Analysis hierarchical model for discrete event systems
Ciortea, E. M.
2015-11-01
The This paper presents the hierarchical model based on discrete event network for robotic systems. Based on the hierarchical approach, Petri network is analysed as a network of the highest conceptual level and the lowest level of local control. For modelling and control of complex robotic systems using extended Petri nets. Such a system is structured, controlled and analysed in this paper by using Visual Object Net ++ package that is relatively simple and easy to use, and the results are shown as representations easy to interpret. The hierarchical structure of the robotic system is implemented on computers analysed using specialized programs. Implementation of hierarchical model discrete event systems, as a real-time operating system on a computer network connected via a serial bus is possible, where each computer is dedicated to local and Petri model of a subsystem global robotic system. Since Petri models are simplified to apply general computers, analysis, modelling, complex manufacturing systems control can be achieved using Petri nets. Discrete event systems is a pragmatic tool for modelling industrial systems. For system modelling using Petri nets because we have our system where discrete event. To highlight the auxiliary time Petri model using transport stream divided into hierarchical levels and sections are analysed successively. Proposed robotic system simulation using timed Petri, offers the opportunity to view the robotic time. Application of goods or robotic and transmission times obtained by measuring spot is obtained graphics showing the average time for transport activity, using the parameters sets of finished products. individually.
Modeling and simulation of discrete event systems
Choi, Byoung Kyu
2013-01-01
Computer modeling and simulation (M&S) allows engineers to study and analyze complex systems. Discrete-event system (DES)-M&S is used in modern management, industrial engineering, computer science, and the military. As computer speeds and memory capacity increase, so DES-M&S tools become more powerful and more widely used in solving real-life problems. Based on over 20 years of evolution within a classroom environment, as well as on decades-long experience in developing simulation-based solutions for high-tech industries, Modeling and Simulation of Discrete-Event Systems is the only book on
Discrete event systems diagnosis and diagnosability
Sayed-Mouchaweh, Moamar
2014-01-01
Discrete Event Systems: Diagnosis and Diagnosability addresses the problem of fault diagnosis of Discrete Event Systems (DES). This book provides the basic techniques and approaches necessary for the design of an efficient fault diagnosis system for a wide range of modern engineering applications. The different techniques and approaches are classified according to several criteria such as: modeling tools (Automata, Petri nets) that is used to construct the model; the information (qualitative based on events occurrences and/or states outputs, quantitative based on signal processing and data analysis) that is needed to analyze and achieve the diagnosis; the decision structure (centralized, decentralized) that is required to achieve the diagnosis. The goal of this classification is to select the efficient method to achieve the fault diagnosis according to the application constraints. This book focuses on the centralized and decentralized event based diagnosis approaches using formal language and automata as mode...
Nonlinear Control and Discrete Event Systems
Meyer, George; Null, Cynthia H. (Technical Monitor)
1995-01-01
As the operation of large systems becomes ever more dependent on extensive automation, the need for an effective solution to the problem of design and validation of the underlying software becomes more critical. Large systems possesses much detailed structure, typically hierarchical, and they are hybrid. Information processing at the top of the hierarchy is by means of formal logic and sentences; on the bottom it is by means of simple scalar differential equations and functions of time; and in the middle it is by an interacting mix of nonlinear multi-axis differential equations and automata, and functions of time and discrete events. The lecture will address the overall problem as it relates to flight vehicle management, describe the middle level, and offer a design approach that is based on Differential Geometry and Discrete Event Dynamic Systems Theory.
CORBA-Based Discrete Event Simulation System
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The CORBA technique is an integration of the object-oriented conception and distributed computing technique. It can make the application within distributed heterogeneous environments reusable, portable and interoperable.The architecture of CORBA-based discrete event simulation systems is presented and the interface of distributed simulation objects (DSO) is defined in this paper after the DSO is identified and the sysnchronization mechanism among DSO is discussed.``
Efficient robust supervisors for discrete event systems
Institute of Scientific and Technical Information of China (English)
ECONOMACOS Christoforos E.; KOUMBOULIS Fotis N.
2009-01-01
This paper is a sequel to a previous publication by the same authors, in which an efficient modular solution to a robust supervisory control problem for discrete event systems modeled by finite automata with prefix-closed specification languages has been presented. This solution is based on a general recursive robust control scheme, which has been successfully applied to a number of problems. The additional contributions of the present paper are: (a) a slight generalization of the problem assumptions; (b) an alternative derivation of some of the results and an alternative formulation of the controller; (c) a detailed description of a very efficient on-line implementation algorithm; and (d) an illustrative practical example.
LAN attack detection using Discrete Event Systems.
Hubballi, Neminath; Biswas, Santosh; Roopa, S; Ratti, Ritesh; Nandi, Sukumar
2011-01-01
Address Resolution Protocol (ARP) is used for determining the link layer or Medium Access Control (MAC) address of a network host, given its Internet Layer (IP) or Network Layer address. ARP is a stateless protocol and any IP-MAC pairing sent by a host is accepted without verification. This weakness in the ARP may be exploited by malicious hosts in a Local Area Network (LAN) by spoofing IP-MAC pairs. Several schemes have been proposed in the literature to circumvent these attacks; however, these techniques either make IP-MAC pairing static, modify the existing ARP, patch operating systems of all the hosts etc. In this paper we propose a Discrete Event System (DES) approach for Intrusion Detection System (IDS) for LAN specific attacks which do not require any extra constraint like static IP-MAC, changing the ARP etc. A DES model is built for the LAN under both a normal and compromised (i.e., spoofed request/response) situation based on the sequences of ARP related packets. Sequences of ARP events in normal and spoofed scenarios are similar thereby rendering the same DES models for both the cases. To create different ARP events under normal and spoofed conditions the proposed technique uses active ARP probing. However, this probing adds extra ARP traffic in the LAN. Following that a DES detector is built to determine from observed ARP related events, whether the LAN is operating under a normal or compromised situation. The scheme also minimizes extra ARP traffic by probing the source IP-MAC pair of only those ARP packets which are yet to be determined as genuine/spoofed by the detector. Also, spoofed IP-MAC pairs determined by the detector are stored in tables to detect other LAN attacks triggered by spoofing namely, man-in-the-middle (MiTM), denial of service etc. The scheme is successfully validated in a test bed.
A Summary of Some Discrete-Event System Control Problems
Rudie, Karen
A summary of the area of control of discrete-event systems is given. In this research area, automata and formal language theory is used as a tool to model physical problems that arise in technological and industrial systems. The key ingredients to discrete-event control problems are a process that can be modeled by an automaton, events in that process that cannot be disabled or prevented from occurring, and a controlling agent that manipulates the events that can be disabled to guarantee that the process under control either generates all the strings in some prescribed language or as many strings as possible in some prescribed language. When multiple controlling agents act on a process, decentralized control problems arise. In decentralized discrete-event systems, it is presumed that the agents effecting control cannot each see all event occurrences. Partial observation leads to some problems that cannot be solved in polynomial time and some others that are not even decidable.
Logical Discrete Event Systems in a trace theory based setting
Smedinga, R.
1993-01-01
Discrete event systems can be modelled using a triple consisting of some alphabet (representing the events that might occur), and two trace sets (sets of possible strings) denoting the possible behaviour and the completed tasks of the system. Using this definition we are able to formulate and solve
Failure Diagnosis on Discrete Event Systems
Directory of Open Access Journals (Sweden)
Sihem Kechida
2005-01-01
Full Text Available The modern technology advances to a point where it is possible and extensively desirable to improve reliability and the technical process safety. This is achieved by computer implanted FDI procedures (Fault Detection and Isolation. However, the malfunction of actuators, sensors and of the process components, as well as erroneous actions of human operators can have some disastrous consequences in high risk systems such as: Spatial engines (Astronomy, aircrafts (Aviation, nuclear reactors and chemical plants. Thus, each failure or fault can lead to shutdowns or a rupture of service and consequently a plant output reduction. There is an improvement of consciousness and attitude to possible disaster provoked by failures that could enable a failure tolerating system development. Such system must maintain a optimal performance during normal operating conditions and must handle encountered critical situations during which the system’s conditions are abnormal that is by performing of detection and diagnosis procedures and reconfiguration according to accurate software programs. In this study, we focus on the diagnosis of the flexible manufacturing systems which are described by a model based on the Petri nets. The basic idea consists of residuals generators resulting from the equation of marking evolution of the process and having appropriated structures to facilitate fault isolation.
CYCLE TIMES ASSIGNMENT OF NONLINEAR DISCRETE EVENT DYNAMIC SYSTEMS
Institute of Scientific and Technical Information of China (English)
CHEN Wende
2000-01-01
In this paper, nonautonomous models of Discrete Event Dynamic Systems (DEDS) are established by min-max function, reachability and observability are defined,the problem on cycle times assignment of DEDS, which corresponds with the important problem on poles assignment of linear systems, is studied. By Gunawardena et al.'Duality Theorem following results are obtained: Cycle times of system can be assigned under state feedback(or output feedback) if and only if system is reachable (or reachable and obserbable).
Optimal Control of Discrete Event Systems under Partial Observation
Marchand, Hervé; Boivineau, Olivier; Lafortune, Stéphane
2000-01-01
We are interested in a new class of optimal control problems for Discrete Event Systems (DES). We adopt the formalism of supervisory control theory [12] and model the system as the marked language generated by a finite state machine (FSM). Our control problem follows the theory in [14] and is characterized by the presence of uncontrollable events, the notion of occurrence and control costs for events and a worst-case objective function. However, compared to the work in [14], we wish to take i...
Discrete event systems in dioid algebra and conventional algebra
Declerck, Philippe
2013-01-01
This book concerns the use of dioid algebra as (max, +) algebra to treat the synchronization of tasks expressed by the maximum of the ends of the tasks conditioning the beginning of another task - a criterion of linear programming. A classical example is the departure time of a train which should wait for the arrival of other trains in order to allow for the changeover of passengers.The content focuses on the modeling of a class of dynamic systems usually called "discrete event systems" where the timing of the events is crucial. Events are viewed as sudden changes in a process which i
Discrete event simulation versus conventional system reliability analysis approaches
DEFF Research Database (Denmark)
Kozine, Igor
2010-01-01
Discrete Event Simulation (DES) environments are rapidly developing and appear to be promising tools for building reliability and risk analysis models of safety-critical systems and human operators. If properly developed, they are an alternative to the conventional human reliability analysis models...... and systems analysis methods such as fault and event trees and Bayesian networks. As one part, the paper describes briefly the author’s experience in applying DES models to the analysis of safety-critical systems in different domains. The other part of the paper is devoted to comparing conventional approaches...
PARNEM-A PARALLEL DISCRETE EVENT NETWORK EMULATION SYSTEM
Institute of Scientific and Technical Information of China (English)
Li Yue; Qian Depei; He Ying
2006-01-01
Objective Network emulation system constructs a virtual network environment which has the characteristics of controllable and repeatable network conditions. This makes it possible to predict the availability and performance of new protocols and algorithms before deploying to Internet. Methods PARNEM, a parallel discrete event network emulation system described in this paper has the following characteristics: ① BREEN - a BSP based real-time event scheduling engine; ② application transparent flexible interactive mechanism; ③ legacy network model reuse. Conclusion PARNEM allows detailed and accurate study of application behavior. Comprehensive case studies covering bottleneck bandwidth measurement and distributed cooperative web caching system demonstrate that network emulation technology opens a wide range of new opportunities for examining the behavior of applications.
Supervisory Control of Fuzzy Discrete Event Systems Based on Agent
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
FDES (fuzzy discrete event systems) can effectively represent a kind of complicated systems involving deterministic uncertainties and vagueness as well as human subjective observation and judgement from the view of discrete events, here the information system is divided into some independent intelligent entitative Agents. The concept of information processing state based on Agents was proposed. The processing state of Agent can be judged by some assistant observation parameters about the Agent and its environment around, and the transition among these states can be represented by FDES based on rules. In order to ensure the harmony of the Agents for information processing, its upstream and downstream buffers are considered in the modeling of the Agent system,and the supervisory controller based on FDES is constructed. The processing state of Agent can be adjusted by the supervisory controller to improve the stability of the system and the efficiency of resource utilization during the process according to the control policies. The result of its application was provided to illustrate the validity of the supervisory adjustment.
Safety Discrete Event Models for Holonic Cyclic Manufacturing Systems
Ciufudean, Calin; Filote, Constantin
In this paper the expression “holonic cyclic manufacturing systems” refers to complex assembly/disassembly systems or fork/join systems, kanban systems, and in general, to any discrete event system that transforms raw material and/or components into products. Such a system is said to be cyclic if it provides the same sequence of products indefinitely. This paper considers the scheduling of holonic cyclic manufacturing systems and describes a new approach using Petri nets formalism. We propose an approach to frame the optimum schedule of holonic cyclic manufacturing systems in order to maximize the throughput while minimize the work in process. We also propose an algorithm to verify the optimum schedule.
Directory of Open Access Journals (Sweden)
Prateek Sharma
2015-04-01
Full Text Available Abstract Simulation can be regarded as the emulation of the behavior of a real-world system over an interval of time. The process of simulation relies upon the generation of the history of a system and then analyzing that history to predict the outcome and improve the working of real systems. Simulations can be of various kinds but the topic of interest here is one of the most important kind of simulation which is Discrete-Event Simulation which models the system as a discrete sequence of events in time. So this paper aims at introducing about Discrete-Event Simulation and analyzing how it is beneficial to the real world systems.
Modeling energy market dynamics using discrete event system simulation
Energy Technology Data Exchange (ETDEWEB)
Gutierrez-Alcaraz, G. [Department of Electrical and Electronics Engineering, Instituto Tecnologico de Morelia, Av. Tecnologico 1500, Col. Lomas de Santiaguito 58120, Morelia Michoacan (Mexico); Sheble, G.B. [Department of Electrical and Computer Engineering, Portland State University, Portland, OR 97207-0751 (United States)
2009-10-15
This paper proposes the use of Discrete Event System Simulation to study the interactions among fuel and electricity markets and consumers, and the decision-making processes of fuel companies (FUELCOs), generation companies (GENCOs), and consumers in a simple artificial energy market. In reality, since markets can reach a stable equilibrium or fail, it is important to observe how they behave in a dynamic framework. We consider a Nash-Cournot model in which marketers are depicted as Nash-Cournot players that determine supply to meet end-use consumption. Detailed engineering considerations such as transportation network flows are omitted, because the focus is upon the selection and use of appropriate market models to provide answers to policy questions. (author)
Multi-threaded, discrete event simulation of distributed computing systems
Legrand, Iosif; MONARC Collaboration
2001-10-01
The LHC experiments have envisaged computing systems of unprecedented complexity, for which is necessary to provide a realistic description and modeling of data access patterns, and of many jobs running concurrently on large scale distributed systems and exchanging very large amounts of data. A process oriented approach for discrete event simulation is well suited to describe various activities running concurrently, as well the stochastic arrival patterns specific for such type of simulation. Threaded objects or "Active Objects" can provide a natural way to map the specific behaviour of distributed data processing into the simulation program. The simulation tool developed within MONARC is based on Java (TM) technology which provides adequate tools for developing a flexible and distributed process oriented simulation. Proper graphics tools, and ways to analyze data interactively, are essential in any simulation project. The design elements, status and features of the MONARC simulation tool are presented. The program allows realistic modeling of complex data access patterns by multiple concurrent users in large scale computing systems in a wide range of possible architectures, from centralized to highly distributed. Comparison between queuing theory and realistic client-server measurements is also presented.
Diagnosis of repeated/intermittent failures in discrete event systems.
Energy Technology Data Exchange (ETDEWEB)
Garcia, H. E.; Jiang, S.; Kumar, R.
2003-04-01
We introduce the notion of repeated failure diagnosability for diagnosing the occurrence of a repeated number of failures in discrete event systems. This generalizes the earlier notion of diagnosability that was used to diagnose the occurrence of a failure, but from which the information regarding the multiplicity of the occurrence of the failure could not be obtained. It is possible that in some systems the same type of failure repeats a multiple number of times. It is desirable to have a diagnoser which not only diagnoses that such a failure has occurred but also determines the number of times the failure has occurred. To aide such analysis we introduce the notions of K-diagnosability (K failures diagnosability), [1,K]-diagnosability (1 through K failures diagnosability), and [1,1]-diagnosability (1 through 1 failures diagnosability). Here the rst (resp., last) notion is the weakest (resp., strongest) of all three, and the earlier notion of diagnosability is the same as that of K-diagnosability or that of [1,K]- diagnosability with K = 1. We give polynomial algorithms for checking these various notions of repeated failure diagnosability, and also present a procedure of polynomial complexity for the on-line diagnosis of repeated failures.
Decision Making in Fuzzy Discrete Event Systems1.
Lin, F; Ying, H; Macarthur, R D; Cohn, J A; Barth-Jones, D; Crane, L R
2007-09-15
The primary goal of the study presented in this paper is to develop a novel and comprehensive approach to decision making using fuzzy discrete event systems (FDES) and to apply such an approach to real-world problems. At the theoretical front, we develop a new control architecture of FDES as a way of decision making, which includes a FDES decision model, a fuzzy objective generator for generating optimal control objectives, and a control scheme using both disablement and enforcement. We develop an online approach to dealing with the optimal control problem efficiently. As an application, we apply the approach to HIV/AIDS treatment planning, a technical challenge since AIDS is one of the most complex diseases to treat. We build a FDES decision model for HIV/AIDS treatment based on expert's knowledge, treatment guidelines, clinic trials, patient database statistics, and other available information. Our preliminary retrospective evaluation shows that the approach is capable of generating optimal control objectives for real patients in our AIDS clinic database and is able to apply our online approach to deciding an optimal treatment regimen for each patient. In the process, we have developed methods to resolve the following two new theoretical issues that have not been addressed in the literature: (1) the optimal control problem has state dependent performance index and hence it is not monotonic, (2) the state space of a FDES is infinite.
Reliability Assessment of Distribution System Based on Discrete-event System
Institute of Scientific and Technical Information of China (English)
丁屹峰; 程浩忠; 陈春霖; 江峰青; 房龄峰
2004-01-01
Discrete-event system simulation technology is used to analyze distribution system reliability in this paper. A simulation model, including entity state models, system state models, state transition models, reliability criterion model, is ciple of simulator clock to determine the sequence of random event occurrence dynamically. The results show this method is feasible.
Institute of Scientific and Technical Information of China (English)
Zhang Hong-Bin; Chen Li-Qun; Liu Rong-Wan
2005-01-01
It is shown in this paper that first integrals of discrete equation of motion for the conservative holonomic systems can be determined explicitly by investigating the invariance properties of the discrete Lagrangian in event space. The result obtained is a discrete analogue of Noether's theorem in the calculus of variations. Two examples are given to illustrate the applications of the result.
Improving the Teaching of Discrete-Event Control Systems Using a LEGO Manufacturing Prototype
Sanchez, A.; Bucio, J.
2012-01-01
This paper discusses the usefulness of employing LEGO as a teaching-learning aid in a post-graduate-level first course on the control of discrete-event systems (DESs). The final assignment of the course is presented, which asks students to design and implement a modular hierarchical discrete-event supervisor for the coordination layer of a…
Dong, Lu; Zhong, Xiangnan; Sun, Changyin; He, Haibo
2016-04-08
This paper presents the design of a novel adaptive event-triggered control method based on the heuristic dynamic programming (HDP) technique for nonlinear discrete-time systems with unknown system dynamics. In the proposed method, the control law is only updated when the event-triggered condition is violated. Compared with the periodic updates in the traditional adaptive dynamic programming (ADP) control, the proposed method can reduce the computation and transmission cost. An actor-critic framework is used to learn the optimal event-triggered control law and the value function. Furthermore, a model network is designed to estimate the system state vector. The main contribution of this paper is to design a new trigger threshold for discrete-time systems. A detailed Lyapunov stability analysis shows that our proposed event-triggered controller can asymptotically stabilize the discrete-time systems. Finally, we test our method on two different discrete-time systems, and the simulation results are included.
Discrete Event Programming with Simkit
Buss, Arnold
2001-01-01
This paper is a brief introduction to the use of Simkit, a software package for implementing Discrete Event Simulation (DES) models. Simkit is written in Java (for any operating system with Java 2TM ).
Control of Discrete-Event Systems Automata and Petri Net Perspectives
Silva, Manuel; Schuppen, Jan
2013-01-01
Control of Discrete-event Systems provides a survey of the most important topics in the discrete-event systems theory with particular focus on finite-state automata, Petri nets and max-plus algebra. Coverage ranges from introductory material on the basic notions and definitions of discrete-event systems to more recent results. Special attention is given to results on supervisory control, state estimation and fault diagnosis of both centralized and distributed/decentralized systems developed in the framework of the Distributed Supervisory Control of Large Plants (DISC) project. Later parts of the text are devoted to the study of congested systems though fluidization, an over approximation allowing a much more efficient study of observation and control problems of timed Petri nets. Finally, the max-plus algebraic approach to the analysis and control of choice-free systems is also considered. Control of Discrete-event Systems provides an introduction to discrete-event systems for readers that are not familiar wi...
Parametric Parallel Simulation of Discrete Event Systems on SIMD Supercomputers
1994-05-01
Arrival @ Node i )r, - i. (5.20) qmaxBE P(Accepting Departure @ Node i => Join Nodej )1•. - •i’,P, - (5.21) qmax,BE k XDri + g) P(Null Event)!P,.,.a =W1...network. The departure rate from node j is 0 when that node is in state 0 and g, otherwise. Departure Rate from Nodej = 0* n(0Oj) + j(l - (0j)) 168
Knowledge-based modeling of discrete-event simulation systems
H. de Swaan Arons
1999-01-01
textabstractModeling a simulation system requires a great deal of customization. At first sight no system seems to resemble exactly another system and every time a new model has to be designed the modeler has to start from scratch. The present simulation languages provide the modeler with powerful
Knowledge-based modeling of discrete-event simulation systems
H. de Swaan Arons
1999-01-01
textabstractModeling a simulation system requires a great deal of customization. At first sight no system seems to resemble exactly another system and every time a new model has to be designed the modeler has to start from scratch. The present simulation languages provide the modeler with powerful t
Out-of-order parallel discrete event simulation for electronic system-level design
Chen, Weiwei
2014-01-01
This book offers readers a set of new approaches and tools a set of tools and techniques for facing challenges in parallelization with design of embedded systems.? It provides an advanced parallel simulation infrastructure for efficient and effective system-level model validation and development so as to build better products in less time.? Since parallel discrete event simulation (PDES) has the potential to exploit the underlying parallel computational capability in today's multi-core simulation hosts, the author begins by reviewing the parallelization of discrete event simulation, identifyin
Control of discrete event systems : research at the interface of control theory and computer science
Overkamp, A.A.F.; Schuppen, J.H. van
1995-01-01
This expository paper is directed to a general audience of engineers, mathematicians, and computer scientists. A discrete event system is a mathematical model (in the form of an automaton, Petri nets, or process algebra) of, for example, a computer controlled engineering system such as a communicat
Unified Behavior Framework for Discrete Event Simulation Systems
2015-03-26
Advanced Framework for Simulation, Integration, and Modeling AI Artificial Intelligence APL Application Layer BT Behavior Tree CPC Configurable Physical...promotion of code reuse. I. INTRODUCTION The purpose of autonomous agents in simulation systems is to represent lifelike intelligence . In doing so...plan-act (SPA) approach was the focus of artificial intelligence (AI) research for 30+ years until the mid-1980’s [1]. However the SPA approach to
Sequential Window Diagnoser for Discrete-Event Systems Under Unreliable Observations
Energy Technology Data Exchange (ETDEWEB)
Wen-Chiao Lin; Humberto E. Garcia; David Thorsley; Tae-Sic Yoo
2009-09-01
This paper addresses the issue of counting the occurrence of special events in the framework of partiallyobserved discrete-event dynamical systems (DEDS). Developed diagnosers referred to as sequential window diagnosers (SWDs) utilize the stochastic diagnoser probability transition matrices developed in [9] along with a resetting mechanism that allows on-line monitoring of special event occurrences. To illustrate their performance, the SWDs are applied to detect and count the occurrence of special events in a particular DEDS. Results show that SWDs are able to accurately track the number of times special events occur.
Ghany, Ahmad; Vassanji, Karim; Kuziemsky, Craig; Keshavjee, Karim
2013-01-01
Electronic prescribing (e-prescribing) is expected to bring many benefits to Canadian healthcare, such as a reduction in errors and adverse drug reactions. As there currently is no functioning e-prescribing system in Canada that is completely electronic, we are unable to evaluate the performance of a live system. An alternative approach is to use simulation modeling for evaluation. We developed two discrete-event simulation models, one of the current handwritten prescribing system and one of a proposed e-prescribing system, to compare the performance of these two systems. We were able to compare the number of processes in each model, workflow efficiency, and the distribution of patients or prescriptions. Although we were able to compare these models to each other, using discrete-event simulation software was challenging. We were limited in the number of variables we could measure. We discovered non-linear processes and feedback loops in both models that could not be adequately represented using discrete-event simulation software. Finally, interactions between entities in both models could not be modeled using this type of software. We have come to the conclusion that a more appropriate approach to modeling both the handwritten and electronic prescribing systems would be to use a complex adaptive systems approach using agent-based modeling or systems-based modeling.
Designing a new tool for modeling and simulation of discrete-event based systems
2009-01-01
This paper talks about design, development, and application of a new Petri net simulator for modeling and simulation of discrete event system (e.g. information systems). The new tool is called GPenSIM (General purpose Petri Net Simulator). Firstly, this paper presents the reason for developing a new tool, through a brief literature study. Secondly, the design and architectural issues of the tool is given. Finally, an application example is given on the application of the tool.
Discrete event simulation as an ergonomic tool to predict workload exposures during systems design
Perez, J.; Looze, M.P. de; Bosch, T.; Neumann, W.P.
2014-01-01
This methodological paper presents a novel approach to predict operator's mechanical exposure and fatigue accumulation in discrete event simulations. A biomechanical model of work-cycle loading is combined with a discrete event simulation model which provides work cycle patterns over the shift resul
Sahoo, Avimanyu; Xu, Hao; Jagannathan, Sarangapani
2016-09-01
This paper presents an event-triggered near optimal control of uncertain nonlinear discrete-time systems. Event-driven neurodynamic programming (NDP) is utilized to design the control policy. A neural network (NN)-based identifier, with event-based state and input vectors, is utilized to learn the system dynamics. An actor-critic framework is used to learn the cost function and the optimal control input. The NN weights of the identifier, the critic, and the actor NNs are tuned aperiodically once every triggered instant. An adaptive event-trigger condition to decide the trigger instants is derived. Thus, a suitable number of events are generated to ensure a desired accuracy of approximation. A near optimal performance is achieved without using value and/or policy iterations. A detailed analysis of nontrivial inter-event times with an explicit formula to show the reduction in computation is also derived. The Lyapunov technique is used in conjunction with the event-trigger condition to guarantee the ultimate boundedness of the closed-loop system. The simulation results are included to verify the performance of the controller. The net result is the development of event-driven NDP.
Analysis of a voip telephony system with environment of ururau discrete event simulation software
Directory of Open Access Journals (Sweden)
Italo dos Santos Ferreira
2016-11-01
Full Text Available The aim of this study is to evaluate the free and open-source discrete event simulation software, Ururau. A voice over IP telephony system model was constructed in order to to evaluate the dimensioning of the resources. The model designed in Ururau was tested and compared to the results of another model of the same system, built with commercial software package Arena. The results of the simulation showed that the current system easily meets institutional demand and that resources are being underused. The results also demonstrated the viability of using of Ururau for small applications.
Malin, Jane T.; Basham, Bryan D.
1989-01-01
CONFIG is a modeling and simulation tool prototype for analyzing the normal and faulty qualitative behaviors of engineered systems. Qualitative modeling and discrete-event simulation have been adapted and integrated, to support early development, during system design, of software and procedures for management of failures, especially in diagnostic expert systems. Qualitative component models are defined in terms of normal and faulty modes and processes, which are defined by invocation statements and effect statements with time delays. System models are constructed graphically by using instances of components and relations from object-oriented hierarchical model libraries. Extension and reuse of CONFIG models and analysis capabilities in hybrid rule- and model-based expert fault-management support systems are discussed.
Liveness Problem of Petri Nets Supervisory Control Theory for Discrete Event Systems
Institute of Scientific and Technical Information of China (English)
Hong-Ye SU; Wei-Min WU; Jian CHU
2005-01-01
A quite great progress of the supervisory control theory for discrete event systems (DES)has been made in the past nearly twenty years, and now, automata, formal language and Petri nets become the main research tools. This paper focus on the Petri nets based supervisory control theory of DES. Firstly, we review the research results in this field, and claim that there generally exists a problem in Petri nets based supervisory control theory of DES, that is, the deadlock caused by the controller introduced to enforce the given specification occurs in the closed-loop systems, especially the deadlock occurs in the closed-loop system in which the original plant is live. Finally, a possible research direction is presented for the solution of this problem.
Sensor Configuration Selection for Discrete-Event Systems under Unreliable Observations
Energy Technology Data Exchange (ETDEWEB)
Wen-Chiao Lin; Tae-Sic Yoo; Humberto E. Garcia
2010-08-01
Algorithms for counting the occurrences of special events in the framework of partially-observed discrete event dynamical systems (DEDS) were developed in previous work. Their performances typically become better as the sensors providing the observations become more costly or increase in number. This paper addresses the problem of finding a sensor configuration that achieves an optimal balance between cost and the performance of the special event counting algorithm, while satisfying given observability requirements and constraints. Since this problem is generally computational hard in the framework considered, a sensor optimization algorithm is developed using two greedy heuristics, one myopic and the other based on projected performances of candidate sensors. The two heuristics are sequentially executed in order to find best sensor configurations. The developed algorithm is then applied to a sensor optimization problem for a multiunit- operation system. Results show that improved sensor configurations can be found that may significantly reduce the sensor configuration cost but still yield acceptable performance for counting the occurrences of special events.
Supervisor localization a top-down approach to distributed control of discrete-event systems
Cai, Kai
2016-01-01
This monograph presents a systematic top-down approach to distributed control synthesis of discrete-event systems (DES). The approach is called supervisor localization; its essence is the allocation of external supervisory control action to individual component agents as their internal control strategies. The procedure is: first synthesize a monolithic supervisor, to achieve globally optimal and nonblocking controlled behavior, then decompose the monolithic supervisor into local controllers, one for each agent. The collective behavior of the resulting local controllers is identical to that achieved by the monolithic supervisor. The basic localization theory is first presented in the Ramadge–Wonham language-based supervisory control framework, then demonstrated with distributed control examples of multi-robot formations, manufacturing systems, and distributed algorithms. An architectural approach is adopted to apply localization to large-scale DES; this yields a heterarchical localization procedure, which is...
DECISION WITH ARTIFICIAL NEURAL NETWORKS IN DISCRETE EVENT SIMULATION MODELS ON A TRAFFIC SYSTEM
Directory of Open Access Journals (Sweden)
Marília Gonçalves Dutra da Silva
2016-04-01
Full Text Available ABSTRACT This work aims to demonstrate the use of a mechanism to be applied in the development of the discrete-event simulation models that perform decision operations through the implementation of an artificial neural network. Actions that involve complex operations performed by a human agent in a process, for example, are often modeled in simplified form with the usual mechanisms of simulation software. Therefore, it was chosen a traffic system controlled by a traffic officer with a flow of vehicles and pedestrians to demonstrate the proposed solution. From a module built in simulation software itself, it was possible to connect the algorithm for intelligent decision to the simulation model. The results showed that the model elaborated responded as expected when it was submitted to actions, which required different decisions to maintain the operation of the system with changes in the flow of people and vehicles.
PERFORMANCE EVALUATION OF DISCRETE EVENT SYSTEMS INVOLVING HENSTOCK-KURZWEIL INTEGRAL
Institute of Scientific and Technical Information of China (English)
Calin CIUFUDEAN; Bianca SATCO
2009-01-01
This paper presents a study on the performance of flexible manufacturing systems (FMSs), by using discrete event system (DES) models, considering resource losses modelled by a parameter entitled coverage factor. We conclude that the resources cell loss distribution between the tasks of a FSM is a real function that cannot be integrated, in order to calculate its primitive, in the classical sense of Riemann or Lebesgue, but only in the sense of Henstock-Kurzweil integral. Our result allows one to study more general processes where highly oscillatory functions occur. The method used to deduce the function describing the resources cell loss distribution is compared with a classical method related in the literature, respectively rational interpolants. An example has been constructed to emphasize what we believe to be, new approaches.
A discrete event systems approach to discriminating intermittent from permanent faults
Directory of Open Access Journals (Sweden)
Deng Guanqian
2014-04-01
Full Text Available Almost all work on model-based diagnosis (MBD potentially presumes faults are persistent and does not take intermittent faults (IFs into account. Therefore, it is common for diagnosis systems to misjudge IFs as permanent faults (PFs, which are the major cause of the problems of false alarms, cannot duplication and no fault found in aircraft avionics. To address this problem, a new fault model which includes PFs and IFs is presented based on discrete event systems (DESs. Thereafter, an approach is given to discriminate between PFs and IFs by diagnosing the current fault. In this paper, the regulations of (PFs and IFs fault evolution through fault and reset events along the traces of system are studied, and then label propagation function is modified to account for PFs and the dynamic behavior of IFs and diagnosability of PFs and IFs are defined. Finally, illustrative examples are presented to demonstrate the proposed approach, and the analysis results show the fault types can be discriminated within bounded delay if the system is diagnosable.
Park, Seong-Jin; Cho, Kwang-Hyun
2011-12-01
This article addresses a modular state feedback supervisory control problem where two local controllers should achieve a common control objective against another local controller. Each local controller has its own control objective described as a predicate. This article also addresses a nonblocking modular control problem in which a discrete event system controlled by three local controllers tends to reach the common marked states of two local controllers that are, however, prohibited by the third local controller. For a case study, we apply the proposed theory to an oligopolistic market composed of two firms and one government. Two oligopolistic firms have a common objective to maximise their total profit through collusion. However, the government prevents them from engaging in collusion. We show that the modular supervisory control theory presented in this article can be used to solve the problem of 'how can the firms maximise their total profit against the intervention of government'?
Discrete Event Simulation: State of the Art
Eduard Babulak; Ming Wang
2010-01-01
Discrete event simulation technologies have been up and down as global manufacturing industries went through radical changes. The changes have created new problems, challenges and opportunities to the discrete event simulation. On manufacturing applications, it is no longer an isolated model but the distributed modeling and simulation along the supply-chain. In order to study the hybrid manufacturing systems, it is critical to have capability to model human performance with different level of...
Directory of Open Access Journals (Sweden)
Hiroyuki Goto
2013-07-01
Full Text Available A model predictive control-based scheduler for a class of discrete event systems is designed and developed. We focus on repetitive, multiple-input, multiple-output, and directed acyclic graph structured systems on which capacity constraints can be imposed. The target system’s behaviour is described by linear equations in max-plus algebra, referred to as state-space representation. Assuming that the system’s performance can be improved by paying additional cost, we adjust the system parameters and determine control inputs for which the reference output signals can be observed. The main contribution of this research is twofold, 1: For systems with capacity constraints, we derived an output prediction equation as functions of adjustable variables in a recursive form, 2: Regarding the construct for the system’s representation, we improved the structure to accomplish general operations which are essential for adjusting the system parameters. The result of numerical simulation in a later section demonstrates the effectiveness of the developed controller.
A Discrete Event System approach to On-line Testing of digital circuits with measurement limitation
Directory of Open Access Journals (Sweden)
P.K. Biswal
2016-09-01
Full Text Available In the present era of complex systems like avionics, industrial processes, electronic circuits, etc., on-the-fly or on-line fault detection is becoming necessary to provide uninterrupted services. Measurement limitation based fault detection schemes are applied to a wide range of systems because sensors cannot be deployed in all the locations from which measurements are required. This paper focuses towards On-Line Testing (OLT of faults in digital electronic circuits under measurement limitation using the theory of discrete event systems. Most of the techniques presented in the literature on OLT of digital circuits have emphasized on keeping the scheme non-intrusive, low area overhead, high fault coverage, low detection latency etc. However, minimizing tap points (i.e., measurement limitation of the circuit under test (CUT by the on-line tester was not considered. Minimizing tap points reduces load on the CUT and this reduces the area overhead of the tester. However, reduction in tap points compromises fault coverage and detection latency. This work studies the effect of minimizing tap points on fault coverage, detection latency and area overhead. Results on ISCAS89 benchmark circuits illustrate that measurement limitation have minimal impact on fault coverage and detection latency but reduces the area overhead of the tester. Further, it was also found that for a given detection latency and fault coverage, area overhead of the proposed scheme is lower compared to other similar schemes reported in the literature.
Julius, A.A.; Schaft, A.J. van der
2004-01-01
In this paper we formulate a general framework based on the behavioral approach to dynamical systems, in which various issues regarding interconnection of systems can be addressed. The main part of the framework is that interconnections or compositions of systems can be modelled with interconnection
Ahmadi, Mansour
2012-01-01
Increasing competition from traditional and emerging channels has placed new emphasis on rapid innovation and continuous differentiation in every aspect of supply chain, from earliest production stage to the final distribution steps. To bridge the gap between brilliant ideas and successful business initiatives, leading companies implement engineering simulation particularly in logistics and supply chain management (LSCM). Discrete event simulation (DES) and system dynamics (SD) are two modeli...
Discrete-event control of stochastic networks multimodularity and regularity
Altman, Eitan; Hordijk, Arie
2003-01-01
Opening new directions in research in both discrete event dynamic systems as well as in stochastic control, this volume focuses on a wide class of control and of optimization problems over sequences of integer numbers. This is a counterpart of convex optimization in the setting of discrete optimization. The theory developed is applied to the control of stochastic discrete-event dynamic systems. Some applications are admission, routing, service allocation and vacation control in queueing networks. Pure and applied mathematicians will enjoy reading the book since it brings together many disciplines in mathematics: combinatorics, stochastic processes, stochastic control and optimization, discrete event dynamic systems, algebra.
Lin, Feng; Chen, Xinguang
2010-02-01
In order to find better strategies for tobacco control, it is often critical to know the transitional probabilities among various stages of tobacco use. Traditionally, such probabilities are estimated by analyzing data from longitudinal surveys that are often time-consuming and expensive to conduct. Since cross-sectional surveys are much easier to conduct, it will be much more practical and useful to estimate transitional probabilities from cross-sectional survey data if possible. However, no previous research has attempted to do this. In this paper, we propose a method to estimate transitional probabilities from cross-sectional survey data. The method is novel and is based on a discrete event system framework. In particular, we introduce state probabilities and transitional probabilities to conventional discrete event system models. We derive various equations that can be used to estimate the transitional probabilities. We test the method using cross-sectional data of the National Survey on Drug Use and Health. The estimated transitional probabilities can be used in predicting the future smoking behavior for decision-making, planning and evaluation of various tobacco control programs. The method also allows a sensitivity analysis that can be used to find the most effective way of tobacco control. Since there are much more cross-sectional survey data in existence than longitudinal ones, the impact of this new method is expected to be significant.
Institute of Scientific and Technical Information of China (English)
Jin DAI; Hai LIN
2014-01-01
In this paper, we consider the problem of automatic synthesis of decentralized supervisor for uncertain discrete event systems. In particular, we study the case when the uncontrolled plant is unknown a priori. To deal with the unknown plants, we first characterize the conormality of prefix-closed regular languages and propose formulas for computing the supremal conormal sublanguages;then sufficient conditions for the existence of decentralized supervisors are given in terms of language controllability and conormality and a learning-based algorithm to synthesize the supervisor automatically is proposed. Moreover, the paper also studies the on-line decentralized supervisory control of concurrent discrete event systems that are composed of multiple interacting unknown modules. We use the concept of modular controllability to characterize the necessary and sufficient conditions for the existence of the local supervisors, which consist of a set of local supervisor modules, one for each plant module and which determines its control actions based on the locally observed behaviors, and an on-line learning-based local synthesis algorithm is also presented. The correctness and convergence of the proposed algorithms are proved, and their implementation are illustrated through examples.
Directory of Open Access Journals (Sweden)
Rahmawan D. Arry
2017-01-01
Full Text Available FMCG is considered as one of the industry with the highest competition in the world. To win this industry, customer satisfaction becomes the main thing. In this paper, authors will simulate a system of distribution of goods from PT X TBK which has 3 categories, namely M1 (biscuit, M2 (powder and M3 (liquid. The distribution system has a problem on time delivery of goods which have a wide variety of obstacles, mainly on routing. There are 8 trucks with different routes and different utilization. There's trucks with over hour work and trucks with long idle time. The routing also causes problem for unused truck weight and volume capacity, where cost could possibly be reduced. Through Discrete event simulation and sweeping method, authors try to solve the problem by modelling the existing system and then find the solution to improve the distribution system and reaching the model objective.
Zhang, Zhi-Hui; Yang, Guang-Hong
2017-02-13
This paper provides a novel event-triggered fault detection (FD) scheme for discrete-time linear systems. First, an event-triggered interval observer is proposed to generate the upper and lower residuals by taking into account the influence of the disturbances and the event error. Second, the robustness of the residual interval against the disturbances and the fault sensitivity are improved by introducing l1 and H∞ performances. Third, dilated linear matrix inequalities are used to decouple the Lyapunov matrices from the system matrices. The nonnegative conditions for the estimation error variables are presented with the aid of the slack matrix variables. This technique allows considering a more general Lyapunov function. Furthermore, the FD decision scheme is proposed by monitoring whether the zero value belongs to the residual interval. It is shown that the information communication burden is reduced by designing the event-triggering mechanism, while the FD performance can still be guaranteed. Finally, simulation results demonstrate the effectiveness of the proposed method.
Asynchronous discrete event schemes for PDEs
Stone, D.; Geiger, S.; Lord, G. J.
2017-08-01
A new class of asynchronous discrete-event simulation schemes for advection-diffusion-reaction equations is introduced, based on the principle of allowing quanta of mass to pass through faces of a (regular, structured) Cartesian finite volume grid. The timescales of these events are linked to the flux on the face. The resulting schemes are self-adaptive, and local in both time and space. Experiments are performed on realistic physical systems related to porous media flow applications, including a large 3D advection diffusion equation and advection diffusion reaction systems. The results are compared to highly accurate reference solutions where the temporal evolution is computed with exponential integrator schemes using the same finite volume discretisation. This allows a reliable estimation of the solution error. Our results indicate a first order convergence of the error as a control parameter is decreased, and we outline a framework for analysis.
Running Parallel Discrete Event Simulators on Sierra
Energy Technology Data Exchange (ETDEWEB)
Barnes, P. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jefferson, D. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-12-03
In this proposal we consider porting the ROSS/Charm++ simulator and the discrete event models that run under its control so that they run on the Sierra architecture and make efficient use of the Volta GPUs.
Lee, Taeyoung; McClamroch, N Harris
2007-01-01
Discrete control systems, as considered here, refer to the control theory of discrete-time Lagrangian or Hamiltonian systems. These discrete-time models are based on a discrete variational principle, and are part of the broader field of geometric integration. Geometric integrators are numerical integration methods that preserve geometric properties of continuous systems, such as conservation of the symplectic form, momentum, and energy. They also guarantee that the discrete flow remains on the manifold on which the continuous system evolves, an important property in the case of rigid-body dynamics. In nonlinear control, one typically relies on differential geometric and dynamical systems techniques to prove properties such as stability, controllability, and optimality. More generally, the geometric structure of such systems plays a critical role in the nonlinear analysis of the corresponding control problems. Despite the critical role of geometry and mechanics in the analysis of nonlinear control systems, non...
Okuyama, Yoshifumi
2014-01-01
Discrete Control Systems establishes a basis for the analysis and design of discretized/quantized control systemsfor continuous physical systems. Beginning with the necessary mathematical foundations and system-model descriptions, the text moves on to derive a robust stability condition. To keep a practical perspective on the uncertain physical systems considered, most of the methods treated are carried out in the frequency domain. As part of the design procedure, modified Nyquist–Hall and Nichols diagrams are presented and discretized proportional–integral–derivative control schemes are reconsidered. Schemes for model-reference feedback and discrete-type observers are proposed. Although single-loop feedback systems form the core of the text, some consideration is given to multiple loops and nonlinearities. The robust control performance and stability of interval systems (with multiple uncertainties) are outlined. Finally, the monograph describes the relationship between feedback-control and discrete ev...
Discrete Event Simulation Modeling of Radiation Medicine Delivery Methods
Energy Technology Data Exchange (ETDEWEB)
Paul M. Lewis; Dennis I. Serig; Rick Archer
1998-12-31
The primary objective of this work was to evaluate the feasibility of using discrete event simulation (DES) modeling to estimate the effects on system performance of changes in the human, hardware, and software elements of radiation medicine delivery methods.
Energy Technology Data Exchange (ETDEWEB)
Nutaro, James J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kuruganti, Phani Teja [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Protopopescu, Vladimir A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shankar, Mallikarjun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2012-02-08
The efficient and accurate management of time in simulations of hybrid models is an outstanding engineering problem. General a priori knowledge about the dynamic behavior of the hybrid system (i.e. essentially continuous, essentially discrete, or 'truly hybrid') facilitates this task. Indeed, for essentially discrete and essentially continuous systems, existing software packages can be conveniently used to perform quite sophisticated and satisfactory simulations. The situation is different for 'truly hybrid' systems, for which direct application of existing software packages results in a lengthy design process, cumbersome software assemblies, inaccurate results, or some combination of these independent of the designer's a priori knowledge about the system's structure and behavior. The main goal of this paper is to provide a methodology whereby simulation designers can use a priori knowledge about the hybrid model's structure to build a straightforward, efficient, and accurate simulator with existing software packages. The proposed methodology is based on a formal decomposition and re-articulation of the hybrid system; this is the main theoretical result of the paper. To set the result in the right perspective, we briefly review the essentially continuous and essentially discrete approaches, which are illustrated with typical examples. Then we present our new, split system approach, first in a general formal context, then in three more specific guises that reflect the viewpoints of three main communities of hybrid system researchers and practitioners. For each of these variants we indicate an implementation path. Our approach is illustrated with an archetypal problem of power grid control.
Integration of scheduling and discrete event simulation systems to improve production flow planning
Krenczyk, D.; Paprocka, I.; Kempa, W. M.; Grabowik, C.; Kalinowski, K.
2016-08-01
The increased availability of data and computer-aided technologies such as MRPI/II, ERP and MES system, allowing producers to be more adaptive to market dynamics and to improve production scheduling. Integration of production scheduling and computer modelling, simulation and visualization systems can be useful in the analysis of production system constraints related to the efficiency of manufacturing systems. A integration methodology based on semi-automatic model generation method for eliminating problems associated with complexity of the model and labour-intensive and time-consuming process of simulation model creation is proposed. Data mapping and data transformation techniques for the proposed method have been applied. This approach has been illustrated through examples of practical implementation of the proposed method using KbRS scheduling system and Enterprise Dynamics simulation system.
Time-stepped & discrete-event simulations of electromagnetic propulsion systems Project
National Aeronautics and Space Administration — The existing plasma codes are ill suited for modeling of mixed resolution problems, such as the plasma sail, where the system under study comprises subsystems with...
An algebra of discrete event processes
Heymann, Michael; Meyer, George
1991-01-01
This report deals with an algebraic framework for modeling and control of discrete event processes. The report consists of two parts. The first part is introductory, and consists of a tutorial survey of the theory of concurrency in the spirit of Hoare's CSP, and an examination of the suitability of such an algebraic framework for dealing with various aspects of discrete event control. To this end a new concurrency operator is introduced and it is shown how the resulting framework can be applied. It is further shown that a suitable theory that deals with the new concurrency operator must be developed. In the second part of the report the formal algebra of discrete event control is developed. At the present time the second part of the report is still an incomplete and occasionally tentative working paper.
Rejeb, Olfa; Pilet, Claire; Hamana, Sabri; Xie, Xiaolan; Durand, Thierry; Aloui, Saber; Doly, Anne; Biron, Pierre; Perrier, Lionel; Augusto, Vincent
2017-05-17
Innovation and health-care funding reforms have contributed to the deployment of Information and Communication Technology (ICT) to improve patient care. Many health-care organizations considered the application of ICT as a crucial key to enhance health-care management. The purpose of this paper is to provide a methodology to assess the organizational impact of high-level Health Information System (HIS) on patient pathway. We propose an integrated performance evaluation of HIS approach through the combination of formal modeling using the Architecture of Integrated Information Systems (ARIS) models, a micro-costing approach for cost evaluation, and a Discrete-Event Simulation (DES) approach. The methodology is applied to the consultation for cancer treatment process. Simulation scenarios are established to conclude about the impact of HIS on patient pathway. We demonstrated that although high level HIS lengthen the consultation, occupation rate of oncologists are lower and quality of service is higher (through the number of available information accessed during the consultation to formulate the diagnostic). The provided method allows also to determine the most cost-effective ICT elements to improve the care process quality while minimizing costs. The methodology is flexible enough to be applied to other health-care systems.
Managing bottlenecks in manual automobile assembly systems using discrete event simulation
Directory of Open Access Journals (Sweden)
Dewa, M.
2013-08-01
Full Text Available Batch model lines are quite handy when the demand for each product is moderate. However, they are characterised by high work-in-progress inventories, lost production time when changing over models, and reduced flexibility when it comes to altering production rates as product demand changes. On the other hand, mixed model lines can offer reduced work-in-progress inventory and increased flexibility. The object of this paper is to illustrate that a manual automobile assembling system can be optimised through managing bottlenecks by ensuring high workstation utilisation, reducing queue lengths before stations and reducing station downtime. A case study from the automobile industry is used for data collection. A model is developed through the use of simulation software. The model is then verified and validated before a detailed bottleneck analysis is conducted. An operational strategy is then proposed for optimal bottleneck management. Although the paper focuses on improving automobile assembly systems in batch mode, the methodology can also be applied in single model manual and automated production lines.
Energy Technology Data Exchange (ETDEWEB)
Davis, W.J.; Macro, J.G.; Brook, A.L. [Univ. of Illinois, Urbana, IL (United States)] [and others
1996-12-31
This paper first discusses an object-oriented, control architecture and then applies the architecture to produce a real-time software emulator for the Rapid Acquisition of Manufactured Parts (RAMP) flexible manufacturing system (FMS). In specifying the control architecture, the coordinated object is first defined as the primary modeling element. These coordinated objects are then integrated into a Recursive, Object-Oriented Coordination Hierarchy. A new simulation methodology, the Hierarchical Object-Oriented Programmable Logic Simulator, is then employed to model the interactions among the coordinated objects. The final step in implementing the emulator is to distribute the models of the coordinated objects over a network of computers and to synchronize their operation to a real-time clock. The paper then introduces the Hierarchical Subsystem Controller as an intelligent controller for the coordinated object. The proposed approach to intelligent control is then compared to the concept of multiresolutional semiosis that has been developed by Dr. Alex Meystel. Finally, the plans for implementing an intelligent controller for the RAMP FMS are discussed.
Directory of Open Access Journals (Sweden)
Isis Didier Lins
2009-04-01
Full Text Available This paper attempts to provide a more realistic approach to the characterization of system reliability when handling redundancy allocation problems: it considers repairable series-parallel systems comprised of components subjected to corrective maintenance actions with failure-repair cycles modeled by renewal processes. A multiobjective optimization approach is applied since increasing the number of redundancies not only enlarges system reliability but also its associated costs. Then a multiobjective genetic algorithm is coupled with discrete event simulation and its solutions present the compromise between system reliability and cost. Two examples are provided. In the first one, the proposed algorithm is validated by comparison with results obtained from a system devised as to allow for analytical solutions of the objective functions. The second case analyzes a repairable system subjected to perfect repairs. Results from both examples show that the proposed method can be a valuable tool for the decision maker when choosing the system design.Esse artigo utiliza uma abordagem mais realista para a caracterização da confiabilidade de sistemas em problemas de alocação de redundâncias: são considerados sistemas série-paralelo formados por componentes sujeitos a ações de manutenção corretiva com ciclos de falha-reparo modelados por processos de renovação. É aplicada uma abordagem de otimização multiobjetivo, pois o aumento de redundâncias eleva a confiabilidade do sistema e também os seus custos. Assim, um algoritmo genético multiobjetivo é integrado com simulação discreta de eventos e suas soluções apresentam o compromisso entre confiabilidade e custo do sistema. Dois exemplos são fornecidos. No primeiro, o algoritmo proposto é validado através da comparação com resultados obtidos de um sistema criado de forma a permitir soluções analíticas das funções-objetivo. No segundo, analisa-se um sistema reparável sujeito a
Discrete systems and integrability
Hietarinta, J; Nijhoff, F W
2016-01-01
This first introductory text to discrete integrable systems introduces key notions of integrability from the vantage point of discrete systems, also making connections with the continuous theory where relevant. While treating the material at an elementary level, the book also highlights many recent developments. Topics include: Darboux and Bäcklund transformations; difference equations and special functions; multidimensional consistency of integrable lattice equations; associated linear problems (Lax pairs); connections with Padé approximants and convergence algorithms; singularities and geometry; Hirota's bilinear formalism for lattices; intriguing properties of discrete Painlevé equations; and the novel theory of Lagrangian multiforms. The book builds the material in an organic way, emphasizing interconnections between the various approaches, while the exposition is mostly done through explicit computations on key examples. Written by respected experts in the field, the numerous exercises and the thoroug...
Hu, Xingdi; Chen, Xinguang; Cook, Robert L.; Chen, Ding-Geng; Okafor, Chukwuemeka
2016-01-01
Background The probabilistic discrete event systems (PDES) method provides a promising approach to study dynamics of underage drinking using cross-sectional data. However, the utility of this approach is often limited because the constructed PDES model is often non-identifiable. The purpose of the current study is to attempt a new method to solve the model. Methods A PDES-based model of alcohol use behavior was developed with four progression stages (never-drinkers [ND], light/moderate-drinker [LMD], heavy-drinker [HD], and ex-drinker [XD]) linked with 13 possible transition paths. We tested the proposed model with data for participants aged 12–21 from the 2012 National Survey on Drug Use and Health (NSDUH). The Moore-Penrose (M-P) generalized inverse matrix method was applied to solve the proposed model. Results Annual transitional probabilities by age groups for the 13 drinking progression pathways were successfully estimated with the M-P generalized inverse matrix approach. Result from our analysis indicates an inverse “J” shape curve characterizing pattern of experimental use of alcohol from adolescence to young adulthood. We also observed a dramatic increase for the initiation of LMD and HD after age 18 and a sharp decline in quitting light and heavy drinking. Conclusion Our findings are consistent with the developmental perspective regarding the dynamics of underage drinking, demonstrating the utility of the M-P method in obtaining a unique solution for the partially-observed PDES drinking behavior model. The M-P approach we tested in this study will facilitate the use of the PDES approach to examine many health behaviors with the widely available cross-sectional data. PMID:26511344
Sahoo, Avimanyu; Xu, Hao; Jagannathan, Sarangapani
2016-01-01
This paper presents a novel adaptive neural network (NN) control of single-input and single-output uncertain nonlinear discrete-time systems under event sampled NN inputs. In this control scheme, the feedback signals are transmitted, and the NN weights are tuned in an aperiodic manner at the event sampled instants. After reviewing the NN approximation property with event sampled inputs, an adaptive state estimator (SE), consisting of linearly parameterized NNs, is utilized to approximate the unknown system dynamics in an event sampled context. The SE is viewed as a model and its approximated dynamics and the state vector, during any two events, are utilized for the event-triggered controller design. An adaptive event-trigger condition is derived by using both the estimated NN weights and a dead-zone operator to determine the event sampling instants. This condition both facilitates the NN approximation and reduces the transmission of feedback signals. The ultimate boundedness of both the NN weight estimation error and the system state vector is demonstrated through the Lyapunov approach. As expected, during an initial online learning phase, events are observed more frequently. Over time with the convergence of the NN weights, the inter-event times increase, thereby lowering the number of triggered events. These claims are illustrated through the simulation results.
Discrete event simulation of administrative and medical processes
Directory of Open Access Journals (Sweden)
Robert Leskovar
2011-05-01
Conclusions: Discrete event simulation provedthat joint administration would contribute to a more even workload distribution among administrative personnel, higher quality of service and easier human resource management. The presented approach can be efficiently applied to large-scale systems e.g. organizational changes of processes in Specialist Outpatient Clinics.
Discrete-event modeling for internet multi-robotics
Institute of Scientific and Technical Information of China (English)
赵杰; 高胜; 蔡鹤皋
2004-01-01
Intemet multi-robotics is a typical discrete-event system. In order to describe joint activities between multiple operators and multiple robots, a 4-level discrete-event model is proposed in this paper based on the controlled condition/event Petri nets (CCEP). On the first or mission level, the task splitting of the system is defined; on the second or multi-operator level, a precedence graph is introduced for every operator to plan his or her robotic actions; on the third or coordination level, the above precedence graphs are translated and integrated into the corresponding CCEPs in terms of specific rules; and on the last or multi-robot level, operators can select their control range by setting the corresponding control marks of the obtained CCEPs. As a consequence, a clear mechanism of operator-robot collaboration is obtained to conduct the development of the system.
Optimal Discrete Event Supervisory Control of Aircraft Gas Turbine Engines
Litt, Jonathan (Technical Monitor); Ray, Asok
2004-01-01
This report presents an application of the recently developed theory of optimal Discrete Event Supervisory (DES) control that is based on a signed real measure of regular languages. The DES control techniques are validated on an aircraft gas turbine engine simulation test bed. The test bed is implemented on a networked computer system in which two computers operate in the client-server mode. Several DES controllers have been tested for engine performance and reliability.
Mizell, Carolyn Barrett; Malone, Linda
2007-01-01
The development process for a large software development project is very complex and dependent on many variables that are dynamic and interrelated. Factors such as size, productivity and defect injection rates will have substantial impact on the project in terms of cost and schedule. These factors can be affected by the intricacies of the process itself as well as human behavior because the process is very labor intensive. The complex nature of the development process can be investigated with software development process models that utilize discrete event simulation to analyze the effects of process changes. The organizational environment and its effects on the workforce can be analyzed with system dynamics that utilizes continuous simulation. Each has unique strengths and the benefits of both types can be exploited by combining a system dynamics model and a discrete event process model. This paper will demonstrate how the two types of models can be combined to investigate the impacts of human resource interactions on productivity and ultimately on cost and schedule.
Use Cases of Discrete Event Simulation Appliance and Research
2012-01-01
Over the last decades Discrete Event Simulation has conquered many different application areas. This trend is, on the one hand, driven by an ever wider use of this technology in different fields of science and on the other hand by an incredibly creative use of available software programs through dedicated experts. This book contains articles from scientists and experts from 10 countries. They illuminate the width of application of this technology and the quality of problems solved using Discrete Event Simulation. Practical applications of simulation dominate in the present book. The book is aimed to researchers and students who deal in their work with Discrete Event Simulation and which want to inform them about current applications. By focusing on discrete event simulation, this book can also serve as an inspiration source for practitioners for solving specific problems during their work. Decision makers who deal with the question of the introduction of discrete event simulation for planning support and o...
Modeling discrete time-to-event data
Tutz, Gerhard
2016-01-01
This book focuses on statistical methods for the analysis of discrete failure times. Failure time analysis is one of the most important fields in statistical research, with applications affecting a wide range of disciplines, in particular, demography, econometrics, epidemiology and clinical research. Although there are a large variety of statistical methods for failure time analysis, many techniques are designed for failure times that are measured on a continuous scale. In empirical studies, however, failure times are often discrete, either because they have been measured in intervals (e.g., quarterly or yearly) or because they have been rounded or grouped. The book covers well-established methods like life-table analysis and discrete hazard regression models, but also introduces state-of-the art techniques for model evaluation, nonparametric estimation and variable selection. Throughout, the methods are illustrated by real life applications, and relationships to survival analysis in continuous time are expla...
Discrete event simulation of Maglev transport considering traffic waves
Directory of Open Access Journals (Sweden)
Moo Hyun Cha
2014-10-01
Full Text Available A magnetically levitated vehicle (Maglev system is under commercialization as a new transportation system in Korea. The Maglev is operated by an unmanned automatic control system. Therefore, the plan of train operation should be carefully established and validated in advance. In general, when making a train operation plan, statistically predicted traffic data is used. However, a traffic wave often occurs in real train service, and demand-driven simulation technology is required to review a train operation plan and service quality considering traffic waves. We propose a method and model to simulate Maglev operation considering continuous demand changes. For this purpose, we employed a discrete event model that is suitable for modeling the behavior of railway passenger transportation. We modeled the system hierarchically using discrete event system specification (DEVS formalism. In addition, through implementation and an experiment using the DEVSim++ simulation environment, we tested the feasibility of the proposed model. Our experimental results also verified that our demand-driven simulation technology can be used for a priori review of train operation plans and strategies.
DEFF Research Database (Denmark)
Nielsen, Erland Hejn
2000-01-01
During the last 1-2 decades, simulation optimisation of discrete event dynamic systems (DEDS) has made considerable theoretical progress with respect to computational efficiency. The score-function (SF) method and the infinitesimal perturbation analysis (IPA) are two candidates belonging to this ......During the last 1-2 decades, simulation optimisation of discrete event dynamic systems (DEDS) has made considerable theoretical progress with respect to computational efficiency. The score-function (SF) method and the infinitesimal perturbation analysis (IPA) are two candidates belonging...... if the gradients are unbiased, the SA-algorithm will be known as a Robbins-Monro-algorithm. The present work will focus on the SF method and show how to migrate it to general types of discrete event simulation systems, in this case represented by SIMNET II, and discuss how the optimisation of the functioning...... of a Job-Shop can be handled by the SF method....
Discrete Event Simulation Modeling and Analysis of Key Leader Engagements
2012-06-01
SIMULATION MODELING AND ANALYSIS OF KEY LEADER ENGAGEMENTS by Clifford C. Wakeman June 2012 Thesis Co-Advisors: Arnold H. Buss Susan...DATE June 2012 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Discrete Event Simulation Modeling and Analysis of Key...for public release; distribution is unlimited DISCRETE EVENT SIMULATION MODELING AND ANALYSIS OF KEY LEADER ENGAGEMENTS Clifford C. Wakeman
Ooster, van 't A.; Bontsema, J.; Henten, van E.; Hemming, S.
2012-01-01
Mobile rose systems are designed to increase labour efficiency. However, many questions remain on best design and settings of operational parameters for best performance. The ultimate goal of this research is an assessment of re-designed horticultural crop production systems and work scenarios on
Minisuperspace models of discrete systems
Baytaş, Bekir
2016-01-01
A discrete quantum spin system is presented in which several modern methods of canonical quantum gravity can be tested with promising results. In particular, features of interacting dynamics are analyzed with an emphasis on homogeneous configurations and the dynamical building-up and stability of long-range correlations. Different types of homogeneous minisuperspace models are introduced for the system, including one based on condensate states, and shown to capture different aspects of the discrete system. They are evaluated with effective methods and by means of continuum limits, showing good agreement with operator calculations whenever the latter are available. As a possibly quite general result, it is concluded that an analysis of the building-up of long-range correlations in discrete systems requires non-perturbative solutions of the dynamical equations. Some questions related to stability can be analyzed perturbatively, but suggest that matter couplings may be relevant for this question in the context o...
Modelling and real-time simulation of continuous-discrete systems in mechatronics
Energy Technology Data Exchange (ETDEWEB)
Lindow, H. [Rostocker, Magdeburg (Germany)
1996-12-31
This work presents a methodology for simulation and modelling of systems with continuous - discrete dynamics. It derives hybrid discrete event models from Lagrange`s equations of motion. This method combines continuous mechanical, electrical and thermodynamical submodels on one hand with discrete event models an the other hand into a hybrid discrete event model. This straight forward software development avoids numeric overhead.
Stochastic discrete event simulation of germinal center reactions
Figge, MT
2005-01-01
We introduce a generic reaction-diffusion model for germinal center reactions and perform numerical simulations within a stochastic discrete event approach. In contrast to the frequently used deterministic continuum approach, each single reaction event is monitored in space and time in order to simu
DEFF Research Database (Denmark)
Nielsen, Erland Hejn
2000-01-01
if the gradients are unbiased, the SA-algorithm will be known as a Robbins-Monro-algorithm. The present work will focus on the SF method and show how to migrate it to general types of discrete event simulation systems, in this case represented by SIMNET II, and discuss how the optimisation of the functioning...
Optimization of Operations Resources via Discrete Event Simulation Modeling
Joshi, B.; Morris, D.; White, N.; Unal, R.
1996-01-01
The resource levels required for operation and support of reusable launch vehicles are typically defined through discrete event simulation modeling. Minimizing these resources constitutes an optimization problem involving discrete variables and simulation. Conventional approaches to solve such optimization problems involving integer valued decision variables are the pattern search and statistical methods. However, in a simulation environment that is characterized by search spaces of unknown topology and stochastic measures, these optimization approaches often prove inadequate. In this paper, we have explored the applicability of genetic algorithms to the simulation domain. Genetic algorithms provide a robust search strategy that does not require continuity and differentiability of the problem domain. The genetic algorithm successfully minimized the operation and support activities for a space vehicle, through a discrete event simulation model. The practical issues associated with simulation optimization, such as stochastic variables and constraints, were also taken into consideration.
Analysis of manufacturing based on object oriented discrete event simulation
Directory of Open Access Journals (Sweden)
Eirik Borgen
1990-01-01
Full Text Available This paper describes SIMMEK, a computer-based tool for performing analysis of manufacturing systems, developed at the Production Engineering Laboratory, NTH-SINTEF. Its main use will be in analysis of job shop type of manufacturing. But certain facilities make it suitable for FMS as well as a production line manufacturing. This type of simulation is very useful in analysis of any types of changes that occur in a manufacturing system. These changes may be investments in new machines or equipment, a change in layout, a change in product mix, use of late shifts, etc. The effects these changes have on for instance the throughput, the amount of VIP, the costs or the net profit, can be analysed. And this can be done before the changes are made, and without disturbing the real system. Simulation takes into consideration, unlike other tools for analysis of manufacturing systems, uncertainty in arrival rates, process and operation times, and machine availability. It also shows the interaction effects a job which is late in one machine, has on the remaining machines in its route through the layout. It is these effects that cause every production plan not to be fulfilled completely. SIMMEK is based on discrete event simulation, and the modeling environment is object oriented. The object oriented models are transformed by an object linker into data structures executable by the simulation kernel. The processes of the entity objects, i.e. the products, are broken down to events and put into an event list. The user friendly graphical modeling environment makes it possible for end users to build models in a quick and reliable way, using terms from manufacturing. Various tests and a check of model logic are helpful functions when testing validity of the models. Integration with software packages, with business graphics and statistical functions, is convenient in the result presentation phase.
Powering stochastic reliability models by discrete event simulation
DEFF Research Database (Denmark)
Kozine, Igor; Wang, Xiaoyun
2012-01-01
it difficult to find a solution to the problem. The power of modern computers and recent developments in discrete-event simulation (DES) software enable to diminish some of the drawbacks of stochastic models. In this paper we describe the insights we have gained based on using both Markov and DES models...
Discrete event simulation: Modeling simultaneous complications and outcomes
Quik, E.H.; Feenstra, T.L.; Krabbe, P.F.M.
2012-01-01
OBJECTIVES: To present an effective and elegant model approach to deal with specific characteristics of complex modeling. METHODS: A discrete event simulation (DES) model with multiple complications and multiple outcomes that each can occur simultaneously was developed. In this DES model parameters,
Discrete port-Hamiltonian systems : mixed interconnections
Talasila, Viswanath; Clemente-Gallardo, J.; Schaft, A.J. van der
2005-01-01
Either from a control theoretic viewpoint or from an analysis viewpoint it is necessary to convert smooth systems to discrete systems, which can then be implemented on computers for numerical simulations. Discrete models can be obtained either by discretizing a smooth model, or by directly modeling
Discrete Multiscale Analysis: A Biatomic Lattice System
Contra, G A Cassatella; 10.1142/S1402925110000957
2010-01-01
We discuss a discrete approach to the multiscale reductive perturbative method and apply it to a biatomic chain with a nonlinear interaction between the atoms. This system is important to describe the time evolution of localized solitonic excitations. We require that also the reduced equation be discrete. To do so coherently we need to discretize the time variable to be able to get asymptotic discrete waves and carry out a discrete multiscale expansion around them. Our resulting nonlinear equation will be a kind of discrete Nonlinear Schr\\"odinger equation. If we make its continuum limit, we obtain the standard Nonlinear Schr\\"odinger differential equation.
Reducing ambulance response times using discrete event simulation.
Wei Lam, Sean Shao; Zhang, Zhong Cheng; Oh, Hong Choon; Ng, Yih Ying; Wah, Win; Hock Ong, Marcus Eng
2014-01-01
The objectives of this study are to develop a discrete-event simulation (DES) model for the Singapore Emergency Medical Services (EMS), and to demonstrate the utility of this DES model for the evaluation of different policy alternatives to improve ambulance response times. A DES model was developed based on retrospective emergency call data over a continuous 6-month period in Singapore. The main outcome measure is the distribution of response times. The secondary outcome measure is ambulance utilization levels based on unit hour utilization (UHU) ratios. The DES model was used to evaluate different policy options in order to improve the response times, while maintaining reasonable fleet utilization. Three policy alternatives looking at the reallocation of ambulances, the addition of new ambulances, and alternative dispatch policies were evaluated. Modifications of dispatch policy combined with the reallocation of existing ambulances were able to achieve response time performance equivalent to that of adding 10 ambulances. The median (90th percentile) response time was 7.08 minutes (12.69 minutes). Overall, this combined strategy managed to narrow the gap between the ideal and existing response time distribution by 11-13%. Furthermore, the median UHU under this combined strategy was 0.324 with an interquartile range (IQR) of 0.047 versus a median utilization of 0.285 (IQR of 0.051) resulting from the introduction of additional ambulances. Response times were shown to be improved via a more effective reallocation of ambulances and dispatch policy. More importantly, the response time improvements were achieved without a reduction in the utilization levels and additional costs associated with the addition of ambulances. We demonstrated the effective use of DES as a versatile platform to model the dynamic system complexities of Singapore's national EMS systems for the evaluation of operational strategies to improve ambulance response times.
The dynamics of discrete populations and series of events
Hopcraft, Keith Iain; Ridley, Kevin D
2014-01-01
IntroductionReferencesStatistical PreliminariesIntroductionProbability DistributionsMoment-Generating FunctionsDiscrete ProcessesSeries of EventsSummaryFurther ReadingMarkovian Population ProcessesIntroductionBirths and DeathsImmigration and the Poisson ProcessThe Effect of MeasurementCorrelation of CountsSummaryFurther ReadingThe Birth-Death-Immigration ProcessIntroductionRate Equations for the ProcessEquation for the Generating FunctionGeneral Time-Dependent SolutionFluctuation Characteristics of a Birth-Death-Immigration PopulationSampling and Measurement ProcessesCorrelation of CountsSumma
van Gestel, Aukje; Severens, Johan L.; Webers, Carroll A. B.; Beckers, Henny J. M.; Jansonius, Nomdo M.; Schouten, Jan S. A. G.
2010-01-01
Objective: Discrete event simulation (DES) modeling has several advantages over simpler modeling techniques in health economics, such as increased flexibility and the ability to model complex systems. Nevertheless, these benefits may come at the cost of reduced transparency, which may compromise the
Discrete integrable system and its integrable coupling
Institute of Scientific and Technical Information of China (English)
LI Zhu
2009-01-01
This paper derives new discrete integrable system based on discrete isospectral problem. It shows that the hierarchy is completely integrable in the Liouville sense and possesses bi-Hamiltonian structure. Finally, integrable couplings of the obtained system is given by means of semi-direct sums of Lie algebras.
Memorized discrete systems and time-delay
Luo, Albert C J
2017-01-01
This book examines discrete dynamical systems with memory—nonlinear systems that exist extensively in biological organisms and financial and economic organizations, and time-delay systems that can be discretized into the memorized, discrete dynamical systems. It book further discusses stability and bifurcations of time-delay dynamical systems that can be investigated through memorized dynamical systems as well as bifurcations of memorized nonlinear dynamical systems, discretization methods of time-delay systems, and periodic motions to chaos in nonlinear time-delay systems. The book helps readers find analytical solutions of MDS, change traditional perturbation analysis in time-delay systems, detect motion complexity and singularity in MDS; and determine stability, bifurcation, and chaos in any time-delay system.
Discrete Event Simulation of Patient Admissions to a Neurovascular Unit
Directory of Open Access Journals (Sweden)
S. Hahn-Goldberg
2014-01-01
Full Text Available Evidence exists that clinical outcomes improve for stroke patients admitted to specialized Stroke Units. The Toronto Western Hospital created a Neurovascular Unit (NVU using beds from general internal medicine, Neurology and Neurosurgery to care for patients with stroke and acute neurovascular conditions. Using patient-level data for NVU-eligible patients, a discrete event simulation was created to study changes in patient flow and length of stay pre- and post-NVU implementation. Varying patient volumes and resources were tested to determine the ideal number of beds under various conditions. In the first year of operation, the NVU admitted 507 patients, over 66% of NVU-eligible patient volumes. With the introduction of the NVU, length of stay decreased by around 8%. Scenario testing showed that the current level of 20 beds is sufficient for accommodating the current demand and would continue to be sufficient with an increase in demand of up to 20%.
Performance Analysis of Cloud Computing Architectures Using Discrete Event Simulation
Stocker, John C.; Golomb, Andrew M.
2011-01-01
Cloud computing offers the economic benefit of on-demand resource allocation to meet changing enterprise computing needs. However, the flexibility of cloud computing is disadvantaged when compared to traditional hosting in providing predictable application and service performance. Cloud computing relies on resource scheduling in a virtualized network-centric server environment, which makes static performance analysis infeasible. We developed a discrete event simulation model to evaluate the overall effectiveness of organizations in executing their workflow in traditional and cloud computing architectures. The two part model framework characterizes both the demand using a probability distribution for each type of service request as well as enterprise computing resource constraints. Our simulations provide quantitative analysis to design and provision computing architectures that maximize overall mission effectiveness. We share our analysis of key resource constraints in cloud computing architectures and findings on the appropriateness of cloud computing in various applications.
Accetto, Rok; Baggia, Alenka; Lazarevič, Zlatko; Leskovar, Robert; Požun, Peter; Vukovič, Goran
2011-01-01
Background: Medical processes are often obstructed by administrative ones. Themain issue in administrative processes is uneven workload resulting in an increased possibility of human errors. The system approach assures that medical and administrative processes are integrated. According to research reports and best practices, discrete event simulation is a proper method to implement the system approach. Methods: A detailed analysis of the administrative processes was performed using interviews...
Radix Representation of Triangular Discrete Grid System
Ben, J.; Li, Y. L.; Wang, R.
2016-11-01
Discrete Global Grid Systems (DGGSs) are spatial references that use a hierarchical tessellation of cells to partition and address the entire globe. It provides an organizational structure that permits fast integration between multiple sources of large and variable geospatial data. Although many endeavors have been done to describe certain discrete grid systems, there still lack of a uniform mathematical framework for them. This paper simplifies the planar class I aperture 4 triangular discrete grid system into a hierarchical lattice model which is proved to be a radix system in the complex number plane. Mathematical properties of the radix system reveal the discrete grid system is equivalent to the set of complex numbers with special form. The conclusion provides a potential way to build a uniform mathematical framework of DGGS and can be used to design efficient encoding and spatial operation scheme for DGGS.
VOODB: A Generic Discrete-Event Random Simulation Model to Evaluate the Performances of OODBs
Darmont, Jérôme
1999-01-01
Performance of object-oriented database systems (OODBs) is still an issue to both designers and users nowadays. The aim of this paper is to propose a generic discrete-event random simulation model, called VOODB, in order to evaluate the performances of OODBs in general, and the performances of optimization methods like clustering in particular. Such optimization methods undoubtedly improve the performances of OODBs. Yet, they also always induce some kind of overhead for the system. Therefore, it is important to evaluate their exact impact on the overall performances. VOODB has been designed as a generic discrete-event random simulation model by putting to use a modelling approach, and has been validated by simulating the behavior of the O2 OODB and the Texas persistent object store. Since our final objective is to compare object clustering algorithms, some experiments have also been conducted on the DSTC clustering technique, which is implemented in Texas. To validate VOODB, performance results obtained by si...
Comparison of discrete event simulation tools in an academic environment
Directory of Open Access Journals (Sweden)
Mario Jadrić
2014-12-01
Full Text Available A new research model for simulation software evaluation is proposed consisting of three main categories of criteria: modeling and simulation capabilities of the explored tools, and tools’ input/output analysis possibilities, all with respective sub-criteria. Using the presented model, two discrete event simulation tools are evaluated in detail using the task-centred scenario. Both tools (Arena and ExtendSim were used for teaching discrete event simulation in preceding academic years. With the aim to inspect their effectiveness and to help us determine which tool is more suitable for students i.e. academic purposes, we used a simple simulation model of entities competing for limited resources. The main goal was to measure subjective (primarily attitude and objective indicators while using the tools when the same simulation scenario is given. The subjects were first year students of Master studies in Information Management at the Faculty of Economics in Split taking a course in Business Process Simulations (BPS. In a controlled environment – in a computer lab, two groups of students were given detailed, step-by-step instructions for building models using both tools - first using ExtendSim then Arena or vice versa. Subjective indicators (students’ attitudes were collected using an online survey completed immediately upon building each model. Subjective indicators primarily include students’ personal estimations of Arena and ExtendSim capabilities/features for model building, model simulation and result analysis. Objective indicators were measured using specialised software that logs information on user's behavior while performing a particular task on their computer such as distance crossed by mouse during model building, the number of mouse clicks, usage of the mouse wheel and speed achieved. The results indicate that ExtendSim is well preferred comparing to Arena with regards to subjective indicators while the objective indicators are
Commissioning of a production line in the discrete event simulation software Ururau
Directory of Open Access Journals (Sweden)
Quézia Manuela Gonçalves Laurindo
2017-03-01
Full Text Available The aim of this work was to demonstrate the utilization of a discrete event simulation model built with the Ururau software integrated to a programmable logic controller to be applied in commissioning of control systems. The paper also presents different tests to illustrate various possibilities of commissioning with that software. The results showed the viability of the Ururau to be employed with this purpose and the internal mechanism responsible for the communication between a simulation model and a digital controller.
Input-output identification of controlled discrete manufacturing systems
Estrada-Vargas, Ana Paula; López-Mellado, Ernesto; Lesage, Jean-Jacques
2014-03-01
The automated construction of discrete event models from observations of external system's behaviour is addressed. This problem, often referred to as system identification, allows obtaining models of ill-known (or even unknown) systems. In this article, an identification method for discrete event systems (DESs) controlled by a programmable logic controller is presented. The method allows processing a large quantity of observed long sequences of input/output signals generated by the controller and yields an interpreted Petri net model describing the closed-loop behaviour of the automated DESs. The proposed technique allows the identification of actual complex systems because it is sufficiently efficient and well adapted to cope with both the technological characteristics of industrial controllers and data collection requirements. Based on polynomial-time algorithms, the method is implemented as an efficient software tool which constructs and draws the model automatically; an overview of this tool is given through a case study dealing with an automated manufacturing system.
Gabor systems on discrete periodic sets
Institute of Scientific and Technical Information of China (English)
2009-01-01
Due to its good potential for digital signal processing, discrete Gabor analysis has interested some mathematicians. This paper addresses Gabor systems on discrete periodic sets, which can model signals to appear periodically but intermittently. Complete Gabor systems and Gabor frames on discrete periodic sets are characterized; a sufficient and necessary condition on what periodic sets admit complete Gabor systems is obtained; this condition is also proved to be sufficient and necessary for the existence of sets E such that the Gabor systems generated by χE are tight frames on these periodic sets; our proof is constructive, and all tight frames of the above form with a special frame bound can be obtained by our method; periodic sets admitting Gabor Riesz bases are characterized; some examples are also provided to illustrate the general theory.
Gabor systems on discrete periodic sets
Institute of Scientific and Technical Information of China (English)
LI YunZhang; LIAN QiaoFang
2009-01-01
Due to its good potential for digital signal processing,discrete Gabor analysis has inter ested some mathematicians.This paper addresses Gabor systems on discrete periodic sets,which can model signals to appear periodically but intermittently.Complete Gabor systems and Gabor frames on discrete periodic sets are characterized; a sufficient and necessary condition on what periodic sets admit complete Gabor systems is obtained; this condition is also proved to be sufficient and necessary for the existence of sets E such that the Gabor systems generated by XE are tight frames on these periodic sets; our proof is constructive,and all tight frames of the above form with a special frame bound can be obtained by our method; periodic sets admitting Gabor Riesz bases are characterized;some examples are also provided to illustrate the general theory.
Energy Technology Data Exchange (ETDEWEB)
Winans, J.
1994-03-02
The support for the global event system has been designed to allow an application developer to control the APS event generator and receiver boards. This is done by the use of four new record types. These records are customized and are only supported by the device support modules for the APS event generator and receiver boards. The use of the global event system and its associated records should not be confused with the vanilla EPICS events and the associated event records. They are very different.
A Simple Discrete System with Chaotic Behavior
Asveld, Peter R.J.
1988-01-01
We discuss the behavior of a particular discrete system, viz. Post's system of tag with alphabet $\\{0,1\\}$, deletion number $d=3$, and rules: $0\\rightarrow 00$, $1\\rightarrow 1101$. As initial strings we consider all strings of length less than or equal to 15 as well as all 'worst case' inputs of t
Chaos for Discrete Dynamical System
Directory of Open Access Journals (Sweden)
Lidong Wang
2013-01-01
Full Text Available We prove that a dynamical system is chaotic in the sense of Martelli and Wiggins, when it is a transitive distributively chaotic in a sequence. Then, we give a sufficient condition for the dynamical system to be chaotic in the strong sense of Li-Yorke. We also prove that a dynamical system is distributively chaotic in a sequence, when it is chaotic in the strong sense of Li-Yorke.
Geometric formulations and variational integrators of discrete autonomous Birkhoff systems
Institute of Scientific and Technical Information of China (English)
Liu Shi-Xing; Liu Chang; Guo Yong-Xin
2011-01-01
The variational integrators of autonomous Birkhoff systems are obtained by the discrete variational principle. The geometric structure of the discrete autonomous Birkhoff system is formulated. The discretization of mathematical pendulum shows that the discrete variational method is as effective as symplectic scheme for the autonomous Birkhoff systems.
Stability Criterion for Discrete-Time Systems
Directory of Open Access Journals (Sweden)
K. Ratchagit
2010-01-01
Full Text Available This paper is concerned with the problem of delay-dependent stability analysis for discrete-time systems with interval-like time-varying delays. The problem is solved by applying a novel Lyapunov functional, and an improved delay-dependent stability criterion is obtained in terms of a linear matrix inequality.
Optimizing discrete control systems with phase limitations
Energy Technology Data Exchange (ETDEWEB)
Shakhverdian, S.B.; Abramian, A.K.
1981-01-01
A new method is proposed for solving discrete problems of optimizing control systems with limitations on the phase coordinates. Results are given from experimental research which demonstrate the need to introduce tangential limitations independent of the method of accounting for the phase limitations.
Discrete integrable systems and deformations of associative algebras
Energy Technology Data Exchange (ETDEWEB)
Konopelchenko, B G [Dipartimento di Fisica, Universita del Salento and INFN, Sezione di Lecce, 73100 Lecce (Italy)], E-mail: konopel@le.infn.it
2009-10-30
Interrelations between discrete deformations of the structure constants for associative algebras and discrete integrable systems are reviewed. Theory of deformations for associative algebras is presented. Closed left ideal generated by the elements representing the multiplication table plays a central role in this theory. Deformations of the structure constants are generated by the deformation driving algebra and governed by the central system of equations. It is demonstrated that many discrete equations such as discrete Boussinesq equation, discrete WDVV equation, discrete Schwarzian KP and BKP equations, discrete Hirota-Miwa equations for KP and BKP hierarchies are particular realizations of the central system. An interaction between the theories of discrete integrable systems and discrete deformations of associative algebras is reciprocal and fruitful. An interpretation of the Menelaus relation (discrete Schwarzian KP equation), discrete Hirota-Miwa equation for KP hierarchy, consistency around the cube as the associativity conditions and the concept of gauge equivalence, for instance, between the Menelaus and KP configurations are particular examples.
Lie symmetries and conserved quantities of discrete nonholonomic Hamiltonian systems
Institute of Scientific and Technical Information of China (English)
Wang Xing-Zhong; Fu Hao; Fu Jing-Li
2012-01-01
This paper focuses on studying Lie symmetries and conserved quantities of discrete nonholonomic Hamiltonian systems.Firstly,the discrete generalized Hamiltonian canonical equations and discrete energy equation of nonholonomic Hamiltonian systems are derived from discrete Hamiltonian action.Secondly,the determining equations and structure equation of Lie symmetry of the system are obtained.Thirdly,the Lie theorems and the conservation quantities are given for the discrete nonholonomic Hamiltonian systems.Finally,an example is discussed to illustrate the application of the results.
Geometric phases in discrete dynamical systems
Energy Technology Data Exchange (ETDEWEB)
Cartwright, Julyan H.E., E-mail: julyan.cartwright@csic.es [Instituto Andaluz de Ciencias de la Tierra, CSIC–Universidad de Granada, E-18100 Armilla, Granada (Spain); Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada (Spain); Piro, Nicolas, E-mail: nicolas.piro@epfl.ch [École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Piro, Oreste, E-mail: piro@imedea.uib-csic.es [Departamento de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Tuval, Idan, E-mail: ituval@imedea.uib-csic.es [Mediterranean Institute for Advanced Studies, CSIC–Universitat de les Illes Balears, E-07190 Mallorca (Spain)
2016-10-14
In order to study the behaviour of discrete dynamical systems under adiabatic cyclic variations of their parameters, we consider discrete versions of adiabatically-rotated rotators. Parallelling the studies in continuous systems, we generalize the concept of geometric phase to discrete dynamics and investigate its presence in these rotators. For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number of the system. For the discrete version of the rotated rotator considered by Berry, the rotated standard map, we further explore this connection as well as the role of the geometric phase at the onset of chaos. Further into the chaotic regime, we show that the geometric phase is also related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent. - Highlights: • We extend the concept of geometric phase to maps. • For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number. • For the rotated standard map, we explore the role of the geometric phase at the onset of chaos. • We show that the geometric phase is related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent.
Noether symmetries of discrete mechanico-electrical systems
Institute of Scientific and Technical Information of China (English)
Fu Jing-Li; Chen Ben-Yong; Xie Feng-Ping
2008-01-01
This paper focuses on studying Noether symmetries and conservation laws of the discrete mechanico-electrical systems with the nonconservative and the dissipative forces. Based on the invariance of discrete Hamilton action of the systems under the infinitesimal transformation with respect to the generalized coordinates, the generalized electrical quantities and time, it presents the discrete analogue of variational principle, the discrete analogue of Lagrange-Maxwell equations, the discrete analogue of Noether theorems for Lagrange Maxwell and Lagrange mechanico-electrical systems.Also, the discrete Noether operator identity and the discrete Noether-type conservation laws are obtained for these systems. An actual example is given to illustrate these results.
Event Index - an LHCb Event Search System
Ustyuzhanin, Andrey
2015-01-01
During LHC Run 1, the LHCb experiment recorded around 1011 collision events. This paper describes Event Index | an event search system. Its primary function is to quickly select subsets of events from a combination of conditions, such as the estimated decay channel or number of hits in a subdetector. Event Index is essentially Apache Lucene [1] optimized for read-only indexes distributed over independent shards on independent nodes.
Statistical and Probabilistic Extensions to Ground Operations' Discrete Event Simulation Modeling
Trocine, Linda; Cummings, Nicholas H.; Bazzana, Ashley M.; Rychlik, Nathan; LeCroy, Kenneth L.; Cates, Grant R.
2010-01-01
NASA's human exploration initiatives will invest in technologies, public/private partnerships, and infrastructure, paving the way for the expansion of human civilization into the solar system and beyond. As it is has been for the past half century, the Kennedy Space Center will be the embarkation point for humankind's journey into the cosmos. Functioning as a next generation space launch complex, Kennedy's launch pads, integration facilities, processing areas, launch and recovery ranges will bustle with the activities of the world's space transportation providers. In developing this complex, KSC teams work through the potential operational scenarios: conducting trade studies, planning and budgeting for expensive and limited resources, and simulating alternative operational schemes. Numerous tools, among them discrete event simulation (DES), were matured during the Constellation Program to conduct such analyses with the purpose of optimizing the launch complex for maximum efficiency, safety, and flexibility while minimizing life cycle costs. Discrete event simulation is a computer-based modeling technique for complex and dynamic systems where the state of the system changes at discrete points in time and whose inputs may include random variables. DES is used to assess timelines and throughput, and to support operability studies and contingency analyses. It is applicable to any space launch campaign and informs decision-makers of the effects of varying numbers of expensive resources and the impact of off nominal scenarios on measures of performance. In order to develop representative DES models, methods were adopted, exploited, or created to extend traditional uses of DES. The Delphi method was adopted and utilized for task duration estimation. DES software was exploited for probabilistic event variation. A roll-up process was used, which was developed to reuse models and model elements in other less - detailed models. The DES team continues to innovate and expand
Combining Latin Hypercube Designs and Discrete Event Simulation in a Study of a Surgical Unit
DEFF Research Database (Denmark)
Dehlendorff, Christian; Andersen, Klaus Kaae; Kulahci, Murat
Summary form given only:In this article experiments on a discrete event simulation model for an orthopedic surgery are considered. The model is developed as part of a larger project in co-operation with Copenhagen University Hospital in Gentofte. Experiments on the model are performed by using...... Latin hypercube designs. The parameter set consists of system settings such as use of preparation room for sedation and the number of operating rooms, as well as management decisions such as staffing, size of the recovery room and the number of simultaneously active operating rooms. Sensitivity analysis...
A Discrete Event Simulator for Extensive Defense Mechanism for Denial of Service Attacks Analysis
Directory of Open Access Journals (Sweden)
Maryam Tanha
2012-01-01
Full Text Available Problem statement: Seeking for defense mechanisms against low rate Denial of Service (DoS attacks as a new generation of DoS attacks has received special attention during recent years. As a decisive factor, evaluating the performance of the offered mitigation techniques based on different metrics for determining the viability and ability of these countermeasures requires more research. Approach: The development of a new generalized discrete event simulator has been deliberated in detail. The research conducted places high emphasis on the benefits of creating a customized discrete event simulator for the analysis of security and in particular the DoS attacks. The simulator possesses a niche in terms of the small scale, low execution time, portability and ease of use. The attributes and mechanism of the developed simulator is complemented with the proposed framework. Results: The simulator has been extensively evaluated and has proven to provide an ideal tool for the analysis and exploration of DoS attacks. In-depth analysis is enabled by this simulator for creating multitudes of defense mechanisms against HTTP low rate DoS attacks. The acquired results from the simulation tool have been compared against a simulator from the same domain. Subsequently, it enables the validation of developed simulator utilizing selected performance metrics including mean in-system time, average delay and average buffer size. Conclusion: The proposed simulator serves as an efficient and scalable performance analysis tool for the analysis of HTTP low rate DoS attack defense mechanism. Future work can encompass the development of discrete event simulators for analysis of other security issues such as Intrusion Detection Systems.
2006-12-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT Discrete-Event Simulation Modeling of the Repairable...TYPE AND DATES COVERED MBA Professional Report 4. TITLE AND SUBTITLE: Discrete-Event Simulation Modeling of the Repairable Inventory Process to...Advanced Concept Technology Demonstration; Agile Rapid Global Combat Support; Discrete- Event Simulation Modeling of the Repairable Inventory Process to
DOS: the discrete-ordinates system. [LMFBR
Energy Technology Data Exchange (ETDEWEB)
Rhoades, W. A.; Emmett, M. B.
1982-09-01
The Discrete Ordinates System determines the flux of neutrons or photons due either to fixed sources specified by the user or to sources generated by particle interaction with the problem materials. It also determines numerous secondary results which depend upon flux. Criticality searches can be performed. Numerous input, output, and file manipulation facilities are provided. The DOS driver program reads the problem specification from an input file and calls various program modules into execution as specified by the input file.
Controlling hopf bifurcations: Discrete-time systems
Directory of Open Access Journals (Sweden)
Guanrong Chen
2000-01-01
Full Text Available Bifurcation control has attracted increasing attention in recent years. A simple and unified state-feedback methodology is developed in this paper for Hopf bifurcation control for discrete-time systems. The control task can be either shifting an existing Hopf bifurcation or creating a new Hopf bifurcation. Some computer simulations are included to illustrate the methodology and to verify the theoretical results.
A Baecklund transformation between two integrable discrete hungry systems
Energy Technology Data Exchange (ETDEWEB)
Fukuda, Akiko, E-mail: j1409704@ed.kagu.tus.ac.j [Department of Mathematical Information Science, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Yamamoto, Yusaku [Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan); Iwasaki, Masashi [Department of Informatics and Environmental Science, Kyoto Prefectural University, 1-5, Nakaragi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522 (Japan); Ishiwata, Emiko [Department of Mathematical Information Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Nakamura, Yoshimasa [Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)
2011-01-17
The discrete hungry Toda (dhToda) equation and the discrete hungry Lotka-Volterra (dhLV) system are known as integrable discrete hungry systems. In this Letter, through finding the LR transformations associated with the dhToda equation and the dhLV system, we present a Baecklund transformation between these integrable systems.
Enriched vibrational resonance in certain discrete systems
Indian Academy of Sciences (India)
A Jeevarekha; M Santhiah; P Philominathan
2014-10-01
We wish to report the occurrence of vibrational resonance in certain discrete systems like sine square map and sine circle map, in a unique fashion, comprising of multiple resonant peaks which pave the way for enrichment. As the systems of our choice are capable of exhibiting vibrational resonance behaviour unlike the earlier reports, they are taken for investigation and the necessary numerical and analytical results are presented. Further, we study the effect of external forcing on various attractors of these systems with appropriate bifurcation and Lyapunov exponent diagrams.
Jahn, Beate; Theurl, Engelbert; Siebert, Uwe; Pfeiffer, Karl-Peter
2010-01-01
In most decision-analytic models in health care, it is assumed that there is treatment without delay and availability of all required resources. Therefore, waiting times caused by limited resources and their impact on treatment effects and costs often remain unconsidered. Queuing theory enables mathematical analysis and the derivation of several performance measures of queuing systems. Nevertheless, an analytical approach with closed formulas is not always possible. Therefore, simulation techniques are used to evaluate systems that include queuing or waiting, for example, discrete event simulation. To include queuing in decision-analytic models requires a basic knowledge of queuing theory and of the underlying interrelationships. This tutorial introduces queuing theory. Analysts and decision-makers get an understanding of queue characteristics, modeling features, and its strength. Conceptual issues are covered, but the emphasis is on practical issues like modeling the arrival of patients. The treatment of coronary artery disease with percutaneous coronary intervention including stent placement serves as an illustrative queuing example. Discrete event simulation is applied to explicitly model resource capacities, to incorporate waiting lines and queues in the decision-analytic modeling example.
Reducing pressure oscillations in discrete fluid power systems
DEFF Research Database (Denmark)
Hansen, Anders Hedegaard; Pedersen, Henrik Clemmensen
2016-01-01
Discrete fluid power systems featuring transmission lines inherently include pressure oscillations. Experimental verification of a discrete fluid power power take off system for wave energy converters has shown the cylinder pressure to oscillate as force shifts are performed. This article...
Hamiltonian Forms for a Hierarchy of Discrete Integrable Coupling Systems
Institute of Scientific and Technical Information of China (English)
XU Xi-Xiang; YANG Hong-Xiang; LU Rong-Wu
2008-01-01
A semi-direct sum of two Lie algebras of four-by-four matrices is presented, and a discrete four-by-fore matrix spectral problem is introduced. A hierarchy of discrete integrable coupling systems is derived. The obtained integrable coupling systems are all written in their Hamiltonian forms by the discrete variational identity. Finally, we prove that the lattice equations in the obtained integrable coupling systems are all Liouville integrable discrete Hamiltonian systems.
Institute of Scientific and Technical Information of China (English)
DENG Shu-xian; DING Yu; GE Lei
2008-01-01
We usually describle a comparatively more complex control system, especially a multi-inputs and multioutputs system by time domation analytical procedure. While the system's controllability means whether the system is controllable according to certain requirements. It involves not only the system's outputs' controllability but also the controllability of the system's partial or total conditions. The movement is described by difference equation in the linear discrete-time system. Therefore, the problem of controllability of the linear discrete-time system has been converted into a problem of the controllability of discrete-time difference equation. The thesis makes out the determination method of the discrete-time system's controllability and puts forward the sufficient and necessary conditions to determine it's controllability by making a study on the controllability of the linear discrete-time equation.
Nonstochastic Analysis of Manufacturing Systems Using Timed-Event Graphs
DEFF Research Database (Denmark)
Hulgaard, Henrik; Amon, Tod
1996-01-01
Using automated methods to analyze the temporal behavior ofmanufacturing systems has proven to be essential and quite beneficial.Popular methodologies include Queueing networks, Markov chains,simulation techniques, and discrete event systems (such as Petrinets). These methodologies are primarily...
QUALITY THROUGH INTEGRATION OF PRODUCTION AND SHOP FLOOR MANAGEMENT BY DISCRETE EVENT SIMULATION
Directory of Open Access Journals (Sweden)
Zoran Mirović
2007-06-01
Full Text Available With the intention to integrate strategic and tactical decision making and develop the capability of plans and schedules reconfiguration and synchronization in a very short cycle time many firms have proceeded to the adoption of ERP and Advanced Planning and Scheduling (APS technologies. The final goal is a purposeful scheduling system that guide in the right direction the current, high priority needs of the shop floor while remaining consistent with long-term production plans. The difference, and the power, of Discrete-Event Simulation (DES is its ability to mimic dynamic manufacturing systems, consisting of complex structures, and many heterogeneous interacting components. This paper describes such an integrated system (ERP/APS/DES and draw attention to the essential role of simulation based scheduling within it.
Modeling a Million-Node Slim Fly Network Using Parallel Discrete-Event Simulation
Energy Technology Data Exchange (ETDEWEB)
Wolfe, Noah; Carothers, Christopher; Mubarak, Misbah; Ross, Robert; Carns, Philip
2016-05-15
As supercomputers close in on exascale performance, the increased number of processors and processing power translates to an increased demand on the underlying network interconnect. The Slim Fly network topology, a new lowdiameter and low-latency interconnection network, is gaining interest as one possible solution for next-generation supercomputing interconnect systems. In this paper, we present a high-fidelity Slim Fly it-level model leveraging the Rensselaer Optimistic Simulation System (ROSS) and Co-Design of Exascale Storage (CODES) frameworks. We validate our Slim Fly model with the Kathareios et al. Slim Fly model results provided at moderately sized network scales. We further scale the model size up to n unprecedented 1 million compute nodes; and through visualization of network simulation metrics such as link bandwidth, packet latency, and port occupancy, we get an insight into the network behavior at the million-node scale. We also show linear strong scaling of the Slim Fly model on an Intel cluster achieving a peak event rate of 36 million events per second using 128 MPI tasks to process 7 billion events. Detailed analysis of the underlying discrete-event simulation performance shows that a million-node Slim Fly model simulation can execute in 198 seconds on the Intel cluster.
Information storage capacity of discrete spin systems
Yoshida, Beni
2011-01-01
What is the limit of information storage capacity of discrete spin systems? To answer this question, we study classical error-correcting codes which can be physically realized as the energy ground space of gapped local Hamiltonians. For discrete spin systems on a D-dimensional lattice governed by local frustration-free Hamiltonians, the following bound is known to hold; $kd^{1/D}\\leq O(n)$ where k is the number of encodable logical bits, d is the code distance, and n is the total number of spins in the system. Yet, previously found codes were far below this bound and it remained open whether there exists an error-correcting code which saturates the bound or not. Here, we give a construction of local spin systems which saturate the bound asymptotically with $k \\sim O(L^{D-1})$ and $d \\sim O(L^{D-\\epsilon})$ for an arbitrary small $\\epsilon> 0$ where L is the linear length of the system. Our model borrows an idea from a fractal geometry arising in Sierpinski triangle.
Exterior difference systems and invariance properties of discrete mechanics
Energy Technology Data Exchange (ETDEWEB)
Xie Zheng; Xie Duanqiang; Li Hongbo [Center of Mathematical Sciences, Zhejiang University, Zhejiang 310027 (China); Key Laboratory of Mathematics Mechanization, Chinese Academy of Sciences, Beijing 100080 (China)], E-mail: lenozhengxie@yahoo.com.cn
2008-06-27
Invariance properties describe the fundamental physical laws in discrete mechanics. Can those properties be described in a geometric way? We investigate an exterior difference system called the discrete Euler-Lagrange system, whose solution has one-to-one correspondence with solutions of discrete Euler-Lagrange equations, and use it to define the first integrals. The preservation of the discrete symplectic form along the discrete Hamilton phase flows and the discrete Noether's theorem is also described in the language of difference forms.
The stress statistics of the first pop-in or discrete plastic event in crystal plasticity
Derlet, P. M.; Maaß, R.
2016-12-01
The stress at which the first discrete plastic event occurs is investigated using extreme value statistics. It is found that the average of this critical stress is inversely related to the deforming volume, via an exponentially truncated power-law. This is demonstrated for the first pop-in event observed in experimental nano-indentation data as a function of the indenter volume, and for the first discrete plastic event seen in a dislocation dynamics simulation. When the underlying master distribution of critical stresses is assumed to be a power-law, it becomes possible to extract the density of discrete plastic events available to the crystal, and to understand the exponential truncation as a break-down of the asymptotic Weibull limit.
Statistical mechanics of a discrete nonlinear system
Rasmussen; Cretegny; Kevrekidis; Gronbech-Jensen
2000-04-24
Statistical mechanics of the discrete nonlinear Schrodinger equation is studied by means of analytical and numerical techniques. The lower bound of the Hamiltonian permits the construction of standard Gibbsian equilibrium measures for positive temperatures. Beyond the line of T = infinity, we identify a phase transition through a discontinuity in the partition function. The phase transition is demonstrated to manifest itself in the creation of breatherlike localized excitations. Interrelation between the statistical mechanics and the nonlinear dynamics of the system is explored numerically in both regimes.
Modeling and Analysis of a Manufacturing Plant Using Discrete Event Simulation
Directory of Open Access Journals (Sweden)
Radha Krishna R
2017-02-01
Full Text Available Today‟s manufacturing systems are characterized by large number of complexities such as random arrival patterns of jobs, random processing times, random failure rates, random repair times, random rejection of parts, etc. The analytical models cannot capture all the randomness mentioned above into the models. There is a need to incorporate them into models to have a practical and real life model. Simulation comes handy in this aspect. Discrete Event Simulation (DES is used to model a manufacturing system to predict its performance. The inputs to this model include arrival rate, batch size, setup time, processing time, machine breakdown rate, machine breakdown frequency, machines and their capacities, buffers, rejection percentage and inspection time. The outputs that are estimated are work in process, flow time, utilization and throughput.
Majid, Mazlina Abdul; Siebers, Peer-Olaf
2010-01-01
In this paper, we investigate output accuracy for a Discrete Event Simulation (DES) model and Agent Based Simulation (ABS) model. The purpose of this investigation is to find out which of these simulation techniques is the best one for modelling human reactive behaviour in the retail sector. In order to study the output accuracy in both models, we have carried out a validation experiment in which we compared the results from our simulation models to the performance of a real system. Our experiment was carried out using a large UK department store as a case study. We had to determine an efficient implementation of management policy in the store's fitting room using DES and ABS. Overall, we have found that both simulation models were a good representation of the real system when modelling human reactive behaviour.
Discrete optimization in architecture extremely modular systems
Zawidzki, Machi
2017-01-01
This book is comprised of two parts, both of which explore modular systems: Pipe-Z (PZ) and Truss-Z (TZ), respectively. It presents several methods of creating PZ and TZ structures subjected to discrete optimization. The algorithms presented employ graph-theoretic and heuristic methods. The underlying idea of both systems is to create free-form structures using the minimal number of types of modular elements. PZ is more conceptual, as it forms single-branch mathematical knots with a single type of module. Conversely, TZ is a skeletal system for creating free-form pedestrian ramps and ramp networks among any number of terminals in space. In physical space, TZ uses two types of modules that are mirror reflections of each other. The optimization criteria discussed include: the minimal number of units, maximal adherence to the given guide paths, etc.
What is integrability of discrete variational systems?
Boll, Raphael; Petrera, Matteo; Suris, Yuri B
2014-02-08
We propose a notion of a pluri-Lagrangian problem, which should be understood as an analogue of multi-dimensional consistency for variational systems. This is a development along the line of research of discrete integrable Lagrangian systems initiated in 2009 by Lobb and Nijhoff, however, having its more remote roots in the theory of pluriharmonic functions, in the Z-invariant models of statistical mechanics and their quasiclassical limit, as well as in the theory of variational symmetries going back to Noether. A d-dimensional pluri-Lagrangian problem can be described as follows: given a d-form [Formula: see text] on an m-dimensional space (called multi-time, m>d), whose coefficients depend on a sought-after function x of m independent variables (called field), find those fields x which deliver critical points to the action functionals [Formula: see text] for anyd-dimensional manifold Σ in the multi-time. We derive the main building blocks of the multi-time Euler-Lagrange equations for a discrete pluri-Lagrangian problem with d=2, the so-called corner equations, and discuss the notion of consistency of the system of corner equations. We analyse the system of corner equations for a special class of three-point two-forms, corresponding to integrable quad-equations of the ABS list. This allows us to close a conceptual gap of the work by Lobb and Nijhoff by showing that the corresponding two-forms are closed not only on solutions of (non-variational) quad-equations, but also on general solutions of the corresponding corner equations. We also find an example of a pluri-Lagrangian system not coming from a multi-dimensionally consistent system of quad-equations.
A discrete event simulation tool to support and predict hospital and clinic staffing.
DeRienzo, Christopher M; Shaw, Ryan J; Meanor, Phillip; Lada, Emily; Ferranti, Jeffrey; Tanaka, David
2017-06-01
We demonstrate how to develop a simulation tool to help healthcare managers and administrators predict and plan for staffing needs in a hospital neonatal intensive care unit using administrative data. We developed a discrete event simulation model of nursing staff needed in a neonatal intensive care unit and then validated the model against historical data. The process flow was translated into a discrete event simulation model. Results demonstrated that the model can be used to give a respectable estimate of annual admissions, transfers, and deaths based upon two different staffing levels. The discrete event simulation tool model can provide healthcare managers and administrators with (1) a valid method of modeling patient mix, patient acuity, staffing needs, and costs in the present state and (2) a forecast of how changes in a unit's staffing, referral patterns, or patient mix would affect a unit in a future state.
Variational principle and dynamical equations of discrete nonconservative holonomic systems
Institute of Scientific and Technical Information of China (English)
Liu Rong-Wan; Zhang Hong-Bin; Chen Li-Qun
2006-01-01
By analogue with the methods and processes in continuous mechanics, a Lagrangian formulation and a Hamiltonian formulation of discrete mechanics are obtained. The dynamical equations including Euler-Lagrange equations and Hamilton's canonical equations of the discrete nonconservative holonomic systems are derived on a discrete variational principle. Some illustrative examples are also given.
First integrals of the discrete nonconservative and nonholonomic systems
Institute of Scientific and Technical Information of China (English)
Zhang Hong-Bin; Chen Li-Qun; Liu Rong-Wan
2005-01-01
In this paper we show that the first integrals of the discrete equation of motion for nonconservative and non holonomic mechanical systems can be determined explicitly by investigating the invariance properties of the discrete Lagrangian. The result obtained is a discrete analogue of the generalized theorem of Noether in the Calculus of variations.
Discrete Event Modeling and Simulation-Driven Engineering for the ATLAS Data Acquisition Network
Bonaventura, Matias Alejandro; The ATLAS collaboration; Castro, Rodrigo Daniel
2016-01-01
We present an iterative and incremental development methodology for simulation models in network engineering projects. Driven by the DEVS (Discrete Event Systems Specification) formal framework for modeling and simulation we assist network design, test, analysis and optimization processes. A practical application of the methodology is presented for a case study in the ATLAS particle physics detector, the largest scientific experiment built by man where scientists around the globe search for answers about the origins of the universe. The ATLAS data network convey real-time information produced by physics detectors as beams of particles collide. The produced sub-atomic evidences must be filtered and recorded for further offline scrutiny. Due to the criticality of the transported data, networks and applications undergo careful engineering processes with stringent quality of service requirements. A tight project schedule imposes time pressure on design decisions, while rapid technology evolution widens the palett...
Noether's theory of Lagrange systems in discrete case
Institute of Scientific and Technical Information of China (English)
Lu Hong-Sheng; Zhang-Hong-Bin; Gu Shu-Long
2011-01-01
In this paper, Noether theory of Lagrange systems in discrete case are studied. First, we briefly overview the wellknown Noether theory of Lagrange system in the continuous case. Then, we introduce some definitions and notations,such as the operators of discrete translation to the right and the left and the operators of discrete differentiation to the right and the left, and give the conditions for the invariance of the difference functional on the uniform lattice and the non-uniform one, respectively. We also deduce the discrete analog of the Noether-type identity. Finally, the discrete analog of Noether's theorem is presented. An example was discussed to illustrate these results.
Developing Flexible Discrete Event Simulation Models in an Uncertain Policy Environment
Miranda, David J.; Fayez, Sam; Steele, Martin J.
2011-01-01
On February 1st, 2010 U.S. President Barack Obama submitted to Congress his proposed budget request for Fiscal Year 2011. This budget included significant changes to the National Aeronautics and Space Administration (NASA), including the proposed cancellation of the Constellation Program. This change proved to be controversial and Congressional approval of the program's official cancellation would take many months to complete. During this same period an end-to-end discrete event simulation (DES) model of Constellation operations was being built through the joint efforts of Productivity Apex Inc. (PAl) and Science Applications International Corporation (SAIC) teams under the guidance of NASA. The uncertainty in regards to the Constellation program presented a major challenge to the DES team, as to: continue the development of this program-of-record simulation, while at the same time remain prepared for possible changes to the program. This required the team to rethink how it would develop it's model and make it flexible enough to support possible future vehicles while at the same time be specific enough to support the program-of-record. This challenge was compounded by the fact that this model was being developed through the traditional DES process-orientation which lacked the flexibility of object-oriented approaches. The team met this challenge through significant pre-planning that led to the "modularization" of the model's structure by identifying what was generic, finding natural logic break points, and the standardization of interlogic numbering system. The outcome of this work resulted in a model that not only was ready to be easily modified to support any future rocket programs, but also a model that was extremely structured and organized in a way that facilitated rapid verification. This paper discusses in detail the process the team followed to build this model and the many advantages this method provides builders of traditional process-oriented discrete
An Object Description Language for Distributed Discrete Event Simulations
2001-05-24
given a universe Up, we define a system SRXpT over a collection of parameters RcP ’ as SR XPT E-lrV xeRUT (2-5) We then define r:pT--->SR such that iz...View2D::zNear - This is the near clipping plane. float gvm::View2D::zFar - This is the far clipping plane Public Constructors: gvm::View2D::View2D...of the view. GLdouble gvm::View3D::scale - Zooming factor of the scale. GLdouble gvm::View3D::zNear - Near clipping plane. GLdouble gvm::View3D::zFar
Context-Aware Mobile Sensors for Sensing Discrete Events in Smart Environment
Directory of Open Access Journals (Sweden)
Awais Ahmad
2016-01-01
Full Text Available Over the last few decades, several advancements in the field of smart environment gained importance, so the experts can analyze ideas for smart building based on embedded systems to minimize the expense and energy conservation. Therefore, propelling the concept of smart home toward smart building, several challenges of power, communication, and sensors’ connectivity can be seen. Such challenges distort the interconnectivity between different technologies, such as Bluetooth and ZigBee, making it possible to provide the continuous connectivity among different objects such as sensors, actuators, home appliances, and cell phones. Therefore, this paper presents the concept of smart building based on embedded systems that enhance low power mobile sensors for sensing discrete events in embedded systems. The proposed scheme comprises system architecture that welcomes all the mobile sensors to communicate with each other using a single platform service. The proposed system enhances the concept of smart building in three stages (i.e., visualization, data analysis, and application. For low power mobile sensors, we propose a communication model, which provides a common medium for communication. Finally, the results show that the proposed system architecture efficiently processes, analyzes, and integrates different datasets efficiently and triggers actions to provide safety measurements for the elderly, patients, and others.
Design of switched controllers for discrete singular bilinear systems
Institute of Scientific and Technical Information of China (English)
Xiuhua ZHANG; Qingling ZHANG
2007-01-01
In this paper, switched controllers are designed for a class of nonlinear discrete singular systems and a class of discrete singular bilinear systems. An invariant principle is presented for such switched nonlinear singular systems.The invariant principle and the switched controllers are used to globally stabilize a class of singular bilinear systems that are not open-loop stable.
APPROXIMATION LAWS OF DISCRETE-TIME VARIABLE STRUCTURE CONTROL SYSTEMS
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Two new approximation laws of sliding mode for discrete-time variable structure control systems are proposed in this paper. By applying the proposed approximation laws of sliding mode to discrete-time variable structure control systems,the stability of origin can be guaranteed,and the chattering along the switching surface caused by discrete-time variable structure control can be restrained effectively. In designing of these approximation laws,the problem that the system control input is restricted is also ...
W-Stability of Multistable Nonlinear Discrete-Time Systems
Directory of Open Access Journals (Sweden)
Zhishuai Ding
2012-01-01
Full Text Available Motivated by the importance and application of discrete dynamical systems, this paper presents a new Lyapunov characterization which is an extension of conventional Lyapunov characterization for multistable discrete-time nonlinear systems. Based on a new type stability notion of W-stability introduced by D. Efimov, the estimates of solution and the Lyapunov stability theorem and converse theorem are proposed for multi-stable discrete-time nonlinear systems.
Almost Periodic Solution of a Discrete Commensalism System
Directory of Open Access Journals (Sweden)
Yalong Xue
2015-01-01
Full Text Available A nonautonomous discrete two-species Lotka-Volterra commensalism system with delays is considered in this paper. Based on the discrete comparison theorem, the permanence of the system is obtained. Then, by constructing a new discrete Lyapunov functional, a set of sufficient conditions which guarantee the system global attractivity are obtained. If the coefficients are almost periodic, there exists an almost periodic solution and the almost periodic solution is globally attractive.
Modeling Anti-Air Warfare With Discrete Event Simulation and Analyzing Naval Convoy Operations
2016-06-01
DISCRETE EVENT SIMULATION AND ANALYZING NAVAL CONVOY OPERATIONS Ali E. Opcin Lieutenant Junior Grade , Turkish Navy B.S., Turkish Naval...mounting antiaircraft guns on ships. By the end of World War I, most of the important ships had a battery of one to four semiautomatic guns in high angle
Modeling Repeatable Events Using Discrete-Time Data: Predicting Marital Dissolution
Teachman, Jay
2011-01-01
I join two methodologies by illustrating the application of multilevel modeling principles to hazard-rate models with an emphasis on procedures for discrete-time data that contain repeatable events. I demonstrate this application using data taken from the 1995 National Survey of Family Growth (NSFG) to ascertain the relationship between multiple…
Modeling Repeatable Events Using Discrete-Time Data: Predicting Marital Dissolution
Teachman, Jay
2011-01-01
I join two methodologies by illustrating the application of multilevel modeling principles to hazard-rate models with an emphasis on procedures for discrete-time data that contain repeatable events. I demonstrate this application using data taken from the 1995 National Survey of Family Growth (NSFG) to ascertain the relationship between multiple…
Sampled data systems passivity and discrete port-Hamiltonian systems
Stramigioli, Stefano; Secchi, Cristian; Schaft, van der Arjan J.; Fantuzzi, Cesare
2005-01-01
In this paper, we present a novel way to approach the interconnection of a continuous and a discrete time physical system first presented in [1][2] [3]. This is done in a way which preserves passivity of the coupled system independently of the sampling time T. This strategy can be used both in the f
Discrete-Time Nonlinear Control of VSC-HVDC System
Directory of Open Access Journals (Sweden)
TianTian Qian
2015-01-01
Full Text Available Because VSC-HVDC is a kind of strong nonlinear, coupling, and multi-input multioutput (MIMO system, its control problem is always attracting much attention from scholars. And a lot of papers have done research on its control strategy in the continuous-time domain. But the control system is implemented through the computer discrete sampling in practical engineering. It is necessary to study the mathematical model and control algorithm in the discrete-time domain. The discrete mathematical model based on output feedback linearization and discrete sliding mode control algorithm is proposed in this paper. And to ensure the effectiveness of the control system in the quasi sliding mode state, the fast output sampling method is used in the output feedback. The results from simulation experiment in MATLAB/SIMULINK prove that the proposed discrete control algorithm can make the VSC-HVDC system have good static, dynamic, and robust characteristics in discrete-time domain.
Absolute Stability of Discrete-Time Systems with Delay
Directory of Open Access Journals (Sweden)
Medina Rigoberto
2008-01-01
Full Text Available We investigate the stability of nonlinear nonautonomous discrete-time systems with delaying arguments, whose linear part has slowly varying coefficients, and the nonlinear part has linear majorants. Based on the "freezing" technique to discrete-time systems, we derive explicit conditions for the absolute stability of the zero solution of such systems.
StratBAM: A Discrete-Event Simulation Model to Support Strategic Hospital Bed Capacity Decisions.
Devapriya, Priyantha; Strömblad, Christopher T B; Bailey, Matthew D; Frazier, Seth; Bulger, John; Kemberling, Sharon T; Wood, Kenneth E
2015-10-01
The ability to accurately measure and assess current and potential health care system capacities is an issue of local and national significance. Recent joint statements by the Institute of Medicine and the Agency for Healthcare Research and Quality have emphasized the need to apply industrial and systems engineering principles to improving health care quality and patient safety outcomes. To address this need, a decision support tool was developed for planning and budgeting of current and future bed capacity, and evaluating potential process improvement efforts. The Strategic Bed Analysis Model (StratBAM) is a discrete-event simulation model created after a thorough analysis of patient flow and data from Geisinger Health System's (GHS) electronic health records. Key inputs include: timing, quantity and category of patient arrivals and discharges; unit-level length of care; patient paths; and projected patient volume and length of stay. Key outputs include: admission wait time by arrival source and receiving unit, and occupancy rates. Electronic health records were used to estimate parameters for probability distributions and to build empirical distributions for unit-level length of care and for patient paths. Validation of the simulation model against GHS operational data confirmed its ability to model real-world data consistently and accurately. StratBAM was successfully used to evaluate the system impact of forecasted patient volumes and length of stay in terms of patient wait times, occupancy rates, and cost. The model is generalizable and can be appropriately scaled for larger and smaller health care settings.
Visual Data-Analytics of Large-Scale Parallel Discrete-Event Simulations
Energy Technology Data Exchange (ETDEWEB)
Ross, Caitlin; Carothers, Christopher D.; Mubarak, Misbah; Carns, Philip; Ross, Robert; Li, Jianping Kelvin; Ma, Kwan-Liu
2016-11-13
Parallel discrete-event simulation (PDES) is an important tool in the codesign of extreme-scale systems because PDES provides a cost-effective way to evaluate designs of highperformance computing systems. Optimistic synchronization algorithms for PDES, such as Time Warp, allow events to be processed without global synchronization among the processing elements. A rollback mechanism is provided when events are processed out of timestamp order. Although optimistic synchronization protocols enable the scalability of large-scale PDES, the performance of the simulations must be tuned to reduce the number of rollbacks and provide an improved simulation runtime. To enable efficient large-scale optimistic simulations, one has to gain insight into the factors that affect the rollback behavior and simulation performance. We developed a tool for ROSS model developers that gives them detailed metrics on the performance of their large-scale optimistic simulations at varying levels of simulation granularity. Model developers can use this information for parameter tuning of optimistic simulations in order to achieve better runtime and fewer rollbacks. In this work, we instrument the ROSS optimistic PDES framework to gather detailed statistics about the simulation engine. We have also developed an interactive visualization interface that uses the data collected by the ROSS instrumentation to understand the underlying behavior of the simulation engine. The interface connects real time to virtual time in the simulation and provides the ability to view simulation data at different granularities. We demonstrate the usefulness of our framework by performing a visual analysis of the dragonfly network topology model provided by the CODES simulation framework built on top of ROSS. The instrumentation needs to minimize overhead in order to accurately collect data about the simulation performance. To ensure that the instrumentation does not introduce unnecessary overhead, we perform a
Temporal and Rate Coding for Discrete Event Sequences in the Hippocampus.
Terada, Satoshi; Sakurai, Yoshio; Nakahara, Hiroyuki; Fujisawa, Shigeyoshi
2017-06-21
Although the hippocampus is critical to episodic memory, neuronal representations supporting this role, especially relating to nonspatial information, remain elusive. Here, we investigated rate and temporal coding of hippocampal CA1 neurons in rats performing a cue-combination task that requires the integration of sequentially provided sound and odor cues. The majority of CA1 neurons displayed sensory cue-, combination-, or choice-specific (simply, "event"-specific) elevated discharge activities, which were sustained throughout the event period. These event cells underwent transient theta phase precession at event onset, followed by sustained phase locking to the early theta phases. As a result of this unique single neuron behavior, the theta sequences of CA1 cell assemblies of the event sequences had discrete representations. These results help to update the conceptual framework for space encoding toward a more general model of episodic event representations in the hippocampus. Copyright © 2017 Elsevier Inc. All rights reserved.
The use of discrete-event simulation modelling to improve radiation therapy planning processes.
Werker, Greg; Sauré, Antoine; French, John; Shechter, Steven
2009-07-01
The planning portion of the radiation therapy treatment process at the British Columbia Cancer Agency is efficient but nevertheless contains room for improvement. The purpose of this study is to show how a discrete-event simulation (DES) model can be used to represent this complex process and to suggest improvements that may reduce the planning time and ultimately reduce overall waiting times. A simulation model of the radiation therapy (RT) planning process was constructed using the Arena simulation software, representing the complexities of the system. Several types of inputs feed into the model; these inputs come from historical data, a staff survey, and interviews with planners. The simulation model was validated against historical data and then used to test various scenarios to identify and quantify potential improvements to the RT planning process. Simulation modelling is an attractive tool for describing complex systems, and can be used to identify improvements to the processes involved. It is possible to use this technique in the area of radiation therapy planning with the intent of reducing process times and subsequent delays for patient treatment. In this particular system, reducing the variability and length of oncologist-related delays contributes most to improving the planning time.
ABSOLUTE STABILITY OF GENERAL LURIE DISCRETE NONLINEAR CONTROL SYSTEMS
Institute of Scientific and Technical Information of China (English)
GAN Zuoxin; HAN Jingqing; ZHAO Suxia; WU Yongxian
2002-01-01
In the present paper, the absolute stability of general Lurie discrete nonlinear control systems has been discussed by Lyapunov function approach. A sufficient condition of absolute stability for the general Lurie discrete nonlinear control systems is derived, and some necessary and sufficient conditions are obtained in special cases. Meanwhile, we give a simple example to illustrate the effectiveness of the results.
Dubos, Gregory F.; Cornford, Steven
2012-01-01
While the ability to model the state of a space system over time is essential during spacecraft operations, the use of time-based simulations remains rare in preliminary design. The absence of the time dimension in most traditional early design tools can however become a hurdle when designing complex systems whose development and operations can be disrupted by various events, such as delays or failures. As the value delivered by a space system is highly affected by such events, exploring the trade space for designs that yield the maximum value calls for the explicit modeling of time.This paper discusses the use of discrete-event models to simulate spacecraft development schedule as well as operational scenarios and on-orbit resources in the presence of uncertainty. It illustrates how such simulations can be utilized to support trade studies, through the example of a tool developed for DARPA's F6 program to assist the design of "fractionated spacecraft".
Stability Test for 2-D Continuous-Discrete Systems
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Models of 2-D continuous-discrete systems are introduced, which can be used to describe some complex systems. Different from classical 2-D continuous systems or 2-D discrete systems, the asymptotic stability of the continuous-discrete systems is determined by Hurwitz-Schur stability (hybrid one) of 2-D characteristic polynomials of the systems. An algebraic algorithm with simpler test procedure for Hurwitz-Schur stability test of 2-D polynomials is developed. An example to illustrate the applications of the test approach is provided.
Comparing Simulation Output Accuracy of Discrete Event and Agent Based Models: A Quantitive Approach
Majid, Mazlina Abdul; Siebers, Peer-Olaf
2010-01-01
In our research we investigate the output accuracy of discrete event simulation models and agent based simulation models when studying human centric complex systems. In this paper we focus on human reactive behaviour as it is possible in both modelling approaches to implement human reactive behaviour in the model by using standard methods. As a case study we have chosen the retail sector, and here in particular the operations of the fitting room in the women wear department of a large UK department store. In our case study we looked at ways of determining the efficiency of implementing new management policies for the fitting room operation through modelling the reactive behaviour of staff and customers of the department. First, we have carried out a validation experiment in which we compared the results from our models to the performance of the real system. This experiment also allowed us to establish differences in output accuracy between the two modelling methids. In a second step a multi-scenario experimen...
Chan, Kung-Sik; Mysterud, Atle; Øritsland, Nils Are; Severinsen, Torbjørn; Stenseth, Nils Chr
2005-10-01
Climate at northern latitudes are currently changing both with regard to the mean and the temporal variability at any given site, increasing the frequency of extreme events such as cold and warm spells. Here we use a conceptually new modelling approach with two different dynamic terms of the climatic effects on a Svalbard reindeer population (the Brøggerhalvøya population) which underwent an extreme icing event ("locked pastures") with 80% reduction in population size during one winter (1993/94). One term captures the continuous and linear effect depending upon the Arctic Oscillation and another the discrete (rare) "event" process. The introduction of an "event" parameter describing the discrete extreme winter resulted in a more parsimonious model. Such an approach may be useful in strongly age-structured ungulate populations, with young and very old individuals being particularly prone to mortality factors during adverse conditions (resulting in a population structure that differs before and after extreme climatic events). A simulation study demonstrates that our approach is able to properly detect the ecological effects of such extreme climate events.
Quantum dynamical entropies for discrete classical systems: a comparison
Energy Technology Data Exchange (ETDEWEB)
Cappellini, Valerio [Dipartimento di Fisica Teorica, Universita di Trieste, Strada Costiera 11, 34014 Trieste (Italy)
2005-08-05
On a family of classical dynamical systems on the 2-torus, we perform a discretization procedure similar to the anti-Wick quantization. Such a discretization is performed by using a particular class of states, fulfilling an appropriate dynamical localization property, typical of quantum coherent states. The same set of states is involved in the construction of a quantum entropy, that we test on the discrete approximants; a correspondence with the classical metric entropy of Kolmogorov-Sinai is found only over time scales that are logarithmic in the discretization parameter.
Simulation model of discret events applied to the planning and operation of a toll plaza
2016-01-01
AbstractThis work investigates the congestion and traffic flow in a tool plaza, and proposes a methodology for the classification of highway flows and its service levels based on a combination of the Highway Capacity Manual – HCM and Discrete Events Simulation fundaments. The proposed mesoscopic simulation is used to analyze service levels of different physical and operational arrangements of a particular toll gate. The model considers speed functions, toll gate arrivals and departures,...
Approximation law for discrete-time variable structure control systems
Institute of Scientific and Technical Information of China (English)
Yan ZHENG; Yuanwei JING
2006-01-01
Two approximation laws of sliding mode for discrete-time variable structure control systems are proposed to overcome the limitations of the exponential approximation law and the variable rate approximation law. By applying the proposed approximation laws of sliding mode to discrete-time variable structure control systems, the stability of origin can be guaranteed, and the chattering along the switching surface caused by discrete-time variable structure control can be restrained effectively. In designing of approximation laws, the problem that the system control input is restricted is also considered, which is very important in practical systems. Finally a simulation example shows the effectiveness of the two approximation laws proposed.
Discrete-event simulation of uncertainty in single-neutron experiments
Directory of Open Access Journals (Sweden)
Hans eDe Raedt
2014-03-01
Full Text Available A discrete-event simulation approach which provides a cause-and-effect description of manyexperiments with photons and neutrons exhibiting interference and entanglement is applied to a recentsingle-neutron experiment that tests (generalizations of Heisenberg's uncertainty relation.The event-based simulation algorithm reproduces the results of thequantum theoretical description of the experimentbut does not require the knowledge of the solution of a wave equation nor does itrely on concepts of quantum theory.In particular, the data satisfies uncertainty relations derived in the context of quantum theory.
Approximate Controllability of Abstract Discrete-Time Systems
Directory of Open Access Journals (Sweden)
Cuevas Claudio
2010-01-01
Full Text Available Approximate controllability for semilinear abstract discrete-time systems is considered. Specifically, we consider the semilinear discrete-time system , , where are bounded linear operators acting on a Hilbert space , are -valued bounded linear operators defined on a Hilbert space , and is a nonlinear function. Assuming appropriate conditions, we will show that the approximate controllability of the associated linear system implies the approximate controllability of the semilinear system.
Discrete Event Simulation Models for CT Examination Queuing in West China Hospital.
Luo, Li; Liu, Hangjiang; Liao, Huchang; Tang, Shijun; Shi, Yingkang; Guo, Huili
2016-01-01
In CT examination, the emergency patients (EPs) have highest priorities in the queuing system and thus the general patients (GPs) have to wait for a long time. This leads to a low degree of satisfaction of the whole patients. The aim of this study is to improve the patients' satisfaction by designing new queuing strategies for CT examination. We divide the EPs into urgent type and emergency type and then design two queuing strategies: one is that the urgent patients (UPs) wedge into the GPs' queue with fixed interval (fixed priority model) and the other is that the patients have dynamic priorities for queuing (dynamic priority model). Based on the data from Radiology Information Database (RID) of West China Hospital (WCH), we develop some discrete event simulation models for CT examination according to the designed strategies. We compare the performance of different strategies on the basis of the simulation results. The strategy that patients have dynamic priorities for queuing makes the waiting time of GPs decrease by 13 minutes and the degree of satisfaction increase by 40.6%. We design a more reasonable CT examination queuing strategy to decrease patients' waiting time and increase their satisfaction degrees.
Efficiency of endoscopy units can be improved with use of discrete event simulation modeling.
Sauer, Bryan G; Singh, Kanwar P; Wagner, Barry L; Vanden Hoek, Matthew S; Twilley, Katherine; Cohn, Steven M; Shami, Vanessa M; Wang, Andrew Y
2016-11-01
Background and study aims: The projected increased demand for health services obligates healthcare organizations to operate efficiently. Discrete event simulation (DES) is a modeling method that allows for optimization of systems through virtual testing of different configurations before implementation. The objective of this study was to identify strategies to improve the daily efficiencies of an endoscopy center with the use of DES. Methods: We built a DES model of a five procedure room endoscopy unit at a tertiary-care university medical center. After validating the baseline model, we tested alternate configurations to run the endoscopy suite and evaluated outcomes associated with each change. The main outcome measures included adequate number of preparation and recovery rooms, blocked inflow, delay times, blocked outflows, and patient cycle time. Results: Based on a sensitivity analysis, the adequate number of preparation rooms is eight and recovery rooms is nine for a five procedure room unit (total 3.4 preparation and recovery rooms per procedure room). Simple changes to procedure scheduling and patient arrival times led to a modest improvement in efficiency. Increasing the preparation/recovery rooms based on the sensitivity analysis led to significant improvements in efficiency. Conclusions: By applying tools such as DES, we can model changes in an environment with complex interactions and find ways to improve the medical care we provide. DES is applicable to any endoscopy unit and would be particularly valuable to those who are trying to improve on the efficiency of care and patient experience.
Directory of Open Access Journals (Sweden)
E Scholtz
2012-12-01
Full Text Available The cash management of an autoteller machine (ATM is a multi-objective optimisation problem which aims to maximise the service level provided to customers at minimum cost. This paper focus on improved cash management in a section of the South African retail banking industry, for which a decision support system (DSS was developed. This DSS integrates four Operations Research (OR methods: the vehicle routing problem (VRP, the continuous review policy for inventory management, the knapsack problem and stochastic, discrete-event simulation. The DSS was applied to an ATM network in the Eastern Cape, South Africa, to investigate 90 different scenarios. Results show that the application of a formal vehicle routing method consistently yields higher service levels at lower cost when compared to two other routing approaches, in conjunction with selected ATM reorder levels and a knapsack-based notes dispensing algorithm. It is concluded that the use of vehicle routing methods is especially beneficial when the bank has substantial control over transportation cost.
Directory of Open Access Journals (Sweden)
Hiroshi Miki
2012-02-01
Full Text Available Discrete spectral transformations of skew orthogonal polynomials are presented. From these spectral transformations, it is shown that the corresponding discrete integrable systems are derived both in 1+1 dimension and in 2+1 dimension. Especially in the (2+1-dimensional case, the corresponding system can be extended to 2×2 matrix form. The factorization theorem of the Christoffel kernel for skew orthogonal polynomials in random matrix theory is presented as a by-product of these transformations.
Structural and Symmetry Analysis of Discrete Dynamical Systems
Kornyak, Vladimir V
2010-01-01
To study discrete dynamical systems of different types --- deterministic, statistical and quantum --- we develope various approaches. We introduce the concept of a system of discrete relations on an abstract simplicial complex and develope algorithms for analysis of compatibility and construction of canonical decompositions of such systems. To illustrate these techniques we describe their application to some cellular automata. Much attention is paid to study symmetries of the systems. In the case of deterministic systems we reveale some important relations between symmetries and dynamics. We demonstrate that moving soliton-like structures arise inevitably in deterministic dynamical system whose symmetry group splits the set of states into finite number of group orbits. We develope algorithms and programs exploiting discrete symmetries to study microcanonical ensembles and search phase transitions in mesoscopic lattice models. We propose an approach to quantization of discrete systems based on introduction of ...
Discrete-time inverse optimal control for nonlinear systems
Sanchez, Edgar N
2013-01-01
Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller. Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems The book presents two approaches for controller synthesis: the first based on passivity theory and the second on a control Lyapunov function (CLF). Th
Losslessness of Nonlinear Stochastic Discrete-Time Systems
Directory of Open Access Journals (Sweden)
Xikui Liu
2015-01-01
Full Text Available This paper will study stochastic losslessness theory for nonlinear stochastic discrete-time systems, which are expressed by the Itô-type difference equations. A necessary and sufficient condition is developed for a nonlinear stochastic discrete-time system to be lossless. By the stochastic lossless theory, we show that a nonlinear stochastic discrete-time system can be lossless via state feedback if and only if it has relative degree 0,…,0 and lossless zero dynamics. The effectiveness of the proposed results is illustrated by a numerical example.
Absolute Stability of Discrete-Time Systems with Delay
Directory of Open Access Journals (Sweden)
Rigoberto Medina
2008-02-01
Full Text Available We investigate the stability of nonlinear nonautonomous discrete-time systems with delaying arguments, whose linear part has slowly varying coefficients, and the nonlinear part has linear majorants. Based on the Ã¢Â€ÂœfreezingÃ¢Â€Â technique to discrete-time systems, we derive explicit conditions for the absolute stability of the zero solution of such systems.
Stiffness selection in synthesis of mechatronic discrete systems
Buchacz, Andrzej; Gałęziowski, Damian
2016-11-01
In the paper, the known algorithm of designing of mechatronic discrete systems has been decomposed. As a result, detailed analysis of stiffness selection, during the process of distribution of dynamical characteristics functions, has been done. Based on synthesized one degree of freedom system that utilize piezostack actuator, detailed constrains related to the stiffness and their impact for mechanical, dimensionless and mechatronic parameters, have been investigated. The work extends the known problem of vibration control in discrete mechatronic systems
On discrete control of nonlinear systems with applications to robotics
Eslami, Mansour
1989-01-01
Much progress has been reported in the areas of modeling and control of nonlinear dynamic systems in a continuous-time framework. From implementation point of view, however, it is essential to study these nonlinear systems directly in a discrete setting that is amenable for interfacing with digital computers. But to develop discrete models and discrete controllers for a nonlinear system such as robot is a nontrivial task. Robot is also inherently a variable-inertia dynamic system involving additional complications. Not only the computer-oriented models of these systems must satisfy the usual requirements for such models, but these must also be compatible with the inherent capabilities of computers and must preserve the fundamental physical characteristics of continuous-time systems such as the conservation of energy and/or momentum. Preliminary issues regarding discrete systems in general and discrete models of a typical industrial robot that is developed with full consideration of the principle of conservation of energy are presented. Some research on the pertinent tactile information processing is reviewed. Finally, system control methods and how to integrate these issues in order to complete the task of discrete control of a robot manipulator are also reviewed.
Seslija, Marko; van der Schaft, Arjan; Scherpen, Jacquelien M.A.
2012-01-01
This paper addresses the issue of structure-preserving discretization of open distributed-parameter systems with Hamiltonian dynamics. Employing the formalism of discrete exterior calculus, we introduce a simplicial Dirac structure as a discrete analogue of the Stokes-Dirac structure and demonstrate
Seslija, Marko; Scherpen, Jacquelien M.A.; van der Schaft, Arjan
2011-01-01
This paper addresses the issue of structure-preserving discretization of open distributed-parameter systems with Hamiltonian dynamics. Employing the formalism of discrete exterior calculus, we introduce simplicial Dirac structures as discrete analogues of the Stokes-Dirac structure and demonstrate t
On periodic orbits in discrete-time cascade systems
Directory of Open Access Journals (Sweden)
Huimin Li
2006-01-01
Full Text Available We present some results on existence, minimum period, number of periodic orbits, and stability of periodic orbits in discrete-time cascade systems. Some examples are presented to illustrate these results.
Ely, Gregory
2013-01-01
In this work we propose a novel algorithm for multiple-event localization for Hydraulic Fracture Monitoring (HFM) through the exploitation of the sparsity of the observed seismic signal when represented in a basis consisting of space time propagators. We provide explicit construction of these propagators using a forward model for wave propagation which depends non-linearly on the problem parameters - the unknown source location and mechanism of fracture, time and extent of event, and the locations of the receivers. Under fairly general assumptions and an appropriate discretization of these parameters we first build an over-complete dictionary of generalized Radon propagators and assume that the data is well represented as a linear superposition of these propagators. Exploiting this structure we propose sparsity penalized algorithms and workflow for super-resolution extraction of time overlapping multiple seismic events from single well data.
Energy Technology Data Exchange (ETDEWEB)
Jankovsky, Zachary Kyle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Denman, Matthew R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-05-01
It is difficult to assess the consequences of a transient in a sodium-cooled fast reactor (SFR) using traditional probabilistic risk assessment (PRA) methods, as numerous safety-related sys- tems have passive characteristics. Often there is significant dependence on the value of con- tinuous stochastic parameters rather than binary success/failure determinations. One form of dynamic PRA uses a system simulator to represent the progression of a transient, tracking events through time in a discrete dynamic event tree (DDET). In order to function in a DDET environment, a simulator must have characteristics that make it amenable to changing physical parameters midway through the analysis. The SAS4A SFR system analysis code did not have these characteristics as received. This report describes the code modifications made to allow dynamic operation as well as the linking to a Sandia DDET driver code. A test case is briefly described to demonstrate the utility of the changes.
2013-03-01
CALIBRATION AND EXTENSION OF A DISCRETE EVENT OPERATIONS SIMULATION MODELING MULTIPLE UN-MANNED AERIAL VEHICLES...DISCRETE EVENT OPERATIONS SIMULATION MODELING MULTIPLE UN-MANNED AERIAL VEHICLES CONTROLLED BY A SINGLE OPERATOR THESIS Presented to the...ENV-13-M-34 CALIBRATION AND EXTENSION OF A DISCRETE EVENT OPERATIONS SIMULATION MODELING MULTIPLE UN-MANNED AERIAL VEHICLES CONTROLLED BY
Energy Technology Data Exchange (ETDEWEB)
Niehof, Jonathan T.; Morley, Steven K.
2012-01-01
We review and develop techniques to determine associations between series of discrete events. The bootstrap, a nonparametric statistical method, allows the determination of the significance of associations with minimal assumptions about the underlying processes. We find the key requirement for this method: one of the series must be widely spaced in time to guarantee the theoretical applicability of the bootstrap. If this condition is met, the calculated significance passes a reasonableness test. We conclude with some potential future extensions and caveats on the applicability of these methods. The techniques presented have been implemented in a Python-based software toolkit.
A Survey of the Use of the Discrete-event Simulation in Manufacturing Industry
Institute of Scientific and Technical Information of China (English)
Arne; Ingemansson; Gunnar; S; Bolmsj; Ulrika; Harlin
2002-01-01
In this work, a survey of companies has been produc ed from a questionnaire and in-depth inter-views. The aimof the paper is to give a current view of the use of DES (Discrete- Event Simulation) in the indust ry. The companies have been selected in a wide range in e.g. size, capital turno ver and employees. The survey was restricted to Sweden, although the results may be applicable to other countries with similar industrial structure. Some of the companies investigated are also multinational with branc...
Discrete event simulation of the Defense Waste Processing Facility (DWPF) analytical laboratory
Energy Technology Data Exchange (ETDEWEB)
Shanahan, K.L.
1992-02-01
A discrete event simulation of the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) analytical laboratory has been constructed in the GPSS language. It was used to estimate laboratory analysis times at process analytical hold points and to study the effect of sample number on those times. Typical results are presented for three different simultaneous representing increasing levels of complexity, and for different sampling schemes. Example equipment utilization time plots are also included. SRS DWPF laboratory management and chemists found the simulations very useful for resource and schedule planning.
Extinction in Two-Species Nonlinear Discrete Competitive System
Directory of Open Access Journals (Sweden)
Liqiong Pu
2016-01-01
Full Text Available We propose a nonlinear discrete system of two species with the effect of toxic substances. By constructing a suitable Lyapunov-type function, we obtain the sufficient conditions which guarantee that one of the components will be driven to extinction while the other will be globally attractive with any positive solution of a discrete equation. Two examples together with their numerical simulations illustrate the feasibility of our main results. The results not only improve but also complement some known results.
Energy Technology Data Exchange (ETDEWEB)
Wilke, Jeremiah J [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Kenny, Joseph P. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States)
2015-02-01
Discrete event simulation provides a powerful mechanism for designing and testing new extreme- scale programming models for high-performance computing. Rather than debug, run, and wait for results on an actual system, design can first iterate through a simulator. This is particularly useful when test beds cannot be used, i.e. to explore hardware or scales that do not yet exist or are inaccessible. Here we detail the macroscale components of the structural simulation toolkit (SST). Instead of depending on trace replay or state machines, the simulator is architected to execute real code on real software stacks. Our particular user-space threading framework allows massive scales to be simulated even on small clusters. The link between the discrete event core and the threading framework allows interesting performance metrics like call graphs to be collected from a simulated run. Performance analysis via simulation can thus become an important phase in extreme-scale programming model and runtime system design via the SST macroscale components.
Energy Technology Data Exchange (ETDEWEB)
Bank Tavakoli, M.R.; Vahidi, B.; Hosseinian, S.H. [Department of Electrical Engineering, Amirkabir University of Technology, Hafez Avenue, No. 424, P.O. Box 15875-4413, Tehran (Iran)
2008-12-15
Damages caused by lightning stroke in power system networks are severe for insulations and result in less reliable energy supply. Knowledge of protection schemes and better selection of these devices in power systems is a goal of designers to reduce the risk of flashover in any risky point. In this paper, a statistical procedure is presented to evaluate risk of failure in an overhead-line which is protected by arresters in most risky towers. Main aim of the work is to present the modeling aspects for considering random nature of stroke and its simulation procedure. The random nature of a lightning stroke composed of proper discrete-event simulation of a stroke via its peak current, front time and tail time and accurate mathematical representation of such lightning stroke in a transient analyzer. In addition, the maximum lightning current which causes shielding failure for a specified tower design and probabilistic specification of lightning for discrete-event simulation is taken into account. As a study case, random nature modeled lightning strokes are applied to a 230 kV overhead-line which is located in a hilly area and the risk of failure is calculated when arresters are located beside the stroke point. (author)
Kluger, Robert; Smith, Brian L; Park, Hyungjun; Dailey, Daniel J
2016-11-01
Recent technological advances have made it both feasible and practical to identify unsafe driving behaviors using second-by-second trajectory data. Presented in this paper is a unique approach to detecting safety-critical events using vehicles' longitudinal accelerations. A Discrete Fourier Transform is used in combination with K-means clustering to flag patterns in the vehicles' accelerations in time-series that are likely to be crashes or near-crashes. The algorithm was able to detect roughly 78% of crasjavascript:void(0)hes and near-crashes (71 out of 91 validated events in the Naturalistic Driving Study data used), while generating about 1 false positive every 2.7h. In addition to presenting the promising results, an implementation strategy is discussed and further research topics that can improve this method are suggested in the paper.
Influence of discretization method on the digital control system performance
Directory of Open Access Journals (Sweden)
Futás József
2003-12-01
Full Text Available The design of control system can be divided into two steps. First the process or plant have to be convert into mathematical model form, so that its behavior can be analyzed. Then an appropriate controller have to be design in order to get the desired response of the controlled system. In the continuous time domain the system is represented by differential equations. Replacing a continuous system into discrete time form is always an approximation of the continuous system. The different discretization methods give different digital controller performance. The methods presented on the paper are Step Invariant or Zero Order Hold (ZOH Method, Matched Pole-Zero Method, Backward difference Method and Bilinear transformation. The above mentioned discretization methods are used in developing PI position controller of a dc motor. The motor model was converted by the ZOH method. The performances of the different methods are compared and the results are presented.
Hybrid discretization method for time-delay nonlinear systems
Energy Technology Data Exchange (ETDEWEB)
Zhang, Zheng [Xi' an Jiaotong University, Xi' an (China); Zhang, Yuanliang; Kil Chong, To [Chonbuk National University, Jeonju (Korea, Republic of); Kostyukova, Olga [3Institute of Mathematics National Academy of Science of Belarus, Minsk (Belarus)
2010-03-15
A hybrid discretization scheme that combines the virtues of the Taylor series and Matrix exponential integration methods is proposed. In the algorithm, each sampling time interval is divided into two subintervals to be considered according to the time delay and sampling period. The algorithm is not too expensive computationally and lends itself to be easily inserted into large simulation packages. The mathematical structure of the new discretization scheme is explored and described in detail. The performance of the proposed discretization procedure is evaluated by employing case studies. Various input signals, sampling rates, and time-delay values are considered to test the proposed method. The results demonstrate that the proposed discretization scheme is better than previous Taylor series method for nonlinear time-delay systems, especially when a large sampling period is inevitable
Reachability analysis of switched linear discrete singular systems
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
This paper studies the reachability problem of the switched linear discrete singular (SLDS) systems. Under the condition that all subsystems are regular, the reachability of the SLDS systems is characterized based on a peculiar repeatedly introduced switching sequence. The necessary and sufficient conditions are obtained for the reachability of the SLDS systems.
Model Reduction of Linear Switched Systems by Restricting Discrete Dynamics
DEFF Research Database (Denmark)
Bastug, Mert; Petreczky, Mihaly; Wisniewski, Rafal
2014-01-01
We present a procedure for reducing the number of continuous states of discrete-time linear switched systems, such that the reduced system has the same behavior as the original system for a subset of switching sequences. The proposed method is expected to be useful for abstraction based control s...
A Design of Observers for a Discrete Chaotic System
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
It is very easy to design an observer for a discrete chaotic system which possesses one non-linear scalar quantity, and one can realize the synchronization between the investigated chaotic system and its observer easily. This method is applied to two chaotic systems.
System for Automatic Generation of Examination Papers in Discrete Mathematics
Fridenfalk, Mikael
2013-01-01
A system was developed for automatic generation of problems and solutions for examinations in a university distance course in discrete mathematics and tested in a pilot experiment involving 200 students. Considering the success of such systems in the past, particularly including automatic assessment, it should not take long before such systems are…
An Approach to Discrete Variable Structure Control System
Institute of Scientific and Technical Information of China (English)
FalahE.Alsaqre; YUANBaozong
2003-01-01
Variable structure control (VSC) systems consist of a set of subsystems referred to as structures and supplied with appropriate switching functions. The most common approach used for variable structure in continu-ous or discrete time systems is sliding mode. In this paper,a new scheme to design a discrete variable structure con-trol (DVSC) for an nth-order type one system is presented.First, a set of discrete subsystems is constructed relying on the assumption that every system is considered as a vari-able structure system when its poles can be assignment to other locations. The adopted method for constructing dif-ferent discrete structures involves switching alternatively two zero-order hold (ZOH) devices, having different char-acteristics. Second, a suitable switching function is devised based on minimizing a quadratic sum of discrete error sig-nal criterion, to perform one switching without chattering.New advantageous properties are carried out via compos-ing a desired performance from parts of performances of the constructed structures. Simulation results are made to illustrate the quality of control being achieved.
Directory of Open Access Journals (Sweden)
Yuan Zhou
2014-02-01
Full Text Available Background The effect of health information technology (HIT on efficiency and workload among clinical and nonclinical staff has been debated, with conflicting evidence about whether electronic health records (EHRs increase or decrease effort. None of this paper to date, however, examines the effect of interoperability quantitatively using discrete event simulation techniques.Objective To estimate the impact of EHR systems with various levels of interoperability on day-to-day tasks and operations of ambulatory physician offices.Methods Interviews and observations were used to collect workflow data from 12 adult primary and specialty practices. A discrete event simulation model was constructed to represent patient flows and clinical and administrative tasks of physicians and staff members.Results High levels of EHR interoperability were associated with reduced time spent by providers on four tasks: preparing lab reports, requesting lab orders, prescribing medications, and writing referrals. The implementation of an EHR was associated with less time spent by administrators but more time spent by physicians, compared with time spent at paper-based practices. In addition, the presence of EHRs and of interoperability did not significantly affect the time usage of registered nurses or the total visit time and waiting time of patients.Conclusion This paper suggests that the impact of using HIT on clinical and nonclinical staff work efficiency varies, however, overall it appears to improve time efficiency more for administrators than for physicians and nurses.
Adverse Event Reporting System (AERS)
U.S. Department of Health & Human Services — The Adverse Event Reporting System (AERS) is a computerized information database designed to support the FDA's post-marketing safety surveillance program for all...
Compact Global Chaotic Attractors of Discrete Control Systems
Directory of Open Access Journals (Sweden)
Cheban David
2014-01-01
Full Text Available The paper is dedicated to the study of the problem of existence of compact global chaotic attractors of discrete control systems and to the description of its structure. We consider so called switched systems with discrete time xn+1 = fv(n(xn, where v: Z+ → {1; 2; : : : ;m}. If m≥2 we give sufficient conditions (the family M := {f1; f2; : : : ; fm} of functions is contracting in the extended sense for the existence of a compact global chaotic attractor. We study this problem in the framework of non-autonomous dynamical systems (cocycles
Directory of Open Access Journals (Sweden)
SERGIY KOZERENKO
2016-04-01
Full Text Available One feature of the famous Sharkovsky’s theorem is that it can be proved using digraphs of a special type (the so–called Markov graphs. The most general definition assigns a Markov graph to every continuous map from the topological graph to itself. We show that this definition is too broad, i.e. every finite digraph can be viewed as a Markov graph of some one–dimensional dynamical system on a tree. We therefore consider discrete analogues of Markov graphs for vertex maps on combinatorial trees and characterize all maps on trees whose discrete Markov graphs are of the following types: complete, complete bipartite, the disjoint union of cycles, with every arc being a loop.
Polynomial Transformations For Discrete-Time Linear Systems
Baram, Yoram
1991-01-01
Transformations based on polynomial matrices of finite degree developed for use in computing functions for compensation, inversion, and approximation of discrete-time, multivariable, linear systems. Method derived from z-transform transfer-function form of matrices. Applicable to cascade-compensation problems in design of control systems.
Quantum Discrete Fourier Transform in an Ion Trap System
Institute of Scientific and Technical Information of China (English)
ZHENG Shi-Biao
2007-01-01
We propose two schemes for the implementation of quantum discrete Fourier transform in the ion trap system. In each scheme we design a tunable two-qubit phase gate as the main ingredient. The experimental implementation of the schemes would be an important step toward complex quantum computation in the ion trap system.
Asymptotical Behaviors of Nonautonomous Discrete Kolmogorov System with Time Lags
Directory of Open Access Journals (Sweden)
Shengqiang Liu
2010-01-01
Full Text Available We discuss a general n-species discrete Kolmogorov system with time lags. We build some new results about the sufficient conditions for permanence, extinction, and balancing survival. When applying these results to some Lotka-Volterra systems, we obtain the criteria on harmless delay for the permanence as well as profitless delay for balancing survival.
Asymptotical Behaviors of Nonautonomous Discrete Kolmogorov System with Time Lags
Directory of Open Access Journals (Sweden)
Liu Shengqiang
2010-01-01
Full Text Available We discuss a general -species discrete Kolmogorov system with time lags. We build some new results about the sufficient conditions for permanence, extinction, and balancing survival. When applying these results to some Lotka-Volterra systems, we obtain the criteria on harmless delay for the permanence as well as profitless delay for balancing survival.
STABILITY CRITERIA FOR STOCHASTIC DISCRETE-TIME FRACTIONAL ORDER SYSTEMS
Directory of Open Access Journals (Sweden)
Carmen BARBACIORU
2016-05-01
Full Text Available In this paper are discussed stability problems for a class of discrete-time fractional systems (DTFSs with independent random perturbations. Two notions of mean square stability (MSS and mean square asymptotic stability (MSAS are introduced for the DTFSs by using an approximating linear stochastic system. Necessary and sufficient conditions for MSS and MSA are then derived.
Synchronization of general discrete Lur'e systems
Institute of Scientific and Technical Information of China (English)
Xiaoxin LIAO; Guanrong CHEN; Hua'o WANG
2005-01-01
This paper studies a master-slave type of synchronization systems for a general form of two discrete Lur' e systems.Some simple necessary and/or sufficient conditions for synchronization are derived. They are basically algebraic conditions,and are convenient to be applied in engineering applications.
Generalized Synchronization of Time-Delayed Discrete Systems
Institute of Scientific and Technical Information of China (English)
JING Jian-Yi; MIN Le-Quan
2009-01-01
This paper establishes two theorems for two time-delayed (chaotic) discrete systems to achieve time-delayed generalized synchronization (TDGS). These two theorems uncover the general forms of two TDGS systems via a prescribed transformation. As examples, we convert the Lorenz three-dimensional chaotic map to an equal time-delayed system as the driving system, and construct the TDGS driven systems according to the Theorems 1 and 2. Numerical simulations demonstrate the effectiveness of the proposed theorems.
Anderson, Gillian H; Jenkins, Paul J; McDonald, David A; Van Der Meer, Robert; Morton, Alec; Nugent, Margaret; Rymaszewski, Lech A
2017-09-07
Healthcare faces the continual challenge of improving outcome while aiming to reduce cost. The aim of this study was to determine the micro cost differences of the Glasgow non-operative trauma virtual pathway in comparison to a traditional pathway. Discrete event simulation was used to model and analyse cost and resource utilisation with an activity-based costing approach. Data for a full comparison before the process change was unavailable so we used a modelling approach, comparing a virtual fracture clinic (VFC) with a simulated traditional fracture clinic (TFC). The orthopaedic unit VFC pathway pioneered at Glasgow Royal Infirmary has attracted significant attention and interest and is the focus of this cost study. Our study focused exclusively on patients with non-operative trauma attending emergency department or the minor injuries unit and the subsequent step in the patient pathway. Retrospective studies of patient outcomes as a result of the protocol introductions for specific injuries are presented in association with activity costs from the models. Patients are satisfied with the new pathway, the information provided and the outcome of their injuries (Evidence Level IV). There was a 65% reduction in the number of first outpatient face-to-face (f2f) attendances in orthopaedics. In the VFC pathway, the resources required per day were significantly lower for all staff groups (p≤0.001). The overall cost per patient of the VFC pathway was £22.84 (95% CI 21.74 to 23.92) per patient compared with £36.81 (95% CI 35.65 to 37.97) for the TFC pathway. Our results give a clearer picture of the cost comparison of the virtual pathway over a wholly traditional f2f clinic system. The use of simulation-based stochastic costings in healthcare economic analysis has been limited to date, but this study provides evidence for adoption of this method as a basis for its application in other healthcare settings. © Article author(s) (or their employer(s) unless otherwise
Using relational databases to collect and store discrete-event simulation results
DEFF Research Database (Denmark)
Poderys, Justas; Soler, José
2016-01-01
, export the results to a data carrier file and then process the results stored in a file using the data processing software. In this work, we propose to save the simulation results directly from a simulation tool to a computer database. We implemented a link between the discrete-even simulation tool...... and the database and performed performance evaluation of 3 different open-source database systems. We show, that with a right choice of a database system, simulation results can be collected and exported up to 2.67 times faster, and use 1.78 times less disk space when compared to using simulation software built...
Semi-Discrete Systems and Intracellular Calcium Dynamics
Energy Technology Data Exchange (ETDEWEB)
Pearson, J.; Dawson, S.P.; Mitkov, I.
1998-10-24
Intracellular calcium is sequestered in closed membranes such as the sarcoplasmic or endoplasmic reticula and released at discretely distributed protein/receptor channels. The release kinetics can result in the propagation of waves of elevated calcium concentration. The main physical processes are reactions at the release sites and diffusion between the sites. The theory of chemical wave propagation in reaction-diffusion systems is in large part devoted to the study of systems in which there are no extrinsic inhomogeneities. The discrete distribution of the release sites plays a key role in determining the nature of the propagating wave. The authors analyze some simple reaction-diffusion models in order to elucidate the role of discreteness for chemical wave propagation.
Viswanathan, G M
2006-01-01
A challenging problem in physics concerns the possibility of forecasting rare but extreme phenomena such as large earthquakes, financial market crashes, and material rupture. A promising line of research involves the early detection of precursory log-periodic oscillations to help forecast extreme events in collective phenomena where discrete scale invariance plays an important role. Here I investigate two distinct approaches towards the general problem of how to detect log-periodic oscillations in arbitrary time series without prior knowledge of the location of the moveable singularity. I first show that the problem has a definite solution in Fourier space, however the technique involved requires an unrealistically large signal to noise ratio. I then show that the quadrature signal obtained via analytic continuation onto the imaginary axis, using the Hilbert transform, necessarily retains the log-periodicities found in the original signal. This finding allows the development of a new method of detecting log-p...
Analysis of Shop Floor Performance through Discrete Event Simulation: A Case Study
Directory of Open Access Journals (Sweden)
Yeong Wei Ng
2014-01-01
Full Text Available Shop floor performance management is a method to ensure the effective utilization of people, processes, and equipment. Changes in the shop floor might have a positive or negative effect on production performance. Therefore, optimal shop floor operation is required to enhance shop floor performance and to ensure the long-term efficiency of the production process. This work presents a case study of a semiconductor industry. The punching department is modeled to investigate the effect of changes in the shop floor on production performance through discrete event simulation. The effects on the throughput rate, machine utilization, and labor utilization are studied by adjusting the volume of parts, number of operators, and flow pattern of parts in a series of models. Simulation results are tested and analyzed by using analysis of variance (ANOVA. The best model under changes in the shop floor is identified during the exploration of alternative scenarios.
Evaluation of a proposed optimization method for discrete-event simulation models
Directory of Open Access Journals (Sweden)
Alexandre Ferreira de Pinho
2012-12-01
Full Text Available Optimization methods combined with computer-based simulation have been utilized in a wide range of manufacturing applications. However, in terms of current technology, these methods exhibit low performance levels which are only able to manipulate a single decision variable at a time. Thus, the objective of this article is to evaluate a proposed optimization method for discrete-event simulation models based on genetic algorithms which exhibits more efficiency in relation to computational time when compared to software packages on the market. It should be emphasized that the variable's response quality will not be altered; that is, the proposed method will maintain the solutions' effectiveness. Thus, the study draws a comparison between the proposed method and that of a simulation instrument already available on the market and has been examined in academic literature. Conclusions are presented, confirming the proposed optimization method's efficiency.
A Generic Discrete-Event Simulation Model for Outpatient Clinics in a Large Public Hospital
Directory of Open Access Journals (Sweden)
Waressara Weerawat
2013-01-01
Full Text Available The orthopedic outpatient department (OPD ward in a large Thai public hospital is modeled using Discrete-Event Stochastic (DES simulation. Key Performance Indicators (KPIs are used to measure effects across various clinical operations during different shifts throughout the day. By considering various KPIs such as wait times to see doctors, percentage of patients who can see a doctor within a target time frame, and the time that the last patient completes their doctor consultation, bottlenecks are identified and resource-critical clinics can be prioritized. The simulation model quantifies the chronic, high patient congestion that is prevalent amongst Thai public hospitals with very high patient-to-doctor ratios. Our model can be applied across five different OPD wards by modifying the model parameters. Throughout this work, we show how DES models can be used as decision-support tools for hospital management.
A generic discrete-event simulation model for outpatient clinics in a large public hospital.
Weerawat, Waressara; Pichitlamken, Juta; Subsombat, Peerapong
2013-01-01
The orthopedic outpatient department (OPD) ward in a large Thai public hospital is modeled using Discrete-Event Stochastic (DES) simulation. Key Performance Indicators (KPIs) are used to measure effects across various clinical operations during different shifts throughout the day. By considering various KPIs such as wait times to see doctors, percentage of patients who can see a doctor within a target time frame, and the time that the last patient completes their doctor consultation, bottlenecks are identified and resource-critical clinics can be prioritized. The simulation model quantifies the chronic, high patient congestion that is prevalent amongst Thai public hospitals with very high patient-to-doctor ratios. Our model can be applied across five different OPD wards by modifying the model parameters. Throughout this work, we show how DES models can be used as decision-support tools for hospital management.
Improving Energy Efficiency for the Vehicle Assembly Industry: A Discrete Event Simulation Approach
Oumer, Abduaziz; Mekbib Atnaw, Samson; Kie Cheng, Jack; Singh, Lakveer
2016-11-01
This paper presented a Discrete Event Simulation (DES) model for investigating and improving energy efficiency in vehicle assembly line. The car manufacturing industry is one of the highest energy consuming industries. Using Rockwell Arena DES package; a detailed model was constructed for an actual vehicle assembly plant. The sources of energy considered in this research are electricity and fuel; which are the two main types of energy sources used in a typical vehicle assembly plant. The model depicts the performance measurement for process- specific energy measures of painting, welding, and assembling processes. Sound energy efficiency model within this industry has two-fold advantage: reducing CO2 emission and cost reduction associated with fuel and electricity consumption. The paper starts with an overview of challenges in energy consumption within the facilities of automotive assembly line and highlights the parameters for energy efficiency. The results of the simulation model indicated improvements for energy saving objectives and reduced costs.
DESIGNING AN EVENT EXTRACTION SYSTEM
Directory of Open Access Journals (Sweden)
Botond BENEDEK
2017-06-01
Full Text Available In the Internet world, the amount of information available reaches very high quotas. In order to find specific information, some tools were created that automatically scroll through the existing web pages and update their databases with the latest information on the Internet. In order to systematize the search and achieve a result in a concrete form, another step is needed for processing the information returned by the search engine and generating the response in a more organized form. Centralizing events of a certain type is useful first of all for creating a news service. Through this system we are pursuing a knowledge - events from the Internet documents - extraction system. The system will recognize events of a certain type (weather, sports, politics, text data mining, etc. depending on how it will be trained (the concept it has in the dictionary. These events can be provided to the user, or it can also extract the context in which the event occurred, to indicate the initial form in which the event was embedded.
Impulsive Synchronization of Discrete Chaotic Systems
Institute of Scientific and Technical Information of China (English)
郑永爱; 年漪蓓; 刘曾荣
2003-01-01
Impulsive synchronization of two chaotic maps is reformulated as impulsive control of the synchronization error system. We then present a theorem on the asymptotic synchronization of two chaotic maps by using synchronization impulses with varying impulsive intervals. As an example and application of the theorem, we derives some sufficient conditions for the synchronization of two chaotic Lozi maps via impulsive control. The effectiveness of this approach has been demonstrated with chaotic Lozi map.
Discrete mechanics, “time machines” and hybrid systems
Directory of Open Access Journals (Sweden)
Elze Hans-Thomas
2013-09-01
Full Text Available Modifying the discrete mechanics proposed by T.D. Lee, we construct a class of discrete classical Hamiltonian systems, in which time is one of the dynamical variables. This includes a toy model of “time machines” which can travel forward and backward in time and which differ from models based on closed timelike curves (CTCs. In the continuum limit, we explore the interaction between such time reversing machines and quantum mechanical objects, employing a recent description of quantum-classical hybrids.
Designing of discrete mechatronic vibrating systems with negative value parameters
Buchacz, Andrzej; Gałęziowski, Damian
2016-10-01
In the paper, the known problem of vibration control, authors expanded for designing of mechatronic discrete systems that contains single or multiply piezoelectric elements connected to external electric networks. Main focus has been given for investigations in relation to damping performance and parameters study, in case of potential practical application. By different configurations of considered mechatronic discrete branched structures with two degrees of freedom, key negative parameters have been identified and investigated in case of vibration control effectiveness. Results have been presented in graphical form of amplitudes and dynamical flexibility functions.
A KAM theorem for infinite--dimensional discrete systems
Perfetti, P
2003-01-01
Infinite--dimesional, discrete hamiltonian systems of the type kinetic energy + potential energy over ${\\Bbb R}^{{\\Bbb Z}}\\times {\\Bbb T}^{{\\Bbb Z}}$ are studied. The existence of many quasi--periodic motions with a maximal set of nonzero frequencies is shown
PERMANENCE OF A NONLINEAR DISCRETE PREDATOR-PREY SYSTEM
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
In this paper,we study a nonlinear discrete predator-prey model. We obtain a set of suffcient conditions which guarantee the permanence of the system. And an example together with its numeric simulation is presented to show the feasibility of our result.
Stability of Nonlinear Stochastic Discrete-Time Systems
2013-01-01
This paper studies the stability for nonlinear stochastic discrete-time systems. First of all, several definitions on stability are introduced, such as stability, asymptotical stability, and pth moment exponential stability. Moreover, using the method of the Lyapunov functionals, some efficient criteria for stochastic stability are obtained. Some examples are presented to illustrate the effectiveness of the proposed theoretical results.
Periodic Solutions of a Discrete Time Predator-Prey System
Institute of Scientific and Technical Information of China (English)
Yong-li Song; Mao-an Han
2006-01-01
In this paper, we discuss a discrete predator-prey system with a non-monotonic functional response,which models the dynamics of the prey and the predator having non-overlapping generations. By using the coincidence degree theory, sufficient conditions are obtained for the existence of positive periodic solutions.
PERMANENCE OF A NONLINEAR DISCRETE PREDATOR-PREY SYSTEM
Institute of Scientific and Technical Information of China (English)
Yaoping Chen; Fengde Chen
2009-01-01
In this paper,we study a nonlinear discrete predator-prey model. We obtain a set of sufficient conditions which guarantee the permanence of the system. And an example together with its numeric simulation is presented to show the feasibility of our result.
A COMPARISON OF INTERCELL METRICS ON DISCRETE GLOBAL GRID SYSTEMS
A discrete global grid system (DGGS) is a spatial data model that aids in global research by serving as a framework for environmental modeling, monitoring and sampling across the earth at multiple spatial scales. Topological and geometric criteria have been proposed to evaluate a...
H2 guaranteed cost control of discrete linear systems
Directory of Open Access Journals (Sweden)
W. Colmenares
2000-01-01
guaranteed cost performance on a discrete linear uncertain system where the uncertainty is of the norm bounded type. The conditions are presented as a collection of linear matrix inequalities.The solution, however requires a search over a scalar parameter space.
Comments on `A discrete optimal control problem for descriptor systems'
DEFF Research Database (Denmark)
Ravn, Hans
1990-01-01
In the above-mentioned work (see ibid., vol.34, p.177-81 (1989)), necessary and sufficient optimality conditions are derived for a discrete-time optimal problem, as well as other specific cases of implicit and explicit dynamic systems. The commenter corrects a mistake and demonstrates that there ...
Efficiency and tuning of viscous dampers on discrete systems
DEFF Research Database (Denmark)
Main, Joseph A.; Krenk, Steen
2005-01-01
An approximate solution is developed to the complex eigenproblem associated with free vibrations of a discrete system with several viscous dampers, in order to facilitate optimal placement and sizing of added dampers in structures. The approximate solution is obtained as an interpolation between ...
Stochastic transport processes in discrete biological systems
Frehland, Eckart
1982-01-01
These notes are in part based on a course for advanced students in the applications of stochastic processes held in 1978 at the University of Konstanz. These notes contain the results of re cent studies on the stochastic description of ion transport through biological membranes. In particular, they serve as an introduction to an unified theory of fluctuations in complex biological transport systems. We emphasize that the subject of this volume is not to introduce the mathematics of stochastic processes but to present a field of theoretical biophysics in which stochastic methods are important. In the last years the study of membrane noise has become an important method in biophysics. Valuable information on the ion transport mechanisms in membranes can be obtained from noise analysis. A number of different processes such as the opening and closing of ion channels have been shown to be sources of the measured current or voltage fluctuations. Bio logical 'transport systems can be complex. For example, the tr...
Directory of Open Access Journals (Sweden)
O. Chavez
2010-12-01
Full Text Available The geomagnetic observatory of Juriquilla Mexico, located at longitude –100.45° and latitude 20.70°, and 1946 m a.s.l., has been operational since June 2004 compiling geomagnetic field measurements with a three component fluxgate magnetometer. In this paper, the results of the analysis of these measurements in relation to important seismic activity in the period of 2007 to 2009 are presented. For this purpose, we used superposed epochs of Discrete Wavelet Transform of filtered signals for the three components of the geomagnetic field during relative seismic calm, and it was compared with seismic events of magnitudes greater than M_{s} > 5.5, which have occurred in Mexico. The analysed epochs consisted of 18 h of observations for a dataset corresponding to 18 different earthquakes (EQs. The time series were processed for a period of 9 h prior to and 9 h after each seismic event. This data processing was compared with the same number of observations during a seismic calm. The proposed methodology proved to be an efficient tool to detect signals associated with seismic activity, especially when the seismic events occur in a distance (D from the observatory to the EQ, such that the ratio D/ρ < 1.8 where ρ is the earthquake radius preparation zone. The methodology presented herein shows important anomalies in the Ultra Low Frequency Range (ULF; 0.005–1 Hz, primarily for 0.25 to 0.5 Hz. Furthermore, the time variance (σ^{2} increases prior to, during and after the seismic event in relation to the coefficient D1 obtained, principally in the Bx (N-S and By (E-W geomagnetic components. Therefore, this paper proposes and develops a new methodology to extract the abnormal signals of the geomagnetic anomalies related to different stages of the EQs.
Bifurcation Analysis of a Discrete Logistic System with Feedback Control
Institute of Scientific and Technical Information of China (English)
WU Dai-yong
2015-01-01
The paper studies the dynamical behaviors of a discrete Logistic system with feedback control. The system undergoes Flip bifurcation and Hopf bifurcation by using the center manifold theorem and the bifurcation theory. Numerical simulations not only illustrate our results, but also exhibit the complex dynamical behaviors of the system, such as the period-doubling bifurcation in periods 2, 4, 8 and 16, and quasi-periodic orbits and chaotic sets.
Robust sliding mode control for uncertain discrete time systems
Institute of Scientific and Technical Information of China (English)
QU Shaocheng; WANG Yongji
2003-01-01
A novel variable structure control (VSC) strategy with a dynamic disturbance compensator based on the reaching law for a class of uncertain discrete systems is presented. The robust stability to disturbance and the system dynamics in the vicinity of the switching plane are studied. A measure of the uncertain parameters and external disturbance is obtained through delaying every sampling time. Theoretical analysis and experimental simulation results demonstrate that the dynamic performance and robustness of the closed-loop system are improved effectively.
DEFF Research Database (Denmark)
Artuso, Matteo; Christiansen, Henrik Lehrmann
2014-01-01
Inter-cell interference in LTE-Advanced can be mitigated using coordinated multi-point (CoMP) techniques with joint transmission of user data . However, this requires tight coordination of the eNodeBs, usin g the X2 interface. In this paper we use discrete-event simulation to evaluate the latency...... requirements for the X2 interface and investigate the consequences of a constrained ba ckhaul. Our simulation results show a gain of the system throug hput of up to 120% compared to the case without CoMP for low-latency backhaul. With X2 latencies above 5 ms CoMP is no longer a benefit to the network....
Directory of Open Access Journals (Sweden)
Raffaele Cavalli
2012-06-01
Full Text Available In this study a Discrete-event simulation (D-es has been developed to analyze the wood supply chain for firewood production in a mountain area in North-eastern Italy. The D-es is applied in the modeling of extraction (Full Tree System, processing of roundwood into wood assortments (cross-cut and sorting, offroad and on-road transport. In order to estimate the productivity functions and parameters, field studies were conducted to gather data about the different operations linked in the model. Also a GIS network analysis was developed to integrate the spatial information onthe covered distance to the D-es model for each of the supposed Scenarios. The results indicats that an increment of 5 m ha-1 of the forest road network could significantly increase the productivity of the wood supply chain up to 2%.
Directory of Open Access Journals (Sweden)
Fitra Lestari
2014-09-01
Full Text Available Oil palm processing industry in Malaysia can directly distribute the finished products in exporting without considering the transformation value of the product to the end customer. Nevertheless, it influences the configuration of the supply chain strategy. The purpose of this study measures the performance of supply chain configuration in oil palm business. The model use tools for measuring supply chain configuration with integrating SCOR models and discrete event simulation. Finding of this study revealed that the highest value-added of oil palm derivative product is scenario 5 which it proposes 100% CPO and CPKO deliver to the local refinery without distributing to the export and its finished products are distributed to the export through the port. Finally, it gives consideration to the stakeholders in controlling the system and then makes sure the business process keeps running on the track.
Discrete time learning control in nonlinear systems
Longman, Richard W.; Chang, Chi-Kuang; Phan, Minh
1992-01-01
In this paper digital learning control methods are developed primarily for use in single-input, single-output nonlinear dynamic systems. Conditions for convergence of the basic form of learning control based on integral control concepts are given, and shown to be satisfied by a large class of nonlinear problems. It is shown that it is not the gross nonlinearities of the differential equations that matter in the convergence, but rather the much smaller nonlinearities that can manifest themselves during the short time interval of one sample time. New algorithms are developed that eliminate restrictions on the size of the learning gain, and on knowledge of the appropriate sign of the learning gain, for convergence to zero error in tracking a feasible desired output trajectory. It is shown that one of the new algorithms can give guaranteed convergence in the presence of actuator saturation constraints, and indicate when the requested trajectory is beyond the actuator capabilities.
Geometric methods for discrete dynamical systems
Easton, Robert W
1998-01-01
This book looks at dynamics as an iteration process where the output of a function is fed back as an input to determine the evolution of an initial state over time. The theory examines errors which arise from round-off in numerical simulations, from the inexactness of mathematical models used to describe physical processes, and from the effects of external controls. The author provides an introduction accessible to beginning graduate students and emphasizing geometric aspects of the theory. Conley''s ideas about rough orbits and chain-recurrence play a central role in the treatment. The book will be a useful reference for mathematicians, scientists, and engineers studying this field, and an ideal text for graduate courses in dynamical systems.
Discrete event simulation for petroleum transfers involving harbors, refineries and pipelines
Energy Technology Data Exchange (ETDEWEB)
Martins, Marcella S.R.; Lueders, Ricardo; Delgado, Myriam R.B.S. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)
2009-07-01
Nowadays a great effort has been spent by companies to improve their logistics in terms of programming of events that affect production and distribution of products. In this case, simulation can be a valuable tool for evaluating different behaviors. The objective of this work is to build a discrete event simulation model for scheduling of operational activities in complexes containing one harbor and two refineries interconnected by a pipeline infrastructure. The model was developed in Arena package, based on three sub-models that control pier allocation, loading of tanks, and transfers to refineries through pipelines. Preliminary results obtained for a given control policy, show that profit can be calculated by taking into account many parameters such as oil costs on ships, pier using, over-stay of ships and interface costs. Such problem has already been considered in the literature but using different strategies. All these factors should be considered in a real-world operation where decision making tools are necessary to obtain high returns. (author)
Energy Technology Data Exchange (ETDEWEB)
Dusatko, John; Allison, S.; Browne, M.; Krejcik, P.; /SLAC
2012-07-23
The Linac Coherent Light Source requires precision timing trigger signals for various accelerator diagnostics and controls at SLAC-NAL. A new timing system has been developed that meets these requirements. This system is based on COTS hardware with a mixture of custom-designed units. An added challenge has been the requirement that the LCLS Timing System must co-exist and 'know' about the existing SLC Timing System. This paper describes the architecture, construction and performance of the LCLS timing event system.
Stability Analysis of Uncertain Discrete Time-Delay Control Systems
Institute of Scientific and Technical Information of China (English)
Long Xuming; Duan Ping
2006-01-01
Based on Lyapunov stability theory, a less conservative sufficient conditions for the stabilities of uncertain discrete delay-independent and delay-dependent control systems are obtained by using the linear matrix inequality (LMI) approach. Judgement of the stability of time-delay systems is transformed to judgement of the feasible solution of an LMI, and hence is solved by use of MATLAB. Numerical simulations verify the validity of the proposed method.
Multivariable controller for discrete stochastic amplitude-constrained systems
Directory of Open Access Journals (Sweden)
Hannu T. Toivonen
1983-04-01
Full Text Available A sub-optimal multivariable controller for discrete stochastic amplitude-constrained systems is presented. In the approach the regulator structure is restricted to the class of linear saturated feedback laws. The stationary covariances of the controlled system are evaluated by approximating the stationary probability distribution of the state by a gaussian distribution. An algorithm for minimizing a quadratic loss function is given, and examples are presented to illustrate the performance of the sub-optimal controller.
A representation theorem for linear discrete-space systems
Directory of Open Access Journals (Sweden)
Irwin W. Sandberg
1998-01-01
Full Text Available The cornerstone of the theory of discrete-time single-input single-output linear systems is the idea that every such system has an input–output map H that can be represented by a convolution or the familiar generalization of a convolution. This thinking involves an oversight which is corrected in this note by adding an additional term to the representation.
H∞ controller synthesis of piecewise discrete time linear systems
Institute of Scientific and Technical Information of China (English)
Gang FENG
2003-01-01
This paper presents an H∞ controller design method for piecewise discrete time linear systems based on a piecewise quadratic Lyapunov function. It is shown that the resulting closed loop system is globally stable with guaranteed H∞ perfomance and the controller can be obtained by solvng a set of bilinear matrix inequalities. It has been shown that piecewise quadratic Lyapnnov functions are less conservative than the global quadratic Lyapunov functions. A simulation example is also given to illustrate the advantage of the proposed approach.
Stabilization of discrete nonlinear systems based on control Lyapunov functions
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
The stabilization of discrete nonlinear systems is studied.Based on control Lyapunov functions,asufficient and necessary condition for a quadratic function to be a control Lyapunov function is given.From this condition,a continuous state feedback law is constructed explicitly.It can globally asymptotically stabilize the equilibrium of the closed-loop system.A simulation example shows the effectiveness of the proposed method.
Uniform Deterministic Discrete Method for Three Dimensional Systems
Institute of Scientific and Technical Information of China (English)
无
1997-01-01
For radiative direct exchange areas in three dimensional system,the Uniform Deterministic Discrete Method(UDDM) was adopted.The spherical surface dividing method for sending area element and the regular icosahedron for sending volume element can meet with the direct exchange area computation of any kind of zone pairs.The numerical examples of direct exchange area in three dimensional system with nonhomogeneous attenuation coefficients indicated that the UDDM can give very high numercal accuracy.
Ahn, Kyoungkwan; Yokota, Shinichi
Uninterrupted power supply has become indispensable during the maintenance task of active electric power lines as a result of today's highly information-oriented society and increasing demand of electric utilities. The maintenance task has the risk of electric shock and the danger of falling from high place. Therefore it is necessary to realize an autonomous robot system using electro-hydraulic manipulator because hydraulic manipulators have the advantage of electric insulation. Meanwhile it is relatively difficult to realize autonomous assembly tasks particularly in the case of manipulating flexible objects such as electric lines. In this report, a discrete event control system is introduced for automatic assembly task of electric lines into sleeves as one of a typical task of active electric power lines. In the implementation of a discrete event control system, LVQNN (learning vector quantization neural network) is applied to the insertion task of electric lines to sleeves. In order to apply these proposed control system to the unknown environment, virtual learning data for LVQNN was generated by fuzzy inference. By the experimental results of two types of electric lines and sleeves, these proposed discrete event control and neural network learning algorithm are confirmed very effective to the insertion tasks of electric lines to sleeves as a typical task of active electric power maintenance tasks.
The effects of indoor environmental exposures on pediatric asthma: a discrete event simulation model
Directory of Open Access Journals (Sweden)
Fabian M Patricia
2012-09-01
Full Text Available Abstract Background In the United States, asthma is the most common chronic disease of childhood across all socioeconomic classes and is the most frequent cause of hospitalization among children. Asthma exacerbations have been associated with exposure to residential indoor environmental stressors such as allergens and air pollutants as well as numerous additional factors. Simulation modeling is a valuable tool that can be used to evaluate interventions for complex multifactorial diseases such as asthma but in spite of its flexibility and applicability, modeling applications in either environmental exposures or asthma have been limited to date. Methods We designed a discrete event simulation model to study the effect of environmental factors on asthma exacerbations in school-age children living in low-income multi-family housing. Model outcomes include asthma symptoms, medication use, hospitalizations, and emergency room visits. Environmental factors were linked to percent predicted forced expiratory volume in 1 second (FEV1%, which in turn was linked to risk equations for each outcome. Exposures affecting FEV1% included indoor and outdoor sources of NO2 and PM2.5, cockroach allergen, and dampness as a proxy for mold. Results Model design parameters and equations are described in detail. We evaluated the model by simulating 50,000 children over 10 years and showed that pollutant concentrations and health outcome rates are comparable to values reported in the literature. In an application example, we simulated what would happen if the kitchen and bathroom exhaust fans were improved for the entire cohort, and showed reductions in pollutant concentrations and healthcare utilization rates. Conclusions We describe the design and evaluation of a discrete event simulation model of pediatric asthma for children living in low-income multi-family housing. Our model simulates the effect of environmental factors (combustion pollutants and allergens
Discrete-time control system design with applications
Rabbath, C A
2014-01-01
This book presents practical techniques of discrete-time control system design. In general, the design techniques lead to low-order dynamic compensators that ensure satisfactory closed-loop performance for a wide range of sampling rates. The theory is given in the form of theorems, lemmas, and propositions. The design of the control systems is presented as step-by-step procedures and algorithms. The proposed feedback control schemes are applied to well-known dynamic system models. This book also discusses: Closed-loop performance of generic models of mobile robot and airborne pursuer dynamic systems under discrete-time feedback control with limited computing capabilities Concepts of discrete-time models and sampled-data models of continuous-time systems, for both single- and dual-rate operation Local versus global digital redesign Optimal, closed-loop digital redesign methods Plant input mapping design Generalized holds and samplers for use in feedback control loops, Numerical simulation of fixed-point arithm...
Quantum Trilogy: Discrete Toda, Y-System and Chaos
Yamazaki, Masahito
2016-01-01
We discuss a discretization of the quantum Toda field theory associated with a semisimple finite-dimensional Lie algebra or a tamely-laced infinite-dimensional Kac-Moody algebra $G$, generalizing the previous construction of discrete quantum Liouville theory for the case $G=A_1$. The model is defined on a discrete two-dimensional lattice, whose spatial direction is of length $L$. In addition we also find a "discretized extra dimension" whose width is given by the rank $r$ of $G$, which decompactifies in the large $r$ limit. For the case of $G=A_N$ or $A_{N-1}^{(1)}$, we find a symmetry exchanging $L$ and $N$ under appropriate spatial boundary conditions. The dynamical time evolution rule of the model is a quantizations of the so-called Y-system, and the theory can be well-described by the quantum cluster algebra. We discuss possible implications for recent discussions of quantum chaos, and comment on the relation with the quantum higher Teichmuller theory of type $A_N$.
Pseudo-Random Sequences Generator Based on Discrete Hyperchaotic Systems
Institute of Scientific and Technical Information of China (English)
李昌刚; 韩正之
2003-01-01
We first design a discrete hyperchaotic system via piecewise linear state feedback. The states of the closed loop system are locally expanding in two directions but absolutely bounded on the whole, which implies hyperchaos. Then, we use three suchlike hyperchaotie systems with different feedback gain matrices to design a pseudo-random sequence generator (PRSG). Through a threshold function, three sub-sequences generated from the output of piecewise linear functions are changed into 0-1 sequences. Then, followed by XOR operation, an unpredictable pseudo-random sequence (PRS) is ultimately obtained. The analysis and simulation results indicate that the PRS, generated with hyperchaotic systems, has desirable statistical features.
Stability of discrete systems near a multivalued equilibrium
Energy Technology Data Exchange (ETDEWEB)
Kuntsevich, V.M.; Pokotilo, V.G.
1995-01-01
The main objective of this article is to derive sufficient conditions of stability in the small for ensembles of trajectories of nonlinar discrete systems near multivalued equilibria. The stability conditions are expressed in terms of a linearized system, and we examine the effect of the structure of invariant sets near which the behavior of the system is investigated. On the one hand, this approach provides a clearer picture of the specific features of multivalued systems and, on the other hand, it produces results that characterize stability of analogs of periodic motion.
Intrinsically localized chaos in discrete nonlinear extended systems
Martínez, P J; Falo, F; Mazo, J J
1999-01-01
The phenomenon of intrinsic localization in discrete nonlinear extended systems, i.e. the (generic) existence of discrete breathers, is shown to be not restricted to periodic solutions but it also extends to more complex (chaotic) dynamical behaviour. We illustrate this with two different forced and damped systems exhibiting this type of solutions: In an anisotropic Josephson junction ladder, we obtain intrinsically localized chaotic solutions by following periodic rotobreather solutions through a cascade of period-doubling bifurcations. In an array of forced and damped van der Pol oscillators, they are obtained by numerical continuation (path-following) methods from the uncoupled limit, where its existence is trivially ascertained, following the ideas of the anticontinuum limit.
Linear Volterra Integral Equations as the Limit of Discrete Systems
Institute of Scientific and Technical Information of China (English)
M. Federson; R.Bianconi; L.Barbanti
2004-01-01
We consider the multidimensional abstract linear integral equation of Volterra typex (t)+(*)∫Rt a (s)x (s)ds =f (t),t∈R,as the limit of discrete Stieltjes-type systems and we prove results on the existence of continuous solutions.The functions x,a and f are Banach space-valued de .ned on a compact interval R of R n ,R t is a subinterval of R depending on t∈R and (*)∫denotes either the Bochner-Lebesgue integral or the Henstock integral.The results presented here generalize those in [1]and are in the spirit of [3].As a consequence of our approach,it is possible to study the properties of (1)by transferring the properties of the discrete systems.The Henstock integral setting enables us to consider highly oscillating functions.
Discrete Event Simulation-Based Resource Modelling in Health Technology Assessment.
Salleh, Syed; Thokala, Praveen; Brennan, Alan; Hughes, Ruby; Dixon, Simon
2017-07-03
The objective of this article was to conduct a systematic review of published research on the use of discrete event simulation (DES) for resource modelling (RM) in health technology assessment (HTA). RM is broadly defined as incorporating and measuring effects of constraints on physical resources (e.g. beds, doctors, nurses) in HTA models. Systematic literature searches were conducted in academic databases (JSTOR, SAGE, SPRINGER, SCOPUS, IEEE, Science Direct, PubMed, EMBASE) and grey literature (Google Scholar, NHS journal library), enhanced by manual searchers (i.e. reference list checking, citation searching and hand-searching techniques). The search strategy yielded 4117 potentially relevant citations. Following the screening and manual searches, ten articles were included. Reviewing these articles provided insights into the applications of RM: firstly, different types of economic analyses, model settings, RM and cost-effectiveness analysis (CEA) outcomes were identified. Secondly, variation in the characteristics of the constraints such as types and nature of constraints and sources of data for the constraints were identified. Thirdly, it was found that including the effects of constraints caused the CEA results to change in these articles. The review found that DES proved to be an effective technique for RM but there were only a small number of studies applied in HTA. However, these studies showed the important consequences of modelling physical constraints and point to the need for a framework to be developed to guide future applications of this approach.
Capacity planning for maternal-fetal medicine using discrete event simulation.
Ferraro, Nicole M; Reamer, Courtney B; Reynolds, Thomas A; Howell, Lori J; Moldenhauer, Julie S; Day, Theodore Eugene
2015-07-01
Maternal-fetal medicine is a rapidly growing field requiring collaboration from many subspecialties. We provide an evidence-based estimate of capacity needs for our clinic, as well as demonstrate how simulation can aid in capacity planning in similar environments. A Discrete Event Simulation of the Center for Fetal Diagnosis and Treatment and Special Delivery Unit at The Children's Hospital of Philadelphia was designed and validated. This model was then used to determine the time until demand overwhelms inpatient bed availability under increasing capacity. No significant deviation was found between historical inpatient censuses and simulated censuses for the validation phase (p = 0.889). Prospectively increasing capacity was found to delay time to balk (the inability of the center to provide bed space for a patient in need of admission). With current capacity, the model predicts mean time to balk of 276 days. Adding three beds delays mean time to first balk to 762 days; an additional six beds to 1,335 days. Providing sufficient access is a patient safety issue, and good planning is crucial for targeting infrastructure investments appropriately. Computer-simulated analysis can provide an evidence base for both medical and administrative decision making in a complex clinical environment. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Application of Discrete Event Simulation in LPG Storage Operation and Optimization
Directory of Open Access Journals (Sweden)
Jakub Dyntar
2012-05-01
Full Text Available In this paper, we present an application of discrete event simulation in Liquid Petroleum Gases (LPG storage operation and optimization. The proposed solution consists of Witness simulation model supported by MS Excel for data loading and outputs upgrading. The solution upgraded into the form of LPG Storage Simulator (LPG SIM adopts the principles of agent-based modeling and is suitable to support the decision making in LPG manufacturing, storing and distribution supply chain optimization. We apply our simulator to identify possible capacity constraints of LPG storage and expedition area owned by two operators (petrochemical company SYNTHOS Kralupy, a.s. and crude processing company ESK RAFINRSK, a.s. (CRC connected with planned intensification of LPG manufacturing. With help of LPG SIM we test 4 different varieties differing in the total amounts of products flowing from the CRC Fluid Catalytic Cracking unit to LPG storage and expedition area equipped with the rail way tank cars (RTC loading and road tank-trucks (RT loading terminal. For each simulated variety we specify the requirements on storage and expedition capacities ensuring the smooth product flows through the LPG storage area, gasoline blending requirements and the requirements on products expedition in RTC and RT.
The Skateboard Factory: a teaching case on discrete-event simulation
Directory of Open Access Journals (Sweden)
Marco Aurélio de Mesquita
Full Text Available Abstract Real-life applications during the teaching process are a desirable practice in simulation education. However, access to real cases imposes some difficulty in implement such practice, especially when the classes are large. This paper presents a teaching case for a computer simulation course in a production engineering undergraduate program. The motivation for the teaching case was to provide students with a realistic manufacturing case to stimulate the learning of simulation concepts and methods in the context of industrial engineering. The case considers a virtual factory of skateboards, which operations include parts manufacturing, final assembly and storage of raw materials, work-in-process and finished products. Students should model and simulate the factory, under push and pull production strategies, using any simulation software available in the laboratory. The teaching case, applied in the last two years, contributed to motivate and consolidate the students’ learning of discrete-event simulation. It proved to be a feasible alternative to the previous practice of letting students freely choose a case for their final project, while keeping the essence of project-based learning approach.
A discrete event simulation model for evaluating time delays in a pipeline network
Energy Technology Data Exchange (ETDEWEB)
Spricigo, Deisi; Muggiati, Filipe V.; Lueders, Ricardo; Neves Junior, Flavio [Federal University of Technology of Parana (UTFPR), Curitiba, PR (Brazil)
2009-07-01
Currently in the oil industry the logistic chain stands out as a strong candidate to obtain highest profit, since recent studies have pointed out to a cost reduction by adoption of better policies for distribution of oil derivatives, particularly those where pipelines are used to transport products. Although there are models to represent transfers of oil derivatives in pipelines, they are quite complex and computationally burden. In this paper, we are interested on models that are less detailed in terms of fluid dynamics but provide more information about operational decisions in a pipeline network. We propose a discrete event simulation model in ARENA that allows simulating a pipeline network based on average historical data. Time delays for transferring different products can be evaluated through different routes. It is considered that transport operations follow a historical behavior and average time delays can thus be estimated within certain bounds. Due to its stochastic nature, time quantities are characterized by average and dispersion measures. This allows comparing different operational scenarios for product transportation. Simulation results are compared to data obtained from a real world pipeline network and different scenarios of production and demand are analyzed. (author)
Fuzzy Sliding Mode Control for Discrete Nonlinear Systems
Institute of Scientific and Technical Information of China (English)
F.Qiao.Q.M.Zhu; A.Winfield; C.Melhuish
2003-01-01
Sliding mode control is introduced into classical model free fuzzy logic control for discrete time nonlinear systems with uncertainty to the design of a novel fuzzy sliding mode control to meet the requirement of necessary and sufficient reaching conditions of sliding mode control. The simulation results show that the proposed controller outperforms the original fuzzy sliding mode controller and the classical fuzzy logic controller in stability, convergence and robustness.
H 2 guaranteed cost control of discrete linear systems
Directory of Open Access Journals (Sweden)
Colmenares W.
2000-01-01
Full Text Available This paper presents necessary and sufficient conditions for the existence of a quadratically stabilizing output feedback controller which also assures H 2 guaranteed cost performance on a discrete linear uncertain system where the uncertainty is of the norm bounded type. The conditions are presented as a collection of linear matrix inequalities.The solution, however requires a search over a scalar parameter space.
Some Dynamical Properties in Set-valued Discrete Systems
Institute of Scientific and Technical Information of China (English)
马先峰; 廖公夫; 李勇
2005-01-01
A discrete dynamical system can be expressed as xn+1 =f(xn), n=0,1, 2,... where X isa metric space and f : X→X is a continuous map. The study of it tells us how the points in the base space X moved. Nevertheless, this is not enough for the researches of biological species, demography, numerical simulation and attractors (see [1], [2]).
Semi-Discretization for Time-Delay Systems
Insperger, Tamás
2011-01-01
This book presents the recently introduced and already widely referred semi-discretization method for the stability analysis of delayed dynamical systems. Delay differential equations often come up in different fields of engineering, like feedback control systems, machine tool vibrations, balancing/stabilization with reflex delay. The behavior of such systems is often counter-intuitive and closed form analytical formulas can rarely be given even for the linear stability conditions. If parametric excitation is coupled with the delay effect, then the governing equation is a delay differential eq
H∞ Control for Uncertain Discrete-Dime Systems with Delays
Institute of Scientific and Technical Information of China (English)
潘俊涛
2007-01-01
In this paper,a new approach to H∞ controller design for a class of uncertain discrete-time T-S fuzzy systems are proposed.According to the Lyapunov stability theory as well as parallel distributed compensation (PDC),several sufficient conditions for stabilization of considered systems are derived.The design procedures based on LMI for the fuzzy robust controller are given, which guarantee the closed-loop system is asymptotically stable and the effect of disturbance input on the controlled output is reduced to a prescribed level.The simulation results show the proposed method is effective.
Control problems of discrete-time dynamical systems
Hasegawa, Yasumichi
2013-01-01
This monograph deals with control problems of discrete-time dynamical systems which include linear and nonlinear input/output relations. It will be of popular interest to researchers, engineers and graduate students who specialized in system theory. A new method which produces manipulated inputs is presented in the sense of state control and output control. This monograph provides new results and their extensions which can also be more applicable for nonlinear dynamical systems. To present the effectiveness of the method, many numerical examples of control problems are provided as well.
Synchronization of Discrete-Time Chaotic Systems in Bandlimited Channels
Directory of Open Access Journals (Sweden)
Marcio Eisencraft
2009-01-01
Full Text Available Over the last couple of decades, many methods for synchronizing chaotic systems have been proposed with communications applications in view. Yet their performance has proved disappointing in face of the nonideal character of usual channels linking transmitter and receiver, that is, due to both noise and signal propagation distortion. Here we consider a discrete-time master-slave system that synchronizes despite channel bandwidth limitations and an allied communication system. Synchronization is achieved introducing a digital filter that limits the spectral content of the feedback loop responsible for producing the transmitted signal.
PREFACE: Continuum Models and Discrete Systems Symposia (CMDS-12)
Chakrabarti, Bikas K.
2011-09-01
The 12th International Symposium on Continuum Models and Discrete Systems (CMDS-12) (http://www.saha.ac.in/cmp/cmds.12/) took place at the Saha Institute of Nuclear Physics in Kolkata from 21-25 February 2011. Previous CMDS symposia were held in Kielce (Poland, 1975), Mont Gabriel (Canada, 1977), Freudenstadt (Federal Republic of Germany, 1979), Stockholm (Sweden, 1981), Nottingham (United Kingdom, 1985), Dijon (France, 1989), Paderborn (Germany, 1992), Varna (Bulgaria, 1995), Istanbul (Turkey, 1998), Shoresh (Israel, 2003) and Paris (France, 2007). The broad interdisciplinary character, limited number of participants (not exceeding 100) and informal and friendly atmosphere of these meetings has made them a well-acknowledged place to make highly fruitful contacts and exchange ideas, methods and results. The purpose of CMDS is to bring together scientists with different backgrounds who work on continuum theories of discrete mechanical and thermodynamical systems in the fields of mathematics, theoretical and applied mechanics, physics, material science, and engineering. The spirit of the CMDS meetings is to stimulate extensive and active interdisciplinary research. The International Scientific Committee members of this conference were: David J Bergman (Chairman CMDS 10), Tel Aviv University, Israel; Bikas K Chakrabarti (Chairman CMDS 12), Saha Institute of Nuclear Physics, India; Alex Hansen, Norwegian University of Science and Technology, Norway; Hans Jürgen Herrmann, Institute for Building Materials, ETH, Switzerland; Esin Inan (Chairman CMDS 9), Istanbul Technical University, Turkey; Dominique Jeulin (Chairman CMDS 11), Ecole des Mines de Paris, France; Frank Juelicher, Max-Planck-Institute for the Physics of Complex Systems, Germany; Hikaru Kawamura, University of Osaka, Japan; Graeme Milton, University of Utah, USA; Natalia Movchan, University of Liverpool, UK; and Ping Sheng, The Hong Kong University of Science and Technology, Hong Kong. At CMDS-12 the topics
2015-03-12
military installation. Mild medical incidents can range from flu/cold incidents that do not require hospital care to food poisoning at a local restaurant ...Healthcare Industry Overview ..............................................................................9 Simulation in Healthcare...16 III. Industrial and Systems
DEFF Research Database (Denmark)
Hansen, Anders Hedegaard; Pedersen, Henrik C.
2014-01-01
Discrete fluid power technology attracts great attention because it enables energy efficiency and robust system architectures. However, the discrete nature of this technology naturally brings shifting phenomenons into the picture. For fluid power system the relative high inductance of fluid...
Distributed LQR control for discrete-time homogeneous systems
Wang, Wei; Zhang, Fangfang; Han, Chunyan
2016-11-01
This paper investigates the distributed linear quadratic regulation (LQR) controller design method for discrete-time homogeneous scalar systems. Based on the optimal centralised control theory, the existence condition for distributed optimal controller is firstly proposed. It shows that the globally optimal distributed controller is dependent on the structure of the penalty matrix. Such results can be used in consensus problems and used to find under which communication topology (may not be an all-to-all form) the optimal distributed controller exists. When the proposed condition cannot hold, a suboptimal design method with the aid of the decomposition of discrete algebraic Riccati equations and robustness of local controllers is proposed. The computation complexity and communication load for each subsystem are only dependent on the number of its neighbours.
A fault detection and isolation filter for discrete linear systems.
Giovanini, L; Dondo, R
2003-10-01
The problem of fault and/or abrupt disturbances detection and isolation for discrete linear systems is analyzed in this work. A strategy for detecting and isolating faults and/or abrupt disturbances is presented. The strategy is an extension of an already existing result in the continuous time domain to the discrete domain. The resulting detection algorithm is a Kalman filter with a special structure. The filter generates a residuals vector in such a way that each element of this vector is related with one fault or disturbance. Therefore the effects of the other faults, disturbances, and measurement noises in this element are minimized. The necessary stability and convergence conditions are briefly exposed. A numerical example is also presented.
Constructing exact solutions to discrete systems with the trial function method
Institute of Scientific and Technical Information of China (English)
Taogetusang Sirendaoerji
2008-01-01
Based on the homogenous balance method and the trial function method, several trial function methods composed of exponential functions are proposed and applied to nonlinear discrete systems. With the help of symbolic computation system, the new exact solitary wave solutions to discrete nonlinear mKdV lattice equation, discrete nonlinear (2+1) dimensional Toda lattice equation, Ablowitz-Ladik-lattice system are constructed.The method is of significance to seek exact solitary wave solutions to other nonlinear discrete systems.
Discrete state space modeling and control of nonlinear unknown systems.
Savran, Aydogan
2013-11-01
A novel procedure for integrating neural networks (NNs) with conventional techniques is proposed to design industrial modeling and control systems for nonlinear unknown systems. In the proposed approach, a new recurrent NN with a special architecture is constructed to obtain discrete-time state-space representations of nonlinear dynamical systems. It is referred as the discrete state-space neural network (DSSNN). In the DSSNN, the outputs of the hidden layer neurons of the DSSNN represent the system's (pseudo) state. The inputs are fed to output neurons and the delayed outputs of the hidden layer neurons are fed to their inputs via adjustable weights. The discrete state space model of the actual system is directly obtained by training the DSSNN with the input-output data. A training procedure based on the back-propagation through time (BPTT) algorithm is developed. The Levenberg-Marquardt (LM) method with a trust region approach is used to update the DSSNN weights. Linear state space models enable to use well developed conventional analysis and design techniques. Thus, building a linear model of a system has primary importance in industrial applications. Thus, a suitable linearization procedure is proposed to derive the linear state space model from the nonlinear DSSNN representation. The controllability, observability and stability properties are examined. The state feedback controllers are designed with both the linear quadratic regulator (LQR) and the pole placement techniques. The regulator and servo control problems are both addressed. A full order observer is also designed to estimate the state variables. The performance of the proposed procedure is demonstrated by applying for both single-input single-output (SISO) and multiple-input multiple-output (MIMO) nonlinear control problems. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Discrete Climatic Events on Timescales of Decades to Centuries: Clues from Polar Landforms
Byrne, S.; Ingersoll, A. P.
2002-12-01
Recent observations indicate fast (meters per year) evolution of features, named Swiss-cheese for their morphologic appearance, on the surface of the southern residual frost cap [Malin et al., Science, 2001]. The onset of growth of these features may be responding in a sensitive way to changes in Martian climatic conditions on the timescales of decades to centuries. We have developed a model to examine the growth and development of the Swiss-cheese depressions. Swiss-cheese features were first identified by Thomas et al. [Science, 2000] using Mars Orbiter Camera imagery. They have flat floors and steep sided walls. Their lateral sizes are of the order of a few hundred meters. They are quite shallow with shadow and MOLA measurements indicating a depth of about 8 meters. Although the depressions are fairly circular the smaller ones do display a slight but consistent asymmetry in the form of a small cusp which points poleward indicating that the origin of these features is connected with insolation. As the seasonal frost disappears their walls appear to darken considerably relative to the surrounding terrain. The flat interior of the depression however does not appear to change in this way. There is a clear size division between smaller and larger depressions. Our modeling indicates that the growth timescales of the small-size population are on the order of a few Martian decades to centuries. This populations has a narrow size distribution with most of the depressions in any one area being roughly the same size. The similar size of adjacent depressions argues for some discrete climatic event which triggered this form of erosion of the cap. Larger depressions in other parts of the cap display an interior moat which indicates their walls have begun to be eroded outward after a period of inactivity or perhaps deposition. The width of these moats along with the observed expansion rates of the depressions [Malin et al., Science, 2001] indicates that these larger
Feedback control design for discrete-time piecewise affine systems
Institute of Scientific and Technical Information of China (English)
XU Jun; XIE Li-hua
2007-01-01
This paper investigates the design of state feedback and dynamic output feedback stabilizing controllers for discrete-time piecewise affine (PWA) systems. The main objective is to derive design methods that will incorporate the partition information of the PWA systems so as to reduce the design conservatism embedded in existing design methods. We first introduce a transformation that converts the feedback control design problem into a bilinear matrix inequality (BMI) problem. Then, two iterative algorithms are proposed to compute the feedback controllers characterized by the BMI. Several simulation examples are given to demonstrate the advantages of the proposed design.
Satisfactory control of discrete-time linear periodic systems
Institute of Scientific and Technical Information of China (English)
Shiqian LIU; Jihong ZHU; JinChun HU
2007-01-01
In this paper satisfactory control for discrete-time linear periodic systems is studied.Based on a suitable time-invariant state sampled reformulation,periodic state feedback controller has been designed such that desired requirements of steady state covariance,H-infinity rejection bound and regional pole assignment for the periodic system are met simultaneously.By using satisfactory control theory,the problem of satisfactory periodic controller can be transformed into a linear programming problem subject to a set of linear matrix inequalities(LMIs).and a feasible designing approach is presented via LMI technique.Numeric example validates the obtained conclusion.
Application of PI Control Algorithm to Discrete Manufacturing Systems
Institute of Scientific and Technical Information of China (English)
Guo Caifen; Wang Zongrong
2006-01-01
PI (proportional-integral) control algorithm is applied to control WIP (work-in-progress) in a discrete manufacturing system,where the cascade control of PI controllers is presented. It is in the frequency domain that the PI controller is designed with constraints on sensitivity options to ensure the stability and robustness of its parameters. A case is evaluated on a motorcycle engine crankcase production system, whose simulation results confirm that demand fluctuations can be compensated by PI controllers under a normal demand. PI controllers also possess low sensitivity to the distribution of production times.
Design of Experiment Using Simulation of a Discrete Dynamical System
Directory of Open Access Journals (Sweden)
Mašek Jan
2016-12-01
Full Text Available The topic of the presented paper is a promising approach to achieve optimal Design of Experiment (DoE, i.e. spreading of points within a design domain, using a simulation of a discrete dynamical system of interacting particles within an n-dimensional design space. The system of mutually repelling particles represents a physical analogy of the Audze-Eglājs (AE optimization criterion and its periodical modification (PAE, respectively. The paper compares the performance of two approaches to implementation: a single-thread process using the JAVA language environment and a massively parallel solution employing the nVidia CUDA platform.
Heteroclinic orbits and heteroclinic chains for a discrete Hamiltonian system
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
In the present work we prove some existence results of heteroclinic orbits and heteroclinic chains for a second order discrete Hamiltonian system of the form Δ2q(t-1)+V(q(t))=0,t∈Z.The methods we use are variational in nature.Our results show that under general conditions,for each maximum point β of V,the above system possesses multiple heteroclinic orbits joining β and some other maximum points of V.We also prove that for any pair of distinct maximum points η and ξ of V,there exists at least one heteroclinic chain from η to ξ.
Chaos control in a discrete time system through asymmetric coupling
Energy Technology Data Exchange (ETDEWEB)
Rech, Paulo C. [Departamento de Fisica, Universidade do Estado de Santa Catarina, 89223-100 Joinville (Brazil)], E-mail: dfi2pcr@joinville.udesc.br
2008-06-09
We study a pair of asymmetrically coupled identical chaotic quadratic maps. We investigate, via numerical simulations, chaos suppression associated with the variation of both parameters, the coupling parameter and the parameter which measures the asymmetry. This is a new technique recently introduced for chaos suppression in continuous systems and, as far we know, not yet tested for discrete systems. Parameter-space regions where the chaotic dynamics is driven towards regular dynamics are shown. Lyapunov exponents and phase-space plots are also used to characterize the phenomenon observed as the parameters are changed.
Directory of Open Access Journals (Sweden)
Cholada Kittipittayakorn
2016-01-01
Full Text Available Many hospitals are currently paying more attention to patient satisfaction since it is an important service quality index. Many Asian countries’ healthcare systems have a mixed-type registration, accepting both walk-in patients and scheduled patients. This complex registration system causes a long patient waiting time in outpatient clinics. Different approaches have been proposed to reduce the waiting time. This study uses the integration of discrete event simulation (DES and agent-based simulation (ABS to improve patient waiting time and is the first attempt to apply this approach to solve this key problem faced by orthopedic departments. From the data collected, patient behaviors are modeled and incorporated into a massive agent-based simulation. The proposed approach is an aid for analyzing and modifying orthopedic department processes, allows us to consider far more details, and provides more reliable results. After applying the proposed approach, the total waiting time of the orthopedic department fell from 1246.39 minutes to 847.21 minutes. Thus, using the correct simulation model significantly reduces patient waiting time in an orthopedic department.
Noether-type theorem for discrete nonconservative dynamical systems with nonregular lattices
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
We investigate Noether symmetries and conservation laws of the discrete nonconserved systems with nonregular lattices. The operators of discrete transformation and discrete differentiation to the right and left are introduced for the systems. Based on the invariance of discrete Hamilton action on nonregular lattices of the systems with the nonconserved forces under the infinitesimal transformations with respect to the time and generalized coordinates, we give the discrete analog of generalized variational formula. From this formula we derive the discrete analog of generalized Noether-type identity, and then we present the generalized quasi-extremal equations and properties of these equations for the systems. We also obtain the discrete analog of Noether-type conserved laws and the discrete analog of generalized Noether theorems for the systems. We discuss an example to illustrate these results.
Noether-type theory for discrete mechanico-electrical dynamical systems with nonregular lattices
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
We investigate Noether symmetries and conservation laws of the discrete mechanico-electrical systems with nonregular lattices.The operators of discrete transformation and discrete differentiation to the right and left are introduced for the systems.Based on the invariance of discrete Hamilton action on nonregular lattices of the systems with the dissipation forces under the infinitesimal transformations with respect to the time,generalized coordinates and generalized charge quantities,we work out the discrete analog of the generalized variational formula.From this formula we derive the discrete analog of generalized Noether-type identity,and then we present the generalized quasi-extremal equations and properties of these equations for the systems.We also obtain the discrete analog of Noether-type conserved laws and the discrete analog of generalized Noether theorems for the systems.Finally we use an example to illustrate these results.
Hopf Bifurcation Analysis for a Stochastic Discrete-Time Hyperchaotic System
Directory of Open Access Journals (Sweden)
Jie Ran
2015-01-01
Full Text Available The dynamics of a discrete-time hyperchaotic system and the amplitude control of Hopf bifurcation for a stochastic discrete-time hyperchaotic system are investigated in this paper. Numerical simulations are presented to exhibit the complex dynamical behaviors in the discrete-time hyperchaotic system. Furthermore, the stochastic discrete-time hyperchaotic system with random parameters is transformed into its equivalent deterministic system with the orthogonal polynomial theory of discrete random function. In addition, the dynamical features of the discrete-time hyperchaotic system with random disturbances are obtained through its equivalent deterministic system. By using the Hopf bifurcation conditions of the deterministic discrete-time system, the specific conditions for the existence of Hopf bifurcation in the equivalent deterministic system are derived. And the amplitude control with random intensity is discussed in detail. Finally, the feasibility of the control method is demonstrated by numerical simulations.
Van Hook, Jennifer; Altman, Claire E
2013-08-01
Event history models, also known as hazard models, are commonly used in analyses of fertility. One drawback of event history models is that the conditional probabilities (hazards) estimated by event history models do not readily translate into summary measures, particularly for models of repeatable events, like childbirth. In this paper, we describe how to translate the results of discrete-time event history models of all births into well-known summary fertility measures: simulated age- and parity-specific fertility rates, parity progression ratios (PPRs), and the total fertility rate (TFR). The method incorporates all birth intervals, but permits the hazard functions to vary across parities. It also can simulate values for groups defined by both fixed and time-varying covariates, such as marital or employment life histories. We demonstrate the method using an example from the National Survey of Family Growth (NSFG) and provide an accompanying data file and Stata program.
From discrete elements to continuum fields: Extension to bidisperse systems
Tunuguntla, Deepak R.; Thornton, Anthony R.; Weinhart, Thomas
2016-07-01
Micro-macro transition methods can be used to, both, calibrate and validate continuum models from discrete data obtained via experiments or simulations. These methods generate continuum fields such as density, momentum, stress, etc., from discrete data, i.e. positions, velocity, orientations and forces of individual elements. Performing this micro-macro transition step is especially challenging for non-uniform or dynamic situations. Here, we present a general method of performing this transition, but for simplicity we will restrict our attention to two-component scenarios. The mapping technique, presented here, is an extension to the micro-macro transition method, called coarse-graining, for unsteady two-component flows and can be easily extended to multi-component systems without any loss of generality. This novel method is advantageous; because, by construction the obtained macroscopic fields are consistent with the continuum equations of mass, momentum and energy balance. Additionally, boundary interaction forces can be taken into account in a self-consistent way and thus allow for the construction of continuous stress fields even within one element radius of the boundaries. Similarly, stress and drag forces can also be determined for individual constituents of a multi-component mixture, which is critical for several continuum applications, e.g. mixture theory-based segregation models. Moreover, the method does not require ensemble-averaging and thus can be efficiently exploited to investigate static, steady and time-dependent flows. The method presented in this paper is valid for any discrete data, e.g. particle simulations, molecular dynamics, experimental data, etc.; however, for the purpose of illustration we consider data generated from discrete particle simulations of bidisperse granular mixtures flowing over rough inclined channels. We show how to practically use our coarse-graining extension for both steady and unsteady flows using our open-source coarse
Discrete gene replication events drive coupling between the cell cycle and circadian clocks.
Paijmans, Joris; Bosman, Mark; Ten Wolde, Pieter Rein; Lubensky, David K
2016-04-12
Many organisms possess both a cell cycle to control DNA replication and a circadian clock to anticipate changes between day and night. In some cases, these two rhythmic systems are known to be coupled by specific, cross-regulatory interactions. Here, we use mathematical modeling to show that, additionally, the cell cycle generically influences circadian clocks in a nonspecific fashion: The regular, discrete jumps in gene-copy number arising from DNA replication during the cell cycle cause a periodic driving of the circadian clock, which can dramatically alter its behavior and impair its function. A clock built on negative transcriptional feedback either phase-locks to the cell cycle, so that the clock period tracks the cell division time, or exhibits erratic behavior. We argue that the cyanobacterium Synechococcus elongatus has evolved two features that protect its clock from such disturbances, both of which are needed to fully insulate it from the cell cycle and give it its observed robustness: a phosphorylation-based protein modification oscillator, together with its accompanying push-pull read-out circuit that responds primarily to the ratios of different phosphoform concentrations, makes the clock less susceptible to perturbations in protein synthesis; the presence of multiple, asynchronously replicating copies of the same chromosome diminishes the effect of replicating any single copy of a gene.
A Review of Discrete Element Method Research on Particulate Systems
Mahmood, A. A.; Elektorowicz, M.
2016-07-01
This paper summarizes research done using the Discrete Element Method (DEM) and explores new trends in its use on Particulate systems. The rationale for using DEM versus the traditional continuum-based approach is explained first. Then, DEM application is explored in terms of geotechnical engineering and mining engineering materials, since particulate media are mostly associated with these two disciplines. It is concluded that no research to date had addressed the issue of using the DEM to model the strength and weathering characteristics of peaty soil-slag-Portland cement-fly ash combinations.
A parametric LTR solution for discrete-time systems
DEFF Research Database (Denmark)
Niemann, Hans Henrik; Jannerup, Ole Erik
1989-01-01
and the full loop transfer function, is manipulated into a general form involving the target loop transfer matrix and the fundamental recovery matrix. A parametric LTR solution based on the recovery matrix is developed. It is shown that the LQR/LTR (linear quadratic Gaussian/loop transfer recovery) solution......A parametric LTR (loop transfer recovery) solution for discrete-time compensators incorporating filtering observers which achieve exact recovery is presented for both minimum- and non-minimum-phase systems. First the recovery error, which defines the difference between the target loop transfer...
Optimal Robust Fault Detection for Linear Discrete Time Systems
Directory of Open Access Journals (Sweden)
Nike Liu
2008-01-01
Full Text Available This paper considers robust fault-detection problems for linear discrete time systems. It is shown that the optimal robust detection filters for several well-recognized robust fault-detection problems, such as ℋ−/ℋ∞, ℋ2/ℋ∞, and ℋ∞/ℋ∞ problems, are the same and can be obtained by solving a standard algebraic Riccati equation. Optimal filters are also derived for many other optimization criteria and it is shown that some well-studied and seeming-sensible optimization criteria for fault-detection filter design could lead to (optimal but useless fault-detection filters.
Evolutionary design of discrete controllers for hybrid mechatronic systems
DEFF Research Database (Denmark)
Dupuis, Jean-Francois; Fan, Zhun; Goodman, Erik
2015-01-01
This paper investigates the issue of evolutionary design of controllers for hybrid mechatronic systems. Finite State Automaton (FSA) is selected as the representation for a discrete controller due to its interpretability, fast execution speed and natural extension to a statechart, which is very...... popular in industrial applications. A case study of a two-tank system is used to demonstrate that the proposed evolutionary approach can lead to a successful design of an FSA controller for the hybrid mechatronic system, represented by a hybrid bond graph. Generalisation of the evolved FSA controller...... of the evolutionary design of controllers for hybrid mechatronic systems. Finally, some important future research directions are pointed out, leading to the major work of the succeeding part of the research....
The Applicability of Structured Modeling to Discrete Event Simulation Systems.
1987-03-01
of Attributes :\\ basic theme in this Section concerns the limitations of the attribute clement type and ways around these restrictions. A technique...ce 2nd Echelon Battalion of’IER of ILL) 1EDIER2- EBM [ANEUVER_*( IEDI ER2LB) cc IED1ER2EBARTILLERYN’\\(IEDIER2EB) ce IED2ER(lED ce 2nd Echelon Regiment of
Warship Combat System Selection Methodology Based on Discrete Event Simulation
2010-09-01
7P 2x4 Harpoon 6 Mk 46 Mod 2 Barbaros (Meko 200) Turkey 3100 Ton AWS 9; AWS 6 Dolphin SQS-56 Racal Cutlass, Racal Scorpion Mk 36 1 - 5 in/54 3...Ball; 2 Half Hat; 4 Half Cup laser intercept 8 PK 10 and 2 PK 16 chaff launchers 1 - 3.9 in/59 A 190E 2 CADS- N-1 32 SA-N- 9 16 SS-N-25 6 SS-N
Genuis, Emerson D; Doan, Quynh
2013-11-01
Providing patient care and medical education are both important missions of teaching hospital emergency departments (EDs). With medical school enrollment rising, and ED crowding becoming an increasing prevalent issue, it is important for both pediatric EDs (PEDs) and general EDs to find a balance between these two potentially competing goals. The objective was to determine how the number of trainees in a PED affects patient wait time, total ED length of stay (LOS), and rates of patients leaving without being seen (LWBS) for PED patients overall and stratified by acuity level as defined by the Pediatric Canadian Triage and Acuity Scale (CTAS) using discrete event simulation (DES) modeling. A DES model of an urban tertiary care PED, which receives approximately 40,000 visits annually, was created and validated. Thirteen different trainee schedules, which ranged from averaging zero to six trainees per shift, were input into the DES model and the outcome measures were determined using the combined output of five model iterations. An increase in LOS of approximately 7 minutes was noted to be associated with each additional trainee per attending emergency physician working in the PED. The relationship between the number of trainees and wait time varied with patients' level of acuity and with the degree of PED utilization. Patient wait time decreased as the number of trainees increased for low-acuity visits and when the PED was not operating at full capacity. With rising numbers of trainees, the PED LWBS rate decreased in the whole department and in the CTAS 4 and 5 patient groups, but it rose in patients triaged CTAS 3 or higher. A rising numbers of trainees was not associated with any change to flow outcomes for CTAS 1 patients. The results of this study demonstrate that trainees in PEDs have an impact mainly on patient LOS and that the effect on wait time differs between patients presenting with varying degrees of acuity. These findings will assist PEDs in finding a
Directory of Open Access Journals (Sweden)
Moskal P.
2016-01-01
Full Text Available Discrete symmetries such as parity (P, charge-conjugation (C and time reversal (T are of fundamental importance in physics and cosmology. Breaking of charge conjugation symmetry (C and its combination with parity (CP constitute necessary conditions for the existence of the asymmetry between matter and antimatter in the observed Universe. The presently known sources of discrete symmetries violations can account for only a tiny fraction of the excess of matter over antimatter. So far CP and T symmetries violations were observed only for systems involving quarks and they were never reported for the purely leptonic objects. In this article we describe briefly an experimental proposal for the test of discrete symmetries in the decays of positronium atom which is made exclusively of leptons. The experiments are conducted by means of the Jagiellonian Positron Emission Tomograph (J-PET which is constructed from strips of plastic scintillators enabling registration of photons from the positronium annihilation. J-PET tomograph together with the positronium target system enable to measure expectation values for the discrete symmetries odd operators constructed from (i spin vector of the ortho-positronium atom, (ii momentum vectors of photons originating from the decay of positronium, and (iii linear polarization direction of annihilation photons. Linearly polarized positronium will be produced in the highly porous aerogel or polymer targets, exploiting longitudinally polarized positrons emitted by the sodium 22Na isotope. Information about the polarization vector of orthopositronium will be available on the event by event basis and will be reconstructed from the known position of the positron source and the reconstructed position of the orthopositronium annihilation. In 2016 the first tests and calibration runs are planned, and the data collection with high statistics will commence in the year 2017.
Moskal, P.; Alfs, D.; Bednarski, T.; Białas, P.; Curceanu, C.; Czerwiński, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Gupta-Sharma, N.; Gorgol, M.; Hiesmayr, B. C.; Jasińska, B.; Kamińska, D.; Khreptak, O.; Korcyl, G.; Kowalski, P.; Krzemień, W.; Krawczyk, N.; Kubicz, E.; Mohammed, M.; Niedźwiecki, Sz.; Pawlik-Niedńwiecka, M.; Raczyński, L.; Rudy, Z.; Silarski, M.; Smyrski, J.; Wieczorek, A.; Wiślicki, W.; Zgardzińska, B.; Zieliński, M.
2016-11-01
Discrete symmetries such as parity (P), charge-conjugation (C) and time reversal (T) are of fundamental importance in physics and cosmology. Breaking of charge conjugation symmetry (C) and its combination with parity (CP) constitute necessary conditions for the existence of the asymmetry between matter and antimatter in the observed Universe. The presently known sources of discrete symmetries violations can account for only a tiny fraction of the excess of matter over antimatter. So far CP and T symmetries violations were observed only for systems involving quarks and they were never reported for the purely leptonic objects. In this article we describe briefly an experimental proposal for the test of discrete symmetries in the decays of positronium atom which is made exclusively of leptons. The experiments are conducted by means of the Jagiellonian Positron Emission Tomograph (J-PET) which is constructed from strips of plastic scintillators enabling registration of photons from the positronium annihilation. J-PET tomograph together with the positronium target system enable to measure expectation values for the discrete symmetries odd operators constructed from (i) spin vector of the ortho-positronium atom, (ii) momentum vectors of photons originating from the decay of positronium, and (iii) linear polarization direction of annihilation photons. Linearly polarized positronium will be produced in the highly porous aerogel or polymer targets, exploiting longitudinally polarized positrons emitted by the sodium 22Na isotope. Information about the polarization vector of orthopositronium will be available on the event by event basis and will be reconstructed from the known position of the positron source and the reconstructed position of the orthopositronium annihilation. In 2016 the first tests and calibration runs are planned, and the data collection with high statistics will commence in the year 2017.
离散事件模拟的本体建模研究%Ontology Modeling of Discrete Event Simulation
Institute of Scientific and Technical Information of China (English)
梁振霖; 胡斌
2013-01-01
The ontology technology was applied to the field of information management systems. The domain ontology was used to describe the conceptual model and the properties of the simulation components. Service - oriented simulation models were rapidly established according to requirement that the simulation services group must be matched in real - time. With web ontological language, protege 4.0 was employed to establish a domain ontology of the discrete event simulation model. It can realize the complex enterprise project management environment simulation more effectively. It provides a new idea for simulation research of enterprise project management.%将本体技术应用于信息管理系统领域中,利用领域本体描述了概念模型及模拟组件的属性,根据需要实时匹配模拟服务组件,快速建立了面向服务的模拟模型.应用网络本体语言,使用protégé 4.0建立了离散事件模拟模型的领域本体,可有效地实现企业项目管理组织这一复杂多变环境下的模拟研究,为企业项目管理组织运作模拟研究提供了新的思路.
Directory of Open Access Journals (Sweden)
Sebastian Grundstein
2015-01-01
Full Text Available Production planning and control faces increasing uncertainty, dynamics and complexity. Autonomous control methods proved themselves as a promising approach for coping with these challenges. However, there is a lack of knowledge regarding the interaction between autonomous control and precedent functions of production planning and control. In particular, up to now previous research has paid no attention to the influence of order release methods on the efficiency of autonomous control methods. Thereby, many researchers over the last decades provided evidence that the order release function has great influence on the logistic objective achievement in conventional production systems. Therefore, this paper examines the influence of order release methods on the efficiency of autonomous control methods by both theoretic evaluation and discrete event simulation. The simulation results indicate an overall high influence. Moreover, the logistic performance differs considerably depending on the implemented order release methods and the combinations of order release methods with autonomous control methods. The findings highlight demand for further research in this field.
Novel coupling scheme to control dynamics of coupled discrete systems
Shekatkar, Snehal M.; Ambika, G.
2015-08-01
We present a new coupling scheme to control spatio-temporal patterns and chimeras on 1-d and 2-d lattices and random networks of discrete dynamical systems. The scheme involves coupling with an external lattice or network of damped systems. When the system network and external network are set in a feedback loop, the system network can be controlled to a homogeneous steady state or synchronized periodic state with suppression of the chaotic dynamics of the individual units. The control scheme has the advantage that its design does not require any prior information about the system dynamics or its parameters and works effectively for a range of parameters of the control network. We analyze the stability of the controlled steady state or amplitude death state of lattices using the theory of circulant matrices and Routh-Hurwitz criterion for discrete systems and this helps to isolate regions of effective control in the relevant parameter planes. The conditions thus obtained are found to agree well with those obtained from direct numerical simulations in the specific context of lattices with logistic map and Henon map as on-site system dynamics. We show how chimera states developed in an experimentally realizable 2-d lattice can be controlled using this scheme. We propose this mechanism can provide a phenomenological model for the control of spatio-temporal patterns in coupled neurons due to non-synaptic coupling with the extra cellular medium. We extend the control scheme to regulate dynamics on random networks and adapt the master stability function method to analyze the stability of the controlled state for various topologies and coupling strengths.
Formal methods for discrete-time dynamical systems
Belta, Calin; Aydin Gol, Ebru
2017-01-01
This book bridges fundamental gaps between control theory and formal methods. Although it focuses on discrete-time linear and piecewise affine systems, it also provides general frameworks for abstraction, analysis, and control of more general models. The book is self-contained, and while some mathematical knowledge is necessary, readers are not expected to have a background in formal methods or control theory. It rigorously defines concepts from formal methods, such as transition systems, temporal logics, model checking and synthesis. It then links these to the infinite state dynamical systems through abstractions that are intuitive and only require basic convex-analysis and control-theory terminology, which is provided in the appendix. Several examples and illustrations help readers understand and visualize the concepts introduced throughout the book.
Variational approximations to homoclinic snaking in continuous and discrete systems
Matthews, P C
2011-01-01
Localised structures appear in a wide variety of systems, arising from a pinning mechanism due to the presence of a small-scale pattern or an imposed grid. When there is a separation of lengthscales, the width of the pinning region is exponentially small and beyond the reach of standard asymptotic methods. We show how this behaviour can be obtained using a variational method, for two systems. In the case of the quadratic-cubic Swift-Hohenberg equation, this gives results that are in agreement with recent work using exponential asymptotics. Secondly, the method is applied to a discrete system with cubic-quintic nonlinearity, giving results that agree well with numerical simulations.
Polynomial algebra of discrete models in systems biology.
Veliz-Cuba, Alan; Jarrah, Abdul Salam; Laubenbacher, Reinhard
2010-07-01
An increasing number of discrete mathematical models are being published in Systems Biology, ranging from Boolean network models to logical models and Petri nets. They are used to model a variety of biochemical networks, such as metabolic networks, gene regulatory networks and signal transduction networks. There is increasing evidence that such models can capture key dynamic features of biological networks and can be used successfully for hypothesis generation. This article provides a unified framework that can aid the mathematical analysis of Boolean network models, logical models and Petri nets. They can be represented as polynomial dynamical systems, which allows the use of a variety of mathematical tools from computer algebra for their analysis. Algorithms are presented for the translation into polynomial dynamical systems. Examples are given of how polynomial algebra can be used for the model analysis. alanavc@vt.edu Supplementary data are available at Bioinformatics online.
Directory of Open Access Journals (Sweden)
Kim Sean HJ
2012-08-01
Full Text Available Abstract Objective Develop and validate particular, concrete, and abstract yet plausible in silico mechanistic explanations for large intra- and interindividual variability observed for eleven bioequivalence study participants. Do so in the face of considerable uncertainty about mechanisms. Methods We constructed an object-oriented, discrete event model called subject (we use small caps to distinguish computational objects from their biological counterparts. It maps abstractly to a dissolution test system and study subject to whom product was administered orally. A subject comprises four interconnected grid spaces and event mechanisms that map to different physiological features and processes. Drugs move within and between spaces. We followed an established, Iterative Refinement Protocol. Individualized mechanisms were made sufficiently complicated to achieve prespecified Similarity Criteria, but no more so. Within subjects, the dissolution space is linked to both a product-subject Interaction Space and the GI tract. The GI tract and Interaction Space connect to plasma, from which drug is eliminated. Results We discovered parameterizations that enabled the eleven subject simulation results to achieve the most stringent Similarity Criteria. Simulated profiles closely resembled those with normal, odd, and double peaks. We observed important subject-by-formulation interactions within subjects. Conclusion We hypothesize that there were interactions within bioequivalence study participants corresponding to the subject-by-formulation interactions within subjects. Further progress requires methods to transition currently abstract subject mechanisms iteratively and parsimoniously to be more physiologically realistic. As that objective is achieved, the approach presented is expected to become beneficial to drug development (e.g., controlled release and to a reduction in the number of subjects needed per study plus faster regulatory review.
Parameter identification of linear discrete stochastic systems with time delays
Wong, E. C.
1980-01-01
An identification algorithm that uses the maximum likelihood technique to identify the unknown time delays, plant parameters, and noise covariances of linear discrete stochastic systems is presented. Cases of additive white noise and colored measurement noises are considered. The likelihood function is evaluated using either a minimum-variance (Kalman) filter or a minimal-order observer. The Kalman filter is used in the identification algorithm to provide minimum-variance estimates. The minimal-order observer is a lower-dimensional and computationally simpler filter, and is advantageous especially for systems with long delays. It provides a less optimal solution to the minimum-mean-square state estimation problem. The colored-noise observer algorithm has the disadvantage of having to compute an extra error covariance matrix of lower order.
On various integrable discretizations of a general two-component Volterra system
Babalic, Corina N.; Carstea, A. S.
2013-04-01
We present two integrable discretizations of a general differential-difference bicomponent Volterra system. The results are obtained by discretizing directly the corresponding Hirota bilinear equations in two different ways. Multisoliton solutions are presented together with a new discrete form of Lotka-Volterra equation obtained by an alternative bilinearization.
The discrete variational principle and the first integrals of Birkhoff systems
Institute of Scientific and Technical Information of China (English)
Zhang Hong-Bin; Chen Li-Qun; Gu Shu-Long; Liu Chuan-Zhang
2007-01-01
This paper shows that first integrals of discrete equation of motion for Birkhoff systems can be determined explicitly by investigating the invariance properties of the discrete Pfaffian.The result obtained is a discrete analogue of theorem of Noether in the calculus of variations.An example is given to illustrate the application of the results.
Bifurcation Analysis and Chaos Control in a Discrete Epidemic System
Directory of Open Access Journals (Sweden)
Wei Tan
2015-01-01
Full Text Available The dynamics of discrete SI epidemic model, which has been obtained by the forward Euler scheme, is investigated in detail. By using the center manifold theorem and bifurcation theorem in the interior R+2, the specific conditions for the existence of flip bifurcation and Neimark-Sacker bifurcation have been derived. Numerical simulation not only presents our theoretical analysis but also exhibits rich and complex dynamical behavior existing in the case of the windows of period-1, period-3, period-5, period-6, period-7, period-9, period-11, period-15, period-19, period-23, period-34, period-42, and period-53 orbits. Meanwhile, there appears the cascade of period-doubling 2, 4, 8 bifurcation and chaos sets from the fixed point. These results show the discrete model has more richer dynamics compared with the continuous model. The computations of the largest Lyapunov exponents more than 0 confirm the chaotic behaviors of the system x→x+δ[rN(1-N/K-βxy/N-(μ+mx], y→y+δ[βxy/N-(μ+dy]. Specifically, the chaotic orbits at an unstable fixed point are stabilized by using the feedback control method.
SVD for imaging systems with discrete rotational symmetry.
Clarkson, Eric; Palit, Robin; Kupinski, Matthew A
2010-11-22
The singular value decomposition (SVD) of an imaging system is a computationally intensive calculation for tomographic imaging systems due to the large dimensionality of the system matrix. The computation often involves memory and storage requirements beyond those available to most end users. We have developed a method that reduces the dimension of the SVD problem towards the goal of making the calculation tractable for a standard desktop computer. In the presence of discrete rotational symmetry we show that the dimension of the SVD computation can be reduced by a factor equal to the number of collection angles for the tomographic system. In this paper we present the mathematical theory for our method, validate that our method produces the same results as standard SVD analysis, and finally apply our technique to the sensitivity matrix for a clinical CT system. The ability to compute the full singular value spectra and singular vectors will augment future work in system characterization, image-quality assessment and reconstruction techniques for tomographic imaging systems.
Investigation and Optimisation of a Discrete Fluid Power PTO-system for Wave Energy Converters
DEFF Research Database (Denmark)
Hansen, Anders Hedegaard
recently focused research on improving the power take off (PTO) system converting the mechanical motion of the floats into electricity. This has brought attention to discrete fluid power (DFP) technology, especially secondary controlled common pressure rail systems. A novel discrete PTO-system has been...... proposed and found feasible for the Wavestar WEC. However, with a technology shift from a continuous to a discrete fluid power PTO-system, new challenges emerge. The current project investigates and optimises the novel discrete fluid power PTO-system proposed for the Wavestar WEC. Initiating from...... an investigation of energy extraction by WECs utilising a discrete PTO force, an investigation of the system configuration is conducted. Hence, the configuration of the multi-chamber cylinder and the common pressure rails are investigated for the discrete fluid power force system. A method for choosing the system...
Directory of Open Access Journals (Sweden)
Hartz Susanne
2012-02-01
Full Text Available Abstract Background Previous cost-effectiveness studies of cholinesterase inhibitors have modeled Alzheimer's disease (AD progression and treatment effects through single or global severity measures, or progression to "Full Time Care". This analysis evaluates the cost-effectiveness of donepezil versus memantine or no treatment in Germany by considering correlated changes in cognition, behavior and function. Methods Rates of change were modeled using trial and registry-based patient level data. A discrete event simulation projected outcomes for three identical patient groups: donepezil 10 mg, memantine 20 mg and no therapy. Patient mix, mortality and costs were developed using Germany-specific sources. Results Treatment of patients with mild to moderately severe AD with donepezil compared to no treatment was associated with 0.13 QALYs gained per patient, and 0.01 QALYs gained per caregiver and resulted in average savings of €7,007 and €9,893 per patient from the healthcare system and societal perspectives, respectively. In patients with moderate to moderately-severe AD, donepezil compared to memantine resulted in QALY gains averaging 0.01 per patient, and savings averaging €1,960 and €2,825 from the healthcare system and societal perspective, respectively. In probabilistic sensitivity analyses, donepezil dominated no treatment in most replications and memantine in over 70% of the replications. Donepezil leads to savings in 95% of replications versus memantine. Conclusions Donepezil is highly cost-effective in patients with AD in Germany, leading to improvements in health outcomes and substantial savings compared to no treatment. This holds across a variety of sensitivity analyses.
On mixing property in set-valued discrete systems
Energy Technology Data Exchange (ETDEWEB)
Gu Rongbao [School of Finance, Nanjing University of Finance and Economics, Nanjing 210046 (China)]. E-mail: rbgu@njue.edu.cn; Guo Wenjing [School of Finance, Nanjing University of Finance and Economics, Nanjing 210046 (China)
2006-05-15
Let (X,d) be a compact metric space and f:X->X be a continuous map. Let (K(X),H) be the space of all non-empty compact subsets of X endowed with the Hausdorff metric induced by d and f-bar :K(X)->K(X) be the map defined by f-bar (A):{l_brace}f(a):a-bar A{r_brace}. In this paper we investigate the relationships between the mixing property of (K(X),f-bar ) and the mixing property of (X,f). In addition, we discuss specification for the set-valued discrete dynamical system (K(X),f-bar )
CDC Wonder Vaccine Adverse Event Reporting System
U.S. Department of Health & Human Services — The Vaccine Adverse Event Reporting System (VAERS) online database on CDC WONDER provides counts and percentages of adverse event case reports after vaccination,...
RECONFIGURABLE CONTROL SYSTEM WITH DISCRETE-TIME CONTROLLERS
Directory of Open Access Journals (Sweden)
A. G. Strizhnev
2015-01-01
Full Text Available The paper considers a synthesis problem for automatic control systems, which operate in various modes, for example, tracking step-wise effects and slowly changing input signals. Generally, one controller cannot ensure the required qualitative characteristics in all operational modes. One of the methods to solve this problem is to create a reconfigurable control system. The authors propose a reconfigurable control system with two discrete-time controllers. The first one is placed in series with the forward path and the second one is connected in parallel with the reverse path having additional gain and unity feedback. Such system structure is characterized by its simplicity and qualitative operational ability to track step-wise and sinusoidal inputs with different amplitudes.The paper presents a developed block diagram of the reconfigurable system and describes its operational principle. Three various plants have been chosen with the purpose to check the operation of the system. Digital controllers have been selected and their parameters have been determined in accordance with the requirements to qualitative operational characteristics of the system. Mathematical modeling has been executed in order to check the operation of the proposed system with various plants and digital controllers. The modeling confirms good –speed performance of the automatic control system while tracking stepwise signals, provision of minimum dynamic error for the given controllers and time delay while tracking harmonic signals with various amplitudes. The obtained results have been successfully tested and can be used for development of automatic control systems that contain other plants and digital controllers, if there are various and occasionally contradictory requirements to their operational quality.
Immune algorithm for discretization of decision systems in rough set theory
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Rough set theory plays an important role in knowledge discovery, but cannot deal with continuous attributes, thus discretization is a problem which we cannot neglect. And discretization of decision systems in rough set theory has some particular characteristics. Consistency must be satisfied and cuts for discretization is expected to be as small as possible. Consistent and minimal discretization problem is NP-complete. In this paper, an immune algorithm for the problem is proposed. The correctness and effectiveness were shown in experiments. The discretization method presented in this paper can also be used as a data pretreating step for other symbolic knowledge discovery or machine learning methods other than rough set theory.
EXTINCTION OF A DISCRETE NONLINEAR PREDATOR-PREY SYSTEM
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
In this paper, we consider a discrete nonlinear predator-prey model with nonnegative coefficients bounded above and below by positive constants. We show that under some suitable assumptions the predator species is driven to extinction and the prey species x is globally attractive with any positive solution to a discrete Logistic equation.
Coherent discrete embeddings for Lagrangian and Hamiltonian systems
Cresson, Jacky; Pierre, Charles
2011-01-01
The general topic of the present paper is to study the conservation for some structural property of a given problem when discretising this problem. Precisely we are interested with Lagrangian or Hamiltonian structures and thus with variational problems attached to a least action principle. Considering a partial differential equation (PDE) deriving from such a variational principle, a natural question is to know whether this structure at the continuous level is preserved at the discrete level when discretising the PDE. To address this question a concept of \\textit{coherence} is introduced. Both the differential equation (the PDE translating the least action principle) and the variational structure can be embedded at the discrete level. This provides two discrete embeddings for the original problem. In case these procedures finally provide the same discrete problem we will say that the discretisation is \\textit{coherent}. Our purpose is illustrated with the Poisson problem. Coherence for discrete embeddings of ...
Adaptive Control and Function Projective Synchronization in 2D Discrete-Time Chaotic Systems
Institute of Scientific and Technical Information of China (English)
LI Yin; CHEN Yong; LI Biao
2009-01-01
This study addresses the adaptive control and function projective synchronization problems between 2D Rulkov discrete-time system and Network discrete-time system.Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate the function projective synchronization of discrete-time chaotic systems.In addition, the adaptive control function is applied to achieve the state synchronization of two discrete-time systems.Numerical results demonstrate the effectiveness of the proposed control scheme.
A discrete model to study reaction-diffusion-mechanics systems.
Weise, Louis D; Nash, Martyn P; Panfilov, Alexander V
2011-01-01
This article introduces a discrete reaction-diffusion-mechanics (dRDM) model to study the effects of deformation on reaction-diffusion (RD) processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material). Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects.
A discrete model to study reaction-diffusion-mechanics systems.
Directory of Open Access Journals (Sweden)
Louis D Weise
Full Text Available This article introduces a discrete reaction-diffusion-mechanics (dRDM model to study the effects of deformation on reaction-diffusion (RD processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material. Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects.
Stability for delayed generalized 2D discrete logistic systems
Directory of Open Access Journals (Sweden)
Guanrong Chen
2004-12-01
Full Text Available This paper is concerned with delayed generalized 2D discrete logistic systems of the form xm+1,n=f(m,n,xm,n,xm,n+1,xmÃ¢ÂˆÂ’ÃÂƒ,nÃ¢ÂˆÂ’ÃÂ„ , where ÃÂƒ and ÃÂ„ are positive integers, f:Ã¢Â„Â•02ÃƒÂ—Ã¢Â„Â3Ã¢Â†Â’Ã¢Â„Â is a real function, which contains the logistic map as a special case, and m and n are nonnegative integers, where Ã¢Â„Â•0={0,1,Ã¢Â€Â¦} and Ã¢Â„Â=(Ã¢ÂˆÂ’Ã¢ÂˆÂž,Ã¢ÂˆÂž. Some sufficient conditions for this system to be stable and exponentially stable are derived.
Discrete variational principle and first integrals for Lagrange-Maxwell mechanico-electrical systems
Institute of Scientific and Technical Information of China (English)
Fu Jing-Li; Dai Gui-Dong; Salvador Jiménez; Tang Yi-Fa
2007-01-01
This paper presents a discrete variational principle and a method to build first-integrals for finite dimensional Lagrange-Maxwell mechanico-electrical systems with nonconservative forces and a dissipation function.The discrete variational principle and the corresponding Euler-Lagrange equations are derived from a discrete action associated to these systems.The first-integrals are obtained by introducing the infinitesimal transformation with respect to the generalized coordinates and electric quantities of the systems.This work also extends discrete Noether symmetries to mechanico-electrical dynamical systerns.A practical example iS presented to illustrate the results.
A non-linear discrete transform for pattern recognition of discrete chaotic systems
Karanikas, C
2003-01-01
It is shown, by an invertible non-linear discrete transform that any finite sequence or any collection of strings of any length can be presented as a random walk on trees. These transforms create the mathematical background for coding any information, for exploring its local variability and diversity. With the underlying computational algorithms, with several examples and applications we propose that these transforms can be used for pattern recognition of immune type. In other words we propose a mathematical platform for detecting self and non-self strings of any alphabet, based on a negative selection algorithms, for scouting data's periodicity and self-similarity and for measuring the diversity of chaotic strings with fractal dimension methods. In particular we estimate successfully the entropy and the ratio of chaotic data with self similarity. Moreover we give some applications of a non-linear denoising filter.
Surface Management System Departure Event Data Analysis
Monroe, Gilena A.
2010-01-01
This paper presents a data analysis of the Surface Management System (SMS) performance of departure events, including push-back and runway departure events.The paper focuses on the detection performance, or the ability to detect departure events, as well as the prediction performance of SMS. The results detail a modest overall detection performance of push-back events and a significantly high overall detection performance of runway departure events. The overall detection performance of SMS for push-back events is approximately 55%.The overall detection performance of SMS for runway departure events nears 100%. This paper also presents the overall SMS prediction performance for runway departure events as well as the timeliness of the Aircraft Situation Display for Industry data source for SMS predictions.
Institute of Scientific and Technical Information of China (English)
ZHANG Ming-Jiang; FANG Jian-Hui; LU Kai; ZHANG Ke-Jun; LI Yan
2009-01-01
The perturbation to Noether symmetry and Noether adiabatic invariants of general discrete holonomic systems are studied.First,the discrete Noether exact invariant induced directly from the Noether symmetry of the system without perturbation is given.Secondly,the concept of discrete high-order adiabatic invariant is presented,the criterion of the perturbation to Noether symmetry is established,and the discrete Noether adiabatic invariant induced directly from the perturbation to Noether symmetry is obtained.Lastly,an example is discussed to illustrate the application of the results.
Stabilization of nonlinear sandwich systems via state feedback-Discrete-time systems
Wang, Xu; Stoorvogel, Anton A.; Saberi, Ali; Grip, H°avard Fjær; Sannuti, Peddapullaiah
2011-01-01
A recent paper (IEEE Trans. Aut. Contr. 2010; 55(9):2156–2160) considered stabilization of a class of continuous-time nonlinear sandwich systems via state feedback. This paper is a discrete-time counterpart of it. The class of nonlinear sandwich systems consists of saturation elements sandwiched bet
Integrated information in discrete dynamical systems: motivation and theoretical framework.
Directory of Open Access Journals (Sweden)
David Balduzzi
2008-06-01
Full Text Available This paper introduces a time- and state-dependent measure of integrated information, phi, which captures the repertoire of causal states available to a system as a whole. Specifically, phi quantifies how much information is generated (uncertainty is reduced when a system enters a particular state through causal interactions among its elements, above and beyond the information generated independently by its parts. Such mathematical characterization is motivated by the observation that integrated information captures two key phenomenological properties of consciousness: (i there is a large repertoire of conscious experiences so that, when one particular experience occurs, it generates a large amount of information by ruling out all the others; and (ii this information is integrated, in that each experience appears as a whole that cannot be decomposed into independent parts. This paper extends previous work on stationary systems and applies integrated information to discrete networks as a function of their dynamics and causal architecture. An analysis of basic examples indicates the following: (i phi varies depending on the state entered by a network, being higher if active and inactive elements are balanced and lower if the network is inactive or hyperactive. (ii phi varies for systems with identical or similar surface dynamics depending on the underlying causal architecture, being low for systems that merely copy or replay activity states. (iii phi varies as a function of network architecture. High phi values can be obtained by architectures that conjoin functional specialization with functional integration. Strictly modular and homogeneous systems cannot generate high phi because the former lack integration, whereas the latter lack information. Feedforward and lattice architectures are capable of generating high phi but are inefficient. (iv In Hopfield networks, phi is low for attractor states and neutral states, but increases if the networks
Neural-network-based approximate output regulation of discrete-time nonlinear systems.
Lan, Weiyao; Huang, Jie
2007-07-01
The existing approaches to the discrete-time nonlinear output regulation problem rely on the offline solution of a set of mixed nonlinear functional equations known as discrete regulator equations. For complex nonlinear systems, it is difficult to solve the discrete regulator equations even approximately. Moreover, for systems with uncertainty, these approaches cannot offer a reliable solution. By combining the approximation capability of the feedforward neural networks (NNs) with an online parameter optimization mechanism, we develop an approach to solving the discrete nonlinear output regulation problem without solving the discrete regulator equations explicitly. The approach of this paper can be viewed as a discrete counterpart of our previous paper on approximately solving the continuous-time nonlinear output regulation problem.
PERMANENCE OF A DISCRETE SINGLE SPECIES SYSTEM WITH DELAYS AND FEEDBACK CONTROL
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
In this paper,a discrete single species system with time delays and feedback control is considered.Sufficient conditions which guarantee the permanence of all positive solutions to this discrete system are obtained.The results show that the feedback control is harmless for the permanence of the species.
Comment on "Network analysis of the state space of discrete dynamical systems"
Li, Chengqing; Shu, Shi
2016-01-01
This paper comments the letter entitled "Network analysis of the state space of discrete dynamical systems" by A. Shreim et al. [Physical Review Letters, 98, 198701 (2007)]. We found that some theoretical analyses are wrong and the proposed indicators based on parameters of phase network can not discriminate dynamical complexity of the discrete dynamical systems composed by 1-D Cellular Automata.
Kawano, Yu; Ohtsuka, Toshiyuki
2011-01-01
In this paper, we consider local observability at an initial state for discrete-time autonomous polynomial systems. When testing for observability, for discrete-time nonlinear systems, a condition based on the inverse function theorem is commonly used. However, it is a sufficient condition. In this
Controllability of Linear Discrete-Time Systems with Both Delayed States and Delayed Inputs
Directory of Open Access Journals (Sweden)
Hong Shi
2013-01-01
Full Text Available The controllability issues for discrete-time linear systems with delay in state and control are addressed. By introducing a new concept, the controllability realization index (CRI, the characteristic of controllability is revealed. An easily testable necessary and sufficient condition for the controllability of discrete-time linear systems with state and control delay is established.
A Joint Criterion for Reachability and Observability of Nonuniformly Sampled Discrete Systems
Fúster-Sabater, Amparo
2010-01-01
A joint characterization of reachability (controllability) and observability (constructibility) for linear SISO nonuniformly sampled discrete systems is presented. The work generalizes to the nonuniform sampling the criterion known for the uniform sampling. Emphasis is on the nonuniform sampling sequence, which is believed to be an additional element for analysis and handling of discrete systems.
DEFF Research Database (Denmark)
Sørensen, John Aasted
2011-01-01
The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics......; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...
Discrete fiber-reinforced polyurea systems for infrastructure strengthening and blast mitigation
Carey, Natalia L.
The research presented in this dissertation focused on evaluating the effectiveness of various blast mitigation materials and coating technologies to be used for enhancing blast resistance of structural members. Mechanical properties and blast mitigation performance of different discrete fiber-reinforced polyurea (DFRP) systems were investigated through experimental and analytical work. Four technical papers discuss the research efforts conducted within this dissertation. The first paper examined the development and characterization of different DFRP systems for infrastructure strengthening and blast retrofit. The behavior of various systems which consisted of chopped E-glass fibers discretely integrated in with the polyurea matrix was evaluated through coupon tensile testing. The addition of glass fiber to a polymer coating provided improved stiffness and strength to the composite system while the polyurea base material provided ductility. The second paper evaluated the behavior of hybrid, plain, and steel fiber-reinforced concrete panels coated with various polyurea and DFRP systems under blast loading. Hybrid panels demonstrated higher blast mitigation performance compared to plain and steel fiber-reinforced concrete panels due to sacrificial hybrid layer. The addition of plain polyurea or DFRP systems on the tension side improved panel performance by containing fragmentation during a blast event. The third paper presents an analytical investigation conducted using the explicit finite element program LS-DYNA to model panel and coating response under blast loading. Several modeling solutions were undertaken and compared for concrete formulation. Modeling results were analyzed and compared to the experimental work to validate the conclusions. The final paper describes an internal equilibrium mechanics based model developed to predict the flexural capacity of reinforced concrete beams strengthened with various DFRP systems. The developed model was validated using
2013-09-01
the time/event/process driven approach by Galluscio and time-step/discrete-event/time-parallel architecture by Marquez , they can all be included in...Clive Wood, Patricio Jiménez López, Heliodoro Ruipérez Garcia , & Jan van Geest. (2008). Developing a federation to demonstrate the NATO live, virtual
Survival curve estimation for informatively coarsened discrete event-time data.
Shardell, Michelle; Scharfstein, Daniel O; Bozzette, Samuel A
2007-05-10
Interval-censored, or more generally, coarsened event-time data arise when study participants are observed at irregular time periods and experience the event of interest in between study observations. Such data are often analysed assuming non-informative censoring, which can produce biased results if the assumption is wrong. This paper extends the standard approach for estimating survivor functions to allow informatively interval-censored data by incorporating various assumptions about the censoring mechanism into the model. We include a Bayesian extension in which final estimates are produced by mixing over a distribution of assumed censoring mechanisms. We illustrate these methods with a natural history study of HIV-infected individuals using assumptions elicited from an AIDS expert.
Extensional Elastica in large deformation as $Gamma $ Γ -limit of a discrete 1D mechanical system
Alibert, Jean-Jacques; Della Corte, Alessandro; Giorgio, Ivan; Battista, Antonio
2017-04-01
The present paper deals with the rigorous homogenization of a discrete system consisting of extensible rods linked by rotational springs. Specifically, a Γ -convergence result is proven for a sequence of discrete measure functionals En, describing the energy of the discrete system, toward the continuous energy functional for the extensible Euler beam model ( Elastica) in large deformation regime. A relative compactness result for the sequence En is also proven. Moreover, numerical results are shown on the deformed shape and on the total energy of the system when the number of elements of the discrete system increases. The numerical convergence of the energy to a definite value is shown in two cases. The results provide rigorous justification of a very commonly used algorithm for the discretization of the extensible Euler beam, namely Hencky-type beam model.
Zhang, Yufeng; Zhang, Xiangzhi; Wang, Yan; Liu, Jiangen
2017-01-01
With the help of R-matrix approach, we present the Toda lattice systems that have extensive applications in statistical physics and quantum physics. By constructing a new discrete integrable formula by R-matrix, the discrete expanding integrable models of the Toda lattice systems and their Lax pairs are generated, respectively. By following the constructing formula again, we obtain the corresponding (2+1)-dimensional Toda lattice systems and their Lax pairs, as well as their (2+1)-dimensional discrete expanding integrable models. Finally, some conservation laws of a (1+1)-dimensional generalised Toda lattice system and a new (2+1)-dimensional lattice system are generated, respectively.
Introduction to fractional linear systems. Part 2: discrete-time case
Ortigueira, M.D.
2000-01-01
IEE Proceedings - Vision, Image, and Signal Processing, Vol. 147, nº 1 In the paper, the class of discrete linear systems is enlarged with the inclusion of discrete-time fractional linear systems. These are systems described by fractional difference equations and fractional frequency responses. It is shown how io compute the impulse response and transfer function. Fractal signals are introduced as output of special linear systems: fractional differaccumulators, systems that can be co...
Fractional equations of kicked systems and discrete maps
Energy Technology Data Exchange (ETDEWEB)
Tarasov, Vasily E; Zaslavsky, George M [Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 (United States)
2008-10-31
Starting from kicked equations of motion with derivatives of non-integer orders, we obtain 'fractional' discrete maps. These maps are generalizations of well-known universal, standard, dissipative, kicked damped rotator maps. The main property of the suggested fractional maps is a long-term memory. The memory effects in the fractional discrete maps mean that their present state evolution depends on all past states with special forms of weights. These forms are represented by combinations of power-law functions.
Karnon, Jonathan
2003-10-01
Markov models have traditionally been used to evaluate the cost-effectiveness of competing health care technologies that require the description of patient pathways over extended time horizons. Discrete event simulation (DES) is a more flexible, but more complicated decision modelling technique, that can also be used to model extended time horizons. Through the application of a Markov process and a DES model to an economic evaluation comparing alternative adjuvant therapies for early breast cancer, this paper compares the respective processes and outputs of these alternative modelling techniques. DES displays increased flexibility in two broad areas, though the outputs from the two modelling techniques were similar. These results indicate that the use of DES may be beneficial only when the available data demonstrates particular characteristics.
Transition-Systems, Event Structures, and Unfoldings
DEFF Research Database (Denmark)
Nielsen, Mogens; Rozenberg, Grzegorz; Thiagarajan, P.S.
1995-01-01
A subclass of transition systems called elementary transition systems can be identified with the help of axioms based on a structural notion called regions. Elementary transition systems have been shown to be the transition system model of a basic system model of net theory called elementary net ...... event structures. We then propose an operation of unfolding elementary transition systems into occurrence transition systems, We prove that it is "correct" in a strong categorical sense....
Expert System Prototype for False Event Discrimination.
1985-11-14
This report discusses a prototype expert system for event discrimination. We wanted to determine whether applying an expert system to handle and...other potential sources of erroneous information. The expert system is an apt vehicle for growth of systems knowledge, for quick decision making, and
Output regulation problem for discrete-time linear time-delay systems by output feedback control
Institute of Scientific and Technical Information of China (English)
Yamin YAN; Jie HUANG
2016-01-01
In this paper, we study the output regulation problem of discrete linear time-delay systems by output feedback control. We have established some results parallel to those for the output regulation problem of continuous linear time-delay systems.
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
In this paper, we consider almost periodic discrete two-species competitive sys-tems. By using Lyapunov functional, the existence conditions and uniqueness of almost periodic solutions for the this type of systems are obtained.
Discrete and continuous Hamiltonian systems for wave modelling
Nurijanyan, S.
2013-01-01
The main focus of this thesis is to develop numerical discretisations for both compressible and incompressible inviscid flows that also preserve conservation laws at the discrete level. Two alternative approaches are discussed in detail: a semi-analytical solution; and, a fully numerical
SMALE HORSESHOES AND CHAOS IN DISCRETIZED PERTURBED NLS SYSTEMS(Ⅰ)-POINCAR(E) MAP
Institute of Scientific and Technical Information of China (English)
GAO Ping; GUO Bo-ling
2005-01-01
The existence of Smale horseshoes for a certain discretized perturbed nonlinear Schroedinger(NLS) equations was established by using n-dimensional versions of the Conley-Moser conditions. As a result, the discretized perturbed NLS system is shown to possess an invariant set Λ on which the dynamics is topologically conjugate to a shift on four symbols.
A Study of the Use of a Handheld Computer Algebra System in Discrete Mathematics
Powers, Robert A.; Allison, Dean E.; Grassl, Richard M.
2005-01-01
This study investigated the impact of the TI-92 handheld Computer Algebra System (CAS) on student achievement in a discrete mathematics course. Specifically, the researchers examined the differences between a CAS section and a control section of discrete mathematics on students' in-class examinations. Additionally, they analysed student approaches…
Corpuscle-Wave Duality of Discrete Systems at Nano-Scale Level
Directory of Open Access Journals (Sweden)
Kharkhardin Аnatolii Nikolaevich
2016-09-01
Full Text Available In the paper the results of study of wave properties for discrete systems with using of mathematical apparatus of discrete topology and application of its basic regularities for disperse materials, micro- and nanoparticles, topological and phase transportations as well as resulting effects and prognosis.
Improved robustness and performance of discrete time sliding mode control systems.
Chakrabarty, Sohom; Bartoszewicz, Andrzej
2016-11-01
This paper presents a theoretical analysis along with simulations to show that increased robustness can be achieved for discrete time sliding mode control systems by choosing the sliding variable, or the output, to be of relative degree two instead of relative degree one. In other words it successfully reduces the ultimate bound of the sliding variable compared to the ultimate bound for standard discrete time sliding mode control systems. It is also found out that for such a selection of relative degree two output of the discrete time system, the reduced order system during sliding becomes finite time stable in absence of disturbance. With disturbance, it becomes finite time ultimately bounded.
Stability analysis of a general family of nonlinear positive discrete time-delay systems
Nam, P. T.; Phat, V. N.; Pathirana, P. N.; Trinh, H.
2016-07-01
In this paper, we propose a new approach to analyse the stability of a general family of nonlinear positive discrete time-delay systems. First, we introduce a new class of nonlinear positive discrete time-delay systems, which generalises some existing discrete time-delay systems. Second, through a new technique that relies on the comparison and mathematical induction method, we establish explicit criteria for stability and instability of the systems. Three numerical examples are given to illustrate the feasibility of the obtained results.
On asympotic behavior of solutions to several classes of discrete dynamical systems
Institute of Scientific and Technical Information of China (English)
LIAO; Xiaoxin(廖晓昕)
2002-01-01
In this paper, a new complete and simplified proof for the Husainov-Nikiforova Theorem is given. Then this theorem is generalized to the case where the coefficients may have different signs as well as nonlinear systems. By these results, the robust stability and the bound for robustness for high-order interval discrete dynamical systems are studied, which can be applied to designing stable discrete control system as well as stabilizing a given unstable control system.
Modeling of Macroeconomics by a Novel Discrete Nonlinear Fractional Dynamical System
Directory of Open Access Journals (Sweden)
Zhenhua Hu
2013-01-01
Full Text Available We propose a new nonlinear economic system with fractional derivative. According to the Jumarie’s definition of fractional derivative, we obtain a discrete fractional nonlinear economic system. Three variables, the gross domestic production, inflation, and unemployment rate, are considered by this nonlinear system. Based on the concrete macroeconomic data of USA, the coefficients of this nonlinear system are estimated by the method of least squares. The application of discrete fractional economic model with linear and nonlinear structure is shown to illustrate the efficiency of modeling the macroeconomic data with discrete fractional dynamical system. The empirical study suggests that the nonlinear discrete fractional dynamical system can describe the actual economic data accurately and predict the future behavior more reasonably than the linear dynamic system. The method proposed in this paper can be applied to investigate other macroeconomic variables of more states.
Robust H∞ filtering for discrete-time impulsive systems with uncertainty
Institute of Scientific and Technical Information of China (English)
Sheng-tao PAN; Ji-tao SUN
2009-01-01
This paper investigates robust filter design for linear discrete-time impulsive systems with uncertainty under H∞ performance. First, an impulsive linear filter and a robust H∞ filtering problem are introduced for a discrete-time impulsive systems. Then,a sufficient condition of asymptotical stability and H∞ performance for the filtering error systems are provided by the discrete-time Lyapunov function method. The filter gains can be obtained by solving a set of linear matrix inequalities (LMIs). Finally, a numerical example is presented to show effectiveness of the obtained result.
Discrete echo signal modeling of ultrasound imaging systems
Chen, Ming; Zhang, Cishen
2008-03-01
In this paper, a discrete model representing the pulse-tissue interaction in the medical ultrasound scanning and imaging process is developed. The model is based on discretizing the acoustical wave equation and is in terms of convolution between the input ultrasound pulses and the tissue mass density variation. Such a model can provide a useful means for ultrasound echo signal processing and imaging. Most existing models used for ultrasound imaging are based on frequency domain transform. A disadvantage of the frequency domain transform is that it is only applicable to shift-invariant models. Thus it has ignored the shift-variant nature of the original acoustic wave equation where the tissue compressibility and mass density distributions are spatial-variant factors. The discretized frequency domain model also obscures the compressibility and mass density representations of the tissue, which may mislead the physical understanding and interpretation of the image obtained. Moreover, only the classical frequency domain filtering methods have been applied to the frequency domain model for acquiring some tissue information from the scattered echo signals. These methods are non-parametric and require a prior knowledge of frequency spectra of the transmitted pulses. Our proposed model technique will lead to discrete, multidimensional, shift-variant and parametric difference or convolution equations with the transmitted pulse pressure as the input, the measurement data of the echo signals as the output, and functions of the tissue compressibility and mass density distributions as shift-variant parameters that can be readily identified from input-output measurements. The proposed model represents the entire multiple scattering process, and hence overcomes the key limitation in the current ultrasound imaging methods.
On necessary optimality conditions in discrete control systems
Mardanov, M. J.; Melikov, T. K.; Mahmudov, N. I.
2015-10-01
The paper deals with a nonlinear discrete-time optimal control problem with a cost functional of terminal type. Using a new variation of the control and new properties of optimal controls, we prove the linearised optimality conditions extending such classical optimality conditions. Along with this, various optimality conditions of quasi-singular controls are obtained. Finally, the examples illustrating the rich content of the obtained results are illustrated.
Bounded Real Lemma for Generalized Linear System with Finite Discrete Jumps
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
The strict bounded real lemma for linear system with finite discrete jumps was considered. Especially,the case where D matrices in the system are not assumed to be zero was dealt. Several versions of the bounded real lemma are presented in terms of solution to Riccati differential equations or inequalities with finite discrete jumps.Both the finite and infinite horizon cases are considered. These results generalize the existed bounded real lemma for linear systems.
Modelling a reliability system governed by discrete phase-type distributions
Energy Technology Data Exchange (ETDEWEB)
Ruiz-Castro, Juan Eloy [Departamento de Estadistica e Investigacion Operativa, Universidad de Granada, 18071 Granada (Spain)], E-mail: jeloy@ugr.es; Perez-Ocon, Rafael [Departamento de Estadistica e Investigacion Operativa, Universidad de Granada, 18071 Granada (Spain)], E-mail: rperezo@ugr.es; Fernandez-Villodre, Gemma [Departamento de Estadistica e Investigacion Operativa, Universidad de Granada, 18071 Granada (Spain)
2008-11-15
We present an n-system with one online unit and the others in cold standby. There is a repairman. When the online fails it goes to repair, and instantaneously a standby unit becomes the online one. The operational and repair times follow discrete phase-type distributions. Given that any discrete distribution defined on the positive integers is a discrete phase-type distribution, the system can be considered a general one. A model with unlimited number of units is considered for approximating a system with a great number of units. We show that the process that governs the system is a quasi-birth-and-death process. For this system, performance reliability measures; the up and down periods, and the involved costs are calculated in a matrix and algorithmic form. We show that the discrete case is not a trivial case of the continuous one. The results given in this paper have been implemented computationally with Matlab.
The CMS event builder and storage system
Bauer, Gerry; Behrens, Ulf; Biery, Kurt; Brett, Angela; Branson, James; Cano, Eric; Cheung, Harry; Ciganek, Marek; Cittolin, Sergio; Coarasa, Jose Antonio; Deldicque, Christian; Dusinberre, Elizabeth; Erhan, Samim; Fortes Rodrigues, Fabiana; Gigi, Dominique; Glege, Frank; Gomez-Reino, Robert; Gutleber, Johannes; Hatton, Derek; Klute, Markus; Laurens, Jean-FranÃ§ois; Loizides, Constantin; Lopez Perez, Juan Antonio; Meijers, Frans; Meschi, Emilio; Meyer, Andreas; Mommsen, Remigius K; Moser, Roland; O'Dell, Vivian; Oh, Alexander; Orsini, Luciano; Patras, Vaios; Paus, Christoph; Petrucci, Andrea; Pieri, Marco; Racz, Attila; Sakulin, Hannes; Sani, Matteo; Schieferdecker, Philipp; Schwick, Christoph; Serrano Margaleff, Josep Francesc; Shpakov, Dennis; Simon, Sean; Sumorok, Konstanty; Zanetti, Marco
2010-01-01
The CMS event builder assembles events accepted by the first level trigger and makes them available to the high-level trigger. The event builder needs to handle a maximum input rate of 100\\,kHz and an aggregated throughput of 100\\,GB/s originating from approximately 500 sources. This paper presents the chosen hardware and software architecture. The system consists of 2 stages: an initial pre-assembly reducing the number of fragments by one order of magnitude and a final assembly by several independent readout builder (RU-builder) slices. The RU-builder is based on 3 separate services: the buffering of event fragments during the assembly, the event assembly, and the data flow manager. A further component is responsible for handling events accepted by the high-level trigger: the storage manager (SM) temporarily stores the events on disk at a peak rate of 2\\,GB/s until they are permanently archived offline. In addition, events and data-quality histograms are served by the SM to online monitoring clients. We disc...
Analysis of Nonlinear Discrete Time Active Control System with Boring Chatter
Directory of Open Access Journals (Sweden)
Shujing Wu
2014-03-01
Full Text Available In this work we study the design and analysis for nonlinear discrete time active control system with boring charter. It is shown that most analysis result for continuous time nonlinear system can be extended to the discrete time case. In previous studies, a method of nonlinear Model Following Control System (MFCS was proposed by Okubo (1985. In this study, the method of nonlinear MFCS will be extended to nonlinear discrete time system with boring charter. Nonlinear systems which are dealt in this study have the property of norm constraints ║ƒ (v (k║&le&alpha+&betaβ║v (k║&gamma, where &alpha&ge0, &beta&ge0, 0&le&gamma&le1. When 0&le&gamma&le1. It is easy to extend the method to discrete time systems. But in the case &gamma = 1 discrete time systems, the proof becomes difficult. In this case, a new criterion is proposed to ensure that internal states are stable. We expect that this method will provide a useful tool in areas related to stability analysis and design for nonlinear discrete time systems as well.
Discretization of control law for a class of variable structure control systems
Golo, G.; Schaft, van der, Arjan; Milosavljević, Č.
2000-01-01
A new method for the discretization of a class of continuous-time variable structure control systems, based on the linear complementarity theory, is proposed. The proposed method consists two steps. In the first step, the motion projected on the sliding manifold (the fast dynamics) is discretized by means of backward Euler time-step method. In the second step, the sampled and hold control law is determined such that the trajectories of the discrete-time closed loop system projected on the sli...
Noether symmetry and Lie symmetry of discrete holonomic systems with dependent coordinates
Institute of Scientific and Technical Information of China (English)
Shi Shen-Yang; Huang Xiao-Hong
2008-01-01
The Noether symmetry,the Lie symmetry and the conserved quantity of discrete holonomic systems with dependent coordinates are investigated in this paper.The Noether symmetry provides a discrete Noether identity and a conserved qu中antity of the system.The invariance of discrete motion equations under infinitesimal transformation groups is defined as the Lie symmetry,and the condition of obtaining the Noether conserved quantity from the Lie symmetry is also presented.An example is discussed to show the applications of the results.
EXTINCTION AND GLOBAL ATTRACTIVITY TO A NONLINEAR DISCRETE TWO SPECIES COMPETITIVE SYSTEM
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
In this paper, a nonlinear discrete two species competitive system is considered. Sufficient conditions which guarantee that one of components is driven to extinction while the other is globally attractive are obtained.
Institute of Scientific and Technical Information of China (English)
Zhao Gang-Ling; Chen Li-Qun; Fu Jing-Li; Hong Fang-Yu
2013-01-01
In this paper,Noether symmetry and Mei symmetry of discrete nonholonomic dynamical systems with regular and the irregular lattices are investigated.Firstly,the equations of motion of discrete nonholonomic systems are introduced for regular and irregular lattices.Secondly,for cases of the two lattices,based on the invariance of the Hamiltomian functional under the infinitesimal transformation of time and generalized coordinates,we present the quasi-extremal equation,the discrete analogues of Noether identity,Noether theorems,and the Noether conservation laws of the systems.Thirdly,in cases of the two lattices,we study the Mei symmetry in which we give the discrete analogues of the criterion,the theorem,and the conservative laws of Mei symmetry for the systems.Finally,an example is discussed for the application of the results.
Robust stability of discrete-time nonlinear system with time-delay
Institute of Scientific and Technical Information of China (English)
LIU Xin-ge; WU Min
2005-01-01
The robustly asymptotical stability problem for discrete-time nonlinear systems with time-delay was investigated. Positive definite matrix are constructed through Lyapunov functional. With the identity transform, property of matrix inverse and S-procedure, a new sufficient condition independent of the size of time-delay for robust stability of discrete-time nonlinear systems with time-delay is established. With Schur complement, another equivalent sufficient condition for robust stability of discrete-time nonlinear systems with time-delay is given. Finally, a sufficient condition dependent on the size of time-delay for robust stability of discrete-time nonlinear systems with time-delay is obtained. A unified approach is used to cast the robust stability problem into a convex optimization involving linear matrix inequalities.
Discrete Dynamical Systems Meet the Classic Monkey-and-the-Bananas Problem.
Gannon, Gerald E.; Martelli, Mario U.
2001-01-01
Presents a solution of the three-sailors-and-the-bananas problem and attempts a generalization. Introduces an interesting way of looking at the mathematics with an idea drawn from discrete dynamical systems. (KHR)
About several classes of bi-orthogonal polynomials and discrete integrable systems
Chang, Xiang-Ke; Chen, Xiao-Min; Hu, Xing-Biao; Tam, Hon-Wah
2015-01-01
By introducing some special bi-orthogonal polynomials, we derive the so-called discrete hungry quotient-difference (dhQD) algorithm and a system related to the QD-type discrete hungry Lotka-Volterra (QD-type dhLV) system, together with their Lax pairs. These two known equations can be regarded as extensions of the QD algorithm. When this idea is applied to a higher analogue of the discrete-time Toda (HADT) equation and the quotient-quotient-difference (QQD) scheme proposed by Spicer, Nijhoff and van der Kamp, two extended systems are constructed. We call these systems the hungry forms of the higher analogue discrete-time Toda (hHADT) equation and the quotient-quotient-difference (hQQD) scheme, respectively. In addition, the corresponding Lax pairs are provided.
Feedback control in a general almost periodic discrete system of plankton allelopathy.
Yin, Wenshuang
2014-01-01
We study the properties of almost periodic solutions for a general discrete system of plankton allelopathy with feedback controls and establish a theorem on the uniformly asymptotic stability of almost periodic solutions.
A remark for "Linearization, stability, and oscillation of the discrete delayed logistic system"
Zhang, Binggen
2007-09-01
In this remark, we shall show three counter examples for the main results to the paper [Guanrong Chen, Shu Tang Liu, Linearization, stability, and oscillation of the discrete delayed logistic system, IEEE Trans. Circuits Syst. 50 (2003) 822-826].
Directory of Open Access Journals (Sweden)
Jenny Greberg
2016-06-01
Full Text Available As the near surface deposits are being mined out, underground mines will increasingly operate at greater depths. This will increase the challenges related to transporting materials from deeper levels to the surface. For many years, the ore and waste transportation from most deep underground mines has depended on some or all of the following: truck haulage, conveyor belts, shafts, rails, and ore pass systems. In sub-level caving, and where ore passes are used, trains operating on the main lower level transport the ore from ore passes to a crusher, for subsequent hoisting to the surface through the shaft system. In many mines, the use of the ore pass system has led to several problems related to the ore pass availability, causing production disturbances and incurred cost and time for ore pass rehabilitation. These production disturbances have an impact on the mining activities since they increase the operational costs, and lower the mine throughput. A continued dependency on rock mass transportation using ore passes will generate high capital costs for various supporting structures such as rail tracks, shaft extensions, and crushers for every new main level. This study was conducted at an existing underground mine and analyzed the transport of ore from loading areas at the lower levels up to the existing shaft points using trucks without employing ore passes. The results show that, when the costs of extending ore passes to lower levels become too great or ore passes cannot be used for production, haul trucks can be a feasible alternative method for transport of ore and waste up the ramp to the existing crusher located at the previous main level. The use of trucks will avoid installing infrastructure at the next main level and extending the ore passes to lower levels, hence reducing costs.
Viability decision of linear discrete-time stochastic systems with probability criterion
Institute of Scientific and Technical Information of China (English)
Wansheng TANG; Jun ZHENG; Jianxiong ZHANG
2009-01-01
In this paper,the optimal viability decision problem of linear discrete-time stochastic systems with probability criterion is investigated.Under the condition of sequence-reachable discrete-time dynamic systems,the existence theorem of optimal viability strategy is given and the solving procedure of the optimal strategy is provided based on dynamic programming.A numerical example shows the effectiveness of the proposed methods.
An Audio Data Encryption with Single and Double Dimension Discrete-Time Chaotic Systems
AKGÜL, Akif; KAÇAR, Sezgin; Pehlivan, İhsan
2015-01-01
— In this article, a study on increasing security of audio data encryption with single and double dimension discrete-time chaotic systems was carried out and application and security analyses were executed. Audio data samples of both mono and stereo types were encrypted. In the application here, single and double dimension discrete-time chaotic systems were used. In order to enhance security during encryption, a different method was applied by also using a non-linear function. In the chaos ba...
Simple stability conditions of linear discrete time systems with multiple delay
Directory of Open Access Journals (Sweden)
Stojanović Sreten B.
2010-01-01
Full Text Available In this paper we have established a new Lyapunov-Krasovskii method for linear discrete time systems with multiple time delay. Based on this method, two sufficient conditions for delay-independent asymptotic stability of the linear discrete time systems with multiple delays are derived in the shape of Lyapunov inequality. Numerical examples are presented to demonstrate the applicability of the present approach.
Discretizing LTI Descriptor (Regular Differential Input Systems with Consistent Initial Conditions
Directory of Open Access Journals (Sweden)
Athanasios D. Karageorgos
2010-01-01
Full Text Available A technique for discretizing efficiently the solution of a Linear descriptor (regular differential input system with consistent initial conditions, and Time-Invariant coefficients (LTI is introduced and fully discussed. Additionally, an upper bound for the error ‖x¯(kT−x¯k‖ that derives from the procedure of discretization is also provided. Practically speaking, we are interested in such kind of systems, since they are inherent in many physical, economical and engineering phenomena.
Function Projective Synchronization in Discrete-Time Chaotic System with Uncertain Parameters
Institute of Scientific and Technical Information of China (English)
CHEN Yong; LI Xin
2009-01-01
The function projective synchronization of discrete-time chaotic systems is presented. Based on backstep-ping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate function projective synchronization (FPS) of discrete-time chaotic systems with uncertain parameters. With the aid of symbolic-numeric computation, we use the proposed scheme to illustrate FPS between two identical 3D Henon-like maps with uncertain parameters. Numeric simulations are used to verify the effectiveness of our scheme.
Forest biomass supply logistics for a power plant using the discrete-event simulation approach
Energy Technology Data Exchange (ETDEWEB)
Mobini, Mahdi [Industrial Engineering Group, Department of Wood Science, University of British Columbia, 2943-2424 Main Mall, Vancouver, BC V6T-1Z4 (Canada); Sowlati, Taraneh [Department of Wood Science, University of British Columbia, 2931-2424 Main Mall, Vancouver, BC V6T-1Z4 (Canada); Sokhansanj, Shahab [Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3 (Canada); Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)
2011-04-15
This study investigates the logistics of supplying forest biomass to a potential power plant. Due to the complexities in such a supply logistics system, a simulation model based on the framework of Integrated Biomass Supply Analysis and Logistics (IBSAL) is developed in this study to evaluate the cost of delivered forest biomass, the equilibrium moisture content, and carbon emissions from the logistics operations. The model is applied to a proposed case of 300 MW power plant in Quesnel, BC, Canada. The results show that the biomass demand of the power plant would not be met every year. The weighted average cost of delivered biomass to the gate of the power plant is about C$ 90 per dry tonne. Estimates of equilibrium moisture content of delivered biomass and CO{sub 2} emissions resulted from the processes are also provided. (author)
Forest biomass supply logistics for a power plant using the discrete-event simulation approach
Energy Technology Data Exchange (ETDEWEB)
Mobini, Mahdi [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL
2011-04-01
This study investigates the logistics of supplying forest biomass to a potential power plant. Due to the complexities in such a supply logistics system, a simulation model based on the framework of Integrated Biomass Supply Analysis and Logistics (IBSAL) is developed in this study to evaluate the cost of delivered forest biomass, the equilibrium moisture content, and carbon emissions from the logistics operations. The model is applied to a proposed case of 300 MW power plant in Quesnel, BC, Canada. The results show that the biomass demand of the power plant would not be met every year. The weighted average cost of delivered biomass to the gate of the power plant is about C$ 90 per dry tonne. Estimates of equilibrium moisture content of delivered biomass and CO2 emissions resulted from the processes are also provided.
SIMEDIS: a Discrete-Event Simulation Model for Testing Responses to Mass Casualty Incidents.
Debacker, Michel; Van Utterbeeck, Filip; Ullrich, Christophe; Dhondt, Erwin; Hubloue, Ives
2016-12-01
It is recognized that the study of the disaster medical response (DMR) is a relatively new field. To date, there is no evidence-based literature that clearly defines the best medical response principles, concepts, structures and processes in a disaster setting. Much of what is known about the DMR results from descriptive studies and expert opinion. No experimental studies regarding the effects of DMR interventions on the health outcomes of disaster survivors have been carried out. Traditional analytic methods cannot fully capture the flow of disaster victims through a complex disaster medical response system (DMRS). Computer modelling and simulation enable to study and test operational assumptions in a virtual but controlled experimental environment. The SIMEDIS (Simulation for the assessment and optimization of medical disaster management) simulation model consists of 3 interacting components: the victim creation model, the victim monitoring model where the health state of each victim is monitored and adapted to the evolving clinical conditions of the victims, and the medical response model, where the victims interact with the environment and the resources at the disposal of the healthcare responders. Since the main aim of the DMR is to minimize as much as possible the mortality and morbidity of the survivors, we designed a victim-centred model in which the casualties pass through the different components and processes of a DMRS. The specificity of the SIMEDIS simulation model is the fact that the victim entities evolve in parallel through both the victim monitoring model and the medical response model. The interaction between both models is ensured through a time or medical intervention trigger. At each service point, a triage is performed together with a decision on the disposition of the victims regarding treatment and/or evacuation based on a priority code assigned to the victim and on the availability of resources at the service point. The aim of the case
Automating the Simulation of SME Processes through a Discrete Event Parametric Model
Directory of Open Access Journals (Sweden)
Francesco Aggogeri
2015-02-01
Full Text Available At the factory level, the manufacturing system can be described as a group of processes governed by complex weaves of engineering strategies and technologies. Decision- making processes involve a lot of information, driven by managerial strategies, technological implications and layout constraints. Many factors affect decisions, and their combination must be carefully managed to determine the best solutions to optimize performances. In this way, advanced simulation tools could support the decisional process of many SMEs. The accessibility of these tools is limited by knowledge, cost, data availability and development time. These tools should be used to support strategic decisions rather than specific situations. In this paper, a novel approach is proposed that aims to facilitate the simulation of manufacturing processes by fast modelling and evaluation. The idea is to realize a model that is able to be automatically adapted to the user’s specific needs. The model must be characterized by a high degree of flexibility, configurability and adaptability in order to automatically simulate multiple/heterogeneous industrial scenarios. In this way, even a SME can easily access a complex tool, perform thorough analyses and be supported in taking strategic decisions. The parametric DES model is part of a greater software platform developed during COPERNICO EU funded project.
Directory of Open Access Journals (Sweden)
Hesham A. Khalek
2015-07-01
Full Text Available Slipforming operation’s linearity is a source of planning complications, and operation is usually subjected to bottlenecks at any point, so careful planning is required in order to achieve success. On the other hand, Discreteevent simulation concepts can be applied to simulate and analyze construction operations and to efficiently support construction scheduling. Nevertheless, preparation of input data for construction simulation is very challenging, time consuming and human prone-error source. Therefore, to enhance the benefits of using DES in construction scheduling, this study proposes an integrated module to establish a framework for automating the generation of time schedules and decision support for Slipform construction projects, particularly through the project feasibility study phase by using data exchange between project data stored in an Intermediate database, DES and Scheduling software. Using the stored information, proposed system creates construction tasks attribute [e.g. activities durations, material quantities and resources amount], then DES uses all the given information to create a proposal for the construction schedule automatically. This research is considered a demonstration of a flexible Slipform project modeling, rapid scenario-based planning and schedule generation approach that may be of interest to both practitioners and researchers.
Directory of Open Access Journals (Sweden)
Pawel PAWLEWSKI
2012-07-01
Full Text Available Normal 0 21 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US;} This paper aims to present the dilemma of simulation tool selection. Authors discuss the examples of methodologies of enterprises architectures (CIMOSA and GRAI where agent approach is used to solve planning and managing problems. Actually simulation is widely used and practically only one tool which can enable verification of complex systems. Many companies face the problem, which simulation tool is appropriate to use for verification. Selected tools based on ABS and DES are presented. Some tools combining DES and ABS approaches are described. Authors give some recommendation on selection process.
Directory of Open Access Journals (Sweden)
Paul-Eric DOSSOU
2013-07-01
Full Text Available Normal 0 21 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US;} This paper aims to present the dilemma of simulation tool selection. Authors discuss the examples of methodologies of enterprises architectures (CIMOSA and GRAI where agent approach is used to solve planning and managing problems. Actually simulation is widely used and practically only one tool which can enable verification of complex systems. Many companies face the problem, which simulation tool is appropriate to use for verification. Selected tools based on ABS and DES are presented. Some tools combining DES and ABS approaches are described. Authors give some recommendation on selection process.
ADAM: analysis of discrete models of biological systems using computer algebra.
Hinkelmann, Franziska; Brandon, Madison; Guang, Bonny; McNeill, Rustin; Blekherman, Grigoriy; Veliz-Cuba, Alan; Laubenbacher, Reinhard
2011-07-20
Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based on mathematical algorithms as a web
Directory of Open Access Journals (Sweden)
Wen-Jer Chang
2014-01-01
Full Text Available For nonlinear discrete-time stochastic systems, a fuzzy controller design methodology is developed in this paper subject to state variance constraint and passivity constraint. According to fuzzy model based control technique, the nonlinear discrete-time stochastic systems considered in this paper are represented by the discrete-time Takagi-Sugeno fuzzy models with multiplicative noise. Employing Lyapunov stability theory, upper bound covariance control theory, and passivity theory, some sufficient conditions are derived to find parallel distributed compensation based fuzzy controllers. In order to solve these sufficient conditions, an iterative linear matrix inequality algorithm is applied based on the linear matrix inequality technique. Finally, the fuzzy stabilization problem for nonlinear discrete ship steering stochastic systems is investigated in the numerical example to illustrate the feasibility and validity of proposed fuzzy controller design method.
DEFF Research Database (Denmark)
Sørensen, John Aasted
2010-01-01
The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Spring 2010 Ectent: 5 ects Class size: 18......The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Spring 2010 Ectent: 5 ects Class size: 18...
DEFF Research Database (Denmark)
Sørensen, John Aasted
2010-01-01
The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Autumn 2010 Ectent: 5 ects Class size: 15......The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Autumn 2010 Ectent: 5 ects Class size: 15...
Estimating rare events in biochemical systems using conditional sampling
Sundar, V. S.
2017-01-01
The paper focuses on development of variance reduction strategies to estimate rare events in biochemical systems. Obtaining this probability using brute force Monte Carlo simulations in conjunction with the stochastic simulation algorithm (Gillespie's method) is computationally prohibitive. To circumvent this, important sampling tools such as the weighted stochastic simulation algorithm and the doubly weighted stochastic simulation algorithm have been proposed. However, these strategies require an additional step of determining the important region to sample from, which is not straightforward for most of the problems. In this paper, we apply the subset simulation method, developed as a variance reduction tool in the context of structural engineering, to the problem of rare event estimation in biochemical systems. The main idea is that the rare event probability is expressed as a product of more frequent conditional probabilities. These conditional probabilities are estimated with high accuracy using Monte Carlo simulations, specifically the Markov chain Monte Carlo method with the modified Metropolis-Hastings algorithm. Generating sample realizations of the state vector using the stochastic simulation algorithm is viewed as mapping the discrete-state continuous-time random process to the standard normal random variable vector. This viewpoint opens up the possibility of applying more sophisticated and efficient sampling schemes developed elsewhere to problems in stochastic chemical kinetics. The results obtained using the subset simulation method are compared with existing variance reduction strategies for a few benchmark problems, and a satisfactory improvement in computational time is demonstrated.
Universal fuzzy models and universal fuzzy controllers for discrete-time nonlinear systems.
Gao, Qing; Feng, Gang; Dong, Daoyi; Liu, Lu
2015-05-01
This paper investigates the problems of universal fuzzy model and universal fuzzy controller for discrete-time nonaffine nonlinear systems (NNSs). It is shown that a kind of generalized T-S fuzzy model is the universal fuzzy model for discrete-time NNSs satisfying a sufficient condition. The results on universal fuzzy controllers are presented for two classes of discrete-time stabilizable NNSs. Constructive procedures are provided to construct the model reference fuzzy controllers. The simulation example of an inverted pendulum is presented to illustrate the effectiveness and advantages of the proposed method. These results significantly extend the approach for potential applications in solving complex engineering problems.
Relating the quantum mechanics of discrete systems to standard canonical quantum mechanics
Hooft, Gerard t
2012-01-01
Discrete quantum mechanics is here defined to be a quantum theory of wave functions defined on integers P_i and Q_i, while canonical quantum mechanics is assumed to be based on wave functions on the real numbers, R^n. We study reversible mappings from the position operators q_i and their quantum canonical operators p_i of a canonical theory, onto the discrete, commuting operators Q_i and P_i. In this paper we are particularly interested in harmonic oscillators. In the discrete system, these t...
Event-Driven Control for Networked Control Systems With Quantization and Markov Packet Losses.
Yang, Hongjiu; Xu, Yang; Zhang, Jinhui
2016-05-23
In this paper, event-driven is used in a networked control system (NCS) which is subjected to the effect of quantization and packet losses. A discrete event-detector is used to monitor specific events in the NCS. Both an arbitrary region quantizer and Markov jump packet losses are also considered for the NCS. Based on zoom strategy and Lyapunov theory, a complete proof is given to guarantee mean square stability of the closed-loop system. Stabilization of the NCS is ensured by designing a feedback controller. Lastly, an inverted pendulum model is given to show the advantages and effectiveness of the proposed results.
Analytic discrete cosine harmonic wavelet transform based OFDM system
Indian Academy of Sciences (India)
M N Suma; S V Narasimhan; B Kanmani
2015-02-01
An OFDM based on Analytic Discrete Cosine HarmonicWavelet Transform (ADCHWT_OFDM) has been proposed in this paper. Analytic DCHWT has been realized by applying DCHWT to the original signal and to its Hilbert transform. ADCHWT has been found to be computationally efficient and very effective in improving Bit Error Rate (BER) and Peak to Average Power Ratio (PAPR) performance. Improvement compared to that of Haar-WT OFDM and DFT OFDM is achieved without employing Cyclic Prefix BER is 0.002 for ADCHWT OFDM compared to Haar WT, DFT OFDM which have BER of 0.06 and 0.4, respectively, at 15 dB SNR. PAPR is also reduced by 3 dB compared to DFT OFDM and 0.3 dB reduction compared to Haar WT OFDM.
Adaptive discrete rate and power transmission for spectrum sharing systems
Abdallah, Mohamed M.
2012-04-01
In this paper we develop a framework for optimizing the performance of the secondary link in terms of the average spectral efficiency assuming quantized channel state information (CSI) of the secondary and the secondary-to-primary interference channels available at the secondary transmitter. We consider the problem under the constraints of maximum average interference power levels at the primary receiver. We develop a sub-optimal computationally efficient iterative algorithm for finding the optimal CSI quantizers as well as the discrete power and rate employed at the cognitive transmitter for each quantized CSI level so as to maximize the average spectral efficiency. We show via analysis and simulations that the proposed algorithm converges for Rayleigh fading channels. Our numerical results give the number of bits required to sufficiently represent the CSI to achieve almost the maximum average spectral efficiency attained using full knowledge of the CSI. © 2012 IEEE.
Discrete Integrable Systems and Poisson Algebras From Cluster Maps
Fordy, Allan P.; Hone, Andrew
2014-01-01
We consider nonlinear recurrences generated from cluster mutations applied to quivers that have the property of being cluster mutation-periodic with period 1. Such quivers were completely classified by Fordy and Marsh, who characterised them in terms of the skew-symmetric matrix that defines the quiver. The associated nonlinear recurrences are equivalent to birational maps, and we explain how these maps can be endowed with an invariant Poisson bracket and/or presymplectic structure. Upon applying the algebraic entropy test, we are led to a series of conjectures which imply that the entropy of the cluster maps can be determined from their tropical analogues, which leads to a sharp classification result. Only four special families of these maps should have zero entropy. These families are examined in detail, with many explicit examples given, and we show how they lead to discrete dynamics that is integrable in the Liouville-Arnold sense.
Directory of Open Access Journals (Sweden)
Chellaboina Vijaysekhar
2005-01-01
Full Text Available We develop thermodynamic models for discrete-time large-scale dynamical systems. Specifically, using compartmental dynamical system theory, we develop energy flow models possessing energy conservation, energy equipartition, temperature equipartition, and entropy nonconservation principles for discrete-time, large-scale dynamical systems. Furthermore, we introduce a new and dual notion to entropy; namely, ectropy, as a measure of the tendency of a dynamical system to do useful work and grow more organized, and show that conservation of energy in an isolated thermodynamic system necessarily leads to nonconservation of ectropy and entropy. In addition, using the system ectropy as a Lyapunov function candidate, we show that our discrete-time, large-scale thermodynamic energy flow model has convergent trajectories to Lyapunov stable equilibria determined by the system initial subsystem energies.
MINIMAL INVERSION AND ITS ALGORITHMS OF DISCRETE-TIME NONLINEAR SYSTEMS
Institute of Scientific and Technical Information of China (English)
ZHENG Yufan
2005-01-01
The left-inverse system with minimal order and its algorithms of discrete-time nonlinear systems are studied in a linear algebraic framework. The general structure of left-inverse system is described and computed in symbolic algorithm. Two algorithms are given for constructing left-inverse systems with minimal order.
Directory of Open Access Journals (Sweden)
Fernando Gómez-Salas
2015-01-01
Full Text Available This work proposes a discrete-time nonlinear rational approximate model for the unstable magnetic levitation system. Based on this model and as an application of the input-output linearization technique, a discrete-time tracking control design will be derived using the corresponding classical state space representation of the model. A simulation example illustrates the efficiency of the proposed methodology.
A polynomial criterion for adaptive stabilizability of discrete-time nonlinear systems
Li, Chanying; Xie, Liang-Liang; Guo, Lei
2006-01-01
In this paper, we will investigate the maximum capability of adaptive feedback in stabilizing a basic class of discrete-time nonlinear systems with both multiple unknown parameters and bounded noises. We will present a complete proof of the polynomial criterion for feedback capability as stated in "Robust stability of discrete-time adaptive nonlinear control" (C. Li, L.-L. Xie. and L. Guo, IFAC World Congress, Prague, July 3-8, 2005), by providing both the necessity and sufficiency analyze...
Institute of Scientific and Technical Information of China (English)
TAO Liang; LUO Bin
2005-01-01
An efficient algorithm for the representation and approximation of linear time-varying systems is presented via the fast real-valued discrete Gabor transform. Compared with the existing algorithm based on the traditional complex-valued discrete Gabor transform, the proposed algorithm runs faster, can more easily be implemented in software or hardware, and leads to a more compact representation. Simulation results are given for demonstration.
Synchronized events in mobile systems physically nearby
Marques,Nelson; Meneses, Filipe,
2011-01-01
The advances and convergence of information technology and communication technologies in mobile devices, enables the creation of ubiquitous applications for these devices. In this paper, we propose a system capable of producing a certain coordinate effect between the mobile devices of the spectators present at an event.
Stability analysis and H∞ control of discrete T–S fuzzy hyperbolic systems
Directory of Open Access Journals (Sweden)
Duan Ruirui
2016-03-01
Full Text Available This paper focuses on the problem of constraint control for a class of discrete-time nonlinear systems. Firstly, a new discrete T–S fuzzy hyperbolic model is proposed to represent a class of discrete-time nonlinear systems. By means of the parallel distributed compensation (PDC method, a novel asymptotic stabilizing control law with the “soft” constraint property is designed. The main advantage is that the proposed control method may achieve a small control amplitude. Secondly, for an uncertain discrete T–S fuzzy hyperbolic system with external disturbances, by the proposed control method, the robust stability and H∞ performance are developed by using a Lyapunov function, and some sufficient conditions are established through seeking feasible solutions of some linear matrix inequalities (LMIs to obtain several positive diagonally dominant (PDD matrices. Finally, the validity and feasibility of the proposed schemes are demonstrated by a numerical example and a Van de Vusse one, and some comparisons of the discrete T–S fuzzy hyperbolic model with the discrete T–S fuzzy linear one are also given to illustrate the advantage of our approach.
Flach, S
1998-01-01
Nonlinear classical Hamiltonian lattices exhibit generic solutions in the form of discrete breathers. These solutions are time-periodic and (typically exponentially) localized in space. The lattices exhibit discrete translational symmetry. Discrete breathers are not confined to certain lattice dimensions. Necessary ingredients for their occurence are the existence of upper bounds on the phonon spectrum (of small fluctuations around the groundstate) of the system as well as the nonlinearity in the differential equations. We will present existence proofs, formulate necessary existence conditions, and discuss structural stability of discrete breathers. The following results will be also discussed: the creation of breathers through tangent bifurcation of band edge plane waves; dynamical stability; details of the spatial decay; numerical methods of obtaining breathers; interaction of breathers with phonons and electrons; movability; influence of the lattice dimension on discrete breather properties; quantum lattic...
Robust H∞ control for discrete-time polytopic uncertain systems with linear fractional vertices
Institute of Scientific and Technical Information of China (English)
Shaosheng ZHOU; James LAM; Shengyuan XU
2004-01-01
The robust H∞ control problem for discrete-time uncertain systems is investigated in this paper. The uncertain systems are modelled as a polytopic type with linear fractional uncertainty in the vertices. A new linear matrix inequality (LMI) characterization of the H∞ performance for discrete systems is given by introducing a matrix slack variable which decouples the matrix of a Lyapunov function candidate and the parametric matrices of the system. This feature enables one to derive sufficient conditions for discrete uncertain systems by using parameter-dependent Lyapunov functions with less conservativeness. Based on the result, H∞ performance analysis and controller design are carried out. A numerical example is included to demonstrate the effectiveness of the proposed results.
Delay-dependent robust stability for neutral systems with mixed discrete-and-neutral delays
Institute of Scientific and Technical Information of China (English)
Yong HE; Min WU; Jinhua SHE
2004-01-01
This paper focuses on the problem of delay-dependent robust stability of neutral systems with different discrete-and-neutral delays and time-varying structured uncertainties.Some new criteria are presented,in which some free weighting matrices are used to express the relationships between the terms in the Leibniz-Newton formula.The criteria include the information on the size of both neutral-and-discrete delays.It is shown that the present results also include the results for identical discrete-and-neutral delays as special cases.A numerical example illustrates the improvement of the proposed methods over the previous methods and the influences between the discrete and neutral delays.
Bagdasaryan, Armen
2008-01-01
We present a method of discrete modeling and analysis of multilevel dynamics of complex large-scale hierarchical dynamic systems subject to external dynamic control mechanism. Architectural model of information system supporting simulation and analysis of dynamic processes and development scenarios (strategies) of complex large-scale hierarchical systems is also proposed.
Directory of Open Access Journals (Sweden)
Angelica María Atehortúa Labrador
2012-09-01
Full Text Available This article describes DSamala toolbox, a computational tool for simulating and analysing discrete, continuous, stochastic dynamic systems; It is presented as a MATLAB toolbox. DSamala toolbox makes a significant contribution to studying dynamic systems through the use of information and communication technology (ICT, especially when equations modelling these systems are difficult or impossible to solve analytically.
Tracking Control and Synchronization for Two-Dimension Discrete Chaotic Systems
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The popular method of tracking control and synchronization for two-dimension discrete chaotic systems is put forward in this paper, and the chaotic system track arbitrarily reference signal is realized. This method is applied to two chaotic systems, and one can get good control result.
Directory of Open Access Journals (Sweden)
Zheyan Zhou
2011-01-01
Full Text Available We propose a discrete multispecies cooperation and competition predator-prey systems. For general nonautonomous case, sufficient conditions which ensure the permanence and the global stability of the system are obtained; for periodic case, sufficient conditions which ensure the existence of a globally stable positive periodic solution of the system are obtained.
Discretization behavior analysis of a switching control system from a unified mathematical approach
Institute of Scientific and Technical Information of China (English)
Xinghuo YU; Ling YANG; Guanrong CHEN
2003-01-01
A useful unified analysis framework is proposed for exploring the intriguing behaviors of a second-order switching control system. Complex discretization behaviors of the switching control system are explored in detail, and some intrinsic relationships between the system periodic behaviors and their associated symbolic sequences are studied.
Directory of Open Access Journals (Sweden)
Hideki Higashi
Full Text Available BACKGROUND: Osteoarthritis constitutes a major musculoskeletal burden for the aged Australians. Hip and knee replacement surgeries are effective interventions once all conservative therapies to manage the symptoms have been exhausted. This study aims to evaluate the cost-effectiveness of hip and knee replacements in Australia. To our best knowledge, the study is the first attempt to account for the dual nature of hip and knee osteoarthritis in modelling the severities of right and left joints separately. METHODOLOGY/PRINCIPAL FINDINGS: We developed a discrete-event simulation model that follows up the individuals with osteoarthritis over their lifetimes. The model defines separate attributes for right and left joints and accounts for several repeat replacements. The Australian population with osteoarthritis who were 40 years of age or older in 2003 were followed up until extinct. Intervention effects were modelled by means of disability-adjusted life-years (DALYs averted. Both hip and knee replacements are highly cost effective (AUD 5,000 per DALY and AUD 12,000 per DALY respectively under an AUD 50,000/DALY threshold level. The exclusion of cost offsets, and inclusion of future unrelated health care costs in extended years of life, did not change the findings that the interventions are cost-effective (AUD 17,000 per DALY and AUD 26,000 per DALY respectively. However, there was a substantial difference between hip and knee replacements where surgeries administered for hips were more cost-effective than for knees. CONCLUSIONS/SIGNIFICANCE: Both hip and knee replacements are cost-effective interventions to improve the quality of life of people with osteoarthritis. It was also shown that the dual nature of hip and knee OA should be taken into account to provide more accurate estimation on the cost-effectiveness of hip and knee replacements.
Discrete-Time Approximation for Nonlinear Continuous Systems with Time Delays
Directory of Open Access Journals (Sweden)
Bemri H’mida
2016-05-01
Full Text Available This paper is concerned with the discretization of nonlinear continuous time delay systems. Our approach is based on Taylor-Lie series. The main idea aims to minimize the effect of the delay and neglects the importance of nonlinear parameter by the linearization of the system study in an attempt to make its handling and easier programming as possible. We investigate a new method based on the development of new theoretical methods for the time discretization of nonlinear systems with time delay .The performance of these proposed discretization methods was validated by doing the numerical simulation using a nonlinear system with state delay. Some illustrative examples are given to show the effectiveness of the obtained results.
ADAM: Analysis of Discrete Models of Biological Systems Using Computer Algebra
Hinkelmann, Franziska; Guang, Bonny; McNeill, Rustin; Blekherman, Grigoriy; Veliz-Cuba, Alan; Laubenbacher, Reinhard
2010-01-01
Motivation: Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, bounded Petri nets, and agent-based models. Simulation is a common practice for analyzing discrete models, but many systems are far too large to capture all the relevant dynamical features through simulation alone. Results: We convert discrete models into algebraic models and apply tools from computational algebra to analyze their dynamics. The key feature of biological systems that is exploited by our algorithms is their sparsity: while the number of nodes in a biological network may be quite large, each node is affected only by a small number of other nodes. In our experience with models arising in systems biology and random models, this structure leads to fast computations when using algebraic models, and thus efficient analysis. Availability: All algorithms and methods are available in our package Analysis of Dynamic Algebraic Models (ADAM), a user friendly web-interf...
Variable structure control with sliding mode prediction for discrete-time nonlinear systems
Institute of Scientific and Technical Information of China (English)
Lingfei XIAO; Hongye SU; Xiaoyu ZHANG; Jian CHU
2006-01-01
A new variable structure control algorithm based on sliding mode prediction for a class of discrete-time nonlinear systems is presented. By employing a special model to predict future sliding mode value, and combining feedback correction and receding horizon optimization methods which are extensively applied on predictive control strategy, a discrete-time variable structure control law is constructed. The closed-loop systems are proved to have robustness to uncertainties with unspecified boundaries. Numerical simulation and pendulum experiment results illustrate that the closed-loop systems possess desired performance, such as strong robustness, fast convergence and chattering elimination.
Noether-Mei symmetry of a discrete mechanico-electrical system
Institute of Scientific and Technical Information of China (English)
Zhang Wei-Wei; Fang Jian-Hui
2012-01-01
Noether-Mei symmetry of a discrete mechanico-electrical system on a regular lattice is investigated.Firstly,the Noether symmetry of a discrete mechanico-electrical system is reviewed,and the motion equations and energy equations are derived.Secondly,the definition of Noether Mei symmetry for the system is presented,and the criterion is derived.Thirdly,conserved quantities induced by Noethe-Mei symmetry with their existence conditions are obtained.Finally,an example is discussed to illustrate the results.
Stationary solutions and self-trapping in discrete quadratic nonlinear systems
DEFF Research Database (Denmark)
Bang, Ole; Christiansen, Peter Leth; Clausen, Carl A. Balslev
1998-01-01
the nonintegrable dimer reduce to the discrete nonlinear Schrodinger (DNLS) equation with two degrees of freedom, which is integrable. We show how the stationary solutions to the two systems correspond to each other and how the self-trapped DNLS solutions gradually develop chaotic dynamics in the chi((2)) system......We consider the simplest equations describing coupled quadratic nonlinear (chi((2))) systems, which each consists of a fundamental mode resonantly interacting with its second harmonic. Such discrete equations apply, e.g., to optics, where they can describe arrays of chi((2)) waveguides...
Directory of Open Access Journals (Sweden)
Sá Armando B
2011-10-01
Full Text Available Abstract Background Recent reforms in Portugal aimed at strengthening the role of the primary care system, in order to improve the quality of the health care system. Since 2006 new policies aiming to change the organization, incentive structures and funding of the primary health care sector were designed, promoting the evolution of traditional primary health care centres (PHCCs into a new type of organizational unit - family health units (FHUs. This study aimed to compare performances of PHCC and FHU organizational models and to assess the potential gains from converting PHCCs into FHUs. Methods Stochastic discrete event simulation models for the two types of organizational models were designed and implemented using Simul8 software. These models were applied to data from nineteen primary care units in three municipalities of the Greater Lisbon area. Results The conversion of PHCCs into FHUs seems to have the potential to generate substantial improvements in productivity and accessibility, while not having a significant impact on costs. This conversion might entail a 45% reduction in the average number of days required to obtain a medical appointment and a 7% and 9% increase in the average number of medical and nursing consultations, respectively. Conclusions Reorganization of PHCC into FHUs might increase accessibility of patients to services and efficiency in the provision of primary care services.
Discrete-Time Models for Implicit Port-Hamiltonian Systems
Castaños, Fernando; Michalska, Hannah; Gromov, Dmitry; Hayward, Vincent
2015-01-01
Implicit representations of finite-dimensional port-Hamiltonian systems are studied from the perspective of their use in numerical simulation and control design. Implicit representations arise when a system is modeled in Cartesian coordinates and when the system constraints are applied in the form of additional algebraic equations (the system model is in a DAE form). Such representations lend themselves better to sample-data approximations. An implicit representation of a port-Hamiltonian sys...
Cardiovascular Events in Systemic Lupus Erythematosus
Fernández-Nebro, Antonio; Rúa-Figueroa, Íñigo; López-Longo, Francisco J.; Galindo-Izquierdo, María; Calvo-Alén, Jaime; Olivé-Marqués, Alejandro; Ordóñez-Cañizares, Carmen; Martín-Martínez, María A.; Blanco, Ricardo; Melero-González, Rafael; Ibáñez-Rúan, Jesús; Bernal-Vidal, José Antonio; Tomero-Muriel, Eva; Uriarte-Isacelaya, Esther; Horcada-Rubio, Loreto; Freire-González, Mercedes; Narváez, Javier; Boteanu, Alina L.; Santos-Soler, Gregorio; Andreu, José L.; Pego-Reigosa, José M.
2015-01-01
Abstract This article estimates the frequency of cardiovascular (CV) events that occurred after diagnosis in a large Spanish cohort of patients with systemic lupus erythematosus (SLE) and investigates the main risk factors for atherosclerosis. RELESSER is a nationwide multicenter, hospital-based registry of SLE patients. This is a cross-sectional study. Demographic and clinical variables, the presence of traditional risk factors, and CV events were collected. A CV event was defined as a myocardial infarction, angina, stroke, and/or peripheral artery disease. Multiple logistic regression analysis was performed to investigate the possible risk factors for atherosclerosis. From 2011 to 2012, 3658 SLE patients were enrolled. Of these, 374 (10.9%) patients suffered at least a CV event. In 269 (7.4%) patients, the CV events occurred after SLE diagnosis (86.2% women, median [interquartile range] age 54.9 years [43.2–66.1], and SLE duration of 212.0 months [120.8–289.0]). Strokes (5.7%) were the most frequent CV event, followed by ischemic heart disease (3.8%) and peripheral artery disease (2.2%). Multivariate analysis identified age (odds ratio [95% confidence interval], 1.03 [1.02–1.04]), hypertension (1.71 [1.20–2.44]), smoking (1.48 [1.06–2.07]), diabetes (2.2 [1.32–3.74]), dyslipidemia (2.18 [1.54–3.09]), neurolupus (2.42 [1.56–3.75]), valvulopathy (2.44 [1.34–4.26]), serositis (1.54 [1.09–2.18]), antiphospholipid antibodies (1.57 [1.13–2.17]), low complement (1.81 [1.12–2.93]), and azathioprine (1.47 [1.04–2.07]) as risk factors for CV events. We have confirmed that SLE patients suffer a high prevalence of premature CV disease. Both traditional and nontraditional risk factors contribute to this higher prevalence. Although it needs to be verified with future studies, our study also shows—for the first time—an association between diabetes and CV events in SLE patients. PMID:26200625
Iterative learning based fault diagnosis for discrete linear uncer tain systems
Institute of Scientific and Technical Information of China (English)
Wei Cao; Ming Sun
2014-01-01
In order to detect and estimate faults in discrete lin-ear time-varying uncertain systems, the discrete iterative learning strategy is applied in fault diagnosis, and a novel fault detection and estimation algorithm is proposed. And the threshold limited tech-nology is adopted in the proposed algorithm. Within the chosen optimal time region, residual signals are used in the proposed algo-rithm to correct the introduced virtual faults with iterative learning rules, making the virtual faults close to these occurred in practical systems. And the same method is repeated in the rest optimal time regions, thereby reaching the aim of fault diagnosis. The proposed algorithm not only completes fault detection and estimation for dis-crete linear time-varying uncertain systems, but also improves the reliability of fault detection and decreases the false alarm rate. The final simulation results verify the validity of the proposed algorithm.
Li, Shaobao; Feng, Gang; Luo, Xiaoyuan; Guan, Xinping
2015-12-01
This paper investigates the output consensus problem of heterogeneous discrete-time multiagent systems with individual agents subject to structural uncertainties and different disturbances. A novel distributed control law based on internal reference models is first presented for output consensus of heterogeneous discrete-time multiagent systems without structural uncertainties, where internal reference models embedded in controllers are designed with the objective of reducing communication costs. Then based on the distributed internal reference models and the well-known internal model principle, a distributed control law is further presented for output consensus of heterogeneous discrete-time multiagent systems with structural uncertainties. It is shown in both cases that the consensus trajectory of the internal reference models determines the output trajectories of agents. Finally, numerical simulation results are provided to illustrate the effectiveness of the proposed control schemes.
ON THE ANISOTROPIC NORM OF DISCRETE TIME STOCHASTIC SYSTEMS WITH STATE DEPENDENT NOISE
Directory of Open Access Journals (Sweden)
Isaac Yaesh
2013-01-01
Full Text Available The purpose of this paper is to determine conditions for the bound-edness of the anisotropic norm of discrete-time linear stochastic sys-tems with state dependent noise. It is proved that these conditions canbe expressed in terms of the feasibility of a specific system of matrixinequalities.
Hopf bifurcation in a predator-prey system with discrete and distributed delays
Energy Technology Data Exchange (ETDEWEB)
Yang Yu [Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240 (China)], E-mail: yuy1981@126.com; Ye Jin [School of Computer Science and Technology, Donghua University, Shanghai 200051 (China)], E-mail: miniyejin@yahoo.com.cn
2009-10-15
In this paper, a predator-prey system with discrete and distributed delays is considered. By regarding the delay as the bifurcation parameter and analyzing the associated characteristic equation of the original system at the positive equilibrium, it is found that Hopf bifurcations occur when the delay passes through a certain critical value. Finally, numerical simulations are given to support our theoretical results.
Robust observer-based fault estimation and accommodation of discrete-time piecewise linear systems
DEFF Research Database (Denmark)
Tabatabaeipour, Mojtaba; Bak, Thomas
2013-01-01
In this paper a new integrated observer-based fault estimation and accommodation strategy for discrete-time piecewise linear (PWL) systems subject to actuator faults is proposed. A robust estimator is designed to simultaneously estimate the state of the system and the actuator fault. Then, the es...
Single-experiment observability decomposition of discrete-time analytic systems
Kawano, Yu; Kotta, Ülle
2016-01-01
This paper addresses the single-experiment observability decomposition of discrete-time analytic systems. Unlike the continuous-time case, there exist systems which cannot be decomposed into observable and unobservable subsystems due to the fact that the observable space is not integrable. In this p
Discrete Time Optimal Adaptive Control for Linear Stochastic Systems
Institute of Scientific and Technical Information of China (English)
JIANG Rui; LUO Guiming
2007-01-01
The least-squares(LS)algorithm has been used for system modeling for a long time. Without any excitation conditions, only the convergence rate of the common LS algorithm can be obtained. This paper analyzed the weighted least-squares(WLS)algorithm and described the good properties of the WLS algorithm. The WLS algorithm was then used for daptive control of linear stochastic systems to show that the linear closed-loop system was globally stable and that the system identification was consistent. Compared to the past optimal adaptive controller,this controller does not impose restricted conditions on the coefficients of the system, such as knowing the first coefficient before the controller. Without any persistent excitation conditions, the analysis shows that, with the regulation of the adaptive control, the closed-loop system was globally stable and the adaptive controller converged to the one-step-ahead optimal controller in some sense.
Subspace-based identification of discrete time-delay system
Institute of Scientific and Technical Information of China (English)
Qiang LIU; Jia-chen MA
2016-01-01
We investigate the identification problems of a class of linear stochastic time-delay systems with unknown delayed states in this study. A time-delay system is expressed as a delay differential equation with a single delay in the state vector. We first derive an equivalent linear time-invariant (LTI) system for the time-delay system using a state augmentation technique. Then a conventional subspace identification method is used to estimate augmented system matrices and Kalman state sequences up to a similarity transformation. To obtain a state-space model for the time-delay system, an alternate convex search (ACS) algorithm is presented to find a similarity transformation that takes the identified augmented system back to a form so that the time-delay system can be recovered. Finally, we reconstruct the Kalman state sequences based on the similarity transformation. The time-delay system matrices under the same state-space basis can be recovered from the Kalman state sequences and input-output data by solving two least squares problems. Numerical examples are to show the effectiveness of the proposed method.
H∞ State Feedback Delay-dependent Control for Discrete Systems with Multi-time-delay
Institute of Scientific and Technical Information of China (English)
Bai-Da Qu
2005-01-01
In this paper,H∞ state feedback control with delay information for discrete systems with multi-time-delay is discussed. Making use of linear matrix inequality (LMI) approach, a time-delay-dependent criterion for a discrete system with multi-time-delay to satisfy H∞ performance indices is induced, and then a strategy for H∞ state feedback control with delay values for plant with multi-time-delay is obtained. By solving corresponding LMI, a delay-dependent state feedback controller satisfying H∞ performance indices is designed. Finally, a simulation example demonstrates the validity of the proposed approach.
DEFF Research Database (Denmark)
Rasmussen, Kim; Christiansen, Peter Leth; Johansson, Magnus
1998-01-01
A one-dimensional discrete nonlinear Schrodinger (DNLS) model with the power dependence, r(-s) on the distance r, of dispersive interactions is proposed. The stationary states of the system are studied both analytically and numerically. Two kinds of trial functions, exp-like and sech-like are exp......A one-dimensional discrete nonlinear Schrodinger (DNLS) model with the power dependence, r(-s) on the distance r, of dispersive interactions is proposed. The stationary states of the system are studied both analytically and numerically. Two kinds of trial functions, exp-like and sech...
Event streaming in the online system
Klous, S; The ATLAS collaboration
2010-01-01
The Large Hadron Collider (LHC), currently in operation at CERN in Geneva, is a circular 27-kilometer-circumference machine, accelerating bunches of protons in opposite directions. The bunches will cross at four different interaction points with a bunch-crossing frequency of 40MHz. ATLAS, the largest LHC experiment, registers the signals induced by particles traversing the detector components on each bunch crossing. When this happens a total of around 1.5MB of data are collected. This results in a data rate of around 60 TB/s flowing out of the detector. Note that the available event storage space is limited to about 6 PB per year. With an operational period of about 20 million seconds per year, this requires a data reduction factor of 200:000 in the trigger and data acquisition (TDAQ) system. Events included in the recording rate budget are already subdivided and organized by ATLAS during data acquisition. So, the TDAQ system does not only take care of data reduction, but also organizes the collected events. ...
Positive dynamical systems in discrete time theory, models, and applications
Krause, Ulrich
2015-01-01
This book provides a systematic, rigorous and self-contained treatment of positive dynamical systems. A dynamical system is positive when all relevant variables of a systemare nonnegative in a natural way. This is in biology, demography or economics, where the levels of populations or prices of goods are positive. The principle also finds application in electrical engineering, physics and computer sciences.
Incremental System Modelling in Event-B
DEFF Research Database (Denmark)
Hallerstede, Stefan
2009-01-01
the specification is the right one for the given requirements. Sometimes requirements also concern features of a system closely related to its implementation. This would make an abstract specification necessarily incomplete. We believe that it is better not to follow the rigid approach to modelling described above......A reasonable approach to formal modelling is to start with a specification that captures the requirements of a system and then use formal refinement to implement it. The problem with this approach is that for complex systems the specification itself is complex. It becomes a challenge to say whether....... Instead, we argue that the specification itself should be elaborated by refinement. Ultimately, the distinction between specification and implementation is no longer made in the strict sense above. There is only one model of the system that is connected by successive refinements. Using Event-B, we...
Using Indexed and Synchronous Events to Model and Validate Cyber-Physical Systems
Directory of Open Access Journals (Sweden)
Chen-Wei Wang
2015-06-01
Full Text Available Timed Transition Models (TTMs are event-based descriptions for modelling, specifying, and verifying discrete real-time systems. An event can be spontaneous, fair, or timed with specified bounds. TTMs have a textual syntax, an operational semantics, and an automated tool supporting linear-time temporal logic. We extend TTMs and its tool with two novel modelling features for writing high-level specifications: indexed events and synchronous events. Indexed events allow for concise description of behaviour common to a set of actors. The indexing construct allows us to select a specific actor and to specify a temporal property for that actor. We use indexed events to validate the requirements of a train control system. Synchronous events allow developers to decompose simultaneous state updates into actions of separate events. To specify the intended data flow among synchronized actions, we use primed variables to reference the post-state (i.e., one resulted from taking the synchronized actions. The TTM tool automatically infers the data flow from synchronous events, and reports errors on inconsistencies due to circular data flow. We use synchronous events to validate part of the requirements of a nuclear shutdown system. In both case studies, we show how the new notation facilitates the formal validation of system requirements, and use the TTM tool to verify safety, liveness, and real-time properties.
ADAM: Analysis of Discrete Models of Biological Systems Using Computer Algebra
Directory of Open Access Journals (Sweden)
Blekherman Grigoriy
2011-07-01
Full Text Available Abstract Background Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. Results We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM, which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Conclusions Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides
ESTIMATE OF DISCRETE NONLINEARITIES IN A MAINLY LINEAR DYNAMIC SYSTEM
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The class of system considered is a single degree of freedom undamped vibrating system with a clearance in which the dynamical behavior is described by a state-space representation in real time. The direct identification technique for the estimate of a clearance and other parameters in the system is presented in terms of least squares method and stepby-step iteration approach. For numerical simulation purpose, the simulated data are achieved by corrupting the modeled responses. The mathematical algorithm, which is put forward, has proven to be effective through a practical numerical example.
Cheng, Jun; Park, Ju H; Wang, Hailing
2016-11-01
This paper addresses the problem of event-triggered H∞ control for a class of T-S fuzzy nonlinear systems. An improved event-triggered scheme (ETS) characterized by discrete sampling is proposed, where the time-derivative of the membership function is not required. To get conservative conditions, the deviation bound of asynchronous normalized membership functions is considered. By utilizing the non-quadratic fuzzy line-integral Lyapunov functions and a free-matrix-based integral inequality, novel criteria for stabilization analysis of T-S fuzzy nonlinear systems are established. Finally, a truck-trailer system is provided to show the effectiveness of the proposed theories.
Institute of Scientific and Technical Information of China (English)
WANG Peng
2011-01-01
Perturbation to Noether symmetry of discrete mechanico-electrical systems on an uniform lattice is investigated.First, Noether theorem of a system is presented. Secondly, the criterion of perturbation to Noether symmetry of the system is given. Based on the definition of adiabatic invariants, Noether adiabatic invariants of the system are obtained. Finally, An example is given to support these results.%@@ Perturbation to Noether symmetry of discrete mechanico-electrical systems on an uniform lattice is investigated.First, Noether theorem of a system is presented.Secondly , the criterion of perturbation to Noether symmetry of the system is given.Based on the definition of adiabatic invariants, Noether adiabatic invariants of the system are obtained .Finally, An example is given to support these results.
Rusgiyarto, Ferry; Sjafruddin, Ade; Frazila, Russ Bona; Suprayogi
2017-06-01
Increasing container traffic and land acquisition problem for terminal expansion leads to usage of external yard in a port buffer area. This condition influenced the terminal performance because a road which connects the terminal and the external yard was also used by non-container traffic. Location choice problem considered to solve this condition, but the previous research has not taken account a stochastic condition of container arrival rate and service time yet. Bi-level programming framework was used to find optimum location configuration. In the lower-level, there was a problem to construct the equation, which correlated the terminal operation and the road due to different time cycle equilibrium. Container moves from the quay to a terminal gate in a daily unit of time, meanwhile, it moves from the terminal gate to the external yard through the road in a minute unit of time. If the equation formulated in hourly unit equilibrium, it cannot catch up the container movement characteristics in the terminal. Meanwhile, if the equation formulated in daily unit equilibrium, it cannot catch up the road traffic movement characteristics in the road. This problem can be addressed using simulation model. Discrete Event Simulation Model was used to simulate import container flow processes in the container terminal and external yard. Optimum location configuration in the upper-level was the combinatorial problem, which was solved by Full Enumeration approach. The objective function of the external yard location model was to minimize user transport cost (or time) and to maximize operator benefit. Numerical experiment was run for the scenario assumption of two container handling ways, three external yards, and thirty-day simulation periods. Jakarta International Container Terminal (JICT) container characteristics data was referred for the simulation. Based on five runs which were 5, 10, 15, 20, and 30 repetitions, operation one of three available external yards (external yard
Huang, Ying Che; Chang, Kuang Yi; Lin, Shih Pin; Chen, Kung; Chan, Kwok Hon; Chang, Polun
2013-08-01
As studies have pointed out, severity scores are imperfect at predicting individual clinical chance of survival. The clinical condition and pathophysiological status of these patients in the Intensive Care Unit might differ from or be more complicated than most predictive models account for. In addition, as the pathophysiological status changes over time, the likelihood of survival day by day will vary. Actually, it would decrease over time and a single prediction value cannot address this truth. Clearly, alternative models and refinements are warranted. In this study, we used discrete-time-event models with the changes of clinical variables, including blood cell counts, to predict daily probability of mortality in individual patients from day 3 to day 28 post Intensive Care Unit admission. Both models we built exhibited good discrimination in the training (overall area under ROC curve: 0.80 and 0.79, respectively) and validation cohorts (overall area under ROC curve: 0.78 and 0.76, respectively) to predict daily ICU mortality. The paper describes the methodology, the development process and the content of the models, and discusses the possibility of them to serve as the foundation of a new bedside advisory or alarm system.
Directory of Open Access Journals (Sweden)
Shien Guo
2012-01-01
Full Text Available The growing understanding of the use of biomarkers in Alzheimer's disease (AD may enable physicians to make more accurate and timely diagnoses. Florbetaben, a beta-amyloid tracer used with positron emission tomography (PET, is one of these diagnostic biomarkers. This analysis was undertaken to explore the potential value of florbetaben PET in the diagnosis of AD among patients with suspected dementia and to identify key data that are needed to further substantiate its value. A discrete event simulation was developed to conduct exploratory analyses from both US payer and societal perspectives. The model simulates the lifetime course of disease progression for individuals, evaluating the impact of their patient management from initial diagnostic work-up to final diagnosis. Model inputs were obtained from specific analyses of a large longitudinal dataset from the New England Veterans Healthcare System and supplemented with data from public data sources and assumptions. The analyses indicate that florbetaben PET has the potential to improve patient outcomes and reduce costs under certain scenarios. Key data on the use of florbetaben PET, such as its influence on time to confirmation of final diagnosis, treatment uptake, and treatment persistency, are unavailable and would be required to confirm its value.
Institute of Scientific and Technical Information of China (English)
A. Soofastaei; S.M. Aminossadati; M.S. Kizil; P. Knights
2016-01-01
Data collected from truck payload management systems at various surface mines shows that the payload variance is significant and must be considered in analysing the mine productivity, energy consumption, greenhouse gas emissions and associated cost. Payload variance causes significant differences in gross vehicle weights. Heavily loaded trucks travel slower up ramps than lightly loaded trucks. Faster trucks are slowed by the presence of slower trucks, resulting in‘bunching’, production losses and increasing fuel consumptions. This paper simulates the truck bunching phenomena in large surface mines to improve truck and shovel systems’ efficiency and minimise fuel consumption. The study concentrated on complet-ing a practical simulation model based on a discrete event method which is most commonly used in this field of research in other industries. The simulation model has been validated by a dataset collected from a large surface mine in Arizona state, USA. The results have shown that there is a good agreement between the actual and estimated values of investigated parameters.
High-speed event detector for embedded nanopore bio-systems.
Huang, Yiyun; Magierowski, Sebastian; Ghafar-Zadeh, Ebrahim; Wang, Chengjie
2015-08-01
Biological measurements of microscopic phenomena often deal with discrete-event signals. The ability to automatically carry out such measurements at high-speed in a miniature embedded system is desirable but compromised by high-frequency noise along with practical constraints on filter quality and sampler resolution. This paper presents a real-time event-detection method in the context of nanopore sensing that helps to mitigate these drawbacks and allows accurate signal processing in an embedded system. Simulations show at least a 10× improvement over existing on-line detection methods.
Implementing a Layered System for Discrete Computer Simulation
Institute of Scientific and Technical Information of China (English)
无
1999-01-01
A successful simulation still requires the user to have good simulation knowledge and well developed modeling skills despite a large number of simulation software products available to users. This paper presents the design principles and implementation of a layered modeling system known as General-Purpose user-defined Modeling System (GPMS) which provides the user with multiple accesses to build a simulation model at three different levels of knowledge and skills. It does this by purpose-designed GPMS simulation language, which is briefly described in this paper.
Adjoint analysis of mixed continuous/discrete systems in simulink
Bucco, D.; Weiss, M.
2010-01-01
The adjoint simulation method is a well established and efficient tool for gaining insight and understanding of key parameters affecting the behaviour and performance of a guided missile homing system. Traditionally, the method has been employed by various missile companies during the preliminary an
Adjoint analysis of mixed continuous/discrete systems in simulink
Bucco, D.; Weiss, M.
2010-01-01
The adjoint simulation method is a well established and efficient tool for gaining insight and understanding of key parameters affecting the behaviour and performance of a guided missile homing system. Traditionally, the method has been employed by various missile companies during the preliminary
On Discrete Time Control of Continuous Time Systems
DEFF Research Database (Denmark)
Poulsen, Niels Kjølstad
of Denmark. The focus in this paper is control of a continuous time system by means of a digital control. In this context the control signal can only change at sample instants and is constant between samples. The cost function do include the variations of output between samples....
Aging and brain rejuvenation as systemic events.
Bouchard, Jill; Villeda, Saul A
2015-01-01
The effects of aging were traditionally thought to be immutable, particularly evident in the loss of plasticity and cognitive abilities occurring in the aged central nervous system (CNS). However, it is becoming increasingly apparent that extrinsic systemic manipulations such as exercise, caloric restriction, and changing blood composition by heterochronic parabiosis or young plasma administration can partially counteract this age-related loss of plasticity in the aged brain. In this review, we discuss the process of aging and rejuvenation as systemic events. We summarize genetic studies that demonstrate a surprising level of malleability in organismal lifespan, and highlight the potential for systemic manipulations to functionally reverse the effects of aging in the CNS. Based on mounting evidence, we propose that rejuvenating effects of systemic manipulations are mediated, in part, by blood-borne 'pro-youthful' factors. Thus, systemic manipulations promoting a younger blood composition provide effective strategies to rejuvenate the aged brain. As a consequence, we can now consider reactivating latent plasticity dormant in the aged CNS as a means to rejuvenate regenerative, synaptic, and cognitive functions late in life, with potential implications even for extending lifespan. We review evidence of brain rejuvenation focusing on several systemic manipulations - exercise, caloric restriction, heterochronic parabiosis, and young plasma administration - and their ability to restore regenerative capacity, synaptic plasticity, and cognitive function in the brain.
Some Chaotic Properties of Discrete Fuzzy Dynamical Systems
Directory of Open Access Journals (Sweden)
Yaoyao Lan
2012-01-01
Full Text Available Letting (X,d be a metric space, f:X→X a continuous map, and (ℱ(X,D the space of nonempty fuzzy compact subsets of X with the Hausdorff metric, one may study the dynamical properties of the Zadeh's extension f̂:ℱ(X→ℱ(X:u↦f̂u. In this paper, we present, as a response to the question proposed by Román-Flores and Chalco-Cano 2008, some chaotic relations between f and f̂. More specifically, we study the transitivity, weakly mixing, periodic density in system (X,f, and its connections with the same ones in its fuzzified system.
Smale Horseshoes and Chaos in Discretized Perturbed NLS Systems
Institute of Scientific and Technical Information of China (English)
郭柏灵; 常玉
2004-01-01
@@ 1 Introduction For many years, the existence of chaotic behavior in dynamical systems has received much attention. Theoretical and experimental methods to show the existence of chaos have been well developed. It is well-known that if the stable and unstable manifolds of a hyperbolic periodic orbit intersect transversely so that a homoclinic tangle is formed, then chaotic dynamics may occur,and a very useful method to show the existence of transverse homoclinic orbits to hyperbolic periodic orbits is Melnikov's method.
Boundedness regions of discrete-time dynamic systems
Siljak, D.; Thaler, G. J.; Weissenberger, S.
1972-01-01
Techniques for obtaining quantitative information about boundedness properties are developed and applied to the sampled-data control of satellite attitude with quantization. Relevant stability concepts are introduced as a series of definitions, and interrelationships between various definitions are discussed. The boundedness regions are estimated by means of quadratic Liapunov functions, and a sufficient condition for the existence of a boundedness region is given for a certain class of systems. A quadratic Liapunov function is applied to the Lur'e-Postinkov class of systems, where the linear part of the system is not asymptotically stable and the quantizer represents the nonlinear characteristic. A numerical calculation of the region of boundedness estimates is performed for satellite attitude control and is compared with simulation results. It is tentatively concluded that the Liapunov results may be good and that simulation results may be difficult to interpret and time-consuming to generate. The Lur'e-based technique yields estimates of regions of absolute boundedness, but at the cost of greater analytical complexity.
Asymptotic behavior of dynamical and control systems under perturbation and discretization
Grüne, Lars
2002-01-01
This book provides an approach to the study of perturbation and discretization effects on the long-time behavior of dynamical and control systems. It analyzes the impact of time and space discretizations on asymptotically stable attracting sets, attractors, asumptotically controllable sets and their respective domains of attractions and reachable sets. Combining robust stability concepts from nonlinear control theory, techniques from optimal control and differential games and methods from nonsmooth analysis, both qualitative and quantitative results are obtained and new algorithms are developed, analyzed and illustrated by examples.
Makarenko, A. V.
2016-10-01
A new class of bifurcations is defined in discrete dynamical systems, and methods for their diagnostics and the analysis of their properties are presented. The TQ-bifurcations considered are implemented in discrete mappings and are related to the qualitative rearrangement of the shape of trajectories in an extended space of states. Within the demonstration of the main capabilities of the toolkit, an analysis is carried out of a logistic mapping in a domain to the right of the period-doubling limit point. Five critical values of the parameter are found for which the geometric structure of the trajectories of the mapping experiences a qualitative rearrangement. In addition, an analysis is carried out of the so-called "trace map," which arises in the problems of quantum-mechanical description of various properties of discrete crystalline and quasicrystalline lattices.
Control of discrete time systems based on recurrent Super-Twisting-like algorithm.
Salgado, I; Kamal, S; Bandyopadhyay, B; Chairez, I; Fridman, L
2016-09-01
Most of the research in sliding mode theory has been carried out to in continuous time to solve the estimation and control problems. However, in discrete time, the results in high order sliding modes have been less developed. In this paper, a discrete time super-twisting-like algorithm (DSTA) was proposed to solve the problems of control and state estimation. The stability proof was developed in terms of the discrete time Lyapunov approach and the linear matrix inequalities theory. The system trajectories were ultimately bounded inside a small region dependent on the sampling period. Simulation results tested the DSTA. The DSTA was applied as a controller for a Furuta pendulum and for a DC motor supplied by a DSTA signal differentiator.
Strict System Equivalence of 2D Linear Discrete State Space Models
Directory of Open Access Journals (Sweden)
Mohamed S. Boudellioua
2012-01-01
Full Text Available The connection between the polynomial matrix descriptions (PMDs of the well-known regular and singular 2D linear discrete state space models is considered. It is shown that the transformation of strict system equivalence in the sense of Fuhrmann provides the basis for this connection. The exact form of the transformation is established for both the regular and singular cases.
Critical exponents in the transition to chaos in one-dimensional discrete systems
Indian Academy of Sciences (India)
G Ambika; N V Sujatha
2002-07-01
We report the numerically evaluated critical exponents associated with the scaling of generalized fractal dimensions during the transition from order to chaos. The analysis is carried out in detail in the context of unimodal and bimodal maps representing typical one-dimensional discrete dynamical systems. The behavior of Lyapunov exponents (LE) in the cross over region is also studied for a complete characterization.
Linear quadratic Gaussian balancing for discrete-time infinite-dimensional linear systems
Opmeer, MR; Curtain, RF
2004-01-01
In this paper, we study the existence of linear quadratic Gaussian (LQG)-balanced realizations for discrete-time infinite-dimensional systems. LQG-balanced realizations are those for which the smallest nonnegative self-adjoint solutions of the control and filter Riccati equations are equal. We show
A Lyapunov-Krasovskii methodology for asymptotic stability of discrete time delay systems
Directory of Open Access Journals (Sweden)
Stojanović Sreten B.
2007-01-01
Full Text Available This paper presents a Lyapunov-Krasovskii methodology for asymptotic stability of discrete time delay systems. Based on the methods, delay-independent stability condition is derived. A numerical example has been working out to show the applicability of results derived.
AN APPROACH TO DESIGN OBSERVER FOR A CLASS OF DISCRETE CONTROL SYSTEMS WITH TIME-DELAY
Institute of Scientific and Technical Information of China (English)
Xue Liu; Cunchen Gao
2009-01-01
The design of functional observer for a class of discrete systems with time-delay is concerned. The solution to Sylvester function is given. An improved method for the functional observer design is proposed by the condition of linear matrix inequality. In the end, an example is given to illustrate the feasibility of the method.
Kruppa, Lisa; König, Christoph M.; Becker, Martin; Seidel, Torsten
2016-04-01
Most hard rock aquifers, which are important for geothermal use, contain fractures of different type and scale. These fault systems are of major significance for heat flow in the groundwater. The hydrogeological characterization of fault systems must therefore be part of any site investigation in hard rock aquifers and hydraulically important fault systems need to be appropriately represented in associated numerical models. This contribution discusses different spatial discretization methods of fault systems in three-dimensional groundwater models and their impact on the simulated groundwater flow field as well as density and viscosity dependent heat transport. The analysis includes a comparison of the convergence behavior and numerical stability of the different discretization methods. To ensure defendable results, the utilized numerical model SPRING was first verified against data from the Hydrocoin Level 1 Case 2 project. After verification, the software was used to evaluate the impact of different discretization strategies on steady-state and transient groundwater flow and transport model results. The results show a significant influence of the spatial discretization strategy on predicted flow rates and subsequent mass fluxes as well as energy balances.
Bovens, M.A.P.; Zouridis, S.
2002-01-01
The use of ICT is rapidly changing the structure of a number of large executive public agencies. They used to be machine bureaucracies in which street level officials exercised ample administrative discretion in dealing with individual clients. This was kept in check by elaborate systems of external
Directory of Open Access Journals (Sweden)
Xinggui Liu
2011-01-01
Full Text Available In this paper, by using Mawhin's continuation theorem of coincidence degree theory, we establish the existence of at least four positive periodic solutions for a discrete time Lotka-Volterra competitive system with harvesting terms. An example is given to illustrate the effectiveness of our results.
Outer-(J1,J2)-lossless factorizations of linear discrete time-varying systems
Yu, Xiaode; Scherpen, Jacqueline M.A.; Veen, Allejan van der; Dewilde, Patrick
1996-01-01
In this paper the outer-J-lossless factorization for linear discrete time-varying systems is treated. Lossless operators and its corresponding J-lossless chain-scattering operators are studied. Then the factorization is treated by first 'taking out' the anticausal part, and then considering the
Winkel, Brian
2012-01-01
We give an example of cross coursing in which a subject or approach in one course in undergraduate mathematics is used in a completely different course. This situation crosses falling body modelling in an upper level differential equations course into a modest discrete dynamical systems unit of a first-year mathematics course. (Contains 1 figure.)
DEFF Research Database (Denmark)
Tabatabaeipour, Seyed Mojtaba; Bak, Thomas
2012-01-01
In this paper we consider the problem of fault estimation and accommodation for discrete time piecewise linear systems. A robust fault estimator is designed to estimate the fault such that the estimation error converges to zero and H∞ performance of the fault estimation is minimized. Then...
Lyubashevskiy, G. S.; Petrov, A. A.; Sanayev, I. A.; Frishberg, V. E.
1973-01-01
A device for discrete control of the circuit transfer function in automatic analog data processing systems is reported that coordinates the dynamic range of the vibration level change with the signal range of the processing device output. Experimental verification of the device demonstrates that its maximum control speed does not exceed 0.5 sec for a frequency nonuniformity of about 10%.
Outer-(J1,J2)-lossless factorizations of linear discrete time-varying systems
Yu, Xiaode; Scherpen, Jacqueline M.A.; Veen, Allejan van der; Dewilde, Patrick
1996-01-01
In this paper the outer-J-lossless factorization for linear discrete time-varying systems is treated. Lossless operators and its corresponding J-lossless chain-scattering operators are studied. Then the factorization is treated by first 'taking out' the anticausal part, and then considering the oute
On the Riccati Equations of the H∞ Control Problem for Discrete Time-Varying Systems
Verhaegen, Michel; Scherpen, Jacquelien M.A.; Benedetto, Maria Domenica Di; Bittanti, Sergio; Isidori, Alberto; Luca, Alessandro De; Mosca, Edoardo; Oriolo, Giuseppe
1995-01-01
In this paper we investigate the relationship between the different Riccati equations that appear in the H∞ control problem for linear discrete time-varying systems. Once we obtain this relation we can reformulate the conditions under which the H∞ output feedback problem is solvable. In contrary to
Dynamic Analysis of Deep-Ocean Mining Pipe System by Discrete Element Method
Institute of Scientific and Technical Information of China (English)
LI Yan; LIU Shao-jun; LI Li
2007-01-01
The dynamic analysis of a pipe system is one of the most crucial problems for the entire mining system.A discrete element method (DEM) is proposed for the analysis of a deep-ocean mining pipe system,including the lift pipe,pump,buffer and flexible hose.By the discrete element method,the pipe is divided into some rigid elements that are linked by flexible connectors.First,two examples representing static analysis and dynamic analysis respectively are given to show that the DEM model is feasible.Then the three-dimensional DEM model is used for dynamic analysis of the mining pipe system.The dynamic motions of the entire mining pipe system under different work conditions are discussed.Some suggestions are made for the actual operation of deep-ocean mining systems.
Robust stability analysis of uncertain discrete-time systems with state delay
Institute of Scientific and Technical Information of China (English)
任正云; 张立群; 邵惠鹤
2004-01-01
The sufficient conditions of stability for uncertain discrete-time systems with state delay have been proposed by some researchers in the past few years, yet these results may be conservative in application. The stability analysis of these systems is discussed, and the necessary and sufficient condition of stability is derived by method other than constructing Lyapunov function and solving Riccati inequality. The root locations of system characteristic polynomial, which is obtained by augmentation approach and Laplace expansion, determine the stability of uncertain discrete-time systems with state delay, the system is stable if and only if all roots lie within the unit circle. In order to analyze robust stability of system characteristic polynomial effectively, Kharitonov theorem and edge theorem are applied. Example shows the practicability of these methods.
Cannibalism in discrete-time predator-prey systems.
Chow, Yunshyong; Jang, Sophia R-J
2012-01-01
In this study, we propose and investigate a two-stage population model with cannibalism. It is shown that cannibalism can destabilize and lower the magnitude of the interior steady state. However, it is proved that cannibalism has no effect on the persistence of the population. Based on this model, we study two systems of predator-prey interactions where the prey population is cannibalistic. A sufficient condition based on the nontrivial boundary steady state for which both populations can coexist is derived. It is found via numerical simulations that introduction of the predator population may either stabilize or destabilize the prey dynamics, depending on cannibalism coefficients and other vital parameters.
General approach for discrete simulation of complex systems
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
By applying a general algorithm to differentparticle models, i.e. molecular dynamic (MD) and macro-scale pseudo-particle models (MaPPM), two physical phe-nomena of distinct nature and scale differences, i.e. the mu-tual diffusion of two gases and the instability on the interfacebetween two fluids, are simulated successfully. It demon-strates the possibility that the general algorithms of goodparallelism and software of modular architecture can beestablished for complex physical systems based on the parti-cle methods (PMs), which will thereby develop into a main-stream approach as finite element (FE) and finite difference(FD) approaches.
A new extended H∞ filter for discrete nonlinear systems
Institute of Scientific and Technical Information of China (English)
张永安; 周荻; 段广仁
2004-01-01
Nonlinear estimation problem is investigated in this paper. By extension of a linear H∞ estimation with corrector-predictor form to nonlinear cases, a new extended H∞ filter is proposed for time-varying discretetime nonlinear systems. The new filter has a simple observer structure based on a local linearization model, and can be viewed as a general case of the extended Kalman filter (EKF). An example demonstrates that the new filter with a suitable-chosen prescribed H∞ bound performs better than the EKF.
Features, Events, and Processes: system Level
Energy Technology Data Exchange (ETDEWEB)
D. McGregor
2004-10-15
The purpose of this analysis report is to evaluate and document the inclusion or exclusion of the system-level features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment for the license application (TSPA-LA). A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for screening decisions. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.113 (d, e, and f) (DIRS 156605). The system-level FEPs addressed in this report typically are overarching in nature, rather than being focused on a particular process or subsystem. As a result, they are best dealt with at the system level rather than addressed within supporting process-level or subsystem-level analyses and models reports. The system-level FEPs also tend to be directly addressed by regulations, guidance documents, or assumptions listed in the regulations; or are addressed in background information used in development of the regulations. For included FEPs, this analysis summarizes the implementation of the FEP in the TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from the TSPA-LA (i.e., why the FEP is excluded). The initial version of this report (Revision 00) was developed to support the total system performance assessment for site recommendation (TSPA-SR). This revision addresses the license application (LA) FEP List (DIRS 170760).
Quasi-Controllability and Estimates of Amplitudes of Transient Regimes in Discrete Systems
Kozyakin, V; Pokrovskii, A
2009-01-01
Families of regimes for discrete control systems are studied possessing a special quasi-controllability property that is similar to the Kalman controllability property. A new approach is proposed to estimate the amplitudes of transient regimes in quasi-controllable systems. Its essence is in obtaining of constructive a priori bounds for degree of overshooting in terms of the quasi-controllability measure. The results are applicable for analysis of transients, classical absolute stability problem and, especially, for stability problem for desynchronized systems.
Global Analysis of Almost Periodic Solution of a Discrete Multispecies Mutualism System
Directory of Open Access Journals (Sweden)
Hui Zhang
2014-01-01
of the system. Assuming that the coefficients in the system are almost periodic sequences, we obtain the sufficient conditions for the existence of a unique almost periodic solution which is globally attractive. In particular, for the discrete two-species Lotka-Volterra mutualism system, the sufficient conditions for the existence of a unique uniformly asymptotically stable almost periodic solution are obtained. An example together with numerical simulation indicates the feasibility of the main result.
Terrorism Event Classification Using Fuzzy Inference Systems
Inyaem, Uraiwan; Meesad, Phayung; Tran, Dat
2010-01-01
Terrorism has led to many problems in Thai societies, not only property damage but also civilian casualties. Predicting terrorism activities in advance can help prepare and manage risk from sabotage by these activities. This paper proposes a framework focusing on event classification in terrorism domain using fuzzy inference systems (FISs). Each FIS is a decision-making model combining fuzzy logic and approximate reasoning. It is generated in five main parts: the input interface, the fuzzification interface, knowledge base unit, decision making unit and output defuzzification interface. Adaptive neuro-fuzzy inference system (ANFIS) is a FIS model adapted by combining the fuzzy logic and neural network. The ANFIS utilizes automatic identification of fuzzy logic rules and adjustment of membership function (MF). Moreover, neural network can directly learn from data set to construct fuzzy logic rules and MF implemented in various applications. FIS settings are evaluated based on two comparisons. The first evaluat...
BUEES:a bottom-up event extraction system
Institute of Scientific and Technical Information of China (English)
Xiao DING; Bing QIN; Ting LIU
2015-01-01
Traditional event extraction systems focus mainly on event type identifi cation and event participant extraction based on pre-specifi ed event type paradigms and manually annotated corpora. However, different domains have different event type paradigms. When transferring to a new domain, we have to build a new event type paradigm and annotate a new corpus from scratch. This kind of conventional event extraction system requires massive human effort, and hence prevents event extraction from being widely applicable. In this paper, we present BUEES, a bottom-up event extraction system, which extracts events from the web in a completely unsupervised way. The system automatically builds an event type paradigm in the input corpus, and then proceeds to extract a large number of instance patterns of these events. Subsequently, the system extracts event arguments according to these patterns. By conducting a series of experiments, we demonstrate the good performance of BUEES and compare it to a state-of-the-art Chinese event extraction system, i.e., a supervised event extraction system. Experimental results show that BUEES performs comparably (5% higher F-measure in event type identifi cation and 3% higher F-measure in event argument extraction), but without any human effort.
Homaeinezhad, M R; Atyabi, S A; Daneshvar, E; Ghaffari, A; Tahmasebi, M
2010-12-01
The aim of this study is to describe a robust unified framework for segmentation of the phonocardiogram (PCG) signal sounds based on the false-alarm probability (FAP) bounded segmentation of a properly calculated detection measure. To this end, first the original PCG signal is appropriately pre-processed and then, a fixed sample size sliding window is moved on the pre-processed signal. In each slid, the area under the excerpted segment is multiplied by its curve-length to generate the Area Curve Length (ACL) metric to be used as the segmentation decision statistic (DS). Afterwards, histogram parameters of the nonlinearly enhanced DS metric are used for regulation of the α-level Neyman-Pearson classifier for FAP-bounded delineation of the PCG events. The proposed method was applied to all 85 records of Nursing Student Heart Sounds database (NSHSDB) including stenosis, insufficiency, regurgitation, gallop, septal defect, split sound, rumble, murmur, clicks, friction rub and snap disorders with different sampling frequencies. Also, the method was applied to the records obtained from an electronic stethoscope board designed for fulfillment of this study in the presence of high-level power-line noise and external disturbing sounds and as the results, no false positive (FP) or false negative (FN) errors were detected. High noise robustness, acceptable detection-segmentation accuracy of PCG events in various cardiac system conditions, and having no parameters dependency to the acquisition sampling frequency can be mentioned as the principal virtues and abilities of the proposed ACL-based PCG events detection-segmentation algorithm.
ENGINEERED BARRIER SYSTEM FEATURES, EVENTS AND PROCESSES
Energy Technology Data Exchange (ETDEWEB)
Jaros, W.
2005-08-30
The purpose of this report is to evaluate and document the inclusion or exclusion of engineered barrier system (EBS) features, events, and processes (FEPs) with respect to models and analyses used to support the total system performance assessment for the license application (TSPA-LA). A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for exclusion screening decisions. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.114 (d, e, and f) [DIRS 173273]. The FEPs addressed in this report deal with those features, events, and processes relevant to the EBS focusing mainly on those components and conditions exterior to the waste package and within the rock mass surrounding emplacement drifts. The components of the EBS are the drip shield, waste package, waste form, cladding, emplacement pallet, emplacement drift excavated opening (also referred to as drift opening in this report), and invert. FEPs specific to the waste package, cladding, and drip shield are addressed in separate FEP reports: for example, ''Screening of Features, Events, and Processes in Drip Shield and Waste Package Degradation'' (BSC 2005 [DIRS 174995]), ''Clad Degradation--FEPs Screening Arguments (BSC 2004 [DIRS 170019]), and Waste-Form Features, Events, and Processes'' (BSC 2004 [DIRS 170020]). For included FEPs, this report summarizes the implementation of the FEP in the TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded). This report also documents changes to the EBS FEPs list that have occurred since the previous versions of this report. These changes have resulted due to a reevaluation of the FEPs for TSPA-LA as identified in Section 1.2 of this report and described in more detail in Section 6.1.1. This revision addresses updates in Yucca Mountain Project
Sensor Fault Estimation Filter Design for Discrete-time Linear Time-varying Systems
Institute of Scientific and Technical Information of China (English)
WANG Zhen-Hua; RODRIGUES Mickael; THEILLIOL Didier; SHEN Yi
2014-01-01
This paper proposes a sensor fault diagnosis method for a class of discrete-time linear time-varying (LTV) systems. In this paper, the considered system is firstly formulated as a de-scriptor system representation by considering the sensor faults as auxiliary state variables. Based on the descriptor system model, a fault estimation filter which can simultaneously estimate the state and the sensor fault magnitudes is designed via a minimum-variance principle. Then, a fault diagnosis scheme is presented by using a bank of the proposed fault estimation filters. The novelty of this paper lies in developing a sensor fault diagnosis method for discrete LTV systems without any assumption on the dynamic of fault. Another advantage of the proposed method is its ability to detect, isolate and estimate sensor faults in the presence of process noise and measurement noise. Simulation results are given to illustrate the effectiveness of the proposed method.
Robust stability test for 2-D continuous-discrete systems with interval parameters
Institute of Scientific and Technical Information of China (English)
肖扬
2004-01-01
It is revealed that the dynamic stability of 2-D recursive continuous-discrete systems with interval parameters involves the problem of robust Hurwitz-Schur stability of bivariate polynomials family. It is proved that the HurwitzSchur stability of the denominator polynomials of the systems is necessary and sufficient for the asymptotic stability of the 2-D hybrid systems. The 2-D hybrid transformation, i.e. 2-D Laplace-Z transformation, has been proposed to solve the stability analysis of the 2-D continuous-discrete systems, to get the 2-D hybrid transfer functions of the systems. The edge test for the Hurwitz-Schur stability of interval bivariate polynomials is introduced. The Hurwitz-Schur stability of the interval family of 2-D polynomials can be guaranteed by the stability of its finite edge polynomials of the family. An algorithm about the stability test of edge polynomials is given.
Robust admissibility and admissibilisation of uncertain discrete singular time-delay systems
Cui, Yukang; Lam, James; Feng, Zhiguang; Shen, Jun
2016-11-01
This paper is concerned with the characterisation of robust admissibility and admissibilisation for uncertain discrete-time singular system with interval time-varying delay. Considering the norm-bounded uncertainty and the interval time-varying delay, a new comparison model is introduced to transform the original singular system into two connected subsystems. After this transformation, a singular system without uncertainty and delay can be handled by the Lyapunov-Krasovskii functional method. By virtue of the scaled small gain theorem, an admissibility condition of the original singular system is proposed in terms of linear matrix inequalities. Moreover, the problem of robust admissibilisation of uncertain discrete singular time-varying system is also studied by iterative linear matrix inequality algorithm with initial condition optimisation. Several numerical examples are used to illustrate that the results are less conservative than existing ones.
Master equation approach to reversible and conservative discrete systems.
Urbina, Felipe; Rica, Sergio
2016-12-01
A master equation approach is applied to a reversible and conservative cellular automaton model (Q2R). The Q2R model is a dynamical variation of the Ising model for ferromagnetism that possesses quite a rich and complex dynamics. The configuration space is composed of a huge number of cycles with exponentially long periods. Following Nicolis and Nicolis [G. Nicolis and C. Nicolis, Phys. Rev. A 38, 427 (1988)0556-279110.1103/PhysRevA.38.427], a coarse-graining approach is applied to the time series of the total magnetization, leading to a master equation that governs the macroscopic irreversible dynamics of the Q2R automata. The methodology is replicated for various lattice sizes. In the case of small systems, we show that the master equation leads to a tractable probability transfer matrix of moderate size, which provides a master equation for a coarse-grained probability distribution. The method is validated and some explicit examples are discussed.
Discrete Particle Dynamics Simulations of Adhesive Systems with Thermostatting
Pierce, Flint; Lechman, Jeremy; Hewson, John
2012-02-01
Aggregation/coagulation/flocculation processes are ubiquitous in modern industry from fields as diverse as waste water treatment, the food industry, algae biofuel production, and materials processing where control of the size and morphology of aggregates is paramount to the application of interest. Population balance models have historically been used with success in predicting aggregation kinetics and size distributions for these processes. However, even the most robust population balance schemes can lack an exact description of the underlying physical processes governing attractive or adhesive particulate matter suspended in a background medium, including finite aggregate strength and yield stress, restructuring length and time scales, and response to hydrodynamic forces. In order to elucidate these phenomena, We develop and use a JKR type model for simulating adhesive particulate matter in a background medium varying from dilute gas to liquid. We evaluate the time and length scales for restructuring/fragmentation that result from this model as a function of aggregate size and fractal dimension. We additionally introduce a method for pairwise thermostatting of the adhesive potential and discuss the applicability of this model to various adhesive systems.
Master equation approach to reversible and conservative discrete systems
Urbina, Felipe; Rica, Sergio
2016-12-01
A master equation approach is applied to a reversible and conservative cellular automaton model (Q2R). The Q2R model is a dynamical variation of the Ising model for ferromagnetism that possesses quite a rich and complex dynamics. The configuration space is composed of a huge number of cycles with exponentially long periods. Following Nicolis and Nicolis [G. Nicolis and C. Nicolis, Phys. Rev. A 38, 427 (1988), 10.1103/PhysRevA.38.427], a coarse-graining approach is applied to the time series of the total magnetization, leading to a master equation that governs the macroscopic irreversible dynamics of the Q2R automata. The methodology is replicated for various lattice sizes. In the case of small systems, we show that the master equation leads to a tractable probability transfer matrix of moderate size, which provides a master equation for a coarse-grained probability distribution. The method is validated and some explicit examples are discussed.
Dynamics of Quantal Heating in Electron Systems with Discrete Spectra
Mayer, William; Dietrich, Scott; Vitkalov, Sergey; Bykov, Alexey
2015-03-01
The temporal evolution of quantal Joule heating of 2D electrons in GaAs quantum well placed in quantizing magnetic fields is studied using a difference frequency method. The method is based on measurements of the electron conductivity oscillating at the beat frequency f =f1 -f2 between two microwaves applied to 2D system at frequencies f1 and f2. The method provides direct access to the dynamical characteristics of the heating and yields the inelastic scattering time τin of 2D electrons. The obtained τin is strongly temperature dependent, varying from 0.13 ns at 5.5K to 1 ns at 2.4K in magnetic field B=0.333T. When temperature T exceeds the Landau level separation the relaxation rate 1 /τin is proportional to T2, indicating the electron-electron interaction as the dominant mechanism limiting the quantal heating. At lower temperatures the rate tends to be proportional to T3, indicating considerable contribution from electron-phonon scattering. This work was supported by the National Science Foundation (DMR 1104503), the Russian Foundation for Basic Research (project no.14-02-01158) and the Ministry of Education and Science of the Russian Federation.
Dynamics of quantal heating in electron systems with discrete spectra
Dietrich, Scott; Mayer, William; Vitkalov, Sergey; Bykov, A. A.
2015-05-01
The temporal evolution of quantal Joule heating of two-dimensional (2D) electrons in a GaAs quantum well placed in quantizing magnetic fields is studied using a difference-frequency method. The method is based on measurements of the electron conductivity oscillating at the beat frequency f =f1-f2 between two microwaves applied to the 2D system at frequencies f1 and f2. The method provides direct access to the dynamical characteristics of the heating and yields the inelastic-scattering time τi n of 2D electrons. The obtained τi n is strongly temperature dependent, varying from 0.13 ns at 5.5 K to 1 ns at 2.4 K in magnetic field B =0.333 T . When the temperature T exceeds the Landau-level separation, the relaxation rate 1 /τi n is proportional to T2, indicating electron-electron interaction as the dominant mechanism limiting the quantal heating. At lower temperatures, the rate tends to be proportional to T3, indicating considerable contribution from electron-phonon scattering.
Distributed Event-Triggered Control of Multiagent Systems with Time-Varying Topology
Directory of Open Access Journals (Sweden)
Jingwei Ma
2014-01-01
Full Text Available This paper studies the consensus of first-order discrete-time multiagent systems, where the interaction topology is time-varying. The event-triggered control is used to update the control input of each agent, and the event-triggering condition is designed based on the combination of the relative states of each agent to its neighbors. By applying the common Lyapunov function method, a sufficient condition for consensus, which is expressed as a group of linear matrix inequalities, is obtained and the feasibility of these linear matrix inequalities is further analyzed. Simulation examples are provided to explain the effectiveness of the theoretical results.
Synthesis of nonlinear discrete control systems via time-delay affine Takagi-Sugeno fuzzy models.
Chang, Wen-Jer; Chang, Wei
2005-04-01
The affine Takagi-Sugeno (TS) fuzzy model played a more important role in nonlinear control because it can be used to approximate the nonlinear systems more than the homogeneous TS fuzzy models. Besides, it is known that the time delays exist in physical systems and the previous works did not consider the time delay effects in the analysis of affine TS fuzzy models. Hence a parallel distributed compensation based fuzzy controller design issue for discrete time-delay affine TS fuzzy models is considered in this paper. The time-delay effect is considered in the discrete affine TS fuzzy models and the stabilization issue is developed for the nonlinear time-delay systems. Finally, a numerical simulation for a time-delayed nonlinear truck-trailer system is given to show the applications of the present approach.
Flaw-tolerance of nonlocal discrete systems and interpretation according to network theory
Directory of Open Access Journals (Sweden)
A. Infuso
2014-07-01
Full Text Available Discrete systems are modeled as a network of nodes (particles, molecules, or atoms linked by nonlinear springs to simulate the action of van der Waals forces. Such systems are nonlocal if links connecting non-adjacent nodes are introduced. For their topological characterization, a nonlocality index (NLI inspired by network theory is proposed. The mechanical response of 1D and 2D nonlocal discrete systems is predicted according to finite element (FE simulations based on a nonlinear spring element for large displacements implemented in the FE programme FEAP. Uniaxial force-displacement responses of intact and defective systems (with links or nodes removed are numerically simulated. Strain localization phenomena, size-scale effects and the ability to tolerate defects are investigated by varying the degree of nonlocality.
H∞ output tracking control of discrete-time nonlinear systems via standard neural network models.
Liu, Meiqin; Zhang, Senlin; Chen, Haiyang; Sheng, Weihua
2014-10-01
This brief proposes an output tracking control for a class of discrete-time nonlinear systems with disturbances. A standard neural network model is used to represent discrete-time nonlinear systems whose nonlinearity satisfies the sector conditions. H∞ control performance for the closed-loop system including the standard neural network model, the reference model, and state feedback controller is analyzed using Lyapunov-Krasovskii stability theorem and linear matrix inequality (LMI) approach. The H∞ controller, of which the parameters are obtained by solving LMIs, guarantees that the output of the closed-loop system closely tracks the output of a given reference model well, and reduces the influence of disturbances on the tracking error. Three numerical examples are provided to show the effectiveness of the proposed H∞ output tracking design approach.
Autonomous learning by simple dynamical systems with a discrete-time formulation
Bilen, Agustín M.; Kaluza, Pablo
2017-05-01
We present a discrete-time formulation for the autonomous learning conjecture. The main feature of this formulation is the possibility to apply the autonomous learning scheme to systems in which the errors with respect to target functions are not well-defined for all times. This restriction for the evaluation of functionality is a typical feature in systems that need a finite time interval to process a unit piece of information. We illustrate its application on an artificial neural network with feed-forward architecture for classification and a phase oscillator system with synchronization properties. The main characteristics of the discrete-time formulation are shown by constructing these systems with predefined functions.
Discrete-Time Sliding Mode Control for Uncertain Networked System Subject to Time Delay
Directory of Open Access Journals (Sweden)
Saulo C. Garcia
2015-01-01
Full Text Available We deal with uncertain systems with networked sliding mode control, subject to time delay. To minimize the degenerative effects of the time delay, a simpler format of state predictor is proposed in the control law. Some ultimate bounded stability analyses and stabilization conditions are provided for the uncertain time delay system with proposed discrete-time sliding mode control strategy. A numerical example is presented to corroborate the analyses.