lax pairs under various conditions (reductions). At the level of the off-shell Lax matrix, there is a natural symmetry between the spectral parameter z and relativistic parameter η. It is generated by the finite Fourier transformation, which we describe in detail. The symmetry allows one to consider z and η on an equal footing. Depending on the type of integrable reduction, any of the parameters can be chosen to be the spectral one. Then another one is the relativistic deformation parameter. As a by-product, we describe the model of N2 interacting GL(M) matrix tops and/or M2 interacting GL(N) matrix tops depending on a choice of the spectral parameter.
Fourier transform infrared spectroscopy in physics laboratory courses
International Nuclear Information System (INIS)
Möllmann, K-P; Vollmer, M
2013-01-01
Infrared spectrometry is one of the most important tools in the field of spectroscopic analysis. This is due to the high information content of spectra in the so-called spectroscopic fingerprint region, which enables measurement not only of gases, but also of liquids and solids. Today, infrared spectroscopy is almost completely dominated by Fourier transform infrared (FTIR) spectroscopy. FTIR spectroscopy is able to detect minute quantities in the ppm and ppb ranges, and the respective analyses are now standard tools in science as well as industry. Therefore FTIR spectroscopy should be taught within the standard curriculum at university to physicists and engineers. Here we present respective undergraduate laboratory experiments designed for students at the end of their third year. Experiments deal first with understanding the spectrometer and second with recording and analysing spectra. On the one hand, transmission spectra of gases are treated which relate to environmental analytics (being probably the most prominent and well-known examples), and on the other hand, the focus is on the transmission and reflection spectra of solids. In particular, silicon wafers are studied—as is regularly done in the microelectronics industry—in order to characterize their thickness, oxygen content and phonon modes. (paper)
Fourier transform nuclear magnetic resonance studies of 199Hg
International Nuclear Information System (INIS)
Krueger, H.; Lutz, O.; Nolle, A.; Schwenk, A.
1975-01-01
199 Hg Fourier Transform NMR studies of various solutions of diverse mercury salts in H 2 O and D 2 O or in the appropriate protonated and deuterated acids are reported for both Hg 2 ++ and Hg ++ . In the different solutions investigated the 199 Hg line positions depend on the concentration of the solution, on the solvents and their isotopic composition and on the temperature of the sample. A ratio of the Larmor frequency of 199 Hg and of 2 H in a Hg(NO 3 ) 2 solution in dilute DNO 3 is given. Using this ratio and the measured chemical shifts, a ratio of the Larmor frequencies of 199 Hg for infinite dilution relative to 2 H in pure D 2 O is given. From this a g 1 -factor for 199 Hg is derived and compared with the g 1 -factor of an optical pumping experiment. The resulting shielding constant is sigma (hydrated 199 Hg ++ versus 199 Hg atom) = -24.32(5) x 10 -4 . This yields an atomic reference scale for all measured NMR line shifts of mercury. (orig.) [de
Convergence and summability of Fourier transforms and Hardy spaces
Weisz, Ferenc
2017-01-01
This book investigates the convergence and summability of both one-dimensional and multi-dimensional Fourier transforms, as well as the theory of Hardy spaces. To do so, it studies a general summability method known as theta-summation, which encompasses all the well-known summability methods, such as the Fejér, Riesz, Weierstrass, Abel, Picard, Bessel and Rogosinski summations. Following on the classic books by Bary (1964) and Zygmund (1968), this is the first book that considers strong summability introduced by current methodology. A further unique aspect is that the Lebesgue points are also studied in the theory of multi-dimensional summability. In addition to classical results, results from the past 20-30 years – normally only found in scattered research papers – are also gathered and discussed, offering readers a convenient “one-stop” source to support their work. As such, the book will be useful for researchers, graduate and postgraduate students alike.
Toward a soft x-ray Fourier-transform spectrometer
International Nuclear Information System (INIS)
Howells, M.R.; Frank, K.; Hussain, Z.; Moler, E.J.; Reich, T.; Moeller, D.
1993-01-01
The use of Fourier transform spectroscopy (FTS) in the soft x-ray region is advocated as a possible route to spectral resolution superior to that attainable with a grating system. A technical plan is described for applying FTS to the study of the absorption spectrum of helium in the region of double ionization around 60--80 eV. The proposed scheme includes a Mach-Zehnder interferometer deformed into a rhombus shape to provide grazing incidence reflections. The path difference between the interfering beams is to be tuned by translation of a table carrying four mirrors over a range ±1 cm which, in the absence of errors generating relative tilts of the wave fronts, would provide a resolving power equal to the number of waves of path difference: half a million at 65 eV, for example. The signal-to-noise ratio of the spectrum is analyzed and for operation on an Advanced Light Source bending magnet beam line should be about 330
Large Molecule Structures by Broadband Fourier Transform Molecular Rotational Spectroscopy
Evangelisti, Luca; Seifert, Nathan A.; Spada, Lorenzo; Pate, Brooks
2016-06-01
Fourier transform molecular rotational resonance spectroscopy (FT-MRR) using pulsed jet molecular beam sources is a high-resolution spectroscopy technique that can be used for chiral analysis of molecules with multiple chiral centers. The sensitivity of the molecular rotational spectrum pattern to small changes in the three dimensional structure makes it possible to identify diastereomers without prior chemical separation. For larger molecules, there is the additional challenge that different conformations of each diastereomer may be present and these need to be differentiated from the diastereomers in the spectral analysis. Broadband rotational spectra of several larger molecules have been measured using a chirped-pulse FT-MRR spectrometer. Measurements of nootkatone (C15H22O), cedrol (C15H26O), ambroxide (C16H28O) and sclareolide (C16H26O2) are presented. These spectra are measured with high sensitivity (signal-to-noise ratio near 1,000:1) and permit structure determination of the most populated isomers using isotopic analysis of the 13C and 18O isotopologues in natural abundance. The accuracy of quantum chemistry calculations to identify diastereomers and conformers and to predict the dipole moment properties needed for three wave mixing measurements is examined.
Single beam Fourier transform digital holographic quantitative phase microscopy
Energy Technology Data Exchange (ETDEWEB)
Anand, A., E-mail: arun-nair-in@yahoo.com; Chhaniwal, V. K.; Mahajan, S.; Trivedi, V. [Optics Laboratory, Applied Physics Department, Faculty of Technology and Engineering, M.S. University of Baroda, Vadodara 390001 (India); Faridian, A.; Pedrini, G.; Osten, W. [Institut für Technische Optik, Universität Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart (Germany); Dubey, S. K. [Siemens Technology and Services Pvt. Ltd, Corporate Technology—Research and Technology Centre, Bangalore 560100 (India); Javidi, B. [Department of Electrical and Computer Engineering, U-4157, University of Connecticut, Storrs, Connecticut 06269-2157 (United States)
2014-03-10
Quantitative phase contrast microscopy reveals thickness or height information of a biological or technical micro-object under investigation. The information obtained from this process provides a means to study their dynamics. Digital holographic (DH) microscopy is one of the most used, state of the art single-shot quantitative techniques for three dimensional imaging of living cells. Conventional off axis DH microscopy directly provides phase contrast images of the objects. However, this process requires two separate beams and their ratio adjustment for high contrast interference fringes. Also the use of two separate beams may make the system more vulnerable to vibrations. Single beam techniques can overcome these hurdles while remaining compact as well. Here, we describe the development of a single beam DH microscope providing whole field imaging of micro-objects. A hologram of the magnified object projected on to a diffuser co-located with a pinhole is recorded with the use of a commercially available diode laser and an arrayed sensor. A Fourier transform of the recorded hologram directly yields the complex amplitude at the image plane. The method proposed was investigated using various phase objects. It was also used to image the dynamics of human red blood cells in which sub-micrometer level thickness variation were measurable.
Discrete-continuous bispectral operators and rational Darboux transformations
International Nuclear Information System (INIS)
Boyallian, Carina; Portillo, Sofia
2010-01-01
In this Letter we construct examples of discrete-continuous bispectral operators obtained by rational Darboux transformations applied to a regular pseudo-difference operator with constant coefficients. Moreover, we give an explicit procedure to write down the differential operators involved in the bispectral situation corresponding to the pseudo-difference operator obtained by the Darboux process.
Application of finite Fourier transformation for the solution of the diffusion equation
International Nuclear Information System (INIS)
Kobayashi, Keisuke
1991-01-01
The application of the finite Fourier transformation to the solution of the neutron diffusion equation in one dimension, two dimensional x-y and triangular geometries is discussed. It can be shown that the equation obtained by the Nodal Green's function method in Cartesian coordinates can be derived as a special case of the finite Fourier transformation method. (author)
On the moments of the Wigner distribution and the fractional Fourier transform
Alieva, T.; Bastiaans, M.J.; Veen, J.P.
2000-01-01
A Fourier transformation maps a one-dimensional time signal into a one-dimensional frequency function, the signal spectrum. Although the Fourier transform provides the signal's spectral content, it fails to indicate the time location of the spectral components, which is important, for example, when
The RC Circuit: An Approach with Fourier Transforms In this article ...
Indian Academy of Sciences (India)
CLASSROOM. Mitrajyoti Ghosh. 83, Mitrapara 2nd Lane, Harinavi,. Kolkata 700148, West Bengal,. India. Email: mijospeakingnow@gmail.com. The RC Circuit: An Approach with Fourier Transforms. In this article we shall mathematically analyse the Resistor-. Capacitor (RC) circuit with the help of Fourier transforms. (FT).
Novel Polynomial Basis with Fast Fourier Transform and Its Application to Reed-Solomon Erasure Codes
Lin, Sian-Jheng; Al-Naffouri, Tareq Y.; Han, Yunghsiang S.; Chung, Wei-Ho
2016-01-01
In this paper, we present a fast Fourier transform (FFT) algorithm over extension binary fields, where the polynomial is represented in a non-standard basis. The proposed Fourier-like transform requires O(h lg(h)) field operations, where h
Imaging properties of the mesooptical Fourier transform microscope for nuclear research emulsion
International Nuclear Information System (INIS)
Bencze, Gy.L.; Soroko, L.M.
1987-01-01
The optical signal transformation in the Mesooptical Fourier Transform Microscope (MFTM) for nuclear emulsion is treated in terms of Fourier Optics. A continuous conversion of the traditional optical microscope into the MFTM is followed. The images of dot-like and straight line objects given by the MFTM are discussed
An analogue of a theorem of Titchmarsh for Walsh-Fourier transformations
International Nuclear Information System (INIS)
Golubov, B I
1998-01-01
Let f-hat c be the Fourier cosine transform of f. Then, as proved for functions of class L p (R + ) in Titchmarsh's book 'Introduction to the theory of Fourier integrals' (1937), the Hardy operator and the Hardy-Littlewood operator can be defined. In the present paper similar equalities are proved for functions of class L p (R + ), 1< p≤2, and the Walsh-Fourier transformation
Optimal Padding for the Two-Dimensional Fast Fourier Transform
Dean, Bruce H.; Aronstein, David L.; Smith, Jeffrey S.
2011-01-01
One-dimensional Fast Fourier Transform (FFT) operations work fastest on grids whose size is divisible by a power of two. Because of this, padding grids (that are not already sized to a power of two) so that their size is the next highest power of two can speed up operations. While this works well for one-dimensional grids, it does not work well for two-dimensional grids. For a two-dimensional grid, there are certain pad sizes that work better than others. Therefore, the need exists to generalize a strategy for determining optimal pad sizes. There are three steps in the FFT algorithm. The first is to perform a one-dimensional transform on each row in the grid. The second step is to transpose the resulting matrix. The third step is to perform a one-dimensional transform on each row in the resulting grid. Steps one and three both benefit from padding the row to the next highest power of two, but the second step needs a novel approach. An algorithm was developed that struck a balance between optimizing the grid pad size with prime factors that are small (which are optimal for one-dimensional operations), and with prime factors that are large (which are optimal for two-dimensional operations). This algorithm optimizes based on average run times, and is not fine-tuned for any specific application. It increases the amount of times that processor-requested data is found in the set-associative processor cache. Cache retrievals are 4-10 times faster than conventional memory retrievals. The tested implementation of the algorithm resulted in faster execution times on all platforms tested, but with varying sized grids. This is because various computer architectures process commands differently. The test grid was 512 512. Using a 540 540 grid on a Pentium V processor, the code ran 30 percent faster. On a PowerPC, a 256x256 grid worked best. A Core2Duo computer preferred either a 1040x1040 (15 percent faster) or a 1008x1008 (30 percent faster) grid. There are many industries that
Ogawa, Takahiro; Haseyama, Miki
2013-03-01
A missing texture reconstruction method based on an error reduction (ER) algorithm, including a novel estimation scheme of Fourier transform magnitudes is presented in this brief. In our method, Fourier transform magnitude is estimated for a target patch including missing areas, and the missing intensities are estimated by retrieving its phase based on the ER algorithm. Specifically, by monitoring errors converged in the ER algorithm, known patches whose Fourier transform magnitudes are similar to that of the target patch are selected from the target image. In the second approach, the Fourier transform magnitude of the target patch is estimated from those of the selected known patches and their corresponding errors. Consequently, by using the ER algorithm, we can estimate both the Fourier transform magnitudes and phases to reconstruct the missing areas.
Improved FHT Algorithms for Fast Computation of the Discrete Hartley Transform
Directory of Open Access Journals (Sweden)
M. T. Hamood
2013-05-01
Full Text Available In this paper, by using the symmetrical properties of the discrete Hartley transform (DHT, an improved radix-2 fast Hartley transform (FHT algorithm with arithmetic complexity comparable to that of the real-valued fast Fourier transform (RFFT is developed. It has a simple and regular butterfly structure and possesses the in-place computation property. Furthermore, using the same principles, the development can be extended to more efficient radix-based FHT algorithms. An example for the improved radix-4 FHT algorithm is given to show the validity of the presented method. The arithmetic complexity for the new algorithms are computed and then compared with the existing FHT algorithms. The results of these comparisons have shown that the developed algorithms reduce the number of multiplications and additions considerably.
International Nuclear Information System (INIS)
Yamada, Yoshifumi; Liu, Na; Ito, Satoshi
2006-01-01
The signal in the Fresnel transform technique corresponds to a blurred one of the spin density image. Because the amplitudes of adjacent sampled signals have a high interrelation, the signal amplitude at a point between sampled points can be estimated with a high degree of accuracy even if the sampling is so coarse as to generate aliasing in the reconstructed images. In this report, we describe a new aliasless image reconstruction technique in the phase scrambling Fourier transform (PSFT) imaging technique in which the PSFT signals are converted to Fresnel transform signals by multiplying them by a quadratic phase term and are then interpolated using polynomial expressions to generate fully encoded signals. Numerical simulation using MR images showed that almost completely aliasless images are reconstructed by this technique. Experiments using ultra-low-field PSFT MRI were conducted, and aliasless images were reconstructed from coarsely sampled PSFT signals. (author)
The spectral transform as a tool for solving nonlinear discrete evolution equations
International Nuclear Information System (INIS)
Levi, D.
1979-01-01
In this contribution we study nonlinear differential difference equations which became important to the description of an increasing number of problems in natural science. Difference equations arise for instance in the study of electrical networks, in statistical problems, in queueing problems, in ecological problems, as computer models for differential equations and as models for wave excitation in plasma or vibrations of particles in an anharmonic lattice. We shall first review the passages necessary to solve linear discrete evolution equations by the discrete Fourier transfrom, then, starting from the Zakharov-Shabat discretized eigenvalue, problem, we shall introduce the spectral transform. In the following part we obtain the correlation between the evolution of the potentials and scattering data through the Wronskian technique, giving at the same time many other properties as, for example, the Baecklund transformations. Finally we recover some of the important equations belonging to this class of nonlinear discrete evolution equations and extend the method to equations with n-dependent coefficients. (HJ)
Advanced multivariate data evaluation for Fourier transform infrared spectroscopy
International Nuclear Information System (INIS)
Diewok, J.
2002-12-01
The objective of the presented dissertation was the evaluation, application and further development of advanced multivariate data evaluation methods for qualitative and quantitative Fourier transform infrared (FT-IR) measurements, especially of aqueous samples. The focus was set on 'evolving systems'; i.e. chemical systems that change gradually with a master variable, such as pH, reaction time, elution time, etc. and that are increasingly encountered in analytical chemistry. FT-IR measurements on such systems yield 2-way and 3-way data sets, i.e. data matrices and cubes. The chemometric methods used were soft-modeling techniques, like multivariate curve resolution - alternating least squares (MCR-ALS) or principal component analysis (PCA), hard modeling of equilibrium systems and two-dimensional correlation spectroscopy (2D-CoS). The research results are presented in six publications and comprise: A new combination of FT-IR flow titrations and second-order calibration by MCR-ALS for the quantitative analysis of mixture samples of organic acids and sugars. A novel combination of MCR-ALS with a hard-modeled equilibrium constraint for second-order quantitation in pH-modulated samples where analytes and interferences show very similar acid-base behavior. A detailed study in which MCR-ALS and 2D-CoS are directly compared for the first time. From the analysis of simulated and experimental acid-base equilibrium systems, the performance and interpretability of the two methods is evaluated. Investigation of the binding process of vancomycin, an important antibiotic, to a cell wall analogue tripeptide by time-resolved FT-IR spectroscopy and detailed chemometric evaluation. Determination of red wine constituents by liquid chromatography with FT-IR detection and MCR-ALS for resolution of overlapped peaks. Classification of red wine cultivars from FT-IR spectroscopy of phenolic wine extracts with hierarchical clustering and soft independent modeling of class analogy (SIMCA
SPICA/SAFARI Fourier transform spectrometer mechanism evolutionary design
van den Dool, Teun C.; Kruizinga, Bob; Braam, Ben C.; Hamelinck, Roger F. M. M.; Loix, Nicolas; Van Loon, Dennis; Dams, Johan
2012-09-01
TNO, together with its partners, have designed a cryogenic scanning mechanism for use in the SAFARI1 Fourier Transform Spectrometer (FTS) on board of the SPICA mission. SPICA is one of the M-class missions competing to be launched in ESA's Cosmic Vision Programme2 in 2022. JAXA3 leads the development of the SPICA satellite and SRON is the prime investigator of the Safari instrument. The FTS scanning mechanism (FTSM) has to meet a 35 mm stroke requirement with an Optical Path Difference resolution of less then 15 nm and must fit in a small volume. It consists of two back-to-back roof-top mirrors mounted on a small carriage, which is moved using a magnetic bearing linear guiding system in combination with a magnetic linear motor serving as the OPD actuator. The FTSM will be used at cryogenic temperatures of 4 Kelvin inducing challenging requirements on the thermal power dissipation and heat leak. The magnetic bearing enables movements over a scanning stroke of 35.5 mm in a small volume. It supports the optics in a free-floating way with no friction, or other non-linearities, with sub-nanometer accuracy. This solution is based on the design of the breadboard ODL (Optical Delay Line) developed for the ESA Darwin mission4 and the MABE mechanism developed by Micromega Dynamics. During the last couple of years the initial design of the SAFARI instrument, as described in an earlier SPIE 2010 paper5, was adapted by the SAFARI team in an evolutionary way to meet the changing requirements of the SPICA payload module. This presentation will focus on the evolution of the FTSM to meet these changing requirements. This work is supported by the Netherlands Space Office (NSO).
Fourier transform Raman spectroscopy of synthetic and biological calcium phosphates.
Sauer, G R; Zunic, W B; Durig, J R; Wuthier, R E
1994-05-01
Fourier-transform (FT) Raman spectroscopy was used to characterize the organic and mineral components of biological and synthetic calcium phosphate minerals. Raman spectroscopy provides information on biological minerals that is complimentary to more widely used infrared methodologies as some infrared-inactive vibrational modes are Raman-active. The application of FT-Raman technology has, for the first time, enabled the problems of high sample fluorescence and low signal-to-noise that are inherent in calcified tissues to be overcome. Raman spectra of calcium phosphates are dominated by a very strong band near 960 cm-1 that arises from the symmetric stretching mode (v1) of the phosphate group. Other Raman-active phosphate vibrational bands are seen at approximately 1075 (v3), 590 (v4), and 435 cm-1 (v2). Minerals containing acidic phosphate groups show additional vibrational modes. The different calcium phosphate mineral phases can be distinguished from one another by the relative positions and shapes of these bands in the Raman spectra. FT-Raman spectra of nascent, nonmineralized matrix vesicles (MV) show a distinct absence of the phosphate v1 band even though these structures are rich in calcium and phosphate. Similar results were seen with milk casein and synthetic Ca-phosphatidyl-serine-PO4 complexes. Hence, the phosphate and/or acidic phosphate ions in these noncrystalline biological calcium phosphates is in a molecular environment that differs from that in synthetic amorphous calcium phosphate. In MV, the first distinct mineral phase to form contained acidic phosphate bands similar to those seen in octacalcium phosphate. The mineral phase present in fully mineralized MV was much more apatitic, resembling that found in bones and teeth.(ABSTRACT TRUNCATED AT 250 WORDS)
International Nuclear Information System (INIS)
Kobayashi, Keisuke; Ishibashi, Hideo
1978-01-01
A two-dimensional neutron diffusion equation for a triangular region is shown to be solved by the finite Fourier transformation. An application of the Fourier transformation to the diffusion equation for triangular region yields equations whose unknowns are the expansion coefficients of the neutron flux and current in Fourier series or Legendre polynomials expansions only at the region boundary. Some numerical calculations have revealed that the present technique gives accurate results. It is shown also that the solution using the expansion in Legendre polynomials converges with relatively few terms even if the solution in Fourier series exhibits the Gibbs' phenomenon. (auth.)
International Nuclear Information System (INIS)
Kobayashi, Keisuke
1975-01-01
A method of solution is presented for a monoenergetic diffusion equation in two-dimensional hexagonal cells by a finite Fourier transformation. Up to the present, the solution by the finite Fourier transformation has been developed for x-y, r-z and x-y-z geometries, and the flux and current at the boundary are obtained in terms of Fourier series. It is shown here that the method can be applied to hexagonal cells and the expansion of boundary values in a Legendre polynomials gives numerically a higher accuracy than is obtained by a Fourier series. (orig.) [de
Fourier Series, the DFT and Shape Modelling
DEFF Research Database (Denmark)
Skoglund, Karl
2004-01-01
This report provides an introduction to Fourier series, the discrete Fourier transform, complex geometry and Fourier descriptors for shape analysis. The content is aimed at undergraduate and graduate students who wish to learn about Fourier analysis in general, as well as its application to shape...
Discrete Hadamard transformation algorithm's parallelism analysis and achievement
Hu, Hui
2009-07-01
With respect to Discrete Hadamard Transformation (DHT) wide application in real-time signal processing while limitation in operation speed of DSP. The article makes DHT parallel research and its parallel performance analysis. Based on multiprocessor platform-TMS320C80 programming structure, the research is carried out to achieve two kinds of parallel DHT algorithms. Several experiments demonstrated the effectiveness of the proposed algorithms.
International Nuclear Information System (INIS)
Stancic, V.
2001-01-01
This paper presents some elements of a new approach to solve analytically the linearized three-dimensional (3-D) transport equation of neutral particles. Since this task is of such special importance, we present some results of a paper that is still in progress. The most important is that using this transformation, an integro-differential equation with an analytical solution is obtained. For this purpose, a simplest 3-D equation is being considered which describes the transport process in an infinite medium. Until now, this equation has been analytically considered either using the Laplace transform with respect to time parameter t or applying the Fourier transform over the space coordinate. Both of them reduce the number of differential terms in the equation; however, evaluation of the inverse transformation is complicated. In this paper, we introduce for the first time a Fourier transform induced by the Boltzmann operator. For this, we use a complete set of 3-D eigenfunctions of the Boltzmann transport operator defined in a similar way as those that have been already used in 3-D transport theory as a basic set to transform the transport equation. This set consists of a continuous part and a discrete one with spectral measure. The density distribution equation shows the known form asymptotic behavior. Several applications are to be performed using this equation and compared to the benchmark one. Such an analysis certainly would be out of the available space
Principles of Fourier analysis
Howell, Kenneth B
2001-01-01
Fourier analysis is one of the most useful and widely employed sets of tools for the engineer, the scientist, and the applied mathematician. As such, students and practitioners in these disciplines need a practical and mathematically solid introduction to its principles. They need straightforward verifications of its results and formulas, and they need clear indications of the limitations of those results and formulas.Principles of Fourier Analysis furnishes all this and more. It provides a comprehensive overview of the mathematical theory of Fourier analysis, including the development of Fourier series, "classical" Fourier transforms, generalized Fourier transforms and analysis, and the discrete theory. Much of the author''s development is strikingly different from typical presentations. His approach to defining the classical Fourier transform results in a much cleaner, more coherent theory that leads naturally to a starting point for the generalized theory. He also introduces a new generalized theory based ...
Fourier techniques in X-ray timing
van der Klis, M.
1988-01-01
Basic principles of Fourier techniques often used in X-ray time series analysis are reviewed. The relation between the discrete Fourier transform and the continuous Fourier transform is discussed to introduce the concepts of windowing and aliasing. The relation is derived between the power spectrum
Moorthi, Shrinivas; Higgins, R. W.
1993-01-01
An efficient, direct, second-order solver for the discrete solution of a class of two-dimensional separable elliptic equations on the sphere (which generally arise in implicit and semi-implicit atmospheric models) is presented. The method involves a Fourier transformation in longitude and a direct solution of the resulting coupled second-order finite-difference equations in latitude. The solver is made efficient by vectorizing over longitudinal wave-number and by using a vectorized fast Fourier transform routine. It is evaluated using a prescribed solution method and compared with a multigrid solver and the standard direct solver from FISHPAK.
Analysis of the physical simulation on Fourier transform infrared spectrometer
Yue, Peng-yuan; Wan, Yu-xi; Zhao, Zhen
2017-10-01
A kind of oscillating arm type Fourier Transform Infrared Spectrometer (FTS) which based on the corner cube retroreflector is presented, and its principle and properties are studied. It consists of a pair of corner cube retroreflector, beam splitter and compensator. The optical path difference(OPD) is created by oscillating reciprocating motion of the moving corner cube pair, and the OPD value is four times the physical shift value of the moving corner cube pair. Due to the basic property of corner cube retroreflector, the oscillating arm type FTS has no tilt problems. It is almost ideal for very high resolution infrared spectrometer. However, there are some factors to reduce the FTS capability. First, wavefront aberration due to the figures of these surfaces will reduce modulation of FTS system; second, corner cube retroreflector consist of three plane mirror, and orthogonal to each other. When there is a deviation from right angle, it will reduced the modulation of system; third, the apexes of corner cube retroreflector are symmetric about the surface of beam splitter, if one or both of the corner cube retroreflector is displaced laterally from its nominal position, phase of off-axis rays returning from the two arms were difference, this also contributes to loss of modulation of system. In order to solve these problems, this paper sets up a non-sequential interference model, and a small amount of oscillating arm rotation is set to realize the dynamic simulation process, the dynamic interference energy data were acquired at different times, and calculated the modulation of the FTS system. In the simulation, the influence of wedge error of beam splitter, compensator or between them were discussed; effects of oscillating arm shaft deviation from the coplanar of beam splitter was analyzed; and compensation effect of corner cube retroreflector alignment on beam splitter, oscillating arm rotary shaft alignment error is analyzed. In addition, the adjustment procedure
Thyroid lesions diagnosis by Fourier transformed infrared absorption spectroscopy (FTIR)
International Nuclear Information System (INIS)
Albero, Felipe Guimaraes
2009-01-01
Thyroid nodules are a common disorder, with 4-7% of incidence in the Brazilian population. Although the fine needle aspiration (FNA) is an accurate method for thyroid tumors diagnosis, the discrimination between benign and malignant neoplasm is currently not possible in some cases with high incidence of false negative diagnosis, leading to a surgical intervention due to the risk of carcinomas. The aim of this study was to verify if the Fourier Transform infrared spectroscopy (FTIR) can contribute to the diagnosis of thyroid carcinomas and goiters, using samples of tissue and aspirates. Samples of FNA, homogenates and tissues of thyroid nodules with histopathological diagnosis were obtained and prepared for FTIR spectroscopy analysis. The FNA and homogenates samples were measured by μ-FTIR (between 950 . 1750 cm -1 ), at a nominal resolution of 4 cm -1 and 120 scans). Tissue samples were analyzed directly by ATR-FTIR technique, at a resolution 2 cm -1 , with 60 scans in the same region. All spectra were corrected by the baseline and normalized by amides area (1550-1640 cm -1 ) in order to minimize variations of sample homogeneity. Then, spectra were converted into second derivatives using the Savitzk-Golay algorithm with a 13 points window. The Ward's minimum variance algorithm and Euclidean distances among the points were used for cluster analysis. Some FNA samples showed complex spectral pattern. All samples showed some cell pellets and large amount of hormone, represented by the bands of 1545 and 1655 cm -1 . Bands in 1409, 1412, 1414, 1578 and 1579 cm -1 were also found, indicating possible presence of sugar, DNA, citric acid or metabolic products. In this study, it was obtained an excellent separation between goiter and malign lesion for the samples of tissues, with 100% of specificity in specific cluster and 67% sensibility and 50 of specificity. In homogenate and FNA samples this sensibility and specificity were lower, because among these samples, it were
Discrete Multiwavelet Critical-Sampling Transform-Based OFDM System over Rayleigh Fading Channels
Directory of Open Access Journals (Sweden)
Sameer A. Dawood
2015-01-01
Full Text Available Discrete multiwavelet critical-sampling transform (DMWCST has been proposed instead of fast Fourier transform (FFT in the realization of the orthogonal frequency division multiplexing (OFDM system. The proposed structure further reduces the level of interference and improves the bandwidth efficiency through the elimination of the cyclic prefix due to the good orthogonality and time-frequency localization properties of the multiwavelet transform. The proposed system was simulated using MATLAB to allow various parameters of the system to be varied and tested. The performance of DMWCST-based OFDM (DMWCST-OFDM was compared with that of the discrete wavelet transform-based OFDM (DWT-OFDM and the traditional FFT-based OFDM (FFT-OFDM over flat fading and frequency-selective fading channels. Results obtained indicate that the performance of the proposed DMWCST-OFDM system achieves significant improvement compared to those of DWT-OFDM and FFT-OFDM systems. DMWCST improves the performance of the OFDM system by a factor of 1.5–2.5 dB and 13–15.5 dB compared with the DWT and FFT, respectively. Therefore the proposed system offers higher data rate in wireless mobile communications.
Kuijpers, A.H.W.M.; Verbeek, G.; Verheij, J.W.
1997-01-01
Effective use of the Fourier series boundary element method (FBEM) for everyday applications is hindered by the significant numerical problems that have to be overcome for its implementation. In the FBEM formulation for acoustics, some integrals over the angle of revolution arise, which need to be
From the rectangular to the quincunx Gabor lattice via fractional Fourier transformation
Bastiaans, M.J.; Leest, van A.J.
1998-01-01
Transformations of Gabor lattices have been associated with operations on the window functions that arise in Gabor theory. In particular it has been shown that transformation from a rectangular to a quincunx lattice can be associated with fractional Fourier transformation. Since a Gaussian function,
Rectangular-to-quincunx Gabor lattice conversion via fractional Fourier transformation
Bastiaans, M.J.; Leest, van A.J.
1998-01-01
Transformations of Gabor lattices are associated with operations on the window functions that arise in Gabor theory. In particular it is shown that transformation from a rectangular to a quincunx lattice can be associated with fractional Fourier transformation. Since a Gaussian function, which plays
International Nuclear Information System (INIS)
Patino, A; Durand, P-E; Fogret, E; Pellat-Finet, P
2011-01-01
According to a scalar theory of diffraction, light propagation can be expressed by two-dimensional fractional order Fourier transforms. Since the fractional Fourier transform of a chirp function is a Dirac distribution, focusing a light beam is optically achieved by using a diffractive screen whose transmission function is a two-dimensional chirp function. This property is applied to designing Fresnel microlenses, and the orders of the involved Fourier fractional transforms depend on diffraction distances as well as on emitter and receiver radii of curvature. If the emitter is astigmatic (with two principal radii of curvature), the diffraction phenomenon involves two one-dimensional fractional Fourier transforms whose orders are different. This degree of freedom allows us to design microlenses that can focus astigmatic Gaussian beams, as produced by a line-shaped laser diode source.
D'Astous, Y.; Blanchard, M.
1982-05-01
In the past years, the Journal has published a number of articles1-5 devoted to the introduction of Fourier transform spectroscopy in the undergraduate labs. In most papers, the proposed experimental setup consists of a Michelson interferometer, a light source, a light detector, and a chart recorder. The student uses this setup to record an interferogram which is then Fourier transformed to obtain the spectrogram of the light source. Although attempts have been made to ease the task of performing the required Fourier transform,6 the use of computers and Cooley-Tukey's fast Fourier transform (FFT) algorithm7 is by far the simplest method to use. However, to be able to use FFT, one has to get a number of samples of the interferogram, a tedious job which should be kept to a minimum. (AIP)
Infrared (IR) spectroscopy has been widely used for the structural investigation of humic substances. Although Fourier Transform Infrared (FTIR) instrumentation has been available for sometime, relatively little work with these instruments has been reported for humic substances,...
How to use the Fast Fourier Transform in Large Finite Fields
Petersen, Petur Birgir
2011-01-01
The article contents suggestions on how to perform the Fast Fourier Transform over Large Finite Fields. The technique is to use the fact that the multiplicative groups of specific prime fields are surprisingly composite.
Computational chemistry, in conjunction with gas chromatography/mass spectrometry/Fourier transform infrared spectrometry (GC/MS/FT-IR), was used to tentatively identify seven tetrachlorobutadiene (TCBD) isomers detected in an environmental sample. Computation of the TCBD infrare...
Implementation of Period-Finding Algorithm by Means of Simulating Quantum Fourier Transform
Directory of Open Access Journals (Sweden)
Zohreh Moghareh Abed
2010-01-01
Full Text Available In this paper, we introduce quantum fourier transform as a key ingredient for many useful algorithms. These algorithms make a solution for problems which is considered to be intractable problems on a classical computer. Quantum Fourier transform is propounded as a key for quantum phase estimation algorithm. In this paper our aim is the implementation of period-finding algorithm.Quantum computer solves this problem, exponentially faster than classical one. Quantum phase estimation algorithm is the key for the period-finding problem .Therefore, by means of simulating quantum Fourier transform, we are able to implement the period-finding algorithm. In this paper, the simulation of quantum Fourier transform is carried out by Matlab software.
National Aeronautics and Space Administration — The Panchromatic Fourier Transform Spectrometer (PanFTS) is an imaging spectrometer that can measure pollutants, greenhouse gases, and aerosols as called for in the...
Improved method of generating bit reversed numbers for calculating fast fourier transform
Digital Repository Service at National Institute of Oceanography (India)
Suresh, T.
Fast Fourier Transform (FFT) is an important tool required for signal processing in defence applications. This paper reports an improved method for generating bit reversed numbers needed in calculating FFT using radix-2. The refined algorithm takes...
Fourier transform and mean quadratic variation of Bernoulli convolution on homogeneous Cantor set
Energy Technology Data Exchange (ETDEWEB)
Yu Zuguo E-mail: yuzg@hotmail.comz.yu
2004-07-01
For the Bernoulli convolution on homogeneous Cantor set, under some condition, it is proved that the mean quadratic variation and the average of Fourier transform of this measure are bounded above and below.
Hourani, Nadim; Andersson, Jan T.; Mö ller, Isabelle; Amad, Maan H.; Witt, Matthí as; Sarathy, Mani
2013-01-01
oil (VGO) and injected using the same method. The samples were analyzed using Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS). RESULTS PASH model analytes were successfully ionized and mainly [M + H]+ ions were produced. The same
Fourier transform of delayed fluorescence as an indicator of herbicide concentration.
Guo, Ya; Tan, Jinglu
2014-12-21
It is well known that delayed fluorescence (DF) from Photosystem II (PSII) of plant leaves can be potentially used to sense herbicide pollution and evaluate the effect of herbicides on plant leaves. The research of using DF as a measure of herbicides in the literature was mainly conducted in time domain and qualitative correlation was often obtained. Fourier transform is often used to analyze signals. Viewing DF signal in frequency domain through Fourier transform may allow separation of signal components and provide a quantitative method for sensing herbicides. However, there is a lack of an attempt to use Fourier transform of DF as an indicator of herbicide. In this work, the relationship between the Fourier transform of DF and herbicide concentration was theoretically modelled and analyzed, which immediately yielded a quantitative method to measure herbicide concentration in frequency domain. Experiments were performed to validate the developed method. Copyright © 2014 Elsevier Ltd. All rights reserved.
Experimental demonstrations of the properties of Fourier transforms using diffraction phenomena
International Nuclear Information System (INIS)
Bazin, M.J.; Lucie, P.H.; Oliveira, S.M.M. de.
1984-01-01
The standard mathematical properties of Fourier transforms and the experimental characteristics of diffraction phenomena are systematically brought together. An experimental realization of a particular case of the convolution theorem is displayed in details. (Author) [pt
Energy Technology Data Exchange (ETDEWEB)
Scargle, Jeffrey D.; Way, M. J.; Gazis, P. R., E-mail: Jeffrey.D.Scargle@nasa.gov, E-mail: Michael.J.Way@nasa.gov, E-mail: PGazis@sbcglobal.net [NASA Ames Research Center, Astrobiology and Space Science Division, Moffett Field, CA 94035 (United States)
2017-04-10
We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform of finely binned galaxy positions. In both cases, deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fourier transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multipoint hierarchy. We identify some threads of modern large-scale inference methodology that will presumably yield detections in new wider and deeper surveys.
Building a symbolic computer algebra toolbox to compute 2D Fourier transforms in polar coordinates.
Dovlo, Edem; Baddour, Natalie
2015-01-01
The development of a symbolic computer algebra toolbox for the computation of two dimensional (2D) Fourier transforms in polar coordinates is presented. Multidimensional Fourier transforms are widely used in image processing, tomographic reconstructions and in fact any application that requires a multidimensional convolution. By examining a function in the frequency domain, additional information and insights may be obtained. The advantages of our method include: •The implementation of the 2D Fourier transform in polar coordinates within the toolbox via the combination of two significantly simpler transforms.•The modular approach along with the idea of lookup tables implemented help avoid the issue of indeterminate results which may occur when attempting to directly evaluate the transform.•The concept also helps prevent unnecessary computation of already known transforms thereby saving memory and processing time.
International Nuclear Information System (INIS)
Scargle, Jeffrey D.; Way, M. J.; Gazis, P. R.
2017-01-01
We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform of finely binned galaxy positions. In both cases, deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fourier transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multipoint hierarchy. We identify some threads of modern large-scale inference methodology that will presumably yield detections in new wider and deeper surveys.
Fourier-transform infrared spectroscopic studies of dithia ...
Indian Academy of Sciences (India)
Unknown
limited region 1000–1150 cm–1.10 Therefore, in the present paper we report and analyse Fourier-trans- form infrared (FT-IR) spectra of S2TPP and its chemically prepared cation. 2. Experimental. Dithia tetraphenyl porphyrine was received from. Professor A L Verma as a gift and used without fur- ther purification. However ...
The parallel algorithm for the 2D discrete wavelet transform
Barina, David; Najman, Pavel; Kleparnik, Petr; Kula, Michal; Zemcik, Pavel
2018-04-01
The discrete wavelet transform can be found at the heart of many image-processing algorithms. Until now, the transform on general-purpose processors (CPUs) was mostly computed using a separable lifting scheme. As the lifting scheme consists of a small number of operations, it is preferred for processing using single-core CPUs. However, considering a parallel processing using multi-core processors, this scheme is inappropriate due to a large number of steps. On such architectures, the number of steps corresponds to the number of points that represent the exchange of data. Consequently, these points often form a performance bottleneck. Our approach appropriately rearranges calculations inside the transform, and thereby reduces the number of steps. In other words, we propose a new scheme that is friendly to parallel environments. When evaluating on multi-core CPUs, we consistently overcome the original lifting scheme. The evaluation was performed on 61-core Intel Xeon Phi and 8-core Intel Xeon processors.
Kohaupt, Ludwig
2015-01-01
The discrete Fourier series is a valuable tool developed and used by mathematicians and engineers alike. One of the most prominent applications is signal processing. Usually, it is important that the signals be transmitted fast, for example, when transmitting images over large distances such as between the moon and the earth or when generating…
Pulse shaping using the optical Fourier transform technique - for ultra-high-speed signal processing
DEFF Research Database (Denmark)
Palushani, Evarist; Oxenløwe, Leif Katsuo; Galili, Michael
2009-01-01
This paper reports on the generation of a 1.6 ps FWHM flat-top pulse using the optical Fourier transform technique. The pulse is validated in a 320 Gbit/s demultiplexing experiment.......This paper reports on the generation of a 1.6 ps FWHM flat-top pulse using the optical Fourier transform technique. The pulse is validated in a 320 Gbit/s demultiplexing experiment....
Analysis and application of Fourier transform spectroscopy in atmospheric remote sensing
Park, J. H.
1984-01-01
An analysis method for Fourier transform spectroscopy is summarized with applications to various types of distortion in atmospheric absorption spectra. This analysis method includes the fast Fourier transform method for simulating the interferometric spectrum and the nonlinear least-squares method for retrieving the information from a measured spectrum. It is shown that spectral distortions can be simulated quite well and that the correct information can be retrieved from a distorted spectrum by this analysis technique.
Static harmonization of dynamically harmonized Fourier transform ion cyclotron resonance cell.
Zhdanova, Ekaterina; Kostyukevich, Yury; Nikolaev, Eugene
2017-08-01
Static harmonization in the Fourier transform ion cyclotron resonance cell improves the resolving power of the cell and prevents dephasing of the ion cloud in the case of any trajectory of the charged particle, not necessarily axisymmetric cyclotron (as opposed to dynamic harmonization). We reveal that the Fourier transform ion cyclotron resonance cell with dynamic harmonization (paracell) is proved to be statically harmonized. The volume of the statically harmonized potential distribution increases with an increase in the number of trap segments.
OTDM-to-WDM Conversion of Complex Modulation Formats by Time-Domain Optical Fourier Transformation
DEFF Research Database (Denmark)
Palushani, Evarist; Richter, T.; Ludwig, R.
2012-01-01
We demonstrate the utilization of the optical Fourier transform technique for serial-to-parallel conversion of 64×10-GBd OTDM data tributaries with complex modulation formats into 50-GHz DWDM grid without loss of phase and amplitude information.......We demonstrate the utilization of the optical Fourier transform technique for serial-to-parallel conversion of 64×10-GBd OTDM data tributaries with complex modulation formats into 50-GHz DWDM grid without loss of phase and amplitude information....
Time-Domain Optical Fourier Transformation for OTDM-DWDM and DWDM-OTDM Conversion
DEFF Research Database (Denmark)
Mulvad, Hans Christian Hansen; Palushani, Evarist; Galili, Michael
2011-01-01
Applications of time-domain optical Fourier transformation (OFT) in ultra-high-speed optical time-division multiplexed systems (OTDM) are reviewed, with emphasis on the recent demonstrations of OFT-based conversion between the OTDM and DWDM formats.......Applications of time-domain optical Fourier transformation (OFT) in ultra-high-speed optical time-division multiplexed systems (OTDM) are reviewed, with emphasis on the recent demonstrations of OFT-based conversion between the OTDM and DWDM formats....
An improved model for whole genome phylogenetic analysis by Fourier transform.
Yin, Changchuan; Yau, Stephen S-T
2015-10-07
DNA sequence similarity comparison is one of the major steps in computational phylogenetic studies. The sequence comparison of closely related DNA sequences and genomes is usually performed by multiple sequence alignments (MSA). While the MSA method is accurate for some types of sequences, it may produce incorrect results when DNA sequences undergone rearrangements as in many bacterial and viral genomes. It is also limited by its computational complexity for comparing large volumes of data. Previously, we proposed an alignment-free method that exploits the full information contents of DNA sequences by Discrete Fourier Transform (DFT), but still with some limitations. Here, we present a significantly improved method for the similarity comparison of DNA sequences by DFT. In this method, we map DNA sequences into 2-dimensional (2D) numerical sequences and then apply DFT to transform the 2D numerical sequences into frequency domain. In the 2D mapping, the nucleotide composition of a DNA sequence is a determinant factor and the 2D mapping reduces the nucleotide composition bias in distance measure, and thus improving the similarity measure of DNA sequences. To compare the DFT power spectra of DNA sequences with different lengths, we propose an improved even scaling algorithm to extend shorter DFT power spectra to the longest length of the underlying sequences. After the DFT power spectra are evenly scaled, the spectra are in the same dimensionality of the Fourier frequency space, then the Euclidean distances of full Fourier power spectra of the DNA sequences are used as the dissimilarity metrics. The improved DFT method, with increased computational performance by 2D numerical representation, can be applicable to any DNA sequences of different length ranges. We assess the accuracy of the improved DFT similarity measure in hierarchical clustering of different DNA sequences including simulated and real datasets. The method yields accurate and reliable phylogenetic trees
Accelerating the Non-equispaced Fast Fourier Transform on Commodity Graphics Hardware
DEFF Research Database (Denmark)
Sørensen, Thomas Sangild; Schaeffter, Tobias; Noe, Karsten Østergaard
2008-01-01
We present a fast parallel algorithm to compute the Non-equispaced fast Fourier transform on commodity graphics hardware (the GPU). We focus particularly on a novel implementation of the convolution step in the transform, which was previously its most time consuming part. We describe the performa......We present a fast parallel algorithm to compute the Non-equispaced fast Fourier transform on commodity graphics hardware (the GPU). We focus particularly on a novel implementation of the convolution step in the transform, which was previously its most time consuming part. We describe...
A non-linear discrete transform for pattern recognition of discrete chaotic systems
International Nuclear Information System (INIS)
Karanikas, C.; Proios, G.
2003-01-01
It is shown, by an invertible non-linear discrete transform that any finite sequence or any collection of strings of any length can be presented as a random walk on trees. These transforms create the mathematical background for coding any information, for exploring its local variability and diversity. With the underlying computational algorithms, with several examples and applications we propose that these transforms can be used for pattern recognition of immune type. In other words we propose a mathematical platform for detecting self and non-self strings of any alphabet, based on a negative selection algorithms, for scouting data's periodicity and self-similarity and for measuring the diversity of chaotic strings with fractal dimension methods. In particular we estimate successfully the entropy and the ratio of chaotic data with self similarity. Moreover we give some applications of a non-linear denoising filter
A non-linear discrete transform for pattern recognition of discrete chaotic systems
Karanikas, C
2003-01-01
It is shown, by an invertible non-linear discrete transform that any finite sequence or any collection of strings of any length can be presented as a random walk on trees. These transforms create the mathematical background for coding any information, for exploring its local variability and diversity. With the underlying computational algorithms, with several examples and applications we propose that these transforms can be used for pattern recognition of immune type. In other words we propose a mathematical platform for detecting self and non-self strings of any alphabet, based on a negative selection algorithms, for scouting data's periodicity and self-similarity and for measuring the diversity of chaotic strings with fractal dimension methods. In particular we estimate successfully the entropy and the ratio of chaotic data with self similarity. Moreover we give some applications of a non-linear denoising filter.
Energy Technology Data Exchange (ETDEWEB)
Zheng, Y. [Pennsylvania State Univ., University Park, PA (United States)]|[Lawrence Berkeley Lab., CA (United States); Shirley, D.A. [Pennsylvania State Univ., University Park, PA (United States)
1995-02-01
The authors show by Fourier analyses of experimental data, with no further treatment, that the positions of all the strong peaks in Fourier transforms of angle-resolved photoemission extended fine structure (ARPEFS) from adsorbed surfaces can be explicitly predicted from a trial structure with an accuracy of about {+-} 0.3 {angstrom} based on a single-scattering cluster model together with the concept of a strong backscattering cone, and without any additional analysis. This characteristic of ARPEFS Fourier transforms can be developed as a simple method for determining the structures of adsorbed surfaces to an accuracy of about {+-} 0.1 {angstrom}.
A simple approach to Fourier aliasing
International Nuclear Information System (INIS)
Foadi, James
2007-01-01
In the context of discrete Fourier transforms the idea of aliasing as due to approximation errors in the integral defining Fourier coefficients is introduced and explained. This has the positive pedagogical effect of getting to the heart of sampling and the discrete Fourier transform without having to delve into effective, but otherwise long and structured, introductions to the topic, commonly met in advanced, specialized books
Directory of Open Access Journals (Sweden)
Farhad A. Namin
2016-08-01
Full Text Available A rigorous method for obtaining the diffraction patterns of quasicrystals is presented. Diffraction patterns are an essential analytical tool in the study of quasicrystals, since they can be used to determine their photonic resonances. Previous methods for approximating the diffraction patterns of quasicrystals have relied on evaluating the Fourier transform of finite-sized super-lattices. Our approach, on the other hand, is exact in the sense that it is based on a technique that embeds quasicrystals into higher dimensional periodic hyper-lattices, thereby completely capturing the properties of the infinite structure. The periodicity of the unit cell in the higher dimensional space can be exploited to obtain the Fourier series expansion in closed-form of the corresponding atomic surfaces. The utility of the method is demonstrated by applying it to one-dimensional Fibonacci and two-dimensional Penrose quasicrystals. The results are verified by comparing them to those obtained by using the conventional super-lattice method. It is shown that the conventional super-cell approach can lead to inaccurate results due to the continuous nature of the Fourier transform, since quasicrystals have a discrete spectrum, whereas the approach introduced in this paper generates discrete Fourier harmonics. Furthermore, the conventional approach requires very large super-cells and high-resolution sampling of the reciprocal space in order to produce accurate results leading to a very large computational burden, whereas the proposed method generates accurate results with a relatively small number of terms. Finally, we propose how this approach can be generalized from the vertex model, which assumes identical particles at all vertices, to a more realistic case where the quasicrystal is composed of different atoms.
Discrete wavelet transform: a tool in smoothing kinematic data.
Ismail, A R; Asfour, S S
1999-03-01
Motion analysis systems typically introduce noise to the displacement data recorded. Butterworth digital filters have been used to smooth the displacement data in order to obtain smoothed velocities and accelerations. However, this technique does not yield satisfactory results, especially when dealing with complex kinematic motions that occupy the low- and high-frequency bands. The use of the discrete wavelet transform, as an alternative to digital filters, is presented in this paper. The transform passes the original signal through two complementary low- and high-pass FIR filters and decomposes the signal into an approximation function and a detail function. Further decomposition of the signal results in transforming the signal into a hierarchy set of orthogonal approximation and detail functions. A reverse process is employed to perfectly reconstruct the signal (inverse transform) back from its approximation and detail functions. The discrete wavelet transform was applied to the displacement data recorded by Pezzack et al., 1977. The smoothed displacement data were twice differentiated and compared to Pezzack et al.'s acceleration data in order to choose the most appropriate filter coefficients and decomposition level on the basis of maximizing the percentage of retained energy (PRE) and minimizing the root mean square error (RMSE). Daubechies wavelet of the fourth order (Db4) at the second decomposition level showed better results than both the biorthogonal and Coiflet wavelets (PRE = 97.5%, RMSE = 4.7 rad s-2). The Db4 wavelet was then used to compress complex displacement data obtained from a noisy mathematically generated function. Results clearly indicate superiority of this new smoothing approach over traditional filters.
Uniform sparse bounds for discrete quadratic phase Hilbert transforms
Kesler, Robert; Arias, Darío Mena
2017-09-01
For each α \\in T consider the discrete quadratic phase Hilbert transform acting on finitely supported functions f : Z → C according to H^{α }f(n):= \\sum _{m ≠ 0} e^{iα m^2} f(n - m)/m. We prove that, uniformly in α \\in T , there is a sparse bound for the bilinear form for every pair of finitely supported functions f,g : Z→ C . The sparse bound implies several mapping properties such as weighted inequalities in an intersection of Muckenhoupt and reverse Hölder classes.
Discrete Wavelet Transform for Fault Locations in Underground Distribution System
Apisit, C.; Ngaopitakkul, A.
2010-10-01
In this paper, a technique for detecting faults in underground distribution system is presented. Discrete Wavelet Transform (DWT) based on traveling wave is employed in order to detect the high frequency components and to identify fault locations in the underground distribution system. The first peak time obtained from the faulty bus is employed for calculating the distance of fault from sending end. The validity of the proposed technique is tested with various fault inception angles, fault locations and faulty phases. The result is found that the proposed technique provides satisfactory result and will be very useful in the development of power systems protection scheme.
Image processing tensor transform and discrete tomography with Matlab
Grigoryan, Artyom M
2012-01-01
Focusing on mathematical methods in computer tomography, Image Processing: Tensor Transform and Discrete Tomography with MATLAB(R) introduces novel approaches to help in solving the problem of image reconstruction on the Cartesian lattice. Specifically, it discusses methods of image processing along parallel rays to more quickly and accurately reconstruct images from a finite number of projections, thereby avoiding overradiation of the body during a computed tomography (CT) scan. The book presents several new ideas, concepts, and methods, many of which have not been published elsewhere. New co
A Fourier analysis on the maximum acceptable grid size for discrete proton beam dose calculation
International Nuclear Information System (INIS)
Li, Haisen S.; Romeijn, H. Edwin; Dempsey, James F.
2006-01-01
We developed an analytical method for determining the maximum acceptable grid size for discrete dose calculation in proton therapy treatment plan optimization, so that the accuracy of the optimized dose distribution is guaranteed in the phase of dose sampling and the superfluous computational work is avoided. The accuracy of dose sampling was judged by the criterion that the continuous dose distribution could be reconstructed from the discrete dose within a 2% error limit. To keep the error caused by the discrete dose sampling under a 2% limit, the dose grid size cannot exceed a maximum acceptable value. The method was based on Fourier analysis and the Shannon-Nyquist sampling theorem as an extension of our previous analysis for photon beam intensity modulated radiation therapy [J. F. Dempsey, H. E. Romeijn, J. G. Li, D. A. Low, and J. R. Palta, Med. Phys. 32, 380-388 (2005)]. The proton beam model used for the analysis was a near mono-energetic (of width about 1% the incident energy) and monodirectional infinitesimal (nonintegrated) pencil beam in water medium. By monodirection, we mean that the proton particles are in the same direction before entering the water medium and the various scattering prior to entrance to water is not taken into account. In intensity modulated proton therapy, the elementary intensity modulation entity for proton therapy is either an infinitesimal or finite sized beamlet. Since a finite sized beamlet is the superposition of infinitesimal pencil beams, the result of the maximum acceptable grid size obtained with infinitesimal pencil beam also applies to finite sized beamlet. The analytic Bragg curve function proposed by Bortfeld [T. Bortfeld, Med. Phys. 24, 2024-2033 (1997)] was employed. The lateral profile was approximated by a depth dependent Gaussian distribution. The model included the spreads of the Bragg peak and the lateral profiles due to multiple Coulomb scattering. The dependence of the maximum acceptable dose grid size on the
Liu, Lian; Yang, Xiukun; Zhong, Mingliang; Liu, Yao; Jing, Xiaojun; Yang, Qin
2018-04-01
The discrete fractional Brownian incremental random (DFBIR) field is used to describe the irregular, random, and highly complex shapes of natural objects such as coastlines and biological tissues, for which traditional Euclidean geometry cannot be used. In this paper, an anisotropic variable window (AVW) directional operator based on the DFBIR field model is proposed for extracting spatial characteristics of Fourier transform infrared spectroscopy (FTIR) microscopic imaging. Probabilistic principal component analysis first extracts spectral features, and then the spatial features of the proposed AVW directional operator are combined with the former to construct a spatial-spectral structure, which increases feature-related information and helps a support vector machine classifier to obtain more efficient distribution-related information. Compared to Haralick’s grey-level co-occurrence matrix, Gabor filters, and local binary patterns (e.g. uniform LBPs, rotation-invariant LBPs, uniform rotation-invariant LBPs), experiments on three FTIR spectroscopy microscopic imaging datasets show that the proposed AVW directional operator is more advantageous in terms of classification accuracy, particularly for low-dimensional spaces of spatial characteristics.
Energy Technology Data Exchange (ETDEWEB)
Poust, Benjamin [Department of Materials Science and Engineering, University of California, Los Angeles, CA (United States); Northrop Grumman Space Technology, Redondo Beach, CA (United States); Sandhu, Rajinder [Northrop Grumman Space Technology, Redondo Beach, CA (United States); Goorsky, Mark [Department of Materials Science and Engineering, University of California, Los Angeles, CA (United States)
2009-08-15
Layer thickness determination of single and multi-layer structures is achieved using a new method for generating Fourier transforms (FTs) of X-ray reflectivity data. This enhanced Fourier analysis is compared to other techniques in the determination of AlN layer thickness deposited on sapphire. In addition to demonstrably improved results, the results also agree with thicknesses determined using simulations and TEM measurements. The effectiveness of the technique is further demonstrated using the more complicated metamorphic epitaxial multi-layer AlSb/InAs structures deposited on GaAs. The approach reported here is based upon differentiating the specular intensity with respect to the vertical reciprocal space coordinate Q{sub Z}. In general, differentiation is far more effective at removing the sloping background present in reflectivity scans than logarithmic compression alone, average subtraction alone, or other methods. When combined with any of the other enhancement techniques, however, differentiation yields distinguishable discrete Fourier transform (DFT) power spectrum peaks for even the weakest and most truncated of sloping oscillations that are present in many reflectivity scans from multi-layer structures. (Abstract Copyright [2009], Wiley Periodicals, Inc.)
Towards discrete wavelet transform-based human activity recognition
Khare, Manish; Jeon, Moongu
2017-06-01
Providing accurate recognition of human activities is a challenging problem for visual surveillance applications. In this paper, we present a simple and efficient algorithm for human activity recognition based on a wavelet transform. We adopt discrete wavelet transform (DWT) coefficients as a feature of human objects to obtain advantages of its multiresolution approach. The proposed method is tested on multiple levels of DWT. Experiments are carried out on different standard action datasets including KTH and i3D Post. The proposed method is compared with other state-of-the-art methods in terms of different quantitative performance measures. The proposed method is found to have better recognition accuracy in comparison to the state-of-the-art methods.
High Accuracy Evaluation of the Finite Fourier Transform Using Sampled Data
Morelli, Eugene A.
1997-01-01
Many system identification and signal processing procedures can be done advantageously in the frequency domain. A required preliminary step for this approach is the transformation of sampled time domain data into the frequency domain. The analytical tool used for this transformation is the finite Fourier transform. Inaccuracy in the transformation can degrade system identification and signal processing results. This work presents a method for evaluating the finite Fourier transform using cubic interpolation of sampled time domain data for high accuracy, and the chirp Zeta-transform for arbitrary frequency resolution. The accuracy of the technique is demonstrated in example cases where the transformation can be evaluated analytically. Arbitrary frequency resolution is shown to be important for capturing details of the data in the frequency domain. The technique is demonstrated using flight test data from a longitudinal maneuver of the F-18 High Alpha Research Vehicle.
Magneto-sensor circuit efficiency incremented by Fourier-transformation
Talukdar, Abdul Hafiz Ibne; Useinov, Arthur; Hussain, Muhammad Mustafa
2011-01-01
In this paper detection by recognized intelligent algorithm for different magnetic films with the aid of a cost-effective and simple high efficient circuit are realized. Well-known, magnetic films generate oscillating frequencies when they stay a part of an LC- oscillatory circuit. These frequencies can be further analyzed to gather information about their magnetic properties. For the first time in this work we apply the signal analysis in frequency domain to create the Fourier frequency spectra which was used to detect the sample properties and their recognition. In this paper we have summarized both the simulation and experimental results. © 2011 Elsevier Ltd. All rights reserved.
Magneto-sensor circuit efficiency incremented by Fourier-transformation
Talukdar, Abdul Hafiz Ibne
2011-10-01
In this paper detection by recognized intelligent algorithm for different magnetic films with the aid of a cost-effective and simple high efficient circuit are realized. Well-known, magnetic films generate oscillating frequencies when they stay a part of an LC- oscillatory circuit. These frequencies can be further analyzed to gather information about their magnetic properties. For the first time in this work we apply the signal analysis in frequency domain to create the Fourier frequency spectra which was used to detect the sample properties and their recognition. In this paper we have summarized both the simulation and experimental results. © 2011 Elsevier Ltd. All rights reserved.
On the discrete version of Gabor's signal expansion, the Gabor transform, and the Zak transform
Bastiaans, M.J.; Veen, J.P.
1996-01-01
Gabors expansion of a discrete-time signal into a set of shifted and modulated versions of an elementary signal or synthesis window is introduced, along with the inverse operation, i.e., the Gabor transform, which uses an analysis window that is related to the synthesis window and with the help of
A difference tracking algorithm based on discrete sine transform
Liu, HaoPeng; Yao, Yong; Lei, HeBing; Wu, HaoKun
2018-04-01
Target tracking is an important field of computer vision. The template matching tracking algorithm based on squared difference matching (SSD) and standard correlation coefficient (NCC) matching is very sensitive to the gray change of image. When the brightness or gray change, the tracking algorithm will be affected by high-frequency information. Tracking accuracy is reduced, resulting in loss of tracking target. In this paper, a differential tracking algorithm based on discrete sine transform is proposed to reduce the influence of image gray or brightness change. The algorithm that combines the discrete sine transform and the difference algorithm maps the target image into a image digital sequence. The Kalman filter predicts the target position. Using the Hamming distance determines the degree of similarity between the target and the template. The window closest to the template is determined the target to be tracked. The target to be tracked updates the template. Based on the above achieve target tracking. The algorithm is tested in this paper. Compared with SSD and NCC template matching algorithms, the algorithm tracks target stably when image gray or brightness change. And the tracking speed can meet the read-time requirement.
Description of the electron-hydrogen collision by the Coulomb Fourier transform method
International Nuclear Information System (INIS)
Levin, S.B.
2005-01-01
A recently developed Coulomb Fourier Transform method is applied to the system containing one heavy ion and two electrons. The transformed Hamiltonian is described with a controlled accuracy in an effective finite basis set as a finite dimensional operator matrix. The kernels of interaction are formulated in terms of the so called Nordsieck integrals
Fourier transforms on Cantor sets: A study in non-Diophantine arithmetic and calculus
International Nuclear Information System (INIS)
Aerts, Diederik; Czachor, Marek; Kuna, Maciej
2016-01-01
Highlights: • Fractal arithmetic allows to define Fourier transforms on Cantor-like sets. • General construction is illustrated on the example of a sawtooth signal. • The formalism is much simpler than the approaches discussed so far in the literature. - Abstract: Fractals equipped with intrinsic arithmetic lead to a natural definition of differentiation, integration, and complex structure. Applying the formalism to the problem of a Fourier transform on fractals we show that the resulting transform has all the required basic properties. As an example we discuss a sawtooth signal on the ternary middle-third Cantor set. The formalism works also for fractals that are not self-similar.
Nonlinear Fourier transforms for the sine-Gordon equation in the quarter plane
Huang, Lin; Lenells, Jonatan
2018-03-01
Using the Unified Transform, also known as the Fokas method, the solution of the sine-Gordon equation in the quarter plane can be expressed in terms of the solution of a matrix Riemann-Hilbert problem whose definition involves four spectral functions a , b , A , B. The functions a (k) and b (k) are defined via a nonlinear Fourier transform of the initial data, whereas A (k) and B (k) are defined via a nonlinear Fourier transform of the boundary values. In this paper, we provide an extensive study of these nonlinear Fourier transforms and the associated eigenfunctions under weak regularity and decay assumptions on the initial and boundary values. The results can be used to determine the long-time asymptotics of the sine-Gordon quarter-plane solution via nonlinear steepest descent techniques.
3-D discrete shearlet transform and video processing.
Negi, Pooran Singh; Labate, Demetrio
2012-06-01
In this paper, we introduce a digital implementation of the 3-D shearlet transform and illustrate its application to problems of video denoising and enhancement. The shearlet representation is a multiscale pyramid of well-localized waveforms defined at various locations and orientations, which was introduced to overcome the limitations of traditional multiscale systems in dealing with multidimensional data. While the shearlet approach shares the general philosophy of curvelets and surfacelets, it is based on a very different mathematical framework, which is derived from the theory of affine systems and uses shearing matrices rather than rotations. This allows a natural transition from the continuous setting to the digital setting and a more flexible mathematical structure. The 3-D digital shearlet transform algorithm presented in this paper consists in a cascade of a multiscale decomposition and a directional filtering stage. The filters employed in this decomposition are implemented as finite-length filters, and this ensures that the transform is local and numerically efficient. To illustrate its performance, the 3-D discrete shearlet transform is applied to problems of video denoising and enhancement, and compared against other state-of-the-art multiscale techniques, including curvelets and surfacelets.
Does the entorhinal cortex use the Fourier transform?
Orchard, Jeff; Yang, Hao; Ji, Xiang
2013-01-01
Some neurons in the entorhinal cortex (EC) fire bursts when the animal occupies locations organized in a hexagonal grid pattern in their spatial environment. Place cells have also been observed, firing bursts only when the animal occupies a particular region of the environment. Both of these types of cells exhibit theta-cycle modulation, firing bursts in the 4–12 Hz range. Grid cells fire bursts of action potentials that precess with respect to the theta cycle, a phenomenon dubbed “theta precession.” Various models have been proposed to explain these phenomena, and how they relate to navigation. Among the most promising are the oscillator interference models. The bank-of-oscillators model proposed by Welday et al. (2011) exhibits all these features. However, their simulations are based on theoretical oscillators, and not implemented entirely with spiking neurons. We extend their work in a number of ways. First, we place the oscillators in a frequency domain and reformulate the model in terms of Fourier theory. Second, this perspective suggests a division of labor for implementing spatial maps: position vs. map layout. The animal's position is encoded in the phases of the oscillators, while the spatial map shape is encoded implicitly in the weights of the connections between the oscillators and the read-out nodes. Third, it reveals that the oscillator phases all need to conform to a linear relationship across the frequency domain. Fourth, we implement a partial model of the EC using spiking leaky integrate-and-fire (LIF) neurons. Fifth, we devise new coupling mechanisms, enlightened by the global phase constraint, and show they are capable of keeping spiking neural oscillators in consistent formation. Our model demonstrates place cells, grid cells, and phase precession. The Fourier model also gives direction for future investigations, such as integrating sensory feedback to combat drift, or explaining why grid cells exist at all. PMID:24376415
Full-frame compression of discrete wavelet and cosine transforms
Lo, Shih-Chung B.; Li, Huai; Krasner, Brian; Freedman, Matthew T.; Mun, Seong K.
1995-04-01
At the foreground of computerized radiology and the filmless hospital are the possibilities for easy image retrieval, efficient storage, and rapid image communication. This paper represents the authors' continuous efforts in compression research on full-frame discrete wavelet (FFDWT) and full-frame discrete cosine transforms (FFDCT) for medical image compression. Prior to the coding, it is important to evaluate the global entropy in the decomposed space. It is because of the minimum entropy, that a maximum compression efficiency can be achieved. In this study, each image was split into the top three most significant bit (MSB) and the remaining remapped least significant bit (RLSB) images. The 3MSB image was compressed by an error-free contour coding and received an average of 0.1 bit/pixel. The RLSB image was either transformed to a multi-channel wavelet or the cosine transform domain for entropy evaluation. Ten x-ray chest radiographs and ten mammograms were randomly selected from our clinical database and were used for the study. Our results indicated that the coding scheme in the FFDCT domain performed better than in FFDWT domain for high-resolution digital chest radiographs and mammograms. From this study, we found that decomposition efficiency in the DCT domain for relatively smooth images is higher than that in the DWT. However, both schemes worked just as well for low resolution digital images. We also found that the image characteristics of the `Lena' image commonly used in the compression literature are very different from those of radiological images. The compression outcome of the radiological images can not be extrapolated from the compression result based on the `Lena.'
Fourier transform and controlling of flux in scalar hysteresis measurement
International Nuclear Information System (INIS)
Kuczmann, Miklos
2008-01-01
The paper deals with a possible realization of eliminating the effect of noise in scalar hysteresis measurements. The measured signals have been transformed into the frequency domain, and, after applying digital filter, the spectrums of the filtered signals have been transformed back to the time domain. The proposed technique results in an accurate noise-removal algorithm. The paper illustrates a fast controlling algorithm applying the inverse of the actually measured hysteresis loop, and another proportional one to measure distorted flux pattern. By developing the mentioned algorithms, it aims at the controlling of a more complicated phenomena, i.e. measuring the vector hysteresis characteristics
Effective Approach to Calculate Analysis Window in Infinite Discrete Gabor Transform
Directory of Open Access Journals (Sweden)
Rui Li
2018-01-01
Full Text Available The long-periodic/infinite discrete Gabor transform (DGT is more effective than the periodic/finite one in many applications. In this paper, a fast and effective approach is presented to efficiently compute the Gabor analysis window for arbitrary given synthesis window in DGT of long-periodic/infinite sequences, in which the new orthogonality constraint between analysis window and synthesis window in DGT for long-periodic/infinite sequences is derived and proved to be equivalent to the completeness condition of the long-periodic/infinite DGT. By using the property of delta function, the original orthogonality can be expressed as a certain number of linear equation sets in both the critical sampling case and the oversampling case, which can be fast and efficiently calculated by fast discrete Fourier transform (FFT. The computational complexity of the proposed approach is analyzed and compared with that of the existing canonical algorithms. The numerical results indicate that the proposed approach is efficient and fast for computing Gabor analysis window in both the critical sampling case and the oversampling case in comparison to existing algorithms.
Jiang, Hongzhen; Liu, Xu; Liu, Yong; Li, Dong; Chen, Zhu; Zheng, Fanglan; Yu, Deqiang
2017-10-01
An effective approach for reconstructing on-axis lensless Fourier Transform digital hologram by using the screen division method is proposed. Firstly, the on-axis Fourier Transform digital hologram is divided into sub-holograms. Then the reconstruction result of every sub-hologram is obtained according to the position of corresponding sub-hologram in the hologram reconstruction plane with Fourier transform operation. Finally, the reconstruction image of on-axis Fourier Transform digital hologram can be acquired by the superposition of the reconstruction result of sub-holograms. Compared with the traditional reconstruction method with the phase shifting technology, in which multiple digital holograms are required to record for obtaining the reconstruction image, this method can obtain the reconstruction image with only one digital hologram and therefore greatly simplify the recording and reconstruction process of on-axis lensless Fourier Transform digital holography. The effectiveness of the proposed method is well proved with the experimental results and it will have potential application foreground in the holographic measurement and display field.
Method of local pointed function reduction of original shape in Fourier transformation
International Nuclear Information System (INIS)
Dosch, H.; Slavyanov, S.Yu.
2002-01-01
The method for analytical reduction of the original shape in the one-dimensional Fourier transformation by the fourier image modulus is proposed. The basic concept of the method consists in the presentation of the model shape in the form of the local peak functions sum. The eigenfunctions, generated by the linear differential equations with the polynomial coefficients, are selected as the latter ones. This provides for the possibility of managing the Fourier transformation without numerical integration. This reduces the reverse task to the nonlinear regression with a small number of the evaluated parameters and to the numerical or asymptotic study on the model peak functions - the eigenfunctions of the differential tasks and their fourier images [ru
On Analog of Fourier Transform in Interior of the Light Cone
Directory of Open Access Journals (Sweden)
Tatyana Shtepina
2014-01-01
Full Text Available We introduce an analog of Fourier transform Fhρ in interior of light cone that commutes with the action of the Lorentz group. We describe some properties of Fhρ, namely, its action on pseudoradial functions and functions being products of pseudoradial function and space hyperbolic harmonics. We prove that Fhρ-transform gives a one-to-one correspondence on each of the irreducible components of quasiregular representation. We calculate the inverse transform too.
Products of multiple Fourier series with application to the multiblade transformation
Kunz, D. L.
1981-01-01
A relatively simple and systematic method for forming the products of multiple Fourier series using tensor like operations is demonstrated. This symbolic multiplication can be performed for any arbitrary number of series, and the coefficients of a set of linear differential equations with periodic coefficients from a rotating coordinate system to a nonrotating system is also demonstrated. It is shown that using Fourier operations to perform this transformation make it easily understood, simple to apply, and generally applicable.
Computer Generation of Fourier Transform Libraries for Distributed Memory Architectures
2010-12-01
tractions used in quantum chemistry . It too performs algebraic transformations tominimize the operations count, and then optimizes code based on...existing parallel DFT algorithms, including their strengths and weaknesses. Four-stepFFT.The four-step algorithm [Hegland, 1994;Norton and Silberger , 1987...Sadayappan, and Alexander Sibiryakov. Synthesis of high-performance parallel programs for a class of ab initio quan- tum chemistry models. Proc. of
Can we use the known fast spherical fourier transforms in numerical meterology?
Sprengel, F.
2001-01-01
In numerical meteorology, there are many solvers using spectral methods. Most of the computing time is spent computing the discrete Legendre function transforms. The aim of this paper is to clarify whether the recently published fast Legendre function transforms can be used here.
Application and sensitivity investigation of Fourier transforms for microwave radiometric inversions
Holmes, J. J.; Balanis, C. A.
1974-01-01
Existing microwave radiometer technology now provides a suitable method for remote determination of the ocean surface's absolute brightness temperature. To extract the brightness temperature of the water from the antenna temperature equation, an unstable Fredholm integral equation of the first kind was solved. Fast Fourier Transform techniques were used to invert the integral after it is placed into a cross-correlation form. Application and verification of the methods to a two-dimensional modeling of a laboratory wave tank system were included. The instability of the Fredholm equation was then demonstrated and a restoration procedure was included which smooths the resulting oscillations. With the recent availability and advances of Fast Fourier Transform techniques, the method presented becomes very attractive in the evaluation of large quantities of data. Actual radiometric measurements of sea water are inverted using the restoration method, incorporating the advantages of the Fast Fourier Transform algorithm for computations.
van Agthoven, Maria A; Barrow, Mark P; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O'Connor, Peter B
2015-12-01
Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2D mass spectrum to determine fragmentation mechanisms of known compounds and to gain information on unknown ion species in the spectrum. In concert with high resolution mass spectrometry, 2D Fourier transform ion cyclotron resonance mass spectrometry can be a useful tool for the structural analysis of small molecules. Graphical Abstract ᅟ.
Functional differential equations for the q-Fourier transform of q-Gaussians
International Nuclear Information System (INIS)
Umarov, S; Queiros, S M Duarte
2010-01-01
In this paper the question 'is the q-Fourier transform of a q-Gaussian a q'-Gaussian (with some q') up to a constant factor?' is studied for the whole range of q in (- infty, 3). This question is connected with applicability of the q-Fourier transform in the study of limit processes in nonextensive statistical mechanics. Using the functional differential equation approach we prove that the answer is affirmative if and only if 1 ≤ q < 3, excluding two particular cases of q < 1, namely q=1/2 and q=2/3. Complementarily, we discuss some applications of the q-Fourier transform to nonlinear partial differential equations such as the porous medium equation.
Functional differential equations for the q-Fourier transform of q-Gaussians
Energy Technology Data Exchange (ETDEWEB)
Umarov, S [Department of Mathematics, Tufts University, Medford, MA (United States); Queiros, S M Duarte, E-mail: sdqueiro@gmail.co [Unilever R and D Port Sunlight, Quarry Road East, Wirral, CH63 3JW (United Kingdom)
2010-02-05
In this paper the question 'is the q-Fourier transform of a q-Gaussian a q'-Gaussian (with some q') up to a constant factor?' is studied for the whole range of q in (- infty, 3). This question is connected with applicability of the q-Fourier transform in the study of limit processes in nonextensive statistical mechanics. Using the functional differential equation approach we prove that the answer is affirmative if and only if 1 <= q < 3, excluding two particular cases of q < 1, namely q=1/2 and q=2/3. Complementarily, we discuss some applications of the q-Fourier transform to nonlinear partial differential equations such as the porous medium equation.
Adaptive discrete cosine transform coding algorithm for digital mammography
Baskurt, Atilla M.; Magnin, Isabelle E.; Goutte, Robert
1992-09-01
The need for storage, transmission, and archiving of medical images has led researchers to develop adaptive and efficient data compression techniques. Among medical images, x-ray radiographs of the breast are especially difficult to process because of their particularly low contrast and very fine structures. A block adaptive coding algorithm based on the discrete cosine transform to compress digitized mammograms is described. A homogeneous repartition of the degradation in the decoded images is obtained using a spatially adaptive threshold. This threshold depends on the coding error associated with each block of the image. The proposed method is tested on a limited number of pathological mammograms including opacities and microcalcifications. A comparative visual analysis is performed between the original and the decoded images. Finally, it is shown that data compression with rather high compression rates (11 to 26) is possible in the mammography field.
SECURE VISUAL SECRET SHARING BASED ON DISCRETE WAVELET TRANSFORM
Directory of Open Access Journals (Sweden)
S. Jyothi Lekshmi
2015-08-01
Full Text Available Visual Cryptography Scheme (VCS is an encryption method to encode secret written materials. This method converts the secret written material into an image. Then encode this secret image into n shadow images called shares. For the recreation of the original secret, all or some selected subsets of shares are needed; individual shares are of no use on their own. The secret image can be recovered simply by selecting some subset of these n shares, makes transparencies of them and stacking on top of each other. Nowadays, the data security has an important role. The shares can be altered by an attacker. So providing security to the shares is important. This paper proposes a method of adding security to cryptographic shares. This method uses two dimensional discrete wavelet transform to hide visual secret shares. Then the hidden secrets are distributed among participants through the internet. All hidden shares are extracted to reconstruct the secret.
Psychoacoustic Music Analysis Based on the Discrete Wavelet Packet Transform
Directory of Open Access Journals (Sweden)
Xing He
2008-01-01
Full Text Available Psychoacoustical computational models are necessary for the perceptual processing of acoustic signals and have contributed significantly in the development of highly efficient audio analysis and coding. In this paper, we present an approach for the psychoacoustic analysis of musical signals based on the discrete wavelet packet transform. The proposed method mimics the multiresolution properties of the human ear closer than other techniques and it includes simultaneous and temporal auditory masking. Experimental results show that this method provides better masking capabilities and it reduces the signal-to-masking ratio substantially more than other approaches, without introducing audible distortion. This model can lead to greater audio compression by permitting further bit rate reduction and more secure watermarking by providing greater signal space for information hiding.
Long memory analysis by using maximal overlapping discrete wavelet transform
Shafie, Nur Amalina binti; Ismail, Mohd Tahir; Isa, Zaidi
2015-05-01
Long memory process is the asymptotic decay of the autocorrelation or spectral density around zero. The main objective of this paper is to do a long memory analysis by using the Maximal Overlapping Discrete Wavelet Transform (MODWT) based on wavelet variance. In doing so, stock market of Malaysia, China, Singapore, Japan and United States of America are used. The risk of long term and short term investment are also being looked into. MODWT can be analyzed with time domain and frequency domain simultaneously and decomposing wavelet variance to different scales without loss any information. All countries under studied show that they have long memory. Subprime mortgage crisis in 2007 is occurred in the United States of America are possible affect to the major trading countries. Short term investment is more risky than long term investment.
A Laplace transform method for energy multigroup hybrid discrete ordinates
International Nuclear Information System (INIS)
Segatto, C.F.; Vilhena, M.T.; Barros, R.C.
2010-01-01
In typical lattice cells where a highly absorbing, small fuel element is embedded in the moderator, a large weakly absorbing medium, high-order transport methods become unnecessary. In this work we describe a hybrid discrete ordinates (S N) method for energy multigroup slab lattice calculations. This hybrid S N method combines the convenience of a low-order S N method in the moderator with a high-order S N method in the fuel. The idea is based on the fact that in weakly absorbing media whose physical size is several neutron mean free paths in extent, even the S 2 method (P 1 approximation), leads to an accurate result. We use special fuel-moderator interface conditions and the Laplace transform (LTS N ) analytical numerical method to calculate the two-energy group neutron flux distributions and the thermal disadvantage factor. We present numerical results for a range of typical model problems.
Reduction and coding of synthetic aperture radar data with Fourier transforms
Tilley, David G.
1995-01-01
Recently, aboard the Space Radar Laboratory (SRL), the two roles of Fourier Transforms for ocean image synthesis and surface wave analysis have been implemented with a dedicated radar processor to significantly reduce Synthetic Aperture Radar (SAR) ocean data before transmission to the ground. The object was to archive the SAR image spectrum, rather than the SAR image itself, to reduce data volume and capture the essential descriptors of the surface wave field. SAR signal data are usually sampled and coded in the time domain for transmission to the ground where Fourier Transforms are applied both to individual radar pulses and to long sequences of radar pulses to form two-dimensional images. High resolution images of the ocean often contain no striking features and subtle image modulations by wind generated surface waves are only apparent when large ocean regions are studied, with Fourier transforms, to reveal periodic patterns created by wind stress over the surface wave field. Major ocean currents and atmospheric instability in coastal environments are apparent as large scale modulations of SAR imagery. This paper explores the possibility of computing complex Fourier spectrum codes representing SAR images, transmitting the coded spectra to Earth for data archives and creating scenes of surface wave signatures and air-sea interactions via inverse Fourier transformations with ground station processors.
Pei, Soo-Chang; Ding, Jian-Jiun
2005-03-01
Prolate spheroidal wave functions (PSWFs) are known to be useful for analyzing the properties of the finite-extension Fourier transform (fi-FT). We extend the theory of PSWFs for the finite-extension fractional Fourier transform, the finite-extension linear canonical transform, and the finite-extension offset linear canonical transform. These finite transforms are more flexible than the fi-FT and can model much more generalized optical systems. We also illustrate how to use the generalized prolate spheroidal functions we derive to analyze the energy-preservation ratio, the self-imaging phenomenon, and the resonance phenomenon of the finite-sized one-stage or multiple-stage optical systems.
On a q-extension of Mehta's eigenvectors of the finite Fourier transform for q a root of unity
Atakishiyeva, Mesuma K.; Atakishiyev, Natig M.; Koornwinder, Tom H.
2008-01-01
It is shown that the continuous q-Hermite polynomials for q a root of unity have simple transformation properties with respect to the classical Fourier transform. This result is then used to construct q-extended eigenvectors of the finite Fourier transform in terms of these polynomials.
q-Extension of Mehta's eigenvectors of the finite Fourier transform for q, a root of unity
Atakishiyeva, M.K.; Atakishiyev, N.M.; Koornwinder, T.H.
2009-01-01
It is shown that the continuous q-Hermite polynomials for q, a root of unity, have simple transformation properties with respect to the classical Fourier transform. This result is then used to construct q-extended eigenvectors of the finite Fourier transform in terms of these polynomials.
The discrete Painleve II equations: Miura and auto-Baecklund transformations
International Nuclear Information System (INIS)
Carstea, A S; Ramani, A; Willox, R; Grammaticos, B
2003-01-01
We present Miura transformations for all discrete Painleve II equations known to date. We then use these Miuras to derive special solutions in terms of discrete Airy functions and to construct auto-Baecklund transformations for the discrete Painleve equations. These transformations are then used to generate rational solutions. Some new forms of d-P II and d-P 34 are obtained as well
International Nuclear Information System (INIS)
Underwood, D.
1986-01-01
Simple examples of finding tracks by Fourier transform with filter or correlation function are presented. Possibilities for using this method in more complicated real situations and the processing times which might be achieved are discussed. The method imitates the simplest examples in the literature on optical pattern recognition and optical processing. The possible benefits of the method are in speed of processing in the optical Fourier transform wherein an entire picture is processed simultaneously. The speed of a computer vector processor may be competitive with present electro-optical devices. 2 refs., 6 figs
The Fourier transform as a signature for chaos in nuclear energy levels
International Nuclear Information System (INIS)
Bybee, C.R.; Mitchell, G.E.; Shriner, J.F. Jr.
1996-01-01
The Fourier transform of the autocorrelation function is an alternative test to characterize level statistics. For GOE statistics there is a suppression of the Fourier transform near the origin; this correlation hole is absent for Poisson statistics. Numerical modeling has been used to quantify the method and determine the dependence of the correlation-hole area on number, density, sampling interval, and fraction of missing or spurious levels. For large N the normalized correlation-hole area is a nearly universal constant and insensitive to missing and spurious levels. However, for the smaller sample sizes typical of nuclear data, application of the FT method yields ambiguous results. (orig.)
OTDM-WDM Conversion Based on Time-Domain Optical Fourier Transformation with Spectral Compression
DEFF Research Database (Denmark)
Mulvad, Hans Christian Hansen; Palushani, Evarist; Galili, Michael
2011-01-01
We propose a scheme enabling direct serial-to-parallel conversion of OTDM data tributaries onto a WDM grid, based on optical Fourier transformation with spectral compression. Demonstrations on 320 Gbit/s and 640 Gbit/s OTDM data are shown.......We propose a scheme enabling direct serial-to-parallel conversion of OTDM data tributaries onto a WDM grid, based on optical Fourier transformation with spectral compression. Demonstrations on 320 Gbit/s and 640 Gbit/s OTDM data are shown....
Eliminating the zero spectrum in Fourier transform profilometry using empirical mode decomposition.
Li, Sikun; Su, Xianyu; Chen, Wenjing; Xiang, Liqun
2009-05-01
Empirical mode decomposition is introduced into Fourier transform profilometry to extract the zero spectrum included in the deformed fringe pattern without the need for capturing two fringe patterns with pi phase difference. The fringe pattern is subsequently demodulated using a standard Fourier transform profilometry algorithm. With this method, the deformed fringe pattern is adaptively decomposed into a finite number of intrinsic mode functions that vary from high frequency to low frequency by means of an algorithm referred to as a sifting process. Then the zero spectrum is separated from the high-frequency components effectively. Experiments validate the feasibility of this method.
Local structure information by EXAFS analysis using two algorithms for Fourier transform calculation
International Nuclear Information System (INIS)
Aldea, N; Pintea, S; Rednic, V; Matei, F; Hu Tiandou; Xie Yaning
2009-01-01
The present work is a comparison study between different algorithms of Fourier transform for obtaining very accurate local structure results using Extended X-ray Absorption Fine Structure technique. In this paper we focus on the local structural characteristics of supported nickel catalysts and Fe 3 O 4 core-shell nanocomposites. The radial distribution function could be efficiently calculated by the fast Fourier transform when the coordination shells are well separated while the Filon quadrature gave remarkable results for close-shell coordination.
Chen, Hang; Liu, Zhengjun; Chen, Qi; Blondel, Walter; Varis, Pierre
2018-05-01
In this letter, what we believe is a new technique for optical color image encryption by using Fresnel diffraction and a phase modulation in an extended fractional Fourier transform domain is proposed. Different from the RGB component separation based method, the color image is converted into one component by improved Chirikov mapping. The encryption system is addressed with Fresnel diffraction and phase modulation. A pair of lenses is placed into the fractional Fourier transform system for the modulation of beam propagation. The structure parameters of the optical system and parameters in Chirikov mapping serve as extra keys. Some numerical simulations are given to test the validity of the proposed cryptosystem.
Deficiencies of the cryptography based on multiple-parameter fractional Fourier transform.
Ran, Qiwen; Zhang, Haiying; Zhang, Jin; Tan, Liying; Ma, Jing
2009-06-01
Methods of image encryption based on fractional Fourier transform have an incipient flaw in security. We show that the schemes have the deficiency that one group of encryption keys has many groups of keys to decrypt the encrypted image correctly for several reasons. In some schemes, many factors result in the deficiencies, such as the encryption scheme based on multiple-parameter fractional Fourier transform [Opt. Lett.33, 581 (2008)]. A modified method is proposed to avoid all the deficiencies. Security and reliability are greatly improved without increasing the complexity of the encryption process. (c) 2009 Optical Society of America.
Physiological response of Arundo donax to cadmium stress by Fourier transform infrared spectroscopy.
Yu, Shunhui; Sheng, Li; Zhang, Chunyan; Deng, Hongping
2018-06-05
The present paper deals with the physiological response of the changes in chemical contents of the root, stem and leaf of Arundo donax seedlings stressed by excess cadmium using Fourier transform infrared spectroscopy technique, cadmium accumulation in plant by atomic absorption spectroscopy were tested after different concentrations cadmium stress. The results showed that low cadmium concentrations (Fourier transform infrared spectroscopy technique for the non-invasive and rapid monitoring of the plants stressed with heavy metals, Arundo donax is suitable for phytoremediation of cadmium -contaminated wetland. Copyright © 2018 Elsevier B.V. All rights reserved.
DWDM-TO-OTDM Conversion by Time-Domain Optical Fourier Transformation
DEFF Research Database (Denmark)
Mulvad, Hans Christian Hansen; Hu, Hao; Galili, Michael
2011-01-01
We propose DWDM-OTDM conversion by time-domain optical Fourier transformation. Error-free conversion of a 16×10 Gbit/s 50 GHz-spacing DWDM data signal to a 160 Gbit/s OTDM signal with a 2.1 dB average penalty is demonstrated.......We propose DWDM-OTDM conversion by time-domain optical Fourier transformation. Error-free conversion of a 16×10 Gbit/s 50 GHz-spacing DWDM data signal to a 160 Gbit/s OTDM signal with a 2.1 dB average penalty is demonstrated....
DEFF Research Database (Denmark)
Guan, Pengyu; Røge, Kasper Meldgaard; Kjøller, Niels-Kristian
2015-01-01
We propose a novel all-optical WDM regeneration scheme for DPSK signals based on optical Fourier transformation and phase sensitive amplification. Phase regeneration of a WDM signal consisting of 4x10-Gbit/s phase noise degraded DPSK channels is demonstrated for the first time.......We propose a novel all-optical WDM regeneration scheme for DPSK signals based on optical Fourier transformation and phase sensitive amplification. Phase regeneration of a WDM signal consisting of 4x10-Gbit/s phase noise degraded DPSK channels is demonstrated for the first time....
The Fourier transform as a signature for chaos in nuclear energy levels
Energy Technology Data Exchange (ETDEWEB)
Bybee, C.R. [North Carolina State Univ., Raleigh, NC (United States)]|[Triangle Universities Nuclear Lab., Durham, NC (United States); Mitchell, G.E. [North Carolina State Univ., Raleigh, NC (United States)]|[Triangle Universities Nuclear Lab., Durham, NC (United States); Shriner, J.F. Jr. [Tennessee Technological Univ., Cookeville (United States)
1996-08-01
The Fourier transform of the autocorrelation function is an alternative test to characterize level statistics. For GOE statistics there is a suppression of the Fourier transform near the origin; this correlation hole is absent for Poisson statistics. Numerical modeling has been used to quantify the method and determine the dependence of the correlation-hole area on number, density, sampling interval, and fraction of missing or spurious levels. For large N the normalized correlation-hole area is a nearly universal constant and insensitive to missing and spurious levels. However, for the smaller sample sizes typical of nuclear data, application of the FT method yields ambiguous results. (orig.)
A 16X16 Discrete Cosine Transform Chip
Sun, M. T.; Chen, T. C.; Gottlieb, A.; Wu, L.; Liou, M. L.
1987-10-01
Among various transform coding techniques for image compression the Discrete Cosine Transform (DCT) is considered to be the most effective method and has been widely used in the laboratory as well as in the market, place. DCT is computationally intensive. For video application at 14.3 MHz sample rate, a direct implementation of a 16x16 DCT requires a throughput, rate of approximately half a billion multiplications per second. In order to reduce the cost of hardware implementation, a single chip DCT implementation is highly desirable. In this paper, the implementation of a 16x16 DCT chip using a concurrent architecture will be presented. The chip is designed for real-time processing of 14.3 MHz sampled video data. It uses row-column decomposition to implement the two-dimensional transform. Distributed arithmetic combined with hit-serial and hit-parallel structures is used to implement the required vector inner products concurrently. Several schemes are utilized to reduce the size of required memory. The resultant circuit only uses memory, shift registers, and adders. No multipliers are required. It achieves high speed performance with a very regular and efficient integrated circuit realization. The chip accepts 0-bit input and produces 14-bit DCT coefficients. 12 bits are maintained after the first one-dimensional transform. The circuit has been laid out using a 2-μm CMOS technology with a symbolic design tool MULGA. The core contains approximately 73,000 transistors in an area of 7.2 x 7.0
National Research Council Canada - National Science Library
Graham, James R; Abrams, Mark; Bennett, C; Carr, J; Cook, K; Dey, A; Najita, J; Wishnow, E
1998-01-01
.... We consider the relationship between pixel size, spectral resolution, and diameter of the beam splitter for imaging and nonimaging Fourier transform spectrographs and give the condition required...
National Aeronautics and Space Administration — Fourier transform spectroscopy (FTS) in infrared wavelength range is an effective measure for global greenhouse gas monitoring. However, conventional FTS instruments...
Application of the fourier and wavelet transforms in noise reduction of the out of the ordinary data
International Nuclear Information System (INIS)
Tafreshi, M. A.; Sadeghi, Y.
2006-01-01
In this article the noise reduction of the experimental data by the Fourier and the wavelet transforms has been investigated. Using both simulated and experimental data (from the plasma focus facility, Dena), the sensitive features of the application of the Fourier transform are visualized and discussed. Then, the main idea of the wavelet transform and the results of the noise reduction with this transform are presented. Due to this investigation, for the cases such as the current derivative of the Dena facility, where the reliability of the Fourier transform can be doubtful, the wavelet transform can be considered as a more accurate alternative approach
S-duality as Fourier transform for arbitrary ϵ1, ϵ2
International Nuclear Information System (INIS)
N Nemkov
2014-01-01
The Alday–Gaiotto–Tachikawa relations reduce S-duality to the modular transformations of conformal blocks. It was recently conjectured that, for the four-point conformal block, the modular transform up to the non-perturbative contributions can be written in the form of the ordinary Fourier transform when β ≡ −ϵ 1 /ϵ 2 = 1. Here I extend this conjecture to general values of ϵ 1 , ϵ 2 . Namely, I argue that, for a properly normalized four-point conformal block the S-duality is perturbatively given by the Fourier transform for arbitrary values of the deformation parameters ϵ 1 , ϵ 2 . The conjecture is based on explicit perturbative computations in the first few orders of the string coupling constant g 2 ≡ −ϵ 1 ϵ 2 and hypermultiplet masses. (paper)
A new stationary gridline artifact suppression method based on the 2D discrete wavelet transform
International Nuclear Information System (INIS)
Tang, Hui; Tong, Dan; Dong Bao, Xu; Dillenseger, Jean-Louis
2015-01-01
Purpose: In digital x-ray radiography, an antiscatter grid is inserted between the patient and the image receptor to reduce scattered radiation. If the antiscatter grid is used in a stationary way, gridline artifacts will appear in the final image. In most of the gridline removal image processing methods, the useful information with spatial frequencies close to that of the gridline is usually lost or degraded. In this study, a new stationary gridline suppression method is designed to preserve more of the useful information. Methods: The method is as follows. The input image is first recursively decomposed into several smaller subimages using a multiscale 2D discrete wavelet transform. The decomposition process stops when the gridline signal is found to be greater than a threshold in one or several of these subimages using a gridline detection module. An automatic Gaussian band-stop filter is then applied to the detected subimages to remove the gridline signal. Finally, the restored image is achieved using the corresponding 2D inverse discrete wavelet transform. Results: The processed images show that the proposed method can remove the gridline signal efficiently while maintaining the image details. The spectra of a 1D Fourier transform of the processed images demonstrate that, compared with some existing gridline removal methods, the proposed method has better information preservation after the removal of the gridline artifacts. Additionally, the performance speed is relatively high. Conclusions: The experimental results demonstrate the efficiency of the proposed method. Compared with some existing gridline removal methods, the proposed method can preserve more information within an acceptable execution time
A new stationary gridline artifact suppression method based on the 2D discrete wavelet transform
Energy Technology Data Exchange (ETDEWEB)
Tang, Hui, E-mail: corinna@seu.edu.cn [Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing 210096 (China); Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, Nanjing 210000 (China); Centre de Recherche en Information Biomédicale sino-français, Laboratoire International Associé, Inserm, Université de Rennes 1, Rennes 35000 (France); Southeast University, Nanjing 210000 (China); Tong, Dan; Dong Bao, Xu [Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing 210096 (China); Dillenseger, Jean-Louis [INSERM, U1099, Rennes F-35000 (France); Université de Rennes 1, LTSI, Rennes F-35000 (France); Centre de Recherche en Information Biomédicale sino-français, Laboratoire International Associé, Inserm, Université de Rennes 1, Rennes 35000 (France); Southeast University, Nanjing 210000 (China)
2015-04-15
Purpose: In digital x-ray radiography, an antiscatter grid is inserted between the patient and the image receptor to reduce scattered radiation. If the antiscatter grid is used in a stationary way, gridline artifacts will appear in the final image. In most of the gridline removal image processing methods, the useful information with spatial frequencies close to that of the gridline is usually lost or degraded. In this study, a new stationary gridline suppression method is designed to preserve more of the useful information. Methods: The method is as follows. The input image is first recursively decomposed into several smaller subimages using a multiscale 2D discrete wavelet transform. The decomposition process stops when the gridline signal is found to be greater than a threshold in one or several of these subimages using a gridline detection module. An automatic Gaussian band-stop filter is then applied to the detected subimages to remove the gridline signal. Finally, the restored image is achieved using the corresponding 2D inverse discrete wavelet transform. Results: The processed images show that the proposed method can remove the gridline signal efficiently while maintaining the image details. The spectra of a 1D Fourier transform of the processed images demonstrate that, compared with some existing gridline removal methods, the proposed method has better information preservation after the removal of the gridline artifacts. Additionally, the performance speed is relatively high. Conclusions: The experimental results demonstrate the efficiency of the proposed method. Compared with some existing gridline removal methods, the proposed method can preserve more information within an acceptable execution time.
High-resolution magnetic-domain imaging by Fourier transform holography at 21 nm wavelength
International Nuclear Information System (INIS)
Schaffert, Stefan; Pfau, Bastian; Günther, Christian M; Schneider, Michael; Korff Schmising, Clemens von; Eisebitt, Stefan; Geilhufe, Jan
2013-01-01
Exploiting x-ray magnetic circular dichroism at the L-edges of 3d transition metals, Fourier transform holography has become a standard technique to investigate magnetic samples with sub-100 nm spatial resolution. Here, magnetic imaging in the 21 nm wavelength regime using M-edge circular dichroism is demonstrated. Ultrafast pulses in this wavelength regime are increasingly available from both laser- and accelerator-driven soft x-ray sources. We explain the adaptations concerning sample preparation and data evaluation compared to conventional holography in the 1 nm wavelength range. We find the correction of the Fourier transform hologram to in-plane Fourier components to be critical for high-quality reconstruction and demonstrate 70 nm spatial resolution in magnetization imaging with this approach. (paper)
Novel Polynomial Basis with Fast Fourier Transform and Its Application to Reed-Solomon Erasure Codes
Lin, Sian-Jheng
2016-09-13
In this paper, we present a fast Fourier transform (FFT) algorithm over extension binary fields, where the polynomial is represented in a non-standard basis. The proposed Fourier-like transform requires O(h lg(h)) field operations, where h is the number of evaluation points. Based on the proposed Fourier-like algorithm, we then develop the encoding/ decoding algorithms for (n = 2m; k) Reed-Solomon erasure codes. The proposed encoding/erasure decoding algorithm requires O(n lg(n)), in both additive and multiplicative complexities. As the complexity leading factor is small, the proposed algorithms are advantageous in practical applications. Finally, the approaches to convert the basis between the monomial basis and the new basis are proposed.
Generating Solutions to Discrete sine-Gordon Equation from Modified Baecklund Transformation
International Nuclear Information System (INIS)
Kou Xin; Zhang Dajun; Shi Ying; Zhao Songlin
2011-01-01
We modify the bilinear Baecklund transformation for the discrete sine-Gordon equation and derive variety, of solutions by freely choosing parameters from the modified Baecklund transformation. Dynamics of solutions and continuum limits are also discussed. (general)
Vibrational analysis of Fourier transform spectrum of the B u )–X g ...
Indian Academy of Sciences (India)
improved by putting the wave number of band origins in Deslandre table. The vibrational analysis was supported by determining the Franck–Condon factor and r-centroid values. Keywords. Fourier transform spectroscopy; electronic spectrum of selenium dimer; vibrational analysis; Franck–Condon factor; r-centroid values.
Vibrational analysis of Fourier transform spectrum of the B 3− u (0
Indian Academy of Sciences (India)
... microwave, was recorded on BOMEM DA8 Fourier transform spectrometer at an apodized resolution of 0.035 cm-1. Vibrational constants were improved by putting the wave number of band origins in Deslandre table. The vibrational analysis was supported by determining the Franck–Condon factor and -centroid values.
PARTICULATE MATTER MEASUREMENTS USING OPEN-PATH FOURIER TRANSFORM INFRARED SPECTROSCOPY
Open-path Fourier transform infrared (OP-FT1R) spectroscopy is an accepted technology for measuring gaseous air contaminants. OP-FT1R absorbance spectra acquired during changing aerosols conditions reveal related changes in very broad baseline features. Usually, this shearing of ...
Fourier-transform ghost imaging with pure far-field correlated thermal light
International Nuclear Information System (INIS)
Liu Honglin; Shen Xia; Han Shensheng; Zhu Daming
2007-01-01
Pure far-field correlated thermal light beams are created with phase grating, and Fourier-transform ghost imaging depending only on the far-field correlation is demonstrated experimentally. Theoretical analysis and the results of experimental investigation of this pure far-field correlated thermal light are presented. Applications which may be exploited with this imaging scheme are discussed
International Nuclear Information System (INIS)
Luederwald, I.
1977-01-01
Instrumentation and technology of Ion-Cyclotron-Resonance and Fourier-Transform-Ion-Cyclotron-Resonance Spectroscopy are described. The method can be applied to studies of ion/molecule reactions in gas phase, to obtain thermodynamic data as gas phase acidity or basicity, proton and electron affinity, and to establish reaction mechanisms and ion structures. (orig.) [de
Applications of Fourier transform infrared spectroscopy to quality control of the epoxy matrix
Antoon, M. K.; Starkey, K. M.; Koenig, J. L.
1979-01-01
The object of the paper is to demonstrate the utility of Fourier transform infrared (FT-IR) difference spectra for investigating the composition of a neat epoxy resin, hardener, and catalysts. The composition and degree of cross-linking of the cured matrix is also considered.
The Kinetics of Mo(Co)6 Substitution Monitored by Fourier Transform Infrared Spectrophotometry.
Suslick, Kenneth S.; And Others
1987-01-01
Describes a physical chemistry experiment that uses Fourier transform (FTIR) spectrometers and microcomputers as a way of introducing students to the spectral storage and manipulation techniques associated with digitized data. It can be used to illustrate FTIR spectroscopy, simple kinetics, inorganic mechanisms, and Beer's Law. (TW)
Czech Academy of Sciences Publication Activity Database
Pivokonský, Radek; Filip, Petr; Zelenková, Jana
2016-01-01
Roč. 104, č. 8 (2016), s. 171-178 ISSN 0032-3861 Institutional support: RVO:67985874 Keywords : LAOS * fourier transform rheology * Giesekus model * PTT model * modified XPP model * poly(ethylene oxide) Subject RIV: BK - Fluid Dynamics Impact factor: 3.684, year: 2016
Fourier transform infrared emission spectra of atomic rubidium: g- and h-states
Czech Academy of Sciences Publication Activity Database
Civiš, Svatopluk; Ferus, Martin; Kubelík, Petr; Chernov, Vladislav E.; Zanozina, Ekaterina M.
2012-01-01
Roč. 45, č. 17 (2012), s. 175002 ISSN 0953-4075 R&D Projects: GA AV ČR IAAX00100903 Institutional support: RVO:61388955 Keywords : Fourier transform infrared emission spectra * atomic rubidium * physical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.031, year: 2012
Our presentation will focus on continuing efforts to examine secondary cell wall development in cotton fibers using infrared Spectroscopy. Cotton fibers harvested at 18, 20, 24, 28, 32, 36 and 40 days after flowering were examined using attenuated total reflection Fourier transform-infrared (ATR FT-...
Soil science research is increasingly applying Fourier transform infrared (FTIR) spectroscopy for analysis of soil organic matter (SOM). However, the compositional complexity of soils and the dominance of the mineral component can limit spectroscopic resolution of SOM and other minor components. The...
On the Elliptic Nonabelian Fourier Transform for Unipotent Representations of p-Adic Groups
Ciubotaru, D.; Opdam, E.; Cogdell, J.; Kim, J.-L.; Zhu, C.-B.
2017-01-01
In this paper, we consider the relation between two nonabelian Fourier transforms. The first one is defined in terms of the Langlands-Kazhdan-Lusztig parameters for unipotent elliptic representations of a split p-adic group and the second is defined in terms of the pseudocoefficients of these
Fourier transform and the Verlinde formula for the quantum double of a finite group
Koornwinder, T.H.; Schroers, B.J.; Slingerland, J.K.; Bais, F.A.
1999-01-01
We define a Fourier transform $S$ for the quantum double $D(G)$ of a finite group $G$. Acting on characters of $D(G)$, $S$ and the central ribbon element of $D(G)$ generate a unitary matrix representation of the group $SL(2,Z)$. The characters form a ring over the integers under both the algebra
Nicolas, F.; Coëtmellec, S.; Brunel, M.; Allano, D.; Lebrun, D.; Janssen, A.J.E.M.
2005-01-01
The authors have studied the diffraction pattern produced by a particle field illuminated by an elliptic and astigmatic Gaussian beam. They demonstrate that the bidimensional fractional Fourier transformation is a mathematically suitable tool to analyse the diffraction pattern generated not only by
Bronneberg, A. C.; Smets, A. H. M.; Creatore, M.; M. C. M. van de Sanden,
2011-01-01
Insight into the oxidation mechanism of microcrystalline silicon thin films has been obtained by means of Fourier transform infrared spectroscopy. The films were deposited by using the expanding thermal plasma and their oxidation upon air exposure was followed in time. Transmission spectra were
DEFF Research Database (Denmark)
Guan, Pengyu; Da Ros, Francesco; Lillieholm, Mads
2016-01-01
We demonstrate simultaneous phase regeneration of 16-WDM DPSK channels using optical Fourier transformation and a single phase-sensitive amplifier. The BERs of 16-WDM×10-Gbit/s phase noise degraded DPSK signals are improved by 0.4-1.3 orders of magnitude...
Superexponentially damped Vlasov plasma oscillations in the Fourier transformed velocity space
International Nuclear Information System (INIS)
Sedlacek, Z.; Nocera, L.
2002-01-01
The Landau (exponentially) damped solutions of the Vlasov-Poisson equation Fourier transformed with respect to velocity are genuine eigenmodes corresponding to complex eigenvalues. In addition there exist solutions decaying faster than exponentially which exhibit no oscillatory behaviour. A new characterization is given of the initial conditions that give rise to these solutions together with a numerical demonstration
Specification of the Fast Fourier Transform algorithm as a term rewriting system
Rodenburg, P.H.; Hoekzema, D.J.
1987-01-01
We specify an algorithm for multiplying polynomials with complex coefficients incorporating, the Fast Fourier Transform algorithm of Cooley and Tukey [CT]. The specification formalism we use is a variant of the formalism ASF described in. [BHK]. The difference with ASF is essentially a matter of
Bastiaans, M.J.; Alieva, T.
2002-01-01
It is shown how all global Wigner distribution moments of arbitrary order in the output plane of a (generally anamorphic) two-dimensional fractional Fourier transform system can be expressed in terms of the moments in the input plane. This general input-output relationship is then broken down into a
Orthonormal mode sets for the two-dimensional fractional Fourier transformation
Alieva, T.; Bastiaans, M.J.
2007-01-01
A family of orthonormal mode sets arises when Hermite–Gauss modes propagate through lossless first-order optical systems. It is shown that the modes at the output of the system are eigenfunctions for the symmetric fractional Fourier transformation if and only if the system is described by an
A fast Fourier transform program for the deconvolution of IN10 data
International Nuclear Information System (INIS)
Howells, W.S.
1981-04-01
A deconvolution program based on the Fast Fourier Transform technique is described and some examples are presented to help users run the programs and interpret the results. Instructions are given for running the program on the RAL IBM 360/195 computer. (author)
3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography
Michael C. Martin; Charlotte Dabat-Blondeau; Miriam Unger; Julia Sedlmair; Dilworth Y. Parkinson; Hans A. Bechtel; Barbara Illman; Jonathan M. Castro; Marco Keiluweit; David Buschke; Brenda Ogle; Michael J. Nasse; Carol J. Hirschmugl
2013-01-01
We report Fourier transform infrared spectro-microtomography, a nondestructive three-dimensional imaging approach that reveals the distribution of distinctive chemical compositions throughout an intact biological or materials sample. The method combines mid-infrared absorption contrast with computed tomographic data acquisition and reconstruction to enhance chemical...
On the measurement of Wigner distribution moments in the fractional Fourier transform domain
Bastiaans, M.J.; Alieva, T.
2002-01-01
It is shown how all global Wigner distribution moments of arbitrary order can be measured as intensity moments in the output plane of an appropriate number of fractional Fourier transform systems (generally anamorphic ones). The minimum number of (anamorphic) fractional power spectra that are needed
Fourier-transform imaging of cotton and botanical and field trash mixtures
Botanical and field cotton trash comingled with cotton lint can greatly reduce the marketability and quality of cotton. Trash can be found comingled with cotton lint during harvesting, ginning, and processing, thus this study is of interest. Attenuated Total Reflectance-Fourier Transform Infrared (A...
DEFF Research Database (Denmark)
Uceda Otero, E. P.; Eliel, G. S. N.; Fonseca, E. J. S.
2013-01-01
In this work we have used Fourier transform infrared (FTIR) / vibrational absorption (VA) spectroscopy to study two cancer cell lines: the Henrietta Lacks (HeLa) human cervix carcinoma and 5637 human bladder carcinoma cell lines. Our goal is to experimentally investigate biochemical changes...
Dual-polarization nonlinear Fourier transform-based optical communication system
DEFF Research Database (Denmark)
Gaiarin, Simone; Perego, A. M.; da Silva, Edson Porto
2018-01-01
communication could potentially overcome these limitations. It relies on a mathematical technique called “nonlinear Fourier transform (NFT)” to exploit the “hidden” linearity of the nonlinear Schrödinger equation as the master model for signal propagation in an optical fiber. We present here the theoretical...
Teaching Stable Two-Mirror Resonators through the Fractional Fourier Transform
Moreno, Ignacio; Garcia-Martinez, Pascuala; Ferreira, Carlos
2010-01-01
We analyse two-mirror resonators in terms of their fractional Fourier transform (FRFT) properties. We use the basic ABCD ray transfer matrix method to show how the resonator can be regarded as the cascade of two propagation-lens-propagation FRFT systems. Then, we present a connection between the geometric properties of the resonator (the g…
Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects
International Nuclear Information System (INIS)
Miao, J.; Sayre, D.; Chapman, H.N.
1998-01-01
It is suggested that, given the magnitude of Fourier transforms sampled at the Bragg density, the phase problem is underdetermined by a factor of 2 for 1D, 2D, and 3D objects. It is therefore unnecessary to oversample the magnitude of Fourier transforms by 2x in each dimension (i.e., oversampling by 4x for 2D and 8x for 3D) in retrieving the phase of 2D and 3D objects. Our computer phasing experiments accurately retrieved the phase from the magnitude of the Fourier transforms of 2D and 3D complex-valued objects by using positivity constraints on the imaginary part of the objects and loose supports, with the oversampling factor much less than 4 for 2D and 8 for 3D objects. Under the same conditions we also obtained reasonably good reconstructions of 2D and 3D complex-valued objects from the magnitude of their Fourier transforms with added noise and a central stop. copyright 1998 Optical Society of America
Fourier-Laplace transform of irreducible regular differential systems on the Riemann sphere
International Nuclear Information System (INIS)
Sabbah, C
2004-01-01
It is shown that the Fourier-Laplace transform of an irreducible regular differential system on the Riemann sphere underlies a polarizable regular twistor D-module if one considers only the part at finite distance. The associated holomorphic bundle defined away from the origin of the complex plane is therefore equipped with a natural harmonic metric having a tame behaviour near the origin
DEFF Research Database (Denmark)
Hu, Hao; Kong, Deming; Palushani, Evarist
2013-01-01
We demonstrate transmission of a 1.28-Tbaud Nyquist-OTDM signal over a record distance of 100 km with detection by time-domain optical Fourier transformation followed by FEC decoding, resulting in error-free performance for all tributaries....
Fast ghost imaging and ghost encryption based on the discrete cosine transform
International Nuclear Information System (INIS)
Tanha, Mehrdad; Ahmadi-Kandjani, Sohrab; Kheradmand, Reza
2013-01-01
We introduce the discrete cosine transform as an advanced compression tool for images in computational ghost imaging. A novel approach to fast imaging and encryption, the discrete cosine transform, promotes the security level of ghost images and reduces the image retrieval time. To discuss the advantages of this technique we compare experimental outcomes with simulated ones. (paper)
Wiener discrete cosine transform-based image filtering
Pogrebnyak, Oleksiy; Lukin, Vladimir V.
2012-10-01
A classical problem of additive white (spatially uncorrelated) Gaussian noise suppression in grayscale images is considered. The main attention is paid to discrete cosine transform (DCT)-based denoising, in particular, to image processing in blocks of a limited size. The efficiency of DCT-based image filtering with hard thresholding is studied for different sizes of overlapped blocks. A multiscale approach that aggregates the outputs of DCT filters having different overlapped block sizes is proposed. Later, a two-stage denoising procedure that presumes the use of the multiscale DCT-based filtering with hard thresholding at the first stage and a multiscale Wiener DCT-based filtering at the second stage is proposed and tested. The efficiency of the proposed multiscale DCT-based filtering is compared to the state-of-the-art block-matching and three-dimensional filter. Next, the potentially reachable multiscale filtering efficiency in terms of output mean square error (MSE) is studied. The obtained results are of the same order as those obtained by Chatterjee's approach based on nonlocal patch processing. It is shown that the ideal Wiener DCT-based filter potential is usually higher when noise variance is high.
The Fractional Fourier Transform and Its Application to Energy Localization Problems
Directory of Open Access Journals (Sweden)
ter Morsche Hennie G
2003-01-01
Full Text Available Applying the fractional Fourier transform (FRFT and the Wigner distribution on a signal in a cascade fashion is equivalent to a rotation of the time and frequency parameters of the Wigner distribution. We presented in ter Morsche and Oonincx, 2002, an integral representation formula that yields affine transformations on the spatial and frequency parameters of the -dimensional Wigner distribution if it is applied on a signal with the Wigner distribution as for the FRFT. In this paper, we show how this representation formula can be used to solve certain energy localization problems in phase space. Examples of such problems are given by means of some classical results. Although the results on localization problems are classical, the application of generalized Fourier transform enlarges the class of problems that can be solved with traditional techniques.
DEFF Research Database (Denmark)
Galili, Michael; Guan, Pengyu; Lillieholm, Mads
2017-01-01
In the talk, we will review recent work on optical signal processing based on time lenses. Various applications of optical Fourier transformation for optical communications will be discussed.......In the talk, we will review recent work on optical signal processing based on time lenses. Various applications of optical Fourier transformation for optical communications will be discussed....
DEFF Research Database (Denmark)
Clausen, Anders; Guan, Pengyu; Mulvad, Hans Christian Hansen
2014-01-01
All-optical time-domain Optical Fourier Transformation utilised for signal processing of ultra-high-speed OTDM signals and OFDM signals will be presented.......All-optical time-domain Optical Fourier Transformation utilised for signal processing of ultra-high-speed OTDM signals and OFDM signals will be presented....
Application of the fractional Fourier transform to image reconstruction in MRI.
Parot, Vicente; Sing-Long, Carlos; Lizama, Carlos; Tejos, Cristian; Uribe, Sergio; Irarrazaval, Pablo
2012-07-01
The classic paradigm for MRI requires a homogeneous B(0) field in combination with linear encoding gradients. Distortions are produced when the B(0) is not homogeneous, and several postprocessing techniques have been developed to correct them. Field homogeneity is difficult to achieve, particularly for short-bore magnets and higher B(0) fields. Nonlinear magnetic components can also arise from concomitant fields, particularly in low-field imaging, or intentionally used for nonlinear encoding. In any of these situations, the second-order component is key, because it constitutes the first step to approximate higher-order fields. We propose to use the fractional Fourier transform for analyzing and reconstructing the object's magnetization under the presence of quadratic fields. The fractional fourier transform provides a precise theoretical framework for this. We show how it can be used for reconstruction and for gaining a better understanding of the quadratic field-induced distortions, including examples of reconstruction for simulated and in vivo data. The obtained images have improved quality compared with standard Fourier reconstructions. The fractional fourier transform opens a new paradigm for understanding the MR signal generated by an object under a quadratic main field or nonlinear encoding. Copyright © 2011 Wiley Periodicals, Inc.
The fractional Fourier transform as a simulation tool for lens-based X-ray microscopy
DEFF Research Database (Denmark)
Pedersen, Anders Filsøe; Simons, Hugh; Detlefs, Carsten
2018-01-01
The fractional Fourier transform (FrFT) is introduced as a tool for numerical simulations of X-ray wavefront propagation. By removing the strict sampling requirements encountered in typical Fourier optics, simulations using the FrFT can be carried out with much decreased detail, allowing...... the attenuation from the entire CRL using one or two effective apertures without loss of accuracy, greatly accelerating simulations involving CRLs. To demonstrate the applicability and accuracy of the FrFT, the imaging resolution of a CRL-based imaging system is estimated, and the FrFT approach is shown...
Analysis of gamma-ray spectra by using fast Fourier transform
International Nuclear Information System (INIS)
Tominaga, Shoji; Nagata, Shojiro; Nayatani, Yoshinobu; Ueda, Isamu; Sasaki, Satoshi.
1977-01-01
In order to simplify the mass data processing in a response matrix method for γ-ray spectral analysis, a method using a Fast Fourier Transform devised. The validity of the method was confirmed by a computer simulation for spectra of a NaI detector. The method uses the fact that spectral data can be represented by Fourier series with reduced number of terms. The estimation of intensities of γ-ray components is performed by a matrix operation using the compressed data of an observation spectrum and standard spectra in Fourier coefficients. The identification of γ-ray energies is also easy. Several features in the method and a general problem to be solved in a response matrix method are described. (auth.)
Use of fast Fourier transform in gamma-ray spectral analysis
International Nuclear Information System (INIS)
Tominaga, Shoji; Nayatani, Yoshinobu; Nagata, Shojiro; Sasaki, Takashi; Ueda, Isamu.
1978-01-01
In order to simplify the mass data processing in a response matrix method for γ-ray spectral analysis, a method using a Fast Fourier Transform has been devised. The validity of the method has been confirmed by computer simulation for spectra of a NaI detector. First, it is shown that spectral data can be represented by Fourier series with a reduced number of terms. Then the estimation of intensities of γ-ray components is performed by a matrix operation using the compressed data of an observation spectrum and standard spectra in Fourier coefficients. The identification of γ-ray energies is also easy. Several features of the method and a general problem to be solved in relation to a response matrix method are described. (author)
Lu, Wenlong; Xie, Junwei; Wang, Heming; Sheng, Chuan
2016-01-01
Inspired by track-before-detection technology in radar, a novel time-frequency transform, namely polynomial chirping Fourier transform (PCFT), is exploited to extract components from noisy multicomponent signal. The PCFT combines advantages of Fourier transform and polynomial chirplet transform to accumulate component energy along a polynomial chirping curve in the time-frequency plane. The particle swarm optimization algorithm is employed to search optimal polynomial parameters with which the PCFT will achieve a most concentrated energy ridge in the time-frequency plane for the target component. The component can be well separated in the polynomial chirping Fourier domain with a narrow-band filter and then reconstructed by inverse PCFT. Furthermore, an iterative procedure, involving parameter estimation, PCFT, filtering and recovery, is introduced to extract components from a noisy multicomponent signal successively. The Simulations and experiments show that the proposed method has better performance in component extraction from noisy multicomponent signal as well as provides more time-frequency details about the analyzed signal than conventional methods.
On the Cooley-Turkey Fast Fourier algorithm for arbitrary factors ...
African Journals Online (AJOL)
Atonuje and Okonta in [1] developed the Cooley-Turkey Fast Fourier transform algorithm and its application to the Fourier transform of discretely sampled data points N, expressed in terms of a power y of 2. In this paper, we extend the formalism of [1] Cookey-Turkey Fast Fourier transform algorithm. The method is developed ...
Coulomb Fourier transformation: A novel approach to three-body scattering with charged particles
International Nuclear Information System (INIS)
Alt, E.O.; Levin, S.B.; Yakovlev, S.L.
2004-01-01
A unitary transformation of the three-body Hamiltonian which describes a system of two charged and one neutral particles is constructed such that the Coulomb potential which acts between the charged particles is explicitly eliminated. The transformed Hamiltonian and, in particular, the transformed short-range pair interactions are worked out in detail. Thereby it is found that, after transformation, the short-range potentials acting between the neutral and either one of the charged particles become simply Fourier transformed but, in addition, multiplied by a function that represents the Coulombic three-body correlations originating from the action of the other charged particle on the considered pair. This function which is universal as it does not depend on any property of the short-range interaction is evaluated explicitly and its singularity structure is described in detail. In contrast, the short-range potential between the charged particles remains of two-body type but occurs now in the 'Coulomb representation'. Specific applications to Yukawa and Gaussian potentials are given. Since the Coulomb-Fourier-transformed Hamiltonian does no longer contain the Coulomb potential or any other effective interaction of long range, standard methods of short-range few-body scattering theory are applicable
Analytic discrete cosine harmonic wavelet transform based OFDM ...
Indian Academy of Sciences (India)
in improving Bit Error Rate (BER) and Peak to Average Power Ratio (PAPR) per- ... as an alternative to Fourier basis has been suggested for multicarrier transmission ..... Ramjee Prasad 2004 OFDM for Wireless Communications Systems.
Directory of Open Access Journals (Sweden)
Eduardo O. Cerqueira
2000-10-01
Full Text Available Instrumental data always present some noise. The analytical data information and instrumental noise generally has different frequencies. Thus is possible to remove the noise using a digital filter based on Fourier transform and inverse Fourier transform. This procedure enhance the signal/noise ratio and consecutively increase the detection limits on instrumental analysis. The basic principle of Fourier transform filter with modifications implemented to improve its performance is presented. A numerical example, as well as a real voltammetric example are showed to demonstrate the Fourier transform filter implementation. The programs to perform the Fourier transform filter, in Matlab and Visual Basic languages, are included as appendices
Barnett, Patrick D; Strange, K Alicia; Angel, S Michael
2017-06-01
This work describes a method of applying the Fourier transform to the two-dimensional Fizeau fringe patterns generated by the spatial heterodyne Raman spectrometer (SHRS), a dispersive interferometer, to correct the effects of certain types of optical alignment errors. In the SHRS, certain types of optical misalignments result in wavelength-dependent and wavelength-independent rotations of the fringe pattern on the detector. We describe here a simple correction technique that can be used in post-processing, by applying the Fourier transform in a row-by-row manner. This allows the user to be more forgiving of fringe alignment and allows for a reduction in the mechanical complexity of the SHRS.
DEFF Research Database (Denmark)
Palushani, Evarist; Oxenløwe, Leif Katsuo; Galili, Michael
2009-01-01
This paper reports on the generation of 1.6-ps fullwidth at half-maximum flat-top pulses by the optical Fourier transform technique, and the utilization of these pulses in a 320-Gb/s demultiplexing experiment. It is demonstrated how a narrow pulse having a 15-nm wide third-order super-Gaussian sp......This paper reports on the generation of 1.6-ps fullwidth at half-maximum flat-top pulses by the optical Fourier transform technique, and the utilization of these pulses in a 320-Gb/s demultiplexing experiment. It is demonstrated how a narrow pulse having a 15-nm wide third-order super...
Advances in hyperspectral remote sensing I: The visible Fourier transform hyperspectral imager
Directory of Open Access Journals (Sweden)
J. Bruce Rafert
2015-05-01
Full Text Available We discuss early hyperspectral research and development activities during the 1990s that led to the deployment of aircraft and satellite payloads whose heritage was based on the use of visible, spatially modulated, imaging Fourier transform spectrometers, beginning with early experiments at the Florida Institute of Technology, through successful launch and deployment of the Visible Fourier Transform Hyperspectral Imager on MightySat II.1 on 19 July 2000. In addition to a brief chronological overview, we also discuss several of the most interesting optical engineering challenges that were addressed over this timeframe, present some as-yet un-exploited features of field-widened (slit-less SMIFTS instruments, and present some images from ground-based, aircraft-based and satellite-based instruments that helped provide the impetus for the proliferation and development of entire new families of instruments and countless new applications for hyperspectral imaging.
Suppression law of quantum states in a 3D photonic fast Fourier transform chip
Crespi, Andrea; Osellame, Roberto; Ramponi, Roberta; Bentivegna, Marco; Flamini, Fulvio; Spagnolo, Nicolò; Viggianiello, Niko; Innocenti, Luca; Mataloni, Paolo; Sciarrino, Fabio
2016-01-01
The identification of phenomena able to pinpoint quantum interference is attracting large interest. Indeed, a generalization of the Hong–Ou–Mandel effect valid for any number of photons and optical modes would represent an important leap ahead both from a fundamental perspective and for practical applications, such as certification of photonic quantum devices, whose computational speedup is expected to depend critically on multi-particle interference. Quantum distinctive features have been predicted for many particles injected into multimode interferometers implementing the Fourier transform over the optical modes. Here we develop a scalable approach for the implementation of the fast Fourier transform algorithm using three-dimensional photonic integrated interferometers, fabricated via femtosecond laser writing technique. We observe the suppression law for a large number of output states with four- and eight-mode optical circuits: the experimental results demonstrate genuine quantum interference between the injected photons, thus offering a powerful tool for diagnostic of photonic platforms. PMID:26843135
International Nuclear Information System (INIS)
Prakash, A; Lebensohn, R A
2009-01-01
In this work, we compare finite element and fast Fourier transform approaches for the prediction of the micromechanical behavior of polycrystals. Both approaches are full-field approaches and use the same visco-plastic single crystal constitutive law. We investigate the texture and the heterogeneity of the inter- and intragranular stress and strain fields obtained from the two models. Additionally, we also look into their computational performance. Two cases—rolling of aluminum and wire drawing of tungsten—are used to evaluate the predictions of the two models. Results from both the models are similar, when large grain distortions do not occur in the polycrystal. The finite element simulations were found to be highly computationally intensive, in comparison with the fast Fourier transform simulations. Figure 9 was corrected in this article on the 25 August 2009. The corrected electronic version is identical to the print version
Vladimirov, Gleb; Kostyukevich, Yury; Kharybin, Oleg; Nikolaev, Eugene
2017-08-01
Particle-in-cell-based realistic simulation of Fourier transform ion cyclotron resonance experiments could be used to generate ion trajectories and a signal induced on the detection electrodes. It has been shown recently that there is a modulation of "reduced" cyclotron frequencies in ion cyclotron resonance signal caused by Coulomb interaction of ion clouds. In this work it was proposed to use this modulation in order to determine frequency difference between an ion of known m/z and all other ions generating signal in ion cyclotron resonance cell. It is shown that with an increase of number of ions in ion cyclotron resonance trap, the modulation index increases, which lead to a decrease in the accuracy of determination of peak intensities by super Fourier transform resolution methods such as filter diagonalization method.
Sheng, Ming; Gorzsás, András; Tuck, Simon
2016-01-01
Changes in intermediary metabolism have profound effects on many aspects of C. elegans biology including growth, development and behavior. However, many traditional biochemical techniques for analyzing chemical composition require relatively large amounts of starting material precluding the analysis of mutants that cannot be grown in large amounts as homozygotes. Here we describe a technique for detecting changes in the chemical compositions of C. elegans worms by Fourier transform infrared microspectroscopy. We demonstrate that the technique can be used to detect changes in the relative levels of carbohydrates, proteins and lipids in one and the same worm. We suggest that Fourier transform infrared microspectroscopy represents a useful addition to the arsenal of techniques for metabolic studies of C. elegans worms.
High-speed spectral domain optical coherence tomography using non-uniform fast Fourier transform
Chan, Kenny K. H.; Tang, Shuo
2010-01-01
The useful imaging range in spectral domain optical coherence tomography (SD-OCT) is often limited by the depth dependent sensitivity fall-off. Processing SD-OCT data with the non-uniform fast Fourier transform (NFFT) can improve the sensitivity fall-off at maximum depth by greater than 5dB concurrently with a 30 fold decrease in processing time compared to the fast Fourier transform with cubic spline interpolation method. NFFT can also improve local signal to noise ratio (SNR) and reduce image artifacts introduced in post-processing. Combined with parallel processing, NFFT is shown to have the ability to process up to 90k A-lines per second. High-speed SD-OCT imaging is demonstrated at camera-limited 100 frames per second on an ex-vivo squid eye. PMID:21258551
Gaseous effluent monitoring and identification using an imaging Fourier transform spectrometer
Energy Technology Data Exchange (ETDEWEB)
Carter, M.R.; Bennett, C.L.; Fields, D.J.; Hernandez, J.
1993-10-01
We are developing an imaging Fourier transform spectrometer for chemical effluent monitoring. The system consists of a 2-D infrared imaging array in the focal plane of a Michelson interferometer. Individual images are coordinated with the positioning of a moving mirror in the Michelson interferometer. A three dimensional data cube with two spatial dimensions and one interferogram dimension is then Fourier transformed to produce a hyperspectral data cube with one spectral dimension and two spatial dimensions. The spectral range of the instrument is determined by the choice of optical components and the spectral range of the focal plane array. Measurements in the near UV, visible, near IR, and mid-IR ranges are possible with the existing instrument. Gaseous effluent monitoring and identification measurements will be primarily in the ``fingerprint`` region of the spectrum, ({lambda} = 8 to 12 {mu}m). Initial measurements of effluent using this imaging interferometer in the mid-IR will be presented.
Second order oscillations of a Vlasov-Poisson plasma in the Fourier transformed space
International Nuclear Information System (INIS)
Sedlacek, Z.; Nocera, L.
1991-05-01
The Vlasov-Poisson system of equations in the Fourier-transformed velocity space is studied. At first some results of the linear theory are reformulated: in the new representation the Van Kampen eigenmodes and their adjoint are found to be ordinary functions with convenient piece-wise continuity properties. A transparent derivation is given of the free-streaming temporal echo in terms of the kinematics of wave packets in the Fourier-transformed velocity space. This analysis is further extended to include Coulomb interactions which allows to establish a connection between the echo theory, the second order oscillations of Best and the phenomenon of linear sidebands. The calculation of the time evolution of the global second order electric field is performed in detail in the case of a Maxwellian equilibrium distribution function. It is concluded that the phenomenon of linear sidebands may be properly explained in terms of the intrinsic features of the equilibrium distribution function. (author) 5 figs., 32 refs
Valence band structures of InAs/GaAs quantum rings using the Fourier transform method
International Nuclear Information System (INIS)
Jia Boyong; Yu Zhongyuan; Liu Yumin
2009-01-01
The valence band structures of strained InAs/GaAs quantum rings are calculated, with the four-band k · p model, in the framework of effective-mass envelope function theory. When determining the Hamiltonian matrix elements, we develop the Fourier transform method instead of the widely used analytical integral method. Using Fourier transform, we have investigated the energy levels as functions of the geometrical parameters of the rings and compared our results with those obtained by the analytical integral method. The results show that the energy levels in the quantum rings change dramatically with the inner radius, outer radius, average radius, width, height of the ring and the distance between two adjacent rings. Our method can be adopted in low-dimensional structures with arbitrary shape. Our results are consistent with those in the literature and should be helpful for studying and fabricating optoelectronic devices
Fast data reconstructed method of Fourier transform imaging spectrometer based on multi-core CPU
Yu, Chunchao; Du, Debiao; Xia, Zongze; Song, Li; Zheng, Weijian; Yan, Min; Lei, Zhenggang
2017-10-01
Imaging spectrometer can gain two-dimensional space image and one-dimensional spectrum at the same time, which shows high utility in color and spectral measurements, the true color image synthesis, military reconnaissance and so on. In order to realize the fast reconstructed processing of the Fourier transform imaging spectrometer data, the paper designed the optimization reconstructed algorithm with OpenMP parallel calculating technology, which was further used for the optimization process for the HyperSpectral Imager of `HJ-1' Chinese satellite. The results show that the method based on multi-core parallel computing technology can control the multi-core CPU hardware resources competently and significantly enhance the calculation of the spectrum reconstruction processing efficiency. If the technology is applied to more cores workstation in parallel computing, it will be possible to complete Fourier transform imaging spectrometer real-time data processing with a single computer.
Renal geology (quantitative renal stone analysis) by 'Fourier transform infrared spectroscopy'.
Singh, Iqbal
2008-01-01
To prospectively determine the precise stone composition (quantitative analysis) by using infrared spectroscopy in patients with urinary stone disease presenting to our clinic. To determine an ideal method for stone analysis suitable for use in a clinical setting. After routine and a detailed metabolic workup of all patients of urolithiasis, stone samples of 50 patients of urolithiasis satisfying the entry criteria were subjected to the Fourier transform infrared spectroscopic analysis after adequate sample homogenization at a single testing center. Calcium oxalate monohydrate and dihydrate stone mixture was most commonly encountered in 35 (71%) followed by calcium phosphate, carbonate apatite, magnesium ammonium hexahydrate and xanthine stones. Fourier transform infrared spectroscopy allows an accurate, reliable quantitative method of stone analysis. It also helps in maintaining a computerized large reference library. Knowledge of precise stone composition may allow the institution of appropriate prophylactic therapy despite the absence of any detectable metabolic abnormalities. This may prevent and or delay stone recurrence.
Stress wave calculations in composite plates using the fast Fourier transform.
Moon, F. C.
1973-01-01
The protection of composite turbine fan blades against impact forces has prompted the study of dynamic stresses in composites due to transient loads. The mathematical model treats the laminated plate as an equivalent anisotropic material. The use of Mindlin's approximate theory of crystal plates results in five two-dimensional stress waves. Three of the waves are flexural and two involve in-plane extensional strains. The initial value problem due to a transient distributed transverse force on the plate is solved using Laplace and Fourier transforms. A fast computer program for inverting the two-dimensional Fourier transform is used. Stress contours for various stresses and times after application of load are obtained for a graphite fiber-epoxy matrix composite plate. Results indicate that the points of maximum stress travel along the fiber directions.
International Nuclear Information System (INIS)
Rebagay, T.V.; Dodd, D.A.
1992-07-01
The disposal of low-level radioactive liquid wastes at the Hanford Site near Richland, Washington, involves mixing the wastes with pozzolanic grout-forming solid blends. Checking the quality of each blend component and its mix ratio will ensure processibility of the blend and the long-term performance of the resulting waste grout. In earlier work at Hanford laboratories, Fourier transform infrared-transmission method (FTIR-TR) using KBr pellet was applied successfully in the analysis of blends consisting of cement, fly ash, and clays. This method involves time-consuming sample preparation resulting in slow turnaround for repetitive sampling. Because reflection methods do not require elaborate sample preparation, they have the potential to reduce turnaround analysis time. Neat samples may be examined making these methods attractive for quality control. This study investigates the capability of Fourier transform infrared-attenuated total reflectance method (FTIR-ATR) to analyze pozzolanic blends
Tabletop single-shot extreme ultraviolet Fourier transform holography of an extended object.
Malm, Erik B; Monserud, Nils C; Brown, Christopher G; Wachulak, Przemyslaw W; Xu, Huiwen; Balakrishnan, Ganesh; Chao, Weilun; Anderson, Erik; Marconi, Mario C
2013-04-22
We demonstrate single and multi-shot Fourier transform holography with the use of a tabletop extreme ultraviolet laser. The reference wave was produced by a Fresnel zone plate with a central opening that allowed the incident beam to illuminate the sample directly. The high reference wave intensity allows for larger objects to be imaged compared to mask-based lensless Fourier transform holography techniques. We obtain a spatial resolution of 169 nm from a single laser pulse and a resolution of 128 nm from an accumulation of 20 laser pulses for an object ~11x11μm(2) in size. This experiment utilized a tabletop extreme ultraviolet laser that produces a highly coherent ~1.2 ns laser pulse at 46.9 nm wavelength.
International Nuclear Information System (INIS)
Feit, M.D.; Fleck, J.A. Jr.
1989-01-01
We describe a spectral method for solving the paraxial wave equation in cylindrical geometry that is based on expansion of the exponential evolution operator in a Taylor series and use of fast Fourier transforms to evaluate derivatives. A fourth-order expansion gives excellent agreement with a two-transverse-dimensional split-operator calculation at a fraction of the cost in computation time per z step and at a considerable savings in storage
International Nuclear Information System (INIS)
Ibrahim, Amr; Predoi-Cross, Adriana; Teillet, Philippe M.
2010-01-01
Channel spectra are a big problem for those attempting to use synchrotron-based Fourier transform spectra for spectral lineshape studies. Due to the layout of the optical system at the CLS far-infrared beamline, the synchrotron beam undergoes unavoidable multiple reflections on the steering mirrors, beam splitter, several sets of windows, and filters. We present a method for eliminating channel spectra and compare the results of our technique with other methods available in the literature.