Discrete mechanics Based on Finite Element Methods
Chen, Jing-bo; Guo, Han-Ying; Wu, Ke
2002-01-01
Discrete Mechanics based on finite element methods is presented in this paper. We also explore the relationship between this discrete mechanics and Veselov discrete mechanics. High order discretizations are constructed in terms of high order interpolations.
Finite element discretization of Darcy's equations with pressure dependent porosity
Girault, Vivette
2010-02-23
We consider the flow of a viscous incompressible fluid through a rigid homogeneous porous medium. The permeability of the medium depends on the pressure, so that the model is nonlinear. We propose a finite element discretization of this problem and, in the case where the dependence on the pressure is bounded from above and below, we prove its convergence to the solution and propose an algorithm to solve the discrete system. In the case where the dependence on the pressure is exponential, we propose a splitting scheme which involves solving two linear systems, but parts of the analysis of this method are still heuristic. Numerical tests are presented, which illustrate the introduced methods. © 2010 EDP Sciences, SMAI.
Ruiz-Baier, Ricardo; Lunati, Ivan
2016-10-01
We present a novel discretization scheme tailored to a class of multiphase models that regard the physical system as consisting of multiple interacting continua. In the framework of mixture theory, we consider a general mathematical model that entails solving a system of mass and momentum equations for both the mixture and one of the phases. The model results in a strongly coupled and nonlinear system of partial differential equations that are written in terms of phase and mixture (barycentric) velocities, phase pressure, and saturation. We construct an accurate, robust and reliable hybrid method that combines a mixed finite element discretization of the momentum equations with a primal discontinuous finite volume-element discretization of the mass (or transport) equations. The scheme is devised for unstructured meshes and relies on mixed Brezzi-Douglas-Marini approximations of phase and total velocities, on piecewise constant elements for the approximation of phase or total pressures, as well as on a primal formulation that employs discontinuous finite volume elements defined on a dual diamond mesh to approximate scalar fields of interest (such as volume fraction, total density, saturation, etc.). As the discretization scheme is derived for a general formulation of multicontinuum physical systems, it can be readily applied to a large class of simplified multiphase models; on the other, the approach can be seen as a generalization of these models that are commonly encountered in the literature and employed when the latter are not sufficiently accurate. An extensive set of numerical test cases involving two- and three-dimensional porous media are presented to demonstrate the accuracy of the method (displaying an optimal convergence rate), the physics-preserving properties of the mixed-primal scheme, as well as the robustness of the method (which is successfully used to simulate diverse physical phenomena such as density fingering, Terzaghi's consolidation
Hamiltonian Finite Element Discretization for Nonlinear Free Surface WaterWaves
van der Vegt, Jacobus J.W.; Brink, Freekjan; Iszak, Ferenc
2017-01-01
A novel finite element discretization for nonlinear potential flow water waves is presented. Starting from Luke’s Lagrangian formulation we prove that an appropriate finite element discretization preserves the Hamiltonian structure of the potential flow water waveequations, even on general
Bause, Markus; Radu, Florin A; Köcher, Uwe
2017-01-01
Variational time discretization schemes are getting of increasing importance for the accurate numerical approximation of transient phenomena. The applicability and value of mixed finite element methods in space for simulating transport processes have been demonstrated in a wide class of works. We consider a family of continuous Galerkin-Petrov time discretization schemes that is combined with a mixed finite element approximation of the spatial variables. The existence and uniqueness of the semidiscrete approximation and of the fully discrete solution are established. For this, the Banach-Nečas-Babuška theorem is applied in a non-standard way. Error estimates with explicit rates of convergence are proved for the scalar and vector-valued variable. An optimal order estimate in space and time is proved by duality techniques for the scalar variable. The convergence rates are analyzed and illustrated by numerical experiments, also on stochastically perturbed meshes.
A discrete finite element modelling and measurements for powder compaction
International Nuclear Information System (INIS)
Choi, J L; Gethin, D T
2009-01-01
An experimental investigation into friction between powder and a target surface together with numerical modelling of compaction and friction processes at a micro-scale are presented in this paper. The experimental work explores friction mechanisms by using an extended sliding plate apparatus operating at low load while sliding over a long distance. Tests were conducted for copper and 316 steel with variation in loads, surface finish and its orientation. The behaviours of the static and dynamic friction were identified highlighting the important influence of particle size, particle shape, material response and surface topography. The results also highlighted that under light loading the friction coefficient remains at a level lower than that derived from experiments on equipment having a wider dynamic range and this is attributed to the enhanced sensitivity of the measurement equipment. The results also suggest that friction variation with sliding distance is a consequence of damage, rather than presentation of an uncontaminated target sliding surface. The complete experimental cycle was modelled numerically using a combined discrete and finite element scheme enabling exploration of mechanisms that are defined at the particle level. Using compaction as the starting point, a number of simulation factors and process parameters were investigated. Comparisons were made with previously published work, showing reasonable agreement and the simulations were then used to explore the process response to the range of particle scale factors. Models comprising regular packing of round particles exhibited stiff response with high initial density. Models with random packing were explored and were found to reflect trends that are more closely aligned with experimental observation, including rearrangement, followed by compaction under a regime of elastic then plastic deformation. Numerical modelling of the compaction stage was extended to account for the shearing stage of the
An implicit finite element method for discrete dynamic fracture
Energy Technology Data Exchange (ETDEWEB)
Gerken, Jobie M. [Colorado State Univ., Fort Collins, CO (United States)
1999-12-01
A method for modeling the discrete fracture of two-dimensional linear elastic structures with a distribution of small cracks subject to dynamic conditions has been developed. The foundation for this numerical model is a plane element formulated from the Hu-Washizu energy principle. The distribution of small cracks is incorporated into the numerical model by including a small crack at each element interface. The additional strain field in an element adjacent to this crack is treated as an externally applied strain field in the Hu-Washizu energy principle. The resulting stiffness matrix is that of a standard plane element. The resulting load vector is that of a standard plane element with an additional term that includes the externally applied strain field. Except for the crack strain field equations, all terms of the stiffness matrix and load vector are integrated symbolically in Maple V so that fully integrated plane stress and plane strain elements are constructed. The crack strain field equations are integrated numerically. The modeling of dynamic behavior of simple structures was demonstrated within acceptable engineering accuracy. In the model of axial and transverse vibration of a beam and the breathing mode of vibration of a thin ring, the dynamic characteristics were shown to be within expected limits. The models dominated by tensile forces (the axially loaded beam and the pressurized ring) were within 0.5% of the theoretical values while the shear dominated model (the transversely loaded beam) is within 5% of the calculated theoretical value. The constant strain field of the tensile problems can be modeled exactly by the numerical model. The numerical results should therefore, be exact. The discrepancies can be accounted for by errors in the calculation of frequency from the numerical results. The linear strain field of the transverse model must be modeled by a series of constant strain elements. This is an approximation to the true strain field, so some
Vertical discretization with finite elements for a global hydrostatic model on the cubed sphere
Yi, Tae-Hyeong; Park, Ja-Rin
2017-06-01
A formulation of Galerkin finite element with basis-spline functions on a hybrid sigma-pressure coordinate is presented to discretize the vertical terms of global Eulerian hydrostatic equations employed in a numerical weather prediction system, which is horizontally discretized with high-order spectral elements on a cubed sphere grid. This replaces the vertical discretization of conventional central finite difference that is first-order accurate in non-uniform grids and causes numerical instability in advection-dominant flows. Therefore, a model remains in the framework of Galerkin finite elements for both the horizontal and vertical spatial terms. The basis-spline functions, obtained from the de-Boor algorithm, are employed to derive both the vertical derivative and integral operators, since Eulerian advection terms are involved. These operators are used to discretize the vertical terms of the prognostic and diagnostic equations. To verify the vertical discretization schemes and compare their performance, various two- and three-dimensional idealized cases and a hindcast case with full physics are performed in terms of accuracy and stability. It was shown that the vertical finite element with the cubic basis-spline function is more accurate and stable than that of the vertical finite difference, as indicated by faster residual convergence, fewer statistical errors, and reduction in computational mode. This leads to the general conclusion that the overall performance of a global hydrostatic model might be significantly improved with the vertical finite element.
Multi-scale simulation method with coupled finite/discrete element model and its application
Fang, Xiwu; Liu, Zhenyu; Tan, Jianrong; Qiu, Chan; Chen, Fengbei
2013-07-01
The existing research on continuous structure is usually analyzed with finite element method (FEM) and granular medium with discrete element method (DEM), but there are few researches on the coupling interaction between continuous structure and discrete medium. To the issue of this coupling interaction, a multi-scale simulation method with coupled finite/discrete element model is put forward, in their respective domains of discrete and finite elements, the nodes follow force law and motion law of their own method, and on the their interaction interface, the touch type between discrete and finite elements is distinguished as two types: full touch and partial touch, the interaction force between them is calculated with linear elastic model. For full touch, the contact force is proportional to the overlap distance between discrete element and finite element patch. For partial touch, first the finite element patch is extended on all sides indefinitely to be a complete plane, the full contact force can be obtained with the touch type between discrete element and plane being viewed as full touch, then the full overlap area between them and the actual overlap area between discrete element and finite element patch are computed, the actual contact force is obtained by scaling the full contact force with a factor η which is determined by the ratio of the actual overlap area to the full overlap area. The contact force is equivalent to the finite element nodes and the force and displacement on the nodes can be computed, so the ideal simulation results can be got. This method has been used to simulate the cutter disk of the earth pressure balance shield machine (EPBSM) made in North Heavy Industry (NHI) with its excavation diameter of 6.28 m cutting and digging the sandy clay layer. The simulation results show that as the gradual increase of excavating depth of the cutter head, the maximum stress occurs at the roots of cutters on the cutter head, while for the soil, the
Energy Technology Data Exchange (ETDEWEB)
Bailey, T S; Chang, J H; Warsa, J S; Adams, M L
2010-12-22
We present a new spatial discretization of the discrete-ordinates transport equation in two-dimensional Cartesian (X-Y) geometry for arbitrary polygonal meshes. The discretization is a discontinuous finite element method (DFEM) that utilizes piecewise bi-linear (PWBL) basis functions, which are formally introduced in this paper. We also present a series of numerical results on quadrilateral and polygonal grids and compare these results to a variety of other spatial discretizations that have been shown to be successful on these grid types. Finally, we note that the properties of the PWBL basis functions are such that the leading-order piecewise bi-linear discontinuous finite element (PWBLD) solution will satisfy a reasonably accurate diffusion discretization in the thick diffusion limit, making the PWBLD method a viable candidate for many different classes of transport problems.
Hybrid Discrete Element - Finite Element Simulation for Railway Bridge-Track Interaction
Kaewunruen, S.; Mirza, O.
2017-10-01
At the transition zone or sometimes called ‘bridge end’ or ‘bridge approach’, the stiffness difference between plain track and track over bridge often causes aggravated impact loading due to uneven train movement onto the area. The differential track settlement over the transition has been a classical problem in railway networks, especially for the aging rail infrastructures around the world. This problem is also additionally worsened by the fact that the construction practice over the area is difficult, resulting in a poor compaction of formation and subgrade. This paper presents an advanced hybrid simulation using coupled discrete elements and finite elements to investigate dynamic interaction at the transition zone. The goal is to evaluate the dynamic stresses and to better understand the impact dynamics redistribution at the bridge end. An existing bridge ‘Salt Pan Creek Railway Bridge’, located between Revesby and Kingsgrove, has been chosen for detailed investigation. The Salt Pan Bridge currently demonstrates crushing of the ballast causing significant deformation and damage. Thus, it’s imperative to assess the behaviours of the ballast under dynamic loads. This can be achieved by modelling the nonlinear interactions between the steel rail and sleeper, and sleeper to ballast. The continuum solid elements of track components have been modelled using finite element approach, while the granular media (i.e. ballast) have been simulated by discrete element method. The hybrid DE/FE model demonstrates that ballast experiences significant stresses at the contacts between the sleeper and concrete section. These overburden stress exists in the regions below the outer rails, identify fouling and permanent deformation of the ballast.
Convergence analysis for finite element discretizations of highly indefinite problems
Asieh, P
2012-01-01
Helmholtz problem appears in many areas for example in the context of inverse and scattering problems. This problem is solved numerically and the challenge is that the solutions become highly oscillatory. As a consequence the numerical discretization has to be adapted to resolve these oscillations. Galerkin methods are well established to solve elliptic problems - however for Helmholtz problems they suffer from the indefiniteness of the equation, more precisely, the stability of the discrete...
Finite-Element-Based Discretization and Regularization Strategies for 3D Inverse Electrocardiography
Wang, Dafang; Kirby, Robert M.; Johnson, Chris R.
2011-01-01
We consider the inverse electrocardiographic problem of computing epicardial potentials from a body-surface potential map. We study how to improve numerical approximation of the inverse problem when the finite element method is used. Being ill-posed, the inverse problem requires different discretization strategies from its corresponding forward problem. We propose refinement guidelines that specifically address the ill-posedness of the problem. The resulting guidelines necessitate the use of hybrid finite elements composed of tetrahedra and prism elements. Also in order to maintain consistent numerical quality when the inverse problem is discretized into different scales, we propose a new family of regularizers using the variational principle underlying finite element methods. These variational-formed regularizers serve as an alternative to the traditional Tikhonov regularizers, but preserves the L2 norm and thereby achieves consistent regularization in multi-scale simulations. The variational formulation also enables a simple construction of the discrete gradient operator over irregular meshes, which is difficult to define in traditional discretization schemes. We validated our hybrid element technique and the variational regularizers by simulations on a realistic 3D torso/heart model with empirical heart data. Results show that discretization based on our proposed strategies mitigates the ill-conditioning and improves the inverse solution, and that the variational formulation may benefit a broader range of potential-based bioelectric problems. PMID:21382763
International Nuclear Information System (INIS)
Bailey, T S; Adams, M L; Yang, B; Zika, M R
2005-01-01
We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses piecewise linear weight and basis functions in the finite element approximation, and it can be applied on arbitrary polygonal (2D) or polyhedral (3D) grids. We show that this new PWL method gives solutions comparable to those from Palmer's finite-volume method. However, since the PWL method produces a symmetric positive definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids
International Nuclear Information System (INIS)
Bailey, T.S.; Adams, M.L.; Yang, B.; Zika, M.R.
2005-01-01
We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses piecewise linear weight and basis functions in the finite element approximation, and it can be applied on arbitrary polygonal (2-dimensional) or polyhedral (3-dimensional) grids. We show that this new PWL method gives solutions comparable to those from Palmer's finite-volume method. However, since the PWL method produces a symmetric positive definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids. (authors)
Discrete-ordinates finite-element method for atmospheric radiative transfer and remote sensing
International Nuclear Information System (INIS)
Gerstl, S.A.W.; Zardecki, A.
1985-01-01
Advantages and disadvantages of modern discrete-ordinates finite-element methods for the solution of radiative transfer problems in meteorology, climatology, and remote sensing applications are evaluated. After the common basis of the formulation of radiative transfer problems in the fields of neutron transport and atmospheric optics is established, the essential features of the discrete-ordinates finite-element method are described including the limitations of the method and their remedies. Numerical results are presented for 1-D and 2-D atmospheric radiative transfer problems where integral as well as angular dependent quantities are compared with published results from other calculations and with measured data. These comparisons provide a verification of the discrete-ordinates results for a wide spectrum of cases with varying degrees of absorption, scattering, and anisotropic phase functions. Accuracy and computational speed are also discussed. Since practically all discrete-ordinates codes offer a builtin adjoint capability, the general concept of the adjoint method is described and illustrated by sample problems. Our general conclusion is that the strengths of the discrete-ordinates finite-element method outweight its weaknesses. We demonstrate that existing general-purpose discrete-ordinates codes can provide a powerful tool to analyze radiative transfer problems through the atmosphere, especially when 2-D geometries must be considered
Application of the control volume mixed finite element method to a triangular discretization
Naff, R.L.
2012-01-01
A two-dimensional control volume mixed finite element method is applied to the elliptic equation. Discretization of the computational domain is based in triangular elements. Shape functions and test functions are formulated on the basis of an equilateral reference triangle with unit edges. A pressure support based on the linear interpolation of elemental edge pressures is used in this formulation. Comparisons are made between results from the standard mixed finite element method and this control volume mixed finite element method. Published 2011. This article is a US Government work and is in the public domain in the USA. ?? 2012 John Wiley & Sons, Ltd. This article is a US Government work and is in the public domain in the USA.
International Nuclear Information System (INIS)
Bailey, Teresa S.; Adams, Marvin L.; Yang, Brian; Zika, Michael R.
2008-01-01
We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses recently introduced piecewise linear weight and basis functions in the finite element approximation and it can be applied on arbitrary polygonal (2D) or polyhedral (3D) grids. We first demonstrate some analytical properties of the PWL method and perform a simple mode analysis to compare the PWL method with Palmer's vertex-centered finite-volume method and with a bilinear continuous finite element method. We then show that this new PWL method gives solutions comparable to those from Palmer's. However, since the PWL method produces a symmetric positive-definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids
Hansel, Joshua E.; Ragusa, Jean C.
2018-02-01
The Flux-Corrected Transport (FCT) algorithm is applied to the unsteady and steady-state particle transport equation. The proposed FCT method employs the following: (1) a low-order, positivity-preserving scheme, based on the application of M-matrix properties, (2) a high-order scheme based on the entropy viscosity method introduced by Guermond [1], and (3) local, discrete solution bounds derived from the integral transport equation. The resulting scheme is second-order accurate in space, enforces an entropy inequality, mitigates the formation of spurious oscillations, and guarantees the absence of negativities. Space discretization is achieved using continuous finite elements. Time discretizations for unsteady problems include theta schemes such as explicit and implicit Euler, and strong-stability preserving Runge-Kutta (SSPRK) methods. The developed FCT scheme is shown to be robust with explicit time discretizations but may require damping in the nonlinear iterations for steady-state and implicit time discretizations.
Finite element discretization of non-linear diffusion equations with thermal fluctuations.
de la Torre, J A; Español, Pep; Donev, Aleksandar
2015-03-07
We present a finite element discretization of a non-linear diffusion equation used in the field of critical phenomena and, more recently, in the context of dynamic density functional theory. The discretized equation preserves the structure of the continuum equation. Specifically, it conserves the total number of particles and fulfills an H-theorem as the original partial differential equation. The discretization proposed suggests a particular definition of the discrete hydrodynamic variables in microscopic terms. These variables are then used to obtain, with the theory of coarse-graining, their dynamic equations for both averages and fluctuations. The hydrodynamic variables defined in this way lead to microscopically derived hydrodynamic equations that have a natural interpretation in terms of discretization of continuum equations. Also, the theory of coarse-graining allows to discuss the introduction of thermal fluctuations in a physically sensible way. The methodology proposed for the introduction of thermal fluctuations in finite element methods is general and valid for both regular and irregular grids in arbitrary dimensions. We focus here on simulations of the Ginzburg-Landau free energy functional using both regular and irregular 1D grids. Convergence of the numerical results is obtained for the static and dynamic structure factors as the resolution of the grid is increased.
International Nuclear Information System (INIS)
Rousseau, J.
2009-07-01
That study focuses on concrete structures submitted to impact loading and is aimed at predicting local damage in the vicinity of an impact zone as well as the global response of the structure. The Discrete Element Method (DEM) seems particularly well suited in this context for modeling fractures. An identification process of DEM material parameters from macroscopic data (Young's modulus, compressive and tensile strength, fracture energy, etc.) will first be presented for the purpose of enhancing reproducibility and reliability of the simulation results with DE samples of various sizes. Then, a particular interaction, between concrete and steel elements, was developed for the simulation of reinforced concrete. The discrete elements method was validated on quasi-static and dynamic tests carried out on small samples of concrete and reinforced concrete. Finally, discrete elements were used to simulate impacts on reinforced concrete slabs in order to confront the results with experimental tests. The modeling of a large structure by means of DEM may lead to prohibitive computation times. A refined discretization becomes required in the vicinity of the impact, while the structure may be modeled using a coarse FE mesh further from the impact area, where the material behaves elastically. A coupled discrete-finite element approach is thus proposed: the impact zone is modeled by means of DE and elastic FE are used on the rest of the structure. An existing method for 3D finite elements was extended to shells. This new method was then validated on many quasi-static and dynamic tests. The proposed approach is then applied to an impact on a concrete structure in order to validate the coupled method and compare computation times. (author)
Schunert, Sebastian; Wang, Yaqi; Gleicher, Frederick; Ortensi, Javier; Baker, Benjamin; Laboure, Vincent; Wang, Congjian; DeHart, Mark; Martineau, Richard
2017-06-01
This work presents a flexible nonlinear diffusion acceleration (NDA) method that discretizes both the SN transport equation and the diffusion equation using the discontinuous finite element method (DFEM). The method is flexible in that the diffusion equation can be discretized on a coarser mesh with the only restriction that it is nested within the transport mesh and the FEM shape function orders of the two equations can be different. The consistency of the transport and diffusion solutions at convergence is defined by using a projection operator mapping the transport into the diffusion FEM space. The diffusion weak form is based on the modified incomplete interior penalty (MIP) diffusion DFEM discretization that is extended by volumetric drift, interior face, and boundary closure terms. In contrast to commonly used coarse mesh finite difference (CMFD) methods, the presented NDA method uses a full FEM discretized diffusion equation for acceleration. Suitable projection and prolongation operators arise naturally from the FEM framework. Via Fourier analysis and numerical experiments for a one-group, fixed source problem the following properties of the NDA method are established for structured quadrilateral meshes: (1) the presented method is unconditionally stable and effective in the presence of mild material heterogeneities if the same mesh and identical shape functions either of the bilinear or biquadratic type are used, (2) the NDA method remains unconditionally stable in the presence of strong heterogeneities, (3) the NDA method with bilinear elements extends the range of effectiveness and stability by a factor of two when compared to CMFD if a coarser diffusion mesh is selected. In addition, the method is tested for solving the C5G7 multigroup, eigenvalue problem using coarse and fine mesh acceleration. While NDA does not offer an advantage over CMFD for fine mesh acceleration, it reduces the iteration count required for convergence by almost a factor of two in
Papagiannis, P.; Azariadis, P.; Papanikos, P.
2017-10-01
Footwear is subject to bending and torsion deformations that affect comfort perception. Following review of Finite Element Analysis studies of sole rigidity and comfort, a three-dimensional, linear multi-material finite element sole model for quasi-static bending and torsion simulation, overcoming boundary and optimisation limitations, is described. Common footwear materials properties and boundary conditions from gait biomechanics are used. The use of normalised strain energy for product benchmarking is demonstrated along with comfort level determination through strain energy density stratification. Sensitivity of strain energy against material thickness is greater for bending than for torsion, with results of both deformations showing positive correlation. Optimization for a targeted performance level and given layer thickness is demonstrated with bending simulations sufficing for overall comfort assessment. An algorithm for comfort optimization w.r.t. bending is presented, based on a discrete approach with thickness values set in line with practical manufacturing accuracy. This work illustrates the potential of the developed finite element analysis applications to offer viable and proven aids to modern footwear sole design assessment and optimization.
Energy Technology Data Exchange (ETDEWEB)
Bailey, T S; Adams, M L; Chang, J H
2008-10-01
We present a new spatial discretization of the discrete-ordinates transport equation in two-dimensional cylindrical (RZ) geometry for arbitrary polygonal meshes. This discretization is a discontinuous finite element method that utilizes the piecewise linear basis functions developed by Stone and Adams. We describe an asymptotic analysis that shows this method to be accurate for many problems in the thick diffusion limit on arbitrary polygons, allowing this method to be applied to radiative transfer problems with these types of meshes. We also present numerical results for multiple problems on quadrilateral grids and compare these results to the well-known bi-linear discontinuous finite element method.
International Nuclear Information System (INIS)
Nunes, Rogerio Chaffin
2002-01-01
The transport equation defined in a medium with axial symmetry is angularly approached by a method of discrete ordinates and the system of partial differential equations obtained like this is solved by the method of the finite elements. The variational formulation for the system of differential equations of 2nd order with generalized Neumann boundary conditions (3rd type) it is approximated with triangular elements of 1st order. This work investigates the sensibility of the incoming flux and the absorption properties and scattering of the medium. Various non homogeneity types were investigated inside the medium. Various simulations involving the influence of the incoming flux, of the outgoing flux and of the material properties of the medium in the mapping of 'Dirichlet-Neumann' will be presented. (author)
Directory of Open Access Journals (Sweden)
Pavel A. Akimov
2017-12-01
Full Text Available As is well known, the formulation of a multipoint boundary problem involves three main components: a description of the domain occupied by the structure and the corresponding subdomains; description of the conditions inside the domain and inside the corresponding subdomains, the description of the conditions on the boundary of the domain, conditions on the boundaries between subdomains. This paper is a continuation of another work published earlier, in which the formulation and general principles of the approximation of the multipoint boundary problem of a static analysis of deep beam on the basis of the joint application of the finite element method and the discrete-continual finite element method were considered. It should be noted that the approximation within the fragments of a domain that have regular physical-geometric parameters along one of the directions is expedient to be carried out on the basis of the discrete-continual finite element method (DCFEM, and for the approximation of all other fragments it is necessary to use the standard finite element method (FEM. In the present publication, the formulas for the computing of displacements partial derivatives of displacements, strains and stresses within the finite element model (both within the finite element and the corresponding nodal values (with the use of averaging are presented. Boundary conditions between subdomains (respectively, discrete models and discrete-continual models and typical conditions such as “hinged support”, “free edge”, “perfect contact” (twelve basic (basic variants are available are under consideration as well. Governing formulas for computing of elements of the corresponding matrices of coefficients and vectors of the right-hand sides are given for each variant. All formulas are fully adapted for algorithmic implementation.
Finite Discrete Gabor Analysis
DEFF Research Database (Denmark)
Søndergaard, Peter Lempel
2007-01-01
on the real line to be well approximated by finite and discrete Gabor frames. This method of approximation is especially attractive because efficient numerical methods exists for doing computations with finite, discrete Gabor systems. This thesis presents new algorithms for the efficient computation of finite......, discrete Gabor coefficients. Reconstruction of a signal from its Gabor coefficients is done by the use of a so-called dual window. This thesis presents a number of iterative algorithms to compute dual and self-dual windows. The Linear Time Frequency Toolbox is a Matlab/Octave/C toolbox for doing basic...... discrete time/frequency and Gabor analysis. It is intended to be both an educational and a computational tool. The toolbox was developed as part of this Ph.D. project to provide a solid foundation for the field of computational Gabor analysis....
Directory of Open Access Journals (Sweden)
Z. M. Jaini
Full Text Available Abstract Numerical modeling of fracture failure is challenging due to various issues in the constitutive law and the transition of continuum to discrete bodies. Therefore, this study presents the application of the combined finite-discrete element method to investigate the fracture failure of reinforced concrete slabs subjected to blast loading. In numerical modeling, the interaction of non-uniform blast loading on the concrete slab was modeled using the incorporation of the finite element method with a crack rotating approach and the discrete element method to model crack, fracture onset and its post-failures. A time varying pressure-time history based on the mapping method was adopted to define blast loading. The Mohr-Coulomb with Rankine cut-off and von-Mises criteria were applied for concrete and steel reinforcement respectively. The results of scabbing, spalling and fracture show a reliable prediction of damage and fracture.
International Nuclear Information System (INIS)
Sanchez, Richard; Rabiti, Cristian; Wang, Yaqi
2013-01-01
Nonlinear acceleration of a continuous finite element (CFE) discretization of the transport equation requires a modification of the transport solution in order to achieve local conservation, a condition used in nonlinear acceleration to define the stopping criterion. In this work we implement a coarse-mesh finite difference acceleration for a CFE discretization of the second-order self-adjoint angular flux (SAAF) form of the transport equation and use a postprocessing to enforce local conservation. Numerical results are given for one-group source calculations of one-dimensional slabs. We also give a novel formal derivation of the boundary conditions for the SAAF. (authors)
Vyazmensky, Alexander; Stead, D.; Elmo, D.; Moss, A.
2010-02-01
This paper addresses one of the most challenging problems in mining rock engineering—the interaction between block cave mining and a large overlying open pit. The finite element modeling/discrete element modeling (FEM/DEM) approach was utilized in the analysis of block caving-induced step-path failure development in a large open pit slope. The analysis indicated that there is a threshold percentage of critical intact rock bridges along a step-path failure plane that may ensure the stability of an open pit throughout caving operations. Transition from open pit to underground mining at Palabora mine presents an important example of a pit wall instability triggered by caving. Using combined FEM/DEM-DFN (discrete fracture network) modeling, it was possible to investigate the formation of a basal failure surface within an open pit slope as a direct result of cave mining. The modeling of Palabora highlighted the importance of rock mass tensile strength and its influence on caving-induced slope response.
Directory of Open Access Journals (Sweden)
Qi Zhao
2014-12-01
Full Text Available Hydraulic fracturing (HF technique has been extensively used for the exploitation of unconventional oil and gas reservoirs. HF enhances the connectivity of less permeable oil and gas-bearing rock formations by fluid injection, which creates an interconnected fracture network and increases the hydrocarbon production. Meanwhile, microseismic (MS monitoring is one of the most effective approaches to evaluate such stimulation process. In this paper, the combined finite-discrete element method (FDEM is adopted to numerically simulate HF and associated MS. Several post-processing tools, including frequency-magnitude distribution (b-value, fractal dimension (D-value, and seismic events clustering, are utilized to interpret numerical results. A non-parametric clustering algorithm designed specifically for FDEM is used to reduce the mesh dependency and extract more realistic seismic information. Simulation results indicated that at the local scale, the HF process tends to propagate following the rock mass discontinuities; while at the reservoir scale, it tends to develop in the direction parallel to the maximum in-situ stress.
Finite-element discretization of 3D energy-transport equations for semiconductors
Energy Technology Data Exchange (ETDEWEB)
Gadau, Stephan
2007-07-01
In this thesis a mathematical model was derived that describes the charge and energy transport in semiconductor devices like transistors. Moreover, numerical simulations of these physical processes are performed. In order to accomplish this, methods of theoretical physics, functional analysis, numerical mathematics and computer programming are applied. After an introduction to the status quo of semiconductor device simulation methods and a brief review of historical facts up to now, the attention is shifted to the construction of a model, which serves as the basis of the subsequent derivations in the thesis. Thereby the starting point is an important equation of the theory of dilute gases. From this equation the model equations are derived and specified by means of a series expansion method. This is done in a multi-stage derivation process, which is mainly taken from a scientific paper and which does not constitute the focus of this thesis. In the following phase we specify the mathematical setting and make precise the model assumptions. Thereby we make use of methods of functional analysis. Since the equations we deal with are coupled, we are concerned with a nonstandard problem. In contrary, the theory of scalar elliptic equations is established meanwhile. Subsequently, we are preoccupied with the numerical discretization of the equations. A special finite-element method is used for the discretization. This special approach has to be done in order to make the numerical results appropriate for practical application. By a series of transformations from the discrete model we derive a system of algebraic equations that are eligible for numerical evaluation. Using self-made computer programs we solve the equations to get approximate solutions. These programs are based on new and specialized iteration procedures that are developed and thoroughly tested within the frame of this research work. Due to their importance and their novel status, they are explained and
Discrete Maximum Principle for Higher-Order Finite Elements in 1D
Czech Academy of Sciences Publication Activity Database
Vejchodský, Tomáš; Šolín, Pavel
2007-01-01
Roč. 76, č. 260 (2007), s. 1833-1846 ISSN 0025-5718 R&D Projects: GA ČR GP201/04/P021 Institutional research plan: CEZ:AV0Z10190503; CEZ:AV0Z20760514 Keywords : discrete maximum principle * discrete Grren´s function * higher-order elements Subject RIV: BA - General Mathematics Impact factor: 1.230, year: 2007
Least-squares finite element discretizations of neutron transport equations in 3 dimensions
Energy Technology Data Exchange (ETDEWEB)
Manteuffel, T.A [Univ. of Colorado, Boulder, CO (United States); Ressel, K.J. [Interdisciplinary Project Center for Supercomputing, Zurich (Switzerland); Starkes, G. [Universtaet Karlsruhe (Germany)
1996-12-31
The least-squares finite element framework to the neutron transport equation introduced in is based on the minimization of a least-squares functional applied to the properly scaled neutron transport equation. Here we report on some practical aspects of this approach for neutron transport calculations in three space dimensions. The systems of partial differential equations resulting from a P{sub 1} and P{sub 2} approximation of the angular dependence are derived. In the diffusive limit, the system is essentially a Poisson equation for zeroth moment and has a divergence structure for the set of moments of order 1. One of the key features of the least-squares approach is that it produces a posteriori error bounds. We report on the numerical results obtained for the minimum of the least-squares functional augmented by an additional boundary term using trilinear finite elements on a uniform tesselation into cubes.
Czech Academy of Sciences Publication Activity Database
Marcinkowski, L.; Rahman, T.; Loneland, A.; Valdman, Jan
2016-01-01
Roč. 56, č. 3 (2016), s. 967-993 ISSN 0006-3835 R&D Projects: GA ČR GA13-18652S Institutional support: RVO:67985556 Keywords : Domain decomposition * Additive Schwarz method * Finite volume element * GMRES Subject RIV: BA - General Mathematics Impact factor: 1.670, year: 2016 http://library.utia.cas.cz/separaty/2015/MTR/valdman-0447835.pdf
Directory of Open Access Journals (Sweden)
Akimov Pavel
2016-01-01
Full Text Available The distinctive paper is devoted to the two-dimensional semi-analytical solution of boundary problems of analysis of shear walls with the use of discrete-continual finite element method (DCFEM. This approach allows obtaining the exact analytical solution in one direction (so-called “basic” direction, also decrease the size of the problem to one-dimensional common finite element analysis. The resulting multipoint boundary problem for the first-order system of ordinary differential equations with piecewise constant coefficients is solved analytically. The proposed method is rather efficient for evaluation of the boundary effect (such as the stress field near the concentrated force. DCFEM also has a completely computer-oriented algorithm, computational stability, optimal conditionality of resultant system and it is applicable for the various loads at an arbitrary point or a region of the wall.
Finite elements and approximation
Zienkiewicz, O C
2006-01-01
A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises.Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher o
Monteiro, André O.
2013-09-25
The mechanical response to a uniaxial compressive force of a single carbon nanotube (CNT) filled (or partially-filled) with ZnS has been modelled. A semi-empirical approach based on the finite element method was used whereby modelling outcomes were closely matched to experimental observations. This is the first example of the use of the continuum approach to model the mechanical behaviour of discrete filled CNTs. In contrast to more computationally demanding methods such as density functional theory or molecular dynamics, our approach provides a viable and expedite alternative to model the mechanics of filled multi-walled CNTs. © 2013 Springer Science+Business Media New York.
International Nuclear Information System (INIS)
Souza, Manoelito M. de
1997-01-01
We discuss the physical meaning and the geometric interpretation of implementation in classical field theories. The origin of infinities and other inconsistencies in field theories is traced to fields defined with support on the light cone; a finite and consistent field theory requires a light-cone generator as the field support. Then, we introduce a classical field theory with support on the light cone generators. It results on a description of discrete (point-like) interactions in terms of localized particle-like fields. We find the propagators of these particle-like fields and discuss their physical meaning, properties and consequences. They are conformally invariant, singularity-free, and describing a manifestly covariant (1 + 1)-dimensional dynamics in a (3 = 1) spacetime. Remarkably this conformal symmetry remains even for the propagation of a massive field in four spacetime dimensions. We apply this formalism to Classical electrodynamics and to the General Relativity Theory. The standard formalism with its distributed fields is retrieved in terms of spacetime average of the discrete field. Singularities are the by-products of the averaging process. This new formalism enlighten the meaning and the problem of field theory, and may allow a softer transition to a quantum theory. (author)
Directory of Open Access Journals (Sweden)
Lyakhovich Leonid
2017-01-01
Full Text Available This paper is devoted to formulation and general principles of approximation of multipoint boundary problem of static analysis of deep beam with the use of combined application of finite element method (FEM discrete-continual finite element method (DCFEM. The field of application of DCFEM comprises structures with regular physical and geometrical parameters in some dimension (“basic” dimension. DCFEM presupposes finite element approximation for non-basic dimension while in the basic dimension problem remains continual. DCFEM is based on analytical solutions of resulting multipoint boundary problems for systems of ordinary differential equations with piecewise-constant coefficients.
Discrete-ordinates quadrature sets based on linear discontinuous finite elements
International Nuclear Information System (INIS)
Jarrell, Joshua J.; Adams, Marvin L.
2011-01-01
We describe new quadrature sets based on linear discontinuous nite element (LDFE) basis functions de ned on the unit sphere. We describe the construction of these sets, demonstrate the accuracy with which they integrate polynomials in the direction cosines, and demonstrate their performance on a set of test problems. We develop the new quadrature sets by dividing the faces of a regular octahedron into equilateral triangles and projecting these onto 'spherical triangles' on the surface of the unit sphere. We choose four quadrature points per triangle and de ne LDFE interpolating basis functions in the direction cosines. A quadrature point's weight is the integral of its basis function over its triangle. Variations in the locations of the four points produce variations in the quadrature sets. The equilateral triangles can be subdivided recursively to create ner quadrature sets, including locally re ned sets that are suitable for use in adaptive algorithms. We analyze a simple one-cell problem and a more complex skewed-duct problem and compare our LDFE quadrature sets to those normally used in the neutral particle discrete-ordinate eld such as level symmetric, Gauss- Chebyshev, and Quadruple Range (QR) sets. The LDFE and QR sets show fourth-order convergence in the simple problem, while the other sets exhibit second or lower order. The LDFE sets exhibit more accurate solutions for the scalar flux in both problems and are not limited by mathematical complexity or by negativity of the discrete-ordinate weights. The same is true for results from other test problems that are not shown here. We conclude that the new LDFE quadrature sets are a promising option for discrete-ordinates transport calculations. However, we note that further studies are needed, especially in problems with highly anisotropic scattering, before the utility of these sets is fully determined. (author)
Finite strain discrete dislocation plasticity
Deshpande, VS; Needleman, A; Van der Giessen, E
2003-01-01
A framework for carrying out finite deformation discrete dislocation plasticity calculations is presented. The discrete dislocations are presumed to be adequately represented by the singular linear elastic fields so that the large deformations near dislocation cores are not modeled. The finite
Spanos, P; Elsbernd, P; Ward, B; Koenck, T
2013-06-28
This paper reviews and enhances numerical models for determining thermal, elastic and electrical properties of carbon nanotube-reinforced polymer composites. For the determination of the effective stress-strain curve and thermal conductivity of the composite material, finite-element analysis (FEA), in conjunction with the embedded fibre method (EFM), is used. Variable nanotube geometry, alignment and waviness are taken into account. First, a random morphology of a user-defined volume fraction of nanotubes is generated, and their properties are incorporated into the polymer matrix using the EFM. Next, incremental and iterative FEA approaches are used for the determination of the nonlinear properties of the nanocomposite. For the determination of the electrical properties, a spanning network identification algorithm is used. First, a realistic nanotube morphology is generated from input parameters defined by the user. The spanning network algorithm then determines the connectivity between nanotubes in a representative volume element. Then, interconnected nanotube networks are converted to equivalent resistor circuits. Finally, Kirchhoff's current law is used in conjunction with FEA to solve for the voltages and currents in the system and thus calculate the effective electrical conductivity of the nanocomposite. The model accounts for electrical transport mechanisms such as electron hopping and simultaneously calculates percolation probability, identifies the backbone and determines the effective conductivity. Monte Carlo analysis of 500 random microstructures is performed to capture the stochastic nature of the fibre generation and to derive statistically reliable results. The models are validated by comparison with various experimental datasets reported in the recent literature.
Directory of Open Access Journals (Sweden)
J. Ochoa-Avendaño
2017-01-01
Full Text Available This paper presents the formulation, implementation, and validation of a simplified qualitative model to determine the crack path of solids considering static loads, infinitesimal strain, and plane stress condition. This model is based on finite element method with a special meshing technique, where nonlinear link elements are included between the faces of the linear triangular elements. The stiffness loss of some link elements represents the crack opening. Three experimental tests of bending beams are simulated, where the cracking pattern calculated with the proposed numerical model is similar to experimental result. The advantages of the proposed model compared to discrete crack approaches with interface elements can be the implementation simplicity, the numerical stability, and the very low computational cost. The simulation with greater values of the initial stiffness of the link elements does not affect the discontinuity path and the stability of the numerical solution. The exploded mesh procedure presented in this model avoids a complex nonlinear analysis and regenerative or adaptive meshes.
Bauer, Werner; Behrens, Jörn
2017-04-01
We present a locally conservative, low-order finite element (FE) discretization of the covariant 1D linear shallow-water equations written in split form (cf. tet{[1]}). The introduction of additional differential forms (DF) that build pairs with the original ones permits a splitting of these equations into topological momentum and continuity equations and metric-dependent closure equations that apply the Hodge-star. Our novel discretization framework conserves this geometrical structure, in particular it provides for all DFs proper FE spaces such that the differential operators (here gradient and divergence) hold in strong form. The discrete topological equations simply follow by trivial projections onto piecewise constant FE spaces without need to partially integrate. The discrete Hodge-stars operators, representing the discretized metric equations, are realized by nontrivial Galerkin projections (GP). Here they follow by projections onto either a piecewise constant (GP0) or a piecewise linear (GP1) space. Our framework thus provides essentially three different schemes with significantly different behavior. The split scheme using twice GP1 is unstable and shares the same discrete dispersion relation and similar second-order convergence rates as the conventional P1-P1 FE scheme that approximates both velocity and height variables by piecewise linear spaces. The split scheme that applies both GP1 and GP0 is stable and shares the dispersion relation of the conventional P1-P0 FE scheme that approximates the velocity by a piecewise linear and the height by a piecewise constant space with corresponding second- and first-order convergence rates. Exhibiting for both velocity and height fields second-order convergence rates, we might consider the split GP1-GP0 scheme though as stable versions of the conventional P1-P1 FE scheme. For the split scheme applying twice GP0, we are not aware of a corresponding conventional formulation to compare with. Though exhibiting larger
Bosch, Jessica
2014-04-01
We consider the efficient solution of the Cahn-Hilliard variational inequality using an implicit time discretization, which is formulated as an optimal control problem with pointwise constraints on the control. By applying a semi-smooth Newton method combined with a Moreau-Yosida regularization technique for handling the control constraints we show superlinear convergence in function space. At the heart of this method lies the solution of large and sparse linear systems for which we propose the use of preconditioned Krylov subspace solvers using an effective Schur complement approximation. Numerical results illustrate the competitiveness of this approach. © 2014 Elsevier Inc.
Wielandt method applied to the diffusion equations discretized by finite element nodal methods
International Nuclear Information System (INIS)
Mugica R, A.; Valle G, E. del
2003-01-01
Nowadays the numerical methods of solution to the diffusion equation by means of algorithms and computer programs result so extensive due to the great number of routines and calculations that should carry out, this rebounds directly in the execution times of this programs, being obtained results in relatively long times. This work shows the application of an acceleration method of the convergence of the classic method of those powers that it reduces notably the number of necessary iterations for to obtain reliable results, what means that the compute times they see reduced in great measure. This method is known in the literature like Wielandt method and it has incorporated to a computer program that is based on the discretization of the neutron diffusion equations in plate geometry and stationary state by polynomial nodal methods. In this work the neutron diffusion equations are described for several energy groups and their discretization by means of those called physical nodal methods, being illustrated in particular the quadratic case. It is described a model problem widely described in the literature which is solved for the physical nodal grade schemes 1, 2, 3 and 4 in three different ways: to) with the classic method of the powers, b) method of the powers with the Wielandt acceleration and c) method of the powers with the Wielandt modified acceleration. The results for the model problem as well as for two additional problems known as benchmark problems are reported. Such acceleration method can also be implemented to problems of different geometry to the proposal in this work, besides being possible to extend their application to problems in 2 or 3 dimensions. (Author)
Gersh-Range, Jessica A.; Arnold, William R.; Peck, Mason A.; Stahl, H. Philip
2011-01-01
Since future astrophysics missions require space telescopes with apertures of at least 10 meters, there is a need for on-orbit assembly methods that decouple the size of the primary mirror from the choice of launch vehicle. One option is to connect the segments edgewise using mechanisms analogous to damped springs. To evaluate the feasibility of this approach, a parametric ANSYS model that calculates the mode shapes, natural frequencies, and disturbance response of such a mirror, as well as of the equivalent monolithic mirror, has been developed. This model constructs a mirror using rings of hexagonal segments that are either connected continuously along the edges (to form a monolith) or at discrete locations corresponding to the mechanism locations (to form a segmented mirror). As an example, this paper presents the case of a mirror whose segments are connected edgewise by mechanisms analogous to a set of four collocated single-degree-of-freedom damped springs. The results of a set of parameter studies suggest that such mechanisms can be used to create a 15-m segmented mirror that behaves similarly to a monolith, although fully predicting the segmented mirror performance would require incorporating measured mechanism properties into the model. Keywords: segmented mirror, edgewise connectivity, space telescope
Energy Technology Data Exchange (ETDEWEB)
Birkholzer, J.; Karasaki, K. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.
1996-07-01
Fracture network simulators have extensively been used in the past for obtaining a better understanding of flow and transport processes in fractured rock. However, most of these models do not account for fluid or solute exchange between the fractures and the porous matrix, although diffusion into the matrix pores can have a major impact on the spreading of contaminants. In the present paper a new finite element code TRIPOLY is introduced which combines a powerful fracture network simulator with an efficient method to account for the diffusive interaction between the fractures and the adjacent matrix blocks. The fracture network simulator used in TRIPOLY features a mixed Lagrangian-Eulerian solution scheme for the transport in fractures, combined with an adaptive gridding technique to account for sharp concentration fronts. The fracture-matrix interaction is calculated with an efficient method which has been successfully used in the past for dual-porosity models. Discrete fractures and matrix blocks are treated as two different systems, and the interaction is modeled by introducing sink/source terms in both systems. It is assumed that diffusive transport in the matrix can be approximated as a one-dimensional process, perpendicular to the adjacent fracture surfaces. A direct solution scheme is employed to solve the coupled fracture and matrix equations. The newly developed combination of the fracture network simulator and the fracture-matrix interaction module allows for detailed studies of spreading processes in fractured porous rock. The authors present a sample application which demonstrate the codes ability of handling large-scale fracture-matrix systems comprising individual fractures and matrix blocks of arbitrary size and shape.
Directory of Open Access Journals (Sweden)
Akimov Pavel
2016-01-01
Full Text Available The distinctive paper is devoted to the two-dimensional semi-analytical solution of boundary problems of analysis of shear walls with the use of discrete-continual finite element method (DCFEM. This approach allows obtaining the exact analytical solution in one direction (so-called “basic” direction, also decrease the size of the problem to one-dimensional common finite element analysis. Two numerical examples of structural analysis with the use of DCFEM are considered, conventional finite element method (FEM is used for verification purposes. The presented examples show some of the advantages of the suggested approach to semianalytical analysis of the shear wall. Future development of DCFEM, particularly associated with multigrid approach, is under consideration as well.
International Nuclear Information System (INIS)
Lee, Byeong Hae
1992-02-01
This book gives descriptions of basic finite element method, which includes basic finite element method and data, black box, writing of data, definition of VECTOR, definition of matrix, matrix and multiplication of matrix, addition of matrix, and unit matrix, conception of hardness matrix like spring power and displacement, governed equation of an elastic body, finite element method, Fortran method and programming such as composition of computer, order of programming and data card and Fortran card, finite element program and application of nonelastic problem.
International Nuclear Information System (INIS)
Giuliani, Giovanni; Giuliani, Silvano.
1980-01-01
The FORTRAN IV subroutine SURF has been designed to help visualising the results of Finite Element computations. It drawns the axonometric projection of a surface generated in 3-dimensional space by a scalar function over a discretized plane domain. The most important characteristic of the routine is to remove the hidden lines and in this way it enables a clear vision of the details of the generated surface
Directory of Open Access Journals (Sweden)
L. Jones Tarcius Doss
2012-01-01
Full Text Available A quadrature-based mixed Petrov-Galerkin finite element method is applied to a fourth-order linear ordinary differential equation. After employing a splitting technique, a cubic spline trial space and a piecewise linear test space are considered in the method. The integrals are then replaced by the Gauss quadrature rule in the formulation itself. Optimal order a priori error estimates are obtained without any restriction on the mesh.
Viré, Axelle; Xiang, Jiansheng; Milthaler, Frank; Farrell, Patrick Emmet; Piggott, Matthew David; Latham, John-Paul; Pavlidis, Dimitrios; Pain, Christopher Charles
2012-12-01
Fluid-structure interactions are modelled by coupling the finite element fluid/ocean model `Fluidity-ICOM' with a combined finite-discrete element solid model `Y3D'. Because separate meshes are used for the fluids and solids, the present method is flexible in terms of discretisation schemes used for each material. Also, it can tackle multiple solids impacting on one another, without having ill-posed problems in the resolution of the fluid's equations. Importantly, the proposed approach ensures that Newton's third law is satisfied at the discrete level. This is done by first computing the action-reaction force on a supermesh, i.e. a function superspace of the fluid and solid meshes, and then projecting it to both meshes to use it as a source term in the fluid and solid equations. This paper demonstrates the properties of spatial conservation and accuracy of the method for a sphere immersed in a fluid, with prescribed fluid and solid velocities. While spatial conservation is shown to be independent of the mesh resolutions, accuracy requires fine resolutions in both fluid and solid meshes. It is further highlighted that unstructured meshes adapted to the solid concentration field reduce the numerical errors, in comparison with uniformly structured meshes with the same number of elements. The method is verified on flow past a falling sphere. Its potential for ocean applications is further shown through the simulation of vortex-induced vibrations of two cylinders and the flow past two flexible fibres.
International Nuclear Information System (INIS)
Hennart, J.P.; Valle, E. del.
1995-01-01
A generalized nodal finite element formalism is presented, which covers virtually all known finit difference approximation to the discrete ordinates equations in slab geometry. This paper (Part 1) presents the theory of the so called open-quotes continuous moment methodsclose quotes, which include such well-known methods as the open-quotes diamond differenceclose quotes and the open-quotes characteristicclose quotes schemes. In a second paper (hereafter referred to as Part II), the authors will present the theory of the open-quotes discontinuous moment methodsclose quotes, consisting in particular of the open-quotes linear discontinuousclose quotes scheme as well as of an entire new class of schemes. Corresponding numerical results are available for all these schemes and will be presented in a third paper (Part III). 12 refs
Watanabe, Kohei; Pisano, F.; Jeremi, Boris
2016-01-01
Presented here is a numerical investigation that (re-)appraises standard rules for space/time discretization in seismic wave propagation analyses. Although the issue is almost off the table of research, situations are often encountered where (established) discretization criteria are not observed and
Zampini, Stefano
2016-06-02
Balancing Domain Decomposition by Constraints (BDDC) methods have proven to be powerful preconditioners for large and sparse linear systems arising from the finite element discretization of elliptic PDEs. Condition number bounds can be theoretically established that are independent of the number of subdomains of the decomposition. The core of the methods resides in the design of a larger and partially discontinuous finite element space that allows for fast application of the preconditioner, where Cholesky factorizations of the subdomain finite element problems are additively combined with a coarse, global solver. Multilevel and highly-scalable algorithms can be obtained by replacing the coarse Cholesky solver with a coarse BDDC preconditioner. BDDC methods have the remarkable ability to control the condition number, since the coarse space of the preconditioner can be adaptively enriched at the cost of solving local eigenproblems. The proper identification of these eigenproblems extends the robustness of the methods to any heterogeneity in the distribution of the coefficients of the PDEs, not only when the coefficients jumps align with the subdomain boundaries or when the high contrast regions are confined to lie in the interior of the subdomains. The specific adaptive technique considered in this paper does not depend upon any interaction of discretization and partition; it relies purely on algebraic operations. Coarse space adaptation in BDDC methods has attractive algorithmic properties, since the technique enhances the concurrency and the arithmetic intensity of the preconditioning step of the sparse implicit solver with the aim of controlling the number of iterations of the Krylov method in a black-box fashion, thus reducing the number of global synchronization steps and matrix vector multiplications needed by the iterative solver; data movement and memory bound kernels in the solve phase can be thus limited at the expense of extra local ops during the setup of
Discrete phase space based on finite fields
International Nuclear Information System (INIS)
Gibbons, Kathleen S.; Hoffman, Matthew J.; Wootters, William K.
2004-01-01
The original Wigner function provides a way of representing in phase space the quantum states of systems with continuous degrees of freedom. Wigner functions have also been developed for discrete quantum systems, one popular version being defined on a 2Nx2N discrete phase space for a system with N orthogonal states. Here we investigate an alternative class of discrete Wigner functions, in which the field of real numbers that labels the axes of continuous phase space is replaced by a finite field having N elements. There exists such a field if and only if N is a power of a prime; so our formulation can be applied directly only to systems for which the state-space dimension takes such a value. Though this condition may seem limiting, we note that any quantum computer based on qubits meets the condition and can thus be accommodated within our scheme. The geometry of our NxN phase space also leads naturally to a method of constructing a complete set of N+1 mutually unbiased bases for the state space
Weiser, Martin
2016-01-01
All relevant implementation aspects of finite element methods are discussed in this book. The focus is on algorithms and data structures as well as on their concrete implementation. Theory is covered as far as it gives insight into the construction of algorithms. Throughout the exercises a complete FE-solver for scalar 2D problems will be implemented in Matlab/Octave.
Entropy conservative finite element schemes
Tadmor, E.
1986-01-01
The question of entropy stability for discrete approximations to hyperbolic systems of conservation laws is studied. The amount of numerical viscosity present in such schemes is quantified and related to their entropy stability by means of comparison. To this end, two main ingredients are used: entropy variables and the construction of certain entropy conservative schemes in terms of piecewise-linear finite element approximations. It is then shown that conservative schemes are entropy stable, if and (for three-point schemes) only if, they contain more numerical viscosity than the abovementioned entropy conservation ones.
Finite element approximation of the Isaacs equation
Salgado, Abner J.; Zhang, Wujun
2015-01-01
We propose and analyze a two-scale finite element method for the Isaacs equation. The fine scale is given by the mesh size $h$ whereas the coarse scale $\\varepsilon$ is dictated by an integro-differential approximation of the partial differential equation. We show that the method satisfies the discrete maximum principle provided that the mesh is weakly acute. This, in conjunction with weak operator consistency of the finite element method, allows us to establish convergence of the numerical s...
Directory of Open Access Journals (Sweden)
M.H.R. Ghoreishy
2008-02-01
Full Text Available This research work is devoted to the footprint analysis of a steel-belted radial tyre (185/65R14 under vertical static load using finite element method. Two models have been developed in which in the first model the tread patterns were replaced by simple ribs while the second model was consisted of details of the tread blocks. Linear elastic and hyper elastic (Arruda-Boyce material models were selected to describe the mechanical behavior of the reinforcing and rubbery parts, respectively. The above two finite element models of the tyre were analyzed under inflation pressure and vertical static loads. The second model (with detailed tread patterns was analyzed with and without friction effect between tread and contact surfaces. In every stage of the analysis, the results were compared with the experimental data to confirm the accuracy and applicability of the model. Results showed that neglecting the tread pattern design not only reduces the computational cost and effort but also the differences between computed deformations do not show significant changes. However, more complicated variables such as shape and area of the footprint zone and contact pressure are affected considerably by the finite element model selected for the tread blocks. In addition, inclusion of friction even in static state changes these variables significantly.
Optical Finite Element Processor
Casasent, David; Taylor, Bradley K.
1986-01-01
A new high-accuracy optical linear algebra processor (OLAP) with many advantageous features is described. It achieves floating point accuracy, handles bipolar data by sign-magnitude representation, performs LU decomposition using only one channel, easily partitions and considers data flow. A new application (finite element (FE) structural analysis) for OLAPs is introduced and the results of a case study presented. Error sources in encoded OLAPs are addressed for the first time. Their modeling and simulation are discussed and quantitative data are presented. Dominant error sources and the effects of composite error sources are analyzed.
Stabilized Finite Elements in FUN3D
Anderson, W. Kyle; Newman, James C.; Karman, Steve L.
2017-01-01
A Streamlined Upwind Petrov-Galerkin (SUPG) stabilized finite-element discretization has been implemented as a library into the FUN3D unstructured-grid flow solver. Motivation for the selection of this methodology is given, details of the implementation are provided, and the discretization for the interior scheme is verified for linear and quadratic elements by using the method of manufactured solutions. A methodology is also described for capturing shocks, and simulation results are compared to the finite-volume formulation that is currently the primary method employed for routine engineering applications. The finite-element methodology is demonstrated to be more accurate than the finite-volume technology, particularly on tetrahedral meshes where the solutions obtained using the finite-volume scheme can suffer from adverse effects caused by bias in the grid. Although no effort has been made to date to optimize computational efficiency, the finite-element scheme is competitive with the finite-volume scheme in terms of computer time to reach convergence.
Statistical finite element analysis.
Khalaji, Iman; Rahemifar, Kaamran; Samani, Abbas
2008-01-01
A novel technique is introduced for tissue deformation and stress analysis. Compared to the conventional Finite Element method, this technique is orders of magnitude faster and yet still very accurate. The proposed technique uses preprocessed data obtained from FE analyses of a number of similar objects in a Statistical Shape Model framework as described below. This technique takes advantage of the fact that the body organs have limited variability, especially in terms of their geometry. As such, it is well suited for calculating tissue displacements of body organs. The proposed technique can be applied in many biomedical applications such as image guided surgery, or virtual reality environment development where tissue behavior is simulated for training purposes.
Huang, Xiaolin; Zhao, Qi; Qi, Shengwen; Xia, Kaiwen; Grasselli, Giovanni; Chen, Xuguang
2016-12-27
This paper numerically investigates the seismic response of the filled joint under high amplitude stress waves using the combined finite-discrete element method (FDEM). A thin layer of independent polygonal particles are used to simulate the joint fillings. Each particle is meshed using the Delaunay triangulation scheme and can be crushed when the load exceeds its strength. The propagation of the 1D longitude wave through a single filled joint is studied, considering the influences of the joint thickness and the characteristics of the incident wave, such as the amplitude and frequency. The results show that the filled particles under high amplitude stress waves mainly experience three deformation stages: (i) initial compaction stage; (ii) crushing stage; and (iii) crushing and compaction stage. In the initial compaction stage and crushing and compaction stage, compaction dominates the mechanical behavior of the joint, and the particle area distribution curve varies little. In these stages, the transmission coefficient increases with the increase of the amplitude, i.e., peak particle velocity (PPV), of the incident wave. On the other hand, in the crushing stage, particle crushing plays the dominant role. The particle size distribution curve changes abruptly with the PPV due to the fragments created by the crushing process. This process consumes part of wave energy and reduces the stiffness of the filled joint. The transmission coefficient decreases with increasing PPV in this stage because of the increased amount of energy consumed by crushing. Moreover, with the increase of the frequency of the incident wave, the transmission coefficient decreases and fewer particles can be crushed. Under the same incident wave, the transmission coefficient decreases when the filled thickness increases and the filled particles become more difficult to be crushed.
Directory of Open Access Journals (Sweden)
Xiaolin Huang
2016-12-01
Full Text Available This paper numerically investigates the seismic response of the filled joint under high amplitude stress waves using the combined finite-discrete element method (FDEM. A thin layer of independent polygonal particles are used to simulate the joint fillings. Each particle is meshed using the Delaunay triangulation scheme and can be crushed when the load exceeds its strength. The propagation of the 1D longitude wave through a single filled joint is studied, considering the influences of the joint thickness and the characteristics of the incident wave, such as the amplitude and frequency. The results show that the filled particles under high amplitude stress waves mainly experience three deformation stages: (i initial compaction stage; (ii crushing stage; and (iii crushing and compaction stage. In the initial compaction stage and crushing and compaction stage, compaction dominates the mechanical behavior of the joint, and the particle area distribution curve varies little. In these stages, the transmission coefficient increases with the increase of the amplitude, i.e., peak particle velocity (PPV, of the incident wave. On the other hand, in the crushing stage, particle crushing plays the dominant role. The particle size distribution curve changes abruptly with the PPV due to the fragments created by the crushing process. This process consumes part of wave energy and reduces the stiffness of the filled joint. The transmission coefficient decreases with increasing PPV in this stage because of the increased amount of energy consumed by crushing. Moreover, with the increase of the frequency of the incident wave, the transmission coefficient decreases and fewer particles can be crushed. Under the same incident wave, the transmission coefficient decreases when the filled thickness increases and the filled particles become more difficult to be crushed.
Cojocaru, E.
2009-01-01
The finite element method has become a preeminent simulation technique in electromagnetics. For problems involving anisotropic media and metamaterials, proper algorithms should be developed. It has been proved that discretizing in quadratic triangular elements may lead to an improved accuracy. Here we present a collection of elemental matrices evaluated analytically for quadratic triangular elements. They could be useful for the finite element method in advanced electromagnetics.
Directory of Open Access Journals (Sweden)
Pooya Hamdi
2015-12-01
Full Text Available Heterogeneity is an inherent component of rock and may be present in different forms including mineral heterogeneity, geometrical heterogeneity, weak grain boundaries and micro-defects. Microcracks are usually observed in crystalline rocks in two forms: natural and stress-induced; the amount of stress-induced microcracking increases with depth and in-situ stress. Laboratory results indicate that the physical properties of rocks such as strength, deformability, P-wave velocity and permeability are influenced by increase in microcrack intensity. In this study, the finite-discrete element method (FDEM is used to model microcrack heterogeneity by introducing into a model sample sets of microcracks using the proposed micro discrete fracture network (μDFN approach. The characteristics of the microcracks required to create μDFN models are obtained through image analyses of thin sections of Lac du Bonnet granite adopted from published literature. A suite of two-dimensional laboratory tests including uniaxial, triaxial compression and Brazilian tests is simulated and the results are compared with laboratory data. The FDEM-μDFN models indicate that micro-heterogeneity has a profound influence on both the mechanical behavior and resultant fracture pattern. An increase in the microcrack intensity leads to a reduction in the strength of the sample and changes the character of the rock strength envelope. Spalling and axial splitting dominate the failure mode at low confinement while shear failure is the dominant failure mode at high confinement. Numerical results from simulated compression tests show that microcracking reduces the cohesive component of strength alone, and the frictional strength component remains unaffected. Results from simulated Brazilian tests show that the tensile strength is influenced by the presence of microcracks, with a reduction in tensile strength as microcrack intensity increases. The importance of microcrack heterogeneity in
Solution of Finite Element Equations
DEFF Research Database (Denmark)
Krenk, Steen
An important step in solving any problem by the finite element method is the solution of the global equations. Numerical solution of linear equations is a subject covered in most courses in numerical analysis. However, the equations encountered in most finite element applications have some special...... features that justify the development of specialized solution algorithms....
Massively Parallel Finite Element Programming
Heister, Timo
2010-01-01
Today\\'s large finite element simulations require parallel algorithms to scale on clusters with thousands or tens of thousands of processor cores. We present data structures and algorithms to take advantage of the power of high performance computers in generic finite element codes. Existing generic finite element libraries often restrict the parallelization to parallel linear algebra routines. This is a limiting factor when solving on more than a few hundreds of cores. We describe routines for distributed storage of all major components coupled with efficient, scalable algorithms. We give an overview of our effort to enable the modern and generic finite element library deal.II to take advantage of the power of large clusters. In particular, we describe the construction of a distributed mesh and develop algorithms to fully parallelize the finite element calculation. Numerical results demonstrate good scalability. © 2010 Springer-Verlag.
Symplectic and multisymplectic schemes with the simple finite element method
International Nuclear Information System (INIS)
Zhen Liu; Bai Yongqiang; Li Qisheng; Wu Ke
2003-01-01
We study the numerical scheme of elliptic equations by the finite element method. With the special finite element domain, we can find that the scheme can keep a preserved symplectic structure in one-dimensional case and a preserved multisymplectic structure in two-dimensional case. Then we consider the discrete variational principle with the finite element method in the corresponding Lagrangian formalism for classical mechanics and field theory and get the symplectic or multisymplectic scheme of the Euler-Lagrangian equation
Comparison of different precondtioners for nonsymmtric finite volume element methods
Energy Technology Data Exchange (ETDEWEB)
Mishev, I.D.
1996-12-31
We consider a few different preconditioners for the linear systems arising from the discretization of 3-D convection-diffusion problems with the finite volume element method. Their theoretical and computational convergence rates are compared and discussed.
quadratic spline finite element method
Directory of Open Access Journals (Sweden)
A. R. Bahadir
2002-01-01
Full Text Available The problem of heat transfer in a Positive Temperature Coefficient (PTC thermistor, which may form one element of an electric circuit, is solved numerically by a finite element method. The approach used is based on Galerkin finite element using quadratic splines as shape functions. The resulting system of ordinary differential equations is solved by the finite difference method. Comparison is made with numerical and analytical solutions and the accuracy of the computed solutions indicates that the method is well suited for the solution of the PTC thermistor problem.
Finite Mathematics and Discrete Mathematics: Is There a Difference?
Johnson, Marvin L.
Discrete mathematics and finite mathematics differ in a number of ways. First, finite mathematics has a longer history and is therefore more stable in terms of course content. Finite mathematics courses emphasize certain particular mathematical tools which are useful in solving the problems of business and the social sciences. Discrete mathematics…
A multigrid solution method for mixed hybrid finite elements
Energy Technology Data Exchange (ETDEWEB)
Schmid, W. [Universitaet Augsburg (Germany)
1996-12-31
We consider the multigrid solution of linear equations arising within the discretization of elliptic second order boundary value problems of the form by mixed hybrid finite elements. Using the equivalence of mixed hybrid finite elements and non-conforming nodal finite elements, we construct a multigrid scheme for the corresponding non-conforming finite elements, and, by this equivalence, for the mixed hybrid finite elements, following guidelines from Arbogast/Chen. For a rectangular triangulation of the computational domain, this non-conforming schemes are the so-called nodal finite elements. We explicitly construct prolongation and restriction operators for this type of non-conforming finite elements. We discuss the use of plain multigrid and the multilevel-preconditioned cg-method and compare their efficiency in numerical tests.
Programming the finite element method
Smith, I M; Margetts, L
2013-01-01
Many students, engineers, scientists and researchers have benefited from the practical, programming-oriented style of the previous editions of Programming the Finite Element Method, learning how to develop computer programs to solve specific engineering problems using the finite element method. This new fifth edition offers timely revisions that include programs and subroutine libraries fully updated to Fortran 2003, which are freely available online, and provides updated material on advances in parallel computing, thermal stress analysis, plasticity return algorithms, convection boundary c
Finite Volumes Discretization of Topology Optimization Problems
DEFF Research Database (Denmark)
Evgrafov, Anton; Gregersen, Misha Marie; Sørensen, Mads Peter
, FVMs represent a standard method of discretization within engineering communities dealing with computational uid dy- namics, transport, and convection-reaction problems. Among various avours of FVMs, cell based approaches, where all variables are associated only with cell centers, are particularly...... computations is done using nite element methods (FEMs). Despite some limited recent eorts [1, 2], we have only started to develop our understanding of the interplay between the control in the coecients and FVMs. Recent advances in discrete functional analysis allow us to analyze convergence of FVM...... of the induced parametrization of the design space that allows optimization algorithms to eciently explore it, and the ease of integration with existing computational codes in a variety of application areas, the simplicity and eciency of sensitivity analyses|all stemming from the use of the same grid throughout...
Ablative Thermal Response Analysis Using the Finite Element Method
Dec John A.; Braun, Robert D.
2009-01-01
A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.
On symmetric pyramidal finite elements
Czech Academy of Sciences Publication Activity Database
Liu, L.; Davies, K. B.; Yuan, K.; Křížek, Michal
2004-01-01
Roč. 11, 1-2 (2004), s. 213-227 ISSN 1492-8760 R&D Projects: GA AV ČR IAA1019201 Institutional research plan: CEZ:AV0Z1019905 Keywords : mesh generation * finite element method * composite elements Subject RIV: BA - General Mathematics Impact factor: 0.108, year: 2004
Finite element methods for engineers
Fenner, Roger T
2013-01-01
This book is intended as a textbook providing a deliberately simple introduction to finite element methods in a way that should be readily understandable to engineers, both students and practising professionals. Only the very simplest elements are considered, mainly two dimensional three-noded “constant strain triangles”, with simple linear variation of the relevant variables. Chapters of the book deal with structural problems (beams), classification of a broad range of engineering into harmonic and biharmonic types, finite element analysis of harmonic problems, and finite element analysis of biharmonic problems (plane stress and plane strain). Full Fortran programs are listed and explained in detail, and a range of practical problems solved in the text. Despite being somewhat unfashionable for general programming purposes, the Fortran language remains very widely used in engineering. The programs listed, which were originally developed for use on mainframe computers, have been thoroughly updated for use ...
Sparse adaptive finite elements for radiative transfer
International Nuclear Information System (INIS)
Widmer, G.; Hiptmair, R.; Schwab, Ch.
2008-01-01
The linear radiative transfer equation, a partial differential equation for the radiation intensity u(x,s), with independent variables x element of D is contained in R n in the physical domain D of dimension n=2,3, and angular variable s element of S 2 :={y element of R 3 :|y|=1}, is solved in the n+2-dimensional computational domain DxS 2 . We propose an adaptive multilevel Galerkin finite element method (FEM) for its numerical solution. Our approach is based on (a) a stabilized variational formulation of the transport operator, (b) on so-called sparse tensor products of two hierarchic families of finite element spaces in H 1 (D) and in L 2 (S 2 ), respectively, and (c) on wavelet thresholding techniques to adapt the discretization to the underlying problem. An a priori error analysis shows, under strong regularity assumptions on the solution, that the sparse tensor product method is clearly superior to a discrete ordinates method, as it converges with essentially optimal asymptotic rates while its complexity grows essentially only as that for a linear transport problem in R n . Numerical experiments for n=2 on a set of example problems agree with the convergence and complexity analysis of the method and show that introducing adaptivity can improve performance in terms of accuracy vs. number of degrees even further
FINITE ELEMENT ANALYSIS OF STRUCTURES
Directory of Open Access Journals (Sweden)
PECINGINA OLIMPIA-MIOARA
2015-05-01
Full Text Available The application of finite element method is analytical when solutions can not be applied for deeper study analyzes static, dynamic or other types of requirements in different points of the structures .In practice it is necessary to know the behavior of the structure or certain parts components of the machine under the influence of certain factors static and dynamic . The application of finite element in the optimization of components leads to economic growth , to increase reliability and durability organs studied, thus the machine itself.
DISCRETE ELEMENT MODELLING OF THE COMPRESSIVE ...
African Journals Online (AJOL)
Discrete element modelling is a numerical method capable of tracking the movement of individual objects within a bulk system and compute the resulting force and deformation as well as other parameters. The Discrete Element Method (DEM) has been used in this study to investigate the deformation of individual particles ...
A Comparison of Continuous Mass-lumped Finite Elements and Finite Differences for 3D
Zhebel, E.; Minisini, S.; Kononov, A.; Mulder, W.A.
2012-01-01
The finite-difference method is widely used for time-domain modelling of the wave equation because of its ease of implementation of high-order spatial discretization schemes, parallelization and computational efficiency. However, finite elements on tetrahedral meshes are more accurate in complex
Jia, Pin; Cheng, Linsong; Huang, Shijun; Xu, Zhongyi; Xue, Yongchao; Cao, Renyi; Ding, Guanyang
2017-08-01
This paper provides a comprehensive model for the flow behavior of a two-zone system with discrete fracture network. The discrete fracture network within the inner zone is represented explicitly by fracture segments. The Laplace-transform finite-difference method is used to numerically model discrete fracture network flow, with sufficient flexibility to consider arbitrary fracture geometries and conductivity distributions. Boundary-element method and line-source functions in the Laplace domain are employed to derive a semi-analytical flow solution for the two-zone system. By imposing the continuity of flux and pressure on discrete fracture surfaces, the semi-analytical two-zone system flow model and the numerical fracture flow model are coupled dynamically. The main advantage of the approach occurring in the Laplace domain is that simulation can be done with nodes only for discrete fractures and elements for boundaries and at predetermined, discrete times. Thus, stability and convergence problems caused by time discretization are avoided and the burden of gridding and computation is decreased without loss of important fracture characteristics. The model is validated by comparison with the results from an analytical solution and a fully numerical solution. Flow regime analysis shows that a two-zone system with discrete fracture network may develop six flow regimes: fracture linear flow, bilinear flow, inner zone linear flow, inner zone pseudosteady-state flow, outer zone pseudoradial flow and outer zone boundary-dominated flow. Especially, local solutions for the inner-zone linear flow have the same form with that of a finite conductivity planar fracture and can be correlated with the total length of discrete fractures and an intercept term. In the inner zone pseudosteady-state flow period, the discrete fractures, along with the boundary of the inner zone, will act as virtual closed boundaries, due to the pressure interference caused by fracture network and the
Solid finite elements through three decades
Venkatesh, DN; Shrinivasa, U
1994-01-01
conventionally, solid finite elements have been looked upon as just generalizations of two-dimensional finite elements. In this article we trace their development starting from the days of their inception. Keeping in tune with our perceptions on developing finite elements, without taking recourse to any extra variational techniques, we discuss a few of the techniques which have been applied to solid finite elements. Finally we critically examine our own work on formulating solid finite elemen...
He, Yue-Jing; Hung, Wei-Chih; Syu, Cheng-Jyun
2017-12-01
The finite-element method (FEM) and eigenmode expansion method (EEM) were adopted to analyze the guided modes and spectrum of phase-shift fiber Bragg grating at five phase-shift degrees (including zero, 1/4π, 1/2π, 3/4π, and π). In previous studies on optical fiber grating, conventional coupled-mode theory was crucial. This theory contains abstruse knowledge about physics and complex computational processes, and thus is challenging for users. Therefore, a numerical simulation method was coupled with a simple and rigorous design procedure to help beginners and users to overcome difficulty in entering the field; in addition, graphical simulation results were presented. To reduce the difference between the simulated context and the actual context, a perfectly matched layer and perfectly reflecting boundary were added to the FEM and the EEM. When the FEM was used for grid cutting, the object meshing method and the boundary meshing method proposed in this study were used to effectively enhance computational accuracy and substantially reduce the time required for simulation. In summary, users can use the simulation results in this study to easily and rapidly design an optical fiber communication system and optical sensors with spectral characteristics.
Non-intrusive finite element reliability analysis methods
Papaioannou, Iason
2014-01-01
This thesis focuses on the modeling of uncertainties in structural systems and on strategies for the reliability assessment of structures analysed by finite element programs. New concepts are introduced for the numerical treatment of spatially varied uncertain quantities through the discretization of the relevant random fields as well as for robust and efficient finite element reliability analysis and updating of the reliability in light of new information. The methods have been implemented i...
Finite element analysis of coupled electromechanical problems
International Nuclear Information System (INIS)
Melgoza-Vazquez, E.
2001-01-01
The modeling of electromechanical problems is discussed. The simultaneous consideration of two distinct phenomena is required, as the evolution of the electromagnetic and the mechanical parts are influenced by each other. In this work the equations of the coupled problem are described and possible methods of solution are considered. Three general approaches with varying degrees of detail are considered. In the first, a lumped parameter model of the device is constructed from the finite element solution of the electromagnetic problem. A second approach links the electromagnetic field directly with the lumped mechanical part. Lastly, both the electromagnetic and the mechanical systems are considered to be distributed, with the individual domains solved by using the finite element method. In the process of solution of transient problems the need to solve differential-algebraic systems of equations arises and some approaches are presented. It is shown that traditional finite difference formulas may be applied as long as the discretization is made at the element level. Higher order methods and step adaptation are discussed. (author)
Finite elements methods in mechanics
Eslami, M Reza
2014-01-01
This book covers all basic areas of mechanical engineering, such as fluid mechanics, heat conduction, beams, and elasticity with detailed derivations for the mass, stiffness, and force matrices. It is especially designed to give physical feeling to the reader for finite element approximation by the introduction of finite elements to the elevation of elastic membrane. A detailed treatment of computer methods with numerical examples are provided. In the fluid mechanics chapter, the conventional and vorticity transport formulations for viscous incompressible fluid flow with discussion on the method of solution are presented. The variational and Galerkin formulations of the heat conduction, beams, and elasticity problems are also discussed in detail. Three computer codes are provided to solve the elastic membrane problem. One of them solves the Poisson’s equation. The second computer program handles the two dimensional elasticity problems, and the third one presents the three dimensional transient heat conducti...
Automation of finite element methods
Korelc, Jože
2016-01-01
New finite elements are needed as well in research as in industry environments for the development of virtual prediction techniques. The design and implementation of novel finite elements for specific purposes is a tedious and time consuming task, especially for nonlinear formulations. The automation of this process can help to speed up this process considerably since the generation of the final computer code can be accelerated by order of several magnitudes. This book provides the reader with the required knowledge needed to employ modern automatic tools like AceGen within solid mechanics in a successful way. It covers the range from the theoretical background, algorithmic treatments to many different applications. The book is written for advanced students in the engineering field and for researchers in educational and industrial environments.
Nonlinear, finite deformation, finite element analysis
Nguyen, Nhung; Waas, Anthony M.
2016-06-01
The roles of the consistent Jacobian matrix and the material tangent moduli, which are used in nonlinear incremental finite deformation mechanics problems solved using the finite element method, are emphasized in this paper, and demonstrated using the commercial software ABAQUS standard. In doing so, the necessity for correctly employing user material subroutines to solve nonlinear problems involving large deformation and/or large rotation is clarified. Starting with the rate form of the principle of virtual work, the derivations of the material tangent moduli, the consistent Jacobian matrix, the stress/strain measures, and the objective stress rates are discussed and clarified. The difference between the consistent Jacobian matrix (which, in the ABAQUS UMAT user material subroutine is referred to as DDSDDE) and the material tangent moduli ( C e ) needed for the stress update is pointed out and emphasized in this paper. While the former is derived based on the Jaumann rate of the Kirchhoff stress, the latter is derived using the Jaumann rate of the Cauchy stress. Understanding the difference between these two objective stress rates is crucial for correctly implementing a constitutive model, especially a rate form constitutive relation, and for ensuring fast convergence. Specifically, the implementation requires the stresses to be updated correctly. For this, the strains must be computed directly from the deformation gradient and corresponding strain measure (for a total form model). Alternatively, the material tangent moduli derived from the corresponding Jaumann rate of the Cauchy stress of the constitutive relation (for a rate form model) should be used. Given that this requirement is satisfied, the consistent Jacobian matrix only influences the rate of convergence. Its derivation should be based on the Jaumann rate of the Kirchhoff stress to ensure fast convergence; however, the use of a different objective stress rate may also be possible. The error associated
ANSYS duplicate finite-element checker routine
Ortega, R.
1995-01-01
An ANSYS finite-element code routine to check for duplicated elements within the volume of a three-dimensional (3D) finite-element mesh was developed. The routine developed is used for checking floating elements within a mesh, identically duplicated elements, and intersecting elements with a common face. A space shuttle main engine alternate turbopump development high pressure oxidizer turbopump finite-element model check using the developed subroutine is discussed. Finally, recommendations are provided for duplicate element checking of 3D finite-element models.
Stochastic Finite Elements in Reliability-Based Structural Optimization
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Engelund, S.
1995-01-01
Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect to optimi......Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect...... to optimization variables can be performed. A computer implementation is described and an illustrative example is given....
Stochastic Finite Elements in Reliability-Based Structural Optimization
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Engelund, S.
Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect to optimi......Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect...
Choice of input fields in stochastic finite elements
DEFF Research Database (Denmark)
Ditlevsen, Ove Dalager; Tarp-Johansen, Niels Jacob
1999-01-01
, the flexibility field, as the input to the stochastic finite element model. To answer this question the focus should be on the error of the output of the mechanical model rather than on the input field itself when discretizing the held through replacing it by a field defined in terms of a finite number of random...... variables. Several reported discretization methods define these random variables as integrals of the product of the held and some suitable weight functions. In particular, the weight functions can be Dirac delta functions whereby the random variables become the field values at a finite set of given points...... the differential equation of the column displacement and the relevant boundary conditions, it can be expected that the discretization of the flexibility field is preferable over the discretization of the stiffness field. Direct mechanical considerations support this expectation. (C) 1998 Published by Elsevier...
Choice of input fields in stochastic finite elements
DEFF Research Database (Denmark)
Ditlevsen, Ove Dalager; Tarp-Johansen, Niels Jacob
1996-01-01
, the flexibility field, as the input to the stochastic finite element model. To answer this question the focus should be on the error of the output of the mechanical model rather than on the input field itself when discretizing the field through replacing it by a field defined in terms of a finite number of random...... variables. Several reported discretization methods define these random variables as integrals of the product of the field and some suitable weight functions. In particular, the weight functions can be Dirac delta functions whereby the random variables become the field values at a finite set of given points...... the differential equation of the column displacement and the relevant boundarv conditions, it can be expected that the discretization of the flexibility field is preferable over the discretization of the stiffness field. Direct mechanical considerations support this expectation.Keywords: Random stiffness...
Peridynamic Multiscale Finite Element Methods
Energy Technology Data Exchange (ETDEWEB)
Costa, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bond, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moore, Stan Gerald [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-12-01
The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic and local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the
Energy Technology Data Exchange (ETDEWEB)
Smith, Jovanca J.; Bishop, Joseph E.
2013-11-01
This report summarizes the work performed by the graduate student Jovanca Smith during a summer internship in the summer of 2012 with the aid of mentor Joe Bishop. The projects were a two-part endeavor that focused on the use of the numerical model called the Lattice Discrete Particle Model (LDPM). The LDPM is a discrete meso-scale model currently used at Northwestern University and the ERDC to model the heterogeneous quasi-brittle material, concrete. In the first part of the project, LDPM was compared to the Karagozian and Case Concrete Model (K&C) used in Presto, an explicit dynamics finite-element code, developed at Sandia National Laboratories. In order to make this comparison, a series of quasi-static numerical experiments were performed, namely unconfined uniaxial compression tests on four varied cube specimen sizes, three-point bending notched experiments on three proportional specimen sizes, and six triaxial compression tests on a cylindrical specimen. The second part of this project focused on the application of LDPM to simulate projectile perforation on an ultra high performance concrete called CORTUF. This application illustrates the strengths of LDPM over traditional continuum models.
Finite element analysis of thermoelastic instability with intermittent contact
Geijselaers, Hubertus J.M.; Koning, A.J.E.
2000-01-01
The equations that describe the development of corrugations on block braked wheel treads caused by thermoelastic instability are discretized using the finite element method. The perturbations of temperatures and distortions are described by an amplitude function, which is spatially fixed multiplied
Space-time discontinuous Galerkin finite element methods
van der Vegt, Jacobus J.W.; Deconinck, H.; Ricchiuto, M.
2006-01-01
In these notes an introduction is given to space-time discontinuous Galerkin (DG) finite element methods for hyperbolic and parabolic conservation laws on time dependent domains. the space-time DG discretization is explained in detail, including the definition of the numerical fluxes and
Finite element modelling of fibre-reinforced brittle materials
Kullaa, J.
1997-01-01
The tensile constitutive behaviour of fibre-reinforced brittle materials can be extended to two or three dimensions by using the finite element method with crack models. The three approaches in this study include the smeared and discrete crack concepts and a multi-surface plasticity model. The
Deflation in preconditioned conjugate gradient methods for Finite Element Problems
Vermolen, F.J.; Vuik, C.; Segal, A.
2002-01-01
We investigate the influence of the value of deflation vectors at interfaces on the rate of convergence of preconditioned conjugate gradient methods applied to a Finite Element discretization for an elliptic equation. Our set-up is a Poisson problem in two dimensions with continuous or discontinuous
A finite element method for neutron transport
International Nuclear Information System (INIS)
Ackroyd, R.T.
1978-01-01
A variational treatment of the finite element method for neutron transport is given based on a version of the even-parity Boltzmann equation which does not assume that the differential scattering cross-section has a spherical harmonic expansion. The theory of minimum and maximum principles is based on the Cauchy-Schwartz equality and the properties of a leakage operator G and a removal operator C. For systems with extraneous sources, two maximum and one minimum principles are given in boundary free form, to ease finite element computations. The global error of an approximate variational solution is given, the relationship of one the maximum principles to the method of least squares is shown, and the way in which approximate solutions converge locally to the exact solution is established. A method for constructing local error bounds is given, based on the connection between the variational method and the method of the hypercircle. The source iteration technique and a maximum principle for a system with extraneous sources suggests a functional for a variational principle for a self-sustaining system. The principle gives, as a consequence of the properties of G and C, an upper bound to the lowest eigenvalue. A related functional can be used to determine both upper and lower bounds for the lowest eigenvalue from an inspection of any approximate solution for the lowest eigenfunction. The basis for the finite element is presented in a general form so that two modes of exploitation can be undertaken readily. The model can be in phase space, with positional and directional co-ordinates defining points of the model, or it can be restricted to the positional co-ordinates and an expansion in orthogonal functions used for the directional co-ordinates. Suitable sets of functions are spherical harmonics and Walsh functions. The latter set is appropriate if a discrete direction representation of the angular flux is required. (author)
Adaptive finite element method for shape optimization
Morin, Pedro
2012-01-16
We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity. © EDP Sciences, SMAI, 2012.
Finite element, discontinuous Galerkin, and finite difference evolution schemes in spacetime
International Nuclear Information System (INIS)
Zumbusch, G
2009-01-01
Numerical schemes for Einstein's vacuum equation are developed. Einstein's equation in harmonic gauge is second-order symmetric hyperbolic. It is discretized in four-dimensional spacetime by finite differences, finite elements and interior penalty discontinuous Galerkin methods, the latter being related to Regge calculus. The schemes are split into space and time and new time-stepping schemes for wave equations are derived. The methods are evaluated for linear and nonlinear test problems of the Apples-with-Apples collection.
Modelling bucket excavation by finite element
Pecingina, O. M.
2015-11-01
Changes in geological components of the layers from lignite pits have an impact on the sustainability of the cup path elements and under the action of excavation force appear efforts leading to deformation of the entire assembly. Application of finite element method in the optimization of components leads to economic growth, to increase the reliability and durability of the studied machine parts thus the machine. It is obvious usefulness of knowledge the state of mechanical tensions that the designed piece or the assembly not to break under the action of tensions that must cope during operation. In the course of excavation work on all bucket cutting force components, the first coming into contact with the material being excavated cutting edge. Therefore in the study with finite element analysis is retained only cutting edge. To study the field of stress and strain on the cutting edge will be created geometric patterns for each type of cup this will be subject to static analysis. The geometric design retains the cutting edge shape and on this on the tooth cassette location will apply an areal force on the abutment tooth. The cutting edge real pattern is subjected to finite element study for the worst case of rock cutting by symmetrical and asymmetrical cups whose profile is different. The purpose of this paper is to determine the displacement and tensions field for both profiles considering the maximum force applied on the cutting edge and the depth of the cutting is equal with the width of the cutting edge of the tooth. It will consider the worst case when on the structure will act both the tangential force and radial force on the bucket profile. For determination of stress and strain field on the form design of cutting edge profile will apply maximum force assuming uniform distribution and on the edge surface force will apply a radial force. After geometric patterns discretization on the cutting knives and determining stress field, can be seen that at the
DISCRETE ELEMENT MODELLING OF THE COMPRESSIVE ...
African Journals Online (AJOL)
Having developed and validated a code based on the Discrete Element Method principle with physical experiments the code was used to study and predict the behaviour (parametric changes) during compression of four bulk systems of particulates with the properties of canola seed, palm kernel and soyabean. The porosity ...
Domain decomposition methods for mortar finite elements
Energy Technology Data Exchange (ETDEWEB)
Widlund, O.
1996-12-31
In the last few years, domain decomposition methods, previously developed and tested for standard finite element methods and elliptic problems, have been extended and modified to work for mortar and other nonconforming finite element methods. A survey will be given of work carried out jointly with Yves Achdou, Mario Casarin, Maksymilian Dryja and Yvon Maday. Results on the p- and h-p-version finite elements will also be discussed.
Solution of Exterior Helmholtz Problems Using Finite and Infinite Elements
Shirron, Joseph James
This dissertation discusses methods for the computation of solutions of the Helmholtz equation in unbounded domains. Two classes of methods are considered: one in which the infinite exterior domain is truncated and finite elements are used to discretize the resultant computational domain, and another in which the exterior domain is discretized by infinite elements. For the first class of methods a generalized Robin boundary condition is imposed on the truncating surface to replace the Sommerfeld radiation condition at infinity and to ensure uniqueness of the solution. Several of these approximate radiation conditions are discussed and a comparison is presented to illustrate their efficacy. For the second class of methods finite elements are used to discretize the exterior domain out to an enclosing circle or prolate spheroid, then infinite elements are used to discretize the remaining unbounded domain. Strikingly different approximation and convergence behavior is observed depending on whether a bilinear or sesquilinear form is chosen for the variational formulation of the problem. Convergence analysis for the infinite element methods is presented for both two and three spatial dimensions. A solution method based on the idea of domain decomposition is also discussed, as are various techniques for obtaining the solution in the far field. Numerical experiments for problems of acoustic scattering by bodies of revolution convincingly demonstrate the superiority in terms of computational expense of the infinite element methods over boundary element methods.
Directory of Open Access Journals (Sweden)
Jorge Mauricio Ruiz Vera
2013-03-01
Full Text Available The Derrida-Lebowitz-Speer-Spohn (DLSS equation is a fourth order in space non-linear evolution equation. This equation arises in the study of interface fluctuations in spin systems and quantum semiconductor modelling. In this paper, we present a positive preserving finite element discrtization for a coupled-equation approach to the DLSS equation. Using the available information about the physical phenomena, we are able to set the corresponding boundary conditions for the coupled system. We prove existence of a global in time discrete solution by fixed point argument. Numerical results illustrate the quantum character of the equation. Finally a test of order of convergence of the proposed discretization scheme is presented.La ecuación de Derrida-Lebowitz-Speer-Spohn (DLSS es una ecuación de evolución no lineal de cuarto orden. Esta aparece en el estudio de las fluctuaciones de interface de sistemas de espín y en la modelación de semicoductores cuánticos. En este artículo, se presenta una discretización por elementos finitos para una formulación exponencial de la ecuación DLSS abordada como un sistema acoplado de ecuaciones. Usando la información disponible acerca del fenómeno físico, se establecen las condiciones de contorno para el sistema acoplado. Se demuestra la existencia de la solución discreta global en el tiempo via un argumento de punto fijo. Los resultados numéricos ilustran el carácter cuántico de la ecuación. Finalmente se presenta un test del orden de convergencia de la discretización porpuesta.
Choice of input fields in stochastic finite elements
DEFF Research Database (Denmark)
Ditlevsen, Ove Dalager; Tarp-Johansen, Niels Jacob
1996-01-01
variables. Several reported discretization methods define these random variables as integrals of the product of the field and some suitable weight functions. In particular, the weight functions can be Dirac delta functions whereby the random variables become the field values at a finite set of given points......The problem of the arbitrary choice of variables for random field modelling in structural mechanics or in soil mechanics is treated. For example, it is relevant to ask the question of whether it is best to choose a stiffness field along a beam element or to choose its reciprocal field......, the flexibility field, as the input to the stochastic finite element model. To answer this question the focus should be on the error of the output of the mechanical model rather than on the input field itself when discretizing the field through replacing it by a field defined in terms of a finite number of random...
A first course in finite elements
Fish, Jacob
2007-01-01
Developed from the authors, combined total of 50 years undergraduate and graduate teaching experience, this book presents the finite element method formulated as a general-purpose numerical procedure for solving engineering problems governed by partial differential equations. Focusing on the formulation and application of the finite element method through the integration of finite element theory, code development, and software application, the book is both introductory and self-contained, as well as being a hands-on experience for any student. This authoritative text on Finite Elements:Adopts
Control volume finite element method for radiation
International Nuclear Information System (INIS)
Ben Salah, M.; Askri, F.; Rousse, D.; Ben Nasrallah, S.
2005-01-01
In this paper a new methodology is presented by the authors for the numerical treatment of radiative heat transfer in emitting, absorbing and scattering media. This methodology is based on the utilisation of Control Volume Finite Element Method (CVFEM) and the use, for the first time, of matrix formulation of the discretized Radiative Transfer Equation (RTE). The advantages of the proposed methodology is to avoid problems that confronted when previous techniques are used to predict radiative heat transfer, essentially, in complex geometries and when there is scattering and/or non-black boundaries surfaces. Besides, the new formulation of the discretized RTE presented in this paper makes it possible to solve the algebraic system by direct or iterative numerical methods. The theoretical background of CVFEM and matrix formulation is presented in the text. The proposed technique is applied to different test problems, and the results compared favourably against other published works. Moreover this paper discusses in detail the effects of some radiative parameters, such as optical thickness and walls emissivities on the spatial evolution of the radiant heat flux. The numerical simulation of radiative heat transfer for different cases using the algorithm proposed in this work has shown that the developed computer procedure needs an accurate CPU time and is exempt of any numerical oscillations
On Using Particle Finite Element for Hydrodynamics Problems Solving
Directory of Open Access Journals (Sweden)
E. V. Davidova
2015-01-01
Full Text Available The aim of the present research is to develop software for the Particle Finite Element Method (PFEM and its verification on the model problem of viscous incompressible flow simulation in a square cavity. The Lagrangian description of the medium motion is used: the nodes of the finite element mesh move together with the fluid that allows to consider them as particles of the medium. Mesh cells deform when in time-stepping procedure, so it is necessary to reconstruct the mesh to provide stability of the finite element numerical procedure.Meshing algorithm allows us to obtain the mesh, which satisfies the Delaunay criteria: it is called \\the possible triangles method". This algorithm is based on the well-known Fortune method of Voronoi diagram constructing for a certain set of points in the plane. The graphical representation of the possible triangles method is shown. It is suitable to use generalization of Delaunay triangulation in order to construct meshes with polygonal cells in case of multiple nodes close to be lying on the same circle.The viscous incompressible fluid flow is described by the Navier | Stokes equations and the mass conservation equation with certain initial and boundary conditions. A fractional steps method, which allows us to avoid non-physical oscillations of the pressure, provides the timestepping procedure. Using the finite element discretization and the Bubnov | Galerkin method allows us to carry out spatial discretization.For form functions calculation of finite element mesh with polygonal cells, \
Preconditioning for Mixed Finite Element Formulations of Elliptic Problems
Wildey, Tim
2013-01-01
In this paper, we discuss a preconditioning technique for mixed finite element discretizations of elliptic equations. The technique is based on a block-diagonal approximation of the mass matrix which maintains the sparsity and positive definiteness of the corresponding Schur complement. This preconditioner arises from the multipoint flux mixed finite element method and is robust with respect to mesh size and is better conditioned for full permeability tensors than a preconditioner based on a diagonal approximation of the mass matrix. © Springer-Verlag Berlin Heidelberg 2013.
FEBio: finite elements for biomechanics.
Maas, Steve A; Ellis, Benjamin J; Ateshian, Gerard A; Weiss, Jeffrey A
2012-01-01
In the field of computational biomechanics, investigators have primarily used commercial software that is neither geared toward biological applications nor sufficiently flexible to follow the latest developments in the field. This lack of a tailored software environment has hampered research progress, as well as dissemination of models and results. To address these issues, we developed the FEBio software suite (http://mrl.sci.utah.edu/software/febio), a nonlinear implicit finite element (FE) framework, designed specifically for analysis in computational solid biomechanics. This paper provides an overview of the theoretical basis of FEBio and its main features. FEBio offers modeling scenarios, constitutive models, and boundary conditions, which are relevant to numerous applications in biomechanics. The open-source FEBio software is written in C++, with particular attention to scalar and parallel performance on modern computer architectures. Software verification is a large part of the development and maintenance of FEBio, and to demonstrate the general approach, the description and results of several problems from the FEBio Verification Suite are presented and compared to analytical solutions or results from other established and verified FE codes. An additional simulation is described that illustrates the application of FEBio to a research problem in biomechanics. Together with the pre- and postprocessing software PREVIEW and POSTVIEW, FEBio provides a tailored solution for research and development in computational biomechanics.
Finite element coiled cochlea model
Isailovic, Velibor; Nikolic, Milica; Milosevic, Zarko; Saveljic, Igor; Nikolic, Dalibor; Radovic, Milos; Filipović, Nenad
2015-12-01
Cochlea is important part of the hearing system, and thanks to special structure converts external sound waves into neural impulses which go to the brain. Shape of the cochlea is like snail, so geometry of the cochlea model is complex. The simplified cochlea coiled model was developed using finite element method inside SIFEM FP7 project. Software application is created on the way that user can prescribe set of the parameters for spiral cochlea, as well as material properties and boundary conditions to the model. Several mathematical models were tested. The acoustic wave equation for describing fluid in the cochlea chambers - scala vestibuli and scala timpani, and Newtonian dynamics for describing vibrations of the basilar membrane are used. The mechanical behavior of the coiled cochlea was analyzed and the third chamber, scala media, was not modeled because it does not have a significant impact on the mechanical vibrations of the basilar membrane. The obtained results are in good agreement with experimental measurements. Future work is needed for more realistic geometry model. Coiled model of the cochlea was created and results are compared with initial simplified coiled model of the cochlea.
Finite-Element Software for Conceptual Design
DEFF Research Database (Denmark)
Lindemann, J.; Sandberg, G.; Damkilde, Lars
2010-01-01
and research. Forcepad is an effort to provide a conceptual design and teaching tool in a finite-element software package. Forcepad is a two-dimensional finite-element application based on the same conceptual model as image editing applications such as Adobe Photoshop or Microsoft Paint. Instead of using...
Non-linear finite element modeling
DEFF Research Database (Denmark)
Mikkelsen, Lars Pilgaard
The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...
Nonlinear finite element modeling of corrugated board
A. C. Gilchrist; J. C. Suhling; T. J. Urbanik
1999-01-01
In this research, an investigation on the mechanical behavior of corrugated board has been performed using finite element analysis. Numerical finite element models for corrugated board geometries have been created and executed. Both geometric (large deformation) and material nonlinearities were included in the models. The analyses were performed using the commercial...
Least-squares finite element methods
Bochev, Pavel
2009-01-01
Since their emergence, finite element methods have taken a place as one of the most versatile and powerful methodologies for the approximate numerical solution of Partial Differential Equations. This book presents the theory and practice of least-square finite element methods, their strengths and weaknesses, successes, and open problems
Finite element and finite difference methods in electromagnetic scattering
Morgan, MA
2013-01-01
This second volume in the Progress in Electromagnetic Research series examines recent advances in computational electromagnetics, with emphasis on scattering, as brought about by new formulations and algorithms which use finite element or finite difference techniques. Containing contributions by some of the world's leading experts, the papers thoroughly review and analyze this rapidly evolving area of computational electromagnetics. Covering topics ranging from the new finite-element based formulation for representing time-harmonic vector fields in 3-D inhomogeneous media using two coupled sca
Books and monographs on finite element technology
Noor, A. K.
1985-01-01
The present paper proviees a listing of all of the English books and some of the foreign books on finite element technology, taking into account also a list of the conference proceedings devoted solely to finite elements. The references are divided into categories. Attention is given to fundamentals, mathematical foundations, structural and solid mechanics applications, fluid mechanics applications, other applied science and engineering applications, computer implementation and software systems, computational and modeling aspects, special topics, boundary element methods, proceedings of symmposia and conferences on finite element technology, bibliographies, handbooks, and historical accounts.
Finite element bending behaviour of discretely delaminated ...
African Journals Online (AJOL)
Laminated composites are increasingly getting used in civil engineering structural components including shell structural units due to their light weight, high specific strength and stiffness properties. One of the major causes of failure in these laminated composites is delamination resulting from the interlaminar debonding ...
Finite element bending behaviour of discretely delaminated ...
African Journals Online (AJOL)
user
R can be obtained from partial derivatives of surface equation. ( , ). z f x y. = and yx ..... layered symmetric shells, cross ply shell shows less deflection values than the angle ply one. Table 4. .... to conclude regarding the relative behaviour of antisymmetric and symmetric stacking orders for delaminated shells. 4.1.3 Effect of ...
Finite Element Aircraft Simulation of Turbulence
1997-02-01
A Simulation of Rotor Blade Element Turbulence (SORBET) model has been : developed for realtime aircraft simulation that accommodates stochastic : turbulence and distributed discrete gusts as a function of the terrain. This : model is applicable to c...
Parallel, adaptive finite element methods for conservation laws
Biswas, Rupak; Devine, Karen D.; Flaherty, Joseph E.
1994-01-01
We construct parallel finite element methods for the solution of hyperbolic conservation laws in one and two dimensions. Spatial discretization is performed by a discontinuous Galerkin finite element method using a basis of piecewise Legendre polynomials. Temporal discretization utilizes a Runge-Kutta method. Dissipative fluxes and projection limiting prevent oscillations near solution discontinuities. A posteriori estimates of spatial errors are obtained by a p-refinement technique using superconvergence at Radau points. The resulting method is of high order and may be parallelized efficiently on MIMD computers. We compare results using different limiting schemes and demonstrate parallel efficiency through computations on an NCUBE/2 hypercube. We also present results using adaptive h- and p-refinement to reduce the computational cost of the method.
Finite element analysis of piezoelectric materials
International Nuclear Information System (INIS)
Lowrie, F.; Stewart, M.; Cain, M.; Gee, M.
1999-01-01
This guide is intended to help people wanting to do finite element analysis of piezoelectric materials by answering some of the questions that are peculiar to piezoelectric materials. The document is not intended as a complete beginners guide for finite element analysis in general as this is better dealt with by the individual software producers. The guide is based around the commercial package ANSYS as this is a popular package amongst piezoelectric material users, however much of the information will still be useful to users of other finite element codes. (author)
Electrical machine analysis using finite elements
Bianchi, Nicola
2005-01-01
OUTLINE OF ELECTROMAGNETIC FIELDSVector AnalysisElectromagnetic FieldsFundamental Equations SummaryReferencesBASIC PRINCIPLES OF FINITE ELEMENT METHODSIntroductionField Problems with Boundary ConditionsClassical Method for the Field Problem SolutionThe Classical Residual Method (Galerkin's Method)The Classical Variational Method (Rayleigh-Ritz's Method)The Finite Element MethodReferencesAPPLICATIONS OF THE FINITE ELEMENT METHOD TO TWO-DIMENSIONAL FIELDSIntroductionLinear Interpolation of the Function fApplication of the Variational MethodSimple Descriptions of Electromagnetic FieldsAppendix: I
Finite element based inversion for time-harmonic electromagnetic problems
Schwarzbach, Christoph; Haber, Eldad
2013-05-01
In this paper we address the inverse problem and present some recent advances in numerical methods to recover the subsurface electrical conductivity from time-harmonic electromagnetic data. We rigorously formulate and discretize both the forward and the inverse problem in the finite element framework. To solve the forward problem, we derive a finite element discretization of the first-order system of Maxwell's equations in terms of the electric field and the magnetic induction. We show that our approach is equivalent to the standard discretization of the vector Helmholtz equation in terms of the electric field and that the discretization of magnetic induction of the same approximation order is hidden in the standard discretization. We implement the forward solver on unstructured tetrahedral meshes using edge elements. Unstructured meshes are not only capable of representing complex geometry. They can also reduce the overall problem size and, thus, the size of the system of linear equations arising from the forward problem such that direct methods for its solution using a sparse matrix factorization become feasible. The inverse problem is formulated as a regularized output least squares problem. We consider two regularization functions. First, we derive a smoothness regularizer using a primal-dual mixed finite element formulation which generalizes the standard Laplacian operator for a piecewise constant conductivity model on unstructured meshes. Secondly, we derive a total variation regularizer for the same class of models. For the choice of the regularization parameter we revisit the so-called dynamic regularization and compare it to a standard regularization scheme with fixed regularization parameter. The optimization problem is solved by the Gauss-Newton method which can be efficiently implemented using sparse matrix-vector operations and exploiting the sparse matrix factorization of the forward problem system matrix. A synthetic data example from marine
International Nuclear Information System (INIS)
Al-Akhrass, Dina
2014-01-01
Simulations in solid mechanics exhibit several difficulties, as dealing with incompressibility, with nonlinearities due to finite strains, contact laws, or constitutive laws. The basic motivation of our work is to propose efficient finite element methods capable of dealing with incompressibility in finite strain context, and using elements of low order. During the three last decades, many approaches have been proposed in the literature to overcome the incompressibility problem. Among them, mixed formulations offer an interesting theoretical framework. In this work, a three-field mixed formulation (displacement, pressure, volumetric strain) is investigated. In some cases, this formulation can be condensed in a two-field (displacement - pressure) mixed formulation. However, it is well-known that the discrete problem given by the Galerkin finite element technique, does not inherit the 'inf-sup' stability condition from the continuous problem. Hence, the interpolation orders in displacement and pressure have to be chosen in a way to satisfy the Brezzi-Babuska stability conditions when using Galerkin approaches. Interpolation orders must be chosen so as to satisfy this condition. Two possibilities are considered: to use stable finite element satisfying this requirement, or to use finite element that does not satisfy this condition, and to add terms stabilizing the FE Galerkin formulation. The latter approach allows the use of equal order interpolation. In this work, stable finite element P2/P1 and P2/P1/P1 are used as reference, and compared to P1/P1 and P1/P1/P1 formulations stabilized with a bubble function or with a VMS method (Variational Multi-Scale) based on a sub-grid-space orthogonal to the FE space. A finite strain model based on logarithmic strain is selected. This approach is extended to three and two field mixed formulations with stable or stabilized elements. These approaches are validated on academic cases and used on industrial cases. (author)
On higher order pyramidal finite elements
Czech Academy of Sciences Publication Activity Database
Liu, L.; Davies, K.B.; Křížek, Michal; Guan, L.
2011-01-01
Roč. 3, č. 2 (2011), s. 131-140 ISSN 2070-0733 R&D Projects: GA AV ČR(CZ) IAA100190803 Institutional research plan: CEZ:AV0Z10190503 Keywords : pyramidal polynomial basis functions * finite element method * composite elements * three-dimensional mortar elements Subject RIV: BA - General Mathematics Impact factor: 0.750, year: 2011
Finite element methods a practical guide
Whiteley, Jonathan
2017-01-01
This book presents practical applications of the finite element method to general differential equations. The underlying strategy of deriving the finite element solution is introduced using linear ordinary differential equations, thus allowing the basic concepts of the finite element solution to be introduced without being obscured by the additional mathematical detail required when applying this technique to partial differential equations. The author generalizes the presented approach to partial differential equations which include nonlinearities. The book also includes variations of the finite element method such as different classes of meshes and basic functions. Practical application of the theory is emphasised, with development of all concepts leading ultimately to a description of their computational implementation illustrated using Matlab functions. The target audience primarily comprises applied researchers and practitioners in engineering, but the book may also be beneficial for graduate students.
Advanced finite element method in structural engineering
Long, Yu-Qiu; Long, Zhi-Fei
2009-01-01
This book systematically introduces the research work on the Finite Element Method completed over the past 25 years. Original theoretical achievements and their applications in the fields of structural engineering and computational mechanics are discussed.
Multigrid methods for mortar finite elements
Wohlmuth, Barbara
2000-01-01
Multigrid methods for mortar finite elements / R. Krause ; B. Wohlmuth. - In: Multigrid methods VI / Erik Dick ... (ed.). - Berlin u.a. : Springer, 2000. - S. 136-142 (Lecture notes in computational science and engineering ; 14)
FINITE ELEMENT MODEL FOR PREDICTING RESIDUAL ...
African Journals Online (AJOL)
direction (σx) had a maximum value of 375MPa (tensile) and minimum value of ... These results shows that the residual stresses obtained by prediction from the finite element method are in fair agreement with the experimental results.
ANSYS mechanical APDL for finite element analysis
Thompson, Mary Kathryn
2017-01-01
ANSYS Mechanical APDL for Finite Element Analysis provides a hands-on introduction to engineering analysis using one of the most powerful commercial general purposes finite element programs on the market. Students will find a practical and integrated approach that combines finite element theory with best practices for developing, verifying, validating and interpreting the results of finite element models, while engineering professionals will appreciate the deep insight presented on the program's structure and behavior. Additional topics covered include an introduction to commands, input files, batch processing, and other advanced features in ANSYS. The book is written in a lecture/lab style, and each topic is supported by examples, exercises and suggestions for additional readings in the program documentation. Exercises gradually increase in difficulty and complexity, helping readers quickly gain confidence to independently use the program. This provides a solid foundation on which to build, preparing readers...
Finite elements in CAD and ADINA
International Nuclear Information System (INIS)
Bathe, K.J.
1986-01-01
The use of finite element methods in computer-aided-design - CAD - is discussed. Some current capabilities are presented and important future developments are outlined. The discussion focusses on the use of the ADINA program in CAD applications. (orig.)
Finite Element Model of Gear Induction Hardening
Hodek, J; Zemko, M; Shykula, P
2015-01-01
International audience; This paper presents a finite element model of a gear induction hardening process. The gear was surface-heated by an induction coil and quickly cooled by spraying water. The finite element model was developed as a three-dimensional model. The electromagnetic field, temperature field, stress distribution and microstructure distribution were examined. Temperature and microstructural characteristics were measured and used. The gear material data was obtained in part by mea...
The finite element method in electromagnetics
Jin, Jianming
2014-01-01
A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The
Surgery simulation using fast finite elements
DEFF Research Database (Denmark)
Bro-Nielsen, Morten
1996-01-01
This paper describes our recent work on real-time surgery simulation using fast finite element models of linear elasticity. In addition, we discuss various improvements in terms of speed and realism......This paper describes our recent work on real-time surgery simulation using fast finite element models of linear elasticity. In addition, we discuss various improvements in terms of speed and realism...
Quadrature representation of finite element variational forms
DEFF Research Database (Denmark)
Ølgaard, Kristian Breum; Wells, Garth N.
2012-01-01
This chapter addresses the conventional run-time quadrature approach for the numerical integration of local element tensors associated with finite element variational forms, and in particular automated optimizations that can be performed to reduce the number of floating point operations. An alter......This chapter addresses the conventional run-time quadrature approach for the numerical integration of local element tensors associated with finite element variational forms, and in particular automated optimizations that can be performed to reduce the number of floating point operations...
SEACAS Theory Manuals: Part III. Finite Element Analysis in Nonlinear Solid Mechanics
Energy Technology Data Exchange (ETDEWEB)
Laursen, T.A.; Attaway, S.W.; Zadoks, R.I.
1999-03-01
This report outlines the application of finite element methodology to large deformation solid mechanics problems, detailing also some of the key technological issues that effective finite element formulations must address. The presentation is organized into three major portions: first, a discussion of finite element discretization from the global point of view, emphasizing the relationship between a virtual work principle and the associated fully discrete system, second, a discussion of finite element technology, emphasizing the important theoretical and practical features associated with an individual finite element; and third, detailed description of specific elements that enjoy widespread use, providing some examples of the theoretical ideas already described. Descriptions of problem formulation in nonlinear solid mechanics, nonlinear continuum mechanics, and constitutive modeling are given in three companion reports.
Domain decomposition based iterative methods for nonlinear elliptic finite element problems
Energy Technology Data Exchange (ETDEWEB)
Cai, X.C. [Univ. of Colorado, Boulder, CO (United States)
1994-12-31
The class of overlapping Schwarz algorithms has been extensively studied for linear elliptic finite element problems. In this presentation, the author considers the solution of systems of nonlinear algebraic equations arising from the finite element discretization of some nonlinear elliptic equations. Several overlapping Schwarz algorithms, including the additive and multiplicative versions, with inexact Newton acceleration will be discussed. The author shows that the convergence rate of the Newton`s method is independent of the mesh size used in the finite element discretization, and also independent of the number of subdomains into which the original domain in decomposed. Numerical examples will be presented.
A multiscale mortar multipoint flux mixed finite element method
Wheeler, Mary Fanett
2012-02-03
In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux between coarse elements is imposed via a mortar finite element space on a coarse grid scale. With an appropriate choice of polynomial degree of the mortar space, we derive optimal order convergence on the fine scale for both the multiscale pressure and velocity, as well as the coarse scale mortar pressure. Some superconvergence results are also derived. The algebraic system is reduced via a non-overlapping domain decomposition to a coarse scale mortar interface problem that is solved using a multiscale flux basis. Numerical experiments are presented to confirm the theory and illustrate the efficiency and flexibility of the method. © EDP Sciences, SMAI, 2012.
Discrete element modeling of microstructure of nacre
Chandler, Mei Qiang; Cheng, Jing-Ru C.
2018-04-01
The microstructure of nacre consists of polygon-shaped aragonite mineral tablets bonded by very thin layers of organic materials and is organized in a brick-mortar morphology. In this research, the discrete element method was utilized to model this structure. The aragonite mineral tablets were modeled with three-dimensional polygon particles generated by the Voronoi tessellation method to represent the Voronoi-like patterns of mineral tablets assembly observed in experiments. The organic matrix was modeled with a group of spring elements. The constitutive relations of the spring elements were inspired from the experimental results of organic molecules from the literature. The mineral bridges were modeled with simple elastic bonds with the parameters based on experimental data from the literature. The bulk stress-strain responses from the models agreed well with experimental results. The model results show that the mineral bridges play important roles in providing the stiffness and yield strength for the nacre, while the organic matrix in providing the ductility for the nacre. This work demonstrated the suitability of particle methods for modeling microstructures of nacre.
Discrete element modeling of subglacial sediment deformation
DEFF Research Database (Denmark)
Damsgaard, Anders; Egholm, David L.; Piotrowski, Jan A.
arithmetic potential of modern general-purpose GPUs. Using the Nvidia CUDA C toolkit, the algorithm is formulated for spherical particles in three dimensions with a linear-elastic soft-body contact model. We have coupled the DEM model to a model for porewater flow, and we present early results of particle......The Discrete Element Method (DEM) is used to explore the highly nonlinear dynamics of a granular bed when exposed to stress conditions comparable to those at the bed of warm-based glaciers. In the DEM, the material is simulated on a grain-by-grain basis, and defining the micromechanical properties...... of the inter-particle contacts parameterizes the model. For validating the numerical approach, the macromechanical behavior of the numerical material is compared to the results from successive laboratory ring-shear experiments. Overall, there is a good agreement between the geotechnical behavior of the real...
Flexible Automatic Discretization for Finite Differences: Eliminating the Human Factor
Pranger, Casper
2017-04-01
In the geophysical numerical modelling community, finite differences are (in part due to their small footprint) a popular spatial discretization method for PDEs in the regular-shaped continuum that is the earth. However, they rapidly become prone to programming mistakes when physics increase in complexity. To eliminate opportunities for human error, we have designed an automatic discretization algorithm using Wolfram Mathematica, in which the user supplies symbolic PDEs, the number of spatial dimensions, and a choice of symbolic boundary conditions, and the script transforms this information into matrix- and right-hand-side rules ready for use in a C++ code that will accept them. The symbolic PDEs are further used to automatically develop and perform manufactured solution benchmarks, ensuring at all stages physical fidelity while providing pragmatic targets for numerical accuracy. We find that this procedure greatly accelerates code development and provides a great deal of flexibility in ones choice of physics.
Finite element analysis of tibial fractures
DEFF Research Database (Denmark)
Wong, Christian Nai En; Mikkelsen, Mikkel Peter W; Hansen, Leif Berner
2010-01-01
INTRODUCTION: Fractures of the tibial shaft are relatively common injuries. There are indications that tibial shaft fractures share characteristics in terms of site, type and local fracture mechanisms. In this study, we aimed to set up a mathematical, computer-based model using finite element...... of bony healing. The biomechanical results are the basis for fracture healing, biomechanical fall analysis and stability analysis of osteosynthesis. MATERIAL AND METHODS: A finite element model of the bony part of the lower leg was generated on the basis of computed tomography data from the Visible Human...... Project. The data consisted of 21,219 3D elements with a cortical shell and a trabecular core. Three types of load of torsion, a direct lateral load and axial compression were applied. RESULTS: The finite element linear static analysis resulted in relevant fracture localizations and indicated relevant...
Quadrilateral finite element mesh coarsening
Staten, Matthew L; Dewey, Mark W; Benzley, Steven E
2012-10-16
Techniques for coarsening a quadrilateral mesh are described. These techniques include identifying a coarsening region within the quadrilateral mesh to be coarsened. Quadrilateral elements along a path through the coarsening region are removed. Node pairs along opposite sides of the path are identified. The node pairs along the path are then merged to collapse the path.
Numerical algorithms for finite element computations on arrays of microprocessors
Ortega, J. M.
1981-01-01
The development of a multicolored successive over relaxation (SOR) program for the finite element machine is discussed. The multicolored SOR method uses a generalization of the classical Red/Black grid point ordering for the SOR method. These multicolored orderings have the advantage of allowing the SOR method to be implemented as a Jacobi method, which is ideal for arrays of processors, but still enjoy the greater rate of convergence of the SOR method. The program solves a general second order self adjoint elliptic problem on a square region with Dirichlet boundary conditions, discretized by quadratic elements on triangular regions. For this general problem and discretization, six colors are necessary for the multicolored method to operate efficiently. The specific problem that was solved using the six color program was Poisson's equation; for Poisson's equation, three colors are necessary but six may be used. In general, the number of colors needed is a function of the differential equation, the region and boundary conditions, and the particular finite element used for the discretization.
A finite element solution of transonic flow
Tatum, K. E.
1978-01-01
The use of finite elements is explored in a field in which its use has previously not been deemed very feasible, that of transonic flow. The specific problem chosen is that of steady small-disturbance transonic flow. The nonlinear equations are formulated with an artificial viscosity term added to yield the proper domain of dependence and directional bias in supersonic regions and across imbedded shock waves. Justification is given for the problem and means of solution chosen, and the potential advantages of the finite element procedure over standard finite difference procedures are discussed. Several possible improvements on the method as presently derived are stated. Computational mesh requirements and certain mesh variations are described. Some results equivalent to finite difference calculations are given as a sample solution.
Geometrically unfitted finite element methods and applications
Burman, Erik; Larson, Mats; Olshanskii, Maxim
2017-01-01
This book provides a snapshot of the state of the art of the rapidly evolving field of integration of geometric data in finite element computations. The contributions to this volume, based on research presented at the UCL workshop on the topic in January 2016, include three review papers on core topics such as fictitious domain methods for elasticity, trace finite element methods for partial differential equations defined on surfaces, and Nitsche’s method for contact problems. Five chapters present original research articles on related theoretical topics, including Lagrange multiplier methods, interface problems, bulk-surface coupling, and approximation of partial differential equations on moving domains. Finally, two chapters discuss advanced applications such as crack propagation or flow in fractured poroelastic media. This is the first volume that provides a comprehensive overview of the field of unfitted finite element methods, including recent techniques such as cutFEM, traceFEM, ghost penalty, and aug...
Verification of Orthogrid Finite Element Modeling Techniques
Steeve, B. E.
1996-01-01
The stress analysis of orthogrid structures, specifically with I-beam sections, is regularly performed using finite elements. Various modeling techniques are often used to simplify the modeling process but still adequately capture the actual hardware behavior. The accuracy of such 'Oshort cutso' is sometimes in question. This report compares three modeling techniques to actual test results from a loaded orthogrid panel. The finite element models include a beam, shell, and mixed beam and shell element model. Results show that the shell element model performs the best, but that the simpler beam and beam and shell element models provide reasonable to conservative results for a stress analysis. When deflection and stiffness is critical, it is important to capture the effect of the orthogrid nodes in the model.
Finite Element Modeling of Cracks and Joints
Directory of Open Access Journals (Sweden)
Jozef Čížik
2006-12-01
Full Text Available The application of finite element method to the analysis of discontinuous structural systems has received a considerable interest in recent years. Examples of problems in which discontinuities play a prominent role in the physical behaviour of a system are numerous and include various types of contact problems and layered or jointed systems. This paper gives a state-of-the-art report on the different methods developed to date for the finite element modelling of cracks and joints in discontinuous systems. Particular attention, however, has been given to the use of joint/interface elements, since their application is considered to be most appropriate for modelling of all kinds of discontinuities that may present in a structural system. A chronology of development of the main types of joint elements, including their pertinent characteristics, is also given. Advantages and disadvantages of the individual methods and types of joint elements presented are briefly discussed, together with various applications of interest.
On the reliability of finite element solutions
International Nuclear Information System (INIS)
Prasad, K.S.R.K.
1975-01-01
The extent of reliability of the finite element method for analysis of nuclear reactor structures, and that of reactor vessels in particular and the need for the engineer to guard against the pitfalls that may arise out of both physical and mathematical models have been high-lighted. A systematic way of checking the model to obtain reasonably accurate solutions is presented. Quite often sophisticated elements are suggested for specific design and stress concentration problems. The desirability or otherwise of these elements, their scope and utility vis-a-vis the use of large stack of conventional elements are discussed from the view point of stress analysts. The methods of obtaining a check on the reliability of the finite element solutions either through modelling changes or an extrapolation technique are discussed. (author)
Visualizing higher order finite elements. Final report
Energy Technology Data Exchange (ETDEWEB)
Thompson, David C; Pebay, Philippe Pierre
2005-11-01
This report contains an algorithm for decomposing higher-order finite elements into regions appropriate for isosurfacing and proves the conditions under which the algorithm will terminate. Finite elements are used to create piecewise polynomial approximants to the solution of partial differential equations for which no analytical solution exists. These polynomials represent fields such as pressure, stress, and momentum. In the past, these polynomials have been linear in each parametric coordinate. Each polynomial coefficient must be uniquely determined by a simulation, and these coefficients are called degrees of freedom. When there are not enough degrees of freedom, simulations will typically fail to produce a valid approximation to the solution. Recent work has shown that increasing the number of degrees of freedom by increasing the order of the polynomial approximation (instead of increasing the number of finite elements, each of which has its own set of coefficients) can allow some types of simulations to produce a valid approximation with many fewer degrees of freedom than increasing the number of finite elements alone. However, once the simulation has determined the values of all the coefficients in a higher-order approximant, tools do not exist for visual inspection of the solution. This report focuses on a technique for the visual inspection of higher-order finite element simulation results based on decomposing each finite element into simplicial regions where existing visualization algorithms such as isosurfacing will work. The requirements of the isosurfacing algorithm are enumerated and related to the places where the partial derivatives of the polynomial become zero. The original isosurfacing algorithm is then applied to each of these regions in turn.
Finite elements for analysis and design
Akin, J E; Davenport, J H
1994-01-01
The finite element method (FEM) is an analysis tool for problem-solving used throughout applied mathematics, engineering, and scientific computing. Finite Elements for Analysis and Design provides a thoroughlyrevised and up-to-date account of this important tool and its numerous applications, with added emphasis on basic theory. Numerous worked examples are included to illustrate the material.Key Features* Akin clearly explains the FEM, a numerical analysis tool for problem-solving throughout applied mathematics, engineering and scientific computing* Basic theory has bee
The finite element method and applications in engineering using ANSYS
Madenci, Erdogan
2015-01-01
This textbook offers theoretical and practical knowledge of the finite element method. The book equips readers with the skills required to analyze engineering problems using ANSYS®, a commercially available FEA program. Revised and updated, this new edition presents the most current ANSYS® commands and ANSYS® screen shots, as well as modeling steps for each example problem. This self-contained, introductory text minimizes the need for additional reference material by covering both the fundamental topics in finite element methods and advanced topics concerning modeling and analysis. It focuses on the use of ANSYS® through both the Graphics User Interface (GUI) and the ANSYS® Parametric Design Language (APDL). Extensive examples from a range of engineering disciplines are presented in a straightforward, step-by-step fashion. Key topics include: • An introduction to FEM • Fundamentals and analysis capabilities of ANSYS® • Fundamentals of discretization and approximation functions • Modeling techniq...
Assembly of finite element methods on graphics processors
Cecka, Cris
2010-08-23
Recently, graphics processing units (GPUs) have had great success in accelerating many numerical computations. We present their application to computations on unstructured meshes such as those in finite element methods. Multiple approaches in assembling and solving sparse linear systems with NVIDIA GPUs and the Compute Unified Device Architecture (CUDA) are created and analyzed. Multiple strategies for efficient use of global, shared, and local memory, methods to achieve memory coalescing, and optimal choice of parameters are introduced. We find that with appropriate preprocessing and arrangement of support data, the GPU coprocessor using single-precision arithmetic achieves speedups of 30 or more in comparison to a well optimized double-precision single core implementation. We also find that the optimal assembly strategy depends on the order of polynomials used in the finite element discretization. © 2010 John Wiley & Sons, Ltd.
Energy Technology Data Exchange (ETDEWEB)
Dobrev, Veselin A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kolev, Tzanio V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rieben, Robert N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2012-09-20
The numerical approximation of the Euler equations of gas dynamics in a movingLagrangian frame is at the heart of many multiphysics simulation algorithms. Here, we present a general framework for high-order Lagrangian discretization of these compressible shock hydrodynamics equations using curvilinear finite elements. This method is an extension of the approach outlined in [Dobrev et al., Internat. J. Numer. Methods Fluids, 65 (2010), pp. 1295--1310] and can be formulated for any finite dimensional approximation of the kinematic and thermodynamic fields, including generic finite elements on two- and three-dimensional meshes with triangular, quadrilateral, tetrahedral, or hexahedral zones. We discretize the kinematic variables of position and velocity using a continuous high-order basis function expansion of arbitrary polynomial degree which is obtained via a corresponding high-order parametric mapping from a standard reference element. This enables the use of curvilinear zone geometry, higher-order approximations for fields within a zone, and a pointwise definition of mass conservation which we refer to as strong mass conservation. Moreover, we discretize the internal energy using a piecewise discontinuous high-order basis function expansion which is also of arbitrary polynomial degree. This facilitates multimaterial hydrodynamics by treating material properties, such as equations of state and constitutive models, as piecewise discontinuous functions which vary within a zone. To satisfy the Rankine--Hugoniot jump conditions at a shock boundary and generate the appropriate entropy, we introduce a general tensor artificial viscosity which takes advantage of the high-order kinematic and thermodynamic information available in each zone. Finally, we apply a generic high-order time discretization process to the semidiscrete equations to develop the fully discrete numerical algorithm. Our method can be viewed as the high-order generalization of the so-called staggered
Discrete element simulation of crushable rockfill materials
Directory of Open Access Journals (Sweden)
Lei Shao
2013-04-01
Full Text Available A discrete element method was used to study the evolution of particle crushing in a rockfill sample subjected to triaxial shear. A simple procedure was developed to generate clusters with arbitrary shapes, which resembled real rockfill particles. A theoretical method was developed to define the failure criterion for an individual particle subjected to an arbitrary set of contact forces. Then, a series of numerical tests of large-scale drained triaxial tests were conducted to simulate the behaviors of the rockfill sample. Finally, we examined the development of micro-characteristics such as particle crushing, contact characteristics, porosity, deformation, movement, and energy dissipation. The simulation results were partially compared with the laboratory experiments, and good agreement was achieved, demonstrating that the particle crushing model proposed can be used to simulate the drained triaxial test of rockfill materials. Based on a comparison of macro behaviors of the rockfill sample and micro structures of the particles, the microscopic mechanism of the rockfill materials subjected to triaxial shear was determined qualitatively. It is shown that the crushing rate, rather than the number of crushed particles, can be used to reflect the relationship between macro- and micro-mechanical characteristics of rockfill materials. These research results further develop our understanding of the deformation mechanism of rockfill materials.
Quadrilateral/hexahedral finite element mesh coarsening
Staten, Matthew L; Dewey, Mark W; Scott, Michael A; Benzley, Steven E
2012-10-16
A technique for coarsening a finite element mesh ("FEM") is described. This technique includes identifying a coarsening region within the FEM to be coarsened. Perimeter chords running along perimeter boundaries of the coarsening region are identified. The perimeter chords are redirected to create an adaptive chord separating the coarsening region from a remainder of the FEM. The adaptive chord runs through mesh elements residing along the perimeter boundaries of the coarsening region. The adaptive chord is then extracted to coarsen the FEM.
The simulation of Lamb waves in a cracked plate using the scaled boundary finite element method.
Gravenkamp, Hauke; Prager, Jens; Saputra, Albert A; Song, Chongmin
2012-09-01
The scaled boundary finite element method is applied to the simulation of Lamb waves for ultrasonic testing applications. With this method, the general elastodynamic problem is solved, while only the boundary of the domain under consideration has to be discretized. The reflection of the fundamental Lamb wave modes from cracks of different geometry in a steel plate is modeled. A test problem is compared with commercial finite element software, showing the efficiency and convergence of the scaled boundary finite element method. A special formulation of this method is utilized to calculate dispersion relations for plate structures. For the discretization of the boundary, higher-order elements are employed to improve the efficiency of the simulations. The simplicity of mesh generation of a cracked plate for a scaled boundary finite element analysis is illustrated.
Slave finite elements: The temporal element approach to nonlinear analysis
Gellin, S.
1984-01-01
A formulation method for finite elements in space and time incorporating nonlinear geometric and material behavior is presented. The method uses interpolation polynomials for approximating the behavior of various quantities over the element domain, and only explicit integration over space and time. While applications are general, the plate and shell elements that are currently being programmed are appropriate to model turbine blades, vanes, and combustor liners.
Finite element analysis of photonic crystal fibers
Uranus, H.P.; Hoekstra, Hugo; van Groesen, Embrecht W.C.
2005-01-01
A finite-element-based vectorial optical mode solver, furnished with Bayliss-Gunzburger-Turkel-like transparent boundary conditions, is used to rigorously analyze photonic crystal fibers (PCFs). Both the real and imaginary part of the modal indices can be computed in a relatively small computational
Finite element simulation of asphalt fatigue testing
DEFF Research Database (Denmark)
Ullidtz, Per; Kieler, Thomas Lau; Kargo, Anders
1997-01-01
damage mechanics.The paper describes how continuum damage mechanics may be used with a finite element program to explain the progressive deterioration of asphalt mixes under laboratory fatigue testing. Both constant stress and constant strain testing are simulated, and compared to the actual results from...
Finite element modelling of solidification phenomena
Indian Academy of Sciences (India)
The process of solidification process is complex in nature and the simulation of such process is required in industry before it is actually undertaken. Finite element method is used to simulate the heat transfer process accompanying the solidification process. The metal and the mould along with the air gap formation is ...
Fast finite elements for surgery simulation
DEFF Research Database (Denmark)
Bro-Nielsen, Morten
1997-01-01
This paper discusses volumetric deformable models for modeling human body parts and organs in surgery simulation systems. These models are built using finite element models for linear elastic materials. To achieve real-time response condensation has been applied to the system stiffness matrix...
Galerkin finite element methods for wave problems
Indian Academy of Sciences (India)
these methods. Keywords. hp-Finite element method; continuous Galerkin methods; wave solutions; Gibbs' phenomenon. 1. Introduction. Galerkin methods belong to the class of solution methods for PDEs where the solution residue is minimized giving rise to the well-known weak formulation of problems. In this approach,.
Equivalent drawbead model in finite element simulations
Carleer, Bart D.; Carleer, B.D.; Meinders, Vincent T.; Huetink, Han; Lee, J.K.; Kinzel, G.L.; Wagoner, R.
1996-01-01
In 3D simulations of the deep drawing process the drawbead geometries are seldom included. Therefore equivalent drawbeads are used. In order to investigate the drawbead behaviour a 2D plane strain finite element model was used. For verification of this model experiments were performed. The analyses
Simplicial Finite Elements in Higher Dimensions
Czech Academy of Sciences Publication Activity Database
Brandts, J.; Korotov, S.; Křížek, Michal
2007-01-01
Roč. 52, č. 3 (2007), s. 251-265 ISSN 0862-7940 R&D Projects: GA ČR GA201/04/1503 Institutional research plan: CEZ:AV0Z10190503 Keywords : n-simplex * finite element method * superconvergence Subject RIV: BA - General Mathematics
Nonparametric Identification and Estimation of Finite Mixture Models of Dynamic Discrete Choices
Hiroyuki Kasahara; Katsumi Shimotsu
2006-01-01
In dynamic discrete choice analysis, controlling for unobserved heterogeneity is an important issue, and finite mixture models provide flexible ways to account for unobserved heterogeneity. This paper studies nonparametric identifiability of type probabilities and type-specific component distributions in finite mixture models of dynamic discrete choices. We derive sufficient conditions for nonparametric identification for various finite mixture models of dynamic discrete choices used in appli...
Introduction to finite and spectral element methods using Matlab
Pozrikidis, Constantine
2014-01-01
The Finite Element Method in One Dimension. Further Applications in One Dimension. High-Order and Spectral Elements in One Dimension. The Finite Element Method in Two Dimensions. Quadratic and Spectral Elements in Two Dimensions. Applications in Mechanics. Viscous Flow. Finite and Spectral Element Methods in Three Dimensions. Appendices. References. Index.
Finite element method for time-space-fractional Schrodinger equation
Directory of Open Access Journals (Sweden)
Xiaogang Zhu
2017-07-01
Full Text Available In this article, we develop a fully discrete finite element method for the nonlinear Schrodinger equation (NLS with time- and space-fractional derivatives. The time-fractional derivative is described in Caputo's sense and the space-fractional derivative in Riesz's sense. Its stability is well derived; the convergent estimate is discussed by an orthogonal operator. We also extend the method to the two-dimensional time-space-fractional NLS and to avoid the iterative solvers at each time step, a linearized scheme is further conducted. Several numerical examples are implemented finally, which confirm the theoretical results as well as illustrate the accuracy of our methods.
Finite element method for simulation of the semiconductor devices
International Nuclear Information System (INIS)
Zikatanov, L.T.; Kaschiev, M.S.
1991-01-01
An iterative method for solving the system of nonlinear equations of the drift-diffusion representation for the simulation of the semiconductor devices is worked out. The Petrov-Galerkin method is taken for the discretization of these equations using the bilinear finite elements. It is shown that the numerical scheme is a monotonous one and there are no oscillations of the solutions in the region of p-n transition. The numerical calculations of the simulation of one semiconductor device are presented. 13 refs.; 3 figs
Energy Technology Data Exchange (ETDEWEB)
Feng, Xiaobing [Univ. of Tennessee, Knoxville, TN (United States)
1996-12-31
A non-overlapping domain decomposition iterative method is proposed and analyzed for mixed finite element methods for a sequence of noncoercive elliptic systems with radiation boundary conditions. These differential systems describe the motion of a nearly elastic solid in the frequency domain. The convergence of the iterative procedure is demonstrated and the rate of convergence is derived for the case when the domain is decomposed into subdomains in which each subdomain consists of an individual element associated with the mixed finite elements. The hybridization of mixed finite element methods plays a important role in the construction of the discrete procedure.
Modelling discrete longitudinal data using acyclic probabilistic finite automata
DEFF Research Database (Denmark)
Anantharama Ankinakatte, Smitha; Edwards, David
2015-01-01
to minimize a penalized likelihood criterion such as AIC or BIC is described. This algorithm is compared to one implemented in Beagle, a widely used program for processing genomic data, both in terms of rate of convergence to the true model as the sample size increases, and a goodness-of-fit measure assessed...... using cross-validation. The comparisons are based on three data sets, two from molecular genetics and one from social science. The proposed algorithm performs at least as well as the algorithm in Beagle in both respects......Acyclic probabilistic finite automata (APFA) constitute a rich family of models for discrete longitudinal data. An APFA may be represented as a directed multigraph, and embodies a set of context-specific conditional independence relations that may be read off the graph. A model selection algorithm...
International Nuclear Information System (INIS)
Young, T. D.; Armiento, R.
2010-01-01
A Schroedinger eigenvalue problem is solved for the 2D quantum simple harmonic oscillator using a finite element discretization of real space within which elements are adaptively spatially refined. We compare two competing methods of adaptively discretizing the real-space grid on which computations are performed without modifying the standard polynomial basis-set traditionally used in finite element interpolations; namely, (i) an application of the Kelly error estimator, and (ii) a refinement based on the local potential level. When the performance of these methods are compared to standard uniform global refinement, we find that they significantly improve the total time spent in the eigensolver. (general)
Interpolation of the discrete logarithm in a finite field of characteristic two by Boolean functions
DEFF Research Database (Denmark)
Brandstaetter, Nina; Lange, Tanja; Winterhof, Arne
2005-01-01
We obtain bounds on degree, weight, and the maximal Fourier coefficient of Boolean functions interpolating the discrete logarithm in finite fields of characteristic two. These bounds complement earlier results for finite fields of odd characteristic.......We obtain bounds on degree, weight, and the maximal Fourier coefficient of Boolean functions interpolating the discrete logarithm in finite fields of characteristic two. These bounds complement earlier results for finite fields of odd characteristic....
A mixed finite element method for nonlinear diffusion equations
Burger, Martin
2010-01-01
We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model. © American Institute of Mathematical Sciences.
FINITE ELEMENT ANALYSIS OF ELEMENT ANALYSIS OF A FREE ...
African Journals Online (AJOL)
eobe
formulated as functional minimization. Finite Element Method (FEM) is regarde accurate and versatile numerical too differential equations that model phys. The methodology is used in vari engineering in which the problems ar partial differential equations. The met considerable application in structural e related disciplines.
Finite element simulations with ANSYS workbench 16
Lee , Huei-Huang
2015-01-01
Finite Element Simulations with ANSYS Workbench 16 is a comprehensive and easy to understand workbook. It utilizes step-by-step instructions to help guide readers to learn finite element simulations. Twenty seven real world case studies are used throughout the book. Many of these cases are industrial or research projects the reader builds from scratch. All the files readers may need if they have trouble are available for download on the publishers website. Companion videos that demonstrate exactly how to preform each tutorial are available to readers by redeeming the access code that comes in the book. Relevant background knowledge is reviewed whenever necessary. To be efficient, the review is conceptual rather than mathematical. Key concepts are inserted whenever appropriate and summarized at the end of each chapter. Additional exercises or extension research problems are provided as homework at the end of each chapter. A learning approach emphasizing hands-on experiences spreads through this entire book. A...
A finite element method for neutron transport
International Nuclear Information System (INIS)
Ackroyd, R.T.
1983-01-01
A completely boundary-free maximum principle for the first-order Boltzmann equation is derived from the completely boundary-free maximum principle for the mixed-parity Boltzmann equation. When continuity is imposed on the trial function for directions crossing interfaces the completely boundary-free principle for the first-order Boltzmann equation reduces to a maximum principle previously established directly from first principles and indirectly by the Euler-Lagrange method. Present finite element methods for the first-order Boltzmann equation are based on a weighted-residual method which permits the use of discontinuous trial functions. The new principle for the first-order equation can be used as a basis for finite-element methods with the same freedom from boundary conditions as those based on the weighted-residual method. The extremum principle as the parent of the variationally-derived weighted-residual equations ensures their good behaviour. (author)
Finite element reliability analysis of fatigue life
International Nuclear Information System (INIS)
Harkness, H.H.; Belytschko, T.; Liu, W.K.
1992-01-01
Fatigue reliability is addressed by the first-order reliability method combined with a finite element method. Two-dimensional finite element models of components with cracks in mode I are considered with crack growth treated by the Paris law. Probability density functions of the variables affecting fatigue are proposed to reflect a setting where nondestructive evaluation is used, and the Rosenblatt transformation is employed to treat non-Gaussian random variables. Comparisons of the first-order reliability results and Monte Carlo simulations suggest that the accuracy of the first-order reliability method is quite good in this setting. Results show that the upper portion of the initial crack length probability density function is crucial to reliability, which suggests that if nondestructive evaluation is used, the probability of detection curve plays a key role in reliability. (orig.)
Finite element analysis of human joints
International Nuclear Information System (INIS)
Bossart, P.L.; Hollerbach, K.
1996-09-01
Our work focuses on the development of finite element models (FEMs) that describe the biomechanics of human joints. Finite element modeling is becoming a standard tool in industrial applications. In highly complex problems such as those found in biomechanics research, however, the full potential of FEMs is just beginning to be explored, due to the absence of precise, high resolution medical data and the difficulties encountered in converting these enormous datasets into a form that is usable in FEMs. With increasing computing speed and memory available, it is now feasible to address these challenges. We address the first by acquiring data with a high resolution C-ray CT scanner and the latter by developing semi-automated method for generating the volumetric meshes used in the FEM. Issues related to tomographic reconstruction, volume segmentation, the use of extracted surfaces to generate volumetric hexahedral meshes, and applications of the FEM are described
Finite element analysis of tibial fractures
DEFF Research Database (Denmark)
Wong, Christian Nai En; Mikkelsen, Mikkel Peter W; Hansen, Leif Berner
2010-01-01
INTRODUCTION: Fractures of the tibial shaft are relatively common injuries. There are indications that tibial shaft fractures share characteristics in terms of site, type and local fracture mechanisms. In this study, we aimed to set up a mathematical, computer-based model using finite element...... analysis of the bones of the lower leg to examine if such a model is adequate for prediction of fracture locations and patterns. In future studies, we aim to use these biomechanical results to examine fracture prevention, among others, and to simulate different types of osteosynthesis and the process...... of bony healing. The biomechanical results are the basis for fracture healing, biomechanical fall analysis and stability analysis of osteosynthesis. MATERIAL AND METHODS: A finite element model of the bony part of the lower leg was generated on the basis of computed tomography data from the Visible Human...
Finite element analysis of human joints
Energy Technology Data Exchange (ETDEWEB)
Bossart, P.L.; Hollerbach, K.
1996-09-01
Our work focuses on the development of finite element models (FEMs) that describe the biomechanics of human joints. Finite element modeling is becoming a standard tool in industrial applications. In highly complex problems such as those found in biomechanics research, however, the full potential of FEMs is just beginning to be explored, due to the absence of precise, high resolution medical data and the difficulties encountered in converting these enormous datasets into a form that is usable in FEMs. With increasing computing speed and memory available, it is now feasible to address these challenges. We address the first by acquiring data with a high resolution C-ray CT scanner and the latter by developing semi-automated method for generating the volumetric meshes used in the FEM. Issues related to tomographic reconstruction, volume segmentation, the use of extracted surfaces to generate volumetric hexahedral meshes, and applications of the FEM are described.
Finite element modelling of TRIP steels
Energy Technology Data Exchange (ETDEWEB)
Papatriantafillou, I.; Aravas, N.; Haidemenopoulos, G.N. [Dept. of Mechanical and Industrial Engineering, Univ. of Thessaly, Volos (Greece)
2004-11-01
A constitutive model that describes the mechanical behaviour of steels exhibiting ''Transformation Induced Plasticity'' (TRIP) during martensitic transformation is presented. Multiphase TRIP steels are considered as composite materials with a ferritic matrix containing bainite and retained austenite, which gradually transforms into martensite. The effective properties and overall behaviour of TRIP steels are determined by using homogenization techniques for non-linear composites. The developed constitutive model considers the different hardening behaviour of the individual phases and estimates the apportionment of plastic strain and stress between the individual phases of the composite. A methodology for the numerical integration of the resulting elastoplastic constitutive equations in the context of the finite element method is developed and the constitutive model is implemented in a general-purpose finite element program. The prediction of the model in uniaxial tension agrees well with the experimental data. The problem of necking of a bar in uniaxial tension is studied in detail. (orig.)
Finite Element Analysis of Honeycomb Impact Attenuator
Yang, Seung-Yong; Choi, Seung-Kyu; Kim, Nohyu
To participate in Student Formula Society of Automotive Engineers (SAE) competitions, it is necessary to build an impact attenuator that would give an average deceleration not to exceed 20g when it runs into a rigid wall. Students can use numerical simulations or experimental test data to show that their car satisfies this safety requirement. A student group to study formula cars at the Korea University of Technology and Education has designed a vehicle to take part in a SAE competition, and a honeycomb structure was adopted as the impact attenuator. In this paper, finite element calculations were carried out to investigate the dynamic behavior of the honeycomb attenuator. Deceleration and deformation behaviors were studied. Effect of the yield strength was checked by comparing the numerical results. ABAQUS/Explicit finite element code was used.
FINITE ELEMENT ANALYSIS FOR PERIFLEX COUPLINGS
Directory of Open Access Journals (Sweden)
URDEA Mihaela
2015-06-01
Full Text Available The Periflex shaft couplings with rubber sleeve have a hig elasticity and link two shafts in diesel-engine and electric drives. They are simple from the point of view of construction, easily mounted and dismounted. The main goal of this paper is to present a finite element analysis for the Periflex coupling using the Generative Structural Analysis from CATIA software package. This paper presents important information about how to prepare an assembly for creating a static analysis case and also the important steps for developing a finite element analysis. It is very important that the analysis model should have the same behavior as the real, also the loading model. The results are images corresponding to Von Mises Stresses and Translational Displacement magnitude.
Introduction to nonlinear finite element analysis
Kim, Nam-Ho
2015-01-01
This book introduces the key concepts of nonlinear finite element analysis procedures. The book explains the fundamental theories of the field and provides instructions on how to apply the concepts to solving practical engineering problems. Instead of covering many nonlinear problems, the book focuses on three representative problems: nonlinear elasticity, elastoplasticity, and contact problems. The book is written independent of any particular software, but tutorials and examples using four commercial programs are included as appendices: ANSYS, NASTRAN, ABAQUS, and MATLAB. In particular, the MATLAB program includes all source codes so that students can develop their own material models, or different algorithms. This book also: · Presents clear explanations of nonlinear finite element analysis for elasticity, elastoplasticity, and contact problems · Includes many informative examples of nonlinear analyses so that students can clearly understand the nonlinear theory · ...
Lamarche, L.; Degrez, G.; Prince, A.
A method is described that combines the geometric flexibility of finite element methodology with recent developments of high-resolution finite difference schemes for hyperbolic systems of equations. It is proposed to use the standard weighted residual approach to set up the discrete equations. Upwinding is then achieved via a modified quadrature rule. The Gaussian point is chosen to match the finite difference discretization on a model scalar equation. The extension to systems of equations is then obtained following the flux-splitting approach suggested by Steger and Warming (1981) and Van Leer (1982).
Discrete Element Modeling of Complex Granular Flows
Movshovitz, N.; Asphaug, E. I.
2010-12-01
Granular materials occur almost everywhere in nature, and are actively studied in many fields of research, from food industry to planetary science. One approach to the study of granular media, the continuum approach, attempts to find a constitutive law that determines the material's flow, or strain, under applied stress. The main difficulty with this approach is that granular systems exhibit different behavior under different conditions, behaving at times as an elastic solid (e.g. pile of sand), at times as a viscous fluid (e.g. when poured), or even as a gas (e.g. when shaken). Even if all these physics are accounted for, numerical implementation is made difficult by the wide and often discontinuous ranges in continuum density and sound speed. A different approach is Discrete Element Modeling (DEM). Here the goal is to directly model every grain in the system as a rigid body subject to various body and surface forces. The advantage of this method is that it treats all of the above regimes in the same way, and can easily deal with a system moving back and forth between regimes. But as a granular system typically contains a multitude of individual grains, the direct integration of the system can be very computationally expensive. For this reason most DEM codes are limited to spherical grains of uniform size. However, spherical grains often cannot replicate the behavior of real world granular systems. A simple pile of spherical grains, for example, relies on static friction alone to keep its shape, while in reality a pile of irregular grains can maintain a much steeper angle by interlocking force chains. In the present study we employ a commercial DEM, nVidia's PhysX Engine, originally designed for the game and animation industry, to simulate complex granular flows with irregular, non-spherical grains. This engine runs as a multi threaded process and can be GPU accelerated. We demonstrate the code's ability to physically model granular materials in the three regimes
Finite element analysis of nonlinear creeping flows
International Nuclear Information System (INIS)
Loula, A.F.D.; Guerreiro, J.N.C.
1988-12-01
Steady-state creep problems with monotone constitutive laws are studied. Finite element approximations are constructed based on mixed Petrov-Galerkin formulations for constrained problems. Stability, convergence and a priori error estimates are proved for equal-order discontinuous stress and continuous velocity interpolations. Numerical results are presented confirming the rates of convergence predicted in the analysis and the good performance of this formulation. (author) [pt
Finite element simulation of heat transfer
Bergheau, Jean-Michel
2010-01-01
This book introduces the finite element method applied to the resolution of industrial heat transfer problems. Starting from steady conduction, the method is gradually extended to transient regimes, to traditional non-linearities, and to convective phenomena. Coupled problems involving heat transfer are then presented. Three types of couplings are discussed: coupling through boundary conditions (such as radiative heat transfer in cavities), addition of state variables (such as metallurgical phase change), and coupling through partial differential equations (such as electrical phenomena).? A re
Finite element methods for incompressible flow problems
John, Volker
2016-01-01
This book explores finite element methods for incompressible flow problems: Stokes equations, stationary Navier-Stokes equations, and time-dependent Navier-Stokes equations. It focuses on numerical analysis, but also discusses the practical use of these methods and includes numerical illustrations. It also provides a comprehensive overview of analytical results for turbulence models. The proofs are presented step by step, allowing readers to more easily understand the analytical techniques.
Coupled finite element modeling of piezothermoelastic materials
Senousy, M. S.; Rajapakse, R. K. N. D.; Gadala, M.
2007-04-01
The governing equations of piezo-thermoelastic materials show full coupling between mechanical, electric, and temperature fields. It is often assumed in the literature that in high-frequency oscillations, the coupling between the temperature and mechanical displacement and electric field is small and, therefore, can be neglected. A solution for the temperature field is then determined from an uncoupled equation. A finite element (FE) model that accounts for full coupling between the mechanical, electric, and thermal fields, nonlinear constitutive behavior and heat generation resulting from dielectric losses under alternating driving fields is under development. This paper presents a linear fully coupled model as an early development of the fully coupled nonlinear FE model. In the linear model, a solution for all field variables is obtained simultaneously and compared with the uncoupled solution. The finite element model is based on the weighted-residual principle and uses 2-D four-node isoparametric finite elements with four degrees of freedom per node. A thin piezoelectric square disk is modeled to obtain some preliminary understanding of the coupled fields in a piezoelectric stack actuator.
Finite element modeling of lipid bilayer membranes
Feng, Feng; Klug, William S.
2006-12-01
A numerical simulation framework is presented for the study of biological membranes composed of lipid bilayers based on the finite element method. The classic model for these membranes employs a two-dimensional-fluid-like elastic constitutive law which is sensitive to curvature, and subjects vesicles to physically imposed constraints on surface area and volume. This model is implemented numerically via the use of C1-conforming triangular Loop subdivision finite elements. The validity of the framework is tested by computing equilibrium shapes from previously-determined axisymmetric shape-phase diagram of lipid bilayer vesicles with homogeneous material properties. Some of the benefits and challenges of finite element modeling of lipid bilayer systems are discussed, and it is indicated how this framework is natural for future investigation of biologically realistic bilayer structures involving nonaxisymmetric geometries, binding and adhesive interactions, heterogeneous mechanical properties, cytoskeletal interactions, and complex loading arrangements. These biologically relevant features have important consequences for the shape mechanics of nonidealized vesicles and cells, and their study requires not simply advances in theory, but also advances in numerical simulation techniques, such as those presented here.
Finite element modelling of contracting skeletal muscle.
Oomens, C W J; Maenhout, M; van Oijen, C H; Drost, M R; Baaijens, F P
2003-09-29
To describe the mechanical behaviour of biological tissues and transport processes in biological tissues, conservation laws such as conservation of mass, momentum and energy play a central role. Mathematically these are cast into the form of partial differential equations. Because of nonlinear material behaviour, inhomogeneous properties and usually a complex geometry, it is impossible to find closed-form analytical solutions for these sets of equations. The objective of the finite element method is to find approximate solutions for these problems. The concepts of the finite element method are explained on a finite element continuum model of skeletal muscle. In this case, the momentum equations have to be solved with an extra constraint, because the material behaves as nearly incompressible. The material behaviour consists of a highly nonlinear passive part and an active part. The latter is described with a two-state Huxley model. This means that an extra nonlinear partial differential equation has to be solved. The problems and solutions involved with this procedure are explained. The model is used to describe the mechanical behaviour of a tibialis anterior of a rat. The results have been compared with experimentally determined strains at the surface of the muscle. Qualitatively there is good agreement between measured and calculated strains, but the measured strains were higher.
BERSAFE: (BERkeley Structural Analysis by Finite Elements)
International Nuclear Information System (INIS)
Anon.
1991-01-01
BERSAFE is a well-known finite element system which has been under continuous use and development for over 20 years. The BERSAFE system comprises an inter-compatible set of program modules covering static stress analysis, linear dynamics and thermal analysis. Data generation and results presentation modules are also available, along with special supporting functions including automatic crack growth through a model with adaptive meshing. The functionality of BERSAFE, is nowadays very advanced, both in engineering scope and finite element technology. It has seen many firsts, including the front solution and Virtual Crack Extension methods (VCE). More recent additions which have developed out of the Power Industry's requirements are a finite element computational fluid dynamics code, FEAT, and engineering design assessment procedures. These procedures include R6 and R5 for the assessment of the integrity of structures containing defects below and within the creep regime. To use all this software in a user-friendly manner, a new computational environment has been developed, called 'The Harness' which takes advantage of modern hardware and software philosophies. This provides the tool-kit to undertake complete problems, covering determination of fluid loads, structural analysis and failure assessment. In the following sections we describe briefly various components of the BERSAFE suite. (author)
Finite element analysis of three dimensional crack growth by the use of a boundary element sub model
DEFF Research Database (Denmark)
Lucht, Tore
2009-01-01
A new automated method to model non-planar three dimensional crack growth is proposed which combines the advantages of both the boundary element method and the finite element method. The proposed method links the two methods by a submodelling strategy in which the solution of a global finite...... element model containing an approximation of the crack is interpolated to a much smaller boundary element model containing a fine discretization of the real crack. The method is validated through several numerical comparisons and by comparison to crack growth measured in a test specimen for an engineering...
Finite element modeling for materials engineers using Matlab
Oluwole, Oluleke
2014-01-01
Finite Element Modeling for Materials Engineers Using MATLAB® combines the finite element method with MATLAB to offer materials engineers a fast and code-free way of modeling for many materials processes.
Finite Element Based Design and Optimization for Piezoelectric Accelerometers
DEFF Research Database (Denmark)
Liu, Bin; Kriegbaum, B.; Yao, Q.
1998-01-01
A systematic Finite Element design and optimisation procedure is implemented for the development of piezoelectric accelerometers. Most of the specifications of accelerometers can be obtained using the Finite Element simulations. The deviations between the simulated and calibrated sensitivities...
Solving the incompressible surface Navier-Stokes equation by surface finite elements
Reuther, Sebastian; Voigt, Axel
2018-01-01
We consider a numerical approach for the incompressible surface Navier-Stokes equation on surfaces with arbitrary genus g (S ) . The approach is based on a reformulation of the equation in Cartesian coordinates of the embedding R3, penalization of the normal component, a Chorin projection method, and discretization in space by surface finite elements for each component. The approach thus requires only standard ingredients which most finite element implementations can offer. We compare computational results with discrete exterior calculus simulations on a torus and demonstrate the interplay of the flow field with the topology by showing realizations of the Poincaré-Hopf theorem on n-tori.
Discrete elements in structural concrete design
Blaauwendraad, J.; Hoogenboom, P.C.J.
1997-01-01
In the sixties Prof. J. Witteveen introduced a discrete model for the elastic analysis of slabs (Heron 1966). This article presents a similar approach for the design of reinforced concrete walls and deep beams, with holes or otherwise. The model – which is called stringer-panel model – combines the
International Nuclear Information System (INIS)
Ishida, Hitoshi; Meshii, Toshiyuki
2008-01-01
This paper proposes a guideline for selection of element size and time increment by 3-D finite element method, which is applied to elastic wave propagation analysis for a long distance of a large structure. An element size and a time increment are determined by quantitative evaluation of strain, which must be 0 on the analysis model with a uniform motion, caused by spatial and time discretization. (author)
Error-controlled adaptive finite elements in solid mechanics
National Research Council Canada - National Science Library
Stein, Erwin; Ramm, E
2003-01-01
... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Error-controlled Adaptive Finite-element-methods . . . . . . . . . . . . Missing Features and Properties of Today's General Purpose FE Programs for Structural...
Kou, Jisheng
2017-06-09
In this paper, a new three-field weak formulation for Stokes problems is developed, and from this, a dual-mixed finite element method is proposed on a rectangular mesh. In the proposed mixed methods, the components of stress tensor are approximated by piecewise constant functions or Q1 functions, while the velocity and pressure are discretized by the lowest-order Raviart-Thomas element and the piecewise constant functions, respectively. Using quadrature rules, we demonstrate that this scheme can be reduced into a finite volume method on staggered grid, which is extensively used in computational fluid mechanics and engineering.
A spatial discretization of the MHD equations based on the finite volume - spectral method
International Nuclear Information System (INIS)
Miyoshi, Takahiro
2000-05-01
Based on the finite volume - spectral method, we present new discretization formulae for the spatial differential operators in the full system of the compressible MHD equations. In this approach, the cell-centered finite volume method is adopted in a bounded plane (poloidal plane), while the spectral method is applied to the differential with respect to the periodic direction perpendicular to the poloidal plane (toroidal direction). Here, an unstructured grid system composed of the arbitrary triangular elements is utilized for constructing the cell-centered finite volume method. In order to maintain the divergence free constraint of the magnetic field numerically, only the poloidal component of the rotation is defined at three edges of the triangular element. This poloidal component is evaluated under the assumption that the toroidal component of the operated vector times the radius, RA φ , is linearly distributed in the element. The present method will be applied to the nonlinear MHD dynamics in an realistic torus geometry without the numerical singularities. (author)
The Total Number of Parameters in the Finite Element ...
African Journals Online (AJOL)
Rectangular finite elements are important in Finite Element Method. This paper establishes a general formula for obtaining the total number of parameters associated with any finite element rectangulation of a domain. This number is also the dimension of the trail space as well as the size of the associated linear system.
Parallel direct solver for finite element modeling of manufacturing processes
DEFF Research Database (Denmark)
Nielsen, Chris Valentin; Martins, P.A.F.
2017-01-01
The central processing unit (CPU) time is of paramount importance in finite element modeling of manufacturing processes. Because the most significant part of the CPU time is consumed in solving the main system of equations resulting from finite element assemblies, different approaches have been...... developed to optimize solutions and reduce the overall computational costs of large finite element models....
Finite element modelling of helmeted head impact under frontal ...
Indian Academy of Sciences (India)
Abstract. Finite element models of the head and helmet were used to study contact forces during frontal impact of the head with a rigid surface. The finite element model of the head consists of skin, skull, cerebro-spinal fluid (CSF), brain, tentorium and falx. The finite element model of the helmet consists of shell and foam.
Adaptive Smoothed Finite Elements (ASFEM) for history dependent material models
Quak, W.; van den Boogaard, Antonius H.; Menary, Gary
2011-01-01
A successful simulation of a bulk forming process with finite elements can be difficult due to distortion of the finite elements. Nodal smoothed Finite Elements (NSFEM) are an interesting option for such a process since they show good distortion insensitivity and moreover have locking-free behavior
The finite element method in engineering, 2nd edition
International Nuclear Information System (INIS)
Rao, S.S.
1986-01-01
This work provides a systematic introduction to the various aspects of the finite element method as applied to engineering problems. Contents include: introduction to finite element method; solution of finite element equations; solid and structural mechanics; static analysis; dynamic analysis; heat transfer; fluid mechanics and additional applications
Finite element simulation and testing of ISW CFRP anchorage
DEFF Research Database (Denmark)
Schmidt, Jacob Wittrup; Goltermann, Per; Hertz, Kristian Dahl
2013-01-01
is modelled in the 3D finite Element program ABAQUS, just as digital image correlation (DIC) testing was performed to verify the finite element simulation. Also a new optimized design was produced to ensure that the finite element simulation and anchorage behaviour correlated well. It is seen...
Finite rotation shells basic equations and finite elements for Reissner kinematics
Wisniewski, K
2010-01-01
This book covers theoretical and computational aspects of non-linear shells. Several advanced topics of shell equations and finite elements - not included in standard textbooks on finite elements - are addressed, and the book includes an extensive bibliography.
Energy Technology Data Exchange (ETDEWEB)
Lee, Sang Jin; Seo, Jeong Moon
2000-08-01
The main goal of this research is to establish a methodology of finite element analysis of containment building predicting not only global behaviour but also local failure mode. In this report, we summerize some existing numerical analysis techniques to be improved for containment building. In other words, a complete description of the standard degenerated shell finite element formulation is provided for nonlinear stress analysis of nuclear containment structure. A shell finite element is derived using the degenerated solid concept which does not rely on a specific shell theory. Reissner-Mindlin assumptions are adopted to consider the transverse shear deformation effect. In order to minimize the sensitivity of the constitutive equation to structural types, microscopic material model is adopted. The four solution algorithms based on the standard Newton-Raphson method are discussed. Finally, two numerical examples are carried out to test the performance of the adopted shell medel.
Finite element simulation of piezoelectric transformers.
Tsuchiya, T; Kagawa, Y; Wakatsuki, N; Okamura, H
2001-07-01
Piezoelectric transformers are nothing but ultrasonic resonators with two pairs of electrodes provided on the surface of a piezoelectric substrate in which electrical energy is carried in the mechanical form. The input and output electrodes are arranged to provide the impedance transformation, which results in the voltage transformation. As they are operated at a resonance, the electrical equivalent circuit approach has traditionally been developed in a rather empirical way and has been used for analysis and design. The present paper deals with the analysis of the piezoelectric transformers based on the three-dimensional finite element modelling. The PIEZO3D code that we have developed is modified to include the external loading conditions. The finite element approach is now available for a wide variety of the electrical boundary conditions. The equivalent circuit of lumped parameters can also be derived from the finite element method (FEM) solution if required. The simulation of the present transformers is made for the low intensity operation and compared with the experimental results. Demonstration is made for basic Rosen-type transformers in which the longitudinal mode of a plate plays an important role; in which the equivalent circuit of lumped constants has been used. However, there are many modes of vibration associated with the plate, the effect of which cannot always be ignored. In the experiment, the double resonances are sometimes observed in the vicinity of the operating frequency. The simulation demonstrates that this is due to the coupling of the longitudinal mode with the flexural mode. Thus, the simulation provides an invaluable guideline to the transformer design.
Gao, Longfei
2018-02-22
We consider numerical simulation of the isotropic elastic wave equations arising from seismic applications with non-trivial land topography. The more flexible finite element method is applied to the shallow region of the simulation domain to account for the topography, and combined with the more efficient finite difference method that is applied to the deep region of the simulation domain. We demonstrate that these two discretization methods, albeit starting from different formulations of the elastic wave equation, can be joined together smoothly via weakly imposed interface conditions. Discrete energy analysis is employed to derive the proper interface treatment, leading to an overall discretization that is energy-conserving. Numerical examples are presented to demonstrate the efficacy of the proposed interface treatment.
Gelinas, R. J.; Doss, S. K.; Vajk, J. P.; Djomehri, J.; Miller, K.
1983-01-01
The mathematical background regarding the moving finite element (MFE) method of Miller and Miller (1981) is discussed, taking into account a general system of partial differential equations (PDE) and the amenability of the MFE method in two dimensions to code modularization and to semiautomatic user-construction of numerous PDE systems for both Dirichlet and zero-Neumann boundary conditions. A description of test problem results is presented, giving attention to aspects of single square wave propagation, and a solution of the heat equation.
Finite Element analysis of jar connections
DEFF Research Database (Denmark)
Kristensen, A.; Toor, Kashif; Solem, Sigurd
2005-01-01
A new tool joint system is considered. Traditionally these rotary connections have been designed with only one shoulder geometry. However, in order to increase the torque rating of the tool joint, a new design is introduced using two shoulders. This design allow reduced tool joint dimensions wher...... whereby down-hole equipment more easily can be fitted. In order to evaluate the validity of the design, finite element analysis have been performed in ANSYS. The results obtained indicate that the new design is valid and further tests can be performed....
Finite element modeling methods for photonics
Rahman, B M Azizur
2013-01-01
The term photonics can be used loosely to refer to a vast array of components, devices, and technologies that in some way involve manipulation of light. One of the most powerful numerical approaches available to engineers developing photonic components and devices is the Finite Element Method (FEM), which can be used to model and simulate such components/devices and analyze how they will behave in response to various outside influences. This resource provides a comprehensive description of the formulation and applications of FEM in photonics applications ranging from telecommunications, astron
Mixed finite elements for global tide models.
Cotter, Colin J; Kirby, Robert C
2016-01-01
We study mixed finite element methods for the linearized rotating shallow water equations with linear drag and forcing terms. By means of a strong energy estimate for an equivalent second-order formulation for the linearized momentum, we prove long-time stability of the system without energy accumulation-the geotryptic state. A priori error estimates for the linearized momentum and free surface elevation are given in [Formula: see text] as well as for the time derivative and divergence of the linearized momentum. Numerical results confirm the theoretical results regarding both energy damping and convergence rates.
Generalized multiscale finite element methods: Oversampling strategies
Efendiev, Yalchin R.
2014-01-01
In this paper, we propose oversampling strategies in the generalized multiscale finite element method (GMsFEM) framework. The GMsFEM, which has been recently introduced in Efendiev et al. (2013b) [Generalized Multiscale Finite Element Methods, J. Comput. Phys., vol. 251, pp. 116-135, 2013], allows solving multiscale parameter-dependent problems at a reduced computational cost by constructing a reduced-order representation of the solution on a coarse grid. The main idea of the method consists of (1) the construction of snapshot space, (2) the construction of the offline space, and (3) construction of the online space (the latter for parameter-dependent problems). In Efendiev et al. (2013b) [Generalized Multiscale Finite Element Methods, J. Comput. Phys., vol. 251, pp. 116-135, 2013], it was shown that the GMsFEM provides a flexible tool to solve multiscale problems with a complex input space by generating appropriate snapshot, offline, and online spaces. In this paper, we develop oversampling techniques to be used in this context (see Hou and Wu (1997) where oversampling is introduced for multiscale finite element methods). It is known (see Hou and Wu (1997)) that the oversampling can improve the accuracy of multiscale methods. In particular, the oversampling technique uses larger regions (larger than the target coarse block) in constructing local basis functions. Our motivation stems from the analysis presented in this paper, which shows that when using oversampling techniques in the construction of the snapshot space and offline space, GMsFEM will converge independent of small scales and high contrast under certain assumptions. We consider the use of a multiple eigenvalue problems to improve the convergence and discuss their relation to single spectral problems that use oversampled regions. The oversampling procedures proposed in this paper differ from those in Hou and Wu (1997). In particular, the oversampling domains are partially used in constructing local
Finite-dimensional reductions of the discrete Toda chain
Kazakova, T. G.
2004-08-01
The problem of construction of integrable boundary conditions for the discrete Toda chain is considered. The restricted chains for properly chosen closure conditions are reduced to the well-known discrete Painlevé equations dPIII, dPV, dPVI. Lax representations for these discrete Painlevé equations are found.
Improved inhomogeneous finite elements for fabric reinforced composite mechanics analysis
Foye, R. L.
1992-01-01
There is a need to do routine stress/failure analysis of fabric reinforced composite microstructures to provide additional confidence in critical applications and guide materials development. Conventional methods of 3-D stress analysis are time consuming to set up, run and interpret. A need exists for simpler methods of modeling these structures and analyzing the models. The principal difficulty is the discrete element mesh generation problem. Inhomogeneous finite elements are worth investigating for application to these problems because they eliminate the mesh generation problem. However, there are penalties associated with these elements. Their convergence rates can be slow compared to homogeneous elements. Also, there is no accepted method for obtaining detailed stresses in the constituent materials of each element. This paper shows that the convergence rate can be significantly improved by a simple device which substitutes homogeneous elements for the inhomogeneous ones. The device is shown to work well in simple one and two dimensional problems. However, demonstration of the application to more complex two and three dimensional problems remains to be done. Work is also progressing toward more realistic fabric microstructural geometries.
A distortional semi-discretized thin-walled beam element
DEFF Research Database (Denmark)
Andreassen, Michael Joachim; Jönsson, Jeppe
2013-01-01
Due to the increased consumption of thin-walled structural elements there has been increasing focus and need for more detailed calculations as well as development of new approaches. In this paper a thin-walled beam element including distortion of the cross section is formulated. The formulation...... is based on a generalized beam theory (GBT), in which the classic Vlasov beam theory for analysis of open and closed thin-walled cross sections is generalized by including distortional displacements. The beam element formulation utilizes a semi-discretization approach in which the cross section...... is discretized into wall elements and the analytical solutions of the related GBT beam equations are used as displacement functions in the axial direction. Thus the beam element contains the semi-analytical solutions. In three related papers the authors have recently presented the semi-discretization approach...
Finite element simulation of articular contact mechanics with quadratic tetrahedral elements.
Maas, Steve A; Ellis, Benjamin J; Rawlins, David S; Weiss, Jeffrey A
2016-03-21
Although it is easier to generate finite element discretizations with tetrahedral elements, trilinear hexahedral (HEX8) elements are more often used in simulations of articular contact mechanics. This is due to numerical shortcomings of linear tetrahedral (TET4) elements, limited availability of quadratic tetrahedron elements in combination with effective contact algorithms, and the perceived increased computational expense of quadratic finite elements. In this study we implemented both ten-node (TET10) and fifteen-node (TET15) quadratic tetrahedral elements in FEBio (www.febio.org) and compared their accuracy, robustness in terms of convergence behavior and computational cost for simulations relevant to articular contact mechanics. Suitable volume integration and surface integration rules were determined by comparing the results of several benchmark contact problems. The results demonstrated that the surface integration rule used to evaluate the contact integrals for quadratic elements affected both convergence behavior and accuracy of predicted stresses. The computational expense and robustness of both quadratic tetrahedral formulations compared favorably to the HEX8 models. Of note, the TET15 element demonstrated superior convergence behavior and lower computational cost than both the TET10 and HEX8 elements for meshes with similar numbers of degrees of freedom in the contact problems that we examined. Finally, the excellent accuracy and relative efficiency of these quadratic tetrahedral elements was illustrated by comparing their predictions with those for a HEX8 mesh for simulation of articular contact in a fully validated model of the hip. These results demonstrate that TET10 and TET15 elements provide viable alternatives to HEX8 elements for simulation of articular contact mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.
The finite element response Matrix method
International Nuclear Information System (INIS)
Nakata, H.; Martin, W.R.
1983-01-01
A new method for global reactor core calculations is described. This method is based on a unique formulation of the response matrix method, implemented with a higher order finite element method. The unique aspects of this approach are twofold. First, there are two levels to the overall calculational scheme: the local or assembly level and the global or core level. Second, the response matrix scheme, which is formulated at both levels, consists of two separate response matrices rather than one response matrix as is generally the case. These separate response matrices are seen to be quite beneficial for the criticality eigenvalue calculation, because they are independent of k /SUB eff/. The response matrices are generated from a Galerkin finite element solution to the weak form of the diffusion equation, subject to an arbitrary incoming current and an arbitrary distributed source. Calculational results are reported for two test problems, the two-dimensional International Atomic Energy Agency benchmark problem and a two-dimensional pressurized water reactor test problem (Biblis reactor), and they compare well with standard coarse mesh methods with respect to accuracy and efficiency. Moreover, the accuracy (and capability) is comparable to fine mesh for a fraction of the computational cost. Extension of the method to treat heterogeneous assemblies and spatial depletion effects is discussed
The Galerkin Finite Element Method for A Multi-term Time-Fractional Diffusion equation
Jin, Bangti; Lazarov, Raytcho; Liu, Yikan; Zhou, Zhi
2014-01-01
We consider the initial/boundary value problem for a diffusion equation involving multiple time-fractional derivatives on a bounded convex polyhedral domain. We analyze a space semidiscrete scheme based on the standard Galerkin finite element method using continuous piecewise linear functions. Nearly optimal error estimates for both cases of initial data and inhomogeneous term are derived, which cover both smooth and nonsmooth data. Further we develop a fully discrete scheme based on a finite...
Finite element modeling of piezoelectric elements with complex electrode configuration
International Nuclear Information System (INIS)
Paradies, R; Schläpfer, B
2009-01-01
It is well known that the material properties of piezoelectric materials strongly depend on the state of polarization of the individual element. While an unpolarized material exhibits mechanically isotropic material properties in the absence of global piezoelectric capabilities, the piezoelectric material properties become transversally isotropic with respect to the polarization direction after polarization. Therefore, for evaluating piezoelectric elements the material properties, including the coupling between the mechanical and the electromechanical behavior, should be addressed correctly. This is of special importance for the micromechanical description of piezoelectric elements with interdigitated electrodes (IDEs). The best known representatives of this group are active fiber composites (AFCs), macro fiber composites (MFCs) and the radial field diaphragm (RFD), respectively. While the material properties are available for a piezoelectric wafer with a homogeneous polarization perpendicular to its plane as postulated in the so-called uniform field model (UFM), the same information is missing for piezoelectric elements with more complex electrode configurations like the above-mentioned ones with IDEs. This is due to the inhomogeneous field distribution which does not automatically allow for the correct assignment of the material, i.e. orientation and property. A variation of the material orientation as well as the material properties can be accomplished by including the polarization process of the piezoelectric transducer in the finite element (FE) simulation prior to the actual load case to be investigated. A corresponding procedure is presented which automatically assigns the piezoelectric material properties, e.g. elasticity matrix, permittivity, and charge vector, for finite element models (FEMs) describing piezoelectric transducers according to the electric field distribution (field orientation and strength) in the structure. A corresponding code has been
Wu, Guo-Cheng; Baleanu, Dumitru; Zeng, Sheng-Da
2018-04-01
This study investigates finite-time stability of Caputo delta fractional difference equations. A generalized Gronwall inequality is given on a finite time domain. A finite-time stability criterion is proposed for fractional differential equations. Then the idea is extended to the discrete fractional case. A linear fractional difference equation with constant delays is considered and finite-time stable conditions are provided. One example is numerically illustrated to support the theoretical result.
Modeling of asphalt by means of discrete element method – an initial study
DEFF Research Database (Denmark)
Feng, Huan; Hededal, Ole; Stang, Henrik
type of numerical simulation method which allows the finite displacement and rotation of discrete particles, making it an excellent tool to simulate the complex micro interaction between aggregate particles within an asphalt mixture, [3],[4] . In this research, PFC3D – a commercial DEM program...... of conducting time-consuming and lab-costly procedures. The use of numerical models, capable of reducing greatly the testing cost, has shown great potential in characterizing asphalt-aggregate mixtures for both material evaluation and structural design purposes, [1],[2]. Discrete element method (DEM) is one...
Saad, Bilal Mohammed
2014-06-28
We propose and analyze a combined finite volume-nonconforming finite element scheme on general meshes to simulate the two compressible phase flow in porous media. The diffusion term, which can be anisotropic and heterogeneous, is discretized by piecewise linear nonconforming triangular finite elements. The other terms are discretized by means of a cell-centered finite volume scheme on a dual mesh, where the dual volumes are constructed around the sides of the original mesh. The relative permeability of each phase is decentred according the sign of the velocity at the dual interface. This technique also ensures the validity of the discrete maximum principle for the saturation under a non restrictive shape regularity of the space mesh and the positiveness of all transmissibilities. Next, a priori estimates on the pressures and a function of the saturation that denote capillary terms are established. These stabilities results lead to some compactness arguments based on the use of the Kolmogorov compactness theorem, and allow us to derive the convergence of a subsequence of the sequence of approximate solutions to a weak solution of the continuous equations, provided the mesh size tends to zero. The proof is given for the complete system when the density of the each phase depends on its own pressure. © 2014 Springer-Verlag Berlin Heidelberg.
Development of a two-dimensional finite element plasma edge model
International Nuclear Information System (INIS)
Vesey, R.A.
1992-01-01
The fluid equations modeling plasma transport in the tokamak scrape-off region are discretized via optimal upwind finite element methods developed for convection-dominated problems. These methods allow the non-orthogonal geometry of the edge region to be represented accurately, while applying the necessary boundary conditions. Newton's method with mesh sequencing is used to arrive at a converged solution to the resulting nonlinear algebraic system of equations. Preliminary results are presented for a 20x20 finite element discretization of the ASDEX edge region, with some simplifications. General agreement between the finite element solution and the Braams code B2 is observed. The code will be extended to allow equilibrium-based meshes and arbitrary boundary geometries
Finite Element approach for Density Functional Theory calculations on locally refined meshes
Energy Technology Data Exchange (ETDEWEB)
Fattebert, J; Hornung, R D; Wissink, A M
2007-02-23
We present a quadratic Finite Element approach to discretize the Kohn-Sham equations on structured non-uniform meshes. A multigrid FAC preconditioner is proposed to iteratively solve the equations by an accelerated steepest descent scheme. The method was implemented using SAMRAI, a parallel software infrastructure for general AMR applications. Examples of applications to small nanoclusters calculations are presented.
A Fast Solver Free of Fill-In for Finite Element Problems,
1981-06-23
of - I . It follows that 1 + cond () max 1 - / Xmax (TOD -7 ) #2 - Cmh ) 2 2 2 when h is small. (Th) 2 (i) Thus, for small h, cond (W) cond (A) / 4...iterative methods have not been used because of their depressing rates of convergence. The domain was discretized using a finite element mesh. Three
Multilevel iterative solvers for the edge finite element solution of the 3D Maxwell equation
Nechaev, O.V.; Shurina, E.P.; Bochev, Mikhail A.
2008-01-01
In the edge vector finite element solution of the frequency domain Maxwell equations, the presence of a large kernel of the discrete rotor operator is known to ruin convergence of standard iterative solvers. We extend the approach of [R. Hiptmair, Multigrid method for Maxwell’s equations, SIAM J.
Multilevel iterative solvers for the edge finite element solution of the 3D Maxwell equation
Nechaev, O.V.; Shurina, E.P.; Bochev, Mikhail A.
In the edge vector finite element solution of the frequency domain Maxwell equations, the presence of a large kernel of the discrete rotor operator is known to ruin convergence of standard iterative solvers. We extend the approach of [1] and, using domain decomposition ideas, construct a multilevel
van der Vegt, Jacobus J.W.; van der Ven, H.
1998-01-01
A new discretization method for the three-dimensional Euler equations of gas dynamics is presented, which is based on the discontinuous Galerkin finite element method. Special attention is paid to an efficient implementation of the discontinuous Galerkin method that minimizes the number of flux
A nonconforming finite element method for the Biot’s consolidation model in poroelasticity
X. Hu (Xiaozhe); C. Rodrigo (Carmen); F.J. Gaspar Lorenz (Franscisco); C.W. Oosterlee (Cornelis)
2017-01-01
textabstractA stable finite element scheme that avoids pressure oscillations for a three-field Biot’s model in poroelasticity is considered. The involved variables are the displacements, fluid flux (Darcy velocity), and the pore pressure, and they are discretized by using the lowest possible
2D deterministic radiation transport with the discontinuous finite element method
International Nuclear Information System (INIS)
Kershaw, D.; Harte, J.
1993-01-01
This report provides a complete description of the analytic and discretized equations for 2D deterministic radiation transport. This computational model has been checked against a wide variety of analytic test problems and found to give excellent results. We make extensive use of the discontinuous finite element method
Transient finite element modeling of functional electrical stimulation.
Filipovic, Nenad D; Peulic, Aleksandar S; Zdravkovic, Nebojsa D; Grbovic-Markovic, Vesna M; Jurisic-Skevin, Aleksandra J
2011-03-01
Transcutaneous functional electrical stimulation is commonly used for strengthening muscle. However, transient effects during stimulation are not yet well explored. The effect of an amplitude change of the stimulation can be described by static model, but there is no differency for different pulse duration. The aim of this study is to present the finite element (FE) model of a transient electrical stimulation on the forearm. Discrete FE equations were derived by using a standard Galerkin procedure. Different tissue conductive and dielectric properties are fitted using least square method and trial and error analysis from experimental measurement. This study showed that FE modeling of electrical stimulation can give the spatial-temporal distribution of applied current in the forearm. Three different cases were modeled with the same geometry but with different input of the current pulse, in order to fit the tissue properties by using transient FE analysis. All three cases were compared with experimental measurements of intramuscular voltage on one volunteer.
A Lagrange multiplier based divide and conquer finite element algorithm
Farhat, C.
1991-01-01
A novel domain decomposition method based on a hybrid variational principle is presented. Prior to any computation, a given finite element mesh is torn into a set of totally disconnected submeshes. First, an incomplete solution is computed in each subdomain. Next, the compatibility of the displacement field at the interface nodes is enforced via discrete, polynomial and/or piecewise polynomial Lagrange multipliers. In the static case, each floating subdomain induces a local singularity that is resolved very efficiently. The interface problem associated with this domain decomposition method is, in general, indefinite and of variable size. A dedicated conjugate projected gradient algorithm is developed for solving the latter problem when it is not feasible to explicitly assemble the interface operator. When implemented on local memory multiprocessors, the proposed methodology requires less interprocessor communication than the classical method of substructuring. It is also suitable for parallel/vector computers with shared memory and compares favorably with factorization based parallel direct methods.
A Teaching Experience: Aeroelasticity and the Finite Element Method
Directory of Open Access Journals (Sweden)
Mario Lázaro
2015-07-01
Full Text Available The aeroelastic modelling of aircraft structures is a fundamental area for the students of Aerospace Engineering Degree. This subject has a strongly multidisciplinary character and involves other several subjects like mechanics, vibrations, aerodynamics, structural analysis. Consequently, the students find stimulating the challenge of merging their knowledge at different areas. In this paper, a teaching experience on the solution of the aeroelastic problem of a 3D-wing through six different computer tasks is presented. The main objective is to attempt a relatively complex problem using a simple version of the Finite Element Method with only four degrees of freedom. The students begin creating the shape functions of the discrete model and finish solving the flutter instability problem.
The Galerkin finite element method for a multi-term time-fractional diffusion equation
Jin, Bangti
2015-01-01
© 2014 The Authors. We consider the initial/boundary value problem for a diffusion equation involving multiple time-fractional derivatives on a bounded convex polyhedral domain. We analyze a space semidiscrete scheme based on the standard Galerkin finite element method using continuous piecewise linear functions. Nearly optimal error estimates for both cases of initial data and inhomogeneous term are derived, which cover both smooth and nonsmooth data. Further we develop a fully discrete scheme based on a finite difference discretization of the time-fractional derivatives, and discuss its stability and error estimate. Extensive numerical experiments for one- and two-dimensional problems confirm the theoretical convergence rates.
A projective variety with discrete, non-finitely generated automorphism group
Lesieutre, John
2016-01-01
We construct a projective variety with discrete, non-finitely generated automorphism group. As an application, we show that there exists a complex projective variety with infinitely many non-isomorphic real forms.
Mulder, W.A.; Zhebel, E.; Minisini, S.
2013-01-01
We analyse the time-stepping stability for the 3-D acoustic wave equation, discretized on tetrahedral meshes. Two types of methods are considered: mass-lumped continuous finite elements and the symmetric interior-penalty discontinuous Galerkin method. Combining the spatial discretization with the
Nodally Integrated Finite Element Formulation for Mindlin-Reissner Plates
Simoes, D. A.; Jadhav, T. A.
2014-01-01
This work describes a nodally integrated finite element formulation for plates under the Mindlin-Reissner theory. The formulation makes use of the weighted residual method and nodal integration to derive the assumed strain relations. An element formulation for four-node quadrilateral elements is implemented in the nonlinear finite element solver Abaqus using the UEL user element subroutine. Numerical tests are carried out on the new element and the results are presented.
Discrete wavelet transforms over finite sets which are translation invariant
L. Kamstra
2001-01-01
textabstractThe discrete wavelet transform was originally a linear operator that works on signals that are modeled as functions from the integers into the real or complex numbers. However, many signals have discrete function values. This paper builds on two recent developments: the extension of
Finite element or Galerkin type semidiscrete schemes
Durgun, K.
1983-01-01
A finite element of Galerkin type semidiscrete method is proposed for numerical solution of a linear hyperbolic partial differential equation. The question of stability is reduced to the stability of a system of ordinary differential equations for which Dahlquist theory applied. Results of separating the part of numerical solution which causes the spurious oscillation near shock-like response of semidiscrete scheme to a step function initial condition are presented. In general all methods produce such oscillatory overshoots on either side of shocks. This overshoot pathology, which displays a behavior similar to Gibb's phenomena of Fourier series, is explained on the basis of dispersion of separated Fourier components which relies on linearized theory to be satisfactory. Expository results represented.
Computational structural analysis and finite element methods
Kaveh, A
2014-01-01
Graph theory gained initial prominence in science and engineering through its strong links with matrix algebra and computer science. Moreover, the structure of the mathematics is well suited to that of engineering problems in analysis and design. The methods of analysis in this book employ matrix algebra, graph theory and meta-heuristic algorithms, which are ideally suited for modern computational mechanics. Efficient methods are presented that lead to highly sparse and banded structural matrices. The main features of the book include: application of graph theory for efficient analysis; extension of the force method to finite element analysis; application of meta-heuristic algorithms to ordering and decomposition (sparse matrix technology); efficient use of symmetry and regularity in the force method; and simultaneous analysis and design of structures.
Quality management of finite element analysis
Barlow, John
1991-09-01
A quality management system covering the use of finite element analysis is described. The main topics are as follows: acquisition, development and verification of software (including the software suppliers software quality control system), support, documentation, error control, internal software, software acceptance and release; development and qualification of analysis methods, including software evaluation, analysis procedure qualification and documentation, procedure quality checks, control of analysis procedure errors; product design and integrity analysis, including project quality assurance and analysis planning, task specification and allocation, analysis, execution, results checking and analysis records. Other issues include the commercial and business advantages of quality systems, project and technical management and the training and experience of personnel. The items are correlated with the requirements of International Standard Organization 9001.
Adaptive finite element methods for differential equations
Bangerth, Wolfgang
2003-01-01
These Lecture Notes discuss concepts of `self-adaptivity' in the numerical solution of differential equations, with emphasis on Galerkin finite element methods. The key issues are a posteriori error estimation and it automatic mesh adaptation. Besides the traditional approach of energy-norm error control, a new duality-based technique, the Dual Weighted Residual method for goal-oriented error estimation, is discussed in detail. This method aims at economical computation of arbitrary quantities of physical interest by properly adapting the computational mesh. This is typically required in the design cycles of technical applications. For example, the drag coefficient of a body immersed in a viscous flow is computed, then it is minimized by varying certain control parameters, and finally the stability of the resulting flow is investigated by solving an eigenvalue problem. `Goal-oriented' adaptivity is designed to achieve these tasks with minimal cost. At the end of each chapter some exercises are posed in order ...
Finite-Element Modelling of Biotransistors
Directory of Open Access Journals (Sweden)
Selvaganapathy PR
2010-01-01
Full Text Available Abstract Current research efforts in biosensor design attempt to integrate biochemical assays with semiconductor substrates and microfluidic assemblies to realize fully integrated lab-on-chip devices. The DNA biotransistor (BioFET is an example of such a device. The process of chemical modification of the FET and attachment of linker and probe molecules is a statistical process that can result in variations in the sensed signal between different BioFET cells in an array. In order to quantify these and other variations and assess their importance in the design, complete physical simulation of the device is necessary. Here, we perform a mean-field finite-element modelling of a short channel, two-dimensional BioFET device. We compare the results of this model with one-dimensional calculation results to show important differences, illustrating the importance of the molecular structure, placement and conformation of DNA in determining the output signal.
Discrete element modeling of deformable particles in YADE
Directory of Open Access Journals (Sweden)
Martin Haustein
2017-01-01
Full Text Available In this paper we describe the open-source discrete element framework YADE and the implementation of a new deformation engine. YADE is a highly expandable software package that allows the simulation of current industrial problems in the field of granular materials using particle-based numerical methods. The description of the compaction of powders and granular material like metal pellets is now possible with a pure and simple discrete element approach in a modern DEM-framework. The deformation is realized by expanding the radius of the spherical particles, depending on their overlap, so that the volume of the material is kept constant.
The computation of linear triangular matrices in the finite element ...
African Journals Online (AJOL)
An algorithm is developed for generating the system matrices for the Finite Element Method of solving some classes of second order partial differential equations problems using the linear triangular elements. This algorithm reduces the complexity normally associated with the finite element approximation and makes the ...
Review on finite element method | Erhunmwun | Journal of Applied ...
African Journals Online (AJOL)
... finite elements, so that it is possible to systematically construct the approximation functions needed in a variational or weighted-residual approximation of the solution of a problem over each element. Keywords: Weak Formulation, Discretisation, Numerical methods, Finite element method, Global equations, Nodal solution ...
Finite element analysis theory and application with ANSYS
Moaveni, Saeed
2015-01-01
For courses in Finite Element Analysis, offered in departments of Mechanical or Civil and Environmental Engineering. While many good textbooks cover the theory of finite element modeling, Finite Element Analysis: Theory and Application with ANSYS is the only text available that incorporates ANSYS as an integral part of its content. Moaveni presents the theory of finite element analysis, explores its application as a design/modeling tool, and explains in detail how to use ANSYS intelligently and effectively. Teaching and Learning Experience This program will provide a better teaching and learning experience-for you and your students. It will help: *Present the Theory of Finite Element Analysis: The presentation of theoretical aspects of finite element analysis is carefully designed not to overwhelm students. *Explain How to Use ANSYS Effectively: ANSYS is incorporated as an integral part of the content throughout the book. *Explore How to Use FEA as a Design/Modeling Tool: Open-ended design problems help stude...
Namburu, Raju R.; Tamma, Kumar K.
1993-01-01
An integrated finite element approach is presented for interdisciplinary thermal-structural problems. Of the various numerical approaches, finite element methods with direct time integration procedures are most widely used for these nonlinear problems. Traditionally, combined thermal-structural analysis is performed sequentially by transferring data between thermal and structural analysis. This approach is generally effective and routinely used. However, to solve the combined thermal-structural problems, this approach results in cumbersome data transfer, incompatible algorithmic representations, and different discretized element formulations. The integrated approach discussed in this paper effectively combines thermal and structural fields, thus overcoming the above major shortcomings. The approach follows Lax-Wendroff type finite element formulations with flux and stress based representations. As a consequence, this integrated approach uses common algorithmic representations and element formulations. Illustrative test examples show that the approach is effective for integrated thermal-structural problems.
Assessment of Structural Behavior of Non-corroded and Corroded RCC Beams Using Finite Element Method
Directory of Open Access Journals (Sweden)
Anand Parande
2008-09-01
Full Text Available A three dimensional finite element model is developed to examine the structural behaviour of corroded reinforced concrete beam and non corroded reinforced concrete beam. Non linear finite element analysis is performed using the ANSYS program. SOLID 65, LINK 8 element represent concrete and discrete reinforcing steel bars, based on each component actual characteristics, non linear material properties are defined for both elements. The effect of corrosion in reinforced concrete is studied by finite element analysis; an approach is developed to model the corrosion product expansion causing concrete cover cracking for this, beam has been modeled using ANSYS and using this data the beam has been casted with M20 concrete after 28 days the beam will be tested for flexural strength. The comparison between ANSYS prediction and field data are made in terms of deflection, stress, strain, bond strength and crack pattern of concrete beam.
The finite element method its basis and fundamentals
Zienkiewicz, Olek C; Zhu, JZ
2013-01-01
The Finite Element Method: Its Basis and Fundamentals offers a complete introduction to the basis of the finite element method, covering fundamental theory and worked examples in the detail required for readers to apply the knowledge to their own engineering problems and understand more advanced applications. This edition sees a significant rearrangement of the book's content to enable clearer development of the finite element method, with major new chapters and sections added to cover: Weak forms Variational forms Multi-dimensional field prob
Finite Element Modeling of Burr Formation in Metal Cutting
Min, Sangkee; Dornfeld, David; Kim, J.; Shyu, B.
2007-01-01
In order to advance understanding of the burr formation process, a series of finite element models are introduced. First a finite element model of the burr formation of two-dimensional orthogonal cutting is introduced and validated with experimental observations. A detailed and thorough examination of the drilling burr forming process is undertaken. This information is then used in the construction of an analytical model and, leads to development of a three-dimensional finite element mode...
Impact of new computing systems on finite element computations
International Nuclear Information System (INIS)
Noor, A.K.; Fulton, R.E.; Storaasi, O.O.
1983-01-01
Recent advances in computer technology that are likely to impact finite element computations are reviewed. The characteristics of supersystems, highly parallel systems, and small systems (mini and microcomputers) are summarized. The interrelations of numerical algorithms and software with parallel architectures are discussed. A scenario is presented for future hardware/software environment and finite element systems. A number of research areas which have high potential for improving the effectiveness of finite element analysis in the new environment are identified
Energy Technology Data Exchange (ETDEWEB)
Kim, S. [Purdue Univ., West Lafayette, IN (United States)
1994-12-31
Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.
Adaptive Smoothed Finite Elements (ASFEM) for history dependent material models
International Nuclear Information System (INIS)
Quak, W.; Boogaard, A. H. van den
2011-01-01
A successful simulation of a bulk forming process with finite elements can be difficult due to distortion of the finite elements. Nodal smoothed Finite Elements (NSFEM) are an interesting option for such a process since they show good distortion insensitivity and moreover have locking-free behavior and good computational efficiency. In this paper a method is proposed which takes advantage of the nodally smoothed field. This method, named adaptive smoothed finite elements (ASFEM), revises the mesh for every step of a simulation without mapping the history dependent material parameters. In this paper an updated-Lagrangian implementation is presented. Several examples are given to illustrate the method and to show its properties.
Finite element analysis in a minicomputer/mainframe environment
Storaasli, O. O.; Murphy, R. C.
1978-01-01
Design considerations were evaluated for general purpose finite element systems to maximize performance when installed on distributed computer hardware/software systems. It is shown how the features of current minicomputers complement those of a modular implementation of the finite element method for increasing the control, speed, and visibility (interactive graphics) in solving structural problems at reduced cost. The approach used is to implement a finite element system in a distributed computer environment to solve structural problems and to explore alternatives in distributing finite element computations.
Introduction to finite element analysis using MATLAB and Abaqus
Khennane, Amar
2013-01-01
There are some books that target the theory of the finite element, while others focus on the programming side of things. Introduction to Finite Element Analysis Using MATLAB(R) and Abaqus accomplishes both. This book teaches the first principles of the finite element method. It presents the theory of the finite element method while maintaining a balance between its mathematical formulation, programming implementation, and application using commercial software. The computer implementation is carried out using MATLAB, while the practical applications are carried out in both MATLAB and Abaqus. MA
International Nuclear Information System (INIS)
Lee, Tae Hee; Yoo, Jung Hun; Choi, Hyeong Cheol
2002-01-01
A finite element package is often used as a daily design tool for engineering designers in order to analyze and improve the design. The finite element analysis can provide the responses of a system for given design variables. Although finite element analysis can quite well provide the structural behaviors for given design variables, it cannot provide enough information to improve the design such as design sensitivity coefficients. Design sensitivity analysis is an essential step to predict the change in responses due to a change in design variables and to optimize a system with the aid of the gradient-based optimization techniques. To develop a numerical method of design sensitivity analysis, analytical derivatives that are based on analytical differentiation of the continuous or discrete finite element equations are effective but analytical derivatives are difficult because of the lack of internal information of the commercial finite element package such as shape functions. Therefore, design sensitivity analysis outside of the finite element package is necessary for practical application in an industrial setting. In this paper, the semi-analytic method for design sensitivity analysis is used for the development of the design sensitivity module outside of a commercial finite element package of ANSYS. The direct differentiation method is employed to compute the design derivatives of the response and the pseudo-load for design sensitivity analysis is effectively evaluated by using the design variation of the related internal nodal forces. Especially, we suggest an effective method for stress and nonlinear design sensitivity analyses that is independent of the commercial finite element package is also discussed. Numerical examples are illustrated to show the accuracy and efficiency of the developed method and to provide insights for implementation of the suggested method into other commercial finite element packages
Introduction to Discrete Element Methods: Basics of Contact Force Models
Luding, Stefan
2008-01-01
One challenge of today's research is the realistic simulation of granular materials, like sand or powders, consisting of millions of particles. In this article, the discrete element method (DEM), as based on molecular dynamics methods, is introduced. Contact models are at the physical basis of DEM.
Discrete element modelling of fluidised bed spray granulation
Goldschmidt, M.J.V.; Weijers, G.G.C.; Boerefijn, R.; Kuipers, J.A.M.
2003-01-01
A novel discrete element spray granulation model capturing the key features of fluidised bed hydrodynamics, liquid¿solid contacting and agglomeration is presented. The model computes the motion of every individual particle and droplet in the system, considering the gas phase as a continuum.
An efficient finite element solution for gear dynamics
Cooley, C. G.; Parker, R. G.; Vijayakar, S. M.
2010-06-01
A finite element formulation for the dynamic response of gear pairs is proposed. Following an established approach in lumped parameter gear dynamic models, the static solution is used as the excitation in a frequency domain solution of the finite element vibration model. The nonlinear finite element/contact mechanics formulation provides accurate calculation of the static solution and average mesh stiffness that are used in the dynamic simulation. The frequency domain finite element calculation of dynamic response compares well with numerically integrated (time domain) finite element dynamic results and previously published experimental results. Simulation time with the proposed formulation is two orders of magnitude lower than numerically integrated dynamic results. This formulation admits system level dynamic gearbox response, which may include multiple gear meshes, flexible shafts, rolling element bearings, housing structures, and other deformable components.
A Finite Element Analysis of Optimal Variable Thickness Sheets
DEFF Research Database (Denmark)
Petersson, Joakim S
1996-01-01
A quasimixed Finite Element (FE) method for maximum stiffness of variablethickness sheets is analysed. The displacement is approximated with ninenode Lagrange quadrilateral elements and the thickness is approximated aselementwise constant. One is guaranteed that the FE displacement solutionswill ...
Wheeler, Mary
2013-11-16
We study the numerical approximation on irregular domains with general grids of the system of poroelasticity, which describes fluid flow in deformable porous media. The flow equation is discretized by a multipoint flux mixed finite element method and the displacements are approximated by a continuous Galerkin finite element method. First-order convergence in space and time is established in appropriate norms for the pressure, velocity, and displacement. Numerical results are presented that illustrate the behavior of the method. © Springer Science+Business Media Dordrecht 2013.
Finite element modelling of composite castellated beam
Directory of Open Access Journals (Sweden)
Frans Richard
2017-01-01
Full Text Available Nowadays, castellated beam becomes popular in building structural as beam members. This is due to several advantages of castellated beam such as increased depth without any additional mass, passing the underfloor service ducts without changing of story elevation. However, the presence of holes can develop various local effects such as local buckling, lateral torsional buckling caused by compression force at the flange section of the steel beam. Many studies have investigated the failure mechanism of castellated beam and one technique which can prevent the beam fall into local failure is the use of reinforced concrete slab as lateral support on castellated beam, so called composite castellated beam. Besides of preventing the local failure of castellated beam, the concrete slab can increase the plasticity moment of the composite castellated beam section which can deliver into increasing the ultimate load of the beam. The aim of this numerical studies of composite castellated beam on certain loading condition (monotonic quasi-static loading. ABAQUS was used for finite element modelling purpose and compared with the experimental test for checking the reliability of the model. The result shows that the ultimate load of the composite castellated beam reached 6.24 times than the ultimate load of the solid I beam and 1.2 times compared the composite beam.
Finite element modeling of retinal prosthesis mechanics
Basinger, B. C.; Rowley, A. P.; Chen, K.; Humayun, M. S.; Weiland, J. D.
2009-10-01
Epiretinal prostheses used to treat degenerative retina diseases apply stimulus via an electrode array fixed to the ganglion cell side of the retina. Mechanical pressure applied by these arrays to the retina, both during initial insertion and throughout chronic use, could cause sufficient retinal damage to reduce the device's effectiveness. In order to understand and minimize potential mechanical damage, we have used finite element analysis to model mechanical interactions between an electrode array and the retina in both acute and chronic loading configurations. Modeling indicates that an acute tacking force distributes stress primarily underneath the tack site and heel edge of the array, while more moderate chronic stresses are distributed more evenly underneath the array. Retinal damage in a canine model chronically implanted with a similar array occurred in correlating locations, and model predictions correlate well with benchtop eyewall compression tests. This model provides retinal prosthesis researchers with a tool to optimize the mechanical electrode array design, but the techniques used here represent a unique effort to combine a modifiable device and soft biological tissues in the same model and those techniques could be extended to other devices that come into mechanical contact with soft neural tissues.
Probabilistic finite element modeling of waste rollover
International Nuclear Information System (INIS)
Khaleel, M.A.; Cofer, W.F.; Al-fouqaha, A.A.
1995-09-01
Stratification of the wastes in many Hanford storage tanks has resulted in sludge layers which are capable of retaining gases formed by chemical and/or radiolytic reactions. As the gas is produced, the mechanisms of gas storage evolve until the resulting buoyancy in the sludge leads to instability, at which point the sludge ''rolls over'' and a significant volume of gas is suddenly released. Because the releases may contain flammable gases, these episodes of release are potentially hazardous. Mitigation techniques are desirable for more controlled releases at more frequent intervals. To aid the mitigation efforts, a methodology for predicting of sludge rollover at specific times is desired. This methodology would then provide a rational basis for the development of a schedule for the mitigation procedures. In addition, a knowledge of the sensitivity of the sludge rollovers to various physical and chemical properties within the tanks would provide direction for efforts to reduce the frequency and severity of these events. In this report, the use of probabilistic finite element analyses for computing the probability of rollover and the sensitivity of rollover probability to various parameters is described
A two-scale finite element formulation for the dynamic analysis of heterogeneous materials
Energy Technology Data Exchange (ETDEWEB)
Ionita, Axinte [Los Alamos National Laboratory
2008-01-01
In the analysis of heterogeneous materials using a two-scale Finite Element Method (FEM) the usual assumption is that the Representative Volume Element (RVE) of the micro-scale is much smaller than the finite element discretization of the macro-scale. However there are situations in which the RVE becomes comparable with, or even bigger than the finite element. These situations are considered in this article from the perspective of a two-scale FEM dynamic analysis. Using the principle of virtual power, new equations for the fluctuating fields are developed in terms of velocities rather than displacements. To allow more flexibility in the analysis, a scaling deformation tensor is introduced together with a procedure for its determination. Numerical examples using the new approach are presented.
An Abaqus UEL implementation of the smoothed finite element method
Kumbhar, Pramod Y; Francis, Amrita; Swaminathan, Narasimhan; Annabattula, Ratna Kumar; Natarajan, Sundararajan
2017-01-01
In this paper, we discuss the implementation of a cell based smoothed finite element method (CSFEM) within the commercial finite element software Abaqus. The salient feature of the CSFEM is that it does not require an explicit form of the derivative of the shape functions and there is no isoparametric mapping. This implementation is accomplished by employing the user element subroutine (UEL) feature of the software. The details on the input data format together with the proposed user element ...
Hydrothermal analysis in engineering using control volume finite element method
Sheikholeslami, Mohsen
2015-01-01
Control volume finite element methods (CVFEM) bridge the gap between finite difference and finite element methods, using the advantages of both methods for simulation of multi-physics problems in complex geometries. In Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method, CVFEM is covered in detail and applied to key areas of thermal engineering. Examples, exercises, and extensive references are used to show the use of the technique to model key engineering problems such as heat transfer in nanofluids (to enhance performance and compactness of energy systems),
Geotechnical Ultimate Limit State Design Using Finite Elements
Brinkgreve, R.B.J.; Post, M.
2015-01-01
Displacement-based finite element calculations are primarily used for serviceability limit state (SLS) analysis, but the finite element method also offers possibilities for ultimate limit state (ULS) design in geotechnical engineering. The combined use of SLS and ULS calculations with partial safety
Parallel direct solver for finite element modeling of manufacturing processes
DEFF Research Database (Denmark)
Nielsen, Chris Valentin; Martins, P.A.F.
2017-01-01
The central processing unit (CPU) time is of paramount importance in finite element modeling of manufacturing processes. Because the most significant part of the CPU time is consumed in solving the main system of equations resulting from finite element assemblies, different approaches have been d...
A geometric toolbox for tetrahedral finite element partitions
Brandts, J.; Korotov, S.; Křížek, M.; Axelsson, O.; Karátson, J.
2011-01-01
In this work we present a survey of some geometric results on tetrahedral partitions and their refinements in a unified manner. They can be used for mesh generation and adaptivity in practical calculations by the finite element method (FEM), and also in theoretical finite element (FE) analysis.
An introduction to the UNCLE finite element scheme
International Nuclear Information System (INIS)
Enderby, J.A.
1983-01-01
UNCLE is a completely general finite element scheme which provides common input, output, equation-solving and other facilities for a family of finite element codes for linear and non-linear stress analysis, heat transfer etc. This report describes the concepts on which UNCLE is based and gives a general account of the facilities provided. (author)
Analysis of Tube Drawing Process – A Finite Element Approach ...
African Journals Online (AJOL)
In this paper the effect of die semi angle on drawing load in cold tube drawing has been investigated numerically using the finite element method. The equation governing the stress distribution was derived and solved using Galerkin finite element method. An isoparametric formulation for the governing equation was utilized ...
About the Finite Element Method Applied to Thick Plates
Directory of Open Access Journals (Sweden)
Mihaela Ibănescu
2006-01-01
Full Text Available The present paper approaches of plates subjected to transverse loads, when the shear force and the actual boundary conditions are considered, by using the Finite Element Method. The isoparametric finite elements create real facilities in formulating the problems and great possibilities in creating adequate computer programs.
Simulation of temperature distribution by finite element analysis on ...
Indian Academy of Sciences (India)
on exposure to the synchrotron beam has been simulated by finite element analysis. Design of the cooling mechanism for each of these components has been carried out and estimation of the temperature rise has also been done incorporating the cooling mechanism. Keywords. Synchrotron; EXAFS; finite element analysis.
THE PRACTICAL ANALYSIS OF FINITE ELEMENTS METHOD ERRORS
Directory of Open Access Journals (Sweden)
Natalia Bakhova
2011-03-01
Full Text Available Abstract. The most important in the practical plan questions of reliable estimations of finite elementsmethod errors are considered. Definition rules of necessary calculations accuracy are developed. Methodsand ways of the calculations allowing receiving at economical expenditures of computing work the best finalresults are offered.Keywords: error, given the accuracy, finite element method, lagrangian and hermitian elements.
Finite Element Method for Analysis of Material Properties
DEFF Research Database (Denmark)
Rauhe, Jens Christian
and the finite element method. The material microstructure of the heterogeneous material is non-destructively determined using X-ray microtomography. A software program has been generated which uses the X-ray tomographic data as an input for the mesh generation of the material microstructure. To obtain a proper...... description of the material microstructure the finite element models must contain a large number of elements and this problem is solved by using the preconditioned conjugated gradient solver with an Element-By-Element preconditioner. Finite element analysis provides the volume averaged stresses and strains...... which are used for the determination of the effective properties of the heterogeneous material. Generally, the properties determined using the finite element method coupled with X-ray microtomography are in good agreement with both experimentally determined properties and properties determined using...
Architecting the Finite Element Method Pipeline for the GPU.
Fu, Zhisong; Lewis, T James; Kirby, Robert M; Whitaker, Ross T
2014-02-01
The finite element method (FEM) is a widely employed numerical technique for approximating the solution of partial differential equations (PDEs) in various science and engineering applications. Many of these applications benefit from fast execution of the FEM pipeline. One way to accelerate the FEM pipeline is by exploiting advances in modern computational hardware, such as the many-core streaming processors like the graphical processing unit (GPU). In this paper, we present the algorithms and data-structures necessary to move the entire FEM pipeline to the GPU. First we propose an efficient GPU-based algorithm to generate local element information and to assemble the global linear system associated with the FEM discretization of an elliptic PDE. To solve the corresponding linear system efficiently on the GPU, we implement a conjugate gradient method preconditioned with a geometry-informed algebraic multi-grid (AMG) method preconditioner. We propose a new fine-grained parallelism strategy, a corresponding multigrid cycling stage and efficient data mapping to the many-core architecture of GPU. Comparison of our on-GPU assembly versus a traditional serial implementation on the CPU achieves up to an 87 × speedup. Focusing on the linear system solver alone, we achieve a speedup of up to 51 × versus use of a comparable state-of-the-art serial CPU linear system solver. Furthermore, the method compares favorably with other GPU-based, sparse, linear solvers.
Finite element simulation of thickness changes in laminate during thermoforming
White, K. D.; Sherwood, J. A.
2017-10-01
This paper discusses a numerical investigation of thickness changes of Dyneema HB80, a cross-ply thermoplastic lamina, during a helmet thermoforming process. The main mode of deformation during the preform phase of manufacture is in-plane shearing of the fabric. A laminate undergoes varying degrees of shear to conform to the geometric variations over the surface of the preform shape. Decreases in areal coverage that occur with increases in the local shear angle will lead to a resulting increase in local thickness. During the consolidation phase, multiple preform layers are compressed in a set of matched tools, and the compounding of the thickness variations can adversely affect the uniformity of pressure distribution between matched die tooling. Pressure variations over the surface of the part can lead to incomplete consolidation of the ply stack, as well as weakened, resin-rich areas. Because wrinkling of the composite reinforcement, incomplete consolidation and resin-rich areas can result in a compromised structural performance, it is important that the manufacturing process be well understood so it can be designed to mitigate formation of such defects. In the current work, the material properties derived from shear, bending and tensile tests are implemented in a finite element model of the cross-ply lamina. The finite element model uses a hybrid discrete mesoscopic approach, and deep-draw forming of the material is simulated to investigate its formability to a hemispherical geometry. Thickening of the lamina resulting from shear deformation is investigated and incorporated into models single-layer preform simulations. The simulation results are used to inform the design of multiple-layer preforms to mitigate the development of thin regions and out-of-plane waves to ensure complete, uniform consolidation.
Finite Element Analysis of Fluid-Conveying Timoshenko Pipes
Directory of Open Access Journals (Sweden)
Chih-Liang Chu
1995-01-01
Full Text Available A general finite element formulation using cubic Hermitian interpolation for dynamic analysis of pipes conveying fluid is presented. Both the effects of shearing deformations and rotary inertia are considered. The development retains the use of the classical four degrees-of-freedom for a two-node element. The effect of moving fluid is treated as external distributed forces on the support pipe and the fluid finite element matrices are derived from the virtual work done due to the fluid inertia forces. Finite element matrices for both the support pipe and moving fluid are derived and given explicitly. A numerical example is given to demonstrate the validity of the model.
Shear beams in finite element modelling : Software implementation and validation
Schreppers, G.J.; Hendriks, M.A.N.; Boer, A.; Ferreira, D.; Kikstra, W.P.
2015-01-01
Fiber models for beam and shell elements allow for relatively rapid finite element analysis of concrete structures and structural elements. This project aims at the development of the formulation of such elements and a pilot implementation. The reduction of calculation time and degrees of freedom
BOOK REVIEW: Nonlinear Continuum Mechanics for Finite Element Analysis
Bialek, James M.
1998-05-01
Nonlinear continuum mechanics of solids is a fascinating subject. All the assumptions inherited from an overexposure to linear behaviour and analysis must be re-examined. The standard definitions of strain designed for small deformation linear problems may be totally misleading when finite motion or large deformations are considered. Nonlinear behaviour includes phenomena like `snap-through', where bifurcation theory is applied to engineering design. Capabilities in this field are growing at a fantastic speed; for example, modern automobiles are presently being designed to crumple in the most energy absorbing manner in order to protect the occupants. The combination of nonlinear mechanics and the finite element method is a very important field. Most engineering designs encountered in the fusion effort are strictly limited to small deformation linear theory. In fact, fusion devices are usually kept in the low stress, long life regime that avoids large deformations, nonlinearity and any plastic behaviour. The only aspect of nonlinear continuum solid mechanics about which the fusion community now worries is that rare case where details of the metal forming process must be considered. This text is divided into nine sections: introduction, mathematical preliminaries, kinematics, stress and equilibrium, hyperelasticity, linearized equilibrium equations, discretization and solution, computer implementation and an appendix covering an introduction to large inelastic deformations. The authors have decided to use vector and tensor notation almost exclusively. This means that the usual maze of indicial equations is avoided, but most readers will therefore be stretched considerably to follow the presentation, which quickly proceeds to the heart of nonlinear behaviour in solids. With great speed the reader is led through the material (Lagrangian) and spatial (Eulerian) co-ordinates, the deformation gradient tensor (an example of a two point tensor), the right and left Cauchy
Energy Technology Data Exchange (ETDEWEB)
Mugica R, A.; Valle G, E. del [IPN, ESFM, 07738 Mexico D.F. (Mexico)]. e-mail: mugica@esfm.ipn.mx
2003-07-01
Nowadays the numerical methods of solution to the diffusion equation by means of algorithms and computer programs result so extensive due to the great number of routines and calculations that should carry out, this rebounds directly in the execution times of this programs, being obtained results in relatively long times. This work shows the application of an acceleration method of the convergence of the classic method of those powers that it reduces notably the number of necessary iterations for to obtain reliable results, what means that the compute times they see reduced in great measure. This method is known in the literature like Wielandt method and it has incorporated to a computer program that is based on the discretization of the neutron diffusion equations in plate geometry and stationary state by polynomial nodal methods. In this work the neutron diffusion equations are described for several energy groups and their discretization by means of those called physical nodal methods, being illustrated in particular the quadratic case. It is described a model problem widely described in the literature which is solved for the physical nodal grade schemes 1, 2, 3 and 4 in three different ways: to) with the classic method of the powers, b) method of the powers with the Wielandt acceleration and c) method of the powers with the Wielandt modified acceleration. The results for the model problem as well as for two additional problems known as benchmark problems are reported. Such acceleration method can also be implemented to problems of different geometry to the proposal in this work, besides being possible to extend their application to problems in 2 or 3 dimensions. (Author)
Duddu, Ravindra
2011-10-05
We present a numerical formulation aimed at modeling the nonlinear response of elastic materials using large deformation continuum mechanics in three dimensions. This finite element formulation is based on the Eulerian description of motion and the transport of the deformation gradient. When modeling a nearly incompressible solid, the transport of the deformation gradient is decomposed into its isochoric part and the Jacobian determinant as independent fields. A homogeneous isotropic hyperelastic solid is assumed and B-splines-based finite elements are used for the spatial discretization. A variational multiscale residual-based approach is employed to stabilize the transport equations. The performance of the scheme is explored for both compressible and nearly incompressible applications. The numerical results are in good agreement with theory illustrating the viability of the computational scheme. © 2011 John Wiley & Sons, Ltd.
A modified finite element procedure for underwater shock analysis
International Nuclear Information System (INIS)
Chan, S.K.
1990-01-01
Using the regular finite element method for analyzing wave propagation problems presents difficulties: (a) The finite element mesh gives spurious reflection of the traveling wave and (b) Since a finite element model has to have a finite boundary, the wave is reflected by the outside boundary. However, for underwater shock problems, only the response of the structure is of major interest, not the behavior of the wave itself, and the shock wave can be assumed to be spherical. By taking advantage of the limited scope of the underwater shock problem, a finite element procedure can be developed that eliminates the above difficulties. This procedure not only can give very accurate solutions but it may also include structural nonlinearities and effect of cavitation
A Moving Window Technique in Parallel Finite Element Time Domain Electromagnetic Simulation
Energy Technology Data Exchange (ETDEWEB)
Lee, Lie-Quan; Candel, Arno; Ng, Cho; Ko, Kwok; /SLAC
2010-06-07
A moving window technique for the finite element time domain (FETD) method is developed to simulate the propagation of electromagnetic waves induced by the transit of a charged particle beam inside large and long structures. The window moving along with the beam in the computational domain adopts high-order finite-element basis functions through p refinement and/or a high-resolution mesh through h refinement so that a sufficient accuracy is attained with substantially reduced computational costs. Algorithms to transfer discretized fields from one mesh to another, which are the key to implementing a moving window in a finite-element unstructured mesh, are presented. Numerical experiments are carried out using the moving window technique to compute short-range wakefields in long accelerator structures. The results are compared with those obtained from the normal FETD method and the advantages of using the moving window technique are discussed.
Multigrid Finite Element Method in Calculation of 3D Homogeneous and Composite Solids
Directory of Open Access Journals (Sweden)
A.D. Matveev
2016-12-01
Full Text Available In the present paper, a method of multigrid finite elements to calculate elastic three-dimensional homogeneous and composite solids under static loading has been suggested. The method has been developed based on the finite element method algorithms using homogeneous and composite three-dimensional multigrid finite elements (MFE. The procedures for construction of MFE of both rectangular parallelepiped and complex shapes have been shown. The advantages of MFE are that they take into account, following the rules of the microapproach, heterogeneous and microhomogeneous structures of the bodies, describe the three-dimensional stress-strain state (without any simplifying hypotheses in homogeneous and composite solids, as well as generate small dimensional discrete models and numerical solutions with a high accuracy.
Laursen, Tod A
2003-01-01
This book comprehensively treats the formulation and finite element approximation of contact and impact problems in nonlinear mechanics. Intended for students, researchers and practitioners interested in numerical solid and structural analysis, as well as for engineers and scientists dealing with technologies in which tribological response must be characterized, the book includes an introductory but detailed overview of nonlinear finite element formulations before dealing with contact and impact specifically. Topics encompassed include the continuum mechanics, mathematical structure, variational framework, and finite element implementations associated with contact/impact interaction. Additionally, important and currently emerging research topics in computational contact mechanics are introduced, encompassing such topics as tribological complexity, conservative treatment of inelastic impact interaction, and novel spatial discretization strategies.
Adaptive mixed finite element methods for Darcy flow in fractured porous media
Chen, Huangxin
2016-09-21
In this paper, we propose adaptive mixed finite element methods for simulating the single-phase Darcy flow in two-dimensional fractured porous media. The reduced model that we use for the simulation is a discrete fracture model coupling Darcy flows in the matrix and the fractures, and the fractures are modeled by one-dimensional entities. The Raviart-Thomas mixed finite element methods are utilized for the solution of the coupled Darcy flows in the matrix and the fractures. In order to improve the efficiency of the simulation, we use adaptive mixed finite element methods based on novel residual-based a posteriori error estimators. In addition, we develop an efficient upscaling algorithm to compute the effective permeability of the fractured porous media. Several interesting examples of Darcy flow in the fractured porous media are presented to demonstrate the robustness of the algorithm.
On Finite Element Computations of Contact Problems in Micropolar Elasticity
Eremeyev, Victor A.; Skrzat, Andrzej; Stachowicz, Feliks
2016-01-01
Within the linear micropolar elasticity we discuss the development of new finite element and its implementation in commercial software. Here we implement the developed 8-node hybrid isoparametric element into ABAQUS and perform solutions of contact problems. We consider the contact of polymeric stamp modelled within the micropolar elasticity with an elastic substrate. The peculiarities of modelling of contact problems with a user defined finite element in ABAQUS are discussed. The provided co...
Finite element and boundary element applications in quantum mechanics
International Nuclear Information System (INIS)
Ueta, Tsuyoshi
2003-01-01
Although this book is one of the Oxford Texts in Applied and Engineering Mathematics, we may think of it as a physics book. It explains how to solve the problem of quantum mechanics using the finite element method (FEM) and the boundary element method (BEM). Many examples analysing actual problems are also shown. As for the ratio of the number of pages of FEM and BEM, the former occupies about 80%. This is, however, reasonable reflecting the flexibility of FEM. Although many explanations of FEM and BEM exist, most are written using special mathematical expressions and numerical computation fields. However, this book is written in the 'language of physicists' throughout. I think that it is very readable and easy to understand for physicists. In the derivation of FEM and the argument on calculation accuracy, the action integral and a variation principle are used consistently. In the numerical computation of matrices, such as simultaneous equations and eigen value problems, a description of important points is also fully given. Moreover, the practical problems which become important in the electron device design field and the condensed matter physics field are dealt with as example computations, so that this book is very practical and applicable. It is characteristic and interesting that FEM is applied to solve the Schroedinger and Poisson equations consistently, and to the solution of the Ginzburg--Landau equation in superconductivity. BEM is applied to treat electric field enhancements due to surface plasmon excitations at metallic surfaces. A number of references are cited at the end of all the chapters, and this is very helpful. The description of quantum mechanics is also made appropriately and the actual application of quantum mechanics in condensed matter physics can also be surveyed. In the appendices, the mathematical foundation, such as numerical quadrature formulae and Green's functions, is conveniently described. I recommend this book to those who need to
Gleadall, Andrew; Pan, Jingzhe; Ding, Lifeng; Kruft, Marc-Anton; Curcó, David
2015-11-01
Molecular dynamics (MD) simulations are widely used to analyse materials at the atomic scale. However, MD has high computational demands, which may inhibit its use for simulations of structures involving large numbers of atoms such as amorphous polymer structures. An atomic-scale finite element method (AFEM) is presented in this study with significantly lower computational demands than MD. Due to the reduced computational demands, AFEM is suitable for the analysis of Young's modulus of amorphous polymer structures. This is of particular interest when studying the degradation of bioresorbable polymers, which is the topic of an accompanying paper. AFEM is derived from the inter-atomic potential energy functions of an MD force field. The nonlinear MD functions were adapted to enable static linear analysis. Finite element formulations were derived to represent interatomic potential energy functions between two, three and four atoms. Validation of the AFEM was conducted through its application to atomic structures for crystalline and amorphous poly(lactide). Copyright © 2015 Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Rohde, John; Toftegaard, Thomas Skjødeberg
2012-01-01
Novel parametric finite-element models are provided for discrete SMD capacitors and inductors in the frequency range 100 MHz to 4 GHz. The aim of the models is to facilitate performance optimization and analysis of RF PCB designs integrating these SMD components with layout geometries such as ant......Novel parametric finite-element models are provided for discrete SMD capacitors and inductors in the frequency range 100 MHz to 4 GHz. The aim of the models is to facilitate performance optimization and analysis of RF PCB designs integrating these SMD components with layout geometries...... such as antennas and PCB traces. The models presented are benchmarked against real-life measurements and conventional circuit models. Furthermore, two example parallel-resonance circuits are designed based on interpolation of the results and validated by measurements in order to demonstrate the accuracy...
Superconvergence of mixed finite element approximations to 3-D Maxwell's equations in metamaterials
Huang, Yunqing
2011-09-01
Numerical simulation of metamaterials has attracted more and more attention since 2000, after the first metamaterial with negative refraction index was successfully constructed. In this paper we construct a fully-discrete leap-frog type finite element scheme to solve the three-dimensional time-dependent Maxwell\\'s equations when metamaterials are involved. First, we obtain some superclose results between the interpolations of the analytical solutions and finite element solutions obtained using arbitrary orders of Raviart-Thomas-Nédélec mixed spaces on regular cubic meshes. Then we prove the superconvergence result in the discrete l2 norm achieved for the lowest-order Raviart-Thomas-Nédélec space. To our best knowledge, such superconvergence results have never been obtained elsewhere. Finally, we implement the leap-frog scheme and present numerical results justifying our theoretical analysis. © 2011 Elsevier Inc.
Error Analysis of a Finite Element Method for the Space-Fractional Parabolic Equation
Jin, Bangti
2014-01-01
© 2014 Society for Industrial and Applied Mathematics We consider an initial boundary value problem for a one-dimensional fractional-order parabolic equation with a space fractional derivative of Riemann-Liouville type and order α ∈ (1, 2). We study a spatial semidiscrete scheme using the standard Galerkin finite element method with piecewise linear finite elements, as well as fully discrete schemes based on the backward Euler method and the Crank-Nicolson method. Error estimates in the L2(D)- and Hα/2 (D)-norm are derived for the semidiscrete scheme and in the L2(D)-norm for the fully discrete schemes. These estimates cover both smooth and nonsmooth initial data and are expressed directly in terms of the smoothness of the initial data. Extensive numerical results are presented to illustrate the theoretical results.
Finite Element Simulation of Blanking Process
Directory of Open Access Journals (Sweden)
Afzal Ahmed
2012-10-01
daya penembusan sebanyak 42%. Daya tebukan yang diukur melalui eksperimen dan simulasi kekal pada kira-kira 90kN melepasi penembusan punch sebanyak 62%. Apabila ketebalan keputusan kunci ditambah, ketinggian retak dikurangkan dan ini meningkatkan kualiti pengosongan.KEYWORDS: simulation; finite element simulation; blanking; computer aided manufacturing
A finite element calculation of flux pumping
Campbell, A. M.
2017-12-01
A flux pump is not only a fascinating example of the power of Faraday’s concept of flux lines, but also an attractive way of powering superconducting magnets without large electronic power supplies. However it is not possible to do this in HTS by driving a part of the superconductor normal, it must be done by exceeding the local critical density. The picture of a magnet pulling flux lines through the material is attractive, but as there is no direct contact between flux lines in the magnet and vortices, unless the gap between them is comparable to the coherence length, the process must be explicable in terms of classical electromagnetism and a nonlinear V-I characteristic. In this paper a simple 2D model of a flux pump is used to determine the pumping behaviour from first principles and the geometry. It is analysed with finite element software using the A formulation and FlexPDE. A thin magnet is passed across one or more superconductors connected to a load, which is a large rectangular loop. This means that the self and mutual inductances can be calculated explicitly. A wide strip, a narrow strip and two conductors are considered. Also an analytic circuit model is analysed. In all cases the critical state model is used, so the flux flow resistivity and dynamic resistivity are not directly involved, although an effective resistivity appears when J c is exceeded. In most of the cases considered here is a large gap between the theory and the experiments. In particular the maximum flux transferred to the load area is always less than the flux of the magnet. Also once the threshold needed for pumping is exceeded the flux in the load saturates within a few cycles. However the analytic circuit model allows a simple modification to allow for the large reduction in I c when the magnet is over a conductor. This not only changes the direction of the pumped flux but leads to much more effective pumping.
Precise magnetostatic field using the finite element method
International Nuclear Information System (INIS)
Nascimento, Francisco Rogerio Teixeira do
2013-01-01
The main objective of this work is to simulate electromagnetic fields using the Finite Element Method. Even in the easiest case of electrostatic and magnetostatic numerical simulation some problems appear when the nodal finite element is used. It is difficult to model vector fields with scalar functions mainly in non-homogeneous materials. With the aim to solve these problems two types of techniques are tried: the adaptive remeshing using nodal elements and the edge finite element that ensure the continuity of tangential components. Some numerical analysis of simple electromagnetic problems with homogeneous and non-homogeneous materials are performed using first, the adaptive remeshing based in various error indicators and second, the numerical solution of waveguides using edge finite element. (author)
A strongly conservative finite element method for the coupling of Stokes and Darcy flow
Kanschat, G.
2010-08-01
We consider a model of coupled free and porous media flow governed by Stokes and Darcy equations with the Beavers-Joseph-Saffman interface condition. This model is discretized using divergence-conforming finite elements for the velocities in the whole domain. Discontinuous Galerkin techniques and mixed methods are used in the Stokes and Darcy subdomains, respectively. This discretization is strongly conservative in Hdiv(Ω) and we show convergence. Numerical results validate our findings and indicate optimal convergence orders. © 2010 Elsevier Inc.
Finite element solution algorithm for incompressible fluid dynamics
Baker, A. J.
1974-01-01
A finite element solution algorithm is established for the two-dimensional Navier-Stokes equations governing the transient motion of a viscous incompressible fluid, i.e., hydrodynamics. Dependent variable transformation renders the differential equation description uniformly elliptic. The finite element algorithm is established using the Galerkin criterion on a local basis within the Method of Weighted Residuals. It is unconstrained with respect to system linearity, computational mesh uniformity or solution domain closure regularity. The finite element matrices are established using a linear 'natural coordinate function' description. Computational solutions using the COMOC computer program illustrate the various features of the algorithm including recirculating flows.
A wave finite element analysis of the passive cochlea
Elliott, Stephen J.; Ni, Guangjian; Mace, Brian R.; Lineton, Ben
2013-01-01
Current models of the cochlea can be characterized as being either based on the assumed propagation of a single slow wave, which provides good insight, or involve the solution of a numerical model, such as in the finite element method, which allows the incorporation of more detailed anatomical features. In this paper it is shown how the wave finite element method can be used to decompose the results of a finite element calculation in terms of wave components, which allows the insight of the w...
Finite Element Based Formulation of Lattice Boltzmann Equation
International Nuclear Information System (INIS)
Jo, Jong Chull; Roh, Kyung Wan; Kwon, Young W.; Kwon, Young W.
2008-01-01
The Lattice Boltzmann Method (LBM) has been developed for application to thermal-fluid problems. Recently, the technique was also applied to fluid-structure interaction problems. Most of those studies considered a regular shape of lattice or mesh like square and cubic grids. In order to apply the LBM to more practical cases, it is necessary to be able to solve complex or irregular shapes of problem domains. There have been different kinds of approaches to address the problems. The most common technique was using the finite volume formulation of the lattice Boltzmann equation. Another approach was a point-wise interpolation technique for irregular grids. Other techniques were based on the finite element method. Generally, the finite element method is very powerful for solving two or three-dimensional complex or irregular shapes of domains using the isoparametric element formulation which is based on a mathematical mapping from a regular shape of element in an imaginary domain to a more general and irregular shape of element in the physical domain. In addition, there are variety of choices of finite elements such as triangular or quadrilateral shapes in 2-D, or tetrahedral, triangular prism, or general six-sided solids in 3-D. As a result, the present study presents a new finite element formulation for the lattice Boltzmann equation using the general weighted residual technique. Among the weighted residual formulations, the collocation method, Galerkin method or method of moments are used to develop the finite element based LBM
FEWA: a Finite Element model of Water flow through Aquifers
International Nuclear Information System (INIS)
Yeh, G.T.; Huff, D.D.
1983-11-01
This report documents the implementation and demonstration of a Finite Element model of Water flow through Aquifers (FEWA). The particular features of FEWA are its versatility and flexibility to deal with as many real-world problems as possible. Point as well as distributed sources/sinks are included to represent recharges/pumpings and rainfall infiltrations. All sources/sinks can be transient or steady state. Prescribed hydraulic head on the Dirichlet boundaries and fluxes on Neumann or Cauchy boundaries can be time-dependent or constant. Source/sink strength over each element and node, hydraulic head at each Dirichlet boundary node, and flux at each boundary segment can vary independently of each other. Either completely confined or completely unconfined aquifers, or partially confined and partially unconfined aquifers can be dealt with effectively. Discretization of a compound region with very irregular curved boundaries is made easy by including both quadrilateral and triangular elements in the formulation. Large-field problems can be solved efficiently by including a pointwise iterative solution strategy as an optional alternative to the direct elimination solution method for the matrix equation approximating the partial differential equation of groundwater flow. FEWA also includes transient flow through confining leaky aquifers lying above and/or below the aquifer of interest. The model is verified against three simple cases to which analytical solutions are available. It is then demonstrated by two examples of how the model can be applied to heterogeneous and anisotropic aquifers with transient boundary conditions, time-dependent sources/sinks, and confining aquitards for a confined aquifer of variable thickness and for a free surface problem in an unconfined aquifer, respectively. 20 references, 25 figures, 8 tables
Finite Element in Angle Unit Sphere Meshing for Charged Particle Transport.
Energy Technology Data Exchange (ETDEWEB)
Ortega, Mario Ivan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Drumm, Clifton R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-10-01
Finite element in angle formulations of the charged particle transport equation require the discretization of the unit sphere. In Sceptre, a three-dimensional surface mesh of a sphere is transformed into a two-dimensional mesh. Projection of a sphere onto a two-dimensional surface is well studied with map makers spending the last few centuries attempting to create maps that preserve proportion and area. Using these techniques, various meshing schemes for the unit sphere were investigated.
Liu, Meilin
2011-07-01
A discontinuous Galerkin finite element method (DG-FEM) with a highly-accurate time integration scheme is presented. The scheme achieves its high accuracy using numerically constructed predictor-corrector integration coefficients. Numerical results show that this new time integration scheme uses considerably larger time steps than the fourth-order Runge-Kutta method when combined with a DG-FEM using higher-order spatial discretization/basis functions for high accuracy. © 2011 IEEE.
DEFF Research Database (Denmark)
Evgrafov, Anton; Gregersen, Misha Marie; Sørensen, Mads Peter
2011-01-01
We present a convergence analysis of a cell-based finite volume (FV) discretization scheme applied to a problem of control in the coefficients of a generalized Laplace equation modelling, for example, a steady state heat conduction. Such problems arise in applications dealing with geometric optimal......, whereas the convergence of the coefficients happens only with respect to the "volumetric" Lebesgue measure. Additionally, depending on whether the stationarity conditions are stated for the discretized or the original continuous problem, two distinct concepts of stationarity at a discrete level arise. We...... provide characterizations of limit points, with respect to FV mesh size, of globally optimal solutions and two types of stationary points to the discretized problems. We illustrate the practical behaviour of our cell-based FV discretization algorithm on a numerical example....
Representation of bioelectric current sources using Whitney elements in the finite element method
Energy Technology Data Exchange (ETDEWEB)
Tanzer, I Oguz [Laboratory of Biomedical Engineering, PO Box 2200, 02015 HUT and BioMag Laboratory, Medical Engineering Center (Finland); Jaervenpaeae, Seppo [Electromagnetics Laboratory, PO Box 3000, FIN-02015 HUT (Finland); Nenonen, Jukka [Elekta Neuromag Oy, PO Box 68, FIN-00511 Helsinki (Finland); Somersalo, Erkki [Department of Mathematics, PO Box 1100, FIN-02015 HUT (Finland)
2005-07-07
Bioelectric current sources of magneto- and electroencephalograms (MEG, EEG) are usually modelled with discrete delta-function type current dipoles, despite the fact that the currents in the brain are naturally continuous throughout the neuronal tissue. In this study, we represent bioelectric current sources in terms of Whitney-type elements in the finite element method (FEM) using a tetrahedral mesh. The aim is to study how well the Whitney elements can reproduce the potential and magnetic field patterns generated by a point current dipole in a homogeneous conducting sphere. The electric potential is solved for a unit sphere model with isotropic conductivity and magnetic fields are calculated for points located on a cap outside the sphere. The computed potential and magnetic field are compared with analytical solutions for a current dipole. Relative difference measures between the FEM and analytical solutions are less than 1%, suggesting that Whitney elements as bioelectric current sources are able to produce the same potential and magnetic field patterns as the point dipole sources.
Finite element code development for modeling detonation of HMX composites
Duran, Adam V.; Sundararaghavan, Veera
2017-01-01
In this work, we present a hydrodynamics code for modeling shock and detonation waves in HMX. A stable efficient solution strategy based on a Taylor-Galerkin finite element (FE) discretization was developed to solve the reactive Euler equations. In our code, well calibrated equations of state for the solid unreacted material and gaseous reaction products have been implemented, along with a chemical reaction scheme and a mixing rule to define the properties of partially reacted states. A linear Gruneisen equation of state was employed for the unreacted HMX calibrated from experiments. The JWL form was used to model the EOS of gaseous reaction products. It is assumed that the unreacted explosive and reaction products are in both pressure and temperature equilibrium. The overall specific volume and internal energy was computed using the rule of mixtures. Arrhenius kinetics scheme was integrated to model the chemical reactions. A locally controlled dissipation was introduced that induces a non-oscillatory stabilized scheme for the shock front. The FE model was validated using analytical solutions for SOD shock and ZND strong detonation models. Benchmark problems are presented for geometries in which a single HMX crystal is subjected to a shock condition.
Customized Finite Element Modelling of the Human Cornea.
Simonini, Irene; Pandolfi, Anna
2015-01-01
To construct patient-specific solid models of human cornea from ocular topographer data, to increase the accuracy of the biomechanical and optical estimate of the changes in refractive power and stress caused by photorefractive keratectomy (PRK). Corneal elevation maps of five human eyes were taken with a rotating Scheimpflug camera combined with a Placido disk before and after refractive surgery. Patient-specific solid models were created and discretized in finite elements to estimate the corneal strain and stress fields in preoperative and postoperative configurations and derive the refractive parameters of the cornea. Patient-specific geometrical models of the cornea allow for the creation of personalized refractive maps at different levels of IOP. Thinned postoperative corneas show a higher stress gradient across the thickness and higher sensitivity of all geometrical and refractive parameters to the fluctuation of the IOP. Patient-specific numerical models of the cornea can provide accurate quantitative information on the refractive properties of the cornea under different levels of IOP and describe the change of the stress state of the cornea due to refractive surgery (PRK). Patient-specific models can be used as indicators of feasibility before performing the surgery.
High convergence order finite elements with lumped mass matrix
DEFF Research Database (Denmark)
Jensen, Morten skårup
1996-01-01
A method for deriving hexahedral finite elements with lumped mass matrices for three-dimensional problems is presented. These elements meet the theoretical conditions for high order convergence, and two numerical examples based on the three-dimensional scalar wave equation show that this is also...... the case in practice and that their accuracy is comparable to elements with consistent mass matrices....
Lin, Zeng; Wang, Dongdong
2017-10-01
Due to the nonlocal property of the fractional derivative, the finite element analysis of fractional diffusion equation often leads to a dense and non-symmetric stiffness matrix, in contrast to the conventional finite element formulation with a particularly desirable symmetric and banded stiffness matrix structure for the typical diffusion equation. This work first proposes a finite element formulation that preserves the symmetry and banded stiffness matrix characteristics for the fractional diffusion equation. The key point of the proposed formulation is the symmetric weak form construction through introducing a fractional weight function. It turns out that the stiffness part of the present formulation is identical to its counterpart of the finite element method for the conventional diffusion equation and thus the stiffness matrix formulation becomes trivial. Meanwhile, the fractional derivative effect in the discrete formulation is completely transferred to the force vector, which is obviously much easier and efficient to compute than the dense fractional derivative stiffness matrix. Subsequently, it is further shown that for the general fractional advection-diffusion-reaction equation, the symmetric and banded structure can also be maintained for the diffusion stiffness matrix, although the total stiffness matrix is not symmetric in this case. More importantly, it is demonstrated that under certain conditions this symmetric diffusion stiffness matrix formulation is capable of producing very favorable numerical solutions in comparison with the conventional non-symmetric diffusion stiffness matrix finite element formulation. The effectiveness of the proposed methodology is illustrated through a series of numerical examples.
Algorithms and data structures for massively parallel generic adaptive finite element codes
Bangerth, Wolfgang
2011-12-01
Today\\'s largest supercomputers have 100,000s of processor cores and offer the potential to solve partial differential equations discretized by billions of unknowns. However, the complexity of scaling to such large machines and problem sizes has so far prevented the emergence of generic software libraries that support such computations, although these would lower the threshold of entry and enable many more applications to benefit from large-scale computing. We are concerned with providing this functionality for mesh-adaptive finite element computations. We assume the existence of an "oracle" that implements the generation and modification of an adaptive mesh distributed across many processors, and that responds to queries about its structure. Based on querying the oracle, we develop scalable algorithms and data structures for generic finite element methods. Specifically, we consider the parallel distribution of mesh data, global enumeration of degrees of freedom, constraints, and postprocessing. Our algorithms remove the bottlenecks that typically limit large-scale adaptive finite element analyses. We demonstrate scalability of complete finite element workflows on up to 16,384 processors. An implementation of the proposed algorithms, based on the open source software p4est as mesh oracle, is provided under an open source license through the widely used deal.II finite element software library. © 2011 ACM 0098-3500/2011/12-ART10 $10.00.
Guaranteed Cost Finite-Time Control of Discrete-Time Positive Impulsive Switched Systems
Directory of Open Access Journals (Sweden)
Leipo Liu
2018-01-01
Full Text Available This paper considers the guaranteed cost finite-time boundedness of discrete-time positive impulsive switched systems. Firstly, the definition of guaranteed cost finite-time boundedness is introduced. By using the multiple linear copositive Lyapunov function (MLCLF and average dwell time (ADT approach, a state feedback controller is designed and sufficient conditions are obtained to guarantee that the corresponding closed-loop system is guaranteed cost finite-time boundedness (GCFTB. Such conditions can be solved by linear programming. Finally, a numerical example is provided to show the effectiveness of the proposed method.
Reliable finite element methods for self-adjoint singular perturbation ...
African Journals Online (AJOL)
It is well known that the standard finite element method based on the space Vh of continuous piecewise linear functions is not reliable in solving singular perturbation problems. It is also known that the solution of a two-point boundaryvalue singular perturbation problem admits a decomposition into a regular part and a finite ...
Finite element analyses for RF photoinjector gun cavities
International Nuclear Information System (INIS)
Marhauser, F.
2006-01-01
This paper details electromagnetical, thermal and structural 3D Finite Element Analyses (FEA) for normal conducting RF photoinjector gun cavities. The simulation methods are described extensively. Achieved results are presented. (orig.)
Structural Topology Optimization Based on the Smoothed Finite Element Method
Directory of Open Access Journals (Sweden)
Vahid Shobeiri
Full Text Available Abstract In this paper, the smoothed finite element method, incorporated with the level set method, is employed to carry out the topology optimization of continuum structures. The structural compliance is minimized subject to a constraint on the weight of material used. The cell-based smoothed finite element method is employed to improve the accuracy and stability of the standard finite element method. Several numerical examples are presented to prove the validity and utility of the proposed method. The obtained results are compared with those obtained by several standard finite element-based examples in order to access the applicability and effectiveness of the proposed method. The common numerical instabilities of the structural topology optimization problems such as checkerboard pattern and mesh dependency are studied in the examples.
Finite element analysis of unnotched charpy impact tests
2008-10-01
This paper describes nonlinear finite element analysis (FEA) to examine the energy to : fracture unnotched Charpy specimens under pendulum impact loading. An oversized, : nonstandard pendulum impactor, called the Bulk Fracture Charpy Machine (BFCM), ...
Finite element analyses of railroad tank car head impacts
2008-09-24
This paper describes engineering analyses of a railroad : tank car impacted at its head by a rigid punch. This type of : collision, referred to as a head impact, is examined using : dynamic, nonlinear finite element analysis (FEA). : Commercial softw...
Finite element analysis of rotating beams physics based interpolation
Ganguli, Ranjan
2017-01-01
This book addresses the solution of rotating beam free-vibration problems using the finite element method. It provides an introduction to the governing equation of a rotating beam, before outlining the solution procedures using Rayleigh-Ritz, Galerkin and finite element methods. The possibility of improving the convergence of finite element methods through a judicious selection of interpolation functions, which are closer to the problem physics, is also addressed. The book offers a valuable guide for students and researchers working on rotating beam problems – important engineering structures used in helicopter rotors, wind turbines, gas turbines, steam turbines and propellers – and their applications. It can also be used as a textbook for specialized graduate and professional courses on advanced applications of finite element analysis.
Finite Element Analysis of the Hierarchical Structure of Human Bone
National Research Council Canada - National Science Library
Dolloff, Katherine
2003-01-01
.... Finally, the effective stiffness of the bone was estimated. In order to determine the stiffness of the collagen fiber, a three-dimensional finite element model was developed and a simple analytical model was derived...
Generalized multiscale finite element method. Symmetric interior penalty coupling
Efendiev, Yalchin R.
2013-12-01
Motivated by applications to numerical simulations of flows in highly heterogeneous porous media, we develop multiscale finite element methods for second order elliptic equations. We discuss a multiscale model reduction technique in the framework of the discontinuous Galerkin finite element method. We propose two different finite element spaces on the coarse mesh. The first space is based on a local eigenvalue problem that uses an interior weighted L2-norm and a boundary weighted L2-norm for computing the "mass" matrix. The second choice is based on generation of a snapshot space and subsequent selection of a subspace of a reduced dimension. The approximation with these multiscale spaces is based on the discontinuous Galerkin finite element method framework. We investigate the stability and derive error estimates for the methods and further experimentally study their performance on a representative number of numerical examples. © 2013 Elsevier Inc.
Finite element modelling of helmeted head impact under frontal ...
Indian Academy of Sciences (India)
CSF), brain, tentorium and falx. The finite element model of the helmet consists of shell and foam liner. ... mechanical behaviour of motorcycle helmet. ... the latter authors use a SI (Structural Intensity) approach to study power flow distribution.
Structural analysis with the finite element method linear statics
Oñate, Eugenio
2013-01-01
STRUCTURAL ANALYSIS WITH THE FINITE ELEMENT METHOD Linear Statics Volume 1 : The Basis and Solids Eugenio Oñate The two volumes of this book cover most of the theoretical and computational aspects of the linear static analysis of structures with the Finite Element Method (FEM). The content of the book is based on the lecture notes of a basic course on Structural Analysis with the FEM taught by the author at the Technical University of Catalonia (UPC) in Barcelona, Spain for the last 30 years. Volume1 presents the basis of the FEM for structural analysis and a detailed description of the finite element formulation for axially loaded bars, plane elasticity problems, axisymmetric solids and general three dimensional solids. Each chapter describes the background theory for each structural model considered, details of the finite element formulation and guidelines for the application to structural engineering problems. The book includes a chapter on miscellaneous topics such as treatment of inclined supports, elas...
Finite element analysis of bending performance on polyurethane composite panel
Jia, Minli; Li, Hongqiao; Wang, Xiaoming
2017-09-01
The finite element analysis model of polyurethane composite panel (simply named PCP) is established by using ABAQUS software. In view of the PCPs made of different thickness of surface board, their bending performance is carried out on finite element analysis, and the load-deflection curves which come from it are compared with the experimental results. The results show that the values between finite element analysis and experiment agree well with each other. It can be deduced that the established finite element model is fit to simulate the bending test of PCPs. The simulation not only has certain reference significance to the optimal design for the bending performance of PCPs, but also to the choice of PCPs in the practical project.
DEFF Research Database (Denmark)
Fuhrmann, David R.; Bingham, Harry B.; Madsen, Per A.
2004-01-01
This paper considers a method of lines stability analysis for finite difference discretizations of a recently published Boussinesq method for the study of highly nonlinear and extremely dispersive water waves. The analysis demonstrates the near-equivalence of classical linear Fourier (von Neumann...
Stochastic ℋ∞ Finite-Time Control of Discrete-Time Systems with Packet Loss
Directory of Open Access Journals (Sweden)
Yingqi Zhang
2012-01-01
Full Text Available This paper investigates the stochastic finite-time stabilization and ℋ∞ control problem for one family of linear discrete-time systems over networks with packet loss, parametric uncertainties, and time-varying norm-bounded disturbance. Firstly, the dynamic model description studied is given, which, if the packet dropout is assumed to be a discrete-time homogenous Markov process, the class of discrete-time linear systems with packet loss can be regarded as Markovian jump systems. Based on Lyapunov function approach, sufficient conditions are established for the resulting closed-loop discrete-time system with Markovian jumps to be stochastic ℋ∞ finite-time boundedness and then state feedback controllers are designed to guarantee stochastic ℋ∞ finite-time stabilization of the class of stochastic systems. The stochastic ℋ∞ finite-time boundedness criteria can be tackled in the form of linear matrix inequalities with a fixed parameter. As an auxiliary result, we also give sufficient conditions on the robust stochastic stabilization of the class of linear systems with packet loss. Finally, simulation examples are presented to illustrate the validity of the developed scheme.
Finite-element method for above-core structures
International Nuclear Information System (INIS)
Kennedy, J.M.; Belytschko, T.B.
1979-12-01
Three-dimensional finite-element models for the treatment of the nonlinear, transient response of a fast breeder reactor's above-core structures are described. For purposes of treating arbitrarily large rotations, node orientations are described by unit vectors and the deformable elements are treated by a corotational formulation in which the coordinate system is embedded in the elements. Deformable elements may be connected either to nodes directly or through rigid bodies. The time integration is carried out by the Newmark β method. These features have been incorporated to form the finite-element program SAFE/RAS (Safety Analysis by Finite Elements/Reactor Analysis and Safety Division). Computations are presented for semianalytical comparisons, simple scoping studies, and Stanford Research Institute (SRI) test comparisons
Application of Mass Lumped Higher Order Finite Elements
International Nuclear Information System (INIS)
J. Chen, H.R. Strauss, S.C. Jardin, W. Park, L.E. Sugiyama, G. Fu, J. Breslau
2005-01-01
There are many interesting phenomena in extended-MHD such as anisotropic transport, mhd, 2-fluid effects stellarator and hot particles. Any one of them challenges numerical analysts, and researchers are seeking for higher order methods, such as higher order finite difference, higher order finite elements and hp/spectral elements. It is true that these methods give more accurate solution than their linear counterparts. However, numerically they are prohibitively expensive. Here we give a successful solution of this conflict by applying mass lumped higher order finite elements. This type of elements not only keep second/third order accuracy but also scale closely to linear elements by doing mass lumping. This is especially true for second order lump elements. Full M3D and anisotropic transport models are studied
International Nuclear Information System (INIS)
Grant, C.R.
1996-01-01
The reactor code PUMA, developed in CNEA, simulates nuclear reactors discretizing space in finite difference elements. Core representation is performed by means a cylindrical mesh, but the reactor channels are arranged in an hexagonal lattice. That is why a mapping using volume intersections must be used. This spatial treatment is the reason of an overestimation of the control rod reactivity values, which must be adjusted modifying the incremental cross sections. Also, a not very good treatment of the continuity conditions between core and reflector leads to an overestimation of channel power of the peripherical fuel elements between 5 to 8 per cent. Another code, DELFIN, developed also in CNEA, treats the spatial discretization using heterogeneous finite elements, allowing a correct treatment of the continuity of fluxes and current among elements and a more realistic representation of the hexagonal lattice of the reactor. A comparison between results obtained using both methods in done in this paper. (author). 4 refs., 3 figs
Finotello, Alice; Morganti, Simone; Auricchio, Ferdinando
2017-09-01
In the last few years, several studies, each with different aim and modeling detail, have been proposed to investigate transcatheter aortic valve implantation (TAVI) with finite elements. The present work focuses on the patient-specific finite element modeling of the aortic valve complex. In particular, we aim at investigating how different modeling strategies in terms of material models/properties and discretization procedures can impact analysis results. Four different choices both for the mesh size (from 20 k elements to 200 k elements) and for the material model (from rigid to hyperelastic anisotropic) are considered. Different approaches for modeling calcifications are also taken into account. Post-operative CT data of the real implant are used as reference solution with the aim of outlining a trade-off between computational model complexity and reliability of the results. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
SIMULATION OF FRACTURE USING A MESH-DEPENDENT FRACTURE CRITERION IN THE DISCRETE ELEMENT METHOD
Directory of Open Access Journals (Sweden)
Andrey Dimaki
2018-02-01
Full Text Available Recently, Pohrt and Popov have shown that for simulation of adhesive contacts a mesh dependent detachment criterion must be used to obtain the mesh-independent macroscopic behavior of the system. The same principle should be also applicable for the simulation of fracture processes in any method using finite discretization. In particular, in the Discrete Element Methods (DEM the detachment criterion of particles should depend on the particle size. In the present paper, we analyze how the mesh dependent detachment criterion has to be introduced to guarantee the macroscopic invariance of mechanical behavior of a material. We find that it is possible to formulate the criterion which describes fracture both in tensile and shear experiments correctly.
The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion
International Nuclear Information System (INIS)
Moszo, P.; Kristek, J.; Galis, M.; Pazak, P.; Balazovijech, M.
2006-01-01
Numerical modeling of seismic wave propagation and earthquake motion is an irreplaceable tool in investigation of the Earth's structure, processes in the Earth, and particularly earthquake phenomena. Among various numerical methods, the finite-difference method is the dominant method in the modeling of earthquake motion. Moreover, it is becoming more important in the seismic exploration and structural modeling. At the same time we are convinced that the best time of the finite-difference method in seismology is in the future. This monograph provides tutorial and detailed introduction to the application of the finite-difference, finite-element, and hybrid finite-difference-finite-element methods to the modeling of seismic wave propagation and earthquake motion. The text does not cover all topics and aspects of the methods. We focus on those to which we have contributed. (Author)
Solution of Differential Equation by Means of Finite Element Method
Hayashi, Daigoro; 林, 大五郎
1989-01-01
The finite element method may be defined as the modern "Method of Weighted Residuals" (MWR). This paper describes how to solve the differential equations which are essential in order to explain quantiatively a number of valuable geological and geodynamic problems.The methods to solve linear differential equation, non-linear equation, non-linear non-steady equation, Laplace equation and incompreeible New tonian flow problem are explained by means of the Galerkin finite element method.
Symmetry-preserving finite element schemes: An introductory investigation
Bihlo, Alexander; Valiquette, Francis
2018-01-01
Using the method of equivariant moving frames, we present a procedure for constructing symmetry-preserving finite element methods for second-order ordinary differential equations. Using the method of lines, we then indicate how our constructions can be extended to (1+1)-dimensional evolutionary partial differential equations, using Burgers' equation as an example. Numerical simulations verify that the symmetry-preserving finite element schemes constructed converge at the expected rate and tha...
Examples of finite element mesh generation using SDRC IDEAS
Zapp, John; Volakis, John L.
1990-01-01
IDEAS (Integrated Design Engineering Analysis Software) offers a comprehensive package for mechanical design engineers. Due to its multifaceted capabilities, however, it can be manipulated to serve the needs of electrical engineers, also. IDEAS can be used to perform the following tasks: system modeling, system assembly, kinematics, finite element pre/post processing, finite element solution, system dynamics, drafting, test data analysis, and project relational database.
Finite element modeling of the filament winding process using ABAQUS
Miltenberger, Louis C.
1992-01-01
A comprehensive stress model of the filament winding fabrication process, previously implemented in the finite element program, WACSAFE, was implemented using the ABAQUS finite element software package. This new implementation, referred to as the ABWACSAFE procedure, consists of the ABAQUS software and a pre/postprocessing routine that was developed to prepare necessary ABAQUS input files and process ABAQUS displacement results for stress and strain computation. The ABWACSAF...
Finite difference discretization of semiconductor drift-diffusion equations for nanowire solar cells
Deinega, Alexei; John, Sajeev
2012-10-01
We introduce a finite difference discretization of semiconductor drift-diffusion equations using cylindrical partial waves. It can be applied to describe the photo-generated current in radial pn-junction nanowire solar cells. We demonstrate that the cylindrically symmetric (l=0) partial wave accurately describes the electronic response of a square lattice of silicon nanowires at normal incidence. We investigate the accuracy of our discretization scheme by using different mesh resolution along the radial direction r and compare with 3D (x, y, z) discretization. We consider both straight nanowires and nanowires with radius modulation along the vertical axis. The charge carrier generation profile inside each nanowire is calculated using an independent finite-difference time-domain simulation.
Application of the finite element method to the neutron transport equation
International Nuclear Information System (INIS)
Martin, W.R.
1976-01-01
This paper examines the theoretical and practical application of the finite element method to the neutron transport equation. It is shown that in principle the system of equations obtained by application of the finite element method can be solved with certain physical restrictions concerning the criticality of the medium. The convergence of this approximate solution to the exact solution with mesh refinement is examined, and a non-optical estimate of the convergence rate is obtained analytically. It is noted that the numerical results indicate a faster convergence rate and several approaches to obtain this result analytically are outlined. The practical application of the finite element method involved the development of a computer code capable of solving the neutron transport equation in 1-D plane geometry. Vacuum, reflecting, or specified incoming boundary conditions may be analyzed, and all are treated as natural boundary conditions. The time-dependent transport equation is also examined and it is shown that the application of the finite element method in conjunction with the Crank-Nicholson time discretization method results in a system of algebraic equations which is readily solved. Numerical results are given for several critical slab eigenvalue problems, including anisotropic scattering, and the results compare extremely well with benchmark results. It is seen that the finite element code is more efficient than a standard discrete ordinates code for certain problems. A problem with severe heterogeneities is considered and it is shown that the use of discontinuous spatial and angular elements results in a marked improvement in the results. Finally, time-dependent problems are examined and it is seen that the phenomenon of angular mode separation makes the numerical treatment of the transport equation in slab geometry a considerable challenge, with the result that the angular mesh has a dominant effect on obtaining acceptable solutions
A finite element primer for beginners the basics
Zohdi, Tarek I
2014-01-01
The purpose of this primer is to provide the basics of the Finite Element Method, primarily illustrated through a classical model problem, linearized elasticity. The topics covered are:(1) Weighted residual methods and Galerkin approximations,(2) A model problem for one-dimensional?linear elastostatics,(3) Weak formulations in one dimension,(4) Minimum principles in one dimension,(5) Error estimation in one dimension,(5) Construction of Finite Element basis functions in one dimension,(6) Gaussian Quadrature,(7) Iterative solvers and element by element data structures,(8) A model problem for th
Numerical simulations of granular dynamics: I. Hard-sphere discrete element method and tests
Richardson, Derek C.; Walsh, Kevin J.; Murdoch, Naomi; Michel, Patrick
2011-03-01
We present a new particle-based (discrete element) numerical method for the simulation of granular dynamics, with application to motions of particles on small solar system body and planetary surfaces. The method employs the parallel N-body tree code pkdgrav to search for collisions and compute particle trajectories. Collisions are treated as instantaneous point-contact events between rigid spheres. Particle confinement is achieved by combining arbitrary combinations of four provided wall primitives, namely infinite plane, finite disk, infinite cylinder, and finite cylinder, and degenerate cases of these. Various wall movements, including translation, oscillation, and rotation, are supported. We provide full derivations of collision prediction and resolution equations for all geometries and motions. Several tests of the method are described, including a model granular “atmosphere” that achieves correct energy equipartition, and a series of tumbler simulations that show the expected transition from tumbling to centrifuging as a function of rotation rate.
An adaptive discontinuous finite element method for the transport equation
International Nuclear Information System (INIS)
Lang, J.; Walter, A.
1995-01-01
In this paper we introduce a discontinuous finite element method. In our approach, it is possible to combine the advantages of finite element and finite difference methods. The main ingredients are numerical flux approximation and local orthogonal basis functions. The scheme is defined on arbitrary triangulations and two different error indicators are derived. Especially the second one is closely connected to our approach and able to handle arbitrary varying flow directions. Numerical results are given for boundary value problems in two dimensions. They demonstrate the performance of the scheme, combined with the two error indicators
Lehtovaara, Lauri; Havu, Ville; Puska, Martti
2009-01-01
We present for static density functional theory and time-dependent density functional theory calculations an all-electron method which employs high-order hierarchical finite-element bases. Our mesh generation scheme, in which structured atomic meshes are merged to an unstructured molecular mesh, allows a highly nonuniform discretization of the space. Thus it is possible to represent the core and valence states using the same discretization scheme, i.e., no pseudopotentials or similar treatmen...
Discrete Element Modeling (DEM) of Triboelectrically Charged Particles: Revised Experiments
Hogue, Michael D.; Calle, Carlos I.; Curry, D. R.; Weitzman, P. S.
2008-01-01
In a previous work, the addition of basic screened Coulombic electrostatic forces to an existing commercial discrete element modeling (DEM) software was reported. Triboelectric experiments were performed to charge glass spheres rolling on inclined planes of various materials. Charge generation constants and the Q/m ratios for the test materials were calculated from the experimental data and compared to the simulation output of the DEM software. In this paper, we will discuss new values of the charge generation constants calculated from improved experimental procedures and data. Also, planned work to include dielectrophoretic, Van der Waals forces, and advanced mechanical forces into the software will be discussed.
Comparison of 3-D finite elements for incompressible fluid flow
International Nuclear Information System (INIS)
Robichaud, M.; Tanguy, P.A.
1985-01-01
In recent years, the finite element method applied to the solution of incompressible fluid flow has been in constant evolution. In the present state-of-the-art, 2-D problems are solved routinely and reliable results are obtained at a reasonable cost. In 3-D the finite element method is still undergoing active research and many methods have been proposed to solve the Navier-Stokes equations at 'low cost'. These methods have in common the choice of the element which has a trilinear velocity and a discontinuous constant pressure (Q1-PO). The prohibitive cost of 3-D finite element method in fluid flow is the reason for this choice: the Q1-PO is the simplest and the cheapest 3-D element. However, as mentioned in (5) and (6), it generates 'spurious' pressure modes phenomenon called checkerboarding. On regular mesh these spurious modes can be filtered but on distorted mesh the pressure solution is meaningless. (author)
Massey, Thomas Christopher
2002-01-01
A Flexible Galerkin Finite Element Method (FGM) is a hybrid class of finite element methods that combine the usual continuous Galerkin method with the now popular discontinuous Galerkin method (DGM). A detailed description of the formulation of the FGM on a hyperbolic partial differential equation, as well as the data structures used in the FGM algorithm is presented. Some hp-convergence results and computational cost are included. Additionally, an a posteriori error estimate f...
Numerical experiment on finite element method for matching data
International Nuclear Information System (INIS)
Tokuda, Shinji; Kumakura, Toshimasa; Yoshimura, Koichi.
1993-03-01
Numerical experiments are presented on the finite element method by Pletzer-Dewar for matching data of an ordinary differential equation with regular singular points by using model equation. Matching data play an important role in nonideal MHD stability analysis of a magnetically confined plasma. In the Pletzer-Dewar method, the Frobenius series for the 'big solution', the fundamental solution which is not square-integrable at the regular singular point, is prescribed. The experiments include studies of the convergence rate of the matching data obtained by the finite element method and of the effect on the results of computation by truncating the Frobenius series at finite terms. It is shown from the present study that the finite element method is an effective method for obtaining the matching data with high accuracy. (author)
Finite element analysis of soil-sheet pile interaction
Nyby, D. W.
A finite element model which accurately and economically models soil-sheet pile structures was developed. The model was used to analyze cantilever and anchored sheet pile walls. The finite element model includes transition and interface elements. The transition element has the capability of conforming to the displaced shape of the sheet pile elements on one side (cubic element) and soil elements on the other sides (bilinear element). The interface element models the frictional resistance between the soil and the sheet pile. It behaves elastically below a threshold force level (Coulomb friction) and perfectly plastic above this value. The soil is modeled using nonlinear constitutive relations. These relations are used for both the transition elements and the bilinear elements. The economy of the finite element model was increased in two ways. Closed-form integration was used to reduce the computational effort and an equation solver was used which takes advantage of the banded, symmetric, and positive-definite characteristics of the global stiffness matrix.
International Nuclear Information System (INIS)
Kulak, R.F.; Belytschko, T.B.
1975-09-01
The formulation of a finite-element procedure for the implicit transient and static analysis of plate/shell type structures in three-dimensional space is described. The triangular plate/shell element can sustain both membrane and bending stresses. Both geometric and material nonlinearities can be treated, and an elastic-plastic material law has been incorporated. The formulation permits the element to undergo arbitrarily large rotations and translations; but, in its present form it is restricted to small strains. The discretized equations of motion are obtained by a stiffness method. An implicit integration algorithm based on trapezoidal integration formulas is used to integrate the discretized equations of motion in time. To ensure numerical stability, an iterative solution procedure with equilibrium checks is used
Finite-element based perturbation analysis of wave propagation in nonlinear periodic structures
Manktelow, Kevin; Narisetti, Raj K.; Leamy, Michael J.; Ruzzene, Massimo
2013-08-01
Wave propagation in continuous, periodic structures subject to weak nonlinearities is studied using a finite-element discretization of a single unit cell followed by a perturbation analysis. The dispersion analysis is integrated with commercial finite-element analysis (FEA) software to expedite nonlinear analysis of geometrically-complex unit cells. A simple continuous multilayer system is used to illustrate the principle aspects of the procedure. A periodic structure formed by membrane elements on nonlinear elastic supports is used to demonstrate the versatility of the procedure. Weakly nonlinear band diagrams are generated in which amplitude-dependent bandgaps and group velocities are identified. The nonlinear dispersion analysis procedure described, coupled with commercial FEA software, should facilitate the study of wave propagation in a wide-variety of geometrically-complex, nonlinear periodic structures.
Directory of Open Access Journals (Sweden)
Rodolfo André Kuche Sanches
Full Text Available Abstract This paper presents a two-dimensional frame finite element methodology to deal with flexible multi-body dynamic systems and applies it to building progressive collapse analysis. The proposed methodology employs a frame element with Timoshenko kinematics and the dynamic governing equation is solved based on the stationary potential energy theorem written regarding nodal positions and generalized vectors components instead of displacements and rotations. The bodies are discretized by lose finite elements, which are assembled by Lagrange multipliers in order to make possible dynamical detachment. Due to the absence of rotation, the time integration is carried by classical Newmark algorithm, which reveals to be stable to the position based formulation. The accuracy of the proposed formulation is verified by simple examples and its capabilities regarding progressive collapse analysis is demonstrated in a more complete building analysis.
A finite element analysis of the distribution velocity in viscous ...
African Journals Online (AJOL)
In this work we use the finite element method to analyze the distribution of velocity in a viscous incompressible fluid flow using Lagrange interpolation function. The results obtained are highly accurate and converge fast to the exact solution as the number of elements increase.
Finite element stress analysis of brick-mortar masonry under ...
African Journals Online (AJOL)
Stress analysis of a brick-mortar couplet as a substitute for brick wall structure has been performed by finite element method, and algorithm for determining the element stiffness matrix for a plane stress problem using the displacement approach was developed. The nodal displacements were derived for the stress in each ...
Finite element solution of the Boussinesq wave equation | Akpobi ...
African Journals Online (AJOL)
In this work, we investigate a Boussinesq-type flow model for nonlinear dispersive waves by developing a computational model based on the finite element discretisation technique. Hermite interpolation functions were used to interpolate approximation elements. The system is modeled using a time dependent equation.
An implicit discontinuous Galerkin finite element model for water waves
van der Vegt, Jacobus J.W.; Ambati, V.R.; Bokhove, Onno
2005-01-01
We discuss a new higher order accurate discontinuous Galerkin finite element method for non-linear free surface gravity waves. The algorithm is based on an arbitrary Lagrangian Eulerian description of the flow field using deforming elements and a moving mesh, which makes it possible to represent
Stress distributions in finite element analysis of concrete gravity dam ...
African Journals Online (AJOL)
Gravity dams are solid structures built of mass concrete material; they maintain their stability against the design loads from the geometric shape, the mass, and the strength of the concrete. The model was meshed with an 8-node biquadratic plane strain quadrilateral (CPE8R) elements, using ABAQUS, a finite element ...
A nonlinear dynamic corotational finite element model for submerged pipes
De Vries, F. H.; Geijselaers, H. J.M.; Van Den Boogaard, A. H.; Huisman, A.
2017-01-01
A three dimensional finite element model is built to compute the motions of a pipe that is being laid on the seabed. This process is geometrically nonlinear, therefore co-rotational beam elements are used. The pipe is subject to static and dynamic forces. Static forces are due to gravity, current
Behaviour of Lagrangian triangular mixed fluid finite elements
Indian Academy of Sciences (India)
The behaviour of mixed fluid finite elements, formulated based on the Lagrangian frame of reference, is investigated to understand the effects of locking due to incompressibility and irrotational constraints. For this purpose, both linear and quadratic mixed triangular fluid elements are formulated. It is found that there exists a ...
Modelling Convergence of Finite Element Analysis of Cantilever Beam
African Journals Online (AJOL)
Convergence studies are carried out by investigating the convergence of numerical results as the number of elements is increased. If convergence is not obtained, the engineer using the finite element method has absolutely no indication whether the results are indicative of a meaningful approximation to the correct solution ...
A set of pathological tests to validate new finite elements
Indian Academy of Sciences (India)
M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22
End shear. 16. 16. Thick cylinder problem. ∗. Radial pressure. 17. 17. Membrane problem. End shear. 18. 18. Cantilever plate test. Tip moment. 19. End shear. 19 ... Shell finite elements testing. Individual element tests. Patch test. &. FEM convergence. 1989. 1995. 1997. 1998. &. White. & Taylor. Patch test revisited. Zhang.
Behaviour of Lagrangian triangular mixed fluid finite elements
Indian Academy of Sciences (India)
relationship with the penalty finite element approach. Since two constraints are required to be enforced simultaneously, three-field mixed elements involving the displacement and the two Lagrange multipliers, are formulated. The study also includes the effect of bubble functions (or incompatible modes) on the behaviour of ...
Natarajan, Sundararajan; Bordas, Stéphane; Ooi, Ean Tat
2015-01-01
We show both theoretically and numerically a connection between the smoothed finite element method (SFEM) and the virtual element method and use this approach to derive stable, cheap and optimally convergent polyhedral FEM.We show that the stiffness matrix computed with one subcell SFEM is identical to the consistency term of the virtual element method, irrespective of the topology of the element, as long as the shape functions vary linearly on the boundary. Using this connection, we propose ...
Robbins, Joshua; Voth, Thomas
2007-06-01
The eXtended Finite Element Method (X-FEM) is a finite element based discretization technique developed originally to model dynamic crack propagation [1]. Since that time the method has been used for modeling physics ranging from static mesoscale material failure to dendrite growth. Here we adapt the recent advances of Benson et al. [2] and Belytchko et al. [3] to model shock loading of polycrystalline material. Through several demonstration problems we evaluate the method for modeling the shock response of polycrystalline materials at the mesoscale. Specifically, we use the X-FEM to model grain boundaries. This approach allows us to i) eliminate ad-hoc mixture rules for multi-material elements and ii) avoid explicitly meshing grain boundaries. ([1] N. Moes, J. Dolbow, J and T. Belytschko, 1999,``A finite element method for crack growth without remeshing,'' International Journal for Numerical Methods in Engineering, 46, 131-150. [2] E. Vitali, and D. J. Benson, 2006, ``An extended finite element formulation for contact in multi-material arbitrary Lagrangian-Eulerian calculations,'' International Journal for Numerical Methods in Engineering, 67, 1420-1444. [3] J-H Song, P. M. A. Areias and T. Belytschko, 2006, ``A method for dynamic crack and shear band propagation with phantom nodes,'' International Journal for Numerical Methods in Engineering, 67, 868-893.)
Finite element approximation to the even-parity transport equation
International Nuclear Information System (INIS)
Lewis, E.E.
1981-01-01
This paper studies the finite element method, a procedure for reducing partial differential equations to sets of algebraic equations suitable for solution on a digital computer. The differential equation is cast into the form of a variational principle, the resulting domain then subdivided into finite elements. The dependent variable is then approximated by a simple polynomial, and these are linked across inter-element boundaries by continuity conditions. The finite element method is tailored to a variety of transport problems. Angular approximations are formulated, and the extent of ray effect mitigation is examined. Complex trial functions are introduced to enable the inclusion of buckling approximations. The ubiquitous curved interfaces of cell calculations, and coarse mesh methods are also treated. A concluding section discusses limitations of the work to date and suggests possible future directions
Ship Impact Study: Analytical Approaches and Finite Element Modeling
Directory of Open Access Journals (Sweden)
Pawel Woelke
2012-01-01
Full Text Available The current paper presents the results of a ship impact study conducted using various analytical approaches available in the literature with the results obtained from detailed finite element analysis. Considering a typical container vessel impacting a rigid wall with an initial speed of 10 knots, the study investigates the forces imparted on the struck obstacle, the energy dissipated through inelastic deformation, penetration, local deformation patterns, and local failure of the ship elements. The main objective of the paper is to study the accuracy and generality of the predictions of the vessel collision forces, obtained by means of analytical closed-form solutions, in reference to detailed finite element analyses. The results show that significant discrepancies between simplified analytical approaches and detailed finite element analyses can occur, depending on the specific impact scenarios under consideration.
Burman, Erik; Hansbo, Peter; Larson, Mats G.
2018-03-01
Tikhonov regularization is one of the most commonly used methods for the regularization of ill-posed problems. In the setting of finite element solutions of elliptic partial differential control problems, Tikhonov regularization amounts to adding suitably weighted least squares terms of the control variable, or derivatives thereof, to the Lagrangian determining the optimality system. In this note we show that the stabilization methods for discretely ill-posed problems developed in the setting of convection-dominated convection-diffusion problems, can be highly suitable for stabilizing optimal control problems, and that Tikhonov regularization will lead to less accurate discrete solutions. We consider some inverse problems for Poisson’s equation as an illustration and derive new error estimates both for the reconstruction of the solution from the measured data and reconstruction of the source term from the measured data. These estimates include both the effect of the discretization error and error in the measurements.
Dynamic mortar finite element method for modeling of shear rupture on frictional rough surfaces
Tal, Yuval; Hager, Bradford H.
2017-09-01
This paper presents a mortar-based finite element formulation for modeling the dynamics of shear rupture on rough interfaces governed by slip-weakening and rate and state (RS) friction laws, focusing on the dynamics of earthquakes. The method utilizes the dual Lagrange multipliers and the primal-dual active set strategy concepts, together with a consistent discretization and linearization of the contact forces and constraints, and the friction laws to obtain a semi-smooth Newton method. The discretization of the RS friction law involves a procedure to condense out the state variables, thus eliminating the addition of another set of unknowns into the system. Several numerical examples of shear rupture on frictional rough interfaces demonstrate the efficiency of the method and examine the effects of the different time discretization schemes on the convergence, energy conservation, and the time evolution of shear traction and slip rate.
A wave finite element analysis of the passive cochlea.
Elliott, Stephen J; Ni, Guangjian; Mace, Brian R; Lineton, Ben
2013-03-01
Current models of the cochlea can be characterized as being either based on the assumed propagation of a single slow wave, which provides good insight, or involve the solution of a numerical model, such as in the finite element method, which allows the incorporation of more detailed anatomical features. In this paper it is shown how the wave finite element method can be used to decompose the results of a finite element calculation in terms of wave components, which allows the insight of the wave approach to be brought to bear on more complicated numerical models. In order to illustrate the method, a simple box model is considered, of a passive, locally reacting, basilar membrane interacting via three-dimensional fluid coupling. An analytic formulation of the dispersion equation is used initially to illustrate the types of wave one would expect in such a model. The wave finite element is then used to calculate the wavenumbers of all the waves in the finite element model. It is shown that only a single wave type dominates the response until this peaks at the best place in the cochlea, where an evanescent, higher order fluid wave can make a significant contribution.
Finite element analysis of thrust angle contact ball slewing bearing
Deng, Biao; Guo, Yuan; Zhang, An; Tang, Shengjin
2017-12-01
In view of the large heavy slewing bearing no longer follows the rigid ring hupothesis under the load condition, the entity finite element model of thrust angular contact ball bearing was established by using finite element analysis software ANSYS. The boundary conditions of the model were set according to the actual condition of slewing bearing, the internal stress state of the slewing bearing was obtained by solving and calculation, and the calculated results were compared with the numerical results based on the rigid ring assumption. The results show that more balls are loaded in the result of finite element method, and the maximum contact stresses between the ball and raceway have some reductions. This is because the finite element method considers the ferrule as an elastic body. The ring will produce structure deformation in the radial plane when the heavy load slewing bearings are subjected to external loads. The results of the finite element method are more in line with the actual situation of the slewing bearing in the engineering.
Two-dimensional isostatic meshes in the finite element method
Martínez Marín, Rubén; Samartín, Avelino
2002-01-01
In a Finite Element (FE) analysis of elastic solids several items are usually considered, namely, type and shape of the elements, number of nodes per element, node positions, FE mesh, total number of degrees of freedom (dot) among others. In this paper a method to improve a given FE mesh used for a particular analysis is described. For the improvement criterion different objective functions have been chosen (Total potential energy and Average quadratic error) and the number of nodes and dof's...
Finite element modelling of helmeted head impact under frontal ...
Indian Academy of Sciences (India)
2016-08-26
Aug 26, 2016 ... Finite element models of the head and helmet were used to study contact forces during frontal impact of the head with a rigid surface. The ﬁnite element model of the head consists of skin, skull, cerebro-spinal ﬂuid (CSF), brain, tentorium and falx. The ﬁnite element model of the helmet consists of shell and ...
Efendiev, Yalchin R.
2015-06-05
In this paper, we develop a multiscale finite element method for solving flows in fractured media. Our approach is based on generalized multiscale finite element method (GMsFEM), where we represent the fracture effects on a coarse grid via multiscale basis functions. These multiscale basis functions are constructed in the offline stage via local spectral problems following GMsFEM. To represent the fractures on the fine grid, we consider two approaches (1) discrete fracture model (DFM) (2) embedded fracture model (EFM) and their combination. In DFM, the fractures are resolved via the fine grid, while in EFM the fracture and the fine grid block interaction is represented as a source term. In the proposed multiscale method, additional multiscale basis functions are used to represent the long fractures, while short-size fractures are collectively represented by a single basis functions. The procedure is automatically done via local spectral problems. In this regard, our approach shares common concepts with several approaches proposed in the literature as we discuss. We would like to emphasize that our goal is not to compare DFM with EFM, but rather to develop GMsFEM framework which uses these (DFM or EFM) fine-grid discretization techniques. Numerical results are presented, where we demonstrate how one can adaptively add basis functions in the regions of interest based on error indicators. We also discuss the use of randomized snapshots (Calo et al. Randomized oversampling for generalized multiscale finite element methods, 2014), which reduces the offline computational cost.
Deng, Yongbo; Korvink, Jan G
2016-05-01
This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable.
Korvink, Jan G.
2016-01-01
This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable. PMID:27279766
Divergence of finite element formulations for inverse problems treated as optimization problems
International Nuclear Information System (INIS)
Rivas, Carlos; Barbone, Paul; Oberai, Assad
2008-01-01
Many inverse problems are formulated and solved as optimization problems. In this approach, the data mismatch between a predicted field and a measured field is minimized, subject to a constraint. The constraint represents the 'forward' model of the system under consideration. In this paper, the model considered is plane stress incompressible elasticity. This pde is discretized using several standard Galerkin finite element methods. These are known to yield stable and convergent discrete solutions that converge with mesh refinement to the exact solution of the forward problem. It is usually taken for granted that if the constraint equation is discretized by a stable, convergent numerical method, then the inverse problem will also converge to the exact solution with mesh refinement. We show examples in this paper, however, where this is not the case. These are based on inverse problems with interior data, which have provably unique solutions. Even so, the use of classical discretization techniques for the forward constraint within the optimization formulation leads to ill-posed discrete problems. We analyze the discrete systems of equations and show the source of the instability. We discuss variational properties of the continuous inverse optimization problem, and describe a novel B-spline FEM to solve it. We present computational evidence that suggests the B-spline FEM inverse problem solution converges to the exact inverse problem solution with mesh refinement.
Finite Element Method for Capturing Ultra-relativistic Shocks
Richardson, G. A.; Chung, T. J.
2003-01-01
While finite element methods are used extensively by researchers solving computational fluid dynamics in fields other than astrophysics, their use in astrophysical fluid simulations has been predominantly overlooked. Current simulations using other methods such as finite difference and finite volume (based on finite difference) have shown remarkable results, but these methods are limited by their fundamental properties in aspects that are important for simulations with complex geometries and widely varying spatial and temporal scale differences. We have explored the use of finite element methods for astrophysical fluids in order to establish the validity of using such methods in astrophysical environments. We present our numerical technique applied to solving ultra-relativistic (Lorentz Factor Gamma >> 1) shocks which are prevalent in astrophysical studies including relativistic jets and gamma-ray burst studies. We show our finite element formulation applied to simulations where the Lorentz factor ranges up to 2236 and demonstrate its stability in solving ultra-relativistic flows. Our numerical method is based on the Flowfield Dependent Variation (FDV) Method, unique in that numerical diffusion is derived from physical parameters rather than traditional artificial viscosity methods. Numerical instabilities account for most of the difficulties when capturing shocks in this regime. Our method results in stable solutions and accurate results as compared with other methods.
Directory of Open Access Journals (Sweden)
Álvaro Bernal
2014-01-01
Full Text Available Numerical methods are usually required to solve the neutron diffusion equation applied to nuclear reactors due to its heterogeneous nature. The most popular numerical techniques are the Finite Difference Method (FDM, the Coarse Mesh Finite Difference Method (CFMD, the Nodal Expansion Method (NEM, and the Nodal Collocation Method (NCM, used virtually in all neutronic diffusion codes, which give accurate results in structured meshes. However, the application of these methods in unstructured meshes to deal with complex geometries is not straightforward and it may cause problems of stability and convergence of the solution. By contrast, the Finite Element Method (FEM and the Finite Volume Method (FVM are easily applied to unstructured meshes. On the one hand, the FEM can be accurate for smoothly varying functions. On the other hand, the FVM is typically used in the transport equations due to the conservation of the transported quantity within the volume. In this paper, the FVM algorithm implemented in the ARB Partial Differential Equations solver has been used to discretize the neutron diffusion equation to obtain the matrices of the generalized eigenvalue problem, which has been solved by means of the SLEPc library.
Isogeometric finite element approximation of minimal surfaces based on extended loop subdivision
Pan, Qing; Chen, Chong; Xu, Guoliang
2017-08-01
In this paper, we investigate the formulation of isogeometric analysis for minimal surface models on planar bounded domains by extended Loop surface subdivision approach. The exactness of the physical domain of interest is fixed on the coarsest level of the triangular discretization with any topological structure, which is thought of as the initial control mesh of Loop subdivision. By performing extended Loop subdivision, the control mesh can be repeatedly refined, and the geometry is described as an infinite set of quartic box-spline while maintaining its original exactness. The limit function representation of extended Loop subdivision forms our finite element space, which possesses C1 smoothness and the flexibility of mesh topology. We establish its inverse inequalities which resemble the ones of general finite element spaces. We develop the approximation estimate with the aid of H1 convergence property of the corresponding linear models. It enables us to overcome the difficulty of proving the boundedness of the gradient of finite element solutions appearing in the coefficient of minimal surface models. Numerical examples are given with the comparison to the classical linear finite element method which is consistent with our theoretical results.
A stabilized cut finite element method for the Darcy problem on surfaces
Hansbo, Peter; G. Larson, Mats; Massing, André
2017-11-01
We develop a cut finite element method for the Darcy problem on surfaces. The cut finite element method is based on embedding the surface in a three dimensional finite element mesh and using finite element spaces defined on the three dimensional mesh as trial and test functions. Since we consider a partial differential equation on a surface, the resulting discrete weak problem might be severely ill conditioned. We propose a full gradient and a normal gradient based stabilization computed on the background mesh to render the proposed formulation stable and well conditioned irrespective of the surface positioning within the mesh. Our formulation extends and simplifies the Masud-Hughes stabilized primal mixed formulation of the Darcy surface problem proposed in [28] on fitted triangulated surfaces. The tangential condition on the velocity and the pressure gradient is enforced only weakly, avoiding the need for any tangential projection. The presented numerical analysis accounts for different polynomial orders for the velocity, pressure, and geometry approximation which are corroborated by numerical experiments. In particular, we demonstrate both theoretically and through numerical results that the normal gradient stabilized variant results in a high order scheme.
Czech Academy of Sciences Publication Activity Database
Fiala, Zdeněk
2015-01-01
Roč. 226, č. 1 (2015), s. 17-35 ISSN 0001-5970 R&D Projects: GA ČR(CZ) GA103/09/2101 Institutional support: RVO:68378297 Keywords : solid mechanics * finite deformations * evolution equation of Lie-type * time-discrete integration Subject RIV: BA - General Mathematics OBOR OECD: Statistics and probability Impact factor: 1.694, year: 2015 http://link.springer.com/article/10.1007%2Fs00707-014-1162-9#page-1
Finiteness of the discrete spectrum of the three-particle Schroedinger operator
International Nuclear Information System (INIS)
Abdullaev, Janikul I.; Khalkhujaev, Axmad, M.
2001-08-01
We analyse the spectrum of the three-particle Schroedinger operator with pair contact and three-particle interactions on the neighboring nodes on a three-dimensional lattice. We show that the essential spectrum of this operator is the union of two segments, one of which coincides with the spectrum of an unperturbed operator and the other called two-particle branch. We will prove finiteness of the discrete spectrum of the Schroedinger operator at all parameter values of the problem. (author)
Engineering computation of structures the finite element method
Neto, Maria Augusta; Roseiro, Luis; Cirne, José; Leal, Rogério
2015-01-01
This book presents theories and the main useful techniques of the Finite Element Method (FEM), with an introduction to FEM and many case studies of its use in engineering practice. It supports engineers and students to solve primarily linear problems in mechanical engineering, with a main focus on static and dynamic structural problems. Readers of this text are encouraged to discover the proper relationship between theory and practice, within the finite element method: Practice without theory is blind, but theory without practice is sterile. Beginning with elasticity basic concepts and the classical theories of stressed materials, the work goes on to apply the relationship between forces, displacements, stresses and strains on the process of modeling, simulating and designing engineered technical systems. Chapters discuss the finite element equations for static, eigenvalue analysis, as well as transient analyses. Students and practitioners using commercial FEM software will find this book very helpful. It us...
The Finite Element Numerical Modelling of 3D Magnetotelluric
Directory of Open Access Journals (Sweden)
Ligang Cao
2014-01-01
Full Text Available The ideal numerical simulation of 3D magnetotelluric was restricted by the methodology complexity and the time-consuming calculation. Boundary values, the variation of weighted residual equation, and the hexahedral mesh generation method of finite element are three major causes. A finite element method for 3D magnetotelluric numerical modeling is presented in this paper as a solution for the problem mentioned above. In this algorithm, a hexahedral element coefficient matrix for magnetoelluric finite method is developed, which solves large-scale equations using preconditioned conjugate gradient of the first-type boundary conditions. This algorithm is verified using the homogeneous model, and the positive landform model, as well as the low resistance anomaly model.
Finite Element Modelling of Cold Formed Stainless Steel Columns
Directory of Open Access Journals (Sweden)
M. Macdonald
2005-01-01
Full Text Available This paper describes the results obtained from a finite element investigation into the load capacity of column members of lipped channel cross-section, cold formed from Type 304 stainless steel, subjected to concentric and eccentric compression loading. The main aims of this investigation were to determine the effects which the non-linearity of the stress-strain behaviour of the material would have on the column behaviour under concentric or eccentric loading. Stress-strain curves derived from tests and design codes are incorporated into non-linear finite element analyses of eccentrically loaded columns and the results obtained are compared with those obtained on the basis of experiments on stainless steel channel columns with the same properties and dimensions. Comparisons of the finite element results and the test results are also made with existing design specifications and conclusions are drawn on the basis of the comparisons.
Finite element method for eigenvalue problems in electromagnetics
Reddy, C. J.; Deshpande, Manohar D.; Cockrell, C. R.; Beck, Fred B.
1994-01-01
Finite element method (FEM) has been a very powerful tool to solve many complex problems in electromagnetics. The goal of the current research at the Langley Research Center is to develop a combined FEM/method of moments approach to three-dimensional scattering/radiation problem for objects with arbitrary shape and filled with complex materials. As a first step toward that goal, an exercise is taken to establish the power of FEM, through closed boundary problems. This paper demonstrates the developed of FEM tools for two- and three-dimensional eigenvalue problems in electromagnetics. In section 2, both the scalar and vector finite elements have been used for various waveguide problems to demonstrate the flexibility of FEM. In section 3, vector finite element method has been extended to three-dimensional eigenvalue problems.
International Nuclear Information System (INIS)
Cunha Furtado, F. da; Galeao, A.C.N.R.
1984-01-01
A numerical procedure for the integration of the incompressible Navier-Stokes equations, when expressed in terms of a stream function equation and a vorticity transport equation, is presented. This procedure comprises: the variational formulation of the equations, the construction of the approximation spaces by the finite element method and the discretization via the Galerkin method. For the stationary problems, the system of non-linear algebraic equations resulting from the discretization is solved by the Newton-Raphson algorithm. Finally, for the transient problems, the solution of the non-linear ordinary differential equations resulting from the spatial discretization is accomplished through a Crank-Nicolson scheme. (Author) [pt
Mechanics of binary crushable granular assembly through discrete element method
Directory of Open Access Journals (Sweden)
Raghuram Karthik Desu
2016-12-01
Full Text Available The mechanical response of a granular system is not only influenced by the bulk material properties but also on various factors due to it’s discrete nature. The factors like topology, packing fraction, friction between particles, particle size distribution etc. influence the behavior of granular systems. For a reliable design of such systems like fusion breeder units comprising of pebble beds, it is essential to understand the various factors influencing the response of the system. Mechanical response of a binary assembly consisting of crushable spherical pebbles is studied using Discrete Element Method (DEM which is based on particle–particle interactions. The influence of above mentioned factors on the macroscopic stress–strain response is investigated using an in-house DEM code. Furthermore, the effect of these factors on the damage in the assembly is investigated. This present investigation helps in understanding the macroscopic response and damage in terms of microscopic factors paving way to develop a unified prediction tool for a binary crushable granular assembly.
Discrete element modelling of sediment falling in water.
Wang, Dong; Ho-Minh, Dao; Tan, Danielle S
2016-11-01
The Discrete Element Method (DEM) is a discrete, particle-based method commonly used in studies involving granular media, e.g. sediment transport, and geomechanics. It is heavily dependent on particle properties, and one important component is the force model, which relates the relative positions and velocities of the simulated particles to the forces they experience. In this paper we model a collection of lightly compacted granular material, released at a short distance above a flat base in a quiescent fluid --similar to the process whereby sediment tailings are released back into the sea during nodule harvesting. We employ different typical force models, and consider how their varying components affect the simulated outcome. The results are compared with a physical experiment of similar dimensions. We find that a realistic simulation is achieved when the force model considers the local solid fraction in the drag force, and incorporates the hydrodynamic effect of neighbouring particles. The added mass effect increases the accuracy of the outcome, but does not contribute significantly in a qualitative sense.
Directory of Open Access Journals (Sweden)
P.B. Silva
2013-01-01
Full Text Available Structural spectral elements are formulated using the analytical solution of the applicable elastodynamic equations and, therefore, mesh refinement is not needed to analyze high frequency behavior provided the elastodynamic equations used remain valid. However, for modeling complex structures, standard spectral elements require long and cumbersome analytical formulation. In this work, a method to build spectral finite elements from a finite element model of a slice of a structural waveguide (a structure with one dimension much larger than the other two is proposed. First, the transfer matrix of the structural waveguide is obtained from the finite element model of a thin slice. Then, the wavenumbers and wave propagation modes are obtained from the transfer matrix and used to build the spectral element matrix. These spectral elements can be used to model homogeneous waveguides with constant cross section over long spans without the need of refining the finite element mesh along the waveguide. As an illustrating example, spectral elements are derived for straight uniform rods and beams and used to calculate the forced response in the longitudinal and transverse directions. Results obtained with the spectral element formulation are shown to agree well with results obtained with a finite element model of the whole beam. The proposed approach can be used to generate spectral elements of waveguides of arbitrary cross section and, potentially, of arbitrary order.
Predicting the behavior of microfluidic circuits made from discrete elements
Bhargava, Krisna C.; Thompson, Bryant; Iqbal, Danish; Malmstadt, Noah
2015-10-01
Microfluidic devices can be used to execute a variety of continuous flow analytical and synthetic chemistry protocols with a great degree of precision. The growing availability of additive manufacturing has enabled the design of microfluidic devices with new functionality and complexity. However, these devices are prone to larger manufacturing variation than is typical of those made with micromachining or soft lithography. In this report, we demonstrate a design-for-manufacturing workflow that addresses performance variation at the microfluidic element and circuit level, in context of mass-manufacturing and additive manufacturing. Our approach relies on discrete microfluidic elements that are characterized by their terminal hydraulic resistance and associated tolerance. Network analysis is employed to construct simple analytical design rules for model microfluidic circuits. Monte Carlo analysis is employed at both the individual element and circuit level to establish expected performance metrics for several specific circuit configurations. A protocol based on osmometry is used to experimentally probe mixing behavior in circuits in order to validate these approaches. The overall workflow is applied to two application circuits with immediate use at on the bench-top: series and parallel mixing circuits that are modularly programmable, virtually predictable, highly precise, and operable by hand.
Predicting the behavior of microfluidic circuits made from discrete elements.
Bhargava, Krisna C; Thompson, Bryant; Iqbal, Danish; Malmstadt, Noah
2015-10-30
Microfluidic devices can be used to execute a variety of continuous flow analytical and synthetic chemistry protocols with a great degree of precision. The growing availability of additive manufacturing has enabled the design of microfluidic devices with new functionality and complexity. However, these devices are prone to larger manufacturing variation than is typical of those made with micromachining or soft lithography. In this report, we demonstrate a design-for-manufacturing workflow that addresses performance variation at the microfluidic element and circuit level, in context of mass-manufacturing and additive manufacturing. Our approach relies on discrete microfluidic elements that are characterized by their terminal hydraulic resistance and associated tolerance. Network analysis is employed to construct simple analytical design rules for model microfluidic circuits. Monte Carlo analysis is employed at both the individual element and circuit level to establish expected performance metrics for several specific circuit configurations. A protocol based on osmometry is used to experimentally probe mixing behavior in circuits in order to validate these approaches. The overall workflow is applied to two application circuits with immediate use at on the bench-top: series and parallel mixing circuits that are modularly programmable, virtually predictable, highly precise, and operable by hand.
AEROTAXI ground static test and finite element model validation
Directory of Open Access Journals (Sweden)
Radu BISCA
2011-06-01
Full Text Available In this presentation, we will concentrate on typical Ground Static Test (GST and Finite Element (FE software comparisons. It is necessary to note, that standard GST are obligatory for any new aircraft configuration. We can mention here the investigations of the AeroTAXITM, a small aircraft configuration, using PRODERA® equipment. A Finite Element Model (FEM of the AeroTAXITM has been developed in PATRAN/NASTRAN®, partly from a previous ANSYS® model. FEM can be used to investigate potential structural modifications or changes with realistic component corrections. Model validation should be part of every modern engineering analysis and quality assurance procedure.
Fourier analysis of finite element preconditioned collocation schemes
Deville, Michel O.; Mund, Ernest H.
1990-01-01
The spectrum of the iteration operator of some finite element preconditioned Fourier collocation schemes is investigated. The first part of the paper analyses one-dimensional elliptic and hyperbolic model problems and the advection-diffusion equation. Analytical expressions of the eigenvalues are obtained with use of symbolic computation. The second part of the paper considers the set of one-dimensional differential equations resulting from Fourier analysis (in the tranverse direction) of the 2-D Stokes problem. All results agree with previous conclusions on the numerical efficiency of finite element preconditioning schemes.
Diffusive mesh relaxation in ALE finite element numerical simulations
Energy Technology Data Exchange (ETDEWEB)
Dube, E.I.
1996-06-01
The theory for a diffusive mesh relaxation algorithm is developed for use in three-dimensional Arbitary Lagrange/Eulerian (ALE) finite element simulation techniques. This mesh relaxer is derived by a variational principle for an unstructured 3D grid using finite elements, and incorporates hourglass controls in the numerical implementation. The diffusive coefficients are based on the geometric properties of the existing mesh, and are chosen so as to allow for a smooth grid that retains the general shape of the original mesh. The diffusive mesh relaxation algorithm is then applied to an ALE code system, and results from several test cases are discussed.
FINITE ELEMENT EVALUATION AND OPTIMIZATION OF GEOMETRY WITH DOE
Directory of Open Access Journals (Sweden)
Janko D. Jovanovic
2011-03-01
Full Text Available Since 1960, Taguchi methods have been used for improving the quality of Japanese products with great success. Basic assumption of Taguchi's design for six sigma or robust design is that quality must be designed into a product from the start at both the product and process design stage in order to improve product reliability and manufacturability. This paper deals with case study of product design based on Taguchi's approach that involves parametric optimization of piston rod geometry aiming mass reduction with stress restriction. Finite element analysis software ANSYS Workbench was used to get access to CAD parameters of piston rod within a process of parametric finite element evaluation and optimization.
FINITE ELEMENT MODELING OF THIN CIRCULAR SANDWICH PLATES DEFLECTION
Directory of Open Access Journals (Sweden)
K. S. Kurachka
2014-01-01
Full Text Available A mathematical model of a thin circular sandwich plate being under the vertical load is proposed. The model employs the finite element method and takes advantage of an axisymmetric finite element that leads to the small dimension of the resulting stiffness matrix and sufficient accuracy for practical calculations. The analytical expressions for computing local stiffness matrices are found, which can significantly speed up the process of forming the global stiffness matrix and increase the accuracy of calculations. A software is under development and verification. The discrepancy between the results of the mathematical model and those of analytical formulas for homogeneous thin circularsandwich plates does not exceed 7%.
COMPUTER EXPERIMENTS WITH FINITE ELEMENTS OF HIGHER ORDER
Directory of Open Access Journals (Sweden)
Khomchenko A.
2017-12-01
Full Text Available The paper deals with the problem of constructing the basic functions of a quadrilateral finite element of the fifth order by the means of the computer algebra system Maple. The Lagrangian approximation of such a finite element contains 36 nodes: 20 nodes perimeter and 16 internal nodes. Alternative models with reduced number of internal nodes are considered. Graphs of basic functions and cognitive portraits of lines of zero level are presented. The work is aimed at studying the possibilities of using modern information technologies in the teaching of individual mathematical disciplines.
[Finite element analysis on stress change of lumbar spine].
Yan, Jia-zhi; Wu, Zhi-hong; Wang, Xue-song; Xing, Ze-jun; Song, Hai-feng; Zhao, Yu; Zhang, Jian-guo; Wang, Yi-peng; Qiu, Gui-xing
2009-05-05
To build a 3D finite element model of whole lumbar spine and verify its efficiency and analyze the biomechanical change of L3-4 motion segment. L1-L5 segment data were obtained from computed tomography (CT) scans of the lumbar spine of a 40-year-old man with no abnormal findings. A three-dimensional finite element model of the human whole lumbar spine was built in the Mimics and the ABAQUS software. The model was composed of bony vertebrae, articulating facets, intervertebral disc and associated ligaments. The basic stress analysis of L3-4 motion segment was made under the considerations of different material properties of bone, ligaments and facet joints contacting frictional property. The stress on annulus fiber, nucleus pulposus, endplate and facet joints under axial pressure (0.3 MPa, 0.5 MPa, 1.0 MPa, 2.0 MPa & 4.0 MPa) were analyzed. A three-dimensional finite element model of human L3-L4 motion segment has 272, 619 elements, the stresses were higher in the posterior of annulus fiber, the Max pressure stress (S33) distributed in nucleus pulposus and the center of endplate. The stresses increased as axial pressure rose. 3D finite element model of whole lumbar spine and L3-4 motion segment were established successfully and the stress analyses were feasible and reliable.
Constitutive Behavior and Finite Element Analysis of FRP Composite and Concrete Members.
Ann, Ki Yong; Cho, Chang-Geun
2013-09-10
The present study concerns compressive and flexural constitutive models incorporated into an isoparametric beam finite element scheme for fiber reinforced polymer (FRP) and concrete composites, using their multi-axial constitutive behavior. The constitutive behavior of concrete was treated in triaxial stress states as an orthotropic hypoelasticity-based formulation to determine the confinement effect of concrete from a three-dimensional failure surface in triaxial stress states. The constitutive behavior of the FRP composite was formulated from the two-dimensional classical lamination theory. To predict the flexural behavior of circular cross-section with FRP sheet and concrete composite, a layered discretization of cross-sections was incorporated into nonlinear isoparametric beam finite elements. The predicted constitutive behavior was validated by a comparison to available experimental results in the compressive and flexural beam loading test.
Comparison study of finite element and basis set methods for finite size scaling
International Nuclear Information System (INIS)
Antillon, Edwin; Moy, Winton; Wei Qi; Kais, Sabre
2009-01-01
We compare two methods of obtaining critical parameters for a quantum Hamiltonian using a finite size scaling approach. A finite element and basis set method were used in conjunction with the finite size scaling to obtain the critical parameters for the Hulthen potential. The critical parameters obtained analytically were the coupling constant λ c =(1/2), the critical exponents for the energy α=2 and for the 'correlation length 'ν=1. The extrapolated results for finite size scaling with the basis set method are λ c =0.499 99, α=1.9960, and ν=0.999 10. The results for the finite element solutions are λ c =0.501 84, α=1.999 93, and ν=1.000 79 for the linear interpolation and λ c =0.500 00, α=2.000 11, and ν=1.000 32 for the Hermite interpolation. The results for each method compare very well with the analytical results obtained for the Hulthen potential. However, the finite element method is easier to implement and may be combined with ab initio and density functional theory to obtain quantum critical parameters for more complex systems.
Fluid structure interaction in electrohydraulic servovalve: a finite element approach
Hiremath, Somashekhar S.; Singaperumal, M.
2010-01-01
Electrohydraulic servovalves (EHSV) promise unique application opportunities and high performance, unmatched by other drive technologies. Typical applications include aerospace, robotic manipulators, motion simulators, injection molding, CNC machines and material testing machines. EHSV available are either a flapper/nozzle type or a jet pipe type. In the present paper an attempt has been made to study the dynamics of jet pipe EHSV with built-in mechanical feedback using Finite Element Method (FEM). In jet pipe EHSV, the dynamics of spool greatly depends on pressure recovery and hence the fluid flow at spool ends. The effect of pressure recovery on spool dynamics is studied using FEM by creating the fluid-structure-interaction. The mechanical parts were created using general purpose finite elements like shell, beam, and solid elements while fluid cavities were created using hydrostatic fluid elements. The analysis was carried out using the commercially available FE code ABAQUS. The jet pipe and spool dynamics are presented in the paper.
Solving nonlinear nonstationary problem of heat-conductivity by finite element method
Directory of Open Access Journals (Sweden)
Антон Янович Карвацький
2016-11-01
Full Text Available Methodology and effective solving algorithm of non-linear dynamic problems of thermal and electric conductivity with significant temperature dependence of thermal and physical properties are given on the basis of finite element method (FEM and Newton linearization method. Discrete equations system FEM was obtained with the use of Galerkin method, where the main function is the finite element form function. The methodology based on successive solving problems of thermal and electrical conductivity has been examined in the work in order to minimize the requirements for calculating resources (RAM. in particular. Having used Mathcad software original programming code was developed to solve the given problem. After investigation of the received results, comparative analyses of accurate solution data and results of numerical solutions, obtained with the use of Matlab programming products, was held. The geometry of one fourth part of the finite sized cylinder was used to test the given numerical model. The discretization of the calculation part was fulfilled using the open programming software for automated Gmsh nets with tetrahedral units, while ParaView, which is an open programming code as well, was used to visualize the calculation results. It was found out that the maximum value violation of potential and temperature determination doesn`t exceed 0,2-0,83% in the given work according to the problem conditions
Directory of Open Access Journals (Sweden)
José Miguel Vargas-Félix
2012-11-01
Full Text Available The Finite Element Method (FEM is used to solve problems like solid deformation and heat diffusion in domains with complex geometries. This kind of geometries requires discretization with millions of elements; this is equivalent to solve systems of equations with sparse matrices and tens or hundreds of millions of variables. The aim is to use computer clusters to solve these systems. The solution method used is Schur substructuration. Using it is possible to divide a large system of equations into many small ones to solve them more efficiently. This method allows parallelization. MPI (Message Passing Interface is used to distribute the systems of equations to solve each one in a computer of a cluster. Each system of equations is solved using a solver implemented to use OpenMP as a local parallelization method.The Finite Element Method (FEM is used to solve problems like solid deformation and heat diffusion in domains with complex geometries. This kind of geometries requires discretization with millions of elements; this is equivalent to solve systems of equations with sparse matrices and tens or hundreds of millions of variables. The aim is to use computer clusters to solve these systems. The solution method used is Schur substructuration. Using it is possible to divide a large system of equations into many small ones to solve them more efficiently. This method allows parallelization. MPI (Message Passing Interface is used to distribute the systems of equations to solve each one in a computer of a cluster. Each system of equations is solved using a solver implemented to use OpenMP as a local parallelization method.
Magnetoelastic energy calculations for finite element analysis of superconductors
International Nuclear Information System (INIS)
Akin, J.E.; Stoddart, W.C.T.
1977-01-01
It has been shown that the high current density and magnetic flux density associated with superconductors can make the magnetoelastic energy a significant portion of the total energy in a structural system. The present work presents a procedure for evaluating this magnetoelastic energy for use in the finite element analysis of the structural dynamics and stability of the superconductor. A simple, special case of the element matrices is illustrated
A finite element field solver for dipole modes
International Nuclear Information System (INIS)
Nelson, E.M.
1992-01-01
A finite element field solver for dipole modes in axisymmetric structures has been written. The second-order elements used in this formulation yield accurate mode frequencies with no spurious modes. Quasi-periodic boundaries are included to allow travelling waves in periodic structures. The solver is useful in applications requiring precise frequency calculations such as detuned accelerator structures for linear colliders. Comparisons are made with measurements and with the popular but less accurate field solver URMEL. (author). 7 refs., 4 figs
A particle finite element method for machining simulations
Sabel, Matthias; Sator, Christian; Müller, Ralf
2014-07-01
The particle finite element method (PFEM) appears to be a convenient technique for machining simulations, since the geometry and topology of the problem can undergo severe changes. In this work, a short outline of the PFEM-algorithm is given, which is followed by a detailed description of the involved operations. The -shape method, which is used to track the topology, is explained and tested by a simple example. Also the kinematics and a suitable finite element formulation are introduced. To validate the method simple settings without topological changes are considered and compared to the standard finite element method for large deformations. To examine the performance of the method, when dealing with separating material, a tensile loading is applied to a notched plate. This investigation includes a numerical analysis of the different meshing parameters, and the numerical convergence is studied. With regard to the cutting simulation it is found that only a sufficiently large number of particles (and thus a rather fine finite element discretisation) leads to converged results of process parameters, such as the cutting force.
Aranha: a 2D mesh generator for triangular finite elements
International Nuclear Information System (INIS)
Fancello, E.A.; Salgado, A.C.; Feijoo, R.A.
1990-01-01
A method for generating unstructured meshes for linear and quadratic triangular finite elements is described in this paper. Some topics on the C language data structure used in the development of the program Aranha are also presented. The applicability for adaptive remeshing is shown and finally several examples are included to illustrate the performance of the method in irregular connected planar domains. (author)
Finite Element Method for Linear Multiterm Fractional Differential Equations
Directory of Open Access Journals (Sweden)
Abdallah A. Badr
2012-01-01
Full Text Available We consider the linear multiterm fractional differential equation (fDE. Existence and uniqueness of the solution of such equation are discussed. We apply the finite element method (FEM to obtain the numerical solution of this equation using Galerkin approach. A comparison, through examples, between our techniques and other previous numerical methods is established.
Finite Element Method for Linear Multiterm Fractional Differential Equations
Badr, Abdallah A.
2012-01-01
We consider the linear multiterm fractional differential equation (fDE). Existence and uniqueness of the solution of such equation are discussed. We apply the finite element method (FEM) to obtain the numerical solution of this equation using Galerkin approach. A comparison, through examples, between our techniques and other previous numerical methods is established.
Finite Element Vibration and Dynamic Response Analysis of Engineering Structures
Directory of Open Access Journals (Sweden)
Jaroslav Mackerle
2000-01-01
Full Text Available This bibliography lists references to papers, conference proceedings, and theses/dissertations dealing with finite element vibration and dynamic response analysis of engineering structures that were published from 1994 to 1998. It contains 539 citations. The following types of structures are included: basic structural systems; ground structures; ocean and coastal structures; mobile structures; and containment structures.
A Finite Element Approach to Modeling Abrasive Wear Modes
Woldman, M.; van der Heide, Emile; Tinga, Tiedo; Masen, Marc Arthur
2016-01-01
Machine components operating in sandy environments will wear because of the abrasive interaction with sand particles. In this work, a method is derived to predict the amount of wear caused by such abrasive action, in order to improve the maintenance concept of the components. A finite element model
Finite element concept to derive isostatic residual maps ...
Indian Academy of Sciences (India)
lies are isolated so as to construct the isostatic residual maps. Very accurate geophysical studies have ... Finite element concept; isostatic anomaly; Gorda Plate; Sierra Nevada. Proc. Indian Acad. Sci. (Earth Planet. Sci.), 110 .... The continuous line is obtained by regression analysis. The broken line shows the. FEA regional ...
(ajst) finite element analysis of a fluid-structure
African Journals Online (AJOL)
liquid flow. The fluid-structure interaction is found to be governed by Poisson's ratio. In this steady finite element method based on Galerkin formulation is applied. Numerical results show a good similarity with those of the literature obtained by the characteristics method. Key words : Fluid-structure interaction, flexible pipe, ...
An Orthogonal Residual Procedure for Nonlinear Finite Element Equations
DEFF Research Database (Denmark)
Krenk, S.
A general and robust solution procedure for nonlinear finite element equations with limit points is developed. At each equilibrium iteration the magnitude of the load is adjusted such that the residual force is orthogonal to the current displacement increment from the last equilibrium state...
Finite Element Analysis of Boron Diffusion in Wooden Poles
DEFF Research Database (Denmark)
Krabbenhøft, Kristian; Hoffmeyer, P.; Bechgaard, C.
2003-01-01
The problem of describing the migration of dissolved boron in wood is treated with special reference to the commonly used remedial treatment of wooden poles. The governing equations are derived and discussed together with some of the material parameters required. The equations are solved by the f...... by the finite element method and, finally, results showing the effect of different treatment strategies are presented....
2-D Finite Element Analysis of Massive RC Structures
DEFF Research Database (Denmark)
Saabye Ottosen, Niels
1982-01-01
Nonlinear analysis of concrete structures using finite elements is discussed. The applications include a thick-walled top-closure for a pressure vessel as well as the delicate problems of beams failing in shear. The top-closure analysis evaluates the effect of two different failure criteria...
A 2-dimensional finite element simulation of cooling in castings ...
African Journals Online (AJOL)
In this work we present a 2 dimensional finite element simulation of the cooling process in castings. A one way coupling +technique was used to predict the behavior of thermal strains and stresses from the temperature history of casting. The temperature distribution across the casting at different times, the cooling pattern of ...
Finite element analysis of boron diffusion in wooden Poles
DEFF Research Database (Denmark)
Krabbenhøft, Kristian; Hoffmeyer, Preben; Bechgaard, Carl
2004-01-01
The problem of describing the migration of dissolved boron in wood is treated with special reference to the commonly used remedial treatment of wooden poles. The governing equations are derived and discussed together with some of the material parameters required. The equations are solved by the f...... by the finite element method and, finally, results showing the effect of different treatment strategies are presented....
The Development of Piezoelectric Accelerometers Using Finite Element Analysis
DEFF Research Database (Denmark)
Liu, Bin
1999-01-01
This paper describes the application of Finite Element (FE) approach for the development of piezoelectric accelerometers. An accelerometer is simulated using the FE approach as an example. Good agreement is achieved between simulated results and calibrated results. It is proved that the FE modeling...
Efficient implicit finite element analysis of sheet forming processes
van den Boogaard, Antonius H.; Meinders, Vincent T.; Huetink, Han
2003-01-01
The computation time for implicit finite element analyses tends to increase disproportionally with increasing problem size. This is due to the repeated solution of linear sets of equations, if direct solvers are used. By using iterative linear equation solvers the total analysis time can be reduced
Bending analysis of laminated composite plates using finite element ...
African Journals Online (AJOL)
In this paper, a number of finite element analyses have been carried out for various side-to-thickness ratios, aspect ratios and modulus ratios to study the effect of transverse shear deformation on deflection and stresses of laminated composite plates subjected to uniformly distributed load. The numerical results showed, ...
Finite Element Analysis of Boron Diffusion in Wooden Poles
DEFF Research Database (Denmark)
Krabbenhøft, Kristian; Hoffmeyer, Preben; Bechgaard, Carl
2004-01-01
The problem of describing the migration of dissolved boron in wood is treated with special reference to the commonly used remedial treatment of wooden poles. The governing equations are derived and discussed together with some of the material parameters required. The equations are solved by the f...... by the finite element method and, finally, results showing the effect of different treatment strategies are presented....
Discontinuous Galerkin finite element methods for hyperbolic differential equations
van der Vegt, Jacobus J.W.; van der Ven, H.; Boelens, O.J.; Boelens, O.J.; Toro, E.F.
2002-01-01
In this paper a suryey is given of the important steps in the development of discontinuous Galerkin finite element methods for hyperbolic partial differential equations. Special attention is paid to the application of the discontinuous Galerkin method to the solution of the Euler equations of gas
Finite element simulation of laser transmission welding of dissimilar ...
African Journals Online (AJOL)
Now-a-days, metal to plastic micro-welding is of great interest in the field of biomedical and electronics applications. Laser transmission welding (LTW) has emerged as the most suitable technique for such applications. In this paper, a three-dimensional finite element (FE) thermal model is developed to simulate the laser ...
Assessment of Finite Element Approximations for Nonlinear Flexible Multibody Dynamics
1991-05-01
dynamics. Two nonlinear beam finite elements are consistently derived from virtual work principle using Bernoulli Euler and Timoshenko beam...and dynamic buckling. Equations of motion are derived for rigid central body with flexible appendage using virtual work principle. Virtual work principle
Design, development and use of the finite element machine
Adams, L. M.; Voigt, R. C.
1983-01-01
Some of the considerations that went into the design of the Finite Element Machine, a research asynchronous parallel computer are described. The present status of the system is also discussed along with some indication of the type of results that were obtained.
Finite element modeling of intermuscular interactions and myofascial force transmission
Yucesoy, C.A.; Koopman, Hubertus F.J.M.; Huijing, P.A.J.B.M.; Grootenboer, H.J.
2001-01-01
A finite element muscle model to study the principles of intermuscular myofascial force transmission is developed. The results obtained explain force differences at the distal and proximal tendons of muscles that have mechanical interaction. This is in agreement with experimental findings in other
Finite element and perturbative study of buffered leaky planar waveguides
Uranus, H.P.; Hoekstra, Hugo; van Groesen, Embrecht W.C.
2005-01-01
The effects of the presence of a high-index medium in the proximity of planar waveguiding structures that makes up buffered leaky waveguides, were studied using a finite element method (FEM) leaky mode solver and a perturbation method. Various phenomena observed in the FEM results were interpreted
An implicit discontinuous Galerkin finite element model for water waves
van der Vegt, Jacobus J.W.; Tomar, S.K.; Yao, Z.H.; Yuan, M.W.; Zhong, W.X.
2004-01-01
An overview is given of a discontinuous Galerkin finite element method for linear free surface water waves. The method uses an implicit time integration method which is unconditionally stable and does not suffer from the frequently encountered mesh dependent saw-tooth type instability at the free
Hands on applied finite element analysis application with ANSYS
Arslan, Mehmet Ali
2015-01-01
Hands on Applied Finite Element Analysis Application with Ansys is truly an extraordinary book that offers practical ways of tackling FEA problems in machine design and analysis. In this book, 35 good selection of example problems have been presented, offering students the opportunity to apply their knowledge to real engineering FEA problem solutions by guiding them with real life hands on experience.
The future of the finite element method in geotechnics
Brinkgreve, R.B.J.
2012-01-01
In this presentation a vision is given on tlie fiiture of the finite element method (FEM) for geotechnical engineering and design. In the past 20 years the FEM has proven to be a powerful method for estimating deformation, stability and groundwater flow in geoteclmical stmctures. Much has been
A direct implementation for influence lines in finite element software
DEFF Research Database (Denmark)
Jepsen, Michael S.; Damkilde, Lars
2014-01-01
The use of influence lines is a recognized method for determining the critical design load conditions and this paper shows a direct method for applying influence lines in any structural finite element software. The main idea is to equate displacement or angular discontinuities with nodal forces...
Finite element analysis of tubular joints in offshore structures ...
African Journals Online (AJOL)
... representing a 2-D model of the joint between the brace and the chord walls. This was subsequently followed but finite element analysis of six tubular joints. A global analysis was initially undertaken, then the submodel analysis carried in the areas of stress concentration. Journal of Civil Engineering, JKUAT (2001) Vol 6, ...
Piezoelectric Accelerometers Modification Based on the Finite Element Method
DEFF Research Database (Denmark)
Liu, Bin; Kriegbaum, B.
2000-01-01
The paper describes the modification of piezoelectric accelerometers using a Finite Element (FE) method. Brüel & Kjær Accelerometer Type 8325 is chosen as an example to illustrate the advanced accelerometer development procedure. The deviation between the measurement and FE simulation results...
A Monte Carlo adapted finite element method for dislocation ...
Indian Academy of Sciences (India)
P Zakian
2017-10-10
Oct 10, 2017 ... simulations are proposed. Various comparisons are examined to illustrate the capability of both methods for random simulation of faults. Keywords. Monte Carlo simulation; stochastic modeling; split node technique; finite element method; earthquake fault dislocation. 1. Introduction. In material science, a ...
Reliability-Based Shape Optimization using Stochastic Finite Element Methods
DEFF Research Database (Denmark)
Enevoldsen, Ib; Sørensen, John Dalsgaard; Sigurdsson, G.
1991-01-01
stochastic fields (e.g. loads and material parameters such as Young's modulus and the Poisson ratio). In this case stochastic finite element techniques combined with FORM analysis can be used to obtain measures of the reliability of the structural systems, see Der Kiureghian & Ke (6) and Liu & Der Kiureghian...
Finite Element Analysis of a Free-Standing Staircase | Ajagbe ...
African Journals Online (AJOL)
The existing approximate analytical methods of analyzing free-standing stairs fail to predict the distribution of any stress resultant and the actual three dimensional behavior of the stair slab system. A more rationale but simple and accurate method of analysis based on finite element method is presented. Plate flexural ...
Finite element modelling of elastic intraplate stresses due to ...
Indian Academy of Sciences (India)
Finite element modelling of elastic intraplate stresses due to heterogeneities in crustal density and mechanical properties for the Jabalpur earthquake region, central India. A Manglik1,∗. , S Thiagarajan. 1. , A V Mikhailova. 2 and Yu Rebetsky. 2. 1. National Geophysical Research Institute, Uppal Road, Hyderabad 500 007, ...
Finite element concept to derive isostatic residual maps ...
Indian Academy of Sciences (India)
A new space-domain operator based on the shape function concept of finite element analysis has been developed to derive the residual maps of the Gorda Plate of western United States. The technique does not require explicit assumptions on isostatic models. Besides delineating the Gorda Plate boundary, the residual ...
Superconvergence for tetrahedral quadratic finite element methods for elliptic equations
Brandts, J.H.; Krizek, M.
2005-01-01
For a model elliptic boundary value problem we will prove that on strongly regular families of uniform tetrahedral partitions of the domain, the gradient of the quadratic finite element approximation is superclose to the gradient of the quadratic Lagrange interpolant of the exact solution. This
A mixed finite element method for particle simulation in lasertron
International Nuclear Information System (INIS)
Le Meur, G.
1987-03-01
A particle simulation code is being developed with the aim to treat the motion of charged particles in electromagnetic devices, such as Lasertron. The paper describes the use of mixed finite element methods in computing the field components, without derivating them from scalar or vector potentials. Graphical results are shown
Finite element model to study two dimensional unsteady state ...
African Journals Online (AJOL)
Kunal Pathak
2015-10-20
Oct 20, 2015 ... Excess buffer;. Finite element method. Abstract The calcium signaling plays a crucial role in expansion and contraction of cardiac myo- cytes. This calcium signaling is achieved by calcium diffusion, buffering mechanisms and influx in cardiac myocytes. The various calcium distribution patterns required for ...
Finite element simulations of two rock mechanics tests
International Nuclear Information System (INIS)
Dahlke, H.J.; Lott, S.A.
1986-04-01
Rock mechanics tests are performed to determine in situ stress conditions and material properties of an underground rock mass. To design stable underground facilities for the permanent storage of high-level nuclear waste, determination of these properties and conditions is a necessary first step. However, before a test and its associated equipment can be designed, the engineer needs to know the range of expected values to be measured by the instruments. Sensitivity studies by means of finite element simulations are employed in this preliminary design phase to evaluate the pertinent parameters and their effects on the proposed measurements. The simulations, of two typical rock mechanics tests, the plate bearing test and the flat-jack test, by means of the finite element analysis, are described. The plate bearing test is used to determine the rock mass deformation modulus. The flat-jack test is used to determine the in situ stress conditions of the host rock. For the plate bearing test, two finite element models are used to simulate the classic problem of a load on an elastic half space and the actual problem of a plate bearing test in an underground tunnel of circular cross section. For the flat-jack simulation, a single finite element model is used to simulate both horizontal and vertical slots. Results will be compared to closed-form solutions available in the literature
Finite Element Modelling Of Solidification Of Zinc Alloy | Osinkolu ...
African Journals Online (AJOL)
The solidification process of Zinc alloy is modelled by solving heat transfer equations with the aid of finite element method (FEM) using appropriate boundary conditions at the mould walls. The commercial software, Matlab, has been used to model the solidification process. The temperature profiles for each casting condition ...
Bending analysis of laminated composite plates using finite element ...
African Journals Online (AJOL)
user
In the past, the structural behavior of plates and shells using the finite element method has been studied by a variety of approaches. Choudhary and Tungikar ... (2011) presented the nonlinear static analysis of a rectangular laminated composite thick plate resting on nonlinear two-parameter elastic foundation with cubic.
Can finite element models detect clinically inferior cemented hip implants?
Stolk, J.; Maher, S.A.; Verdonschot, N.J.J.; Prendergast, P.J.; Huiskes, R.
2003-01-01
Rigorous preclinical testing of cemented hip prostheses against the damage accumulation failure scenario will reduce the incidence of aseptic loosening. For that purpose, a finite element simulation is proposed that predicts damage accumulation in the cement mantle and prosthetic migration. If the
Finite element analysis of one–dimensional hydrodynamic ...
African Journals Online (AJOL)
In this research work, we consider the one dimensional hydrodynamic dispersion of a reactive solute in electroosmotic flow. We present results demonstrating the utility of finite element methods to simulate and visualize hydrodynamic dispersion in the electroosmotic flow. From examination of concentration profile, effective ...
Finite element concept to derive isostatic residual maps-Application ...
Indian Academy of Sciences (India)
A new space-domain operator based on the shape function concept of finite element analysis has been developed to derive the residual maps of the Gorda Plate of western United States. The technique does not require explicit assumptions on isostatic models. Besides delineating the Gorda Plate boundary, the residual ...
Finite element analysis of bone loss around failing implants
Wolff, J.E.H.; Narra, N.; Antalainen, A.K.; Valasek, J.; Kaiser, J.; Sandor, G.K.; Marcian, P.
2014-01-01
Dental implants induce diverse forces on their surrounding bone. However, when excessive unphysiological forces are applied, resorption of the neighbouring bone may occur. The aim of this study was to assess possible causes of bone loss around failing dental implants using finite element analysis. A
Appendix F : finite element analysis of end region.
2013-03-01
FE (finite element) modeling was conducted to 1) provide a better understanding of the : elastic behavior of the end region prior to cracking and 2) to evaluate the effects of bearing pad : stiffness and width on end region elastic stresses. The FEA ...
Finite element investigation of the prestressed jointed concrete ...
African Journals Online (AJOL)
Precast prestressed concrete pavement (PCP) technology is of recent origin, and the information on PCP performance is not available in literature. This research presents a finite-element analysis of the potential benefits of prestressing on the jointed concrete pavements (JCP). With using a 3-dimensional (3D) ...
Material Models for the Human Torso Finite Element Model
2018-04-04
ARL-TR-8338 ● Apr 2018 US Army Research Laboratory Material Models for the Human Torso Finite Element Model by Carolyn E...longer needed. Do not return it to the originator. ARL-TR-8338 ● Apr 2018 US Army Research Laboratory Material Models for the...Weapons and Materials Research Directorate, ARL Approved for public release; distribution is unlimited. ii REPORT
finite element model for predicting residual stresses in shielded
African Journals Online (AJOL)
eobe
Diffractometer (XRD 6000). From the Finite Element Model Simulation, the transverse residual stress in the x ... Keywords: Residual stress, 3D FEM, Shielded manual metal arc welding, Low Carbon Steel (ASTM A36), X-Ray diffraction, degree of ..... I. ''Residual stress effects on fatigue life of welded structures using LEFM'',.
Finite element analyses of wood laminated composite poles
Cheng Piao; Todd F. Shupe; R.C. Tang; Chung Y. Hse
2005-01-01
Finite element analyses using ANSYS were conducted on orthotropic, polygonal, wood laminated composite poles subjected to a body force and a concentrated load at the free end. Deflections and stress distributions of small-scale and full-size composite poles were analyzed and compared to the results obtained in an experimental study. The predicted deflection for both...
GRIZ: Visualization of finite element analysis results on unstructured grids
International Nuclear Information System (INIS)
Dovey, D.; Loomis, M.D.
1994-01-01
GRIZ is a general-purpose post-processing application that supports interactive visualization of finite element analysis results on three-dimensional unstructured grids. GRIZ includes direct-to-videodisc animation capabilities and is being used as a production tool for creating engineering animations
CSIR Research Space (South Africa)
Suliman, Ridhwaan
2015-01-01
Full Text Available A fully-coupled partitioned finite volume–finite volume and hybrid finite volume–finite element fluid-structure interaction scheme is presented. The fluid domain is modelled as a viscous incompressible isothermal region governed by the Navier...
Integral finite element analysis of turntable bearing with flexible rings
Deng, Biao; Liu, Yunfei; Guo, Yuan; Tang, Shengjin; Su, Wenbin; Lei, Zhufeng; Wang, Pengcheng
2018-03-01
This paper suggests a method to calculate the internal load distribution and contact stress of the thrust angular contact ball turntable bearing by FEA. The influence of the stiffness of the bearing structure and the plastic deformation of contact area on the internal load distribution and contact stress of the bearing is considered. In this method, the load-deformation relationship of the rolling elements is determined by the finite element contact analysis of a single rolling element and the raceway. Based on this, the nonlinear contact between the rolling elements and the inner and outer ring raceways is same as a nonlinear compression spring and bearing integral finite element analysis model including support structure was established. The effects of structural deformation and plastic deformation on the built-in stress distribution of slewing bearing are investigated on basis of comparing the consequences of load distribution, inner and outer ring stress, contact stress and other finite element analysis results with the traditional bearing theory, which has guiding function for improving the design of slewing bearing.
Dedicated finite elements for electrode thin films on quartz resonators.
Srivastava, Sonal A; Yong, Yook-Kong; Tanaka, Masako; Imai, Tsutomu
2008-08-01
The accuracy of the finite element analysis for thickness shear quartz resonators is a function of the mesh resolution; the finer the mesh resolution, the more accurate the finite element solution. A certain minimum number of elements are required in each direction for the solution to converge. This places a high demand on memory for computation, and often the available memory is insufficient. Typically the thickness of the electrode films is very small compared with the thickness of the resonator itself; as a result, electrode elements have very poor aspect ratios, and this is detrimental to the accuracy of the result. In this paper, we propose special methods to model the electrodes at the crystal interface of an AT cut crystal. This reduces the overall problem size and eliminates electrode elements having poor aspect ratios. First, experimental data are presented to demonstrate the effects of electrode film boundary conditions on the frequency-temperature curves of an AT cut plate. Finite element analysis is performed on a mesh representing the resonator, and the results are compared for testing the accuracy of the analysis itself and thus validating the results of analysis. Approximations such as lumping and Guyan reduction are then used to model the electrode thin films at the electrode interface and their results are studied. In addition, a new approximation called merging is proposed to model electrodes at the electrode interface.
Analysis of a discrete element method and coupling with a compressible fluid flow method
International Nuclear Information System (INIS)
Monasse, L.
2011-01-01
This work aims at the numerical simulation of compressible fluid/deformable structure interactions. In particular, we have developed a partitioned coupling algorithm between a Finite Volume method for the compressible fluid and a Discrete Element method capable of taking into account fractures in the solid. A survey of existing fictitious domain methods and partitioned algorithms has led to choose an Embedded Boundary method and an explicit coupling scheme. We first showed that the Discrete Element method used for the solid yielded the correct macroscopic behaviour and that the symplectic time-integration scheme ensured the preservation of energy. We then developed an explicit coupling algorithm between a compressible inviscid fluid and an un-deformable solid. Mass, momentum and energy conservation and consistency properties were proved for the coupling scheme. The algorithm was then extended to the coupling with a deformable solid, in the form of a semi implicit scheme. Finally, we applied this method to unsteady inviscid flows around moving structures: comparisons with existing numerical and experimental results demonstrate the excellent accuracy of our method. (author) [fr
Yang, R.; Zelyak, O.; Fallone, B. G.; St-Aubin, J.
2018-02-01
Angular discretization impacts nearly every aspect of a deterministic solution to the linear Boltzmann transport equation, especially in the presence of magnetic fields, as modeled by a streaming operator in angle. In this work a novel stabilization treatment of the magnetic field term is developed for an angular finite element discretization on the unit sphere, specifically involving piecewise partitioning of path integrals along curved element edges into uninterrupted segments of incoming and outgoing flux, with outgoing components updated iteratively. Correct order-of-accuracy for this angular framework is verified using the method of manufactured solutions for linear, quadratic, and cubic basis functions in angle. Higher order basis functions were found to reduce the error especially in strong magnetic fields and low density media. We combine an angular finite element mesh respecting octant boundaries on the unit sphere to spatial Cartesian voxel elements to guarantee an unambiguous transport sweep ordering in space. Accuracy for a dosimetrically challenging scenario involving bone and air in the presence of a 1.5 T parallel magnetic field is validated against the Monte Carlo package GEANT4. Accuracy and relative computational efficiency were investigated for various angular discretization parameters. 32 angular elements with quadratic basis functions yielded a reasonable compromise, with gamma passing rates of 99.96% (96.22%) for a 2%/2 mm (1%/1 mm) criterion. A rotational transformation of the spatial calculation geometry is performed to orient an arbitrary magnetic field vector to be along the z-axis, a requirement for a constant azimuthal angular sweep ordering. Working on the unit sphere, we apply the same rotational transformation to the angular domain to align its octants with the rotated Cartesian mesh. Simulating an oblique 1.5 T magnetic field against GEANT4 yielded gamma passing rates of 99.42% (95.45%) for a 2%/2 mm (1%/1 mm) criterion.
Yang, R; Zelyak, O; Fallone, B G; St-Aubin, J
2018-01-30
Angular discretization impacts nearly every aspect of a deterministic solution to the linear Boltzmann transport equation, especially in the presence of magnetic fields, as modeled by a streaming operator in angle. In this work a novel stabilization treatment of the magnetic field term is developed for an angular finite element discretization on the unit sphere, specifically involving piecewise partitioning of path integrals along curved element edges into uninterrupted segments of incoming and outgoing flux, with outgoing components updated iteratively. Correct order-of-accuracy for this angular framework is verified using the method of manufactured solutions for linear, quadratic, and cubic basis functions in angle. Higher order basis functions were found to reduce the error especially in strong magnetic fields and low density media. We combine an angular finite element mesh respecting octant boundaries on the unit sphere to spatial Cartesian voxel elements to guarantee an unambiguous transport sweep ordering in space. Accuracy for a dosimetrically challenging scenario involving bone and air in the presence of a 1.5 T parallel magnetic field is validated against the Monte Carlo package GEANT4. Accuracy and relative computational efficiency were investigated for various angular discretization parameters. 32 angular elements with quadratic basis functions yielded a reasonable compromise, with gamma passing rates of 99.96% (96.22%) for a 2%/2 mm (1%/1 mm) criterion. A rotational transformation of the spatial calculation geometry is performed to orient an arbitrary magnetic field vector to be along the z-axis, a requirement for a constant azimuthal angular sweep ordering. Working on the unit sphere, we apply the same rotational transformation to the angular domain to align its octants with the rotated Cartesian mesh. Simulating an oblique 1.5 T magnetic field against GEANT4 yielded gamma passing rates of 99.42% (95.45%) for a 2%/2 mm (1%/1 mm) criterion.
Finite element analysis of degraded concrete structures - Workshop proceedings
International Nuclear Information System (INIS)
1999-09-01
This workshop is related to the finite element analysis of degraded concrete structures. It is composed of three sessions. The first session (which title is: the use of finite element analysis in safety assessments) comprises six papers which titles are: Historical Development of Concrete Finite Element Modeling for Safety Evaluation of Accident-Challenged and Aging Concrete Structures; Experience with Finite Element Methods for Safety Assessments in Switzerland; Stress State Analysis of the Ignalina NPP Confinement System; Prestressed Containment: Behaviour when Concrete Cracking is Modelled; Application of FEA for Design and Support of NPP Containment in Russia; Verification Problems of Nuclear Installations Safety Software of Strength Analysis (NISS SA). The second session (title: concrete containment structures under accident loads) comprises seven papers which titles are: Two Application Examples of Concrete Containment Structures under Accident Load Conditions Using Finite Element Analysis; What Kind of Prediction for Leak rates for Nuclear Power Plant Containments in Accidental Conditions; Influence of Different Hypotheses Used in Numerical Models for Concrete At Elevated Temperatures on the Predicted Behaviour of NPP Core Catchers Under Severe Accident Conditions; Observations on the Constitutive Modeling of Concrete Under Multi-Axial States at Elevated Temperatures; Analyses of a Reinforced Concrete Containment with Liner Corrosion Damage; Program of Containment Concrete Control During Operation for the Temelin Nuclear Power Plant; Static Limit Load of a Deteriorated Hyperbolic Cooling Tower. The third session (concrete structures under extreme environmental load) comprised five papers which titles are: Shear Transfer Mechanism of RC Plates After Cracking; Seismic Back Calculation of an Auxiliary Building of the Nuclear Power Plant Muehleberg, Switzerland; Seismic Behaviour of Slightly Reinforced Shear Wall Structures; FE Analysis of Degraded Concrete
Plane-wave basis finite elements and boundary elements for three-dimensional wave scattering.
Perrey-Debain, E; Laghrouche, O; Bettess, P; Trevelyan, J
2004-03-15
Classical finite-element and boundary-element formulations for the Helmholtz equation are presented, and their limitations with respect to the number of variables needed to model a wavelength are explained. A new type of approximation for the potential is described in which the usual finite-element and boundary-element shape functions are modified by the inclusion of a set of plane waves, propagating in a range of directions evenly distributed on the unit sphere. Compared with standard piecewise polynomial approximation, the plane-wave basis is shown to give considerable reduction in computational complexity. In practical terms, it is concluded that the frequency for which accurate results can be obtained, using these new techniques, can be up to 60 times higher than that of the conventional finite-element method, and 10 to 15 times higher than that of the conventional boundary-element method.
Residual-based a posteriori error estimation for multipoint flux mixed finite element methods
Du, Shaohong
2015-10-26
A novel residual-type a posteriori error analysis technique is developed for multipoint flux mixed finite element methods for flow in porous media in two or three space dimensions. The derived a posteriori error estimator for the velocity and pressure error in L-norm consists of discretization and quadrature indicators, and is shown to be reliable and efficient. The main tools of analysis are a locally postprocessed approximation to the pressure solution of an auxiliary problem and a quadrature error estimate. Numerical experiments are presented to illustrate the competitive behavior of the estimator.
Parametric Design Optimization Of A Novel Permanent Magnet Coupling Using Finite Element Analysis
DEFF Research Database (Denmark)
Högberg, Stig; Mijatovic, Nenad; Holbøll, Joachim
2014-01-01
A parametric design optimization routine has been applied to a novel magnetic coupling with improved recyclability. Coupling designs are modeled in a 3-D finite element environ- ment, and evaluated by three design objectives: pull-out torque, torque density by magnet mass, and torque density...... by total mass. Magnet and outer core thicknesses are varied discretely, whereas outer dimensions and air-gap length are kept constant. Comparative trends as a function of pole number and dimensions are depicted. A compromise exist between the design objectives, in which favoring one might reduce the other...
Ultimate limit state design of sheet pile walls by finite elements and nonlinear programming
DEFF Research Database (Denmark)
Krabbenhøft, Kristian; Damkilde, Lars; Krabbenhøft, Sven
2005-01-01
The design of sheet pile walls by lower bound limit analysis is considered. The design problem involves the determination of the necessary yield moment of the wall, the wall depth and the anchor force such that the structure is able to sustain the given loads. This problem is formulated...... as a nonlinear programming problem where the yield moment of the wall is minimized subject to equilibrium and yield conditions. The finite element discretization used enables exact fulfillment of these conditions and thus, according to the lower bound theorem, the solutions are safe....
Ultimate Limit State Design Of Sheet Pile Walls By Finite Elements And Nonlinear Programming
DEFF Research Database (Denmark)
Krabbenhøft, Kristian; Damkilde, Lars; Krabbenhøft, Sven
2005-01-01
The design of sheet pile walls by lower bound limit analysis is considered. The design problem involves the determination of the necessary yield moment of the wall, the wall depth and the anchor force such that the structure is able to sustain the given loads. This problem is formulated...... as a nonlinear programming problem where the yield moment of the wall is minimized subject to equilibrium and yield conditions. The finite element discretization used enables exact fulfillment of these conditions and thus, according to the lower bound theorem, the solutions are safe...
Liu, Meilin
2012-08-01
A discontinuous Galerkin finite element method (DG-FEM) with a highly accurate time integration scheme for solving Maxwell equations is presented. The new time integration scheme is in the form of traditional predictor-corrector algorithms, PE CE m, but it uses coefficients that are obtained using a numerical scheme with fully controllable accuracy. Numerical results demonstrate that the proposed DG-FEM uses larger time steps than DG-FEM with classical PE CE) m schemes when high accuracy, which could be obtained using high-order spatial discretization, is required. © 1963-2012 IEEE.
International Nuclear Information System (INIS)
Mordant, Maurice.
1981-04-01
To solve a multigroup stationary neutron transport equation in two-dimensional geometries (X-Y), (R-O) or (R-Z) generally on uses discrete ordinates and rectangular meshes. The way to do it is then well known, well documented and somewhat obvious. If one needs to treat awkward geometries or distorted meshes, things are not so easy and the way to do it is no longer straightforward. We have studied this problem at Limeil Nuclear Center and as an alternative to Monte Carlo methods and code we have implemented in ZEPHYR code at least two efficient finite element solutions for Lagrangian meshes involving any kind of triangles and quadrilaterals
Przekop, Adam; Jegley, Dawn C.; Rouse, Marshall; Lovejoy, Andrew E.
2016-01-01
This report documents the comparison of test measurements and predictive finite element analysis results for a hybrid wing body center section test article. The testing and analysis efforts were part of the Airframe Technology subproject within the NASA Environmentally Responsible Aviation project. Test results include full field displacement measurements obtained from digital image correlation systems and discrete strain measurements obtained using both unidirectional and rosette resistive gauges. Most significant results are presented for the critical five load cases exercised during the test. Final test to failure after inflicting severe damage to the test article is also documented. Overall, good comparison between predicted and actual behavior of the test article is found.
Moreno Chaparro, Nicolas
2013-06-01
A variational multi scale approach to model blood flow through arteries is proposed. A finite element discretization to represent the coarse scales (macro size), is coupled to smoothed dissipative particle dynamics that captures the fine scale features (micro scale). Blood is assumed to be incompressible, and flow is described through the Navier Stokes equation. The proposed cou- pling is tested with two benchmark problems, in fully coupled systems. Further refinements of the model can be incorporated in order to explicitly include blood constituents and non-Newtonian behavior. The suggested algorithm can be used with any particle-based method able to solve the Navier-Stokes equation.
Implementation of thermo-viscoplastic constitutive equations into the finite element code ABAQUS
International Nuclear Information System (INIS)
Youn, Sam Son; Lee, Soon Bok; Kim, Jong Bum; Lee, Hyeong Yeon; Yoo, Bong
1998-01-01
Sophisticated viscoplatic constitutive laws describing material behavior at high temperature have been implemented in the general-purpose finite element code ABAQUS to predict the viscoplastic response of structures to cyclic loading. Because of the complexity of viscoplastic constitutive equation, the general implementation methods are developed. The solution of the non-linear system of algebraic equations arising from time discretization is determined using line-search and back-tracking in combination with Newton method. The time integration method of the constitutive equations is based on semi-implicit method with efficient time step control. For numerical examples, the viscoplastic model proposed by Chaboche is implemented and several applications are illustrated
DEFF Research Database (Denmark)
Troldborg, Niels; Sørensen, Niels N.; Réthoré, Pierre-Elouan
2015-01-01
This paper describes a consistent algorithm for eliminating the numerical wiggles appearing when solving the finite volume discretized Navier-Stokes equations with discrete body forces in a collocated grid arrangement. The proposed method is a modification of the Rhie-Chow algorithm where the for...
Cerracchio, Priscilla; Gherlone, Marco; Di Sciuva, Marco; Tessler, Alexander
2013-01-01
The marked increase in the use of composite and sandwich material systems in aerospace, civil, and marine structures leads to the need for integrated Structural Health Management systems. A key capability to enable such systems is the real-time reconstruction of structural deformations, stresses, and failure criteria that are inferred from in-situ, discrete-location strain measurements. This technology is commonly referred to as shape- and stress-sensing. Presented herein is a computationally efficient shape- and stress-sensing methodology that is ideally suited for applications to laminated composite and sandwich structures. The new approach employs the inverse Finite Element Method (iFEM) as a general framework and the Refined Zigzag Theory (RZT) as the underlying plate theory. A three-node inverse plate finite element is formulated. The element formulation enables robust and efficient modeling of plate structures instrumented with strain sensors that have arbitrary positions. The methodology leads to a set of linear algebraic equations that are solved efficiently for the unknown nodal displacements. These displacements are then used at the finite element level to compute full-field strains, stresses, and failure criteria that are in turn used to assess structural integrity. Numerical results for multilayered, highly heterogeneous laminates demonstrate the unique capability of this new formulation for shape- and stress-sensing.
A mass-redistributed finite element method (MR-FEM) for acoustic problems using triangular mesh
He, Z. C.; Li, Eric; Liu, G. R.; Li, G. Y.; Cheng, A. G.
2016-10-01
The accuracy of numerical results using standard finite element method (FEM) in acoustic problems will deteriorate with increasing frequency due to the ;dispersion error;. Such dispersion error depends on the balance between the ;stiffness; and ;mass; of discretization equation systems. This paper reports an improved finite element method (FEM) for solving acoustic problems by re-distributing the mass in the mass matrix to ;tune; the balance, aiming to minimize the dispersion errors. This is done by shifting the integration point locations when computing the entries of the mass matrix, while ensuring the mass conservation. The new method is verified through the detailed numerical error analysis, and a strategy is also proposed for the best mass redistribution in terms of minimizing dispersion error. The relative dispersion error of present mass-redistributed finite element method (MR-FEM) is found to be much smaller than the FEM solution, in both theoretical prediction and numerical examination. The present MR-FEM works well by using the linear triangular elements that can be generated automatically, which enables automation in computation and saving computational cost in mesh generation. Numerical examples demonstrate the advantages of MR-FEM, in comparison with the standard FEM using the same triangular meshes and quadrilateral meshes.
Investigations on Actuator Dynamics through Theoretical and Finite Element Approach
Directory of Open Access Journals (Sweden)
Somashekhar S. Hiremath
2010-01-01
Full Text Available This paper gives a new approach for modeling the fluid-structure interaction of servovalve component-actuator. The analyzed valve is a precision flow control valve-jet pipe electrohydraulic servovalve. The positioning of an actuator depends upon the flow rate from control ports, in turn depends on the spool position. Theoretical investigation is made for No-load condition and Load condition for an actuator. These are used in finite element modeling of an actuator. The fluid-structure-interaction (FSI is established between the piston and the fluid cavities at the piston end. The fluid cavities were modeled with special purpose hydrostatic fluid elements while the piston is modeled with brick elements. The finite element method is used to simulate the variation of cavity pressure, cavity volume, mass flow rate, and the actuator velocity. The finite element analysis is extended to study the system's linearized response to harmonic excitation using direct solution steady-state dynamics. It was observed from the analysis that the natural frequency of the actuator depends upon the position of the piston in the cylinder. This is a close match with theoretical and simulation results. The effect of bulk modulus is also presented in the paper.
Finite element and discontinuous Galerkin methods for transient wave equations
Cohen, Gary
2017-01-01
This monograph presents numerical methods for solving transient wave equations (i.e. in time domain). More precisely, it provides an overview of continuous and discontinuous finite element methods for these equations, including their implementation in physical models, an extensive description of 2D and 3D elements with different shapes, such as prisms or pyramids, an analysis of the accuracy of the methods and the study of the Maxwell’s system and the important problem of its spurious free approximations. After recalling the classical models, i.e. acoustics, linear elastodynamics and electromagnetism and their variational formulations, the authors present a wide variety of finite elements of different shapes useful for the numerical resolution of wave equations. Then, they focus on the construction of efficient continuous and discontinuous Galerkin methods and study their accuracy by plane wave techniques and a priori error estimates. A chapter is devoted to the Maxwell’s system and the important problem ...
FEM and BIEM - A new infinite hybrid finite element
International Nuclear Information System (INIS)
Drakaliev, P.
1993-01-01
The finite element method (MFE) and the boundary integral equation method (BIEM) are general approximation procedures applicable to a wide variety of engineering problems. Each of them has many variants and each possesses certain merits and limitations of its own. The FEM may be easier to apply in domains with anisotropic or nonlinear behaviour. On the other hand the BEM is more attractive for unbounded domains or regions of high stress concentration. Therefore, the idea of combining both numerical techniques is of great interest in many practical problems, especially in solid and fluid mechanics, such as soil-structure and structure-fluid interaction problems. In the developments to follow an energy approach for symmetrizing the indirect BIEM is being used to obtain the stiffness matrix for the infinite or semi-infinite elastic medium. Thus the subdomain is considered as an infinite super element with an arbitrary shaped boundary and can be easily implemented into existing finite element codes
Block-iterative finite element computations for incompressible flow problems
International Nuclear Information System (INIS)
Tezduyar, T.E.; Liou, J.; Glowinski, R.; Nguyen, T.; Poole, S.
1988-01-01
A block-iterative finite element procedure is presented for two-dimensional fluid dynamics computations on multiply-connected domains based on the vorticity-stream function formulation of the incompressible Navier-Stokes equations. The difficulty associated with the convection term in the vorticity transport equation is addressed by using a streamline-upwind/Petrov-Galerkin scheme. Element-by-element preconditioned iteration techniques with high degree of vectorization and high computational speed are employed to solve the linear equation system for each block. The authors conclude that performance evaluations show the potential of these techniques to be used for large-scale computations
Solution of Fokker–Planck equation by finite element and finite ...
Indian Academy of Sciences (India)
Abstract. The response of a structural system to white noise excitation (delta- correlated) constitutes a Markov vector process whose transitional probability den- sity function (TPDF) is governed by both the forward Fokker–Planck and backward. Kolmogorov equations. Numerical solution of these equations by finite element ...
Solution of Fokker–Planck equation by finite element and finite ...
Indian Academy of Sciences (India)
hindered by the problem of dimensionality. In this paper numerical solution of the stationary and transient form of the Fokker–Planck (FP) equation corresponding to two state nonlinear systems is obtained by standard sequential finite element method. (FEM) using C0 shape function and Crank–Nicholson time integration ...
Finite element simulations of surface effect on Rayleigh waves
He, Jin; Zhao, Jinling
2018-03-01
Rayleigh waves influenced by surface effect are investigated by using finite element methods, in which eigenfrequency analysis are performed on a model composed of a half-space covered by the surface effect dominated domain. For a given wavelength, the frequency of the Rayleigh wave is obtained as the eigenfrequency of the model satisfying Floquet periodic boundary conditions. The thickness of the surface effect can be set to be infinitely small or a finite value in the finite element methods. The curvature-dependent out-of-plane force induced by surface tension as described by the generalized Young-Laplace equation is realized through geometric nonlinear analysis. The finite element simulations show that the assumptions of small curvature and infinitely small thickness of the surface effect widely used in theoretical approaches become invalid when Rayleigh waves are highly influenced by the surface effect. This work gives a more accurate insight into the surface effect on Rayleigh waves and provides a potential method for measuring the thickness of the surface effect from the dispersion curves of surface effect influenced Rayleigh wave velocities.
Finite-element-analysis of fields radiated from ICRF antenna
International Nuclear Information System (INIS)
Yamanaka, Kaoru; Sugihara, Ryo.
1984-01-01
The electromagnetic fields radiated from a loop antenna on which an oscillating current flows across the static magnetic field B 0 are calculated in several simple geometries by the finite element method (FEM) and by analytical methods in a cross section of a plasma cylinder. The wave number along B 0 is assumed to be finite. Good agreement between FEM and the analytical solutions is obtained, demonstrating the accuracy of the FEM solutions. The method is used to calculate the fields from a half-turn antenna, and acceptable results are obtained. (author)
Energy Technology Data Exchange (ETDEWEB)
Maker, B.N.
1995-04-14
This report provides a user`s manual for NIKE3D, a fully implicit three-dimensional finite element code for analyzing the finite strain static and dynamic response of inelastic solids, shells, and beams. Spatial discretization is achieved by the use of 8-node solid elements, 2-node truss and beam elements, and 4-node membrane and shell elements. Over twenty constitutive models are available for representing a wide range of elastic, plastic, viscous, and thermally dependent material behavior. Contact-impact algorithms permit gaps, frictional sliding, and mesh discontinuities along material interfaces. Several nonlinear solution strategies are available, including Full-, Modified-, and Quasi-Newton methods. The resulting system of simultaneous linear equations is either solved iteratively by an element-by-element method, or directly by a factorization method, for which case bandwidth minimization is optional. Data may be stored either in or out of core memory to allow for large analyses.
Applications of the discrete element method in mechanical engineering
International Nuclear Information System (INIS)
Fleissner, Florian; Gaugele, Timo; Eberhard, Peter
2007-01-01
Compared to other fields of engineering, in mechanical engineering, the Discrete Element Method (DEM) is not yet a well known method. Nevertheless, there is a variety of simulation problems where the method has obvious advantages due to its meshless nature. For problems where several free bodies can collide and break after having been largely deformed, the DEM is the method of choice. Neighborhood search and collision detection between bodies as well as the separation of large solids into smaller particles are naturally incorporated in the method. The main DEM algorithm consists of a relatively simple loop that basically contains the three substeps contact detection, force computation and integration. However, there exists a large variety of different algorithms to choose the substeps to compose the optimal method for a given problem. In this contribution, we describe the dynamics of particle systems together with appropriate numerical integration schemes and give an overview over different types of particle interactions that can be composed to adapt the method to fit to a given simulation problem. Surface triangulations are used to model complicated, non-convex bodies in contact with particle systems. The capabilities of the method are finally demonstrated by means of application examples
Banerjee, Mahan Raj; Succi, Sauro; Ansumali, Santosh; Adhikari, R.
2017-10-01
The dynamics of thermally fluctuating conserved order parameters are described by stochastic conservation laws. Thermal equilibrium in such systems requires the dissipative and stochastic components of the flux to be related by detailed balance. Preserving this relation in spatial and temporal discretization is necessary to obtain solutions that have fidelity to the continuum. Here, we propose a finite-difference discretization that preserves the detailed balance on the lattice, has a spatial error that is isotropic to leading order in lattice spacing, and can be integrated accurately in time using a delayed difference method. We benchmark the method for model B dynamics with a φ4 Landau free energy and obtain excellent agreement with the analytical results.