WorldWideScience

Sample records for discrete event control

  1. Control of Discrete-Event Systems Automata and Petri Net Perspectives

    CERN Document Server

    Silva, Manuel; Schuppen, Jan

    2013-01-01

    Control of Discrete-event Systems provides a survey of the most important topics in the discrete-event systems theory with particular focus on finite-state automata, Petri nets and max-plus algebra. Coverage ranges from introductory material on the basic notions and definitions of discrete-event systems to more recent results. Special attention is given to results on supervisory control, state estimation and fault diagnosis of both centralized and distributed/decentralized systems developed in the framework of the Distributed Supervisory Control of Large Plants (DISC) project. Later parts of the text are devoted to the study of congested systems though fluidization, an over approximation allowing a much more efficient study of observation and control problems of timed Petri nets. Finally, the max-plus algebraic approach to the analysis and control of choice-free systems is also considered. Control of Discrete-event Systems provides an introduction to discrete-event systems for readers that are not familiar wi...

  2. DEVS representation of dynamical systems - Event-based intelligent control. [Discrete Event System Specification

    Science.gov (United States)

    Zeigler, Bernard P.

    1989-01-01

    It is shown how systems can be advantageously represented as discrete-event models by using DEVS (discrete-event system specification), a set-theoretic formalism. Such DEVS models provide a basis for the design of event-based logic control. In this control paradigm, the controller expects to receive confirming sensor responses to its control commands within definite time windows determined by its DEVS model of the system under control. The event-based contral paradigm is applied in advanced robotic and intelligent automation, showing how classical process control can be readily interfaced with rule-based symbolic reasoning systems.

  3. Hierarchical Discrete Event Supervisory Control of Aircraft Propulsion Systems

    Science.gov (United States)

    Yasar, Murat; Tolani, Devendra; Ray, Asok; Shah, Neerav; Litt, Jonathan S.

    2004-01-01

    This paper presents a hierarchical application of Discrete Event Supervisory (DES) control theory for intelligent decision and control of a twin-engine aircraft propulsion system. A dual layer hierarchical DES controller is designed to supervise and coordinate the operation of two engines of the propulsion system. The two engines are individually controlled to achieve enhanced performance and reliability, necessary for fulfilling the mission objectives. Each engine is operated under a continuously varying control system that maintains the specified performance and a local discrete-event supervisor for condition monitoring and life extending control. A global upper level DES controller is designed for load balancing and overall health management of the propulsion system.

  4. Hybrid modelling in discrete-event control system design

    NARCIS (Netherlands)

    Beek, van D.A.; Rooda, J.E.; Gordijn, S.H.F.; Borne, P.

    1996-01-01

    Simulation-based testing of discrete-event control systems can be advantageous. There is, however, a considerable difference between languages for real-time control and simulation languages. The Chi language, presented in this paper, is suited to specification and simulation of real-time control

  5. Control of discrete-event systems with modular or distributed structure

    Czech Academy of Sciences Publication Activity Database

    Komenda, Jan; van Schuppen, J. H.

    2007-01-01

    Roč. 388, č. 3 (2007), s. 199-226 ISSN 0304-3975 R&D Projects: GA AV ČR(CZ) KJB100190609 Institutional research plan: CEZ:AV0Z10190503 Keywords : supervisory control * modular discrete-event system * distributed discrete-event system Subject RIV: BA - General Mathematics Impact factor: 0.735, year: 2007

  6. Modular Control of Discrete-Event Systems with Coalgebra

    Czech Academy of Sciences Publication Activity Database

    Komenda, Jan; van Schuppen, J. H.

    2008-01-01

    Roč. 53, č. 2 (2008), s. 447-460 ISSN 0018-9286 R&D Projects: GA AV ČR(CZ) KJB100190609 Institutional research plan: CEZ:AV0Z10190503 Keywords : discrete-event systems * modular supervisory control * coalgebra Subject RIV: BA - General Mathematics Impact factor: 3.293, year: 2008

  7. Adaptive Event-Triggered Control Based on Heuristic Dynamic Programming for Nonlinear Discrete-Time Systems.

    Science.gov (United States)

    Dong, Lu; Zhong, Xiangnan; Sun, Changyin; He, Haibo

    2017-07-01

    This paper presents the design of a novel adaptive event-triggered control method based on the heuristic dynamic programming (HDP) technique for nonlinear discrete-time systems with unknown system dynamics. In the proposed method, the control law is only updated when the event-triggered condition is violated. Compared with the periodic updates in the traditional adaptive dynamic programming (ADP) control, the proposed method can reduce the computation and transmission cost. An actor-critic framework is used to learn the optimal event-triggered control law and the value function. Furthermore, a model network is designed to estimate the system state vector. The main contribution of this paper is to design a new trigger threshold for discrete-time systems. A detailed Lyapunov stability analysis shows that our proposed event-triggered controller can asymptotically stabilize the discrete-time systems. Finally, we test our method on two different discrete-time systems, and the simulation results are included.

  8. Improving the Teaching of Discrete-Event Control Systems Using a LEGO Manufacturing Prototype

    Science.gov (United States)

    Sanchez, A.; Bucio, J.

    2012-01-01

    This paper discusses the usefulness of employing LEGO as a teaching-learning aid in a post-graduate-level first course on the control of discrete-event systems (DESs). The final assignment of the course is presented, which asks students to design and implement a modular hierarchical discrete-event supervisor for the coordination layer of a…

  9. An algebra of discrete event processes

    Science.gov (United States)

    Heymann, Michael; Meyer, George

    1991-01-01

    This report deals with an algebraic framework for modeling and control of discrete event processes. The report consists of two parts. The first part is introductory, and consists of a tutorial survey of the theory of concurrency in the spirit of Hoare's CSP, and an examination of the suitability of such an algebraic framework for dealing with various aspects of discrete event control. To this end a new concurrency operator is introduced and it is shown how the resulting framework can be applied. It is further shown that a suitable theory that deals with the new concurrency operator must be developed. In the second part of the report the formal algebra of discrete event control is developed. At the present time the second part of the report is still an incomplete and occasionally tentative working paper.

  10. Research on a Hierarchical Dynamic Automatic Voltage Control System Based on the Discrete Event-Driven Method

    Directory of Open Access Journals (Sweden)

    Yong Min

    2013-06-01

    Full Text Available In this paper, concepts and methods of hybrid control systems are adopted to establish a hierarchical dynamic automatic voltage control (HD-AVC system, realizing the dynamic voltage stability of power grids. An HD-AVC system model consisting of three layers is built based on the hybrid control method and discrete event-driven mechanism. In the Top Layer, discrete events are designed to drive the corresponding control block so as to avoid solving complex multiple objective functions, the power system’s characteristic matrix is formed and the minimum amplitude eigenvalue (MAE is calculated through linearized differential-algebraic equations. MAE is applied to judge the system’s voltage stability and security and construct discrete events. The Middle Layer is responsible for management and operation, which is also driven by discrete events. Control values of the control buses are calculated based on the characteristics of power systems and the sensitivity method. Then control values generate control strategies through the interface block. In the Bottom Layer, various control devices receive and implement the control commands from the Middle Layer. In this way, a closed-loop power system voltage control is achieved. Computer simulations verify the validity and accuracy of the HD-AVC system, and verify that the proposed HD-AVC system is more effective than normal voltage control methods.

  11. Discrete-Event Simulation

    Directory of Open Access Journals (Sweden)

    Prateek Sharma

    2015-04-01

    Full Text Available Abstract Simulation can be regarded as the emulation of the behavior of a real-world system over an interval of time. The process of simulation relies upon the generation of the history of a system and then analyzing that history to predict the outcome and improve the working of real systems. Simulations can be of various kinds but the topic of interest here is one of the most important kind of simulation which is Discrete-Event Simulation which models the system as a discrete sequence of events in time. So this paper aims at introducing about Discrete-Event Simulation and analyzing how it is beneficial to the real world systems.

  12. Supervisory control synthesis of discrete-event systems using a coordination scheme

    Czech Academy of Sciences Publication Activity Database

    Komenda, Jan; Masopust, Tomáš; van Schuppen, J. H.

    2012-01-01

    Roč. 48, č. 2 (2012), s. 247-254 ISSN 0005-1098 R&D Projects: GA ČR(CZ) GAP103/11/0517; GA ČR GPP202/11/P028 Grant - others:European Commission(XE) EU.ICT.DISC 224498 Institutional research plan: CEZ:AV0Z10190503 Keywords : discrete-event systems * supervisory control * distributed control * closed-loop systems * controllability Subject RIV: BA - General Mathematics Impact factor: 2.919, year: 2012 http://www.sciencedirect.com/science/article/pii/S0005109811005395

  13. Supervisory control synthesis of discrete-event systems using a coordination scheme

    Czech Academy of Sciences Publication Activity Database

    Komenda, Jan; Masopust, Tomáš; van Schuppen, J. H.

    2012-01-01

    Roč. 48, č. 2 (2012), s. 247-254 ISSN 0005-1098 R&D Projects: GA ČR(CZ) GAP103/11/0517; GA ČR GPP202/11/P028 Grant - others:European Commission(XE) EU. ICT .DISC 224498 Institutional research plan: CEZ:AV0Z10190503 Keywords : discrete-event systems * supervisory control * distributed control * closed-loop systems * controllability Subject RIV: BA - General Mathematics Impact factor: 2.919, year: 2012 http://www.sciencedirect.com/science/article/pii/S0005109811005395

  14. Control of discrete event systems modeled as hierarchical state machines

    Science.gov (United States)

    Brave, Y.; Heymann, M.

    1991-01-01

    The authors examine a class of discrete event systems (DESs) modeled as asynchronous hierarchical state machines (AHSMs). For this class of DESs, they provide an efficient method for testing reachability, which is an essential step in many control synthesis procedures. This method utilizes the asynchronous nature and hierarchical structure of AHSMs, thereby illustrating the advantage of the AHSM representation as compared with its equivalent (flat) state machine representation. An application of the method is presented where an online minimally restrictive solution is proposed for the problem of maintaining a controlled AHSM within prescribed legal bounds.

  15. Synchronization Techniques in Parallel Discrete Event Simulation

    OpenAIRE

    Lindén, Jonatan

    2018-01-01

    Discrete event simulation is an important tool for evaluating system models in many fields of science and engineering. To improve the performance of large-scale discrete event simulations, several techniques to parallelize discrete event simulation have been developed. In parallel discrete event simulation, the work of a single discrete event simulation is distributed over multiple processing elements. A key challenge in parallel discrete event simulation is to ensure that causally dependent ...

  16. Humans can integrate feedback of discrete events in their sensorimotor control of a robotic hand.

    Science.gov (United States)

    Cipriani, Christian; Segil, Jacob L; Clemente, Francesco; ff Weir, Richard F; Edin, Benoni

    2014-11-01

    Providing functionally effective sensory feedback to users of prosthetics is a largely unsolved challenge. Traditional solutions require high band-widths for providing feedback for the control of manipulation and yet have been largely unsuccessful. In this study, we have explored a strategy that relies on temporally discrete sensory feedback that is technically simple to provide. According to the Discrete Event-driven Sensory feedback Control (DESC) policy, motor tasks in humans are organized in phases delimited by means of sensory encoded discrete mechanical events. To explore the applicability of DESC for control, we designed a paradigm in which healthy humans operated an artificial robot hand to lift and replace an instrumented object, a task that can readily be learned and mastered under visual control. Assuming that the central nervous system of humans naturally organizes motor tasks based on a strategy akin to DESC, we delivered short-lasting vibrotactile feedback related to events that are known to forcefully affect progression of the grasp-lift-and-hold task. After training, we determined whether the artificial feedback had been integrated with the sensorimotor control by introducing short delays and we indeed observed that the participants significantly delayed subsequent phases of the task. This study thus gives support to the DESC policy hypothesis. Moreover, it demonstrates that humans can integrate temporally discrete sensory feedback while controlling an artificial hand and invites further studies in which inexpensive, noninvasive technology could be used in clever ways to provide physiologically appropriate sensory feedback in upper limb prosthetics with much lower band-width requirements than with traditional solutions.

  17. Analysis hierarchical model for discrete event systems

    Science.gov (United States)

    Ciortea, E. M.

    2015-11-01

    The This paper presents the hierarchical model based on discrete event network for robotic systems. Based on the hierarchical approach, Petri network is analysed as a network of the highest conceptual level and the lowest level of local control. For modelling and control of complex robotic systems using extended Petri nets. Such a system is structured, controlled and analysed in this paper by using Visual Object Net ++ package that is relatively simple and easy to use, and the results are shown as representations easy to interpret. The hierarchical structure of the robotic system is implemented on computers analysed using specialized programs. Implementation of hierarchical model discrete event systems, as a real-time operating system on a computer network connected via a serial bus is possible, where each computer is dedicated to local and Petri model of a subsystem global robotic system. Since Petri models are simplified to apply general computers, analysis, modelling, complex manufacturing systems control can be achieved using Petri nets. Discrete event systems is a pragmatic tool for modelling industrial systems. For system modelling using Petri nets because we have our system where discrete event. To highlight the auxiliary time Petri model using transport stream divided into hierarchical levels and sections are analysed successively. Proposed robotic system simulation using timed Petri, offers the opportunity to view the robotic time. Application of goods or robotic and transmission times obtained by measuring spot is obtained graphics showing the average time for transport activity, using the parameters sets of finished products. individually.

  18. Behavior coordination of mobile robotics using supervisory control of fuzzy discrete event systems.

    Science.gov (United States)

    Jayasiri, Awantha; Mann, George K I; Gosine, Raymond G

    2011-10-01

    In order to incorporate the uncertainty and impreciseness present in real-world event-driven asynchronous systems, fuzzy discrete event systems (DESs) (FDESs) have been proposed as an extension to crisp DESs. In this paper, first, we propose an extension to the supervisory control theory of FDES by redefining fuzzy controllable and uncontrollable events. The proposed supervisor is capable of enabling feasible uncontrollable and controllable events with different possibilities. Then, the extended supervisory control framework of FDES is employed to model and control several navigational tasks of a mobile robot using the behavior-based approach. The robot has limited sensory capabilities, and the navigations have been performed in several unmodeled environments. The reactive and deliberative behaviors of the mobile robotic system are weighted through fuzzy uncontrollable and controllable events, respectively. By employing the proposed supervisory controller, a command-fusion-type behavior coordination is achieved. The observability of fuzzy events is incorporated to represent the sensory imprecision. As a systematic analysis of the system, a fuzzy-state-based controllability measure is introduced. The approach is implemented in both simulation and real time. A performance evaluation is performed to quantitatively estimate the validity of the proposed approach over its counterparts.

  19. Non-fragile ?-? control for discrete-time stochastic nonlinear systems under event-triggered protocols

    Science.gov (United States)

    Sun, Ying; Ding, Derui; Zhang, Sunjie; Wei, Guoliang; Liu, Hongjian

    2018-07-01

    In this paper, the non-fragile ?-? control problem is investigated for a class of discrete-time stochastic nonlinear systems under event-triggered communication protocols, which determine whether the measurement output should be transmitted to the controller or not. The main purpose of the addressed problem is to design an event-based output feedback controller subject to gain variations guaranteeing the prescribed disturbance attenuation level described by the ?-? performance index. By utilizing the Lyapunov stability theory combined with S-procedure, a sufficient condition is established to guarantee both the exponential mean-square stability and the ?-? performance for the closed-loop system. In addition, with the help of the orthogonal decomposition, the desired controller parameter is obtained in terms of the solution to certain linear matrix inequalities. Finally, a simulation example is exploited to demonstrate the effectiveness of the proposed event-based controller design scheme.

  20. Discrete Event Supervisory Control Applied to Propulsion Systems

    Science.gov (United States)

    Litt, Jonathan S.; Shah, Neerav

    2005-01-01

    The theory of discrete event supervisory (DES) control was applied to the optimal control of a twin-engine aircraft propulsion system and demonstrated in a simulation. The supervisory control, which is implemented as a finite-state automaton, oversees the behavior of a system and manages it in such a way that it maximizes a performance criterion, similar to a traditional optimal control problem. DES controllers can be nested such that a high-level controller supervises multiple lower level controllers. This structure can be expanded to control huge, complex systems, providing optimal performance and increasing autonomy with each additional level. The DES control strategy for propulsion systems was validated using a distributed testbed consisting of multiple computers--each representing a module of the overall propulsion system--to simulate real-time hardware-in-the-loop testing. In the first experiment, DES control was applied to the operation of a nonlinear simulation of a turbofan engine (running in closed loop using its own feedback controller) to minimize engine structural damage caused by a combination of thermal and structural loads. This enables increased on-wing time for the engine through better management of the engine-component life usage. Thus, the engine-level DES acts as a life-extending controller through its interaction with and manipulation of the engine s operation.

  1. State-feedback control of fuzzy discrete-event systems.

    Science.gov (United States)

    Lin, Feng; Ying, Hao

    2010-06-01

    In a 2002 paper, we combined fuzzy logic with discrete-event systems (DESs) and established an automaton model of fuzzy DESs (FDESs). The model can effectively represent deterministic uncertainties and vagueness, as well as human subjective observation and judgment inherent to many real-world problems, particularly those in biomedicine. We also investigated optimal control of FDESs and applied the results to optimize HIV/AIDS treatments for individual patients. Since then, other researchers have investigated supervisory control problems in FDESs, and several results have been obtained. These results are mostly derived by extending the traditional supervisory control of (crisp) DESs, which are string based. In this paper, we develop state-feedback control of FDESs that is different from the supervisory control extensions. We use state space to describe the system behaviors and use state feedback in control. Both disablement and enforcement are allowed. Furthermore, we study controllability based on the state space and prove that a controller exists if and only if the controlled system behavior is (state-based) controllable. We discuss various properties of the state-based controllability. Aside from novelty, the proposed new framework has the advantages of being able to address a wide range of practical problems that cannot be effectively dealt with by existing approaches. We use the diabetes treatment as an example to illustrate some key aspects of our theoretical results.

  2. Integrating Continuous-Time and Discrete-Event Concepts in Process Modelling, Simulation and Control

    NARCIS (Netherlands)

    Beek, van D.A.; Gordijn, S.H.F.; Rooda, J.E.; Ertas, A.

    1995-01-01

    Currently, modelling of systems in the process industry requires the use of different specification languages for the specification of the discrete-event and continuous-time subsystems. In this way, models are restricted to individual subsystems of either a continuous-time or discrete-event nature.

  3. Running Parallel Discrete Event Simulators on Sierra

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, P. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jefferson, D. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-12-03

    In this proposal we consider porting the ROSS/Charm++ simulator and the discrete event models that run under its control so that they run on the Sierra architecture and make efficient use of the Volta GPUs.

  4. Supervisor Localization: A Top-Down Approach to Distributed Control of Discrete-Event Systems

    International Nuclear Information System (INIS)

    Cai, K.; Wonham, W. M.

    2009-01-01

    A purely distributed control paradigm is proposed for discrete-event systems (DES). In contrast to control by one or more external supervisors, distributed control aims to design built-in strategies for individual agents. First a distributed optimal nonblocking control problem is formulated. To solve it, a top-down localization procedure is developed which systematically decomposes an external supervisor into local controllers while preserving optimality and nonblockingness. An efficient localization algorithm is provided to carry out the computation, and an automated guided vehicles (AGV) example presented for illustration. Finally, the 'easiest' and 'hardest' boundary cases of localization are discussed.

  5. Control of Discrete Event Systems

    NARCIS (Netherlands)

    Smedinga, Rein

    1989-01-01

    Systemen met discrete gebeurtenissen spelen in vele gebieden een rol. In dit proefschrift staat de volgorde van gebeurtenissen centraal en worden tijdsaspecten buiten beschouwing gelaten. In dat geval kunnen systemen met discrete gebeurtenissen goed worden gemodelleerd door gebruik te maken van

  6. Discrete-Event Simulation

    OpenAIRE

    Prateek Sharma

    2015-01-01

    Abstract Simulation can be regarded as the emulation of the behavior of a real-world system over an interval of time. The process of simulation relies upon the generation of the history of a system and then analyzing that history to predict the outcome and improve the working of real systems. Simulations can be of various kinds but the topic of interest here is one of the most important kind of simulation which is Discrete-Event Simulation which models the system as a discrete sequence of ev...

  7. Network Science Research Laboratory (NSRL) Discrete Event Toolkit

    Science.gov (United States)

    2016-01-01

    ARL-TR-7579 ● JAN 2016 US Army Research Laboratory Network Science Research Laboratory (NSRL) Discrete Event Toolkit by...Laboratory (NSRL) Discrete Event Toolkit by Theron Trout and Andrew J Toth Computational and Information Sciences Directorate, ARL...Research Laboratory (NSRL) Discrete Event Toolkit 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Theron Trout

  8. Synthesis of controllable and normal sublanguages for discrete-event systems using a coordinator

    Czech Academy of Sciences Publication Activity Database

    Komenda, Jan; Masopust, Tomáš; van Schuppen, J. H.

    2011-01-01

    Roč. 60, č. 7 (2011), s. 492-502 ISSN 0167-6911 R&D Projects: GA ČR(CZ) GAP103/11/0517; GA ČR(CZ) GPP202/11/P028 Grant - others:European Commission(XE) EU. ICT .DISC 224498 Institutional research plan: CEZ:AV0Z10190503 Keywords : discrete-event system * coordination control * coordinator Subject RIV: BA - General Mathematics Impact factor: 1.222, year: 2011 http://www.sciencedirect.com/science/article/pii/S0167691111000739

  9. Synthesis of controllable and normal sublanguages for discrete-event systems using a coordinator

    Czech Academy of Sciences Publication Activity Database

    Komenda, Jan; Masopust, Tomáš; van Schuppen, J. H.

    2011-01-01

    Roč. 60, č. 7 (2011), s. 492-502 ISSN 0167-6911 R&D Projects: GA ČR(CZ) GAP103/11/0517; GA ČR(CZ) GPP202/11/P028 Grant - others:European Commission(XE) EU.ICT.DISC 224498 Institutional research plan: CEZ:AV0Z10190503 Keywords : discrete-event system * coordination control * coordinator Subject RIV: BA - General Mathematics Impact factor: 1.222, year: 2011 http://www.sciencedirect.com/science/article/pii/S0167691111000739

  10. Synchronization Of Parallel Discrete Event Simulations

    Science.gov (United States)

    Steinman, Jeffrey S.

    1992-01-01

    Adaptive, parallel, discrete-event-simulation-synchronization algorithm, Breathing Time Buckets, developed in Synchronous Parallel Environment for Emulation and Discrete Event Simulation (SPEEDES) operating system. Algorithm allows parallel simulations to process events optimistically in fluctuating time cycles that naturally adapt while simulation in progress. Combines best of optimistic and conservative synchronization strategies while avoiding major disadvantages. Algorithm processes events optimistically in time cycles adapting while simulation in progress. Well suited for modeling communication networks, for large-scale war games, for simulated flights of aircraft, for simulations of computer equipment, for mathematical modeling, for interactive engineering simulations, and for depictions of flows of information.

  11. Use cases of discrete event simulation. Appliance and research

    Energy Technology Data Exchange (ETDEWEB)

    Bangsow, Steffen (ed.)

    2012-11-01

    Use Cases of Discrete Event Simulation. Includes case studies from various important industries such as automotive, aerospace, robotics, production industry. Written by leading experts in the field. Over the last decades Discrete Event Simulation has conquered many different application areas. This trend is, on the one hand, driven by an ever wider use of this technology in different fields of science and on the other hand by an incredibly creative use of available software programs through dedicated experts. This book contains articles from scientists and experts from 10 countries. They illuminate the width of application of this technology and the quality of problems solved using Discrete Event Simulation. Practical applications of simulation dominate in the present book. The book is aimed to researchers and students who deal in their work with Discrete Event Simulation and which want to inform them about current applications. By focusing on discrete event simulation, this book can also serve as an inspiration source for practitioners for solving specific problems during their work. Decision makers who deal with the question of the introduction of discrete event simulation for planning support and optimization this book provides a contribution to the orientation, what specific problems could be solved with the help of Discrete Event Simulation within the organization.

  12. Supervisor localization a top-down approach to distributed control of discrete-event systems

    CERN Document Server

    Cai, Kai

    2016-01-01

    This monograph presents a systematic top-down approach to distributed control synthesis of discrete-event systems (DES). The approach is called supervisor localization; its essence is the allocation of external supervisory control action to individual component agents as their internal control strategies. The procedure is: first synthesize a monolithic supervisor, to achieve globally optimal and nonblocking controlled behavior, then decompose the monolithic supervisor into local controllers, one for each agent. The collective behavior of the resulting local controllers is identical to that achieved by the monolithic supervisor. The basic localization theory is first presented in the Ramadge–Wonham language-based supervisory control framework, then demonstrated with distributed control examples of multi-robot formations, manufacturing systems, and distributed algorithms. An architectural approach is adopted to apply localization to large-scale DES; this yields a heterarchical localization procedure, which is...

  13. Reliable Decentralized Control of Fuzzy Discrete-Event Systems and a Test Algorithm.

    Science.gov (United States)

    Liu, Fuchun; Dziong, Zbigniew

    2013-02-01

    A framework for decentralized control of fuzzy discrete-event systems (FDESs) has been recently presented to guarantee the achievement of a given specification under the joint control of all local fuzzy supervisors. As a continuation, this paper addresses the reliable decentralized control of FDESs in face of possible failures of some local fuzzy supervisors. Roughly speaking, for an FDES equipped with n local fuzzy supervisors, a decentralized supervisor is called k-reliable (1 ≤ k ≤ n) provided that the control performance will not be degraded even when n - k local fuzzy supervisors fail. A necessary and sufficient condition for the existence of k-reliable decentralized supervisors of FDESs is proposed by introducing the notions of M̃uc-controllability and k-reliable coobservability of fuzzy language. In particular, a polynomial-time algorithm to test the k-reliable coobservability is developed by a constructive methodology, which indicates that the existence of k-reliable decentralized supervisors of FDESs can be checked with a polynomial complexity.

  14. Use Cases of Discrete Event Simulation Appliance and Research

    CERN Document Server

    2012-01-01

    Over the last decades Discrete Event Simulation has conquered many different application areas. This trend is, on the one hand, driven by an ever wider use of this technology in different fields of science and on the other hand by an incredibly creative use of available software programs through dedicated experts. This book contains articles from scientists and experts from 10 countries. They illuminate the width of application of this technology and the quality of problems solved using Discrete Event Simulation. Practical applications of simulation dominate in the present book.   The book is aimed to researchers and students who deal in their work with Discrete Event Simulation and which want to inform them about current applications. By focusing on discrete event simulation, this book can also serve as an inspiration source for practitioners for solving specific problems during their work. Decision makers who deal with the question of the introduction of discrete event simulation for planning support and o...

  15. Discrete event command and control for networked teams with multiple missions

    Science.gov (United States)

    Lewis, Frank L.; Hudas, Greg R.; Pang, Chee Khiang; Middleton, Matthew B.; McMurrough, Christopher

    2009-05-01

    During mission execution in military applications, the TRADOC Pamphlet 525-66 Battle Command and Battle Space Awareness capabilities prescribe expectations that networked teams will perform in a reliable manner under changing mission requirements, varying resource availability and reliability, and resource faults. In this paper, a Command and Control (C2) structure is presented that allows for computer-aided execution of the networked team decision-making process, control of force resources, shared resource dispatching, and adaptability to change based on battlefield conditions. A mathematically justified networked computing environment is provided called the Discrete Event Control (DEC) Framework. DEC has the ability to provide the logical connectivity among all team participants including mission planners, field commanders, war-fighters, and robotic platforms. The proposed data management tools are developed and demonstrated on a simulation study and an implementation on a distributed wireless sensor network. The results show that the tasks of multiple missions are correctly sequenced in real-time, and that shared resources are suitably assigned to competing tasks under dynamically changing conditions without conflicts and bottlenecks.

  16. Generalized Detectability for Discrete Event Systems

    Science.gov (United States)

    Shu, Shaolong; Lin, Feng

    2011-01-01

    In our previous work, we investigated detectability of discrete event systems, which is defined as the ability to determine the current and subsequent states of a system based on observation. For different applications, we defined four types of detectabilities: (weak) detectability, strong detectability, (weak) periodic detectability, and strong periodic detectability. In this paper, we extend our results in three aspects. (1) We extend detectability from deterministic systems to nondeterministic systems. Such a generalization is necessary because there are many systems that need to be modeled as nondeterministic discrete event systems. (2) We develop polynomial algorithms to check strong detectability. The previous algorithms are based on observer whose construction is of exponential complexity, while the new algorithms are based on a new automaton called detector. (3) We extend detectability to D-detectability. While detectability requires determining the exact state of a system, D-detectability relaxes this requirement by asking only to distinguish certain pairs of states. With these extensions, the theory on detectability of discrete event systems becomes more applicable in solving many practical problems. PMID:21691432

  17. A conceptual modeling framework for discrete event simulation using hierarchical control structures

    Science.gov (United States)

    Furian, N.; O’Sullivan, M.; Walker, C.; Vössner, S.; Neubacher, D.

    2015-01-01

    Conceptual Modeling (CM) is a fundamental step in a simulation project. Nevertheless, it is only recently that structured approaches towards the definition and formulation of conceptual models have gained importance in the Discrete Event Simulation (DES) community. As a consequence, frameworks and guidelines for applying CM to DES have emerged and discussion of CM for DES is increasing. However, both the organization of model-components and the identification of behavior and system control from standard CM approaches have shortcomings that limit CM’s applicability to DES. Therefore, we discuss the different aspects of previous CM frameworks and identify their limitations. Further, we present the Hierarchical Control Conceptual Modeling framework that pays more attention to the identification of a models’ system behavior, control policies and dispatching routines and their structured representation within a conceptual model. The framework guides the user step-by-step through the modeling process and is illustrated by a worked example. PMID:26778940

  18. A conceptual modeling framework for discrete event simulation using hierarchical control structures.

    Science.gov (United States)

    Furian, N; O'Sullivan, M; Walker, C; Vössner, S; Neubacher, D

    2015-08-01

    Conceptual Modeling (CM) is a fundamental step in a simulation project. Nevertheless, it is only recently that structured approaches towards the definition and formulation of conceptual models have gained importance in the Discrete Event Simulation (DES) community. As a consequence, frameworks and guidelines for applying CM to DES have emerged and discussion of CM for DES is increasing. However, both the organization of model-components and the identification of behavior and system control from standard CM approaches have shortcomings that limit CM's applicability to DES. Therefore, we discuss the different aspects of previous CM frameworks and identify their limitations. Further, we present the Hierarchical Control Conceptual Modeling framework that pays more attention to the identification of a models' system behavior, control policies and dispatching routines and their structured representation within a conceptual model. The framework guides the user step-by-step through the modeling process and is illustrated by a worked example.

  19. Discrete event systems diagnosis and diagnosability

    CERN Document Server

    Sayed-Mouchaweh, Moamar

    2014-01-01

    Discrete Event Systems: Diagnosis and Diagnosability addresses the problem of fault diagnosis of Discrete Event Systems (DES). This book provides the basic techniques and approaches necessary for the design of an efficient fault diagnosis system for a wide range of modern engineering applications. The different techniques and approaches are classified according to several criteria such as: modeling tools (Automata, Petri nets) that is used to construct the model; the information (qualitative based on events occurrences and/or states outputs, quantitative based on signal processing and data analysis) that is needed to analyze and achieve the diagnosis; the decision structure (centralized, decentralized) that is required to achieve the diagnosis. The goal of this classification is to select the efficient method to achieve the fault diagnosis according to the application constraints. This book focuses on the centralized and decentralized event based diagnosis approaches using formal language and automata as mode...

  20. Modeling and simulation of discrete event systems

    CERN Document Server

    Choi, Byoung Kyu

    2013-01-01

    Computer modeling and simulation (M&S) allows engineers to study and analyze complex systems. Discrete-event system (DES)-M&S is used in modern management, industrial engineering, computer science, and the military. As computer speeds and memory capacity increase, so DES-M&S tools become more powerful and more widely used in solving real-life problems. Based on over 20 years of evolution within a classroom environment, as well as on decades-long experience in developing simulation-based solutions for high-tech industries, Modeling and Simulation of Discrete-Event Systems is the only book on

  1. Model predictive control-based scheduler for repetitive discrete event systems with capacity constraints

    Directory of Open Access Journals (Sweden)

    Hiroyuki Goto

    2013-07-01

    Full Text Available A model predictive control-based scheduler for a class of discrete event systems is designed and developed. We focus on repetitive, multiple-input, multiple-output, and directed acyclic graph structured systems on which capacity constraints can be imposed. The target system’s behaviour is described by linear equations in max-plus algebra, referred to as state-space representation. Assuming that the system’s performance can be improved by paying additional cost, we adjust the system parameters and determine control inputs for which the reference output signals can be observed. The main contribution of this research is twofold, 1: For systems with capacity constraints, we derived an output prediction equation as functions of adjustable variables in a recursive form, 2: Regarding the construct for the system’s representation, we improved the structure to accomplish general operations which are essential for adjusting the system parameters. The result of numerical simulation in a later section demonstrates the effectiveness of the developed controller.

  2. Discrete events simulation of a route with traffic lights through automated control in real time

    Directory of Open Access Journals (Sweden)

    Rodrigo César Teixeira Baptista

    2013-03-01

    Full Text Available This paper presents the integration and communication in real-time of a discrete event simulation model with an automatic control system. The simulation model of an intersection with roads having traffic lights was built in the Arena environment. The integration and communication have been made via network, and the control system was operated by a programmable logic controller. Scenarios were simulated for the free, regular and congested traffic situations. The results showed the average number of vehicles that entered in the system and that were retained and also the total average time of the crossing of the vehicles on the road. In general, the model allowed evaluating the behavior of the traffic in each of the ways and the commands from the controller to activation and deactivation of the traffic lights.

  3. Discretely Integrated Condition Event (DICE) Simulation for Pharmacoeconomics.

    Science.gov (United States)

    Caro, J Jaime

    2016-07-01

    Several decision-analytic modeling techniques are in use for pharmacoeconomic analyses. Discretely integrated condition event (DICE) simulation is proposed as a unifying approach that has been deliberately designed to meet the modeling requirements in a straightforward transparent way, without forcing assumptions (e.g., only one transition per cycle) or unnecessary complexity. At the core of DICE are conditions that represent aspects that persist over time. They have levels that can change and many may coexist. Events reflect instantaneous occurrences that may modify some conditions or the timing of other events. The conditions are discretely integrated with events by updating their levels at those times. Profiles of determinant values allow for differences among patients in the predictors of the disease course. Any number of valuations (e.g., utility, cost, willingness-to-pay) of conditions and events can be applied concurrently in a single run. A DICE model is conveniently specified in a series of tables that follow a consistent format and the simulation can be implemented fully in MS Excel, facilitating review and validation. DICE incorporates both state-transition (Markov) models and non-resource-constrained discrete event simulation in a single formulation; it can be executed as a cohort or a microsimulation; and deterministically or stochastically.

  4. Asynchronous discrete event schemes for PDEs

    Science.gov (United States)

    Stone, D.; Geiger, S.; Lord, G. J.

    2017-08-01

    A new class of asynchronous discrete-event simulation schemes for advection-diffusion-reaction equations is introduced, based on the principle of allowing quanta of mass to pass through faces of a (regular, structured) Cartesian finite volume grid. The timescales of these events are linked to the flux on the face. The resulting schemes are self-adaptive, and local in both time and space. Experiments are performed on realistic physical systems related to porous media flow applications, including a large 3D advection diffusion equation and advection diffusion reaction systems. The results are compared to highly accurate reference solutions where the temporal evolution is computed with exponential integrator schemes using the same finite volume discretisation. This allows a reliable estimation of the solution error. Our results indicate a first order convergence of the error as a control parameter is decreased, and we outline a framework for analysis.

  5. Discrete control systems

    CERN Document Server

    Okuyama, Yoshifumi

    2014-01-01

    Discrete Control Systems establishes a basis for the analysis and design of discretized/quantized control systemsfor continuous physical systems. Beginning with the necessary mathematical foundations and system-model descriptions, the text moves on to derive a robust stability condition. To keep a practical perspective on the uncertain physical systems considered, most of the methods treated are carried out in the frequency domain. As part of the design procedure, modified Nyquist–Hall and Nichols diagrams are presented and discretized proportional–integral–derivative control schemes are reconsidered. Schemes for model-reference feedback and discrete-type observers are proposed. Although single-loop feedback systems form the core of the text, some consideration is given to multiple loops and nonlinearities. The robust control performance and stability of interval systems (with multiple uncertainties) are outlined. Finally, the monograph describes the relationship between feedback-control and discrete ev...

  6. Modelling machine ensembles with discrete event dynamical system theory

    Science.gov (United States)

    Hunter, Dan

    1990-01-01

    Discrete Event Dynamical System (DEDS) theory can be utilized as a control strategy for future complex machine ensembles that will be required for in-space construction. The control strategy involves orchestrating a set of interactive submachines to perform a set of tasks for a given set of constraints such as minimum time, minimum energy, or maximum machine utilization. Machine ensembles can be hierarchically modeled as a global model that combines the operations of the individual submachines. These submachines are represented in the global model as local models. Local models, from the perspective of DEDS theory , are described by the following: a set of system and transition states, an event alphabet that portrays actions that takes a submachine from one state to another, an initial system state, a partial function that maps the current state and event alphabet to the next state, and the time required for the event to occur. Each submachine in the machine ensemble is presented by a unique local model. The global model combines the local models such that the local models can operate in parallel under the additional logistic and physical constraints due to submachine interactions. The global model is constructed from the states, events, event functions, and timing requirements of the local models. Supervisory control can be implemented in the global model by various methods such as task scheduling (open-loop control) or implementing a feedback DEDS controller (closed-loop control).

  7. Discrete event simulation of Maglev transport considering traffic waves

    Directory of Open Access Journals (Sweden)

    Moo Hyun Cha

    2014-10-01

    Full Text Available A magnetically levitated vehicle (Maglev system is under commercialization as a new transportation system in Korea. The Maglev is operated by an unmanned automatic control system. Therefore, the plan of train operation should be carefully established and validated in advance. In general, when making a train operation plan, statistically predicted traffic data is used. However, a traffic wave often occurs in real train service, and demand-driven simulation technology is required to review a train operation plan and service quality considering traffic waves. We propose a method and model to simulate Maglev operation considering continuous demand changes. For this purpose, we employed a discrete event model that is suitable for modeling the behavior of railway passenger transportation. We modeled the system hierarchically using discrete event system specification (DEVS formalism. In addition, through implementation and an experiment using the DEVSim++ simulation environment, we tested the feasibility of the proposed model. Our experimental results also verified that our demand-driven simulation technology can be used for a priori review of train operation plans and strategies.

  8. Manufacturing plant performance evaluation by discrete event simulation

    International Nuclear Information System (INIS)

    Rosli Darmawan; Mohd Rasid Osman; Rosnah Mohd Yusuff; Napsiah Ismail; Zulkiflie Leman

    2002-01-01

    A case study was conducted to evaluate the performance of a manufacturing plant using discrete event simulation technique. The study was carried out on animal feed production plant. Sterifeed plant at Malaysian Institute for Nuclear Technology Research (MINT), Selangor, Malaysia. The plant was modelled base on the actual manufacturing activities recorded by the operators. The simulation was carried out using a discrete event simulation software. The model was validated by comparing the simulation results with the actual operational data of the plant. The simulation results show some weaknesses with the current plant design and proposals were made to improve the plant performance. (Author)

  9. ANALYSIS OF INPATIENT HOSPITAL STAFF MENTAL WORKLOAD BY MEANS OF DISCRETE-EVENT SIMULATION

    Science.gov (United States)

    2016-03-24

    ANALYSIS OF INPATIENT HOSPITAL STAFF MENTAL WORKLOAD BY MEANS OF DISCRETE -EVENT SIMULATION...in the United States. AFIT-ENV-MS-16-M-166 ANALYSIS OF INPATIENT HOSPITAL STAFF MENTAL WORKLOAD BY MEANS OF DISCRETE -EVENT SIMULATION...UNLIMITED. AFIT-ENV-MS-16-M-166 ANALYSIS OF INPATIENT HOSPITAL STAFF MENTAL WORKLOAD BY MEANS OF DISCRETE -EVENT SIMULATION Erich W

  10. Non-Lipschitz Dynamics Approach to Discrete Event Systems

    Science.gov (United States)

    Zak, M.; Meyers, R.

    1995-01-01

    This paper presents and discusses a mathematical formalism for simulation of discrete event dynamics (DED) - a special type of 'man- made' system designed to aid specific areas of information processing. A main objective is to demonstrate that the mathematical formalism for DED can be based upon the terminal model of Newtonian dynamics which allows one to relax Lipschitz conditions at some discrete points.

  11. Failure diagnosis using discrete event models

    International Nuclear Information System (INIS)

    Sampath, M.; Sengupta, R.; Lafortune, S.; Teneketzis, D.; Sinnamohideen, K.

    1994-01-01

    We propose a Discrete Event Systems (DES) approach to the failure diagnosis problem. We present a methodology for modeling physical systems in a DES framework. We discuss the notion of diagnosability and present the construction procedure of the diagnoser. Finally, we illustrate our approach using a Heating, Ventilation and Air Conditioning (HVAC) system

  12. Reproductive Health Services Discrete-Event Simulation

    OpenAIRE

    Lee, Sungjoo; Giles, Denise F.; Goldsman, David; Cook, Douglas A.; Mishra, Ninad; McCarthy, Brian

    2006-01-01

    Low resource healthcare environments are often characteristic of patient flow patterns with varying patient risks, extensive patient waiting times, uneven workload distributions, and inefficient service delivery. Models from industrial and systems engineering allow for a greater examination of processes by applying discrete-event computer simulation techniques to evaluate and optimize hospital performance.

  13. Disaster Response Modeling Through Discrete-Event Simulation

    Science.gov (United States)

    Wang, Jeffrey; Gilmer, Graham

    2012-01-01

    Organizations today are required to plan against a rapidly changing, high-cost environment. This is especially true for first responders to disasters and other incidents, where critical decisions must be made in a timely manner to save lives and resources. Discrete-event simulations enable organizations to make better decisions by visualizing complex processes and the impact of proposed changes before they are implemented. A discrete-event simulation using Simio software has been developed to effectively analyze and quantify the imagery capabilities of domestic aviation resources conducting relief missions. This approach has helped synthesize large amounts of data to better visualize process flows, manage resources, and pinpoint capability gaps and shortfalls in disaster response scenarios. Simulation outputs and results have supported decision makers in the understanding of high risk locations, key resource placement, and the effectiveness of proposed improvements.

  14. Discrete event model-based simulation for train movement on a single-line railway

    International Nuclear Information System (INIS)

    Xu Xiao-Ming; Li Ke-Ping; Yang Li-Xing

    2014-01-01

    The aim of this paper is to present a discrete event model-based approach to simulate train movement with the considered energy-saving factor. We conduct extensive case studies to show the dynamic characteristics of the traffic flow and demonstrate the effectiveness of the proposed approach. The simulation results indicate that the proposed discrete event model-based simulation approach is suitable for characterizing the movements of a group of trains on a single railway line with less iterations and CPU time. Additionally, some other qualitative and quantitative characteristics are investigated. In particular, because of the cumulative influence from the previous trains, the following trains should be accelerated or braked frequently to control the headway distance, leading to more energy consumption. (general)

  15. Discrete Event Simulation of Distributed Team Communication

    Science.gov (United States)

    2012-03-22

    performs, and auditory information that is provided through multiple audio devices with speech response. This paper extends previous discrete event workload...2008, pg. 1) notes that “Architecture modeling furnishes abstrac- tions for use in managing complexities, allowing engineers to visualise the proposed

  16. Networked event-triggered control: an introduction and research trends

    Science.gov (United States)

    Mahmoud, Magdi S.; Sabih, Muhammad

    2014-11-01

    A physical system can be studied as either continuous time or discrete-time system depending upon the control objectives. Discrete-time control systems can be further classified into two categories based on the sampling: (1) time-triggered control systems and (2) event-triggered control systems. Time-triggered systems sample states and calculate controls at every sampling instant in a periodic fashion, even in cases when states and calculated control do not change much. This indicates unnecessary and useless data transmission and computation efforts of a time-triggered system, thus inefficiency. For networked systems, the transmission of measurement and control signals, thus, cause unnecessary network traffic. Event-triggered systems, on the other hand, have potential to reduce the communication burden in addition to reducing the computation of control signals. This paper provides an up-to-date survey on the event-triggered methods for control systems and highlights the potential research directions.

  17. Synchronization of autonomous objects in discrete event simulation

    Science.gov (United States)

    Rogers, Ralph V.

    1990-01-01

    Autonomous objects in event-driven discrete event simulation offer the potential to combine the freedom of unrestricted movement and positional accuracy through Euclidean space of time-driven models with the computational efficiency of event-driven simulation. The principal challenge to autonomous object implementation is object synchronization. The concept of a spatial blackboard is offered as a potential methodology for synchronization. The issues facing implementation of a spatial blackboard are outlined and discussed.

  18. Optimization of Operations Resources via Discrete Event Simulation Modeling

    Science.gov (United States)

    Joshi, B.; Morris, D.; White, N.; Unal, R.

    1996-01-01

    The resource levels required for operation and support of reusable launch vehicles are typically defined through discrete event simulation modeling. Minimizing these resources constitutes an optimization problem involving discrete variables and simulation. Conventional approaches to solve such optimization problems involving integer valued decision variables are the pattern search and statistical methods. However, in a simulation environment that is characterized by search spaces of unknown topology and stochastic measures, these optimization approaches often prove inadequate. In this paper, we have explored the applicability of genetic algorithms to the simulation domain. Genetic algorithms provide a robust search strategy that does not require continuity and differentiability of the problem domain. The genetic algorithm successfully minimized the operation and support activities for a space vehicle, through a discrete event simulation model. The practical issues associated with simulation optimization, such as stochastic variables and constraints, were also taken into consideration.

  19. Discrete Event Simulation Computers can be used to simulate the ...

    Indian Academy of Sciences (India)

    IAS Admin

    people who use computers every moment of their waking lives, others even ... How is discrete event simulation different from other kinds of simulation? ... time, energy consumption .... Schedule the CustomerDeparture event for this customer.

  20. Event-Triggered Asynchronous Guaranteed Cost Control for Markov Jump Discrete-Time Neural Networks With Distributed Delay and Channel Fading.

    Science.gov (United States)

    Yan, Huaicheng; Zhang, Hao; Yang, Fuwen; Zhan, Xisheng; Peng, Chen

    2017-08-18

    This paper is concerned with the guaranteed cost control problem for a class of Markov jump discrete-time neural networks (NNs) with event-triggered mechanism, asynchronous jumping, and fading channels. The Markov jump NNs are introduced to be close to reality, where the modes of the NNs and guaranteed cost controller are determined by two mutually independent Markov chains. The asynchronous phenomenon is considered, which increases the difficulty of designing required mode-dependent controller. The event-triggered mechanism is designed by comparing the relative measurement error with the last triggered state at the process of data transmission, which is used to eliminate dispensable transmission and reduce the networked energy consumption. In addition, the signal fading is considered for the effect of signal reflection and shadow in wireless networks, which is modeled by the novel Rice fading models. Some novel sufficient conditions are obtained to guarantee that the closed-loop system reaches a specified cost value under the designed jumping state feedback control law in terms of linear matrix inequalities. Finally, some simulation results are provided to illustrate the effectiveness of the proposed method.

  1. Parallel discrete event simulation using shared memory

    Science.gov (United States)

    Reed, Daniel A.; Malony, Allen D.; Mccredie, Bradley D.

    1988-01-01

    With traditional event-list techniques, evaluating a detailed discrete-event simulation-model can often require hours or even days of computation time. By eliminating the event list and maintaining only sufficient synchronization to ensure causality, parallel simulation can potentially provide speedups that are linear in the numbers of processors. A set of shared-memory experiments, using the Chandy-Misra distributed-simulation algorithm, to simulate networks of queues is presented. Parameters of the study include queueing network topology and routing probabilities, number of processors, and assignment of network nodes to processors. These experiments show that Chandy-Misra distributed simulation is a questionable alternative to sequential-simulation of most queueing network models.

  2. Discrete Events as Units of Perceived Time

    Science.gov (United States)

    Liverence, Brandon M.; Scholl, Brian J.

    2012-01-01

    In visual images, we perceive both space (as a continuous visual medium) and objects (that inhabit space). Similarly, in dynamic visual experience, we perceive both continuous time and discrete events. What is the relationship between these units of experience? The most intuitive answer may be similar to the spatial case: time is perceived as an…

  3. Program For Parallel Discrete-Event Simulation

    Science.gov (United States)

    Beckman, Brian C.; Blume, Leo R.; Geiselman, John S.; Presley, Matthew T.; Wedel, John J., Jr.; Bellenot, Steven F.; Diloreto, Michael; Hontalas, Philip J.; Reiher, Peter L.; Weiland, Frederick P.

    1991-01-01

    User does not have to add any special logic to aid in synchronization. Time Warp Operating System (TWOS) computer program is special-purpose operating system designed to support parallel discrete-event simulation. Complete implementation of Time Warp mechanism. Supports only simulations and other computations designed for virtual time. Time Warp Simulator (TWSIM) subdirectory contains sequential simulation engine interface-compatible with TWOS. TWOS and TWSIM written in, and support simulations in, C programming language.

  4. Discrete event simulation: Modeling simultaneous complications and outcomes

    NARCIS (Netherlands)

    Quik, E.H.; Feenstra, T.L.; Krabbe, P.F.M.

    2012-01-01

    OBJECTIVES: To present an effective and elegant model approach to deal with specific characteristics of complex modeling. METHODS: A discrete event simulation (DES) model with multiple complications and multiple outcomes that each can occur simultaneously was developed. In this DES model parameters,

  5. Discrete Event Simulation Model of the Polaris 2.1 Gamma Ray Imaging Radiation Detection Device

    Science.gov (United States)

    2016-06-01

    release; distribution is unlimited DISCRETE EVENT SIMULATION MODEL OF THE POLARIS 2.1 GAMMA RAY IMAGING RADIATION DETECTION DEVICE by Andres T...ONLY (Leave blank) 2. REPORT DATE June 2016 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE DISCRETE EVENT SIMULATION MODEL...modeled. The platform, Simkit, was utilized to create a discrete event simulation (DES) model of the Polaris. After carefully constructing the DES

  6. On constructing optimistic simulation algorithms for the discrete event system specification

    International Nuclear Information System (INIS)

    Nutaro, James J.

    2008-01-01

    This article describes a Time Warp simulation algorithm for discrete event models that are described in terms of the Discrete Event System Specification (DEVS). The article shows how the total state transition and total output function of a DEVS atomic model can be transformed into an event processing procedure for a logical process. A specific Time Warp algorithm is constructed around this logical process, and it is shown that the algorithm correctly simulates a DEVS coupled model that consists entirely of interacting atomic models. The simulation algorithm is presented abstractly; it is intended to provide a basis for implementing efficient and scalable parallel algorithms that correctly simulate DEVS models

  7. Discrete event simulation as an ergonomic tool to predict workload exposures during systems design

    NARCIS (Netherlands)

    Perez, J.; Looze, M.P. de; Bosch, T.; Neumann, W.P.

    2014-01-01

    This methodological paper presents a novel approach to predict operator's mechanical exposure and fatigue accumulation in discrete event simulations. A biomechanical model of work-cycle loading is combined with a discrete event simulation model which provides work cycle patterns over the shift

  8. Logical Discrete Event Systems in a trace theory based setting

    NARCIS (Netherlands)

    Smedinga, R.

    1993-01-01

    Discrete event systems can be modelled using a triple consisting of some alphabet (representing the events that might occur), and two trace sets (sets of possible strings) denoting the possible behaviour and the completed tasks of the system. Using this definition we are able to formulate and solve

  9. Synchronous Parallel Emulation and Discrete Event Simulation System with Self-Contained Simulation Objects and Active Event Objects

    Science.gov (United States)

    Steinman, Jeffrey S. (Inventor)

    1998-01-01

    The present invention is embodied in a method of performing object-oriented simulation and a system having inter-connected processor nodes operating in parallel to simulate mutual interactions of a set of discrete simulation objects distributed among the nodes as a sequence of discrete events changing state variables of respective simulation objects so as to generate new event-defining messages addressed to respective ones of the nodes. The object-oriented simulation is performed at each one of the nodes by assigning passive self-contained simulation objects to each one of the nodes, responding to messages received at one node by generating corresponding active event objects having user-defined inherent capabilities and individual time stamps and corresponding to respective events affecting one of the passive self-contained simulation objects of the one node, restricting the respective passive self-contained simulation objects to only providing and receiving information from die respective active event objects, requesting information and changing variables within a passive self-contained simulation object by the active event object, and producing corresponding messages specifying events resulting therefrom by the active event objects.

  10. Powering stochastic reliability models by discrete event simulation

    DEFF Research Database (Denmark)

    Kozine, Igor; Wang, Xiaoyun

    2012-01-01

    it difficult to find a solution to the problem. The power of modern computers and recent developments in discrete-event simulation (DES) software enable to diminish some of the drawbacks of stochastic models. In this paper we describe the insights we have gained based on using both Markov and DES models...

  11. Parallel Stochastic discrete event simulation of calcium dynamics in neuron.

    Science.gov (United States)

    Ishlam Patoary, Mohammad Nazrul; Tropper, Carl; McDougal, Robert A; Zhongwei, Lin; Lytton, William W

    2017-09-26

    The intra-cellular calcium signaling pathways of a neuron depends on both biochemical reactions and diffusions. Some quasi-isolated compartments (e.g. spines) are so small and calcium concentrations are so low that one extra molecule diffusing in by chance can make a nontrivial difference in its concentration (percentage-wise). These rare events can affect dynamics discretely in such way that they cannot be evaluated by a deterministic simulation. Stochastic models of such a system provide a more detailed understanding of these systems than existing deterministic models because they capture their behavior at a molecular level. Our research focuses on the development of a high performance parallel discrete event simulation environment, Neuron Time Warp (NTW), which is intended for use in the parallel simulation of stochastic reaction-diffusion systems such as intra-calcium signaling. NTW is integrated with NEURON, a simulator which is widely used within the neuroscience community. We simulate two models, a calcium buffer and a calcium wave model. The calcium buffer model is employed in order to verify the correctness and performance of NTW by comparing it to a serial deterministic simulation in NEURON. We also derived a discrete event calcium wave model from a deterministic model using the stochastic IP3R structure.

  12. Modeling Anti-Air Warfare With Discrete Event Simulation and Analyzing Naval Convoy Operations

    Science.gov (United States)

    2016-06-01

    W., & Scheaffer, R. L. (2008). Mathematical statistics with applications . Belmont, CA: Cengage Learning. 118 THIS PAGE INTENTIONALLY LEFT BLANK...WARFARE WITH DISCRETE EVENT SIMULATION AND ANALYZING NAVAL CONVOY OPERATIONS by Ali E. Opcin June 2016 Thesis Advisor: Arnold H. Buss Co...REPORT DATE June 2016 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE MODELING ANTI-AIR WARFARE WITH DISCRETE EVENT

  13. Discrete event simulation for petroleum transfers involving harbors, refineries and pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Marcella S.R.; Lueders, Ricardo; Delgado, Myriam R.B.S. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)

    2009-07-01

    Nowadays a great effort has been spent by companies to improve their logistics in terms of programming of events that affect production and distribution of products. In this case, simulation can be a valuable tool for evaluating different behaviors. The objective of this work is to build a discrete event simulation model for scheduling of operational activities in complexes containing one harbor and two refineries interconnected by a pipeline infrastructure. The model was developed in Arena package, based on three sub-models that control pier allocation, loading of tanks, and transfers to refineries through pipelines. Preliminary results obtained for a given control policy, show that profit can be calculated by taking into account many parameters such as oil costs on ships, pier using, over-stay of ships and interface costs. Such problem has already been considered in the literature but using different strategies. All these factors should be considered in a real-world operation where decision making tools are necessary to obtain high returns. (author)

  14. Discrete event simulation of the ATLAS second level trigger

    International Nuclear Information System (INIS)

    Vermeulen, J.C.; Dankers, R.J.; Hunt, S.; Harris, F.; Hortnagl, C.; Erasov, A.; Bogaerts, A.

    1998-01-01

    Discrete event simulation is applied for determining the computing and networking resources needed for the ATLAS second level trigger. This paper discusses the techniques used and some of the results obtained so far for well defined laboratory configurations and for the full system

  15. Out-of-order parallel discrete event simulation for electronic system-level design

    CERN Document Server

    Chen, Weiwei

    2014-01-01

    This book offers readers a set of new approaches and tools a set of tools and techniques for facing challenges in parallelization with design of embedded systems.? It provides an advanced parallel simulation infrastructure for efficient and effective system-level model validation and development so as to build better products in less time.? Since parallel discrete event simulation (PDES) has the potential to exploit the underlying parallel computational capability in today's multi-core simulation hosts, the author begins by reviewing the parallelization of discrete event simulation, identifyin

  16. Application of Discrete Event Simulation in Mine Production Forecast

    African Journals Online (AJOL)

    Application of Discrete Event Simulation in Mine Production Forecast. Felix Adaania Kaba, Victor Amoako Temeng, Peter Arroja Eshun. Abstract. Mine production forecast is pertinent to mining as it serves production goals for a production period. Perseus Mining Ghana Limited (PMGL), Ayanfuri, deterministically forecasts ...

  17. A discrete control model of PLANT

    Science.gov (United States)

    Mitchell, C. M.

    1985-01-01

    A model of the PLANT system using the discrete control modeling techniques developed by Miller is described. Discrete control models attempt to represent in a mathematical form how a human operator might decompose a complex system into simpler parts and how the control actions and system configuration are coordinated so that acceptable overall system performance is achieved. Basic questions include knowledge representation, information flow, and decision making in complex systems. The structure of the model is a general hierarchical/heterarchical scheme which structurally accounts for coordination and dynamic focus of attention. Mathematically, the discrete control model is defined in terms of a network of finite state systems. Specifically, the discrete control model accounts for how specific control actions are selected from information about the controlled system, the environment, and the context of the situation. The objective is to provide a plausible and empirically testable accounting and, if possible, explanation of control behavior.

  18. A non-orthogonal decomposition of flows into discrete events

    Science.gov (United States)

    Boxx, Isaac; Lewalle, Jacques

    1998-11-01

    This work is based on the formula for the inverse Hermitian wavelet transform. A signal can be interpreted as a (non-unique) superposition of near-singular, partially overlapping events arising from Dirac functions and/or its derivatives combined with diffusion.( No dynamics implied: dimensionless diffusion is related to the definition of the analyzing wavelets.) These events correspond to local maxima of spectral energy density. We successfully fitted model events of various orders on a succession of fields, ranging from elementary signals to one-dimensional hot-wire traces. We document edge effects, event overlap and its implications on the algorithm. The interpretation of the discrete singularities as flow events (such as coherent structures) and the fundamental non-uniqueness of the decomposition are discussed. The dynamics of these events will be examined in the companion paper.

  19. Discrete event systems in dioid algebra and conventional algebra

    CERN Document Server

    Declerck, Philippe

    2013-01-01

    This book concerns the use of dioid algebra as (max, +) algebra to treat the synchronization of tasks expressed by the maximum of the ends of the tasks conditioning the beginning of another task - a criterion of linear programming. A classical example is the departure time of a train which should wait for the arrival of other trains in order to allow for the changeover of passengers.The content focuses on the modeling of a class of dynamic systems usually called "discrete event systems" where the timing of the events is crucial. Events are viewed as sudden changes in a process which i

  20. Discrete event simulations for glycolysis pathway and energy balance

    NARCIS (Netherlands)

    Zwieten, van D.A.J.; Rooda, J.E.; Armbruster, H.D.; Nagy, J.D.

    2010-01-01

    In this report, the biological network of the glycolysis pathway has been modeled using discrete event models (DEMs). The most important feature of this pathway is that energy is released. To create a stable steady-state system an energy molecule equilibrating enzyme and metabolic reactions have

  1. Complexity of deciding detectability in discrete event systems

    Czech Academy of Sciences Publication Activity Database

    Masopust, Tomáš

    2018-01-01

    Roč. 93, July (2018), s. 257-261 ISSN 0005-1098 Institutional support: RVO:67985840 Keywords : discrete event systems * finite automata * detectability Subject RIV: BA - General Mathematics OBOR OECD: Computer science s, information science , bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 5.451, year: 2016 https://www. science direct.com/ science /article/pii/S0005109818301730

  2. Complexity of deciding detectability in discrete event systems

    Czech Academy of Sciences Publication Activity Database

    Masopust, Tomáš

    2018-01-01

    Roč. 93, July (2018), s. 257-261 ISSN 0005-1098 Institutional support: RVO:67985840 Keywords : discrete event systems * finite automata * detectability Subject RIV: BA - General Mathematics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 5.451, year: 2016 https://www.sciencedirect.com/science/article/pii/S0005109818301730

  3. Parallel discrete event simulation: A shared memory approach

    Science.gov (United States)

    Reed, Daniel A.; Malony, Allen D.; Mccredie, Bradley D.

    1987-01-01

    With traditional event list techniques, evaluating a detailed discrete event simulation model can often require hours or even days of computation time. Parallel simulation mimics the interacting servers and queues of a real system by assigning each simulated entity to a processor. By eliminating the event list and maintaining only sufficient synchronization to insure causality, parallel simulation can potentially provide speedups that are linear in the number of processors. A set of shared memory experiments is presented using the Chandy-Misra distributed simulation algorithm to simulate networks of queues. Parameters include queueing network topology and routing probabilities, number of processors, and assignment of network nodes to processors. These experiments show that Chandy-Misra distributed simulation is a questionable alternative to sequential simulation of most queueing network models.

  4. Discrete/PWM Ballast-Resistor Controller

    Science.gov (United States)

    King, Roger J.

    1994-01-01

    Circuit offers low switching loss and automatic compensation for failure of ballast resistor. Discrete/PWM ballast-resistor controller improved shunt voltage-regulator circuit designed to supply power from high-resistance source to low-impedance bus. Provides both coarse discrete voltage levels (by switching of ballast resistors) and continuous fine control of voltage via pulse-width modulation.

  5. Event-triggered attitude control of spacecraft

    Science.gov (United States)

    Wu, Baolin; Shen, Qiang; Cao, Xibin

    2018-02-01

    The problem of spacecraft attitude stabilization control system with limited communication and external disturbances is investigated based on an event-triggered control scheme. In the proposed scheme, information of attitude and control torque only need to be transmitted at some discrete triggered times when a defined measurement error exceeds a state-dependent threshold. The proposed control scheme not only guarantees that spacecraft attitude control errors converge toward a small invariant set containing the origin, but also ensures that there is no accumulation of triggering instants. The performance of the proposed control scheme is demonstrated through numerical simulation.

  6. Synchronous Parallel System for Emulation and Discrete Event Simulation

    Science.gov (United States)

    Steinman, Jeffrey S. (Inventor)

    2001-01-01

    A synchronous parallel system for emulation and discrete event simulation having parallel nodes responds to received messages at each node by generating event objects having individual time stamps, stores only the changes to the state variables of the simulation object attributable to the event object and produces corresponding messages. The system refrains from transmitting the messages and changing the state variables while it determines whether the changes are superseded, and then stores the unchanged state variables in the event object for later restoral to the simulation object if called for. This determination preferably includes sensing the time stamp of each new event object and determining which new event object has the earliest time stamp as the local event horizon, determining the earliest local event horizon of the nodes as the global event horizon, and ignoring events whose time stamps are less than the global event horizon. Host processing between the system and external terminals enables such a terminal to query, monitor, command or participate with a simulation object during the simulation process.

  7. An Advanced Simulation Framework for Parallel Discrete-Event Simulation

    Science.gov (United States)

    Li, P. P.; Tyrrell, R. Yeung D.; Adhami, N.; Li, T.; Henry, H.

    1994-01-01

    Discrete-event simulation (DEVS) users have long been faced with a three-way trade-off of balancing execution time, model fidelity, and number of objects simulated. Because of the limits of computer processing power the analyst is often forced to settle for less than desired performances in one or more of these areas.

  8. Event-Driven Control for Networked Control Systems With Quantization and Markov Packet Losses.

    Science.gov (United States)

    Yang, Hongjiu; Xu, Yang; Zhang, Jinhui

    2016-05-23

    In this paper, event-driven is used in a networked control system (NCS) which is subjected to the effect of quantization and packet losses. A discrete event-detector is used to monitor specific events in the NCS. Both an arbitrary region quantizer and Markov jump packet losses are also considered for the NCS. Based on zoom strategy and Lyapunov theory, a complete proof is given to guarantee mean square stability of the closed-loop system. Stabilization of the NCS is ensured by designing a feedback controller. Lastly, an inverted pendulum model is given to show the advantages and effectiveness of the proposed results.

  9. Discrete event simulation versus conventional system reliability analysis approaches

    DEFF Research Database (Denmark)

    Kozine, Igor

    2010-01-01

    Discrete Event Simulation (DES) environments are rapidly developing and appear to be promising tools for building reliability and risk analysis models of safety-critical systems and human operators. If properly developed, they are an alternative to the conventional human reliability analysis models...... and systems analysis methods such as fault and event trees and Bayesian networks. As one part, the paper describes briefly the author’s experience in applying DES models to the analysis of safety-critical systems in different domains. The other part of the paper is devoted to comparing conventional approaches...

  10. Discrete-Time Nonlinear Control of VSC-HVDC System

    Directory of Open Access Journals (Sweden)

    TianTian Qian

    2015-01-01

    Full Text Available Because VSC-HVDC is a kind of strong nonlinear, coupling, and multi-input multioutput (MIMO system, its control problem is always attracting much attention from scholars. And a lot of papers have done research on its control strategy in the continuous-time domain. But the control system is implemented through the computer discrete sampling in practical engineering. It is necessary to study the mathematical model and control algorithm in the discrete-time domain. The discrete mathematical model based on output feedback linearization and discrete sliding mode control algorithm is proposed in this paper. And to ensure the effectiveness of the control system in the quasi sliding mode state, the fast output sampling method is used in the output feedback. The results from simulation experiment in MATLAB/SIMULINK prove that the proposed discrete control algorithm can make the VSC-HVDC system have good static, dynamic, and robust characteristics in discrete-time domain.

  11. A study on discrete event dynamic model for nuclear operations of main feed water pump

    International Nuclear Information System (INIS)

    Bae, J. C.; Choi, J. I.

    2000-01-01

    A major objective of the study is to propose a supervisory control algorithm based on the discrete event dynamic system (DEDS) model and apply it to the automation of nuclear operations. The study is motivated by the suitability of the DEDS model for simulation of man-made control action and the potential of the DEDS based supervisory control algorithm for enhanced licensibility, when implemented in nuclear plants, through design transparency due to strong analytic backgrounds. The DEDS model can analytically show the robust stability of the proposed supervisory controller providing design transparency for enhanced licensibility when implemented in nuclear operations

  12. Event-Based Control Strategy for Mobile Robots in Wireless Environments.

    Science.gov (United States)

    Socas, Rafael; Dormido, Sebastián; Dormido, Raquel; Fabregas, Ernesto

    2015-12-02

    In this paper, a new event-based control strategy for mobile robots is presented. It has been designed to work in wireless environments where a centralized controller has to interchange information with the robots over an RF (radio frequency) interface. The event-based architectures have been developed for differential wheeled robots, although they can be applied to other kinds of robots in a simple way. The solution has been checked over classical navigation algorithms, like wall following and obstacle avoidance, using scenarios with a unique or multiple robots. A comparison between the proposed architectures and the classical discrete-time strategy is also carried out. The experimental results shows that the proposed solution has a higher efficiency in communication resource usage than the classical discrete-time strategy with the same accuracy.

  13. LAN attack detection using Discrete Event Systems.

    Science.gov (United States)

    Hubballi, Neminath; Biswas, Santosh; Roopa, S; Ratti, Ritesh; Nandi, Sukumar

    2011-01-01

    Address Resolution Protocol (ARP) is used for determining the link layer or Medium Access Control (MAC) address of a network host, given its Internet Layer (IP) or Network Layer address. ARP is a stateless protocol and any IP-MAC pairing sent by a host is accepted without verification. This weakness in the ARP may be exploited by malicious hosts in a Local Area Network (LAN) by spoofing IP-MAC pairs. Several schemes have been proposed in the literature to circumvent these attacks; however, these techniques either make IP-MAC pairing static, modify the existing ARP, patch operating systems of all the hosts etc. In this paper we propose a Discrete Event System (DES) approach for Intrusion Detection System (IDS) for LAN specific attacks which do not require any extra constraint like static IP-MAC, changing the ARP etc. A DES model is built for the LAN under both a normal and compromised (i.e., spoofed request/response) situation based on the sequences of ARP related packets. Sequences of ARP events in normal and spoofed scenarios are similar thereby rendering the same DES models for both the cases. To create different ARP events under normal and spoofed conditions the proposed technique uses active ARP probing. However, this probing adds extra ARP traffic in the LAN. Following that a DES detector is built to determine from observed ARP related events, whether the LAN is operating under a normal or compromised situation. The scheme also minimizes extra ARP traffic by probing the source IP-MAC pair of only those ARP packets which are yet to be determined as genuine/spoofed by the detector. Also, spoofed IP-MAC pairs determined by the detector are stored in tables to detect other LAN attacks triggered by spoofing namely, man-in-the-middle (MiTM), denial of service etc. The scheme is successfully validated in a test bed. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  14. A Discrete Events Delay Differential System Model for Transmission of Vancomycin-Resistant Enterococcus (VRE) in Hospitals

    Science.gov (United States)

    2010-09-19

    estimated directly form the surveillance data Infection control measures were implemented in the form of health care worker hand - hygiene before and after...hospital infections , is used to motivate possibilities of modeling nosocomial infec- tion dynamics. This is done in the context of hospital monitoring and...model development. Key Words: Delay equations, discrete events, nosocomial infection dynamics, surveil- lance data, inverse problems, parameter

  15. Discrete-Event Simulation Unmasks the Quantum Cheshire Cat

    Science.gov (United States)

    Michielsen, Kristel; Lippert, Thomas; Raedt, Hans De

    2017-05-01

    It is shown that discrete-event simulation accurately reproduces the experimental data of a single-neutron interferometry experiment [T. Denkmayr {\\sl et al.}, Nat. Commun. 5, 4492 (2014)] and provides a logically consistent, paradox-free, cause-and-effect explanation of the quantum Cheshire cat effect without invoking the notion that the neutron and its magnetic moment separate. Describing the experimental neutron data using weak-measurement theory is shown to be useless for unravelling the quantum Cheshire cat effect.

  16. Optimized Parallel Discrete Event Simulation (PDES) for High Performance Computing (HPC) Clusters

    National Research Council Canada - National Science Library

    Abu-Ghazaleh, Nael

    2005-01-01

    The aim of this project was to study the communication subsystem performance of state of the art optimistic simulator Synchronous Parallel Environment for Emulation and Discrete-Event Simulation (SPEEDES...

  17. Unified Modeling of Discrete Event and Control Systems Applied in Manufacturing

    Directory of Open Access Journals (Sweden)

    Amanda Arêas de Souza

    2015-05-01

    Full Text Available For the development of both a simulation modeland a control system, it is necessary to build, inadvance, a conceptual model. This is what isusually suggested by the methodologies applied inprojects of this nature. Some conceptual modelingtechniques allow for a better understanding ofthe simulation model, and a clear descriptionof the logic of control systems. Therefore, thispaper aims to present and evaluate conceptuallanguages for unified modeling of models ofdiscrete event simulation and control systemsapplied in manufacturing. The results show thatthe IDEF-SIM language can be applied both insimulation systems and in process control.

  18. Discrete-time inverse optimal control for nonlinear systems

    CERN Document Server

    Sanchez, Edgar N

    2013-01-01

    Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller. Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems The book presents two approaches for controller synthesis: the first based on passivity theory and the second on a control Lyapunov function (CLF). Th

  19. Nuclear facility safeguards systems modeling using discrete event simulation

    International Nuclear Information System (INIS)

    Engi, D.

    1977-01-01

    The threat of theft or dispersal of special nuclear material at a nuclear facility is treated by studying the temporal relationships between adversaries having authorized access to the facility (insiders) and safeguards system events by using a GASP IV discrete event simulation. The safeguards system events--detection, assessment, delay, communications, and neutralization--are modeled for the general insider adversary strategy which includes degradation of the safeguards system elements followed by an attempt to steal or disperse special nuclear material. The performance measure used in the analysis is the estimated probability of safeguards system success in countering the adversary based upon a predetermined set of adversary actions. An exemplary problem which includes generated results is presented for a hypothetical nuclear facility. The results illustrate representative information that could be utilized by safeguards decision-makers

  20. Integrals of Motion for Discrete-Time Optimal Control Problems

    OpenAIRE

    Torres, Delfim F. M.

    2003-01-01

    We obtain a discrete time analog of E. Noether's theorem in Optimal Control, asserting that integrals of motion associated to the discrete time Pontryagin Maximum Principle can be computed from the quasi-invariance properties of the discrete time Lagrangian and discrete time control system. As corollaries, results for first-order and higher-order discrete problems of the calculus of variations are obtained.

  1. Event-driven control of a speed varying digital displacement machine

    DEFF Research Database (Denmark)

    Pedersen, Niels Henrik; Johansen, Per; Andersen, Torben O.

    2017-01-01

    . The controller synthesis is carried out as a discrete optimal deterministic problem with full state feedback. Based on a linear analysis of the feedback control system, stability is proven in a pre-specified operation region. Simulation of a non-linear evaluation model with the controller implemented shows great...... be treated as a Discrete Linear Time Invariant control problem with synchronous sampling rate. To make synchronous linear control theory applicable for a variable speed digital displacement machine, a method based on event-driven control is presented. Using this method, the time domain differential equations...... are converted into the spatial (position) domain to obtain a constant sampling rate and thus allowing for use of classical control theory. The method is applied to a down scaled digital fluid power motor, where the motor speed is controlled at varying references under varying pressure and load torque conditions...

  2. Desktop Modeling and Simulation: Parsimonious, yet Effective Discrete-Event Simulation Analysis

    Science.gov (United States)

    Bradley, James R.

    2012-01-01

    This paper evaluates how quickly students can be trained to construct useful discrete-event simulation models using Excel The typical supply chain used by many large national retailers is described, and an Excel-based simulation model is constructed of it The set of programming and simulation skills required for development of that model are then determined we conclude that six hours of training are required to teach the skills to MBA students . The simulation presented here contains all fundamental functionallty of a simulation model, and so our result holds for any discrete-event simulation model. We argue therefore that Industry workers with the same technical skill set as students having completed one year in an MBA program can be quickly trained to construct simulation models. This result gives credence to the efficacy of Desktop Modeling and Simulation whereby simulation analyses can be quickly developed, run, and analyzed with widely available software, namely Excel.

  3. Discrete event simulation methods applied to advanced importance measures of repairable components in multistate network flow systems

    International Nuclear Information System (INIS)

    Huseby, Arne B.; Natvig, Bent

    2013-01-01

    Discrete event models are frequently used in simulation studies to model and analyze pure jump processes. A discrete event model can be viewed as a system consisting of a collection of stochastic processes, where the states of the individual processes change as results of various kinds of events occurring at random points of time. We always assume that each event only affects one of the processes. Between these events the states of the processes are considered to be constant. In the present paper we use discrete event simulation in order to analyze a multistate network flow system of repairable components. In order to study how the different components contribute to the system, it is necessary to describe the often complicated interaction between component processes and processes at the system level. While analytical considerations may throw some light on this, a simulation study often allows the analyst to explore more details. By producing stable curve estimates for the development of the various processes, one gets a much better insight in how such systems develop over time. These methods are particulary useful in the study of advanced importancez measures of repairable components. Such measures can be very complicated, and thus impossible to calculate analytically. By using discrete event simulations, however, this can be done in a very natural and intuitive way. In particular significant differences between the Barlow–Proschan measure and the Natvig measure in multistate network flow systems can be explored

  4. The dynamics of discrete populations and series of events

    CERN Document Server

    Hopcraft, Keith Iain; Ridley, Kevin D

    2014-01-01

    IntroductionReferencesStatistical PreliminariesIntroductionProbability DistributionsMoment-Generating FunctionsDiscrete ProcessesSeries of EventsSummaryFurther ReadingMarkovian Population ProcessesIntroductionBirths and DeathsImmigration and the Poisson ProcessThe Effect of MeasurementCorrelation of CountsSummaryFurther ReadingThe Birth-Death-Immigration ProcessIntroductionRate Equations for the ProcessEquation for the Generating FunctionGeneral Time-Dependent SolutionFluctuation Characteristics of a Birth-Death-Immigration PopulationSampling and Measurement ProcessesCorrelation of CountsSumma

  5. Discrete Event Simulation for the Analysis of Artillery Fired Projectiles from Shore

    Science.gov (United States)

    2017-06-01

    model. 2.1 Discrete Event Simulation with Simkit Simkit is a library of classes and interfaces, written in Java , that support ease of implemen- tation...Simkit allows simulation modelers to break complex systems into components through a framework of Listener Event Graph Objects (LEGOs), described in...Classes A disadvantage to using Java Enum Types is the inability to change the values of Enum Type parameters while conducting a designed experiment

  6. Discrete event simulation of crop operations in sweet pepper in support of work method innovation

    NARCIS (Netherlands)

    Ooster, van 't Bert; Aantjes, Wiger; Melamed, Z.

    2017-01-01

    Greenhouse Work Simulation, GWorkS, is a model that simulates crop operations in greenhouses for the purpose of analysing work methods. GWorkS is a discrete event model that approaches reality as a discrete stochastic dynamic system. GWorkS was developed and validated using cut-rose as a case

  7. Digital Resonant Controller based on Modified Tustin Discretization Method

    Directory of Open Access Journals (Sweden)

    STOJIC, D.

    2016-11-01

    Full Text Available Resonant controllers are used in power converter voltage and current control due to their simplicity and accuracy. However, digital implementation of resonant controllers introduces problems related to zero and pole mapping from the continuous to the discrete time domain. Namely, some discretization methods introduce significant errors in the digital controller resonant frequency, resulting in the loss of the asymptotic AC reference tracking, especially at high resonant frequencies. The delay compensation typical for resonant controllers can also be compromised. Based on the existing analysis, it can be concluded that the Tustin discretization with frequency prewarping represents a preferable choice from the point of view of the resonant frequency accuracy. However, this discretization method has a shortcoming in applications that require real-time frequency adaptation, since complex trigonometric evaluation is required for each frequency change. In order to overcome this problem, in this paper the modified Tustin discretization method is proposed based on the Taylor series approximation of the frequency prewarping function. By comparing the novel discretization method with commonly used two-integrator-based proportional-resonant (PR digital controllers, it is shown that the resulting digital controller resonant frequency and time delay compensation errors are significantly reduced for the novel controller.

  8. Discrete-time optimal control and games on large intervals

    CERN Document Server

    Zaslavski, Alexander J

    2017-01-01

    Devoted to the structure of approximate solutions of discrete-time optimal control problems and approximate solutions of dynamic discrete-time two-player zero-sum games, this book presents results on properties of approximate solutions in an interval that is independent lengthwise, for all sufficiently large intervals. Results concerning the so-called turnpike property of optimal control problems and zero-sum games in the regions close to the endpoints of the time intervals are the main focus of this book. The description of the structure of approximate solutions on sufficiently large intervals and its stability will interest graduate students and mathematicians in optimal control and game theory, engineering, and economics. This book begins with a brief overview and moves on to analyze the structure of approximate solutions of autonomous nonconcave discrete-time optimal control Lagrange problems.Next the structures of approximate solutions of autonomous discrete-time optimal control problems that are discret...

  9. Statistical and Probabilistic Extensions to Ground Operations' Discrete Event Simulation Modeling

    Science.gov (United States)

    Trocine, Linda; Cummings, Nicholas H.; Bazzana, Ashley M.; Rychlik, Nathan; LeCroy, Kenneth L.; Cates, Grant R.

    2010-01-01

    NASA's human exploration initiatives will invest in technologies, public/private partnerships, and infrastructure, paving the way for the expansion of human civilization into the solar system and beyond. As it is has been for the past half century, the Kennedy Space Center will be the embarkation point for humankind's journey into the cosmos. Functioning as a next generation space launch complex, Kennedy's launch pads, integration facilities, processing areas, launch and recovery ranges will bustle with the activities of the world's space transportation providers. In developing this complex, KSC teams work through the potential operational scenarios: conducting trade studies, planning and budgeting for expensive and limited resources, and simulating alternative operational schemes. Numerous tools, among them discrete event simulation (DES), were matured during the Constellation Program to conduct such analyses with the purpose of optimizing the launch complex for maximum efficiency, safety, and flexibility while minimizing life cycle costs. Discrete event simulation is a computer-based modeling technique for complex and dynamic systems where the state of the system changes at discrete points in time and whose inputs may include random variables. DES is used to assess timelines and throughput, and to support operability studies and contingency analyses. It is applicable to any space launch campaign and informs decision-makers of the effects of varying numbers of expensive resources and the impact of off nominal scenarios on measures of performance. In order to develop representative DES models, methods were adopted, exploited, or created to extend traditional uses of DES. The Delphi method was adopted and utilized for task duration estimation. DES software was exploited for probabilistic event variation. A roll-up process was used, which was developed to reuse models and model elements in other less - detailed models. The DES team continues to innovate and expand

  10. Adaptive control of discrete-time chaotic systems: a fuzzy control approach

    International Nuclear Information System (INIS)

    Feng Gang; Chen Guanrong

    2005-01-01

    This paper discusses adaptive control of a class of discrete-time chaotic systems from a fuzzy control approach. Using the T-S model of discrete-time chaotic systems, an adaptive control algorithm is developed based on some conventional adaptive control techniques. The resulting adaptively controlled chaotic system is shown to be globally stable, and its robustness is discussed. A simulation example of the chaotic Henon map control is finally presented, to illustrate an application and the performance of the proposed control algorithm

  11. Discrete event simulation tool for analysis of qualitative models of continuous processing systems

    Science.gov (United States)

    Malin, Jane T. (Inventor); Basham, Bryan D. (Inventor); Harris, Richard A. (Inventor)

    1990-01-01

    An artificial intelligence design and qualitative modeling tool is disclosed for creating computer models and simulating continuous activities, functions, and/or behavior using developed discrete event techniques. Conveniently, the tool is organized in four modules: library design module, model construction module, simulation module, and experimentation and analysis. The library design module supports the building of library knowledge including component classes and elements pertinent to a particular domain of continuous activities, functions, and behavior being modeled. The continuous behavior is defined discretely with respect to invocation statements, effect statements, and time delays. The functionality of the components is defined in terms of variable cluster instances, independent processes, and modes, further defined in terms of mode transition processes and mode dependent processes. Model construction utilizes the hierarchy of libraries and connects them with appropriate relations. The simulation executes a specialized initialization routine and executes events in a manner that includes selective inherency of characteristics through a time and event schema until the event queue in the simulator is emptied. The experimentation and analysis module supports analysis through the generation of appropriate log files and graphics developments and includes the ability of log file comparisons.

  12. Discrete-time control system design with applications

    CERN Document Server

    Rabbath, C A

    2014-01-01

    This book presents practical techniques of discrete-time control system design. In general, the design techniques lead to low-order dynamic compensators that ensure satisfactory closed-loop performance for a wide range of sampling rates. The theory is given in the form of theorems, lemmas, and propositions. The design of the control systems is presented as step-by-step procedures and algorithms. The proposed feedback control schemes are applied to well-known dynamic system models. This book also discusses: Closed-loop performance of generic models of mobile robot and airborne pursuer dynamic systems under discrete-time feedback control with limited computing capabilities Concepts of discrete-time models and sampled-data models of continuous-time systems, for both single- and dual-rate operation Local versus global digital redesign Optimal, closed-loop digital redesign methods Plant input mapping design Generalized holds and samplers for use in feedback control loops, Numerical simulation of fixed-point arithm...

  13. The cost of conservative synchronization in parallel discrete event simulations

    Science.gov (United States)

    Nicol, David M.

    1990-01-01

    The performance of a synchronous conservative parallel discrete-event simulation protocol is analyzed. The class of simulation models considered is oriented around a physical domain and possesses a limited ability to predict future behavior. A stochastic model is used to show that as the volume of simulation activity in the model increases relative to a fixed architecture, the complexity of the average per-event overhead due to synchronization, event list manipulation, lookahead calculations, and processor idle time approach the complexity of the average per-event overhead of a serial simulation. The method is therefore within a constant factor of optimal. The analysis demonstrates that on large problems--those for which parallel processing is ideally suited--there is often enough parallel workload so that processors are not usually idle. The viability of the method is also demonstrated empirically, showing how good performance is achieved on large problems using a thirty-two node Intel iPSC/2 distributed memory multiprocessor.

  14. Comparison of discrete event simulation tools in an academic environment

    Directory of Open Access Journals (Sweden)

    Mario Jadrić

    2014-12-01

    Full Text Available A new research model for simulation software evaluation is proposed consisting of three main categories of criteria: modeling and simulation capabilities of the explored tools, and tools’ input/output analysis possibilities, all with respective sub-criteria. Using the presented model, two discrete event simulation tools are evaluated in detail using the task-centred scenario. Both tools (Arena and ExtendSim were used for teaching discrete event simulation in preceding academic years. With the aim to inspect their effectiveness and to help us determine which tool is more suitable for students i.e. academic purposes, we used a simple simulation model of entities competing for limited resources. The main goal was to measure subjective (primarily attitude and objective indicators while using the tools when the same simulation scenario is given. The subjects were first year students of Master studies in Information Management at the Faculty of Economics in Split taking a course in Business Process Simulations (BPS. In a controlled environment – in a computer lab, two groups of students were given detailed, step-by-step instructions for building models using both tools - first using ExtendSim then Arena or vice versa. Subjective indicators (students’ attitudes were collected using an online survey completed immediately upon building each model. Subjective indicators primarily include students’ personal estimations of Arena and ExtendSim capabilities/features for model building, model simulation and result analysis. Objective indicators were measured using specialised software that logs information on user's behavior while performing a particular task on their computer such as distance crossed by mouse during model building, the number of mouse clicks, usage of the mouse wheel and speed achieved. The results indicate that ExtendSim is well preferred comparing to Arena with regards to subjective indicators while the objective indicators are

  15. Discrete-time nonlinear sliding mode controller

    African Journals Online (AJOL)

    user

    Keywords: Discrete-time delay system, Sliding mode control, nonlinear sliding ... of engineering systems such as chemical process control, delay in the actuator ...... instrumentation from Motilal Nehru National Institute of Technology (MNNIT),.

  16. Simulation of interim spent fuel storage system with discrete event model

    International Nuclear Information System (INIS)

    Yoon, Wan Ki; Song, Ki Chan; Lee, Jae Sol; Park, Hyun Soo

    1989-01-01

    This paper describes dynamic simulation of the spent fuel storage system which is described by statistical discrete event models. It visualizes flow and queue of system over time, assesses the operational performance of the system activities and establishes the system components and streams. It gives information on system organization and operation policy with reference to the design. System was tested and analyzed over a number of critical parameters to establish the optimal system. Workforce schedule and resources with long processing time dominate process. A combination of two workforce shifts a day and two cooling pits gives the optimal solution of storage system. Discrete system simulation is an useful tool to get information on optimal design and operation of the storage system. (Author)

  17. A mathematical approach for evaluating Markov models in continuous time without discrete-event simulation.

    Science.gov (United States)

    van Rosmalen, Joost; Toy, Mehlika; O'Mahony, James F

    2013-08-01

    Markov models are a simple and powerful tool for analyzing the health and economic effects of health care interventions. These models are usually evaluated in discrete time using cohort analysis. The use of discrete time assumes that changes in health states occur only at the end of a cycle period. Discrete-time Markov models only approximate the process of disease progression, as clinical events typically occur in continuous time. The approximation can yield biased cost-effectiveness estimates for Markov models with long cycle periods and if no half-cycle correction is made. The purpose of this article is to present an overview of methods for evaluating Markov models in continuous time. These methods use mathematical results from stochastic process theory and control theory. The methods are illustrated using an applied example on the cost-effectiveness of antiviral therapy for chronic hepatitis B. The main result is a mathematical solution for the expected time spent in each state in a continuous-time Markov model. It is shown how this solution can account for age-dependent transition rates and discounting of costs and health effects, and how the concept of tunnel states can be used to account for transition rates that depend on the time spent in a state. The applied example shows that the continuous-time model yields more accurate results than the discrete-time model but does not require much computation time and is easily implemented. In conclusion, continuous-time Markov models are a feasible alternative to cohort analysis and can offer several theoretical and practical advantages.

  18. Engineering applications of discrete-time optimal control

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui; Ravn, Hans V.

    1990-01-01

    Many problems of design and operation of engineering systems can be formulated as optimal control problems where time has been discretisized. This is also true even if 'time' is not involved in the formulation of the problem, but rather another one-dimensional parameter. This paper gives a review...... of some well-known and new results in discrete time optimal control methods applicable to practical problem solving within engineering. Emphasis is placed on dynamic programming, the classical maximum principle and generalized versions of the maximum principle for optimal control of discrete time systems...

  19. Conditions for extinction events in chemical reaction networks with discrete state spaces.

    Science.gov (United States)

    Johnston, Matthew D; Anderson, David F; Craciun, Gheorghe; Brijder, Robert

    2018-05-01

    We study chemical reaction networks with discrete state spaces and present sufficient conditions on the structure of the network that guarantee the system exhibits an extinction event. The conditions we derive involve creating a modified chemical reaction network called a domination-expanded reaction network and then checking properties of this network. Unlike previous results, our analysis allows algorithmic implementation via systems of equalities and inequalities and suggests sequences of reactions which may lead to extinction events. We apply the results to several networks including an EnvZ-OmpR signaling pathway in Escherichia coli.

  20. U.S. Marine Corps Communication-Electronics School Training Process: Discrete-Event Simulation and Lean Options

    National Research Council Canada - National Science Library

    Neu, Charles R; Davenport, Jon; Smith, William R

    2007-01-01

    This paper uses discrete-event simulation modeling, inventory-reduction, and process improvement concepts to identify and analyze possibilities for improving the training continuum at the Marine Corps...

  1. Modeling crowd behavior based on the discrete-event multiagent approach

    OpenAIRE

    Лановой, Алексей Феликсович; Лановой, Артем Алексеевич

    2014-01-01

    The crowd is a temporary, relatively unorganized group of people, who are in close physical contact with each other. Individual behavior of human outside the crowd is determined by many factors, associated with his intellectual activities, but inside the crowd the man loses his identity and begins to obey more simple laws of behavior.One of approaches to the construction of multi-level model of the crowd using discrete-event multiagent approach was described in the paper.Based on this analysi...

  2. Discrete event simulation and the resultant data storage system response in the operational mission environment of Jupiter-Saturn /Voyager/ spacecraft

    Science.gov (United States)

    Mukhopadhyay, A. K.

    1978-01-01

    The Data Storage Subsystem Simulator (DSSSIM) simulating (by ground software) occurrence of discrete events in the Voyager mission is described. Functional requirements for Data Storage Subsystems (DSS) simulation are discussed, and discrete event simulation/DSSSIM processing is covered. Four types of outputs associated with a typical DSSSIM run are presented, and DSSSIM limitations and constraints are outlined.

  3. Discrete-Event Simulation with Agents for Modeling of Dynamic Asymmetric Threats in Maritime Security

    National Research Council Canada - National Science Library

    Ng, Chee W

    2007-01-01

    .... Discrete-event simulation (DES) was used to simulate a typical port-security, local, waterside-threat response model and to test the adaptive response of asymmetric threats in reaction to port-security procedures, while a multi-agent system (MAS...

  4. Design and validation of a dynamic discrete event stochastic simulation model of mastitis control in dairy herds.

    Science.gov (United States)

    Allore, H G; Schruben, L W; Erb, H N; Oltenacu, P A

    1998-03-01

    A dynamic stochastic simulation model for discrete events, SIMMAST, was developed to simulate the effect of mastitis on the composition of the bulk tank milk of dairy herds. Intramammary infections caused by Streptococcus agalactiae, Streptococcus spp. other than Strep. agalactiae, Staphylococcus aureus, and coagulase-negative staphylococci were modeled as were the milk, fat, and protein test day solutions for individual cows, which accounted for the fixed effects of days in milk, age at calving, season of calving, somatic cell count (SCC), and random effects of test day, cow yield differences from herdmates, and autocorrelated errors. Probabilities for the transitions among various states of udder health (uninfected or subclinically or clinically infected) were calculated to account for exposure, heifer infection, spontaneous recovery, lactation cure, infection or cure during the dry period, month of lactation, parity, within-herd yields, and the number of quarters with clinical intramammary infection in the previous and current lactations. The stochastic simulation model was constructed using estimates from the literature and also using data from 164 herds enrolled with Quality Milk Promotion Services that each had bulk tank SCC between 500,000 and 750,000/ml. Model parameters and outputs were validated against a separate data file of 69 herds from the Northeast Dairy Herd Improvement Association, each with a bulk tank SCC that was > or = 500,000/ml. Sensitivity analysis was performed on all input parameters for control herds. Using the validated stochastic simulation model, the control herds had a stable time average bulk tank SCC between 500,000 and 750,000/ml.

  5. Single Versus Multiple Events Error Potential Detection in a BCI-Controlled Car Game With Continuous and Discrete Feedback.

    Science.gov (United States)

    Kreilinger, Alex; Hiebel, Hannah; Müller-Putz, Gernot R

    2016-03-01

    This work aimed to find and evaluate a new method for detecting errors in continuous brain-computer interface (BCI) applications. Instead of classifying errors on a single-trial basis, the new method was based on multiple events (MEs) analysis to increase the accuracy of error detection. In a BCI-driven car game, based on motor imagery (MI), discrete events were triggered whenever subjects collided with coins and/or barriers. Coins counted as correct events, whereas barriers were errors. This new method, termed ME method, combined and averaged the classification results of single events (SEs) and determined the correctness of MI trials, which consisted of event sequences instead of SEs. The benefit of this method was evaluated in an offline simulation. In an online experiment, the new method was used to detect erroneous MI trials. Such MI trials were discarded and could be repeated by the users. We found that, even with low SE error potential (ErrP) detection rates, feasible accuracies can be achieved when combining MEs to distinguish erroneous from correct MI trials. Online, all subjects reached higher scores with error detection than without, at the cost of longer times needed for completing the game. Findings suggest that ErrP detection may become a reliable tool for monitoring continuous states in BCI applications when combining MEs. This paper demonstrates a novel technique for detecting errors in online continuous BCI applications, which yields promising results even with low single-trial detection rates.

  6. Distributed Event-Triggered Control of Multiagent Systems with Time-Varying Topology

    Directory of Open Access Journals (Sweden)

    Jingwei Ma

    2014-01-01

    Full Text Available This paper studies the consensus of first-order discrete-time multiagent systems, where the interaction topology is time-varying. The event-triggered control is used to update the control input of each agent, and the event-triggering condition is designed based on the combination of the relative states of each agent to its neighbors. By applying the common Lyapunov function method, a sufficient condition for consensus, which is expressed as a group of linear matrix inequalities, is obtained and the feasibility of these linear matrix inequalities is further analyzed. Simulation examples are provided to explain the effectiveness of the theoretical results.

  7. Safety Discrete Event Models for Holonic Cyclic Manufacturing Systems

    Science.gov (United States)

    Ciufudean, Calin; Filote, Constantin

    In this paper the expression “holonic cyclic manufacturing systems” refers to complex assembly/disassembly systems or fork/join systems, kanban systems, and in general, to any discrete event system that transforms raw material and/or components into products. Such a system is said to be cyclic if it provides the same sequence of products indefinitely. This paper considers the scheduling of holonic cyclic manufacturing systems and describes a new approach using Petri nets formalism. We propose an approach to frame the optimum schedule of holonic cyclic manufacturing systems in order to maximize the throughput while minimize the work in process. We also propose an algorithm to verify the optimum schedule.

  8. Discrete-event simulation of nuclear-waste transport in geologic sites subject to disruptive events. Final report

    International Nuclear Information System (INIS)

    Aggarwal, S.; Ryland, S.; Peck, R.

    1980-01-01

    This report outlines a methodology to study the effects of disruptive events on nuclear waste material in stable geologic sites. The methodology is based upon developing a discrete events model that can be simulated on the computer. This methodology allows a natural development of simulation models that use computer resources in an efficient manner. Accurate modeling in this area depends in large part upon accurate modeling of ion transport behavior in the storage media. Unfortunately, developments in this area are not at a stage where there is any consensus on proper models for such transport. Consequently, our work is directed primarily towards showing how disruptive events can be properly incorporated in such a model, rather than as a predictive tool at this stage. When and if proper geologic parameters can be determined, then it would be possible to use this as a predictive model. Assumptions and their bases are discussed, and the mathematical and computer model are described

  9. Application of discrete event simulation to MRS design

    International Nuclear Information System (INIS)

    Bali, M.; Standley, W.

    1993-01-01

    The application of discrete event simulation to the Monitored, Retrievable Storage (MRS) material handling operations supported the MRS conceptual design effort and established a set of tools for use during MRS detail design and license application. The effort to develop a design analysis tool to support the MRS project started in 1991. The MRS simulation has so far identified potential savings and suggested methods of improving operations to enhance throughput. Immediately, simulation aided the MRS conceptual design effort through the investigation of alternative cask handling operations and the sizing and sharing of expensive equipment. The simulation also helped analyze the operability of the current design of MRS under various waste acceptance scenarios. Throughout the simulation effort, the model development and experimentation resulted in early identification and resolution of several design and operational issues

  10. Discrete-time sliding mode control for MR vehicle suspension system

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, J W; Choi, S B [Smart Structures and Systems Laboratory, Department of Mechanical Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Wereley, N M [Smart Structures Laboratory, Department of Aerospace Engineering, University of Maryland, College Park, MD 20742 (United States)], E-mail: seungbok@inha.ac.kr

    2009-02-01

    This paper presents control performance of a full-vehicle suspension system featuring magnetorheological (MR) dampers via a discrete-time sliding mode control algorithm (DSMC). A cylindrical MR damper is designed by incorporating Bingham model of the MR fluid and the field-dependent damping characteristics of the MR damper are evaluated. A full-vehicle suspension model installed with independent four MR dampers is constructed and the governing equations which include vertical, pitch and roll motion are derived. A discrete-time control model is established with considering system uncertainties and a discrete-time sliding mode controller which has inherent robustness to model uncertainty and external disturbance is formulated. Vibration control performances under bump excitation are evaluated and presented.

  11. Discrete-time sliding mode control for MR vehicle suspension system

    International Nuclear Information System (INIS)

    Sohn, J W; Choi, S B; Wereley, N M

    2009-01-01

    This paper presents control performance of a full-vehicle suspension system featuring magnetorheological (MR) dampers via a discrete-time sliding mode control algorithm (DSMC). A cylindrical MR damper is designed by incorporating Bingham model of the MR fluid and the field-dependent damping characteristics of the MR damper are evaluated. A full-vehicle suspension model installed with independent four MR dampers is constructed and the governing equations which include vertical, pitch and roll motion are derived. A discrete-time control model is established with considering system uncertainties and a discrete-time sliding mode controller which has inherent robustness to model uncertainty and external disturbance is formulated. Vibration control performances under bump excitation are evaluated and presented.

  12. Modeling discrete time-to-event data

    CERN Document Server

    Tutz, Gerhard

    2016-01-01

    This book focuses on statistical methods for the analysis of discrete failure times. Failure time analysis is one of the most important fields in statistical research, with applications affecting a wide range of disciplines, in particular, demography, econometrics, epidemiology and clinical research. Although there are a large variety of statistical methods for failure time analysis, many techniques are designed for failure times that are measured on a continuous scale. In empirical studies, however, failure times are often discrete, either because they have been measured in intervals (e.g., quarterly or yearly) or because they have been rounded or grouped. The book covers well-established methods like life-table analysis and discrete hazard regression models, but also introduces state-of-the art techniques for model evaluation, nonparametric estimation and variable selection. Throughout, the methods are illustrated by real life applications, and relationships to survival analysis in continuous time are expla...

  13. Discrete Control Processes, Dynamic Games and Multicriterion Control Problems

    Directory of Open Access Journals (Sweden)

    Dumitru Lozovanu

    2002-07-01

    Full Text Available The discrete control processes with state evaluation in time of dynamical system is considered. A general model of control problems with integral-time cost criterion by a trajectory is studied and a general scheme for solving such classes of problems is proposed. In addition the game-theoretical and multicriterion models for control problems are formulated and studied.

  14. Advances in Discrete-Event Simulation for MSL Command Validation

    Science.gov (United States)

    Patrikalakis, Alexander; O'Reilly, Taifun

    2013-01-01

    In the last five years, the discrete event simulator, SEQuence GENerator (SEQGEN), developed at the Jet Propulsion Laboratory to plan deep-space missions, has greatly increased uplink operations capacity to deal with increasingly complicated missions. In this paper, we describe how the Mars Science Laboratory (MSL) project makes full use of an interpreted environment to simulate change in more than fifty thousand flight software parameters and conditional command sequences to predict the result of executing a conditional branch in a command sequence, and enable the ability to warn users whenever one or more simulated spacecraft states change in an unexpected manner. Using these new SEQGEN features, operators plan more activities in one sol than ever before.

  15. Modeling energy market dynamics using discrete event system simulation

    International Nuclear Information System (INIS)

    Gutierrez-Alcaraz, G.; Sheble, G.B.

    2009-01-01

    This paper proposes the use of Discrete Event System Simulation to study the interactions among fuel and electricity markets and consumers, and the decision-making processes of fuel companies (FUELCOs), generation companies (GENCOs), and consumers in a simple artificial energy market. In reality, since markets can reach a stable equilibrium or fail, it is important to observe how they behave in a dynamic framework. We consider a Nash-Cournot model in which marketers are depicted as Nash-Cournot players that determine supply to meet end-use consumption. Detailed engineering considerations such as transportation network flows are omitted, because the focus is upon the selection and use of appropriate market models to provide answers to policy questions. (author)

  16. A Discrete-Event Simulation Model for Evaluating Air Force Reusable Military Launch Vehicle Post-Landing Operations

    National Research Council Canada - National Science Library

    Martindale, Michael

    2006-01-01

    The purpose of this research was to develop a discrete-event computer simulation model of the post-landing vehicle recoveoperations to allow the Air Force Research Laboratory, Air Vehicles Directorate...

  17. Discrete event simulation in an artificial intelligence environment: Some examples

    International Nuclear Information System (INIS)

    Roberts, D.J.; Farish, T.

    1991-01-01

    Several Los Alamos National Laboratory (LANL) object-oriented discrete-event simulation efforts have been completed during the past three years. One of these systems has been put into production and has a growing customer base. Another (started two years earlier than the first project) was completed but has not yet been used. This paper will describe these simulation projects. Factors which were pertinent to the success of the one project, and to the failure of the second project will be discussed (success will be measured as the extent to which the simulation model was used as originally intended). 5 figs

  18. Discrete-event simulation for the design and evaluation of physical protection systems

    International Nuclear Information System (INIS)

    Jordan, S.E.; Snell, M.K.; Madsen, M.M.; Smith, J.S.; Peters, B.A.

    1998-01-01

    This paper explores the use of discrete-event simulation for the design and control of physical protection systems for fixed-site facilities housing items of significant value. It begins by discussing several modeling and simulation activities currently performed in designing and analyzing these protection systems and then discusses capabilities that design/analysis tools should have. The remainder of the article then discusses in detail how some of these new capabilities have been implemented in software to achieve a prototype design and analysis tool. The simulation software technology provides a communications mechanism between a running simulation and one or more external programs. In the prototype security analysis tool, these capabilities are used to facilitate human-in-the-loop interaction and to support a real-time connection to a virtual reality (VR) model of the facility being analyzed. This simulation tool can be used for both training (in real-time mode) and facility analysis and design (in fast mode)

  19. Adaptive Control and Function Projective Synchronization in 2D Discrete-Time Chaotic Systems

    International Nuclear Information System (INIS)

    Li Yin; Chen Yong; Li Biao

    2009-01-01

    This study addresses the adaptive control and function projective synchronization problems between 2D Rulkov discrete-time system and Network discrete-time system. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate the function projective synchronization of discrete-time chaotic systems. In addition, the adaptive control function is applied to achieve the state synchronization of two discrete-time systems. Numerical results demonstrate the effectiveness of the proposed control scheme.

  20. On the application of Discrete Time Optimal Control Concepts to ...

    African Journals Online (AJOL)

    On the application of Discrete Time Optimal Control Concepts to Economic Problems. ... Journal of the Nigerian Association of Mathematical Physics ... Abstract. An extension of the use of the maximum principle to solve Discrete-time Optimal Control Problems (DTOCP), in which the state equations are in the form of general ...

  1. Direct output feedback control of discrete-time systems

    International Nuclear Information System (INIS)

    Lin, C.C.; Chung, L.L.; Lu, K.H.

    1993-01-01

    An optimal direct output feedback control algorithm is developed for discrete-time systems with the consideration of time delay in control force action. Optimal constant output feedback gains are obtained through variational process such that certain prescribed quadratic performance index is minimized. Discrete-time control forces are then calculated from the multiplication of output measurements by these pre-calculated feedback gains. According to the proposed algorithm, structural system is assured to remain stable even in the presence of time delay. The number of sensors and controllers may be very small as compared with the dimension of states. Numerical results show that direct velocity feedback control is more sensitive to time delay than state feedback but, is still quite effective in reducing the dynamic responses under earthquake excitation. (author)

  2. Discrete Model Reference Adaptive Control System for Automatic Profiling Machine

    Directory of Open Access Journals (Sweden)

    Peng Song

    2012-01-01

    Full Text Available Automatic profiling machine is a movement system that has a high degree of parameter variation and high frequency of transient process, and it requires an accurate control in time. In this paper, the discrete model reference adaptive control system of automatic profiling machine is discussed. Firstly, the model of automatic profiling machine is presented according to the parameters of DC motor. Then the design of the discrete model reference adaptive control is proposed, and the control rules are proven. The results of simulation show that adaptive control system has favorable dynamic performances.

  3. Evolutionary paths, applications and future development of discrete event simulation systems; Simulazione a eventi discreti: nuove linee di sviluppo e applicazioni

    Energy Technology Data Exchange (ETDEWEB)

    Garetti, M. [Milan Politecnico, Milan (Italy). Dipt. di Economia e Produzione; Bartolotta, A.

    2000-10-01

    The state of the art of discrete event simulation tools is presented with special reference to the application to the manufacturing systems area. After presenting the basics of discrete event computer simulation, the different steps to be followed for the successful use of simulation are defined and discussed. The evolution of software packages for discrete event simulation is also presented, highlighting main technological changes. Finally the future development lines of simulation are outlined. [Italian] Viene presentato lo stato dell'arte della simulazione a eventi discreti. Dopo una breve descrizione della tecnica della simulazione e della sua evoluzione, con un particolare riguardo alla simulazione dei sistemi produttivi, sono descritte le fasi della procedura da seguire per condurre unostudio di simulazione e i possibili approcci per la costruzione del modello. Viene infine descritta l'evoluzione dei principali pacchetti software di simulazione esistenti sul mercato.

  4. Evaluating resilience of DNP3-controlled SCADA systems against event buffer flooding

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Guanhua [Los Alamos National Laboratory; Nicol, David M [UNIV OF IL; Jin, Dong [UNIV OF IL

    2010-12-16

    The DNP3 protocol is widely used in SCADA systems (particularly electrical power) as a means of communicating observed sensor state information back to a control center. Typical architectures using DNP3 have a two level hierarchy, where a specialized data aggregator device receives observed state from devices within a local region, and the control center collects the aggregated state from the data aggregator. The DNP3 communication between control center and data aggregator is asynchronous with the DNP3 communication between data aggregator and relays; this leads to the possibility of completely filling a data aggregator's buffer of pending events, when a relay is compromised or spoofed and sends overly many (false) events to the data aggregator. This paper investigates how a real-world SCADA device responds to event buffer flooding. A Discrete-Time Markov Chain (DTMC) model is developed for understanding this. The DTMC model is validated by a Moebius simulation model and data collected on real SCADA testbed.

  5. A Framework for the Optimization of Discrete-Event Simulation Models

    Science.gov (United States)

    Joshi, B. D.; Unal, R.; White, N. H.; Morris, W. D.

    1996-01-01

    With the growing use of computer modeling and simulation, in all aspects of engineering, the scope of traditional optimization has to be extended to include simulation models. Some unique aspects have to be addressed while optimizing via stochastic simulation models. The optimization procedure has to explicitly account for the randomness inherent in the stochastic measures predicted by the model. This paper outlines a general purpose framework for optimization of terminating discrete-event simulation models. The methodology combines a chance constraint approach for problem formulation, together with standard statistical estimation and analyses techniques. The applicability of the optimization framework is illustrated by minimizing the operation and support resources of a launch vehicle, through a simulation model.

  6. Discrete-Time LPV Current Control of an Induction Motor

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2003-01-01

    In this paper we apply a new method for gain-scheduled output feedback control of nonlinear systems to current control of an induction motor. The method relies on recently developed controller synthesis results for linear parameter-varying (LPV) systems, where the controller synthesis is formulated...... as a set of linear matrix inequalities with full-block multipliers. A standard nonlinear model of the motor is constructed and written on LPV form. We then show that, although originally developed in continuous time, the controller synthesis results can be applied to a discrete-time model as well without...... further complications. The synthesis method is applied to the model, yielding an LPV discrete-time controller. Finally, the efficiency of the control scheme is validated via simulations as well as on the actual induction motor, both in open-loop current control and when an outer speed control loop...

  7. Influence of discretization method on the digital control system performance

    Directory of Open Access Journals (Sweden)

    Futás József

    2003-12-01

    Full Text Available The design of control system can be divided into two steps. First the process or plant have to be convert into mathematical model form, so that its behavior can be analyzed. Then an appropriate controller have to be design in order to get the desired response of the controlled system. In the continuous time domain the system is represented by differential equations. Replacing a continuous system into discrete time form is always an approximation of the continuous system. The different discretization methods give different digital controller performance. The methods presented on the paper are Step Invariant or Zero Order Hold (ZOH Method, Matched Pole-Zero Method, Backward difference Method and Bilinear transformation. The above mentioned discretization methods are used in developing PI position controller of a dc motor. The motor model was converted by the ZOH method. The performances of the different methods are compared and the results are presented.

  8. Coordination control of discrete-event systems revisited

    Czech Academy of Sciences Publication Activity Database

    Komenda, Jan; Masopust, Tomáš; van Schuppen, J. H.

    2015-01-01

    Roč. 25, 1-2 (2015), s. 65-94 ISSN 0924-6703 R&D Projects: GA ČR(CZ) GPP202/11/P028; GA ČR(CZ) GAP103/11/0517 Institutional support: RVO:67985840 Keywords : coordination control * supervisory control Subject RIV: BA - General Mathematics Impact factor: 1.268, year: 2015 http://link.springer.com/article/10.1007%2Fs10626-013-0179-x

  9. Comparative Effectiveness of Tacrolimus-Based Steroid Sparing versus Steroid Maintenance Regimens in Kidney Transplantation: Results from Discrete Event Simulation.

    Science.gov (United States)

    Desai, Vibha C A; Ferrand, Yann; Cavanaugh, Teresa M; Kelton, Christina M L; Caro, J Jaime; Goebel, Jens; Heaton, Pamela C

    2017-10-01

    Corticosteroids used as immunosuppressants to prevent acute rejection (AR) and graft loss (GL) following kidney transplantation are associated with serious cardiovascular and other adverse events. Evidence from short-term randomized controlled trials suggests that many patients on a tacrolimus-based immunosuppressant regimen can withdraw from steroids without increased AR or GL risk. To measure the long-term tradeoff between GL and adverse events for a heterogeneous-risk population and determine the optimal timing of steroid withdrawal. A discrete event simulation was developed including, as events, AR, GL, myocardial infarction (MI), stroke, cytomegalovirus, and new onset diabetes mellitus (NODM), among others. Data from the United States Renal Data System were used to estimate event-specific parametric regressions, which accounted for steroid-sparing regimen (avoidance, early 7-d withdrawal, 6-mo withdrawal, 12-mo withdrawal, and maintenance) as well as patients' demographics, immunologic risks, and comorbidities. Regression-equation results were used to derive individual time-to-event Weibull distributions, used, in turn, to simulate the course of patients over 20 y. Patients on steroid avoidance or an early-withdrawal regimen were more likely to experience AR (45.9% to 55.0% v. 33.6%, P events and other outcomes with no worsening of AR or GL rates compared with steroid maintenance.

  10. Discrete event simulation for exploring strategies: an urban water management case.

    Science.gov (United States)

    Huang, Dong-Bin; Scholz, Roland W; Gujer, Willi; Chitwood, Derek E; Loukopoulos, Peter; Schertenleib, Roland; Siegrist, Hansruedi

    2007-02-01

    This paper presents a model structure aimed at offering an overview of the various elements of a strategy and exploring their multidimensional effects through time in an efficient way. It treats a strategy as a set of discrete events planned to achieve a certain strategic goal and develops a new form of causal networks as an interfacing component between decision makers and environment models, e.g., life cycle inventory and material flow models. The causal network receives a strategic plan as input in a discrete manner and then outputs the updated parameter sets to the subsequent environmental models. Accordingly, the potential dynamic evolution of environmental systems caused by various strategies can be stepwise simulated. It enables a way to incorporate discontinuous change in models for environmental strategy analysis, and enhances the interpretability and extendibility of a complex model by its cellular constructs. It is exemplified using an urban water management case in Kunming, a major city in Southwest China. By utilizing the presented method, the case study modeled the cross-scale interdependencies of the urban drainage system and regional water balance systems, and evaluated the effectiveness of various strategies for improving the situation of Dianchi Lake.

  11. DECISION WITH ARTIFICIAL NEURAL NETWORKS IN DISCRETE EVENT SIMULATION MODELS ON A TRAFFIC SYSTEM

    Directory of Open Access Journals (Sweden)

    Marília Gonçalves Dutra da Silva

    2016-04-01

    Full Text Available ABSTRACT This work aims to demonstrate the use of a mechanism to be applied in the development of the discrete-event simulation models that perform decision operations through the implementation of an artificial neural network. Actions that involve complex operations performed by a human agent in a process, for example, are often modeled in simplified form with the usual mechanisms of simulation software. Therefore, it was chosen a traffic system controlled by a traffic officer with a flow of vehicles and pedestrians to demonstrate the proposed solution. From a module built in simulation software itself, it was possible to connect the algorithm for intelligent decision to the simulation model. The results showed that the model elaborated responded as expected when it was submitted to actions, which required different decisions to maintain the operation of the system with changes in the flow of people and vehicles.

  12. Discrete event simulation of the Defense Waste Processing Facility (DWPF) analytical laboratory

    International Nuclear Information System (INIS)

    Shanahan, K.L.

    1992-02-01

    A discrete event simulation of the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) analytical laboratory has been constructed in the GPSS language. It was used to estimate laboratory analysis times at process analytical hold points and to study the effect of sample number on those times. Typical results are presented for three different simultaneous representing increasing levels of complexity, and for different sampling schemes. Example equipment utilization time plots are also included. SRS DWPF laboratory management and chemists found the simulations very useful for resource and schedule planning

  13. Discrete-Event Execution Alternatives on General Purpose Graphical Processing Units

    International Nuclear Information System (INIS)

    Perumalla, Kalyan S.

    2006-01-01

    Graphics cards, traditionally designed as accelerators for computer graphics, have evolved to support more general-purpose computation. General Purpose Graphical Processing Units (GPGPUs) are now being used as highly efficient, cost-effective platforms for executing certain simulation applications. While most of these applications belong to the category of time-stepped simulations, little is known about the applicability of GPGPUs to discrete event simulation (DES). Here, we identify some of the issues and challenges that the GPGPU stream-based interface raises for DES, and present some possible approaches to moving DES to GPGPUs. Initial performance results on simulation of a diffusion process show that DES-style execution on GPGPU runs faster than DES on CPU and also significantly faster than time-stepped simulations on either CPU or GPGPU.

  14. DeMO: An Ontology for Discrete-event Modeling and Simulation

    Science.gov (United States)

    Silver, Gregory A; Miller, John A; Hybinette, Maria; Baramidze, Gregory; York, William S

    2011-01-01

    Several fields have created ontologies for their subdomains. For example, the biological sciences have developed extensive ontologies such as the Gene Ontology, which is considered a great success. Ontologies could provide similar advantages to the Modeling and Simulation community. They provide a way to establish common vocabularies and capture knowledge about a particular domain with community-wide agreement. Ontologies can support significantly improved (semantic) search and browsing, integration of heterogeneous information sources, and improved knowledge discovery capabilities. This paper discusses the design and development of an ontology for Modeling and Simulation called the Discrete-event Modeling Ontology (DeMO), and it presents prototype applications that demonstrate various uses and benefits that such an ontology may provide to the Modeling and Simulation community. PMID:22919114

  15. Stabilization and tracking controller for a class of nonlinear discrete-time systems

    International Nuclear Information System (INIS)

    Sharma, B.B.; Kar, I.N.

    2011-01-01

    Highlights: → We present recursive design of stabilizing controller for nonlinear discrete-time systems. → Problem of stabilizing and tracking control of single link manipulator system is addressed. → We extend the proposed results to output tracking problems. → The proposed methodology is applied satisfactorily to discrete-time chaotic maps. - Abstract: In this paper, stabilization and tracking control problem for parametric strict feedback class of discrete time systems is addressed. Recursive design of control function based on contraction theory framework is proposed instead of traditional Lyapunov based method. Explicit structure of controller is derived for the addressed class of nonlinear discrete-time systems. Conditions for exponential stability of system states are derived in terms of controller parameters. At each stage of recursive procedure a specific structure of Jacobian matrix is ensured so as to satisfy conditions of stability. The closed loop dynamics in this case remains nonlinear in nature. The proposed algorithm establishes global stability results in quite a simple manner as it does not require formulation of error dynamics. Problem of stabilization and output tracking control in case of single link manipulator system with actuator dynamics is analyzed using the proposed strategy. The proposed results are further extended to stabilization of discrete time chaotic systems. Numerical simulations presented in the end show the effectiveness of the proposed approach.

  16. A discrete-time adaptive control scheme for robot manipulators

    Science.gov (United States)

    Tarokh, M.

    1990-01-01

    A discrete-time model reference adaptive control scheme is developed for trajectory tracking of robot manipulators. The scheme utilizes feedback, feedforward, and auxiliary signals, obtained from joint angle measurement through simple expressions. Hyperstability theory is utilized to derive the adaptation laws for the controller gain matrices. It is shown that trajectory tracking is achieved despite gross robot parameter variation and uncertainties. The method offers considerable design flexibility and enables the designer to improve the performance of the control system by adjusting free design parameters. The discrete-time adaptation algorithm is extremely simple and is therefore suitable for real-time implementation. Simulations and experimental results are given to demonstrate the performance of the scheme.

  17. The Impact of Inpatient Boarding on ED Efficiency: A Discrete-Event Simulation Study

    OpenAIRE

    Bair, Aaron E.; Song, Wheyming T.; Chen, Yi-Chun; Morris, Beth A.

    2009-01-01

    In this study, a discrete-event simulation approach was used to model Emergency Department’s (ED) patient flow to investigate the effect of inpatient boarding on the ED efficiency in terms of the National Emergency Department Crowding Scale (NEDOCS) score and the rate of patients who leave without being seen (LWBS). The decision variable in this model was the boarder-released-ratio defined as the ratio of admitted patients whose boarding time is zero to all admitted patients. Our analysis sho...

  18. Asymptotic behavior of dynamical and control systems under perturbation and discretization

    CERN Document Server

    Grüne, Lars

    2002-01-01

    This book provides an approach to the study of perturbation and discretization effects on the long-time behavior of dynamical and control systems. It analyzes the impact of time and space discretizations on asymptotically stable attracting sets, attractors, asumptotically controllable sets and their respective domains of attractions and reachable sets. Combining robust stability concepts from nonlinear control theory, techniques from optimal control and differential games and methods from nonsmooth analysis, both qualitative and quantitative results are obtained and new algorithms are developed, analyzed and illustrated by examples.

  19. SPEEDES - A multiple-synchronization environment for parallel discrete-event simulation

    Science.gov (United States)

    Steinman, Jeff S.

    1992-01-01

    Synchronous Parallel Environment for Emulation and Discrete-Event Simulation (SPEEDES) is a unified parallel simulation environment. It supports multiple-synchronization protocols without requiring users to recompile their code. When a SPEEDES simulation runs on one node, all the extra parallel overhead is removed automatically at run time. When the same executable runs in parallel, the user preselects the synchronization algorithm from a list of options. SPEEDES currently runs on UNIX networks and on the California Institute of Technology/Jet Propulsion Laboratory Mark III Hypercube. SPEEDES also supports interactive simulations. Featured in the SPEEDES environment is a new parallel synchronization approach called Breathing Time Buckets. This algorithm uses some of the conservative techniques found in Time Bucket synchronization, along with the optimism that characterizes the Time Warp approach. A mathematical model derived from first principles predicts the performance of Breathing Time Buckets. Along with the Breathing Time Buckets algorithm, this paper discusses the rules for processing events in SPEEDES, describes the implementation of various other synchronization protocols supported by SPEEDES, describes some new ones for the future, discusses interactive simulations, and then gives some performance results.

  20. Comparative Study of Aircraft Boarding Strategies Using Cellular Discrete Event Simulation

    Directory of Open Access Journals (Sweden)

    Shafagh Jafer

    2017-11-01

    Full Text Available Time is crucial in the airlines industry. Among all factors contributing to an aircraft turnaround time; passenger boarding delays is the most challenging one. Airlines do not have control over the behavior of passengers; thus, focusing their effort on reducing passenger boarding time through implementing efficient boarding strategies. In this work, we attempt to use cellular Discrete-Event System Specification (Cell-DEVS modeling and simulation to provide a comprehensive evaluation of aircraft boarding strategies. We have developed a simulation benchmark consisting of eight boarding strategies including Back-to-Front; Window Middle Aisle; Random; Zone Rotate; Reverse Pyramid; Optimal; Optimal Practical; and Efficient. Our simulation models are scalable and adaptive; providing a powerful analysis apparatus for investigating any existing or yet to be discovered boarding strategy. We explain the details of our models and present the results both visually and numerically to evaluate the eight implemented boarding strategies. We also compare our results with other studies that have used different modeling techniques; reporting nearly identical performance results. The simulations revealed that Window Middle Aisle provides the least boarding delay; with a small fraction of time difference compared to the optimal strategy. The results of this work could highly benefit the commercial airlines industry by optimizing and reducing passenger boarding delays.

  1. Multi-objective optimisation with stochastic discrete-event simulation in retail banking: a case study

    Directory of Open Access Journals (Sweden)

    E Scholtz

    2012-12-01

    Full Text Available The cash management of an autoteller machine (ATM is a multi-objective optimisation problem which aims to maximise the service level provided to customers at minimum cost. This paper focus on improved cash management in a section of the South African retail banking industry, for which a decision support system (DSS was developed. This DSS integrates four Operations Research (OR methods: the vehicle routing problem (VRP, the continuous review policy for inventory management, the knapsack problem and stochastic, discrete-event simulation. The DSS was applied to an ATM network in the Eastern Cape, South Africa, to investigate 90 different scenarios. Results show that the application of a formal vehicle routing method consistently yields higher service levels at lower cost when compared to two other routing approaches, in conjunction with selected ATM reorder levels and a knapsack-based notes dispensing algorithm. It is concluded that the use of vehicle routing methods is especially beneficial when the bank has substantial control over transportation cost.

  2. Developing Flexible Discrete Event Simulation Models in an Uncertain Policy Environment

    Science.gov (United States)

    Miranda, David J.; Fayez, Sam; Steele, Martin J.

    2011-01-01

    On February 1st, 2010 U.S. President Barack Obama submitted to Congress his proposed budget request for Fiscal Year 2011. This budget included significant changes to the National Aeronautics and Space Administration (NASA), including the proposed cancellation of the Constellation Program. This change proved to be controversial and Congressional approval of the program's official cancellation would take many months to complete. During this same period an end-to-end discrete event simulation (DES) model of Constellation operations was being built through the joint efforts of Productivity Apex Inc. (PAl) and Science Applications International Corporation (SAIC) teams under the guidance of NASA. The uncertainty in regards to the Constellation program presented a major challenge to the DES team, as to: continue the development of this program-of-record simulation, while at the same time remain prepared for possible changes to the program. This required the team to rethink how it would develop it's model and make it flexible enough to support possible future vehicles while at the same time be specific enough to support the program-of-record. This challenge was compounded by the fact that this model was being developed through the traditional DES process-orientation which lacked the flexibility of object-oriented approaches. The team met this challenge through significant pre-planning that led to the "modularization" of the model's structure by identifying what was generic, finding natural logic break points, and the standardization of interlogic numbering system. The outcome of this work resulted in a model that not only was ready to be easily modified to support any future rocket programs, but also a model that was extremely structured and organized in a way that facilitated rapid verification. This paper discusses in detail the process the team followed to build this model and the many advantages this method provides builders of traditional process-oriented discrete

  3. Modeling a Million-Node Slim Fly Network Using Parallel Discrete-Event Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, Noah; Carothers, Christopher; Mubarak, Misbah; Ross, Robert; Carns, Philip

    2016-05-15

    As supercomputers close in on exascale performance, the increased number of processors and processing power translates to an increased demand on the underlying network interconnect. The Slim Fly network topology, a new lowdiameter and low-latency interconnection network, is gaining interest as one possible solution for next-generation supercomputing interconnect systems. In this paper, we present a high-fidelity Slim Fly it-level model leveraging the Rensselaer Optimistic Simulation System (ROSS) and Co-Design of Exascale Storage (CODES) frameworks. We validate our Slim Fly model with the Kathareios et al. Slim Fly model results provided at moderately sized network scales. We further scale the model size up to n unprecedented 1 million compute nodes; and through visualization of network simulation metrics such as link bandwidth, packet latency, and port occupancy, we get an insight into the network behavior at the million-node scale. We also show linear strong scaling of the Slim Fly model on an Intel cluster achieving a peak event rate of 36 million events per second using 128 MPI tasks to process 7 billion events. Detailed analysis of the underlying discrete-event simulation performance shows that a million-node Slim Fly model simulation can execute in 198 seconds on the Intel cluster.

  4. Multiple-event probability in general-relativistic quantum mechanics. II. A discrete model

    International Nuclear Information System (INIS)

    Mondragon, Mauricio; Perez, Alejandro; Rovelli, Carlo

    2007-01-01

    We introduce a simple quantum mechanical model in which time and space are discrete and periodic. These features avoid the complications related to continuous-spectrum operators and infinite-norm states. The model provides a tool for discussing the probabilistic interpretation of generally covariant quantum systems, without the confusion generated by spurious infinities. We use the model to illustrate the formalism of general-relativistic quantum mechanics, and to test the definition of multiple-event probability introduced in a companion paper [Phys. Rev. D 75, 084033 (2007)]. We consider a version of the model with unitary time evolution and a version without unitary time evolution

  5. A participative and facilitative conceptual modelling framework for discrete event simulation studies in healthcare

    OpenAIRE

    Kotiadis, Kathy; Tako, Antuela; Vasilakis, Christos

    2014-01-01

    Existing approaches to conceptual modelling (CM) in discrete-event simulation do not formally support the participation of a group of stakeholders. Simulation in healthcare can benefit from stakeholder participation as it makes possible to share multiple views and tacit knowledge from different parts of the system. We put forward a framework tailored to healthcare that supports the interaction of simulation modellers with a group of stakeholders to arrive at a common conceptual model. The fra...

  6. Discrete event simulation and virtual reality use in industry: new opportunities and future trends

    OpenAIRE

    Turner, Christopher; Hutabarat, Windo; Oyekan, John; Tiwari, Ashutosh

    2016-01-01

    This paper reviews the area of combined discrete event simulation (DES) and virtual reality (VR) use within industry. While establishing a state of the art for progress in this area, this paper makes the case for VR DES as the vehicle of choice for complex data analysis through interactive simulation models, highlighting both its advantages and current limitations. This paper reviews active research topics such as VR and DES real-time integration, communication protocols,...

  7. Parallel discrete-event simulation of FCFS stochastic queueing networks

    Science.gov (United States)

    Nicol, David M.

    1988-01-01

    Physical systems are inherently parallel. Intuition suggests that simulations of these systems may be amenable to parallel execution. The parallel execution of a discrete-event simulation requires careful synchronization of processes in order to ensure the execution's correctness; this synchronization can degrade performance. Largely negative results were recently reported in a study which used a well-known synchronization method on queueing network simulations. Discussed here is a synchronization method (appointments), which has proven itself to be effective on simulations of FCFS queueing networks. The key concept behind appointments is the provision of lookahead. Lookahead is a prediction on a processor's future behavior, based on an analysis of the processor's simulation state. It is shown how lookahead can be computed for FCFS queueing network simulations, give performance data that demonstrates the method's effectiveness under moderate to heavy loads, and discuss performance tradeoffs between the quality of lookahead, and the cost of computing lookahead.

  8. Simulation of land use evolution by discrete events method: Application to “la chaîne des puys” from XV to XVIII Century

    OpenAIRE

    Y. Michelin; C. Poix

    1998-01-01

    By using a discrete event method, simulation of land use evolution has been applied to a landscape model of “la ChaÎne des Puys” (French Massif Central) during along period (XV–XVIII centuries). The indications concerning the evolution of land use are in conformity with the observation of actual situations but the dynamic changes are faster than in actual facts. In spite of limitations due to necessary simplifications, it is now established that the discrete event method is efficient to simu...

  9. A Review of Fuzzy Logic and Neural Network Based Intelligent Control Design for Discrete-Time Systems

    Directory of Open Access Journals (Sweden)

    Yiming Jiang

    2016-01-01

    Full Text Available Over the last few decades, the intelligent control methods such as fuzzy logic control (FLC and neural network (NN control have been successfully used in various applications. The rapid development of digital computer based control systems requires control signals to be calculated in a digital or discrete-time form. In this background, the intelligent control methods developed for discrete-time systems have drawn great attentions. This survey aims to present a summary of the state of the art of the design of FLC and NN-based intelligent control for discrete-time systems. For discrete-time FLC systems, numerous remarkable design approaches are introduced and a series of efficient methods to deal with the robustness, stability, and time delay of FLC discrete-time systems are recommended. Techniques for NN-based intelligent control for discrete-time systems, such as adaptive methods and adaptive dynamic programming approaches, are also reviewed. Overall, this paper is devoted to make a brief summary for recent progresses in FLC and NN-based intelligent control design for discrete-time systems as well as to present our thoughts and considerations of recent trends and potential research directions in this area.

  10. A paradigm for discrete physics

    International Nuclear Information System (INIS)

    Noyes, H.P.; McGoveran, D.; Etter, T.; Manthey, M.J.; Gefwert, C.

    1987-01-01

    An example is outlined for constructing a discrete physics using as a starting point the insight from quantum physics that events are discrete, indivisible and non-local. Initial postulates are finiteness, discreteness, finite computability, absolute nonuniqueness (i.e., homogeneity in the absence of specific cause) and additivity

  11. A discrete event modelling framework for simulation of long-term outcomes of sequential treatment strategies for ankylosing spondylitis

    NARCIS (Netherlands)

    A. Tran-Duy (An); A. Boonen (Annelies); M.A.F.J. van de Laar (Mart); A. Franke (Andre); J.L. Severens (Hans)

    2011-01-01

    textabstractObjective: To develop a modelling framework which can simulate long-term quality of life, societal costs and cost-effectiveness as affected by sequential drug treatment strategies for ankylosing spondylitis (AS). Methods: Discrete event simulation paradigm was selected for model

  12. A discrete event modelling framework for simulation of long-term outcomes of sequential treatment strategies for ankylosing spondylitis

    NARCIS (Netherlands)

    Tran-Duy, A.; Boonen, A.; Laar, M.A.F.J.; Franke, A.C.; Severens, J.L.

    2011-01-01

    Objective To develop a modelling framework which can simulate long-term quality of life, societal costs and cost-effectiveness as affected by sequential drug treatment strategies for ankylosing spondylitis (AS). Methods Discrete event simulation paradigm was selected for model development. Drug

  13. Sampled-data and discrete-time H2 optimal control

    NARCIS (Netherlands)

    Trentelman, Harry L.; Stoorvogel, Anton A.

    1993-01-01

    This paper deals with the sampled-data H2 optimal control problem. Given a linear time-invariant continuous-time system, the problem of minimizing the H2 performance over all sampled-data controllers with a fixed sampling period can be reduced to a pure discrete-time H2 optimal control problem. This

  14. Quasicanonical structure of optimal control in constrained discrete systems

    Science.gov (United States)

    Sieniutycz, S.

    2003-06-01

    This paper considers discrete processes governed by difference rather than differential equations for the state transformation. The basic question asked is if and when Hamiltonian canonical structures are possible in optimal discrete systems. Considering constrained discrete control, general optimization algorithms are derived that constitute suitable theoretical and computational tools when evaluating extremum properties of constrained physical models. The mathematical basis of the general theory is the Bellman method of dynamic programming (DP) and its extension in the form of the so-called Carathéodory-Boltyanski (CB) stage criterion which allows a variation of the terminal state that is otherwise fixed in the Bellman's method. Two relatively unknown, powerful optimization algorithms are obtained: an unconventional discrete formalism of optimization based on a Hamiltonian for multistage systems with unconstrained intervals of holdup time, and the time interval constrained extension of the formalism. These results are general; namely, one arrives at: the discrete canonical Hamilton equations, maximum principles, and (at the continuous limit of processes with free intervals of time) the classical Hamilton-Jacobi theory along with all basic results of variational calculus. Vast spectrum of applications of the theory is briefly discussed.

  15. Event-Triggered Control for Multiagent Systems with the Problem of Packet Losses and Communication Delays When Using the Second-Order Neighbors’ Information

    Directory of Open Access Journals (Sweden)

    Chuan Yan

    2014-01-01

    Full Text Available This paper mainly investigates the event-triggered control for discrete-time multiagent systems with the problem of packet losses and communication delays when both the first-order and the second-order neighbors’ information are used. Event-triggered control laws are adopted so as to reduce the frequency of individual actuation updating under the sampled-data framework for discrete-time agent dynamics. The communication graph is undirected and the loss of data across each communication link occurs at certain probability, which is governed by a Bernoulli process. It is found that the distributed consensus speeds up by using the second-order neighbors’ information when packet losses and communication delays occur. Numerical examples are given to demonstrate the effectiveness of the proposed methods.

  16. Multi-rate h2 tracking control with mixed continuous-discrete performance criteria

    International Nuclear Information System (INIS)

    Kahane, A.C.; Palmor, Z.J.; Mirkin, L.

    1998-01-01

    Control goals defined both in continuous and discrete time arise naturally in many sampled-data tracking control problems. The design methods found in the literature deal with each kind of those control goals separately, over-emphasizing one kind at the expense of the other. We formulate and solve these tracking control problems as an H2 optimization problem with a mixed continuous/discrete performance criterion. It is argued that the proposed setup enables tradeoff between the various control goals in a natural manner and thus leads to better tracking characteristics

  17. Approximation-Based Discrete-Time Adaptive Position Tracking Control for Interior Permanent Magnet Synchronous Motors.

    Science.gov (United States)

    Yu, Jinpeng; Shi, Peng; Yu, Haisheng; Chen, Bing; Lin, Chong

    2015-07-01

    This paper considers the problem of discrete-time adaptive position tracking control for a interior permanent magnet synchronous motor (IPMSM) based on fuzzy-approximation. Fuzzy logic systems are used to approximate the nonlinearities of the discrete-time IPMSM drive system which is derived by direct discretization using Euler method, and a discrete-time fuzzy position tracking controller is designed via backstepping approach. In contrast to existing results, the advantage of the scheme is that the number of the adjustable parameters is reduced to two only and the problem of coupling nonlinearity can be overcome. It is shown that the proposed discrete-time fuzzy controller can guarantee the tracking error converges to a small neighborhood of the origin and all the signals are bounded. Simulation results illustrate the effectiveness and the potentials of the theoretic results obtained.

  18. Continuous and Discrete-Time Optimal Controls for an Isolated Signalized Intersection

    Directory of Open Access Journals (Sweden)

    Jiyuan Tan

    2017-01-01

    Full Text Available A classical control problem for an isolated oversaturated intersection is revisited with a focus on the optimal control policy to minimize total delay. The difference and connection between existing continuous-time planning models and recently proposed discrete-time planning models are studied. A gradient descent algorithm is proposed to convert the optimal control plan of the continuous-time model to the plan of the discrete-time model in many cases. Analytic proof and numerical tests for the algorithm are also presented. The findings shed light on the links between two kinds of models.

  19. Modelling and real-time simulation of continuous-discrete systems in mechatronics

    Energy Technology Data Exchange (ETDEWEB)

    Lindow, H. [Rostocker, Magdeburg (Germany)

    1996-12-31

    This work presents a methodology for simulation and modelling of systems with continuous - discrete dynamics. It derives hybrid discrete event models from Lagrange`s equations of motion. This method combines continuous mechanical, electrical and thermodynamical submodels on one hand with discrete event models an the other hand into a hybrid discrete event model. This straight forward software development avoids numeric overhead.

  20. Performance Analysis of Cloud Computing Architectures Using Discrete Event Simulation

    Science.gov (United States)

    Stocker, John C.; Golomb, Andrew M.

    2011-01-01

    Cloud computing offers the economic benefit of on-demand resource allocation to meet changing enterprise computing needs. However, the flexibility of cloud computing is disadvantaged when compared to traditional hosting in providing predictable application and service performance. Cloud computing relies on resource scheduling in a virtualized network-centric server environment, which makes static performance analysis infeasible. We developed a discrete event simulation model to evaluate the overall effectiveness of organizations in executing their workflow in traditional and cloud computing architectures. The two part model framework characterizes both the demand using a probability distribution for each type of service request as well as enterprise computing resource constraints. Our simulations provide quantitative analysis to design and provision computing architectures that maximize overall mission effectiveness. We share our analysis of key resource constraints in cloud computing architectures and findings on the appropriateness of cloud computing in various applications.

  1. Quality Improvement With Discrete Event Simulation: A Primer for Radiologists.

    Science.gov (United States)

    Booker, Michael T; O'Connell, Ryan J; Desai, Bhushan; Duddalwar, Vinay A

    2016-04-01

    The application of simulation software in health care has transformed quality and process improvement. Specifically, software based on discrete-event simulation (DES) has shown the ability to improve radiology workflows and systems. Nevertheless, despite the successful application of DES in the medical literature, the power and value of simulation remains underutilized. For this reason, the basics of DES modeling are introduced, with specific attention to medical imaging. In an effort to provide readers with the tools necessary to begin their own DES analyses, the practical steps of choosing a software package and building a basic radiology model are discussed. In addition, three radiology system examples are presented, with accompanying DES models that assist in analysis and decision making. Through these simulations, we provide readers with an understanding of the theory, requirements, and benefits of implementing DES in their own radiology practices. Copyright © 2016 American College of Radiology. All rights reserved.

  2. Using discrete event simulation to change from a functional layout to a cellular layout in an auto parts industry

    Directory of Open Access Journals (Sweden)

    Thiago Buselato Maurício

    2015-07-01

    Full Text Available This paper presents a discrete event simulation employed in a Brazilian automotive company. There was a huge waste caused by one family scrap. It was believed one reason was the company functional layout. In this case, changing from current to cellular layout, employee synergy and knowledge about this family would increase. Due to the complexity for dimensioning a new cellular layout, mainly because of batch size and client’s demand variation. In this case, discrete event simulation was used, which made possible to introduce those effects improving accuracy in final results. This accuracy will be shown by comparing results obtained with simulation and without it (as company used to do. To conclude, cellular layout was responsible for increasing 15% of productivity, reducing lead-time in 7 days and scrap in 15% for this family.

  3. Multivariable controller for discrete stochastic amplitude-constrained systems

    Directory of Open Access Journals (Sweden)

    Hannu T. Toivonen

    1983-04-01

    Full Text Available A sub-optimal multivariable controller for discrete stochastic amplitude-constrained systems is presented. In the approach the regulator structure is restricted to the class of linear saturated feedback laws. The stationary covariances of the controlled system are evaluated by approximating the stationary probability distribution of the state by a gaussian distribution. An algorithm for minimizing a quadratic loss function is given, and examples are presented to illustrate the performance of the sub-optimal controller.

  4. Examining Passenger Flow Choke Points at Airports Using Discrete Event Simulation

    Science.gov (United States)

    Brown, Jeremy R.; Madhavan, Poomima

    2011-01-01

    The movement of passengers through an airport quickly, safely, and efficiently is the main function of the various checkpoints (check-in, security. etc) found in airports. Human error combined with other breakdowns in the complex system of the airport can disrupt passenger flow through the airport leading to lengthy waiting times, missing luggage and missed flights. In this paper we present a model of passenger flow through an airport using discrete event simulation that will provide a closer look into the possible reasons for breakdowns and their implications for passenger flow. The simulation is based on data collected at Norfolk International Airport (ORF). The primary goal of this simulation is to present ways to optimize the work force to keep passenger flow smooth even during peak travel times and for emergency preparedness at ORF in case of adverse events. In this simulation we ran three different scenarios: real world, increased check-in stations, and multiple waiting lines. Increased check-in stations increased waiting time and instantaneous utilization. while the multiple waiting lines decreased both the waiting time and instantaneous utilization. This simulation was able to show how different changes affected the passenger flow through the airport.

  5. Fault diagnosis for discrete event systems: Modelling and verification

    International Nuclear Information System (INIS)

    Simeu-Abazi, Zineb; Di Mascolo, Maria; Knotek, Michal

    2010-01-01

    This paper proposes an effective way for diagnosis of discrete-event systems using a timed-automaton. It is based on the model-checking technique, thanks to time analysis of the timed model. The paper proposes a method to construct all the timed models and details the different steps used to obtain the diagnosis path. A dynamic model with temporal transitions is proposed in order to model the system. By 'dynamical model', we mean an extension of timed automata for which the faulty states are identified. The model of the studied system contains the faultless functioning states and all the faulty states. Our method is based on the backward exploitation of the dynamic model, where all possible reverse paths are searched. The reverse path is the connection of the faulty state to the initial state. The diagnosis method is based on the coherence between the faulty occurrence time and the reverse path length. A real-world batch process is used to demonstrate the modelling steps and the proposed backward time analysis method to reach the diagnosis results.

  6. Optimization of stochastic discrete systems and control on complex networks computational networks

    CERN Document Server

    Lozovanu, Dmitrii

    2014-01-01

    This book presents the latest findings on stochastic dynamic programming models and on solving optimal control problems in networks. It includes the authors' new findings on determining the optimal solution of discrete optimal control problems in networks and on solving game variants of Markov decision problems in the context of computational networks. First, the book studies the finite state space of Markov processes and reviews the existing methods and algorithms for determining the main characteristics in Markov chains, before proposing new approaches based on dynamic programming and combinatorial methods. Chapter two is dedicated to infinite horizon stochastic discrete optimal control models and Markov decision problems with average and expected total discounted optimization criteria, while Chapter three develops a special game-theoretical approach to Markov decision processes and stochastic discrete optimal control problems. In closing, the book's final chapter is devoted to finite horizon stochastic con...

  7. Determining the significance of associations between two series of discrete events : bootstrap methods /

    Energy Technology Data Exchange (ETDEWEB)

    Niehof, Jonathan T.; Morley, Steven K.

    2012-01-01

    We review and develop techniques to determine associations between series of discrete events. The bootstrap, a nonparametric statistical method, allows the determination of the significance of associations with minimal assumptions about the underlying processes. We find the key requirement for this method: one of the series must be widely spaced in time to guarantee the theoretical applicability of the bootstrap. If this condition is met, the calculated significance passes a reasonableness test. We conclude with some potential future extensions and caveats on the applicability of these methods. The techniques presented have been implemented in a Python-based software toolkit.

  8. Discrete event dynamic system (DES)-based modeling for dynamic material flow in the pyroprocess

    International Nuclear Information System (INIS)

    Lee, Hyo Jik; Kim, Kiho; Kim, Ho Dong; Lee, Han Soo

    2011-01-01

    A modeling and simulation methodology was proposed in order to implement the dynamic material flow of the pyroprocess. Since the static mass balance provides the limited information on the material flow, it is hard to predict dynamic behavior according to event. Therefore, a discrete event system (DES)-based model named, PyroFlow, was developed at the Korea Atomic Energy Research Institute (KAERI). PyroFlow is able to calculate dynamic mass balance and also show various dynamic operational results in real time. By using PyroFlow, it is easy to rapidly predict unforeseeable results, such as throughput in unit process, accumulated product in buffer and operation status. As preliminary simulations, bottleneck analyses in the pyroprocess were carried out and consequently it was presented that operation strategy had influence on the productivity of the pyroprocess.

  9. Can discrete event simulation be of use in modelling major depression?

    Science.gov (United States)

    Le Lay, Agathe; Despiegel, Nicolas; François, Clément; Duru, Gérard

    2006-12-05

    Depression is among the major contributors to worldwide disease burden and adequate modelling requires a framework designed to depict real world disease progression as well as its economic implications as closely as possible. In light of the specific characteristics associated with depression (multiple episodes at varying intervals, impact of disease history on course of illness, sociodemographic factors), our aim was to clarify to what extent "Discrete Event Simulation" (DES) models provide methodological benefits in depicting disease evolution. We conducted a comprehensive review of published Markov models in depression and identified potential limits to their methodology. A model based on DES principles was developed to investigate the benefits and drawbacks of this simulation method compared with Markov modelling techniques. The major drawback to Markov models is that they may not be suitable to tracking patients' disease history properly, unless the analyst defines multiple health states, which may lead to intractable situations. They are also too rigid to take into consideration multiple patient-specific sociodemographic characteristics in a single model. To do so would also require defining multiple health states which would render the analysis entirely too complex. We show that DES resolve these weaknesses and that its flexibility allow patients with differing attributes to move from one event to another in sequential order while simultaneously taking into account important risk factors such as age, gender, disease history and patients attitude towards treatment, together with any disease-related events (adverse events, suicide attempt etc.). DES modelling appears to be an accurate, flexible and comprehensive means of depicting disease progression compared with conventional simulation methodologies. Its use in analysing recurrent and chronic diseases appears particularly useful compared with Markov processes.

  10. Discrete Event Simulation of Patient Admissions to a Neurovascular Unit

    Directory of Open Access Journals (Sweden)

    S. Hahn-Goldberg

    2014-01-01

    Full Text Available Evidence exists that clinical outcomes improve for stroke patients admitted to specialized Stroke Units. The Toronto Western Hospital created a Neurovascular Unit (NVU using beds from general internal medicine, Neurology and Neurosurgery to care for patients with stroke and acute neurovascular conditions. Using patient-level data for NVU-eligible patients, a discrete event simulation was created to study changes in patient flow and length of stay pre- and post-NVU implementation. Varying patient volumes and resources were tested to determine the ideal number of beds under various conditions. In the first year of operation, the NVU admitted 507 patients, over 66% of NVU-eligible patient volumes. With the introduction of the NVU, length of stay decreased by around 8%. Scenario testing showed that the current level of 20 beds is sufficient for accommodating the current demand and would continue to be sufficient with an increase in demand of up to 20%.

  11. Projective Synchronization of Chaotic Discrete Dynamical Systems via Linear State Error Feedback Control

    Directory of Open Access Journals (Sweden)

    Baogui Xin

    2015-04-01

    Full Text Available A projective synchronization scheme for a kind of n-dimensional discrete dynamical system is proposed by means of a linear feedback control technique. The scheme consists of master and slave discrete dynamical systems coupled by linear state error variables. A kind of novel 3-D chaotic discrete system is constructed, to which the test for chaos is applied. By using the stability principles of an upper or lower triangular matrix, two controllers for achieving projective synchronization are designed and illustrated with the novel systems. Lastly some numerical simulations are employed to validate the effectiveness of the proposed projective synchronization scheme.

  12. Verifying detailed fluctuation relations for discrete feedback-controlled quantum dynamics

    Science.gov (United States)

    Camati, Patrice A.; Serra, Roberto M.

    2018-04-01

    Discrete quantum feedback control consists of a managed dynamics according to the information acquired by a previous measurement. Energy fluctuations along such dynamics satisfy generalized fluctuation relations, which are useful tools to study the thermodynamics of systems far away from equilibrium. Due to the practical challenge to assess energy fluctuations in the quantum scenario, the experimental verification of detailed fluctuation relations in the presence of feedback control remains elusive. We present a feasible method to experimentally verify detailed fluctuation relations for discrete feedback control quantum dynamics. Two detailed fluctuation relations are developed and employed. The method is based on a quantum interferometric strategy that allows the verification of fluctuation relations in the presence of feedback control. An analytical example to illustrate the applicability of the method is discussed. The comprehensive technique introduced here can be experimentally implemented at a microscale with the current technology in a variety of experimental platforms.

  13. Discrete-event system simulation on small and medium enterprises productivity improvement

    Science.gov (United States)

    Sulistio, J.; Hidayah, N. A.

    2017-12-01

    Small and medium industries in Indonesia is currently developing. The problem faced by SMEs is the difficulty of meeting growing demand coming into the company. Therefore, SME need an analysis and evaluation on its production process in order to meet all orders. The purpose of this research is to increase the productivity of SMEs production floor by applying discrete-event system simulation. This method preferred because it can solve complex problems die to the dynamic and stochastic nature of the system. To increase the credibility of the simulation, model validated by cooperating the average of two trials, two trials of variance and chi square test. Afterwards, Benferroni method applied to development several alternatives. The article concludes that, the productivity of SMEs production floor increased up to 50% by adding the capacity of dyeing and drying machines.

  14. DROpS: an object of learning in computer simulation of discrete events

    Directory of Open Access Journals (Sweden)

    Hugo Alves Silva Ribeiro

    2015-09-01

    Full Text Available This work presents the “Realistic Dynamics Of Simulated Operations” (DROpS, the name given to the dynamics using the “dropper” device as an object of teaching and learning. The objective is to present alternatives for professors teaching content related to simulation of discrete events to graduate students in production engineering. The aim is to enable students to develop skills related to data collection, modeling, statistical analysis, and interpretation of results. This dynamic has been developed and applied to the students by placing them in a situation analogous to a real industry, where various concepts related to computer simulation were discussed, allowing the students to put these concepts into practice in an interactive manner, thus facilitating learning

  15. Can discrete event simulation be of use in modelling major depression?

    Directory of Open Access Journals (Sweden)

    François Clément

    2006-12-01

    Full Text Available Abstract Background Depression is among the major contributors to worldwide disease burden and adequate modelling requires a framework designed to depict real world disease progression as well as its economic implications as closely as possible. Objectives In light of the specific characteristics associated with depression (multiple episodes at varying intervals, impact of disease history on course of illness, sociodemographic factors, our aim was to clarify to what extent "Discrete Event Simulation" (DES models provide methodological benefits in depicting disease evolution. Methods We conducted a comprehensive review of published Markov models in depression and identified potential limits to their methodology. A model based on DES principles was developed to investigate the benefits and drawbacks of this simulation method compared with Markov modelling techniques. Results The major drawback to Markov models is that they may not be suitable to tracking patients' disease history properly, unless the analyst defines multiple health states, which may lead to intractable situations. They are also too rigid to take into consideration multiple patient-specific sociodemographic characteristics in a single model. To do so would also require defining multiple health states which would render the analysis entirely too complex. We show that DES resolve these weaknesses and that its flexibility allow patients with differing attributes to move from one event to another in sequential order while simultaneously taking into account important risk factors such as age, gender, disease history and patients attitude towards treatment, together with any disease-related events (adverse events, suicide attempt etc.. Conclusion DES modelling appears to be an accurate, flexible and comprehensive means of depicting disease progression compared with conventional simulation methodologies. Its use in analysing recurrent and chronic diseases appears particularly useful

  16. Core discrete event simulation model for the evaluation of health care technologies in major depressive disorder.

    Science.gov (United States)

    Vataire, Anne-Lise; Aballéa, Samuel; Antonanzas, Fernando; Roijen, Leona Hakkaart-van; Lam, Raymond W; McCrone, Paul; Persson, Ulf; Toumi, Mondher

    2014-03-01

    A review of existing economic models in major depressive disorder (MDD) highlighted the need for models with longer time horizons that also account for heterogeneity in treatment pathways between patients. A core discrete event simulation model was developed to estimate health and cost outcomes associated with alternative treatment strategies. This model simulated short- and long-term clinical events (partial response, remission, relapse, recovery, and recurrence), adverse events, and treatment changes (titration, switch, addition, and discontinuation) over up to 5 years. Several treatment pathways were defined on the basis of fictitious antidepressants with three levels of efficacy, tolerability, and price (low, medium, and high) from first line to third line. The model was populated with input data from the literature for the UK setting. Model outputs include time in different health states, quality-adjusted life-years (QALYs), and costs from National Health Service and societal perspectives. The codes are open source. Predicted costs and QALYs from this model are within the range of results from previous economic evaluations. The largest cost components from the payer perspective were physician visits and hospitalizations. Key parameters driving the predicted costs and QALYs were utility values, effectiveness, and frequency of physician visits. Differences in QALYs and costs between two strategies with different effectiveness increased approximately twofold when the time horizon increased from 1 to 5 years. The discrete event simulation model can provide a more comprehensive evaluation of different therapeutic options in MDD, compared with existing Markov models, and can be used to compare a wide range of health care technologies in various groups of patients with MDD. Copyright © 2014 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  17. Analysis of manufacturing based on object oriented discrete event simulation

    Directory of Open Access Journals (Sweden)

    Eirik Borgen

    1990-01-01

    Full Text Available This paper describes SIMMEK, a computer-based tool for performing analysis of manufacturing systems, developed at the Production Engineering Laboratory, NTH-SINTEF. Its main use will be in analysis of job shop type of manufacturing. But certain facilities make it suitable for FMS as well as a production line manufacturing. This type of simulation is very useful in analysis of any types of changes that occur in a manufacturing system. These changes may be investments in new machines or equipment, a change in layout, a change in product mix, use of late shifts, etc. The effects these changes have on for instance the throughput, the amount of VIP, the costs or the net profit, can be analysed. And this can be done before the changes are made, and without disturbing the real system. Simulation takes into consideration, unlike other tools for analysis of manufacturing systems, uncertainty in arrival rates, process and operation times, and machine availability. It also shows the interaction effects a job which is late in one machine, has on the remaining machines in its route through the layout. It is these effects that cause every production plan not to be fulfilled completely. SIMMEK is based on discrete event simulation, and the modeling environment is object oriented. The object oriented models are transformed by an object linker into data structures executable by the simulation kernel. The processes of the entity objects, i.e. the products, are broken down to events and put into an event list. The user friendly graphical modeling environment makes it possible for end users to build models in a quick and reliable way, using terms from manufacturing. Various tests and a check of model logic are helpful functions when testing validity of the models. Integration with software packages, with business graphics and statistical functions, is convenient in the result presentation phase.

  18. Using Discrete Event Simulation for Programming Model Exploration at Extreme-Scale: Macroscale Components for the Structural Simulation Toolkit (SST).

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, Jeremiah J [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Kenny, Joseph P. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States)

    2015-02-01

    Discrete event simulation provides a powerful mechanism for designing and testing new extreme- scale programming models for high-performance computing. Rather than debug, run, and wait for results on an actual system, design can first iterate through a simulator. This is particularly useful when test beds cannot be used, i.e. to explore hardware or scales that do not yet exist or are inaccessible. Here we detail the macroscale components of the structural simulation toolkit (SST). Instead of depending on trace replay or state machines, the simulator is architected to execute real code on real software stacks. Our particular user-space threading framework allows massive scales to be simulated even on small clusters. The link between the discrete event core and the threading framework allows interesting performance metrics like call graphs to be collected from a simulated run. Performance analysis via simulation can thus become an important phase in extreme-scale programming model and runtime system design via the SST macroscale components.

  19. State transformations and Hamiltonian structures for optimal control in discrete systems

    Science.gov (United States)

    Sieniutycz, S.

    2006-04-01

    Preserving usual definition of Hamiltonian H as the scalar product of rates and generalized momenta we investigate two basic classes of discrete optimal control processes governed by the difference rather than differential equations for the state transformation. The first class, linear in the time interval θ, secures the constancy of optimal H and satisfies a discrete Hamilton-Jacobi equation. The second class, nonlinear in θ, does not assure the constancy of optimal H and satisfies only a relationship that may be regarded as an equation of Hamilton-Jacobi type. The basic question asked is if and when Hamilton's canonical structures emerge in optimal discrete systems. For a constrained discrete control, general optimization algorithms are derived that constitute powerful theoretical and computational tools when evaluating extremum properties of constrained physical systems. The mathematical basis is Bellman's method of dynamic programming (DP) and its extension in the form of the so-called Carathéodory-Boltyanski (CB) stage optimality criterion which allows a variation of the terminal state that is otherwise fixed in Bellman's method. For systems with unconstrained intervals of the holdup time θ two powerful optimization algorithms are obtained: an unconventional discrete algorithm with a constant H and its counterpart for models nonlinear in θ. We also present the time-interval-constrained extension of the second algorithm. The results are general; namely, one arrives at: discrete canonical equations of Hamilton, maximum principles, and (at the continuous limit of processes with free intervals of time) the classical Hamilton-Jacobi theory, along with basic results of variational calculus. A vast spectrum of applications and an example are briefly discussed with particular attention paid to models nonlinear in the time interval θ.

  20. Indirect adaptive control of discrete chaotic systems

    International Nuclear Information System (INIS)

    Salarieh, Hassan; Shahrokhi, Mohammad

    2007-01-01

    In this paper an indirect adaptive control algorithm is proposed to stabilize the fixed points of discrete chaotic systems. It is assumed that the functionality of the chaotic dynamics is known but the system parameters are unknown. This assumption is usually applicable to many chaotic systems, such as the Henon map, logistic and many other nonlinear maps. Using the recursive-least squares technique, the system parameters are identified and based on the feedback linearization method an adaptive controller is designed for stabilizing the fixed points, or unstable periodic orbits of the chaotic maps. The stability of the proposed scheme has been shown and the effectiveness of the control algorithm has been demonstrated through computer simulations

  1. Discrete-Time LPV Current Control of an Induction Motor

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2001-01-01

    In this paper we apply a new method for gain-scheduled output feedback control of nonlinear systems to current control of an induction motor. The method relies on recently developed controller synthesis results for linear parameter-varying (LPV) systems, where the controller synthesis is formulated...... without further complications. The synthesis method is applied to the model, yielding an LPV discrete-time controller. Finally, the efficiency of the control scheme is validated via simulations as well as experimentally on the actual induction motor, both in open-loop current control and when an outer...... speed control loop is closed around the current loop...

  2. Discrete-Time LPV Current Control of an Induction Motor

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2003-01-01

    In this paper we apply a new method for gain-scheduled output feedback control of nonlinear systems to current control of an induction motor. The method relies on recently developed controller synthesis results for linear parameter-varying (LPV) systems, where the controller synthesis is formulated...... further complications. The synthesis method is applied to the model, yielding an LPV discrete-time controller. Finally, the efficiency of the control scheme is validated via simulations as well as on the actual induction motor, both in open-loop current control and when an outer speed control loop...... is closed around the current loop....

  3. Advanced discrete-time control designs and applications

    CERN Document Server

    Abidi, Khalid

    2015-01-01

    This book covers a wide spectrum of systems such as linear and nonlinear multivariable systems as well as control problems such as disturbance, uncertainty and time-delays. The purpose of this book is to provide researchers and practitioners a manual for the design and application of advanced discrete-time controllers.  The book presents six different control approaches depending on the type of system and control problem. The first and second approaches are based on Sliding Mode control (SMC) theory and are intended for linear systems with exogenous disturbances. The third and fourth approaches are based on adaptive control theory and are aimed at linear/nonlinear systems with periodically varying parametric uncertainty or systems with input delay. The fifth approach is based on Iterative learning control (ILC) theory and is aimed at uncertain linear/nonlinear systems with repeatable tasks and the final approach is based on fuzzy logic control (FLC) and is intended for highly uncertain systems with heuristi...

  4. Evaluation of a proposed optimization method for discrete-event simulation models

    Directory of Open Access Journals (Sweden)

    Alexandre Ferreira de Pinho

    2012-12-01

    Full Text Available Optimization methods combined with computer-based simulation have been utilized in a wide range of manufacturing applications. However, in terms of current technology, these methods exhibit low performance levels which are only able to manipulate a single decision variable at a time. Thus, the objective of this article is to evaluate a proposed optimization method for discrete-event simulation models based on genetic algorithms which exhibits more efficiency in relation to computational time when compared to software packages on the market. It should be emphasized that the variable's response quality will not be altered; that is, the proposed method will maintain the solutions' effectiveness. Thus, the study draws a comparison between the proposed method and that of a simulation instrument already available on the market and has been examined in academic literature. Conclusions are presented, confirming the proposed optimization method's efficiency.

  5. Different corticospinal control between discrete and rhythmic movement of the ankle.

    Science.gov (United States)

    Goto, Yumeno; Jono, Yasutomo; Hatanaka, Ryota; Nomura, Yoshifumi; Tani, Keisuke; Chujo, Yuta; Hiraoka, Koichi

    2014-01-01

    We investigated differences in corticospinal and spinal control between discrete and rhythmic ankle movements. Motor evoked potentials (MEPs) in the tibialis anterior and soleus muscles and soleus H-reflex were elicited in the middle of the plantar flexion phase during discrete ankle movement or in the initial or later cycles of rhythmic ankle movement. The H-reflex was evoked at an intensity eliciting a small M-wave and MEPs were elicited at an intensity of 1.2 times the motor threshold of the soleus MEPs. Only trials in which background EMG level, ankle angle, and ankle velocity were similar among the movement conditions were included for data analysis. In addition, only trials with a similar M-wave were included for data analysis in the experiment evoking H-reflexes. Results showed that H reflex and MEP amplitudes in the soleus muscle during discrete movement were not significantly different from those during rhythmic movement. MEP amplitude in the tibialis anterior muscle during the later cycles of rhythmic movement was significantly larger than that during the initial cycle of the rhythmic movement or during discrete movement. Higher corticospinal excitability in the tibialis anterior muscle during the later cycles of rhythmic movement may reflect changes in corticospinal control from the initial cycle to the later cycles of rhythmic movement.

  6. The Skateboard Factory: a teaching case on discrete-event simulation

    Directory of Open Access Journals (Sweden)

    Marco Aurélio de Mesquita

    Full Text Available Abstract Real-life applications during the teaching process are a desirable practice in simulation education. However, access to real cases imposes some difficulty in implement such practice, especially when the classes are large. This paper presents a teaching case for a computer simulation course in a production engineering undergraduate program. The motivation for the teaching case was to provide students with a realistic manufacturing case to stimulate the learning of simulation concepts and methods in the context of industrial engineering. The case considers a virtual factory of skateboards, which operations include parts manufacturing, final assembly and storage of raw materials, work-in-process and finished products. Students should model and simulate the factory, under push and pull production strategies, using any simulation software available in the laboratory. The teaching case, applied in the last two years, contributed to motivate and consolidate the students’ learning of discrete-event simulation. It proved to be a feasible alternative to the previous practice of letting students freely choose a case for their final project, while keeping the essence of project-based learning approach.

  7. Controllability of a Class of Bimodal Discrete-Time Piecewise Linear Systems

    NARCIS (Netherlands)

    Yurtseven, E.; Camlibel, M.K.; Heemels, W.P.M.H.

    2013-01-01

    In this paper we will provide algebraic necessary and sufficient conditions for the controllability/reachability/null controllability of a class of bimodal discrete-time piecewise linear systems including several instances of interest that are not covered by existing works which focus primarily on

  8. Discrete event simulation model of sudden cardiac death predicts high impact of preventive interventions.

    Science.gov (United States)

    Andreev, Victor P; Head, Trajen; Johnson, Neil; Deo, Sapna K; Daunert, Sylvia; Goldschmidt-Clermont, Pascal J

    2013-01-01

    Sudden Cardiac Death (SCD) is responsible for at least 180,000 deaths a year and incurs an average cost of $286 billion annually in the United States alone. Herein, we present a novel discrete event simulation model of SCD, which quantifies the chains of events associated with the formation, growth, and rupture of atheroma plaques, and the subsequent formation of clots, thrombosis and on-set of arrhythmias within a population. The predictions generated by the model are in good agreement both with results obtained from pathological examinations on the frequencies of three major types of atheroma, and with epidemiological data on the prevalence and risk of SCD. These model predictions allow for identification of interventions and importantly for the optimal time of intervention leading to high potential impact on SCD risk reduction (up to 8-fold reduction in the number of SCDs in the population) as well as the increase in life expectancy.

  9. Scaled Bilateral Teleoperation Using Discrete-Time Sliding-Mode Controller

    NARCIS (Netherlands)

    Khan, S.; Sabanovic, A.; Nergiz, A.O.

    2009-01-01

    In this paper, the design of a discrete-time sliding-mode controller based on Lyapunov theory is presented along with a robust disturbance observer and is applied to a piezostage for high-precision motion. A linear model of a piezostage was used with nominal parameters to compensate the disturbance

  10. Discrete Blood Glucose Control in Diabetic Göttingen Minipigs

    Directory of Open Access Journals (Sweden)

    Berno J.E. Misgeld

    2016-07-01

    Full Text Available Despite continuous research effort, patients with type 1 diabetes mellitus (T1D experience difficulties in daily adjustments of their blood glucose concentrations. New technological developments in the form of implanted intravenous infusion pumps and continuous blood glucose sensors might alleviate obstacles for the automatic adjustment of blood glucose concentration. These obstacles consist, for example, of large time-delays and insulin storage effects for the subcutaneous/interstitial route. Towards the goal of an artificial pancreas, we present a novel feedback controller approach that combines classical loop-shaping techniques with gain-scheduling and modern H ∞ -robust control approaches. A disturbance rejection design is proposed in discrete frequency domain based on the detailed model of the diabetic Göttingen minipig. The model is trimmed and linearised over a large operating range of blood glucose concentrations and insulin sensitivity values. Controller parameters are determined for each of these operating points. A discrete H ∞ loop-shaping compensator is designed to increase robustness of the artificial pancreas against general coprime factor uncertainty. The gain scheduled controller uses subcutaneous insulin injection as a control input and determines the controller input error from intravenous blood glucose concentration measurements, where parameter scheduling is achieved by an estimator of the insulin sensitivity parameter. Thus, only one controller stabilises a family of animal models. The controller is validated in silico with a total number of five Göttingen Minipig models, which were previously obtained by experimental identification procedures. Its performance is compared with an experimentally tested switching PI-controller.

  11. Developing a discrete event simulation model for university student shuttle buses

    Science.gov (United States)

    Zulkepli, Jafri; Khalid, Ruzelan; Nawawi, Mohd Kamal Mohd; Hamid, Muhammad Hafizan

    2017-11-01

    Providing shuttle buses for university students to attend their classes is crucial, especially when their number is large and the distances between their classes and residential halls are far. These factors, in addition to the non-optimal current bus services, typically require the students to wait longer which eventually opens a space for them to complain. To considerably reduce the waiting time, providing the optimal number of buses to transport them from location to location and the effective route schedules to fulfil the students' demand at relevant time ranges are thus important. The optimal bus number and schedules are to be determined and tested using a flexible decision platform. This paper thus models the current services of student shuttle buses in a university using a Discrete Event Simulation approach. The model can flexibly simulate whatever changes configured to the current system and report its effects to the performance measures. How the model was conceptualized and formulated for future system configurations are the main interest of this paper.

  12. A computational approach to extinction events in chemical reaction networks with discrete state spaces.

    Science.gov (United States)

    Johnston, Matthew D

    2017-12-01

    Recent work of Johnston et al. has produced sufficient conditions on the structure of a chemical reaction network which guarantee that the corresponding discrete state space system exhibits an extinction event. The conditions consist of a series of systems of equalities and inequalities on the edges of a modified reaction network called a domination-expanded reaction network. In this paper, we present a computational implementation of these conditions written in Python and apply the program on examples drawn from the biochemical literature. We also run the program on 458 models from the European Bioinformatics Institute's BioModels Database and report our results. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Different corticospinal control between discrete and rhythmic movement of the ankle

    OpenAIRE

    Goto, Yumeno; Jono, Yasutomo; Hatanaka, Ryota; Nomura, Yoshifumi; Tani, Keisuke; Chujo, Yuta; Hiraoka, Koichi

    2014-01-01

    We investigated differences in corticospinal and spinal control between discrete and rhythmic ankle movements. Motor evoked potentials (MEPs) in the tibialis anterior and soleus muscles and soleus H-reflex were elicited in the middle of the plantar flexion phase during discrete ankle movement or in the initial or later cycles of rhythmic ankle movement. The H-reflex was evoked at an intensity eliciting a small M-wave and MEPs were elicited at an intensity of 1.2 times the motor threshold of t...

  14. Thermodynamic framework for discrete optimal control in multiphase flow systems

    Science.gov (United States)

    Sieniutycz, Stanislaw

    1999-08-01

    Bellman's method of dynamic programming is used to synthesize diverse optimization approaches to active (work producing) and inactive (entropy generating) multiphase flow systems. Thermal machines, optimally controlled unit operations, nonlinear heat conduction, spontaneous relaxation processes, and self-propagating wave fronts are all shown to satisfy a discrete Hamilton-Jacobi-Bellman equation and a corresponding discrete optimization algorithm of Pontryagin's type, with the maximum principle for a Hamiltonian. The extremal structures are always canonical. A common unifying criterion is set for all considered systems, which is the criterion of a minimum generated entropy. It is shown that constraints can modify the entropy functionals in a different way for each group of the processes considered; thus the resulting structures of these functionals may differ significantly. Practical conclusions are formulated regarding the energy savings and energy policy in optimally controlled systems.

  15. Design of a model predictive load-following controller by discrete optimization of control rod speed for PWRs

    International Nuclear Information System (INIS)

    Kim, Jae Hwan; Park, Soon Ho; Na, Man Gyun

    2014-01-01

    Highlights: • A model predictive controller for load-following operation was developed. • Genetic algorithm optimizes the five nonlinear discrete control rod speeds. • The boron concentration is adjusted with automatic adjustment logic. • The proposed controller reflects the realistic control rod drive mechanism movement. • The performance was confirmed to be satisfactory by simulation from BOC to EOC. - Abstract: Currently, most existing nuclear power plants alter the reactor power by adjusting the boron concentration in the coolant because it has a smaller effect on the reactor power distribution. Frequent control rod movements for load-following operation induce xenon-oscillation. Therefore, a controller that can subdue this phenomenon effectively is needed. At an APR1400 nuclear power plant which is a pressurized water reactor (PWR), the reactor power is controlled automatically using a Reactor Regulating System (RRS) but the power distribution is controlled manually by operators. Therefore, for APR+ nuclear power plants which is an improved version of APR1400 nuclear reactor, a new concept of a reactor controller is needed to control both the reactor power and power distribution automatically. The model predictive control (MPC) method is applicable to multiple-input multiple-output control, and can be applied for complex and nonlinear systems, such as the nuclear power plants. In this study, an MPC controller was developed by applying a genetic algorithm to optimize the discrete control rod speeds and by reflecting the realistic movement of the control rod drive mechanism that moves at only five discrete speeds. The performance of the proposed controller was confirmed to be satisfactory by simulating the load-following operation of an APR+ nuclear power plant through interface with KISPAC-1D code

  16. QUALITY THROUGH INTEGRATION OF PRODUCTION AND SHOP FLOOR MANAGEMENT BY DISCRETE EVENT SIMULATION

    Directory of Open Access Journals (Sweden)

    Zoran Mirović

    2007-06-01

    Full Text Available With the intention to integrate strategic and tactical decision making and develop the capability of plans and schedules reconfiguration and synchronization in a very short cycle time many firms have proceeded to the adoption of ERP and Advanced Planning and Scheduling (APS technologies. The final goal is a purposeful scheduling system that guide in the right direction the current, high priority needs of the shop floor while remaining consistent with long-term production plans. The difference, and the power, of Discrete-Event Simulation (DES is its ability to mimic dynamic manufacturing systems, consisting of complex structures, and many heterogeneous interacting components. This paper describes such an integrated system (ERP/APS/DES and draw attention to the essential role of simulation based scheduling within it.

  17. A highly efficient SDRAM controller supporting variable-length burst access and batch process for discrete reads

    Science.gov (United States)

    Li, Nan; Wang, Junzheng

    2016-03-01

    A highly efficient Synchronous Dynamic Random Access Memory (SDRAM) controller supporting variable-length burst access and batch process for discrete reads is proposed in this paper. Based on the Principle of Locality, command First In First Out (FIFO) and address range detector are designed within this controller to accelerate its responses to discrete read requests, which dramatically improves the average Effective Bus Utilization Ratio (EBUR) of SDRAM. Our controller is finally verified by driving the Micron 256-Mb SDRAM MT48LC16M16A2. Successful simulation and verification results show that our controller exhibits much higher EBUR than do most existing designs in case of discrete reads.

  18. Visual Data-Analytics of Large-Scale Parallel Discrete-Event Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Caitlin; Carothers, Christopher D.; Mubarak, Misbah; Carns, Philip; Ross, Robert; Li, Jianping Kelvin; Ma, Kwan-Liu

    2016-11-13

    Parallel discrete-event simulation (PDES) is an important tool in the codesign of extreme-scale systems because PDES provides a cost-effective way to evaluate designs of highperformance computing systems. Optimistic synchronization algorithms for PDES, such as Time Warp, allow events to be processed without global synchronization among the processing elements. A rollback mechanism is provided when events are processed out of timestamp order. Although optimistic synchronization protocols enable the scalability of large-scale PDES, the performance of the simulations must be tuned to reduce the number of rollbacks and provide an improved simulation runtime. To enable efficient large-scale optimistic simulations, one has to gain insight into the factors that affect the rollback behavior and simulation performance. We developed a tool for ROSS model developers that gives them detailed metrics on the performance of their large-scale optimistic simulations at varying levels of simulation granularity. Model developers can use this information for parameter tuning of optimistic simulations in order to achieve better runtime and fewer rollbacks. In this work, we instrument the ROSS optimistic PDES framework to gather detailed statistics about the simulation engine. We have also developed an interactive visualization interface that uses the data collected by the ROSS instrumentation to understand the underlying behavior of the simulation engine. The interface connects real time to virtual time in the simulation and provides the ability to view simulation data at different granularities. We demonstrate the usefulness of our framework by performing a visual analysis of the dragonfly network topology model provided by the CODES simulation framework built on top of ROSS. The instrumentation needs to minimize overhead in order to accurately collect data about the simulation performance. To ensure that the instrumentation does not introduce unnecessary overhead, we perform a

  19. Simulation of land use evolution by discrete events method: Application to “la chaîne des puys” from XV to XVIII Century

    Directory of Open Access Journals (Sweden)

    Y. Michelin

    1998-01-01

    Full Text Available By using a discrete event method, simulation of land use evolution has been applied to a landscape model of “la ChaÎne des Puys” (French Massif Central during along period (XV–XVIII centuries. The indications concerning the evolution of land use are in conformity with the observation of actual situations but the dynamic changes are faster than in actual facts. In spite of limitations due to necessary simplifications, it is now established that the discrete event method is efficient to simulate land use evolution during a long period. The model is immediately able to describe actual dynamics and to show sensitive variables with their critical values. Although oversimplified, it shows how far factors such as level of crops production and taxation can influence land use and landscape changes with a more or less lengthy period. In the future, the model should be bettered by introducing other determined and/or stochastic events.

  20. Discrete Current Control Strategy of Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Yan Dong

    2013-01-01

    Full Text Available A control strategy of permanent magnet synchronous motors (PMSMs, which is different from the traditional vector control (VC and direct torque control (DTC, is proposed. Firstly, the circular rotating magnetic field is analyzed on the simplified model and discredited into stepping magnetic field. The stepping magnetomotive force will drive the rotor to run as the stepping motor. Secondly, the stator current orientation is used to build the control model instead of rotor flux orientation. Then, the discrete current control strategy is set and adopted in positioning control. Three methods of the strategy are simulated in computer and tested on the experiment platform of PMSM. The control precision is also verified through the experiment.

  1. Event structure and cognitive control.

    Science.gov (United States)

    Reimer, Jason F; Radvansky, Gabriel A; Lorsbach, Thomas C; Armendarez, Joseph J

    2015-09-01

    Recently, a great deal of research has demonstrated that although everyday experience is continuous in nature, it is parsed into separate events. The aim of the present study was to examine whether event structure can influence the effectiveness of cognitive control. Across 5 experiments we varied the structure of events within the AX-CPT by shifting the spatial location of cues and probes on a computer screen. When location shifts were present, a pattern of AX-CPT performance consistent with enhanced cognitive control was found. To test whether the location shift effects were caused by the presence of event boundaries per se, other aspects of the AX-CPT were manipulated, such as the color of cues and probes and the inclusion of a distractor task during the cue-probe delay. Changes in cognitive control were not found under these conditions, suggesting that the location shift effects were specifically related to the formation of separate event models. Together, these results can be accounted for by the Event Horizon Model and a representation-based theory of cognitive control, and suggest that cognitive control can be influenced by the surrounding environmental structure. (c) 2015 APA, all rights reserved).

  2. Discrete Time McKean–Vlasov Control Problem: A Dynamic Programming Approach

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Huyên, E-mail: pham@math.univ-paris-diderot.fr; Wei, Xiaoli, E-mail: tyswxl@gmail.com [Laboratoire de Probabilités et Modèles Aléatoires, CNRS, UMR 7599, Université Paris Diderot (France)

    2016-12-15

    We consider the stochastic optimal control problem of nonlinear mean-field systems in discrete time. We reformulate the problem into a deterministic control problem with marginal distribution as controlled state variable, and prove that dynamic programming principle holds in its general form. We apply our method for solving explicitly the mean-variance portfolio selection and the multivariate linear-quadratic McKean–Vlasov control problem.

  3. Discrete Time McKean–Vlasov Control Problem: A Dynamic Programming Approach

    International Nuclear Information System (INIS)

    Pham, Huyên; Wei, Xiaoli

    2016-01-01

    We consider the stochastic optimal control problem of nonlinear mean-field systems in discrete time. We reformulate the problem into a deterministic control problem with marginal distribution as controlled state variable, and prove that dynamic programming principle holds in its general form. We apply our method for solving explicitly the mean-variance portfolio selection and the multivariate linear-quadratic McKean–Vlasov control problem.

  4. Markov modeling and discrete event simulation in health care: a systematic comparison.

    Science.gov (United States)

    Standfield, Lachlan; Comans, Tracy; Scuffham, Paul

    2014-04-01

    The aim of this study was to assess if the use of Markov modeling (MM) or discrete event simulation (DES) for cost-effectiveness analysis (CEA) may alter healthcare resource allocation decisions. A systematic literature search and review of empirical and non-empirical studies comparing MM and DES techniques used in the CEA of healthcare technologies was conducted. Twenty-two pertinent publications were identified. Two publications compared MM and DES models empirically, one presented a conceptual DES and MM, two described a DES consensus guideline, and seventeen drew comparisons between MM and DES through the authors' experience. The primary advantages described for DES over MM were the ability to model queuing for limited resources, capture individual patient histories, accommodate complexity and uncertainty, represent time flexibly, model competing risks, and accommodate multiple events simultaneously. The disadvantages of DES over MM were the potential for model overspecification, increased data requirements, specialized expensive software, and increased model development, validation, and computational time. Where individual patient history is an important driver of future events an individual patient simulation technique like DES may be preferred over MM. Where supply shortages, subsequent queuing, and diversion of patients through other pathways in the healthcare system are likely to be drivers of cost-effectiveness, DES modeling methods may provide decision makers with more accurate information on which to base resource allocation decisions. Where these are not major features of the cost-effectiveness question, MM remains an efficient, easily validated, parsimonious, and accurate method of determining the cost-effectiveness of new healthcare interventions.

  5. CONFIG - Adapting qualitative modeling and discrete event simulation for design of fault management systems

    Science.gov (United States)

    Malin, Jane T.; Basham, Bryan D.

    1989-01-01

    CONFIG is a modeling and simulation tool prototype for analyzing the normal and faulty qualitative behaviors of engineered systems. Qualitative modeling and discrete-event simulation have been adapted and integrated, to support early development, during system design, of software and procedures for management of failures, especially in diagnostic expert systems. Qualitative component models are defined in terms of normal and faulty modes and processes, which are defined by invocation statements and effect statements with time delays. System models are constructed graphically by using instances of components and relations from object-oriented hierarchical model libraries. Extension and reuse of CONFIG models and analysis capabilities in hybrid rule- and model-based expert fault-management support systems are discussed.

  6. Estimating ICU bed capacity using discrete event simulation.

    Science.gov (United States)

    Zhu, Zhecheng; Hen, Bee Hoon; Teow, Kiok Liang

    2012-01-01

    The intensive care unit (ICU) in a hospital caters for critically ill patients. The number of the ICU beds has a direct impact on many aspects of hospital performance. Lack of the ICU beds may cause ambulance diversion and surgery cancellation, while an excess of ICU beds may cause a waste of resources. This paper aims to develop a discrete event simulation (DES) model to help the healthcare service providers determine the proper ICU bed capacity which strikes the balance between service level and cost effectiveness. The DES model is developed to reflect the complex patient flow of the ICU system. Actual operational data, including emergency arrivals, elective arrivals and length of stay, are directly fed into the DES model to capture the variations in the system. The DES model is validated by open box test and black box test. The validated model is used to test two what-if scenarios which the healthcare service providers are interested in: the proper number of the ICU beds in service to meet the target rejection rate and the extra ICU beds in service needed to meet the demand growth. A 12-month period of actual operational data was collected from an ICU department with 13 ICU beds in service. Comparison between the simulation results and the actual situation shows that the DES model accurately captures the variations in the system, and the DES model is flexible to simulate various what-if scenarios. DES helps the healthcare service providers describe the current situation, and simulate the what-if scenarios for future planning.

  7. A Discrete Event System Approach to Online Testing of Speed Independent Circuits

    Directory of Open Access Journals (Sweden)

    P. K. Biswal

    2015-01-01

    Full Text Available With the increase in soft failures in deep submicron ICs, online testing is becoming an integral part of design for testability. Some techniques for online testing of asynchronous circuits are proposed in the literature, which involves development of a checker that verifies the correctness of the protocol. This checker involves Mutex blocks making its area overhead quite high. In this paper, we have adapted the Theory of Fault Detection and Diagnosis available in the literature on Discrete Event Systems to online testing of speed independent asynchronous circuits. The scheme involves development of a state based model of the circuit, under normal and various stuck-at fault conditions, and finally designing state estimators termed as detectors. The detectors monitor the circuit online and determine whether it is functioning in normal/failure mode. The main advantages are nonintrusiveness and low area overheads compared to similar schemes reported in the literature.

  8. Computational Techniques for Model Predictive Control of Large-Scale Systems with Continuous-Valued and Discrete-Valued Inputs

    Directory of Open Access Journals (Sweden)

    Koichi Kobayashi

    2013-01-01

    Full Text Available We propose computational techniques for model predictive control of large-scale systems with both continuous-valued control inputs and discrete-valued control inputs, which are a class of hybrid systems. In the proposed method, we introduce the notion of virtual control inputs, which are obtained by relaxing discrete-valued control inputs to continuous variables. In online computation, first, we find continuous-valued control inputs and virtual control inputs minimizing a cost function. Next, using the obtained virtual control inputs, only discrete-valued control inputs at the current time are computed in each subsystem. In addition, we also discuss the effect of quantization errors. Finally, the effectiveness of the proposed method is shown by a numerical example. The proposed method enables us to reduce and decentralize the computation load.

  9. Direct Adaptive Control of a Class of Nonlinear Discrete-Time Systems

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon

    2004-01-01

    In this paper we deal with direct adaptive control of a specific class of discrete-time SISO systems, where the nonlinearities are convex and an upper bound is known. We use a control law based on a linear combination of a set of globally uniformly bounded basis functions with compact support, wh...

  10. State control of discrete-time linear systems to be bound in state variables by equality constraints

    International Nuclear Information System (INIS)

    Filasová, Anna; Krokavec, Dušan; Serbák, Vladimír

    2014-01-01

    The paper is concerned with the problem of designing the discrete-time equivalent PI controller to control the discrete-time linear systems in such a way that the closed-loop state variables satisfy the prescribed equality constraints. Since the problem is generally singular, using standard form of the Lyapunov function and a symmetric positive definite slack matrix, the design conditions are proposed in the form of the enhanced Lyapunov inequality. The results, offering the conditions of the control existence and the optimal performance with respect to the prescribed equality constraints for square discrete-time linear systems, are illustrated with the numerical example to note effectiveness and applicability of the considered approach

  11. Fault Diagnosis and Fault-Tolerant Control of Wind Turbines via a Discrete Time Controller with a Disturbance Compensator

    Directory of Open Access Journals (Sweden)

    Yolanda Vidal

    2015-05-01

    Full Text Available This paper develops a fault diagnosis (FD and fault-tolerant control (FTC of pitch actuators in wind turbines. This is accomplished by combining a disturbance compensator with a controller, both of which are formulated in the discrete time domain. The disturbance compensator has a dual purpose: to estimate the actuator fault (which is used by the FD algorithm and to design the discrete time controller to obtain an FTC. That is, the pitch actuator faults are estimated, and then, the pitch control laws are appropriately modified to achieve an FTC with a comparable behavior to the fault-free case. The performance of the FD and FTC schemes is tested in simulations with the aero-elastic code FAST.

  12. The Effect of Haptic Guidance on Learning a Hybrid Rhythmic-Discrete Motor Task.

    Science.gov (United States)

    Marchal-Crespo, Laura; Bannwart, Mathias; Riener, Robert; Vallery, Heike

    2015-01-01

    Bouncing a ball with a racket is a hybrid rhythmic-discrete motor task, combining continuous rhythmic racket movements with discrete impact events. Rhythmicity is exceptionally important in motor learning, because it underlies fundamental movements such as walking. Studies suggested that rhythmic and discrete movements are governed by different control mechanisms at different levels of the Central Nervous System. The aim of this study is to evaluate the effect of fixed/fading haptic guidance on learning to bounce a ball to a desired apex in virtual reality with varying gravity. Changing gravity changes dominance of rhythmic versus discrete control: The higher the value of gravity, the more rhythmic the task; lower values reduce the bouncing frequency and increase dwell times, eventually leading to a repetitive discrete task that requires initiation and termination, resembling target-oriented reaching. Although motor learning in the ball-bouncing task with varying gravity has been studied, the effect of haptic guidance on learning such a hybrid rhythmic-discrete motor task has not been addressed. We performed an experiment with thirty healthy subjects and found that the most effective training condition depended on the degree of rhythmicity: Haptic guidance seems to hamper learning of continuous rhythmic tasks, but it seems to promote learning for repetitive tasks that resemble discrete movements.

  13. Sliding mode control-based linear functional observers for discrete-time stochastic systems

    Science.gov (United States)

    Singh, Satnesh; Janardhanan, Sivaramakrishnan

    2017-11-01

    Sliding mode control (SMC) is one of the most popular techniques to stabilise linear discrete-time stochastic systems. However, application of SMC becomes difficult when the system states are not available for feedback. This paper presents a new approach to design a SMC-based functional observer for discrete-time stochastic systems. The functional observer is based on the Kronecker product approach. Existence conditions and stability analysis of the proposed observer are given. The control input is estimated by a novel linear functional observer. This approach leads to a non-switching type of control, thereby eliminating the fundamental cause of chatter. Furthermore, the functional observer is designed in such a way that the effect of process and measurement noise is minimised. Simulation example is given to illustrate and validate the proposed design method.

  14. Design of an Optimal Preview Controller for Linear Discrete-Time Descriptor Noncausal Multirate Systems

    Directory of Open Access Journals (Sweden)

    Mengjuan Cao

    2014-01-01

    Full Text Available The linear discrete-time descriptor noncausal multirate system is considered for the presentation of a new design approach for optimal preview control. First, according to the characteristics of causal controllability and causal observability, the descriptor noncausal system is constructed into a descriptor causal closed-loop system. Second, by using the characteristics of the causal system and elementary transformation, the descriptor causal closed-loop system is transformed into a normal system. Then, taking advantage of the discrete lifting technique, the normal multirate system is converted to a single-rate system. By making use of the standard preview control method, we construct the descriptor augmented error system. The quadratic performance index for the multirate system is given, which can be changed into one for the single-rate system. In addition, a new single-rate system is obtained, the optimal control law of which is given. Returning to the original system, the optimal preview controller for linear discrete-time descriptor noncausal multirate systems is derived. The stabilizability and detectability of the lifted single-rate system are discussed in detail. The optimal preview control design techniques are illustrated by simulation results for a simple example.

  15. Stochastic ℋ∞ Finite-Time Control of Discrete-Time Systems with Packet Loss

    Directory of Open Access Journals (Sweden)

    Yingqi Zhang

    2012-01-01

    Full Text Available This paper investigates the stochastic finite-time stabilization and ℋ∞ control problem for one family of linear discrete-time systems over networks with packet loss, parametric uncertainties, and time-varying norm-bounded disturbance. Firstly, the dynamic model description studied is given, which, if the packet dropout is assumed to be a discrete-time homogenous Markov process, the class of discrete-time linear systems with packet loss can be regarded as Markovian jump systems. Based on Lyapunov function approach, sufficient conditions are established for the resulting closed-loop discrete-time system with Markovian jumps to be stochastic ℋ∞ finite-time boundedness and then state feedback controllers are designed to guarantee stochastic ℋ∞ finite-time stabilization of the class of stochastic systems. The stochastic ℋ∞ finite-time boundedness criteria can be tackled in the form of linear matrix inequalities with a fixed parameter. As an auxiliary result, we also give sufficient conditions on the robust stochastic stabilization of the class of linear systems with packet loss. Finally, simulation examples are presented to illustrate the validity of the developed scheme.

  16. Energy Optimal Tracking Control with Discrete Fluid Power Systems using Model Predictive Control

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Asmussen, Magnus Færing; Bech, Michael Møller

    2017-01-01

    For Discrete Displacement Cylinder (DDC) drives the control task lies in choosing force level. Hence, which force level to apply and thereby which pressure level each cylinder chambers shall be connected to. The DDC system is inherently a force system why often a force reference is generated...... and compared to a PID like tracking controller combined with a FSA. The results indicate that the energy efficiency of position tracking DDC systems may be improved significantly by using the MPC algorithm....

  17. Modeling Temporal Processes in Early Spacecraft Design: Application of Discrete-Event Simulations for Darpa's F6 Program

    Science.gov (United States)

    Dubos, Gregory F.; Cornford, Steven

    2012-01-01

    While the ability to model the state of a space system over time is essential during spacecraft operations, the use of time-based simulations remains rare in preliminary design. The absence of the time dimension in most traditional early design tools can however become a hurdle when designing complex systems whose development and operations can be disrupted by various events, such as delays or failures. As the value delivered by a space system is highly affected by such events, exploring the trade space for designs that yield the maximum value calls for the explicit modeling of time.This paper discusses the use of discrete-event models to simulate spacecraft development schedule as well as operational scenarios and on-orbit resources in the presence of uncertainty. It illustrates how such simulations can be utilized to support trade studies, through the example of a tool developed for DARPA's F6 program to assist the design of "fractionated spacecraft".

  18. A novel approach for modelling complex maintenance systems using discrete event simulation

    International Nuclear Information System (INIS)

    Alrabghi, Abdullah; Tiwari, Ashutosh

    2016-01-01

    Existing approaches for modelling maintenance rely on oversimplified assumptions which prevent them from reflecting the complexity found in industrial systems. In this paper, we propose a novel approach that enables the modelling of non-identical multi-unit systems without restrictive assumptions on the number of units or their maintenance characteristics. Modelling complex interactions between maintenance strategies and their effects on assets in the system is achieved by accessing event queues in Discrete Event Simulation (DES). The approach utilises the wide success DES has achieved in manufacturing by allowing integration with models that are closely related to maintenance such as production and spare parts systems. Additional advantages of using DES include rapid modelling and visual interactive simulation. The proposed approach is demonstrated in a simulation based optimisation study of a published case. The current research is one of the first to optimise maintenance strategies simultaneously with their parameters while considering production dynamics and spare parts management. The findings of this research provide insights for non-conflicting objectives in maintenance systems. In addition, the proposed approach can be used to facilitate the simulation and optimisation of industrial maintenance systems. - Highlights: • This research is one of the first to optimise maintenance strategies simultaneously. • New insights for non-conflicting objectives in maintenance systems. • The approach can be used to optimise industrial maintenance systems.

  19. Discrete-event simulation of coordinated multi-point joint transmission in LTE-Advanced with constrained backhaul

    DEFF Research Database (Denmark)

    Artuso, Matteo; Christiansen, Henrik Lehrmann

    2014-01-01

    Inter-cell interference in LTE-Advanced can be mitigated using coordinated multi-point (CoMP) techniques with joint transmission of user data . However, this requires tight coordination of the eNodeBs, usin g the X2 interface. In this paper we use discrete-event simulation to evaluate the latency...... requirements for the X2 interface and investigate the consequences of a constrained ba ckhaul. Our simulation results show a gain of the system throug hput of up to 120% compared to the case without CoMP for low-latency backhaul. With X2 latencies above 5 ms CoMP is no longer a benefit to the network....

  20. A simple method of chaos control for a class of chaotic discrete-time systems

    International Nuclear Information System (INIS)

    Jiang Guoping; Zheng Weixing

    2005-01-01

    In this paper, a simple method is proposed for chaos control for a class of discrete-time chaotic systems. The proposed method is built upon the state feedback control and the characteristic of ergodicity of chaos. The feedback gain matrix of the controller is designed using a simple criterion, so that control parameters can be selected via the pole placement technique of linear control theory. The new controller has a feature that it only uses the state variable for control and does not require the target equilibrium point in the feedback path. Moreover, the proposed control method cannot only overcome the so-called 'odd eigenvalues number limitation' of delayed feedback control, but also control the chaotic systems to the specified equilibrium points. The effectiveness of the proposed method is demonstrated by a two-dimensional discrete-time chaotic system

  1. Human visual system automatically encodes sequential regularities of discrete events.

    Science.gov (United States)

    Kimura, Motohiro; Schröger, Erich; Czigler, István; Ohira, Hideki

    2010-06-01

    For our adaptive behavior in a dynamically changing environment, an essential task of the brain is to automatically encode sequential regularities inherent in the environment into a memory representation. Recent studies in neuroscience have suggested that sequential regularities embedded in discrete sensory events are automatically encoded into a memory representation at the level of the sensory system. This notion is largely supported by evidence from investigations using auditory mismatch negativity (auditory MMN), an event-related brain potential (ERP) correlate of an automatic memory-mismatch process in the auditory sensory system. However, it is still largely unclear whether or not this notion can be generalized to other sensory modalities. The purpose of the present study was to investigate the contribution of the visual sensory system to the automatic encoding of sequential regularities using visual mismatch negativity (visual MMN), an ERP correlate of an automatic memory-mismatch process in the visual sensory system. To this end, we conducted a sequential analysis of visual MMN in an oddball sequence consisting of infrequent deviant and frequent standard stimuli, and tested whether the underlying memory representation of visual MMN generation contains only a sensory memory trace of standard stimuli (trace-mismatch hypothesis) or whether it also contains sequential regularities extracted from the repetitive standard sequence (regularity-violation hypothesis). The results showed that visual MMN was elicited by first deviant (deviant stimuli following at least one standard stimulus), second deviant (deviant stimuli immediately following first deviant), and first standard (standard stimuli immediately following first deviant), but not by second standard (standard stimuli immediately following first standard). These results are consistent with the regularity-violation hypothesis, suggesting that the visual sensory system automatically encodes sequential

  2. Problems in event based engine control

    DEFF Research Database (Denmark)

    Hendricks, Elbert; Jensen, Michael; Chevalier, Alain Marie Roger

    1994-01-01

    Physically a four cycle spark ignition engine operates on the basis of four engine processes or events: intake, compression, ignition (or expansion) and exhaust. These events each occupy approximately 180° of crank angle. In conventional engine controllers, it is an accepted practice to sample...... the engine variables synchronously with these events (or submultiples of them). Such engine controllers are often called event-based systems. Unfortunately the main system noise (or disturbance) is also synchronous with the engine events: the engine pumping fluctuations. Since many electronic engine...... problems on accurate air/fuel ratio control of a spark ignition (SI) engine....

  3. Evolutionary design of discrete controllers for hybrid mechatronic systems

    DEFF Research Database (Denmark)

    Dupuis, Jean-Francois; Fan, Zhun; Goodman, Erik

    2015-01-01

    This paper investigates the issue of evolutionary design of controllers for hybrid mechatronic systems. Finite State Automaton (FSA) is selected as the representation for a discrete controller due to its interpretability, fast execution speed and natural extension to a statechart, which is very...... popular in industrial applications. A case study of a two-tank system is used to demonstrate that the proposed evolutionary approach can lead to a successful design of an FSA controller for the hybrid mechatronic system, represented by a hybrid bond graph. Generalisation of the evolved FSA controller...... of the evolutionary design of controllers for hybrid mechatronic systems. Finally, some important future research directions are pointed out, leading to the major work of the succeeding part of the research....

  4. Control of the formation of projective synchronisation in lower-dimensional discrete-time systems

    International Nuclear Information System (INIS)

    Chee, C.Y.; Xu Daolin

    2003-01-01

    Projective synchronisation was recently observed in partially linear discrete-time systems. The scaling factor that characterises the behaviour of projective synchronisation is however unpredictable. In order to manipulate the ultimate state of the synchronisation, a control algorithm based on Schur-Chon stability criteria is proposed to direct the scaling factor onto any predestined value. In the numerical experiment, we illustrate the application on two chaotic discrete-time systems

  5. Speeding Up Network Simulations Using Discrete Time

    OpenAIRE

    Lucas, Aaron; Armbruster, Benjamin

    2013-01-01

    We develop a way of simulating disease spread in networks faster at the cost of some accuracy. Instead of a discrete event simulation (DES) we use a discrete time simulation. This aggregates events into time periods. We prove a bound on the accuracy attained. We also discuss the choice of step size and do an analytical comparison of the computational costs. Our error bound concept comes from the theory of numerical methods for SDEs and the basic proof structure comes from the theory of numeri...

  6. H 2 guaranteed cost control of discrete linear systems

    Directory of Open Access Journals (Sweden)

    Colmenares W.

    2000-01-01

    Full Text Available This paper presents necessary and sufficient conditions for the existence of a quadratically stabilizing output feedback controller which also assures H 2 guaranteed cost performance on a discrete linear uncertain system where the uncertainty is of the norm bounded type. The conditions are presented as a collection of linear matrix inequalities.The solution, however requires a search over a scalar parameter space.

  7. The remarkable discreteness of being

    Indian Academy of Sciences (India)

    Life is a discrete, stochastic phenomenon: for a biological organism, the time of the two most important events of its life (reproduction and death) is random and these events change the number of individuals of the species by single units. These facts can have surprising, counterintuitive consequences. I review here three ...

  8. The impact of interoperability of electronic health records on ambulatory physician practices: a discrete-event simulation study

    Directory of Open Access Journals (Sweden)

    Yuan Zhou

    2014-02-01

    Full Text Available Background The effect of health information technology (HIT on efficiency and workload among clinical and nonclinical staff has been debated, with conflicting evidence about whether electronic health records (EHRs increase or decrease effort. None of this paper to date, however, examines the effect of interoperability quantitatively using discrete event simulation techniques.Objective To estimate the impact of EHR systems with various levels of interoperability on day-to-day tasks and operations of ambulatory physician offices.Methods Interviews and observations were used to collect workflow data from 12 adult primary and specialty practices. A discrete event simulation model was constructed to represent patient flows and clinical and administrative tasks of physicians and staff members.Results High levels of EHR interoperability were associated with reduced time spent by providers on four tasks: preparing lab reports, requesting lab orders, prescribing medications, and writing referrals. The implementation of an EHR was associated with less time spent by administrators but more time spent by physicians, compared with time spent at paper-based practices. In addition, the presence of EHRs and of interoperability did not significantly affect the time usage of registered nurses or the total visit time and waiting time of patients.Conclusion This paper suggests that the impact of using HIT on clinical and nonclinical staff work efficiency varies, however, overall it appears to improve time efficiency more for administrators than for physicians and nurses.

  9. Discrete port-Hamiltonian systems

    NARCIS (Netherlands)

    Talasila, V.; Clemente-Gallardo, J.; Schaft, A.J. van der

    2006-01-01

    Either from a control theoretic viewpoint or from an analysis viewpoint it is necessary to convert smooth systems to discrete systems, which can then be implemented on computers for numerical simulations. Discrete models can be obtained either by discretizing a smooth model, or by directly modeling

  10. A Decision Tool that Combines Discrete Event Software Process Models with System Dynamics Pieces for Software Development Cost Estimation and Analysis

    Science.gov (United States)

    Mizell, Carolyn Barrett; Malone, Linda

    2007-01-01

    The development process for a large software development project is very complex and dependent on many variables that are dynamic and interrelated. Factors such as size, productivity and defect injection rates will have substantial impact on the project in terms of cost and schedule. These factors can be affected by the intricacies of the process itself as well as human behavior because the process is very labor intensive. The complex nature of the development process can be investigated with software development process models that utilize discrete event simulation to analyze the effects of process changes. The organizational environment and its effects on the workforce can be analyzed with system dynamics that utilizes continuous simulation. Each has unique strengths and the benefits of both types can be exploited by combining a system dynamics model and a discrete event process model. This paper will demonstrate how the two types of models can be combined to investigate the impacts of human resource interactions on productivity and ultimately on cost and schedule.

  11. Operational analysis and improvement of a spent nuclear fuel handling and treatment facility using discrete event simulation

    International Nuclear Information System (INIS)

    Garcia, H.E.

    2000-01-01

    Spent nuclear fuel handling and treatment often require facilities with a high level of operational complexity. Simulation models can reveal undesirable characteristics and production problems before they become readily apparent during system operations. The value of this approach is illustrated here through an operational study, using discrete event modeling techniques, to analyze the Fuel Conditioning Facility at Argonne National Laboratory and to identify enhanced nuclear waste treatment configurations. The modeling approach and results of what-if studies are discussed. An example on how to improve productivity is presented.

  12. Finite approximations in discrete-time stochastic control quantized models and asymptotic optimality

    CERN Document Server

    Saldi, Naci; Yüksel, Serdar

    2018-01-01

    In a unified form, this monograph presents fundamental results on the approximation of centralized and decentralized stochastic control problems, with uncountable state, measurement, and action spaces. It demonstrates how quantization provides a system-independent and constructive method for the reduction of a system with Borel spaces to one with finite state, measurement, and action spaces. In addition to this constructive view, the book considers both the information transmission approach for discretization of actions, and the computational approach for discretization of states and actions. Part I of the text discusses Markov decision processes and their finite-state or finite-action approximations, while Part II builds from there to finite approximations in decentralized stochastic control problems. This volume is perfect for researchers and graduate students interested in stochastic controls. With the tools presented, readers will be able to establish the convergence of approximation models to original mo...

  13. Discrete-Time Stable Generalized Self-Learning Optimal Control With Approximation Errors.

    Science.gov (United States)

    Wei, Qinglai; Li, Benkai; Song, Ruizhuo

    2018-04-01

    In this paper, a generalized policy iteration (GPI) algorithm with approximation errors is developed for solving infinite horizon optimal control problems for nonlinear systems. The developed stable GPI algorithm provides a general structure of discrete-time iterative adaptive dynamic programming algorithms, by which most of the discrete-time reinforcement learning algorithms can be described using the GPI structure. It is for the first time that approximation errors are explicitly considered in the GPI algorithm. The properties of the stable GPI algorithm with approximation errors are analyzed. The admissibility of the approximate iterative control law can be guaranteed if the approximation errors satisfy the admissibility criteria. The convergence of the developed algorithm is established, which shows that the iterative value function is convergent to a finite neighborhood of the optimal performance index function, if the approximate errors satisfy the convergence criterion. Finally, numerical examples and comparisons are presented.

  14. A high precision dual feedback discrete control system designed for satellite trajectory simulator

    Science.gov (United States)

    Liu, Ximin; Liu, Liren; Sun, Jianfeng; Xu, Nan

    2005-08-01

    Cooperating with the free-space laser communication terminals, the satellite trajectory simulator is used to test the acquisition, pointing, tracking and communicating performances of the terminals. So the satellite trajectory simulator plays an important role in terminal ground test and verification. Using the double-prism, Sun etc in our group designed a satellite trajectory simulator. In this paper, a high precision dual feedback discrete control system designed for the simulator is given and a digital fabrication of the simulator is made correspondingly. In the dual feedback discrete control system, Proportional- Integral controller is used in velocity feedback loop and Proportional- Integral- Derivative controller is used in position feedback loop. In the controller design, simplex method is introduced and an improvement to the method is made. According to the transfer function of the control system in Z domain, the digital fabrication of the simulator is given when it is exposed to mechanism error and moment disturbance. Typically, when the mechanism error is 100urad, the residual standard error of pitching angle, azimuth angle, x-coordinate position and y-coordinate position are 0.49urad, 6.12urad, 4.56urad, 4.09urad respectively. When the moment disturbance is 0.1rad, the residual standard error of pitching angle, azimuth angle, x-coordinate position and y-coordinate position are 0.26urad, 0.22urad, 0.16urad, 0.15urad respectively. The digital fabrication results demonstrate that the dual feedback discrete control system designed for the simulator can achieve the anticipated high precision performance.

  15. Convergence of Cell Based Finite Volume Discretizations for Problems of Control in the Conduction Coefficients

    DEFF Research Database (Denmark)

    Evgrafov, Anton; Gregersen, Misha Marie; Sørensen, Mads Peter

    2011-01-01

    We present a convergence analysis of a cell-based finite volume (FV) discretization scheme applied to a problem of control in the coefficients of a generalized Laplace equation modelling, for example, a steady state heat conduction. Such problems arise in applications dealing with geometric optimal......, whereas the convergence of the coefficients happens only with respect to the "volumetric" Lebesgue measure. Additionally, depending on whether the stationarity conditions are stated for the discretized or the original continuous problem, two distinct concepts of stationarity at a discrete level arise. We...... provide characterizations of limit points, with respect to FV mesh size, of globally optimal solutions and two types of stationary points to the discretized problems. We illustrate the practical behaviour of our cell-based FV discretization algorithm on a numerical example....

  16. Less Conservative ℋ∞ Fuzzy Control for Discrete-Time Takagi-Sugeno Systems

    Directory of Open Access Journals (Sweden)

    Leonardo Amaral Mozelli

    2011-01-01

    Full Text Available New analysis and control design conditions of discrete-time fuzzy systems are proposed. Using fuzzy Lyapunov's functions and introducing slack variables, less conservative conditions are obtained. The controller guarantees system stabilization and ℋ∞ performance. Numerical tests and a practical experiment in Chua's circuit are presented to show the effectiveness.

  17. Discrete Event Modeling and Simulation-Driven Engineering for the ATLAS Data Acquisition Network

    CERN Document Server

    Bonaventura, Matias Alejandro; The ATLAS collaboration; Castro, Rodrigo Daniel

    2016-01-01

    We present an iterative and incremental development methodology for simulation models in network engineering projects. Driven by the DEVS (Discrete Event Systems Specification) formal framework for modeling and simulation we assist network design, test, analysis and optimization processes. A practical application of the methodology is presented for a case study in the ATLAS particle physics detector, the largest scientific experiment built by man where scientists around the globe search for answers about the origins of the universe. The ATLAS data network convey real-time information produced by physics detectors as beams of particles collide. The produced sub-atomic evidences must be filtered and recorded for further offline scrutiny. Due to the criticality of the transported data, networks and applications undergo careful engineering processes with stringent quality of service requirements. A tight project schedule imposes time pressure on design decisions, while rapid technology evolution widens the palett...

  18. Third Dutch Process Security Control Event

    NARCIS (Netherlands)

    Luiijf, H.A.M.

    2009-01-01

    On June 4th, 2009, the third Dutch Process Control Security Event took place in Amsterdam. The event, organised by the Dutch National Infrastructure against Cybercrime (NICC), attracted both Dutch process control experts and members of the European SCADA and Control Systems Information Exchange

  19. Controlling the chaotic discrete-Hénon system using a feedforward neural network with an adaptive learning rate

    OpenAIRE

    GÖKCE, Kürşad; UYAROĞLU, Yılmaz

    2013-01-01

    This paper proposes a feedforward neural network-based control scheme to control the chaotic trajectories of a discrete-Hénon map in order to stay within an acceptable distance from the stable fixed point. An adaptive learning back propagation algorithm with online training is employed to improve the effectiveness of the proposed method. The simulation study carried in the discrete-Hénon system verifies the validity of the proposed control system.

  20. Event-by-event simulation of quantum phenomena

    NARCIS (Netherlands)

    De Raedt, Hans; Michielsen, Kristel

    A discrete-event simulation approach is reviewed that does not require the knowledge of the solution of the wave equation of the whole system, yet reproduces the statistical distributions of wave theory by generating detection events one-by-one. The simulation approach is illustrated by applications

  1. Reliable gain-scheduled control of discrete-time systems and its application to CSTR model

    Science.gov (United States)

    Sakthivel, R.; Selvi, S.; Mathiyalagan, K.; Shi, Y.

    2016-10-01

    This paper is focused on reliable gain-scheduled controller design for a class of discrete-time systems with randomly occurring nonlinearities and actuator fault. Further, the nonlinearity in the system model is assumed to occur randomly according to a Bernoulli distribution with measurable time-varying probability in real time. The main purpose of this paper is to design a gain-scheduled controller by implementing a probability-dependent Lyapunov function and linear matrix inequality (LMI) approach such that the closed-loop discrete-time system is stochastically stable for all admissible randomly occurring nonlinearities. The existence conditions for the reliable controller is formulated in terms of LMI constraints. Finally, the proposed reliable gain-scheduled control scheme is applied on continuously stirred tank reactor model to demonstrate the effectiveness and applicability of the proposed design technique.

  2. An essay on discrete foundations for physics

    International Nuclear Information System (INIS)

    Noyes, H.P.; McGoveran, D.O.

    1988-07-01

    We base our theory of physics and cosmology on the five principles of finiteness, discreteness, finite computability, absolute non-uniqueness, and strict construction. Our modeling methodology starts from the current practice of physics, constructs a self-consistent representation based on the ordering operator calculus and provides rules of correspondence that allow us to test the theory by experiment. We use program universe to construct a growing collection of bit strings whose initial portions (labels) provide the quantum numbers that are conserved in the events defined by the construction. The labels are followed by content strings which are used to construct event-based finite and discrete coordinates. On general grounds such a theory has a limiting velocity, and positions and velocities do not commute. We therefore reconcile quantum mechanics with relativity at an appropriately fundamental stage in the construction. We show that events in different coordinate systems are connected by the appropriate finite and discrete version of the Lorentz transformation, that 3-momentum is conserved in events, and that this conservation law is the same as the requirement that different paths can ''interfere'' only when they differ by an integral number of deBroglie wavelengths. 38 refs., 12 figs., 3 tabs

  3. An essay on discrete foundations for physics

    International Nuclear Information System (INIS)

    Noyes, H.P.; McGoveran, D.O.

    1988-01-01

    We base our theory of physics and cosmology on the five principles of finiteness, discreteness, finite computability, absolute non- uniqueness, and strict construction. Our modeling methodology starts from the current practice of physics, constructs a self-consistent representation based on the ordering operator calculus and provides rules of correspondence that allow us to test the theory by experiment. We use program universe to construct a growing collection of bit strings whose initial portions (labels) provide the quantum numbers that are conserved in the events defined by the construction. The labels are followed by content strings which are used to construct event-based finite and discrete coordinates. On general grounds such a theory has a limiting velocity, and positions and velocities do not commute. We therefore reconcile quantum mechanics with relativity at an appropriately fundamental stage in the construction. We show that events in different coordinate systems are connected by the appropriate finite and discrete version of the Lorentz transformation, that 3-momentum is conserved in events, and that this conservation law is the same as the requirement that different paths can ''interfere'' only when they differ by an integral number of deBroglie wavelengths. 38 refs., 12 figs., 3 tabs

  4. An essay on discrete foundations for physics

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, H.P.; McGoveran, D.O.

    1988-07-01

    We base our theory of physics and cosmology on the five principles of finiteness, discreteness, finite computability, absolute non-uniqueness, and strict construction. Our modeling methodology starts from the current practice of physics, constructs a self-consistent representation based on the ordering operator calculus and provides rules of correspondence that allow us to test the theory by experiment. We use program universe to construct a growing collection of bit strings whose initial portions (labels) provide the quantum numbers that are conserved in the events defined by the construction. The labels are followed by content strings which are used to construct event-based finite and discrete coordinates. On general grounds such a theory has a limiting velocity, and positions and velocities do not commute. We therefore reconcile quantum mechanics with relativity at an appropriately fundamental stage in the construction. We show that events in different coordinate systems are connected by the appropriate finite and discrete version of the Lorentz transformation, that 3-momentum is conserved in events, and that this conservation law is the same as the requirement that different paths can ''interfere'' only when they differ by an integral number of deBroglie wavelengths. 38 refs., 12 figs., 3 tabs.

  5. An essay on discrete foundations for physics

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, H.P.; McGoveran, D.O.

    1988-10-05

    We base our theory of physics and cosmology on the five principles of finiteness, discreteness, finite computability, absolute non- uniqueness, and strict construction. Our modeling methodology starts from the current practice of physics, constructs a self-consistent representation based on the ordering operator calculus and provides rules of correspondence that allow us to test the theory by experiment. We use program universe to construct a growing collection of bit strings whose initial portions (labels) provide the quantum numbers that are conserved in the events defined by the construction. The labels are followed by content strings which are used to construct event-based finite and discrete coordinates. On general grounds such a theory has a limiting velocity, and positions and velocities do not commute. We therefore reconcile quantum mechanics with relativity at an appropriately fundamental stage in the construction. We show that events in different coordinate systems are connected by the appropriate finite and discrete version of the Lorentz transformation, that 3-momentum is conserved in events, and that this conservation law is the same as the requirement that different paths can ''interfere'' only when they differ by an integral number of deBroglie wavelengths. 38 refs., 12 figs., 3 tabs.

  6. Synchronization of discrete-time spatiotemporal chaos via adaptive fuzzy control

    International Nuclear Information System (INIS)

    Xue Yueju; Yang Shiyuan

    2003-01-01

    A discrete-time adaptive fuzzy control scheme is presented to synchronize model-unknown coupled Henon-map lattices (CHMLs). The proposed method is robust to approximate errors, parameter mismatches and disturbances, because it integrates the merits of the adaptive fuzzy systems and the variable structure control with a sector. The simulation results of synchronization of CHMLs show that it not only can synchronize model-unknown CHMLs but also is robust against parameter mismatches and noise of the systems. These merits are advantageous for engineering realization

  7. Synchronization of discrete-time spatiotemporal chaos via adaptive fuzzy control

    Energy Technology Data Exchange (ETDEWEB)

    Xue Yueju E-mail: xueyj@mail.tsinghua.edu.cn; Yang Shiyuan E-mail: ysy-dau@tsinghua.edu.cn

    2003-08-01

    A discrete-time adaptive fuzzy control scheme is presented to synchronize model-unknown coupled Henon-map lattices (CHMLs). The proposed method is robust to approximate errors, parameter mismatches and disturbances, because it integrates the merits of the adaptive fuzzy systems and the variable structure control with a sector. The simulation results of synchronization of CHMLs show that it not only can synchronize model-unknown CHMLs but also is robust against parameter mismatches and noise of the systems. These merits are advantageous for engineering realization.

  8. Discrete Event Simulation Method as a Tool for Improvement of Manufacturing Systems

    Directory of Open Access Journals (Sweden)

    Adrian Kampa

    2017-02-01

    Full Text Available The problem of production flow in manufacturing systems is analyzed. The machines can be operated by workers or by robots, since breakdowns and human factors destabilize the production processes that robots are preferred to perform. The problem is how to determine the real difference in work efficiency between humans and robots. We present an analysis of the production efficiency and reliability of the press shop lines operated by human operators or industrial robots. This is a problem from the field of Operations Research for which the Discrete Event Simulation (DES method has been used. Three models have been developed, including the manufacturing line before and after robotization, taking into account stochastic parameters of availability and reliability of the machines, operators, and robots. We apply the OEE (Overall Equipment Effectiveness indicator to present how the availability, reliability, and quality parameters influence the performance of the workstations, especially in the short run and in the long run. In addition, the stability of the simulation model was analyzed. This approach enables a better representation of real manufacturing processes.

  9. Discrete-State-Based Vision Navigation Control Algorithm for One Bipedal Robot

    Directory of Open Access Journals (Sweden)

    Dunwen Wei

    2015-01-01

    Full Text Available Navigation with the specific objective can be defined by specifying desired timed trajectory. The concept of desired direction field is proposed to deal with such navigation problem. To lay down a principled discussion of the accuracy and efficiency of navigation algorithms, strictly quantitative definitions of tracking error, actuator effect, and time efficiency are established. In this paper, one vision navigation control method based on desired direction field is proposed. This proposed method uses discrete image sequences to form discrete state space, which is especially suitable for bipedal walking robots with single camera walking on a free-barrier plane surface to track the specific objective without overshoot. The shortest path method (SPM is proposed to design such direction field with the highest time efficiency. However, one improved control method called canonical piecewise-linear function (PLF is proposed. In order to restrain the noise disturbance from the camera sensor, the band width control method is presented to significantly decrease the error influence. The robustness and efficiency of the proposed algorithm are illustrated through a number of computer simulations considering the error from camera sensor. Simulation results show that the robustness and efficiency can be balanced by choosing the proper controlling value of band width.

  10. Discrete and continuous simulation theory and practice

    CERN Document Server

    Bandyopadhyay, Susmita

    2014-01-01

    When it comes to discovering glitches inherent in complex systems-be it a railway or banking, chemical production, medical, manufacturing, or inventory control system-developing a simulation of a system can identify problems with less time, effort, and disruption than it would take to employ the original. Advantageous to both academic and industrial practitioners, Discrete and Continuous Simulation: Theory and Practice offers a detailed view of simulation that is useful in several fields of study.This text concentrates on the simulation of complex systems, covering the basics in detail and exploring the diverse aspects, including continuous event simulation and optimization with simulation. It explores the connections between discrete and continuous simulation, and applies a specific focus to simulation in the supply chain and manufacturing field. It discusses the Monte Carlo simulation, which is the basic and traditional form of simulation. It addresses future trends and technologies for simulation, with par...

  11. Improving Energy Efficiency for the Vehicle Assembly Industry: A Discrete Event Simulation Approach

    Science.gov (United States)

    Oumer, Abduaziz; Mekbib Atnaw, Samson; Kie Cheng, Jack; Singh, Lakveer

    2016-11-01

    This paper presented a Discrete Event Simulation (DES) model for investigating and improving energy efficiency in vehicle assembly line. The car manufacturing industry is one of the highest energy consuming industries. Using Rockwell Arena DES package; a detailed model was constructed for an actual vehicle assembly plant. The sources of energy considered in this research are electricity and fuel; which are the two main types of energy sources used in a typical vehicle assembly plant. The model depicts the performance measurement for process- specific energy measures of painting, welding, and assembling processes. Sound energy efficiency model within this industry has two-fold advantage: reducing CO2 emission and cost reduction associated with fuel and electricity consumption. The paper starts with an overview of challenges in energy consumption within the facilities of automotive assembly line and highlights the parameters for energy efficiency. The results of the simulation model indicated improvements for energy saving objectives and reduced costs.

  12. The impact of inpatient boarding on ED efficiency: a discrete-event simulation study.

    Science.gov (United States)

    Bair, Aaron E; Song, Wheyming T; Chen, Yi-Chun; Morris, Beth A

    2010-10-01

    In this study, a discrete-event simulation approach was used to model Emergency Department's (ED) patient flow to investigate the effect of inpatient boarding on the ED efficiency in terms of the National Emergency Department Crowding Scale (NEDOCS) score and the rate of patients who leave without being seen (LWBS). The decision variable in this model was the boarder-released-ratio defined as the ratio of admitted patients whose boarding time is zero to all admitted patients. Our analysis shows that the Overcrowded(+) (a NEDOCS score over 100) ratio decreased from 88.4% to 50.4%, and the rate of LWBS patients decreased from 10.8% to 8.4% when the boarder-released-ratio changed from 0% to 100%. These results show that inpatient boarding significantly impacts both the NEDOCS score and the rate of LWBS patient and this analysis provides a quantification of the impact of boarding on emergency department patient crowding.

  13. Decentralized control of discrete-time linear time invariant systems with input saturation

    NARCIS (Netherlands)

    Deliu, C.; Deliu, Ciprian; Malek, Babak; Roy, Sandip; Saberi, Ali; Stoorvogel, Antonie Arij

    We study decentralized stabilization of discrete-time linear time invariant (LTI) systems subject to actuator saturation, using LTI controllers. The requirement of stabilization under both saturation constraints and decentralization impose obvious necessary conditions on the open-loop plant, namely

  14. Decentralized control of discrete-time linear time invariant systems with input saturation

    NARCIS (Netherlands)

    Deliu, Ciprian; Deliu, C.; Malek, Babak; Roy, Sandip; Saberi, Ali; Stoorvogel, Antonie Arij

    2009-01-01

    We study decentralized stabilization of discrete time linear time invariant (LTI) systems subject to actuator saturation, using LTI controllers. The requirement of stabilization under both saturation constraints and decentralization impose obvious necessary conditions on the open-loop plant, namely

  15. A Generic Discrete-Event Simulation Model for Outpatient Clinics in a Large Public Hospital

    Directory of Open Access Journals (Sweden)

    Waressara Weerawat

    2013-01-01

    Full Text Available The orthopedic outpatient department (OPD ward in a large Thai public hospital is modeled using Discrete-Event Stochastic (DES simulation. Key Performance Indicators (KPIs are used to measure effects across various clinical operations during different shifts throughout the day. By considering various KPIs such as wait times to see doctors, percentage of patients who can see a doctor within a target time frame, and the time that the last patient completes their doctor consultation, bottlenecks are identified and resource-critical clinics can be prioritized. The simulation model quantifies the chronic, high patient congestion that is prevalent amongst Thai public hospitals with very high patient-to-doctor ratios. Our model can be applied across five different OPD wards by modifying the model parameters. Throughout this work, we show how DES models can be used as decision-support tools for hospital management.

  16. A theory of Markovian time-inconsistent stochastic control in discrete time

    DEFF Research Database (Denmark)

    Bjork, Tomas; Murgoci, Agatha

    2014-01-01

    We develop a theory for a general class of discrete-time stochastic control problems that, in various ways, are time-inconsistent in the sense that they do not admit a Bellman optimality principle. We attack these problems by viewing them within a game theoretic framework, and we look for subgame...

  17. Spectrum Control through Discrete Frequency Diffraction in the Presence of Photonic Gauge Potentials

    Science.gov (United States)

    Qin, Chengzhi; Zhou, Feng; Peng, Yugui; Sounas, Dimitrios; Zhu, Xuefeng; Wang, Bing; Dong, Jianji; Zhang, Xinliang; Alù; , Andrea; Lu, Peixiang

    2018-03-01

    By using optical phase modulators in a fiber-optical circuit, we theoretically and experimentally demonstrate large control over the spectrum of an impinging signal, which may evolve analogously to discrete diffraction in spatial waveguide arrays. The modulation phase acts as a photonic gauge potential in the frequency dimension, realizing efficient control of the central frequency and bandwidth of frequency combs. We experimentally achieve a 50 GHz frequency shift and threefold bandwidth expansion of an impinging comb, as well as the frequency analogue of various refraction phenomena, including negative refraction and perfect focusing in the frequency domain, both for discrete and continuous incident spectra. Our study paves a promising way towards versatile frequency management for optical communications and signal processing using time modulation schemes.

  18. Boundary Control of Linear Evolution PDEs - Continuous and Discrete

    DEFF Research Database (Denmark)

    Rasmussen, Jan Marthedal

    2004-01-01

    Consider a partial di erential equation (PDE) of evolution type, such as the wave equation or the heat equation. Assume now that you can influence the behavior of the solution by setting the boundary conditions as you please. This is boundary control in a broad sense. A substantial amount...... of literature exists in the area of theoretical results concerning control of partial differential equations. The results have included existence and uniqueness of controls, minimum time requirements, regularity of domains, and many others. Another huge research field is that of control theory for ordinary di...... erential equations. This field has mostly concerned engineers and others with practical applications in mind. This thesis makes an attempt to bridge the two research areas. More specifically, we make finite dimensional approximations to certain evolution PDEs, and analyze how properties of the discrete...

  19. Discrete-time nonlinear damping backstepping control with observers for rejection of low and high frequency disturbances

    Science.gov (United States)

    Kim, Wonhee; Chen, Xu; Lee, Youngwoo; Chung, Chung Choo; Tomizuka, Masayoshi

    2018-05-01

    A discrete-time backstepping control algorithm is proposed for reference tracking of systems affected by both broadband disturbances at low frequencies and narrow band disturbances at high frequencies. A discrete time DOB, which is constructed based on infinite impulse response filters is applied to compensate for narrow band disturbances at high frequencies. A discrete-time nonlinear damping backstepping controller with an augmented observer is proposed to track the desired output and to compensate for low frequency broadband disturbances along with a disturbance observer, for rejecting narrow band high frequency disturbances. This combination has the merit of simultaneously compensating both broadband disturbances at low frequencies and narrow band disturbances at high frequencies. The performance of the proposed method is validated via experiments.

  20. Event Segmentation Improves Event Memory up to One Month Later

    Science.gov (United States)

    Flores, Shaney; Bailey, Heather R.; Eisenberg, Michelle L.; Zacks, Jeffrey M.

    2017-01-01

    When people observe everyday activity, they spontaneously parse it into discrete meaningful events. Individuals who segment activity in a more normative fashion show better subsequent memory for the events. If segmenting events effectively leads to better memory, does asking people to attend to segmentation improve subsequent memory? To answer…

  1. Context-Aware Mobile Sensors for Sensing Discrete Events in Smart Environment

    Directory of Open Access Journals (Sweden)

    Awais Ahmad

    2016-01-01

    Full Text Available Over the last few decades, several advancements in the field of smart environment gained importance, so the experts can analyze ideas for smart building based on embedded systems to minimize the expense and energy conservation. Therefore, propelling the concept of smart home toward smart building, several challenges of power, communication, and sensors’ connectivity can be seen. Such challenges distort the interconnectivity between different technologies, such as Bluetooth and ZigBee, making it possible to provide the continuous connectivity among different objects such as sensors, actuators, home appliances, and cell phones. Therefore, this paper presents the concept of smart building based on embedded systems that enhance low power mobile sensors for sensing discrete events in embedded systems. The proposed scheme comprises system architecture that welcomes all the mobile sensors to communicate with each other using a single platform service. The proposed system enhances the concept of smart building in three stages (i.e., visualization, data analysis, and application. For low power mobile sensors, we propose a communication model, which provides a common medium for communication. Finally, the results show that the proposed system architecture efficiently processes, analyzes, and integrates different datasets efficiently and triggers actions to provide safety measurements for the elderly, patients, and others.

  2. Design and application of discrete wavelet packet transform based multiresolution controller for liquid level system.

    Science.gov (United States)

    Paul, Rimi; Sengupta, Anindita

    2017-11-01

    A new controller based on discrete wavelet packet transform (DWPT) for liquid level system (LLS) has been presented here. This controller generates control signal using node coefficients of the error signal which interprets many implicit phenomena such as process dynamics, measurement noise and effect of external disturbances. Through simulation results on LLS problem, this controller is shown to perform faster than both the discrete wavelet transform based controller and conventional proportional integral controller. Also, it is more efficient in terms of its ability to provide better noise rejection. To overcome the wind up phenomenon by considering the saturation due to presence of actuator, anti-wind up technique is applied to the conventional PI controller and compared to the wavelet packet transform based controller. In this case also, packet controller is found better than the other ones. This similar work has been extended for analogous first order RC plant as well as second order plant also. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Model predictive control for Max-Plus-Linear and piecewise affine systems

    NARCIS (Netherlands)

    Necoara, I.

    2006-01-01

    This Ph.D. thesis considers the development of new analysis and control techniques for special classes of hybrid systems and discrete event systems. Two particular classes of hybrid systems (piecewise affine systems and max-min-plus-scaling systems), and two particular classes of discrete event

  4. The effects of indoor environmental exposures on pediatric asthma: a discrete event simulation model

    Directory of Open Access Journals (Sweden)

    Fabian M Patricia

    2012-09-01

    Full Text Available Abstract Background In the United States, asthma is the most common chronic disease of childhood across all socioeconomic classes and is the most frequent cause of hospitalization among children. Asthma exacerbations have been associated with exposure to residential indoor environmental stressors such as allergens and air pollutants as well as numerous additional factors. Simulation modeling is a valuable tool that can be used to evaluate interventions for complex multifactorial diseases such as asthma but in spite of its flexibility and applicability, modeling applications in either environmental exposures or asthma have been limited to date. Methods We designed a discrete event simulation model to study the effect of environmental factors on asthma exacerbations in school-age children living in low-income multi-family housing. Model outcomes include asthma symptoms, medication use, hospitalizations, and emergency room visits. Environmental factors were linked to percent predicted forced expiratory volume in 1 second (FEV1%, which in turn was linked to risk equations for each outcome. Exposures affecting FEV1% included indoor and outdoor sources of NO2 and PM2.5, cockroach allergen, and dampness as a proxy for mold. Results Model design parameters and equations are described in detail. We evaluated the model by simulating 50,000 children over 10 years and showed that pollutant concentrations and health outcome rates are comparable to values reported in the literature. In an application example, we simulated what would happen if the kitchen and bathroom exhaust fans were improved for the entire cohort, and showed reductions in pollutant concentrations and healthcare utilization rates. Conclusions We describe the design and evaluation of a discrete event simulation model of pediatric asthma for children living in low-income multi-family housing. Our model simulates the effect of environmental factors (combustion pollutants and allergens

  5. Discrete Event Simulation-Based Resource Modelling in Health Technology Assessment.

    Science.gov (United States)

    Salleh, Syed; Thokala, Praveen; Brennan, Alan; Hughes, Ruby; Dixon, Simon

    2017-10-01

    The objective of this article was to conduct a systematic review of published research on the use of discrete event simulation (DES) for resource modelling (RM) in health technology assessment (HTA). RM is broadly defined as incorporating and measuring effects of constraints on physical resources (e.g. beds, doctors, nurses) in HTA models. Systematic literature searches were conducted in academic databases (JSTOR, SAGE, SPRINGER, SCOPUS, IEEE, Science Direct, PubMed, EMBASE) and grey literature (Google Scholar, NHS journal library), enhanced by manual searchers (i.e. reference list checking, citation searching and hand-searching techniques). The search strategy yielded 4117 potentially relevant citations. Following the screening and manual searches, ten articles were included. Reviewing these articles provided insights into the applications of RM: firstly, different types of economic analyses, model settings, RM and cost-effectiveness analysis (CEA) outcomes were identified. Secondly, variation in the characteristics of the constraints such as types and nature of constraints and sources of data for the constraints were identified. Thirdly, it was found that including the effects of constraints caused the CEA results to change in these articles. The review found that DES proved to be an effective technique for RM but there were only a small number of studies applied in HTA. However, these studies showed the important consequences of modelling physical constraints and point to the need for a framework to be developed to guide future applications of this approach.

  6. Discrete Globalised Dual Heuristic Dynamic Programming in Control of the Two-Wheeled Mobile Robot

    Directory of Open Access Journals (Sweden)

    Marcin Szuster

    2014-01-01

    Full Text Available Network-based control systems have been emerging technologies in the control of nonlinear systems over the past few years. This paper focuses on the implementation of the approximate dynamic programming algorithm in the network-based tracking control system of the two-wheeled mobile robot, Pioneer 2-DX. The proposed discrete tracking control system consists of the globalised dual heuristic dynamic programming algorithm, the PD controller, the supervisory term, and an additional control signal. The structure of the supervisory term derives from the stability analysis realised using the Lyapunov stability theorem. The globalised dual heuristic dynamic programming algorithm consists of two structures: the actor and the critic, realised in a form of neural networks. The actor generates the suboptimal control law, while the critic evaluates the realised control strategy by approximation of value function from the Bellman’s equation. The presented discrete tracking control system works online, the neural networks’ weights adaptation process is realised in every iteration step, and the neural networks preliminary learning procedure is not required. The performance of the proposed control system was verified by a series of computer simulations and experiments realised using the wheeled mobile robot Pioneer 2-DX.

  7. Influence of control algorithms parameters on an electromechanical converter with a secondary discrete part

    Directory of Open Access Journals (Sweden)

    Kuimov Denis

    2017-01-01

    Full Text Available An alternative configuration of a device with a secondary discrete part using a magnetic system of a similar multi-phase inductor machine and concentrated windings without an internal rotor is proposed. An algorithm of sensorless control of a motion process of a secondary discrete part is proposed. The analysis of the distribution nature of the magnetic field for various switching algorithms is carried out to reduce negative influence of the “dead” zones of the first and second order. The features of the movement process of the secondary discrete part in the working chamber of the device are considered. The results of in the electromagnetic force change affecting a ferromagnetic working element are presented, and recommendations for the application of switching algorithms are given.

  8. Discrete Event Simulation for Decision Modeling in Health Care: Lessons from Abdominal Aortic Aneurysm Screening

    Science.gov (United States)

    Jones, Edmund; Masconi, Katya L.; Sweeting, Michael J.; Thompson, Simon G.; Powell, Janet T.

    2018-01-01

    Markov models are often used to evaluate the cost-effectiveness of new healthcare interventions but they are sometimes not flexible enough to allow accurate modeling or investigation of alternative scenarios and policies. A Markov model previously demonstrated that a one-off invitation to screening for abdominal aortic aneurysm (AAA) for men aged 65 y in the UK and subsequent follow-up of identified AAAs was likely to be highly cost-effective at thresholds commonly adopted in the UK (£20,000 to £30,000 per quality adjusted life-year). However, new evidence has emerged and the decision problem has evolved to include exploration of the circumstances under which AAA screening may be cost-effective, which the Markov model is not easily able to address. A new model to handle this more complex decision problem was needed, and the case of AAA screening thus provides an illustration of the relative merits of Markov models and discrete event simulation (DES) models. An individual-level DES model was built using the R programming language to reflect possible events and pathways of individuals invited to screening v. those not invited. The model was validated against key events and cost-effectiveness, as observed in a large, randomized trial. Different screening protocol scenarios were investigated to demonstrate the flexibility of the DES. The case of AAA screening highlights the benefits of DES, particularly in the context of screening studies.

  9. Controlling extreme events on complex networks

    Science.gov (United States)

    Chen, Yu-Zhong; Huang, Zi-Gang; Lai, Ying-Cheng

    2014-08-01

    Extreme events, a type of collective behavior in complex networked dynamical systems, often can have catastrophic consequences. To develop effective strategies to control extreme events is of fundamental importance and practical interest. Utilizing transportation dynamics on complex networks as a prototypical setting, we find that making the network ``mobile'' can effectively suppress extreme events. A striking, resonance-like phenomenon is uncovered, where an optimal degree of mobility exists for which the probability of extreme events is minimized. We derive an analytic theory to understand the mechanism of control at a detailed and quantitative level, and validate the theory numerically. Implications of our finding to current areas such as cybersecurity are discussed.

  10. Application of discrete function and software control flow to dependability assessment of embedded digital system

    International Nuclear Information System (INIS)

    Choi, Jong Gyun; Seong, Poong Hyun

    2001-01-01

    This article describes a combinatorial model for estimating the reliability of the embedded digital system by means of discrete function theory and software control flow. This model includes a coverage model for fault processing mechanisms implemented in digital system. Furthermore, the model considers the interaction between hardware and software. The fault processing mechanisms make it difficult for many types of components in digital system to be treated as binary state, good or bad. The discrete function theory provides a complete analysis of multi-state system as which the digital system can be regarded Through adaptation software control flow to discrete function theory, the HW/SW interaction is considered for estimation of the reliability of digital system. Using this model, we predict the reliability of one board controller in a digital system, Interposing Logic System(ILS), which is installed in YGN nuclear power units 3 and 4. Since the proposed model is general combinatinal model, the simplification of this model becomes a conservative model that treats the system as binary state. Moreover, if information for coverage factor of fault tolerance mechanisms implemented in system through fault injection experiment is obtained, this model can consider detailed interaction of system components

  11. Discrete Globalised Dual Heuristic Dynamic Programming in Control of the Two-Wheeled Mobile Robot

    OpenAIRE

    Marcin Szuster; Zenon Hendzel

    2014-01-01

    Network-based control systems have been emerging technologies in the control of nonlinear systems over the past few years. This paper focuses on the implementation of the approximate dynamic programming algorithm in the network-based tracking control system of the two-wheeled mobile robot, Pioneer 2-DX. The proposed discrete tracking control system consists of the globalised dual heuristic dynamic programming algorithm, the PD controller, the supervisory term, and an additional control signal...

  12. Discrete-Time Sliding-Mode Control of Uncertain Systems with Time-Varying Delays via Descriptor Approach

    Directory of Open Access Journals (Sweden)

    Maode Yan

    2008-01-01

    Full Text Available This paper considers the problem of robust discrete-time sliding-mode control (DT-SMC design for a class of uncertain linear systems with time-varying delays. By applying a descriptor model transformation and Moon's inequality for bounding cross terms, a delay-dependent sufficient condition for the existence of stable sliding surface is given in terms of linear matrix inequalities (LMIs. Based on this existence condition, the synthesized sliding mode controller can guarantee the sliding-mode reaching condition of the specified discrete-time sliding surface for all admissible uncertainties and time-varying delays. An illustrative example verifies the effectiveness of the proposed method.

  13. A dynamic discretization method for reliability inference in Dynamic Bayesian Networks

    International Nuclear Information System (INIS)

    Zhu, Jiandao; Collette, Matthew

    2015-01-01

    The material and modeling parameters that drive structural reliability analysis for marine structures are subject to a significant uncertainty. This is especially true when time-dependent degradation mechanisms such as structural fatigue cracking are considered. Through inspection and monitoring, information such as crack location and size can be obtained to improve these parameters and the corresponding reliability estimates. Dynamic Bayesian Networks (DBNs) are a powerful and flexible tool to model dynamic system behavior and update reliability and uncertainty analysis with life cycle data for problems such as fatigue cracking. However, a central challenge in using DBNs is the need to discretize certain types of continuous random variables to perform network inference while still accurately tracking low-probability failure events. Most existing discretization methods focus on getting the overall shape of the distribution correct, with less emphasis on the tail region. Therefore, a novel scheme is presented specifically to estimate the likelihood of low-probability failure events. The scheme is an iterative algorithm which dynamically partitions the discretization intervals at each iteration. Through applications to two stochastic crack-growth example problems, the algorithm is shown to be robust and accurate. Comparisons are presented between the proposed approach and existing methods for the discretization problem. - Highlights: • A dynamic discretization method is developed for low-probability events in DBNs. • The method is compared to existing approaches on two crack growth problems. • The method is shown to improve on existing methods for low-probability events

  14. Design of a Discrete Tracking Controller for a Magnetic Levitation System: A Nonlinear Rational Model Approach

    Directory of Open Access Journals (Sweden)

    Fernando Gómez-Salas

    2015-01-01

    Full Text Available This work proposes a discrete-time nonlinear rational approximate model for the unstable magnetic levitation system. Based on this model and as an application of the input-output linearization technique, a discrete-time tracking control design will be derived using the corresponding classical state space representation of the model. A simulation example illustrates the efficiency of the proposed methodology.

  15. Adaptive Neural Tracking Control for Discrete-Time Switched Nonlinear Systems with Dead Zone Inputs

    Directory of Open Access Journals (Sweden)

    Jidong Wang

    2017-01-01

    Full Text Available In this paper, the adaptive neural controllers of subsystems are proposed for a class of discrete-time switched nonlinear systems with dead zone inputs under arbitrary switching signals. Due to the complicated framework of the discrete-time switched nonlinear systems and the existence of the dead zone, it brings about difficulties for controlling such a class of systems. In addition, the radial basis function neural networks are employed to approximate the unknown terms of each subsystem. Switched update laws are designed while the parameter estimation is invariable until its corresponding subsystem is active. Then, the closed-loop system is stable and all the signals are bounded. Finally, to illustrate the effectiveness of the proposed method, an example is employed.

  16. A time-varying extremum-seeking control approach for discrete-time systems with application to model predictive control

    NARCIS (Netherlands)

    Guay, M.; Beerens, R.; Nijmeijer, H.

    2014-01-01

    This paper considers the solution of a real-time optimization problem using adaptive extremum seeking control for a class of unknown discrete-time nonlinear systems. It is assumed that the equations describing the dynamics of the nonlinear system and the cost function to be minimized are unknown and

  17. Model Predictive Control of a Wave Energy Converter with Discrete Fluid Power Power Take-Off System

    Directory of Open Access Journals (Sweden)

    Anders Hedegaard Hansen

    2018-03-01

    Full Text Available Wave power extraction algorithms for wave energy converters are normally designed without taking system losses into account leading to suboptimal power extraction. In the current work, a model predictive power extraction algorithm is designed for a discretized power take of system. It is shown how the quantized nature of a discrete fluid power system may be included in a new model predictive control algorithm leading to a significant increase in the harvested power. A detailed investigation of the influence of the prediction horizon and the time step is reported. Furthermore, it is shown how the inclusion of a loss model may increase the energy output. Based on the presented results it is concluded that power extraction algorithms based on model predictive control principles are both feasible and favorable for use in a discrete fluid power power take-off system for point absorber wave energy converters.

  18. Event Structure and Cognitive Control

    OpenAIRE

    Reimer, Jason F.; Radvansky, Gabriel A.; Lorsbach, Thomas C.; Armendarez, Joseph J.

    2015-01-01

    Recently, a great deal of research has demonstrated that although everyday experience is continuous in nature, it is parsed into separate events. The aim of the present study was to examine whether event structure can influence the effectiveness of cognitive control. Across five experiments we varied the structure of events within the AX-CPT by shifting the spatial location of cues and probes on a computer screen. When location shifts were present, a pattern of AX-CPT performance consistent w...

  19. Discrete port-Hamiltonian systems : mixed interconnections

    NARCIS (Netherlands)

    Talasila, Viswanath; Clemente-Gallardo, J.; Schaft, A.J. van der

    2005-01-01

    Either from a control theoretic viewpoint or from an analysis viewpoint it is necessary to convert smooth systems to discrete systems, which can then be implemented on computers for numerical simulations. Discrete models can be obtained either by discretizing a smooth model, or by directly modeling

  20. Frequency-shaped and observer-based discrete-time sliding mode control

    CERN Document Server

    Mehta, Axaykumar

    2015-01-01

    It is well established that the sliding mode control strategy provides an effective and robust method of controlling the deterministic system due to its well-known invariance property to a class of bounded disturbance and parameter variations. Advances in microcomputer technologies have made digital control increasingly popular among the researchers worldwide. And that led to the study of discrete-time sliding mode control design and its implementation. This brief presents, a method for multi-rate frequency shaped sliding mode controller design based on switching and non-switching type of reaching law. In this approach, the frequency dependent compensator dynamics are introduced through a frequency-shaped sliding surface by assigning frequency dependent weighing matrices in a linear quadratic regulator (LQR) design procedure. In this way, the undesired high frequency dynamics or certain frequency disturbance can be eliminated. The states are implicitly obtained by measuring the output at a faster rate than th...

  1. Applied discrete-time queues

    CERN Document Server

    Alfa, Attahiru S

    2016-01-01

    This book introduces the theoretical fundamentals for modeling queues in discrete-time, and the basic procedures for developing queuing models in discrete-time. There is a focus on applications in modern telecommunication systems. It presents how most queueing models in discrete-time can be set up as discrete-time Markov chains. Techniques such as matrix-analytic methods (MAM) that can used to analyze the resulting Markov chains are included. This book covers single node systems, tandem system and queueing networks. It shows how queues with time-varying parameters can be analyzed, and illustrates numerical issues associated with computations for the discrete-time queueing systems. Optimal control of queues is also covered. Applied Discrete-Time Queues targets researchers, advanced-level students and analysts in the field of telecommunication networks. It is suitable as a reference book and can also be used as a secondary text book in computer engineering and computer science. Examples and exercises are includ...

  2. Second-Order Multiagent Systems with Event-Driven Consensus Control

    Directory of Open Access Journals (Sweden)

    Jiangping Hu

    2013-01-01

    Full Text Available Event-driven control scheduling strategies for multiagent systems play a key role in future use of embedded microprocessors of limited resources that gather information and actuate the agent control updates. In this paper, a distributed event-driven consensus problem is considered for a multi-agent system with second-order dynamics. Firstly, two kinds of event-driven control laws are, respectively, designed for both leaderless and leader-follower systems. Then, the input-to-state stability of the closed-loop multi-agent system with the proposed event-driven consensus control is analyzed and the bound of the inter-event times is ensured. Finally, some numerical examples are presented to validate the proposed event-driven consensus control.

  3. Robust Moving Horizon H∞ Control of Discrete Time-Delayed Systems with Interval Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    F. Yıldız Tascikaraoglu

    2014-01-01

    Full Text Available In this study, design of a delay-dependent type moving horizon state-feedback control (MHHC is considered for a class of linear discrete-time system subject to time-varying state delays, norm-bounded uncertainties, and disturbances with bounded energies. The closed-loop robust stability and robust performance problems are considered to overcome the instability and poor disturbance rejection performance due to the existence of parametric uncertainties and time-delay appeared in the system dynamics. Utilizing a discrete-time Lyapunov-Krasovskii functional, some delay-dependent linear matrix inequality (LMI based conditions are provided. It is shown that if one can find a feasible solution set for these LMI conditions iteratively at each step of run-time, then we can construct a control law which guarantees the closed-loop asymptotic stability, maximum disturbance rejection performance, and closed-loop dissipativity in view of the actuator limitations. Two numerical examples with simulations on a nominal and uncertain discrete-time, time-delayed systems, are presented at the end, in order to demonstrate the efficiency of the proposed method.

  4. A SAS-based solution to evaluate study design efficiency of phase I pediatric oncology trials via discrete event simulation.

    Science.gov (United States)

    Barrett, Jeffrey S; Jayaraman, Bhuvana; Patel, Dimple; Skolnik, Jeffrey M

    2008-06-01

    Previous exploration of oncology study design efficiency has focused on Markov processes alone (probability-based events) without consideration for time dependencies. Barriers to study completion include time delays associated with patient accrual, inevaluability (IE), time to dose limiting toxicities (DLT) and administrative and review time. Discrete event simulation (DES) can incorporate probability-based assignment of DLT and IE frequency, correlated with cohort in the case of DLT, with time-based events defined by stochastic relationships. A SAS-based solution to examine study efficiency metrics and evaluate design modifications that would improve study efficiency is presented. Virtual patients are simulated with attributes defined from prior distributions of relevant patient characteristics. Study population datasets are read into SAS macros which select patients and enroll them into a study based on the specific design criteria if the study is open to enrollment. Waiting times, arrival times and time to study events are also sampled from prior distributions; post-processing of study simulations is provided within the decision macros and compared across designs in a separate post-processing algorithm. This solution is examined via comparison of the standard 3+3 decision rule relative to the "rolling 6" design, a newly proposed enrollment strategy for the phase I pediatric oncology setting.

  5. Combining Latin Hypercube Designs and Discrete Event Simulation in a Study of a Surgical Unit

    DEFF Research Database (Denmark)

    Dehlendorff, Christian; Andersen, Klaus Kaae; Kulahci, Murat

    Summary form given only:In this article experiments on a discrete event simulation model for an orthopedic surgery are considered. The model is developed as part of a larger project in co-operation with Copenhagen University Hospital in Gentofte. Experiments on the model are performed by using...... Latin hypercube designs. The parameter set consists of system settings such as use of preparation room for sedation and the number of operating rooms, as well as management decisions such as staffing, size of the recovery room and the number of simultaneously active operating rooms. Sensitivity analysis...... and optimization combined with meta-modeling are employed in search for optimal setups. The primary objective in this article is to minimize time spent by the patients in the system. The overall long-term objective for the orthopedic surgery unit is to minimize time lost during the pre- and post operation...

  6. Numerical Evaluation of the "Dual-Kernel Counter-flow" Matric Convolution Integral that Arises in Discrete/Continuous (D/C) Control Theory

    Science.gov (United States)

    Nixon, Douglas D.

    2009-01-01

    Discrete/Continuous (D/C) control theory is a new generalized theory of discrete-time control that expands the concept of conventional (exact) discrete-time control to create a framework for design and implementation of discretetime control systems that include a continuous-time command function generator so that actuator commands need not be constant between control decisions, but can be more generally defined and implemented as functions that vary with time across sample period. Because the plant/control system construct contains two linear subsystems arranged in tandem, a novel dual-kernel counter-flow convolution integral appears in the formulation. As part of the D/C system design and implementation process, numerical evaluation of that integral over the sample period is required. Three fundamentally different evaluation methods and associated algorithms are derived for the constant-coefficient case. Numerical results are matched against three available examples that have closed-form solutions.

  7. Design of an optimal preview controller for linear discrete-time descriptor systems with state delay

    Science.gov (United States)

    Cao, Mengjuan; Liao, Fucheng

    2015-04-01

    In this paper, the linear discrete-time descriptor system with state delay is studied, and a design method for an optimal preview controller is proposed. First, by using the discrete lifting technique, the original system is transformed into a general descriptor system without state delay in form. Then, taking advantage of the first-order forward difference operator, we construct a descriptor augmented error system, including the state vectors of the lifted system, error vectors, and desired target signals. Rigorous mathematical proofs are given for the regularity, stabilisability, causal controllability, and causal observability of the descriptor augmented error system. Based on these, the optimal preview controller with preview feedforward compensation for the original system is obtained by using the standard optimal regulator theory of the descriptor system. The effectiveness of the proposed method is shown by numerical simulation.

  8. A discrete event simulation model for evaluating time delays in a pipeline network

    Energy Technology Data Exchange (ETDEWEB)

    Spricigo, Deisi; Muggiati, Filipe V.; Lueders, Ricardo; Neves Junior, Flavio [Federal University of Technology of Parana (UTFPR), Curitiba, PR (Brazil)

    2009-07-01

    Currently in the oil industry the logistic chain stands out as a strong candidate to obtain highest profit, since recent studies have pointed out to a cost reduction by adoption of better policies for distribution of oil derivatives, particularly those where pipelines are used to transport products. Although there are models to represent transfers of oil derivatives in pipelines, they are quite complex and computationally burden. In this paper, we are interested on models that are less detailed in terms of fluid dynamics but provide more information about operational decisions in a pipeline network. We propose a discrete event simulation model in ARENA that allows simulating a pipeline network based on average historical data. Time delays for transferring different products can be evaluated through different routes. It is considered that transport operations follow a historical behavior and average time delays can thus be estimated within certain bounds. Due to its stochastic nature, time quantities are characterized by average and dispersion measures. This allows comparing different operational scenarios for product transportation. Simulation results are compared to data obtained from a real world pipeline network and different scenarios of production and demand are analyzed. (author)

  9. Reinforcement-learning-based output-feedback control of nonstrict nonlinear discrete-time systems with application to engine emission control.

    Science.gov (United States)

    Shih, Peter; Kaul, Brian C; Jagannathan, Sarangapani; Drallmeier, James A

    2009-10-01

    A novel reinforcement-learning-based output adaptive neural network (NN) controller, which is also referred to as the adaptive-critic NN controller, is developed to deliver the desired tracking performance for a class of nonlinear discrete-time systems expressed in nonstrict feedback form in the presence of bounded and unknown disturbances. The adaptive-critic NN controller consists of an observer, a critic, and two action NNs. The observer estimates the states and output, and the two action NNs provide virtual and actual control inputs to the nonlinear discrete-time system. The critic approximates a certain strategic utility function, and the action NNs minimize the strategic utility function and control inputs. All NN weights adapt online toward minimization of a performance index, utilizing the gradient-descent-based rule, in contrast with iteration-based adaptive-critic schemes. Lyapunov functions are used to show the stability of the closed-loop tracking error, weights, and observer estimates. Separation and certainty equivalence principles, persistency of excitation condition, and linearity in the unknown parameter assumption are not needed. Experimental results on a spark ignition (SI) engine operating lean at an equivalence ratio of 0.75 show a significant (25%) reduction in cyclic dispersion in heat release with control, while the average fuel input changes by less than 1% compared with the uncontrolled case. Consequently, oxides of nitrogen (NO(x)) drop by 30%, and unburned hydrocarbons drop by 16% with control. Overall, NO(x)'s are reduced by over 80% compared with stoichiometric levels.

  10. Multiple Estimation Architecture in Discrete-Time Adaptive Mixing Control

    Directory of Open Access Journals (Sweden)

    Simone Baldi

    2013-05-01

    Full Text Available Adaptive mixing control (AMC is a recently developed control scheme for uncertain plants, where the control action coming from a bank of precomputed controller is mixed based on the parameter estimates generated by an on-line parameter estimator. Even if the stability of the control scheme, also in the presence of modeling errors and disturbances, has been shown analytically, its transient performance might be sensitive to the initial conditions of the parameter estimator. In particular, for some initial conditions, transient oscillations may not be acceptable in practical applications. In order to account for such a possible phenomenon and to improve the learning capability of the adaptive scheme, in this paper a new mixing architecture is developed, involving the use of parallel parameter estimators, or multi-estimators, each one working on a small subset of the uncertainty set. A supervisory logic, using performance signals based on the past and present estimation error, selects the parameter estimate to determine the mixing of the controllers. The stability and robustness properties of the resulting approach, referred to as multi-estimator adaptive mixing control (Multi-AMC, are analytically established. Besides, extensive simulations demonstrate that the scheme improves the transient performance of the original AMC with a single estimator. The control scheme and the analysis are carried out in a discrete-time framework, for easier implementation of the method in digital control.

  11. Chaos Enhanced Differential Evolution in the Task of Evolutionary Control of Discrete Chaotic LOZI Map

    Directory of Open Access Journals (Sweden)

    Roman Senkerik

    2016-01-01

    Full Text Available In this paper, evolutionary technique Differential Evolution (DE is used for the evolutionary tuning of controller parameters for the stabilization of selected discrete chaotic system, which is the two-dimensional Lozi map. The novelty of the approach is that the selected controlled discrete dissipative chaotic system is used within Chaos enhanced heuristic concept as the chaotic pseudo-random number generator to drive the mutation and crossover process in the DE. The idea was to utilize the hidden chaotic dynamics in pseudo-random sequences given by chaotic map to help Differential evolution algorithm in searching for the best controller settings for the same chaotic system. The optimizations were performed for three different required final behavior of the chaotic system, and two types of developed cost function. To confirm the robustness of presented approach, comparisons with canonical DE strategy and PSO algorithm have been performed.

  12. A PC-based discrete event simulation model of the civilian radioactive waste management system

    International Nuclear Information System (INIS)

    Airth, G.L.; Joy, D.S.; Nehls, J.W.

    1992-01-01

    This paper discusses a System Simulation Model which has been developed for the Department of Energy to simulate the movement of individual waste packages (spent fuel assemblies and fuel containers) through the Civilian Radioactive Waste Management System (CRWMS). A discrete event simulation language, GPSS/PC, which runs on an IBM/PC and operates under DOS 5.0, mathematically represents the movement and processing of radioactive waste packages through the CRWMS and the interaction of these packages with the equipment in the various facilities. The major features of the System Simulation Model are: the ability to reference characteristics of the different types of radioactive waste (age, burnup, etc.) in order to make operational and/or system design decisions, the ability to place stochastic variations on operational parameters such as processing time and equipment outages, and the ability to include a rigorous simulation of the transportation system. Output from the model includes the numbers, types, and characteristics of waste packages at selected points in the CRWMS and the extent to which various resources will be utilized in order to transport, process, and emplace the waste

  13. Discrete gradients in discrete classical mechanics

    International Nuclear Information System (INIS)

    Renna, L.

    1987-01-01

    A simple model of discrete classical mechanics is given where, starting from the continuous Hamilton equations, discrete equations of motion are established together with a proper discrete gradient definition. The conservation laws of the total discrete momentum, angular momentum, and energy are demonstrated

  14. Modification of the SAS4A Safety Analysis Code for Integration with the ADAPT Discrete Dynamic Event Tree Framework.

    Energy Technology Data Exchange (ETDEWEB)

    Jankovsky, Zachary Kyle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Denman, Matthew R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    It is difficult to assess the consequences of a transient in a sodium-cooled fast reactor (SFR) using traditional probabilistic risk assessment (PRA) methods, as numerous safety-related sys- tems have passive characteristics. Often there is significant dependence on the value of con- tinuous stochastic parameters rather than binary success/failure determinations. One form of dynamic PRA uses a system simulator to represent the progression of a transient, tracking events through time in a discrete dynamic event tree (DDET). In order to function in a DDET environment, a simulator must have characteristics that make it amenable to changing physical parameters midway through the analysis. The SAS4A SFR system analysis code did not have these characteristics as received. This report describes the code modifications made to allow dynamic operation as well as the linking to a Sandia DDET driver code. A test case is briefly described to demonstrate the utility of the changes.

  15. First Dutch Process Control Security Event

    NARCIS (Netherlands)

    Luiijf, H.A.M.

    2008-01-01

    On May 21st , 2008, the Dutch National Infrastructure against Cyber Crime (NICC) organised their first Process Control Security Event. Mrs. Annemarie Zielstra, the NICC programme manager, opened the event. She welcomed the over 100 representatives of key industry sectors. “Earlier studies in the

  16. A reconfigurable hybrid supervisory system for process control

    International Nuclear Information System (INIS)

    Garcia, H.E.; Ray, A.; Edwards, R.M.

    1994-01-01

    This paper presents a reconfigurable approach to decision and control systems for complex dynamic processes. The proposed supervisory control system is a reconfigurable hybrid architecture structured into three functional levels of hierarchy, namely, execution, supervision, and coordination. While the bottom execution level is constituted by either reconfigurable continuously varying or discrete event systems, the top two levels are necessarily governed by reconfigurable sets of discrete event decision and control systems. Based on the process status, the set of active control and supervisory algorithm is chosen. The reconfigurable hybrid system is briefly described along with a discussion on its implementation at the Experimental Breeder Reactor II of Argonne National Laboratory. A process control application of this hybrid system is presented and evaluated in an in-plant experiment

  17. A reconfigurable hybrid supervisory system for process control

    International Nuclear Information System (INIS)

    Garcia, H.E.; Ray, A.; Edwards, R.M.

    1994-01-01

    This paper presents a reconfigurable approach to decision and control systems for complex dynamic processes. The proposed supervisory control system is a reconfigurable hybrid architecture structured into three functional levels of hierarchy, namely, execution, supervision, and coordination. While, the bottom execution level is constituted by either reconfigurable continuously varying or discrete event systems, the top two levels are necessarily governed by reconfigurable sets of discrete event decision and control systems. Based on the process status, the set of active control and supervisory algorithm is chosen. The reconfigurable hybrid system is briefly described along with a discussion on its implementation at the Experimental Breeder Reactor 2 of Argonne National Laboratory. A process control application of this hybrid system is presented and evaluated in an in-plant experiment

  18. Robust event-triggered MPC with guaranteed asymptotic bound and average sampling rate

    NARCIS (Netherlands)

    Brunner, F.D.; Heemels, W.P.M.H.; Allgower, F.

    2017-01-01

    We propose a robust event-triggered model predictive control (MPC) scheme for linear time-invariant discrete-time systems subject to bounded additive stochastic disturbances and hard constraints on the input and state. For given probability distributions of the disturbances acting on the system, we

  19. Bifurcation Analysis and Chaos Control in a Discrete Epidemic System

    Directory of Open Access Journals (Sweden)

    Wei Tan

    2015-01-01

    Full Text Available The dynamics of discrete SI epidemic model, which has been obtained by the forward Euler scheme, is investigated in detail. By using the center manifold theorem and bifurcation theorem in the interior R+2, the specific conditions for the existence of flip bifurcation and Neimark-Sacker bifurcation have been derived. Numerical simulation not only presents our theoretical analysis but also exhibits rich and complex dynamical behavior existing in the case of the windows of period-1, period-3, period-5, period-6, period-7, period-9, period-11, period-15, period-19, period-23, period-34, period-42, and period-53 orbits. Meanwhile, there appears the cascade of period-doubling 2, 4, 8 bifurcation and chaos sets from the fixed point. These results show the discrete model has more richer dynamics compared with the continuous model. The computations of the largest Lyapunov exponents more than 0 confirm the chaotic behaviors of the system x→x+δ[rN(1-N/K-βxy/N-(μ+mx], y→y+δ[βxy/N-(μ+dy]. Specifically, the chaotic orbits at an unstable fixed point are stabilized by using the feedback control method.

  20. Optimal control of LQR for discrete time-varying systems with input delays

    Science.gov (United States)

    Yin, Yue-Zhu; Yang, Zhong-Lian; Yin, Zhi-Xiang; Xu, Feng

    2018-04-01

    In this work, we consider the optimal control problem of linear quadratic regulation for discrete time-variant systems with single input and multiple input delays. An innovative and simple method to derive the optimal controller is given. The studied problem is first equivalently converted into a problem subject to a constraint condition. Last, with the established duality, the problem is transformed into a static mathematical optimisation problem without input delays. The optimal control input solution to minimise performance index function is derived by solving this optimisation problem with two methods. A numerical simulation example is carried out and its results show that our two approaches are both feasible and very effective.

  1. Robust self-triggered model predictive control for constrained discrete-time LTI systems based on homothetic tubes

    NARCIS (Netherlands)

    Aydiner, E.; Brunner, F.D.; Heemels, W.P.M.H.; Allgower, F.

    2015-01-01

    In this paper we present a robust self-triggered model predictive control (MPC) scheme for discrete-time linear time-invariant systems subject to input and state constraints and additive disturbances. In self-triggered model predictive control, at every sampling instant an optimization problem based

  2. Coalgebra, concurrency and control

    NARCIS (Netherlands)

    J.J.M.M. Rutten (Jan)

    1999-01-01

    textabstractCoalgebra is used to generalize notions and techniques from concurrency theory, in order to apply them to problems concerning the supervisory control of discrete event systems. The main ingredients of this approach are the characterization of controllability in terms of (a variant of)

  3. Period-doubling bifurcation and chaos control in a discrete-time mosquito model

    Directory of Open Access Journals (Sweden)

    Qamar Din

    2017-12-01

    Full Text Available This article deals with the study of some qualitative properties of a discrete-time mosquito Model. It is shown that there exists period-doubling bifurcation for wide range of bifurcation parameter for the unique positive steady-state of given system. In order to control the bifurcation we introduced a feedback strategy. For further confirmation of complexity and chaotic behavior largest Lyapunov exponents are plotted.

  4. Preserved re-experience of discrete emotions: Amnesia and executive function.

    Science.gov (United States)

    Stanciu, Marian Andrei; Rafal, Robert D; Turnbull, Oliver H

    2018-02-07

    Amnesic patients can re-experience emotions elicited by forgotten events, suggesting that brain systems for episodic and emotional memory are independent. However, the range of such emotional memories remains under-investigated (most studies employing just positive-negative emotion dyads), and executive function may also play a role in the re-experience of emotions. This is the first investigation of the intensity of the emotional re-experience of a range of discrete emotions (anger, fear, sadness, and happiness) for a group of amnesic patients. Twenty Korsakoff syndrome (KS) patients and 20 neurologically normal controls listened to four novel emotional vignettes selectively eliciting the four basic emotions. Emotional experience was measured using pen-and-paper Visual Analogue Mood Scales and episodic memory using verbal recollections. After 30 min, the recollection of stories was severely impaired for the patient group, but the emotional re-experience was no different from that of controls. Notably, there was no relationship between episodic recall and the intensity of the four emotions, such that even profoundly amnesic patients reported moderate levels of the target emotion. Exploratory analyses revealed negative correlations between the intensity of basic emotions and executive functions (e.g., cognitive flexibility and response inhibition) for controls but not patients. The results suggest that discrete emotions can be re-experienced independently of episodic memory, and that the re-experience of certain discrete emotions appears to be dampened by executive control. KS patients with absent or mild cognitive symptoms should benefit from emotion-regulation interventions aimed at reducing the recognized affective burden associated with their episodic memory deficit. © 2018 The British Psychological Society.

  5. Event segmentation improves event memory up to one month later.

    Science.gov (United States)

    Flores, Shaney; Bailey, Heather R; Eisenberg, Michelle L; Zacks, Jeffrey M

    2017-08-01

    When people observe everyday activity, they spontaneously parse it into discrete meaningful events. Individuals who segment activity in a more normative fashion show better subsequent memory for the events. If segmenting events effectively leads to better memory, does asking people to attend to segmentation improve subsequent memory? To answer this question, participants viewed movies of naturalistic activity with instructions to remember the activity for a later test, and in some conditions additionally pressed a button to segment the movies into meaningful events or performed a control condition that required button-pressing but not attending to segmentation. In 5 experiments, memory for the movies was assessed at intervals ranging from immediately following viewing to 1 month later. Performing the event segmentation task led to superior memory at delays ranging from 10 min to 1 month. Further, individual differences in segmentation ability predicted individual differences in memory performance for up to a month following encoding. This study provides the first evidence that manipulating event segmentation affects memory over long delays and that individual differences in event segmentation are related to differences in memory over long delays. These effects suggest that attending to how an activity breaks down into meaningful events contributes to memory formation. Instructing people to more effectively segment events may serve as a potential intervention to alleviate everyday memory complaints in aging and clinical populations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. Discrete mKdV and discrete sine-Gordon flows on discrete space curves

    International Nuclear Information System (INIS)

    Inoguchi, Jun-ichi; Kajiwara, Kenji; Matsuura, Nozomu; Ohta, Yasuhiro

    2014-01-01

    In this paper, we consider the discrete deformation of the discrete space curves with constant torsion described by the discrete mKdV or the discrete sine-Gordon equations, and show that it is formulated as the torsion-preserving equidistant deformation on the osculating plane which satisfies the isoperimetric condition. The curve is reconstructed from the deformation data by using the Sym–Tafel formula. The isoperimetric equidistant deformation of the space curves does not preserve the torsion in general. However, it is possible to construct the torsion-preserving deformation by tuning the deformation parameters. Further, it is also possible to make an arbitrary choice of the deformation described by the discrete mKdV equation or by the discrete sine-Gordon equation at each step. We finally show that the discrete deformation of discrete space curves yields the discrete K-surfaces. (paper)

  7. Fourth Dutch Process Security Control Event

    NARCIS (Netherlands)

    Luiijf, H.A.M.; Zielstra, A.

    2010-01-01

    On December 1st, 2009, the fourth Dutch Process Control Security Event took place in Baarn, The Netherlands. The security event with the title ‘Manage IT!’ was organised by the Dutch National Infrastructure against Cybercrime (NICC). Mid of November, a group of over thirty people participated in the

  8. Discrete Curvatures and Discrete Minimal Surfaces

    KAUST Repository

    Sun, Xiang

    2012-06-01

    This thesis presents an overview of some approaches to compute Gaussian and mean curvature on discrete surfaces and discusses discrete minimal surfaces. The variety of applications of differential geometry in visualization and shape design leads to great interest in studying discrete surfaces. With the rich smooth surface theory in hand, one would hope that this elegant theory can still be applied to the discrete counter part. Such a generalization, however, is not always successful. While discrete surfaces have the advantage of being finite dimensional, thus easier to treat, their geometric properties such as curvatures are not well defined in the classical sense. Furthermore, the powerful calculus tool can hardly be applied. The methods in this thesis, including angular defect formula, cotangent formula, parallel meshes, relative geometry etc. are approaches based on offset meshes or generalized offset meshes. As an important application, we discuss discrete minimal surfaces and discrete Koenigs meshes.

  9. A new epidemic modeling approach: Multi-regions discrete-time model with travel-blocking vicinity optimal control strategy.

    Science.gov (United States)

    Zakary, Omar; Rachik, Mostafa; Elmouki, Ilias

    2017-08-01

    First, we devise in this paper, a multi-regions discrete-time model which describes the spatial-temporal spread of an epidemic which starts from one region and enters to regions which are connected with their neighbors by any kind of anthropological movement. We suppose homogeneous Susceptible-Infected-Removed (SIR) populations, and we consider in our simulations, a grid of colored cells, which represents the whole domain affected by the epidemic while each cell can represent a sub-domain or region. Second, in order to minimize the number of infected individuals in one region, we propose an optimal control approach based on a travel-blocking vicinity strategy which aims to control only one cell by restricting movements of infected people coming from all neighboring cells. Thus, we show the influence of the optimal control approach on the controlled cell. We should also note that the cellular modeling approach we propose here, can also describes infection dynamics of regions which are not necessarily attached one to an other, even if no empty space can be viewed between cells. The theoretical method we follow for the characterization of the travel-locking optimal controls, is based on a discrete version of Pontryagin's maximum principle while the numerical approach applied to the multi-points boundary value problems we obtain here, is based on discrete progressive-regressive iterative schemes. We illustrate our modeling and control approaches by giving an example of 100 regions.

  10. Passive Fault-tolerant Control of Discrete-time Piecewise Affine Systems against Actuator Faults

    DEFF Research Database (Denmark)

    Tabatabaeipour, Seyed Mojtaba; Izadi-Zamanabadi, Roozbeh; Bak, Thomas

    2012-01-01

    In this paper, we propose a new method for passive fault-tolerant control of discrete time piecewise affine systems. Actuator faults are considered. A reliable piecewise linear quadratic regulator (LQR) state feedback is designed such that it can tolerate actuator faults. A sufficient condition f...... is illustrated on a numerical example and a two degree of freedom helicopter....

  11. Control of force during rapid visuomotor force-matching tasks can be described by discrete time PID control algorithms.

    Science.gov (United States)

    Dideriksen, Jakob Lund; Feeney, Daniel F; Almuklass, Awad M; Enoka, Roger M

    2017-08-01

    Force trajectories during isometric force-matching tasks involving isometric contractions vary substantially across individuals. In this study, we investigated if this variability can be explained by discrete time proportional, integral, derivative (PID) control algorithms with varying model parameters. To this end, we analyzed the pinch force trajectories of 24 subjects performing two rapid force-matching tasks with visual feedback. Both tasks involved isometric contractions to a target force of 10% maximal voluntary contraction. One task involved a single action (pinch) and the other required a double action (concurrent pinch and wrist extension). 50,000 force trajectories were simulated with a computational neuromuscular model whose input was determined by a PID controller with different PID gains and frequencies at which the controller adjusted muscle commands. The goal was to find the best match between each experimental force trajectory and all simulated trajectories. It was possible to identify one realization of the PID controller that matched the experimental force produced during each task for most subjects (average index of similarity: 0.87 ± 0.12; 1 = perfect similarity). The similarities for both tasks were significantly greater than that would be expected by chance (single action: p = 0.01; double action: p = 0.04). Furthermore, the identified control frequencies in the simulated PID controller with the greatest similarities decreased as task difficulty increased (single action: 4.0 ± 1.8 Hz; double action: 3.1 ± 1.3 Hz). Overall, the results indicate that discrete time PID controllers are realistic models for the neural control of force in rapid force-matching tasks involving isometric contractions.

  12. The use of discrete-event simulation modelling to improve radiation therapy planning processes.

    Science.gov (United States)

    Werker, Greg; Sauré, Antoine; French, John; Shechter, Steven

    2009-07-01

    The planning portion of the radiation therapy treatment process at the British Columbia Cancer Agency is efficient but nevertheless contains room for improvement. The purpose of this study is to show how a discrete-event simulation (DES) model can be used to represent this complex process and to suggest improvements that may reduce the planning time and ultimately reduce overall waiting times. A simulation model of the radiation therapy (RT) planning process was constructed using the Arena simulation software, representing the complexities of the system. Several types of inputs feed into the model; these inputs come from historical data, a staff survey, and interviews with planners. The simulation model was validated against historical data and then used to test various scenarios to identify and quantify potential improvements to the RT planning process. Simulation modelling is an attractive tool for describing complex systems, and can be used to identify improvements to the processes involved. It is possible to use this technique in the area of radiation therapy planning with the intent of reducing process times and subsequent delays for patient treatment. In this particular system, reducing the variability and length of oncologist-related delays contributes most to improving the planning time.

  13. Multiple discrete-energy ion features in the inner magnetosphere: 9 February 1998, event

    Directory of Open Access Journals (Sweden)

    Y. Ebihara

    2004-04-01

    Full Text Available Multiple discrete-energy ion bands observed by the Polar satellite in the inner magnetosphere on 9 February 1998 were investigated by means of particle simulation with a realistic model of the convection electric field. The multiple bands appeared in the energy vs. L spectrum in the 1–100 keV range when Polar traveled in the heart of the ring current along the outbound and inbound paths. We performed particle tracing, and simulated the energy vs. L spectra of proton fluxes under the dipole magnetic field, the corotation electric field, and the realistic convection electric field model with its parameters depending on the solar wind data. Simulated spectra are shown to agree well with the observed ones. A better agreement is achieved when we rotate the convection electric potential eastward by 2h inMLT and we change the distribution function in time in the near-Earth magnetotail. It is concluded that the multiple bands are likely produced by two processes for this particular event, that is, changes in the convection electric field (for >3keV protons and changes in the distribution function in the near-Earth magnetotail (for <3keV protons. Key words. Magnetospheric physics (energetic particles, trapped; electric field – Space plasma physics (numerical simulation studies

  14. Discrete Optimal Multirate Techniques for Excitation Controller Design of a Synchronous Machine

    Directory of Open Access Journals (Sweden)

    D. I. Pappas

    2016-02-01

    Full Text Available An optimal control strategy based on Two-Point-Multirate Controllers (TPMRCs, is used to design a desirable excitation controller of a hydrogenerator system, in order to enhance its dynamic stability characteristics. In the TPMRCs based scheme, the control is constrained to a certain piecewise constant signal, while each of the controlled plant outputs is detected many times over a fundamental sampling period T0. On the basis on this strategy, the original problem is reduced to an associate discrete-time linear quadratic (LQ regulation problem for the performance index with cross product terms, for which a fictitious static state feedback controller is needed to be computed. Simulation results for the actual 117 MVA synchronous generator with conventional exciter supplying line to an infinite grid show the effectiveness of the proposed method which has a quite satisfactory performance.

  15. Hopf Bifurcation Analysis for a Stochastic Discrete-Time Hyperchaotic System

    Directory of Open Access Journals (Sweden)

    Jie Ran

    2015-01-01

    Full Text Available The dynamics of a discrete-time hyperchaotic system and the amplitude control of Hopf bifurcation for a stochastic discrete-time hyperchaotic system are investigated in this paper. Numerical simulations are presented to exhibit the complex dynamical behaviors in the discrete-time hyperchaotic system. Furthermore, the stochastic discrete-time hyperchaotic system with random parameters is transformed into its equivalent deterministic system with the orthogonal polynomial theory of discrete random function. In addition, the dynamical features of the discrete-time hyperchaotic system with random disturbances are obtained through its equivalent deterministic system. By using the Hopf bifurcation conditions of the deterministic discrete-time system, the specific conditions for the existence of Hopf bifurcation in the equivalent deterministic system are derived. And the amplitude control with random intensity is discussed in detail. Finally, the feasibility of the control method is demonstrated by numerical simulations.

  16. Time-dependent switched discrete-time linear systems control and filtering

    CERN Document Server

    Zhang, Lixian; Shi, Peng; Lu, Qiugang

    2016-01-01

    This book focuses on the basic control and filtering synthesis problems for discrete-time switched linear systems under time-dependent switching signals. Chapter 1, as an introduction of the book, gives the backgrounds and motivations of switched systems, the definitions of the typical time-dependent switching signals, the differences and links to other types of systems with hybrid characteristics and a literature review mainly on the control and filtering for the underlying systems. By summarizing the multiple Lyapunov-like functions (MLFs) approach in which different requirements on comparisons of Lyapunov function values at switching instants, a series of methodologies are developed for the issues on stability and stabilization, and l2-gain performance or tube-based robustness for l∞ disturbance, respectively, in Chapters 2 and 3. Chapters 4 and 5 are devoted to the control and filtering problems for the time-dependent switched linear systems with either polytopic uncertainties or measurable time-varying...

  17. A novel discrete adaptive sliding-mode-like control method for ionic polymer–metal composite manipulators

    International Nuclear Information System (INIS)

    Sun, Zhiyong; Hao, Lina; Liu, Liqun; Chen, Wenlin; Li, Zhi

    2013-01-01

    Ionic polymer–metal composite (IPMC), also called artificial muscle, is an EAP material which can generate a relatively large deformation with a low driving voltage (generally less than 5 V). Like other EAP materials, IPMC possesses strong nonlinear properties, which can be described as a hybrid of back-relaxation (BR) and hysteresis characteristics, which also vary with water content, environmental temperature and even the usage consumption. Nowadays, many control approaches have been developed to tune the IPMC actuators, among which adaptive methods show a particular striking performance. To deal with IPMCs’ nonlinear problem, this paper represents a robust discrete adaptive inverse (AI) control approach, which employs an on-line identification technique based on the BR operator and Prandtl–Ishlinskii (PI) hysteresis operator hybrid model estimation method. Here the newly formed control approach is called discrete adaptive sliding-mode-like control (DASMLC) due to the similarity of its design method to that of a sliding mode controller. The weighted least mean squares (WLMS) identification method was employed to estimate the hybrid IPMC model because of its advantage of insensitivity to environmental noise. Experiments with the DASMLC approach and a conventional PID controller were carried out to compare and demonstrate the proposed controller’s better performance. (paper)

  18. How to apply the Score-Function method to standard discrete event simulation tools in order to optimise a set of system parameters simultaneously: A Job-Shop example will be discussed

    DEFF Research Database (Denmark)

    Nielsen, Erland Hejn

    2000-01-01

    During the last 1-2 decades, simulation optimisation of discrete event dynamic systems (DEDS) has made considerable theoretical progress with respect to computational efficiency. The score-function (SF) method and the infinitesimal perturbation analysis (IPA) are two candidates belonging to this ...

  19. Quantum cosmology based on discrete Feynman paths

    International Nuclear Information System (INIS)

    Chew, Geoffrey F.

    2002-01-01

    Although the rules for interpreting local quantum theory imply discretization of process, Lorentz covariance is usually regarded as precluding time quantization. Nevertheless a time-discretized quantum representation of redshifting spatially-homogeneous universe may be based on discrete-step Feynman paths carrying causal Lorentz-invariant action--paths that not only propagate the wave function but provide a phenomenologically-promising elementary-particle Hilbert-space basis. In a model under development, local path steps are at Planck scale while, at a much larger ''wave-function scale'', global steps separate successive wave-functions. Wave-function spacetime is but a tiny fraction of path spacetime. Electromagnetic and gravitational actions are ''at a distance'' in Wheeler-Feynman sense while strong (color) and weak (isospin) actions, as well as action of particle motion, are ''local'' in a sense paralleling the action of local field theory. ''Nonmaterial'' path segments and ''trivial events'' collaborate to define energy and gravity. Photons coupled to conserved electric charge enjoy privileged model status among elementary fermions and vector bosons. Although real path parameters provide no immediate meaning for ''measurement'', the phase of the complex wave function allows significance for ''information'' accumulated through ''gentle'' electromagnetic events involving charged matter and ''soft'' photons. Through its soft-photon content the wave function is an ''information reservoir''

  20. Model Predictive Control of a Wave Energy Converter with Discrete Fluid Power Power Take-Off System

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Asmussen, Magnus Færing; Bech, Michael Møller

    2018-01-01

    Wave power extraction algorithms for wave energy converters are normally designed without taking system losses into account leading to suboptimal power extraction. In the current work, a model predictive power extraction algorithm is designed for a discretized power take of system. It is shown how...... the quantized nature of a discrete fluid power system may be included in a new model predictive control algorithm leading to a significant increase in the harvested power. A detailed investigation of the influence of the prediction horizon and the time step is reported. Furthermore, it is shown how...

  1. Variable speed wind turbine control by discrete-time sliding mode approach.

    Science.gov (United States)

    Torchani, Borhen; Sellami, Anis; Garcia, Germain

    2016-05-01

    The aim of this paper is to propose a new design variable speed wind turbine control by discrete-time sliding mode approach. This methodology is designed for linear saturated system. The saturation constraint is reported on inputs vector. To this end, the back stepping design procedure is followed to construct a suitable sliding manifold that guarantees the attainment of a stabilization control objective. It is well known that the mechanisms are investigated in term of the most proposed assumptions to deal with the damping, shaft stiffness and inertia effect of the gear. The objectives are to synthesize robust controllers that maximize the energy extracted from wind, while reducing mechanical loads and rotor speed tracking combined with an electromagnetic torque. Simulation results of the proposed scheme are presented. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Fault-tolerant Control of Discrete-time LPV systems using Virtual Actuators and Sensors

    DEFF Research Database (Denmark)

    Tabatabaeipour, Mojtaba; Stoustrup, Jakob; Bak, Thomas

    2015-01-01

    This paper proposes a new fault-tolerant control (FTC) method for discrete-time linear parameter varying (LPV) systems using a reconfiguration block. The basic idea of the method is to achieve the FTC goal without re-designing the nominal controller by inserting a reconfiguration block between......, it transforms the output of the controller for the faulty system such that the stability and performance goals are preserved. Input-to-state stabilizing LPV gains of the virtual actuator and sensor are obtained by solving linear matrix inequalities (LMIs). We show that separate design of these gains guarantees....... Finally, the effectiveness of the method is demonstrated via a numerical example and stator current control of an induction motor....

  3. Discrete Second-Order Sliding Mode Adaptive Controller Based on Characteristic Model for Servo Systems

    Directory of Open Access Journals (Sweden)

    Zhihong Wang

    2015-01-01

    Full Text Available Considering the varying inertia and load torque in high speed and high accuracy servo systems, a novel discrete second-order sliding mode adaptive controller (DSSMAC based on characteristic model is proposed, and a command observer is also designed. Firstly, the discrete characteristic model of servo systems is established. Secondly, the recursive least square algorithm is adopted to identify time-varying parameters in characteristic model, and the observer is applied to predict the command value of next sample time. Furthermore, the stability of the closed-loop system and the convergence of the observer are analyzed. The experimental results show that the proposed method not only can adapt to varying inertia and load torque, but also has good disturbance rejection ability and robustness to uncertainties.

  4. Stabilization Using a Discrete Fuzzy PDC Control with PID Controllers and Pole Placement: Application to an Experimental Greenhouse

    Directory of Open Access Journals (Sweden)

    Amine Chouchaine

    2011-01-01

    Full Text Available This paper proposes a control strategy for complex and nonlinear systems, based on a parallel distributed compensation (PDC controller. A solution is presented to solve a stability problem that arises when dealing with a Takagi-Sugeno discrete system with great numbers of rules. The PDC controller will use a classical controller like a PI, PID, or RST in each rule with a pole placement strategy to avoid causing instability. The fuzzy controller presented combines the multicontrol approach and the performance of the classical controllers to obtain a robust nonlinear control action that can also deal with time-variant systems. The presented method was applied to a small greenhouse to control its inside temperature by variation in ventilation rate inside the process. The results obtained will show the efficiency of the adopted method to control the nonlinear and complex systems.

  5. Detection of ULF geomagnetic signals associated with seismic events in Central Mexico using Discrete Wavelet Transform

    Directory of Open Access Journals (Sweden)

    O. Chavez

    2010-12-01

    Full Text Available The geomagnetic observatory of Juriquilla Mexico, located at longitude –100.45° and latitude 20.70°, and 1946 m a.s.l., has been operational since June 2004 compiling geomagnetic field measurements with a three component fluxgate magnetometer. In this paper, the results of the analysis of these measurements in relation to important seismic activity in the period of 2007 to 2009 are presented. For this purpose, we used superposed epochs of Discrete Wavelet Transform of filtered signals for the three components of the geomagnetic field during relative seismic calm, and it was compared with seismic events of magnitudes greater than Ms > 5.5, which have occurred in Mexico. The analysed epochs consisted of 18 h of observations for a dataset corresponding to 18 different earthquakes (EQs. The time series were processed for a period of 9 h prior to and 9 h after each seismic event. This data processing was compared with the same number of observations during a seismic calm. The proposed methodology proved to be an efficient tool to detect signals associated with seismic activity, especially when the seismic events occur in a distance (D from the observatory to the EQ, such that the ratio D/ρ < 1.8 where ρ is the earthquake radius preparation zone. The methodology presented herein shows important anomalies in the Ultra Low Frequency Range (ULF; 0.005–1 Hz, primarily for 0.25 to 0.5 Hz. Furthermore, the time variance (σ2 increases prior to, during and after the seismic event in relation to the coefficient D1 obtained, principally in the Bx (N-S and By (E-W geomagnetic components. Therefore, this paper proposes and develops a new methodology to extract the abnormal signals of the geomagnetic anomalies related to different stages of the EQs.

  6. On Stochastic Finite-Time Control of Discrete-Time Fuzzy Systems with Packet Dropout

    Directory of Open Access Journals (Sweden)

    Yingqi Zhang

    2012-01-01

    Full Text Available This paper is concerned with the stochastic finite-time stability and stochastic finite-time boundedness problems for one family of fuzzy discrete-time systems over networks with packet dropout, parametric uncertainties, and time-varying norm-bounded disturbance. Firstly, we present the dynamic model description studied, in which the discrete-time fuzzy T-S systems with packet loss can be described by one class of fuzzy Markovian jump systems. Then, the concepts of stochastic finite-time stability and stochastic finite-time boundedness and problem formulation are given. Based on Lyapunov function approach, sufficient conditions on stochastic finite-time stability and stochastic finite-time boundedness are established for the resulting closed-loop fuzzy discrete-time system with Markovian jumps, and state-feedback controllers are designed to ensure stochastic finite-time stability and stochastic finite-time boundedness of the class of fuzzy systems. The stochastic finite-time stability and stochastic finite-time boundedness criteria can be tackled in the form of linear matrix inequalities with a fixed parameter. As an auxiliary result, we also give sufficient conditions on the stochastic stability of the class of fuzzy T-S systems with packet loss. Finally, two illustrative examples are presented to show the validity of the developed methodology.

  7. Alternative to dead reckoning for model state quantisation when migrating to a quantised discrete

    CSIR Research Space (South Africa)

    Duvenhage, A

    2008-06-01

    Full Text Available Some progress has recently been made on migrating an existing distributed parallel discrete time simulator to a quantised discrete event architecture. The migration is done to increase the scale of the real-time simulations supported...

  8. Active control of sound transmission through partitions composed of discretely controlled modules

    Science.gov (United States)

    Leishman, Timothy W.

    This thesis provides a detailed theoretical and experimental investigation of active segmented partitions (ASPs) for the control of sound transmission. ASPs are physically segmented arrays of interconnected acoustically and structurally small modules that are discretely controlled using electronic controllers. Theoretical analyses of the thesis first address physical principles fundamental to ASP modeling and experimental measurement techniques. Next, they explore specific module configurations, primarily using equivalent circuits. Measured normal-incidence transmission losses and related properties of experimental ASPs are determined using plane wave tubes and the two-microphone transfer function technique. A scanning laser vibrometer is also used to evaluate distributed transmitting surface vibrations. ASPs have the inherent potential to provide excellent active sound transmission control (ASTC) through lightweight structures, using very practical control strategies. The thesis analyzes several unique ASP configurations and evaluates their abilities to produce high transmission losses via global minimization of normal transmitting surface vibrations. A novel dual diaphragm configuration is shown to employ this strategy particularly well. It uses an important combination of acoustical actuation and mechano-acoustical segmentation to produce exceptionally high transmission loss (e.g., 50 to 80 dB) over a broad frequency range-including lower audible frequencies. Such performance is shown to be comparable to that produced by much more massive partitions composed of thick layers of steel or concrete and sand. The configuration uses only simple localized error sensors and actuators, permitting effective use of independent single-channel controllers in a decentralized format. This work counteracts the commonly accepted notion that active vibration control of partitions is an ineffective means of controlling sound transmission. With appropriate construction, actuation

  9. Occurrences in control room equipment, procedures and personnel performances: IRS control room events

    International Nuclear Information System (INIS)

    Tolstykh, V.

    1994-01-01

    The IAEA/NEA Incident Reporting System (IRS) was established in the early 1980, its objective being to gain from operating experience achieved in countries with nuclear power programmes by means of exchanging information on events relevant to safety. Among the 2171 events in the database, 175 events (i.e. 8%) were identified as ''control room events''. It was decided to group these into three sets for further study: 65 events with common mode/cause failures (CCFs), 22 events with cognitive errors and 30 events with unforeseen interaction between NPP systems. It is expected that the pitfalls experienced in the IRS and the questions derived from this study will help to gain a better understanding of the needs and interests of specialists in advanced information methods and artificial intelligence in NPP control rooms. (author)

  10. Supervisory Control Technique For An Assembly Workstation As A Dynamic Discrete Event System

    Directory of Open Access Journals (Sweden)

    Daniela Cristina CERNEGA

    2001-12-01

    Full Text Available This paper proposes a control problem statement in the framework of supervisory control technique for the assembly workstations. A desired behaviour of an assembly workstation is analysed. The behaviour of such a workstation is cyclic and some linguistic properties are established. In this paper, it is proposed an algorithm for the computation of the supremal controllable language of the closed system desired language. Copyright © 2001 IFAC.

  11. Rare event techniques applied in the Rasmussen study

    International Nuclear Information System (INIS)

    Vesely, W.E.

    1977-01-01

    The Rasmussen Study estimated public risks from commercial nuclear power plant accidents, and therefore the statistics of rare events had to be treated. Two types of rare events were specifically handled, those rare events which were probabilistically rare events and those which were statistically rare events. Four techniques were used to estimate probabilities of rare events. These techniques were aggregating data samples, discretizing ''continuous'' events, extrapolating from minor to catastrophic severities, and decomposing events using event trees and fault trees. In aggregating or combining data the goal was to enlarge the data sample so that the rare event was no longer rare, i.e., so that the enlarged data sample contained one or more occurrences of the event of interest. This aggregation gave rise to random variable treatments of failure rates, occurrence frequencies, and other characteristics estimated from data. This random variable treatment can be interpreted as being comparable to an empirical Bayes technique or a Bayesian technique. In the discretizing event technique, events of a detailed nature were grouped together into a grosser event for purposes of analysis as well as for data collection. The treatment of data characteristics as random variables helped to account for the uncertainties arising from this discretizing. In the severity extrapolation technique a severity variable was associated with each event occurrence for the purpose of predicting probabilities of catastrophic occurrences. Tail behaviors of distributions therefore needed to be considered. Finally, event trees and fault trees were used to express accident occurrences and system failures in terms of more basic events for which data existed. Common mode failures and general dependencies therefore needed to be treated. 2 figures

  12. Indirect iterative learning control for a discrete visual servo without a camera-robot model.

    Science.gov (United States)

    Jiang, Ping; Bamforth, Leon C A; Feng, Zuren; Baruch, John E F; Chen, YangQuan

    2007-08-01

    This paper presents a discrete learning controller for vision-guided robot trajectory imitation with no prior knowledge of the camera-robot model. A teacher demonstrates a desired movement in front of a camera, and then, the robot is tasked to replay it by repetitive tracking. The imitation procedure is considered as a discrete tracking control problem in the image plane, with an unknown and time-varying image Jacobian matrix. Instead of updating the control signal directly, as is usually done in iterative learning control (ILC), a series of neural networks are used to approximate the unknown Jacobian matrix around every sample point in the demonstrated trajectory, and the time-varying weights of local neural networks are identified through repetitive tracking, i.e., indirect ILC. This makes repetitive segmented training possible, and a segmented training strategy is presented to retain the training trajectories solely within the effective region for neural network approximation. However, a singularity problem may occur if an unmodified neural-network-based Jacobian estimation is used to calculate the robot end-effector velocity. A new weight modification algorithm is proposed which ensures invertibility of the estimation, thus circumventing the problem. Stability is further discussed, and the relationship between the approximation capability of the neural network and the tracking accuracy is obtained. Simulations and experiments are carried out to illustrate the validity of the proposed controller for trajectory imitation of robot manipulators with unknown time-varying Jacobian matrices.

  13. Using a discrete-event simulation to balance ambulance availability and demand in static deployment systems.

    Science.gov (United States)

    Wu, Ching-Han; Hwang, Kevin P

    2009-12-01

    To improve ambulance response time, matching ambulance availability with the emergency demand is crucial. To maintain the standard of 90% of response times within 9 minutes, the authors introduce a discrete-event simulation method to estimate the threshold for expanding the ambulance fleet when demand increases and to find the optimal dispatching strategies when provisional events create temporary decreases in ambulance availability. The simulation model was developed with information from the literature. Although the development was theoretical, the model was validated on the emergency medical services (EMS) system of Tainan City. The data are divided: one part is for model development, and the other for validation. For increasing demand, the effect was modeled on response time when call arrival rates increased. For temporary availability decreases, the authors simulated all possible alternatives of ambulance deployment in accordance with the number of out-of-routine-duty ambulances and the durations of three types of mass gatherings: marathon races (06:00-10:00 hr), rock concerts (18:00-22:00 hr), and New Year's Eve parties (20:00-01:00 hr). Statistical analysis confirmed that the model reasonably represented the actual Tainan EMS system. The response-time standard could not be reached when the incremental ratio of call arrivals exceeded 56%, which is the threshold for the Tainan EMS system to expand its ambulance fleet. When provisional events created temporary availability decreases, the Tainan EMS system could spare at most two ambulances from the standard configuration, except between 20:00 and 01:00, when it could spare three. The model also demonstrated that the current Tainan EMS has two excess ambulances that could be dropped. The authors suggest dispatching strategies to minimize the response times in routine daily emergencies. Strategies of capacity management based on this model improved response times. The more ambulances that are out of routine duty

  14. A Delta Operator Approach for the Discrete-Time Active Disturbance Rejection Control on Induction Motors

    Directory of Open Access Journals (Sweden)

    John Cortés-Romero

    2013-01-01

    Full Text Available The problem of active disturbance rejection control of induction motors is tackled by means of a generalized PI observer based discrete-time control, using the delta operator approach as the methodology of analyzing the sampled time process. In this scheme, model uncertainties and external disturbances are included in a general additive disturbance input which is to be online estimated and subsequently rejected via the controller actions. The observer carries out the disturbance estimation, thus reducing the complexity of the controller design. The controller efficiency is tested via some experimental results, performing a trajectory tracking task under load variations.

  15. Effectively utilising a 3rd party 3D visualization component in a discrete event simulation environment for Joint Command and Control (JC2)

    CSIR Research Space (South Africa)

    Ramadeen, P

    2009-09-01

    Full Text Available Roux [1]. Figure 13 shows the how the systems were connected during the respective exercises and operations. The computer icon represents a node. 7.2 Confederation Cup The Confederation Cup is a football tournament hosted by FIFA (The Fédération... Internationale de Football Association). It was held in South Africa in June 2009. Joint Command and Control is vital in events of this nature. JC2 includes include airspace control. The system was used as an Incident Management Tool to track and log...

  16. Using discrete-event simulation in strategic capacity planning for an outpatient physical therapy service.

    Science.gov (United States)

    Rau, Chi-Lun; Tsai, Pei-Fang Jennifer; Liang, Sheau-Farn Max; Tan, Jhih-Cian; Syu, Hong-Cheng; Jheng, Yue-Ling; Ciou, Ting-Syuan; Jaw, Fu-Shan

    2013-12-01

    This study uses a simulation model as a tool for strategic capacity planning for an outpatient physical therapy clinic in Taipei, Taiwan. The clinic provides a wide range of physical treatments, with 6 full-time therapists in each session. We constructed a discrete-event simulation model to study the dynamics of patient mixes with realistic treatment plans, and to estimate the practical capacity of the physical therapy room. The changes in time-related and space-related performance measurements were used to evaluate the impact of various strategies on the capacity of the clinic. The simulation results confirmed that the clinic is extremely patient-oriented, with a bottleneck occurring at the traction units for Intermittent Pelvic Traction (IPT), with usage at 58.9 %. Sensitivity analysis showed that attending to more patients would significantly increase the number of patients staying for overtime sessions. We found that pooling the therapists produced beneficial results. The average waiting time per patient could be reduced by 45 % when we pooled 2 therapists. We found that treating up to 12 new patients per session had no significantly negative impact on returning patients. Moreover, we found that the average waiting time for new patients decreased if they were given priority over returning patients when called by the therapists.

  17. DETERMINATION OF THE FOREST ROAD NETWORK INFLUENCE ON THE SUPPLY CHAIN FOR FIREWOOD PRODUCTION BY DISCRETE EVENT SIMULATION

    Directory of Open Access Journals (Sweden)

    Raffaele Cavalli

    2012-06-01

    Full Text Available In this study a Discrete-event simulation (D-es has been developed to analyze the wood supply chain for firewood production in a mountain area in North-eastern Italy. The D-es is applied in the modeling of extraction (Full Tree System, processing of roundwood into wood assortments (cross-cut and sorting, offroad and on-road transport. In order to estimate the productivity functions and parameters, field studies were conducted to gather data about the different operations linked in the model. Also a GIS network analysis was developed to integrate the spatial information onthe covered distance to the D-es model for each of the supposed Scenarios. The results indicats that an increment of 5 m ha-1 of the forest road network could significantly increase the productivity of the wood supply chain up to 2%.

  18. Adaptive NN tracking control of uncertain nonlinear discrete-time systems with nonaffine dead-zone input.

    Science.gov (United States)

    Liu, Yan-Jun; Tong, Shaocheng

    2015-03-01

    In the paper, an adaptive tracking control design is studied for a class of nonlinear discrete-time systems with dead-zone input. The considered systems are of the nonaffine pure-feedback form and the dead-zone input appears nonlinearly in the systems. The contributions of the paper are that: 1) it is for the first time to investigate the control problem for this class of discrete-time systems with dead-zone; 2) there are major difficulties for stabilizing such systems and in order to overcome the difficulties, the systems are transformed into an n-step-ahead predictor but nonaffine function is still existent; and 3) an adaptive compensative term is constructed to compensate for the parameters of the dead-zone. The neural networks are used to approximate the unknown functions in the transformed systems. Based on the Lyapunov theory, it is proven that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded and the tracking error converges to a small neighborhood of zero. Two simulation examples are provided to verify the effectiveness of the control approach in the paper.

  19. Minimum Energy Control of 2D Positive Continuous-Discrete Linear Systems

    Directory of Open Access Journals (Sweden)

    Kaczorek Tadeusz

    2014-09-01

    Full Text Available The minimum energy control problem for the 2D positive continuous-discrete linear systems is formulated and solved. Necessary and sufficient conditions for the reachability at the point of the systems are given. Sufficient conditions for the existence of solution to the problem are established. It is shown that if the system is reachable then there exists an optimal input that steers the state from zero boundary conditions to given final state and minimizing the performance index for only one step (q = 1. A procedure for solving of the problem is proposed and illustrated by a numerical example.

  20. Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds.

    Science.gov (United States)

    Bradac, C; Gaebel, T; Naidoo, N; Sellars, M J; Twamley, J; Brown, L J; Barnard, A S; Plakhotnik, T; Zvyagin, A V; Rabeau, J R

    2010-05-01

    Nitrogen-vacancy colour centres in diamond can undergo strong, spin-sensitive optical transitions under ambient conditions, which makes them attractive for applications in quantum optics, nanoscale magnetometry and biolabelling. Although nitrogen-vacancy centres have been observed in aggregated detonation nanodiamonds and milled nanodiamonds, they have not been observed in very small isolated nanodiamonds. Here, we report the first direct observation of nitrogen-vacancy centres in discrete 5-nm nanodiamonds at room temperature, including evidence for intermittency in the luminescence (blinking) from the nanodiamonds. We also show that it is possible to control this blinking by modifying the surface of the nanodiamonds.

  1. Distinct timing mechanisms produce discrete and continuous movements.

    Directory of Open Access Journals (Sweden)

    Raoul Huys

    2008-04-01

    Full Text Available The differentiation of discrete and continuous movement is one of the pillars of motor behavior classification. Discrete movements have a definite beginning and end, whereas continuous movements do not have such discriminable end points. In the past decade there has been vigorous debate whether this classification implies different control processes. This debate up until the present has been empirically based. Here, we present an unambiguous non-empirical classification based on theorems in dynamical system theory that sets discrete and continuous movements apart. Through computational simulations of representative modes of each class and topological analysis of the flow in state space, we show that distinct control mechanisms underwrite discrete and fast rhythmic movements. In particular, we demonstrate that discrete movements require a time keeper while fast rhythmic movements do not. We validate our computational findings experimentally using a behavioral paradigm in which human participants performed finger flexion-extension movements at various movement paces and under different instructions. Our results demonstrate that the human motor system employs different timing control mechanisms (presumably via differential recruitment of neural subsystems to accomplish varying behavioral functions such as speed constraints.

  2. Event-Based control of depth of hypnosis in anesthesia.

    Science.gov (United States)

    Merigo, Luca; Beschi, Manuel; Padula, Fabrizio; Latronico, Nicola; Paltenghi, Massimiliano; Visioli, Antonio

    2017-08-01

    In this paper, we propose the use of an event-based control strategy for the closed-loop control of the depth of hypnosis in anesthesia by using propofol administration and the bispectral index as a controlled variable. A new event generator with high noise-filtering properties is employed in addition to a PIDPlus controller. The tuning of the parameters is performed off-line by using genetic algorithms by considering a given data set of patients. The effectiveness and robustness of the method is verified in simulation by implementing a Monte Carlo method to address the intra-patient and inter-patient variability. A comparison with a standard PID control structure shows that the event-based control system achieves a reduction of the total variation of the manipulated variable of 93% in the induction phase and of 95% in the maintenance phase. The use of event based automatic control in anesthesia yields a fast induction phase with bounded overshoot and an acceptable disturbance rejection. A comparison with a standard PID control structure shows that the technique effectively mimics the behavior of the anesthesiologist by providing a significant decrement of the total variation of the manipulated variable. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Accident precursors, near misses, and warning signs: Critical review and formal definitions within the framework of Discrete Event Systems

    International Nuclear Information System (INIS)

    Saleh, Joseph H.; Saltmarsh, Elizabeth A.; Favarò, Francesca M.; Brevault, Loïc

    2013-01-01

    An important consideration in safety analysis and accident prevention is the identification of and response to accident precursors. These off-nominal events are opportunities to recognize potential accident pathogens, identify overlooked accident sequences, and make technical and organizational decisions to address them before further escalation can occur. When handled properly, the identification of precursors provides an opportunity to interrupt an accident sequence from unfolding; when ignored or missed, precursors may only provide tragic proof after the fact that an accident was preventable. In this work, we first provide a critical review of the concept of precursor, and we highlight important features that ought to be distinguished whenever accident precursors are discussed. We address for example the notion of ex-ante and ex-post precursors, identified for postulated and instantiated (occurred) accident sequences respectively, and we discuss the feature of transferability of precursors. We then develop a formal (mathematical) definition of accident precursors as truncated accident sequences within the modeling framework of Discrete Event Systems. Additionally, we examine the related notions of “accident pathogens” as static or lurking adverse conditions that can contribute to or aggravate an accident, as well as “near misses”, “warning signs” and the novel concept of “accident pathway”. While these terms are within the same linguistic neighborhood as “accident precursors”, we argue that there are subtle but important differences between them and recommend that they not be used interchangeably for the sake of accuracy and clarity of communication within the risk and safety community. We also propose venues for developing quantitative importance measures for accident precursors, similar to component importance measures in reliability engineering. Our objective is to establish a common understanding and clear delineation of these terms, and

  4. Performance and cost evaluation of health information systems using micro-costing and discrete-event simulation.

    Science.gov (United States)

    Rejeb, Olfa; Pilet, Claire; Hamana, Sabri; Xie, Xiaolan; Durand, Thierry; Aloui, Saber; Doly, Anne; Biron, Pierre; Perrier, Lionel; Augusto, Vincent

    2018-06-01

    Innovation and health-care funding reforms have contributed to the deployment of Information and Communication Technology (ICT) to improve patient care. Many health-care organizations considered the application of ICT as a crucial key to enhance health-care management. The purpose of this paper is to provide a methodology to assess the organizational impact of high-level Health Information System (HIS) on patient pathway. We propose an integrated performance evaluation of HIS approach through the combination of formal modeling using the Architecture of Integrated Information Systems (ARIS) models, a micro-costing approach for cost evaluation, and a Discrete-Event Simulation (DES) approach. The methodology is applied to the consultation for cancer treatment process. Simulation scenarios are established to conclude about the impact of HIS on patient pathway. We demonstrated that although high level HIS lengthen the consultation, occupation rate of oncologists are lower and quality of service is higher (through the number of available information accessed during the consultation to formulate the diagnostic). The provided method allows also to determine the most cost-effective ICT elements to improve the care process quality while minimizing costs. The methodology is flexible enough to be applied to other health-care systems.

  5. Implementation of Tree and Butterfly Barriers with Optimistic Time Management Algorithms for Discrete Event Simulation

    Science.gov (United States)

    Rizvi, Syed S.; Shah, Dipali; Riasat, Aasia

    The Time Wrap algorithm [3] offers a run time recovery mechanism that deals with the causality errors. These run time recovery mechanisms consists of rollback, anti-message, and Global Virtual Time (GVT) techniques. For rollback, there is a need to compute GVT which is used in discrete-event simulation to reclaim the memory, commit the output, detect the termination, and handle the errors. However, the computation of GVT requires dealing with transient message problem and the simultaneous reporting problem. These problems can be dealt in an efficient manner by the Samadi's algorithm [8] which works fine in the presence of causality errors. However, the performance of both Time Wrap and Samadi's algorithms depends on the latency involve in GVT computation. Both algorithms give poor latency for large simulation systems especially in the presence of causality errors. To improve the latency and reduce the processor ideal time, we implement tree and butterflies barriers with the optimistic algorithm. Our analysis shows that the use of synchronous barriers such as tree and butterfly with the optimistic algorithm not only minimizes the GVT latency but also minimizes the processor idle time.

  6. Patient flow improvement for an ophthalmic specialist outpatient clinic with aid of discrete event simulation and design of experiment.

    Science.gov (United States)

    Pan, Chong; Zhang, Dali; Kon, Audrey Wan Mei; Wai, Charity Sue Lea; Ang, Woo Boon

    2015-06-01

    Continuous improvement in process efficiency for specialist outpatient clinic (SOC) systems is increasingly being demanded due to the growth of the patient population in Singapore. In this paper, we propose a discrete event simulation (DES) model to represent the patient and information flow in an ophthalmic SOC system in the Singapore National Eye Centre (SNEC). Different improvement strategies to reduce the turnaround time for patients in the SOC were proposed and evaluated with the aid of the DES model and the Design of Experiment (DOE). Two strategies for better patient appointment scheduling and one strategy for dilation-free examination are estimated to have a significant impact on turnaround time for patients. One of the improvement strategies has been implemented in the actual SOC system in the SNEC with promising improvement reported.

  7. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2011-01-01

    The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics......; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...

  8. Alcoholics' and nonalcoholics' attributions of control of future life events.

    Science.gov (United States)

    Wright, M H; Obitz, F W

    1984-03-01

    Alcoholic and nonalcoholic subjects rated the degree of control that they and others possess over future life events. Alcoholics attributed less personal control over events to themselves than nonalcoholics did. Alcoholics also attributed less control to themselves than to others, whereas nonalcoholics attributed more control to themselves than to others. These differences prevailed despite the similar socioeconomic and demographic characteristics, recent life experiences and beliefs concerning the general controllability of events of both alcoholics and nonalcoholics. The attributions of alcoholics were consistent with others' notions of self-handicapping. The attributions of nonalcoholics were consistent with control motivation. Alcoholics who attributed less control to themselves than to others more frequently failed to complete treatment than did alcoholics who attributed more control to themselves.

  9. Baecklund transformations for discrete Painleve equations: Discrete PII-PV

    International Nuclear Information System (INIS)

    Sakka, A.; Mugan, U.

    2006-01-01

    Transformation properties of discrete Painleve equations are investigated by using an algorithmic method. This method yields explicit transformations which relates the solutions of discrete Painleve equations, discrete P II -P V , with different values of parameters. The particular solutions which are expressible in terms of the discrete analogue of the classical special functions of discrete Painleve equations can also be obtained from these transformations

  10. Discrete vs. Continuous Mapping of Facial Electromyography for Human-Machine-Interface Control: Performance and Training Effects

    Science.gov (United States)

    Cler, Meredith J.; Stepp, Cara E.

    2015-01-01

    Individuals with high spinal cord injuries are unable to operate a keyboard and mouse with their hands. In this experiment, we compared two systems using surface electromyography (sEMG) recorded from facial muscles to control an onscreen keyboard to type five-letter words. Both systems used five sEMG sensors to capture muscle activity during five distinct facial gestures that were mapped to five cursor commands: move left, move right, move up, move down, and “click”. One system used a discrete movement and feedback algorithm in which the user produced one quick facial gesture, causing a corresponding discrete movement to an adjacent letter. The other system was continuously updated and allowed the user to control the cursor’s velocity by relative activation between different sEMG channels. Participants were trained on one system for four sessions on consecutive days, followed by one crossover session on the untrained system. Information transfer rates (ITRs) were high for both systems compared to other potential input modalities, both initially and with training (Session 1: 62.1 bits/min, Session 4: 105.1 bits/min). Users of the continuous system showed significantly higher ITRs than the discrete users. Future development will focus on improvements to both systems, which may offer differential advantages for users with various motor impairments. PMID:25616053

  11. Generation and monitoring of a discrete stable random process

    CERN Document Server

    Hopcraft, K I; Matthews, J O

    2002-01-01

    A discrete stochastic process with stationary power law distribution is obtained from a death-multiple immigration population model. Emigrations from the population form a random series of events which are monitored by a counting process with finite-dynamic range and response time. It is shown that the power law behaviour of the population is manifested in the intermittent behaviour of the series of events. (letter to the editor)

  12. Controlling spatio-temporal extreme events by decreasing the localized energy

    International Nuclear Information System (INIS)

    Du Lin; Xu Wei; Li Zhanguo; Zhou Bingchang

    2011-01-01

    The problem of controlling extreme events in spatially extended dynamical systems is investigated in this Letter. Based on observations of the system state, the control technique we proposed locally decreases the spatial energy of the amplitude in the vicinity of the highest burst, without needs of any knowledge or prediction of the system model. Considering the specific Complex Ginzburg-Landau equation, we provide theoretical analysis for designing the localized state feedback controller. More exactly, a simple control law by varying a damping parameter at control region is chose to achieve the control. Numerical simulations and statistic analysis demonstrate that extreme events can be efficiently suppressed by our strategy. In particular, the cost of the control and the tolerant time delay in applying the control is considered in detail. - Highlights: → We propose a local control scheme to suppress spatio-temporal extreme events. → The control is address by decreasing the spatial energy of the system locally. → The detail control law is to apply localized state feedback based on observations. → The cost of the control increases with the size of the control region exponentially. → The tolerant delay of the control is about 5-6 times of lifetime of extreme events.

  13. Event-triggered control systems under packet losses

    NARCIS (Netherlands)

    Dolk, V.S.; Heemels, W.P.M.H.

    2017-01-01

    Networked control systems (NCSs) offer many benefits in terms of increased flexibility and maintainability but might also suffer from inevitable imperfections such as packet dropouts and limited communications resources. In this paper, (static and dynamic) event-triggered control (ETC) strategies

  14. Guaranteed Cost Finite-Time Control of Discrete-Time Positive Impulsive Switched Systems

    Directory of Open Access Journals (Sweden)

    Leipo Liu

    2018-01-01

    Full Text Available This paper considers the guaranteed cost finite-time boundedness of discrete-time positive impulsive switched systems. Firstly, the definition of guaranteed cost finite-time boundedness is introduced. By using the multiple linear copositive Lyapunov function (MLCLF and average dwell time (ADT approach, a state feedback controller is designed and sufficient conditions are obtained to guarantee that the corresponding closed-loop system is guaranteed cost finite-time boundedness (GCFTB. Such conditions can be solved by linear programming. Finally, a numerical example is provided to show the effectiveness of the proposed method.

  15. Using Discrete Event Simulation to Model Integrated Commodities Consumption for a Launch Campaign of the Space Launch System

    Science.gov (United States)

    Leonard, Daniel; Parsons, Jeremy W.; Cates, Grant

    2014-01-01

    In May 2013, NASA's GSDO Program requested a study to develop a discrete event simulation (DES) model that analyzes the launch campaign process of the Space Launch System (SLS) from an integrated commodities perspective. The scope of the study includes launch countdown and scrub turnaround and focuses on four core launch commodities: hydrogen, oxygen, nitrogen, and helium. Previously, the commodities were only analyzed individually and deterministically for their launch support capability, but this study was the first to integrate them to examine the impact of their interactions on a launch campaign as well as the effects of process variability on commodity availability. The study produced a validated DES model with Rockwell Arena that showed that Kennedy Space Center's ground systems were capable of supporting a 48-hour scrub turnaround for the SLS. The model will be maintained and updated to provide commodity consumption analysis of future ground system and SLS configurations.

  16. Stabilization of discrete-time LTI positive systems

    Directory of Open Access Journals (Sweden)

    Krokavec Dušan

    2017-12-01

    Full Text Available The paper mitigates the existing conditions reported in the previous literature for control design of discrete-time linear positive systems. Incorporating an associated structure of linear matrix inequalities, combined with the Lyapunov inequality guaranteing asymptotic stability of discrete-time positive system structures, new conditions are presented with which the state-feedback controllers and the system state observers can be designed. Associated solutions of the proposed design conditions are illustrated by numerical illustrative examples.

  17. Exact analysis of discrete data

    CERN Document Server

    Hirji, Karim F

    2005-01-01

    Researchers in fields ranging from biology and medicine to the social sciences, law, and economics regularly encounter variables that are discrete or categorical in nature. While there is no dearth of books on the analysis and interpretation of such data, these generally focus on large sample methods. When sample sizes are not large or the data are otherwise sparse, exact methods--methods not based on asymptotic theory--are more accurate and therefore preferable.This book introduces the statistical theory, analysis methods, and computation techniques for exact analysis of discrete data. After reviewing the relevant discrete distributions, the author develops the exact methods from the ground up in a conceptually integrated manner. The topics covered range from univariate discrete data analysis, a single and several 2 x 2 tables, a single and several 2 x K tables, incidence density and inverse sampling designs, unmatched and matched case -control studies, paired binary and trinomial response models, and Markov...

  18. A Unified Approach to Adaptive Neural Control for Nonlinear Discrete-Time Systems With Nonlinear Dead-Zone Input.

    Science.gov (United States)

    Liu, Yan-Jun; Gao, Ying; Tong, Shaocheng; Chen, C L Philip

    2016-01-01

    In this paper, an effective adaptive control approach is constructed to stabilize a class of nonlinear discrete-time systems, which contain unknown functions, unknown dead-zone input, and unknown control direction. Different from linear dead zone, the dead zone, in this paper, is a kind of nonlinear dead zone. To overcome the noncausal problem, which leads to the control scheme infeasible, the systems can be transformed into a m -step-ahead predictor. Due to nonlinear dead-zone appearance, the transformed predictor still contains the nonaffine function. In addition, it is assumed that the gain function of dead-zone input and the control direction are unknown. These conditions bring about the difficulties and the complicacy in the controller design. Thus, the implicit function theorem is applied to deal with nonaffine dead-zone appearance, the problem caused by the unknown control direction can be resolved through applying the discrete Nussbaum gain, and the neural networks are used to approximate the unknown function. Based on the Lyapunov theory, all the signals of the resulting closed-loop system are proved to be semiglobal uniformly ultimately bounded. Moreover, the tracking error is proved to be regulated to a small neighborhood around zero. The feasibility of the proposed approach is demonstrated by a simulation example.

  19. A PC-based discrete event simulation model of the Civilian Radioactive Waste Management System

    International Nuclear Information System (INIS)

    Airth, G.L.; Joy, D.S.; Nehls, J.W.

    1991-01-01

    A System Simulation Model has been developed for the Department of Energy to simulate the movement of individual waste packages (spent fuel assemblies and fuel containers) through the Civilian Radioactive Waste Management System (CRWMS). A discrete event simulation language, GPSS/PC, which runs on an IBM/PC and operates under DOS 5.0, mathematically represents the movement and processing of radioactive waste packages through the CRWMS and the interaction of these packages with the equipment in the various facilities. This model can be used to quantify the impacts of different operating schedules, operational rules, system configurations, and equipment reliability and availability considerations on the performance of processes comprising the CRWMS and how these factors combine to determine overall system performance for the purpose of making system design decisions. The major features of the System Simulation Model are: the ability to reference characteristics of the different types of radioactive waste (age, burnup, etc.) in order to make operational and/or system design decisions, the ability to place stochastic variations on operational parameters such as processing time and equipment outages, and the ability to include a rigorous simulation of the transportation system. Output from the model includes the numbers, types, and characteristics of waste packages at selected points in the CRWMS and the extent to which various resources will be utilized in order to transport, process, and emplace the waste

  20. Robust Monotonically Convergent Iterative Learning Control for Discrete-Time Systems via Generalized KYP Lemma

    Directory of Open Access Journals (Sweden)

    Jian Ding

    2014-01-01

    Full Text Available This paper addresses the problem of P-type iterative learning control for a class of multiple-input multiple-output linear discrete-time systems, whose aim is to develop robust monotonically convergent control law design over a finite frequency range. It is shown that the 2 D iterative learning control processes can be taken as 1 D state space model regardless of relative degree. With the generalized Kalman-Yakubovich-Popov lemma applied, it is feasible to describe the monotonically convergent conditions with the help of linear matrix inequality technique and to develop formulas for the control gain matrices design. An extension to robust control law design against systems with structured and polytopic-type uncertainties is also considered. Two numerical examples are provided to validate the feasibility and effectiveness of the proposed method.

  1. Discrete Curvatures and Discrete Minimal Surfaces

    KAUST Repository

    Sun, Xiang

    2012-01-01

    This thesis presents an overview of some approaches to compute Gaussian and mean curvature on discrete surfaces and discusses discrete minimal surfaces. The variety of applications of differential geometry in visualization and shape design leads

  2. The weak-scale hierarchy and discrete symmetries

    International Nuclear Information System (INIS)

    Haba, Naoyuki; Matsuoka, Takeo; Hattori, Chuichiro; Matsuda, Masahisa; Mochinaga, Daizo.

    1996-01-01

    In the underlying Planck scale theory, we introduce a certain type of discrete symmetry, which potentially brings the stability of the weak-scale hierarchy under control. Under the discrete symmetry the μ-problem and the tadpole problem can be solved simultaneously without relying on some fine-tuning of parameters. Instead, it is required that doublet Higgs and color-triplet Higgs fields reside in different irreducible representations of the gauge symmetry group at the Planck scale and that they have distinct charges of the discrete symmetry group. (author)

  3. Developing a real-time emulation of multiresolutional control architectures for complex, discrete-event systems

    Energy Technology Data Exchange (ETDEWEB)

    Davis, W.J.; Macro, J.G.; Brook, A.L. [Univ. of Illinois, Urbana, IL (United States)] [and others

    1996-12-31

    This paper first discusses an object-oriented, control architecture and then applies the architecture to produce a real-time software emulator for the Rapid Acquisition of Manufactured Parts (RAMP) flexible manufacturing system (FMS). In specifying the control architecture, the coordinated object is first defined as the primary modeling element. These coordinated objects are then integrated into a Recursive, Object-Oriented Coordination Hierarchy. A new simulation methodology, the Hierarchical Object-Oriented Programmable Logic Simulator, is then employed to model the interactions among the coordinated objects. The final step in implementing the emulator is to distribute the models of the coordinated objects over a network of computers and to synchronize their operation to a real-time clock. The paper then introduces the Hierarchical Subsystem Controller as an intelligent controller for the coordinated object. The proposed approach to intelligent control is then compared to the concept of multiresolutional semiosis that has been developed by Dr. Alex Meystel. Finally, the plans for implementing an intelligent controller for the RAMP FMS are discussed.

  4. Comments on `A discrete optimal control problem for descriptor systems'

    DEFF Research Database (Denmark)

    Ravn, Hans

    1990-01-01

    In the above-mentioned work (see ibid., vol.34, p.177-81 (1989)), necessary and sufficient optimality conditions are derived for a discrete-time optimal problem, as well as other specific cases of implicit and explicit dynamic systems. The commenter corrects a mistake and demonstrates that there ......In the above-mentioned work (see ibid., vol.34, p.177-81 (1989)), necessary and sufficient optimality conditions are derived for a discrete-time optimal problem, as well as other specific cases of implicit and explicit dynamic systems. The commenter corrects a mistake and demonstrates...

  5. Explicit/multi-parametric model predictive control (MPC) of linear discrete-time systems by dynamic and multi-parametric programming

    KAUST Repository

    Kouramas, K.I.; Faí sca, N.P.; Panos, C.; Pistikopoulos, E.N.

    2011-01-01

    This work presents a new algorithm for solving the explicit/multi- parametric model predictive control (or mp-MPC) problem for linear, time-invariant discrete-time systems, based on dynamic programming and multi-parametric programming techniques

  6. Discrete PID Tuning Using Artificial Intelligence Techniques

    Directory of Open Access Journals (Sweden)

    Petr DOLEŽEL

    2009-06-01

    Full Text Available PID controllers are widely used in industry these days due to their useful properties such as simple tuning or robustness. While they are applicable to many control problems, they can perform poorly in some applications. Highly nonlinear system control with constrained manipulated variable can be mentioned as an example. The point of the paper is to string together convenient qualities of conventional PID control and progressive techniques based on Artificial Intelligence. Proposed control method should deal with even highly nonlinear systems. To be more specific, there is described new method of discrete PID controller tuning in this paper. This method tunes discrete PID controller parameters online through the use of genetic algorithm and neural model of controlled system in order to control successfully even highly nonlinear systems. After method description and some discussion, there is performed control simulation and comparison to one chosen conventional control method.

  7. Performance Analysis: Work Control Events Identified January - August 2010

    Energy Technology Data Exchange (ETDEWEB)

    De Grange, C E; Freeman, J W; Kerr, C E; Holman, G; Marsh, K; Beach, R

    2011-01-14

    This performance analysis evaluated 24 events that occurred at LLNL from January through August 2010. The analysis identified areas of potential work control process and/or implementation weaknesses and several common underlying causes. Human performance improvement and safety culture factors were part of the causal analysis of each event and were analyzed. The collective significance of all events in 2010, as measured by the occurrence reporting significance category and by the proportion of events that have been reported to the DOE ORPS under the ''management concerns'' reporting criteria, does not appear to have increased in 2010. The frequency of reporting in each of the significance categories has not changed in 2010 compared to the previous four years. There is no change indicating a trend in the significance category and there has been no increase in the proportion of occurrences reported in the higher significance category. Also, the frequency of events, 42 events reported through August 2010, is not greater than in previous years and is below the average of 63 occurrences per year at LLNL since 2006. Over the previous four years, an average of 43% of the LLNL's reported occurrences have been reported as either ''management concerns'' or ''near misses.'' In 2010, 29% of the occurrences have been reported as ''management concerns'' or ''near misses.'' This rate indicates that LLNL is now reporting fewer ''management concern'' and ''near miss'' occurrences compared to the previous four years. From 2008 to the present, LLNL senior management has undertaken a series of initiatives to strengthen the work planning and control system with the primary objective to improve worker safety. In 2008, the LLNL Deputy Director established the Work Control Integrated Project Team to develop the core requirements and graded

  8. The Effect of Continuous and Discretized Presentations of Concurrent Augmented Visual Biofeedback on Postural Control in Quiet Stance.

    Directory of Open Access Journals (Sweden)

    Carmen D'Anna

    Full Text Available The purpose of this study was to evaluate the effect of a continuous and a discretized Visual Biofeedback (VBF on balance performance in upright stance. The coordinates of the Centre of Pressure (CoP, extracted from a force plate, were processed in real-time to implement the two VBFs, administered to two groups of 12 healthy participants. In the first group, a representation of the CoP was continuously shown, while in the second group, the discretized VBF was provided at an irregular frequency (that depended on the subject's performance by displaying one out of a set of five different emoticons, each corresponding to a specific area covered by the current position of the CoP. In the first case, participants were asked to maintain a white spot within a given square area, whereas in the second case they were asked to keep the smiling emoticon on. Trials with no VBF were administered as control. The effect of the two VBFs on balance was studied through classical postural parameters and a subset of stabilogram diffusion coefficients. To quantify the amount of time spent in stable conditions, the percentage of time during which the CoP was inside the stability area was calculated. Both VBFs improved balance maintainance as compared to the absence of any VBF. As compared to the continuous VBF, in the discretized VBF a significant decrease of sway path, diffusion and Hurst coefficients was found. These results seem to indicate that a discretized VBF favours a more natural postural behaviour by promoting a natural intermittent postural control strategy.

  9. Teleradiology system analysis using a discrete event-driven block-oriented network simulator

    Science.gov (United States)

    Stewart, Brent K.; Dwyer, Samuel J., III

    1992-07-01

    Performance evaluation and trade-off analysis are the central issues in the design of communication networks. Simulation plays an important role in computer-aided design and analysis of communication networks and related systems, allowing testing of numerous architectural configurations and fault scenarios. We are using the Block Oriented Network Simulator (BONeS, Comdisco, Foster City, CA) software package to perform discrete, event- driven Monte Carlo simulations in capacity planning, tradeoff analysis and evaluation of alternate architectures for a high-speed, high-resolution teleradiology project. A queuing network model of the teleradiology system has been devise, simulations executed and results analyzed. The wide area network link uses a switched, dial-up N X 56 kbps inverting multiplexer where the number of digital voice-grade lines (N) can vary from one (DS-0) through 24 (DS-1). The proposed goal of such a system is 200 films (2048 X 2048 X 12-bit) transferred between a remote and local site in an eight hour period with a mean delay time less than five minutes. It is found that: (1) the DS-1 service limit is around 100 films per eight hour period with a mean delay time of 412 +/- 39 seconds, short of the goal stipulated above; (2) compressed video teleconferencing can be run simultaneously with image data transfer over the DS-1 wide area network link without impacting the performance of the described teleradiology system; (3) there is little sense in upgrading to a higher bandwidth WAN link like DS-2 or DS-3 for the current system; and (4) the goal of transmitting 200 films in an eight hour period with a mean delay time less than five minutes can be achieved simply if the laser printer interface is updated from the current DR-11W interface to a much faster SCSI interface.

  10. HARDWARE ENVIRONMENT FACTOR FOR CONTROL SIGNAL TRANSFER TO A PLANT IN THE SYNTHESIS PROBLEM OF DISCRETE SYSTEMS

    Directory of Open Access Journals (Sweden)

    O. S. Nuyya

    2015-07-01

    Full Text Available The paper attempts to revise certain provisions of the existing theory of discrete systems in the organization of hardware environment control signal transmission to a technical plant. It is known that the formation of a digital signal in discrete control problem of continuous plant is carried out by microcontroller or micro-computer and is represented by a parallel code, which dimension is determined by the hardware used. The parallel code for a digital clock cycle of the designed system is transmitted to the terminal device of a technical continuous plant, where the digital-to-analog conversion takes place. This kind of control signal transmission to the technical plant asserts its implementation by means of parallel buses. It is known that the length of a parallel bus is limited to an amount not exceeding half a meter due to the existing interference environment with modern standards of length. Thus, if the placement of the control signal and control plant is such that their connecting bus length exceeds more than half a meter, there is the inevitable transition from the parallel control signal to an allotted serial. The paper deals with the system factors arising in the transition from the parallel control signal to the serial by modern interfaces. Provisions of the paper are illustrated by an example. This paper is intended for system analytics and channel specialists. The resulting algorithm is applicable for control of plants (electric drive, in particular in the large industrial factories.

  11. Mimetic discretization methods

    CERN Document Server

    Castillo, Jose E

    2013-01-01

    To help solve physical and engineering problems, mimetic or compatible algebraic discretization methods employ discrete constructs to mimic the continuous identities and theorems found in vector calculus. Mimetic Discretization Methods focuses on the recent mimetic discretization method co-developed by the first author. Based on the Castillo-Grone operators, this simple mimetic discretization method is invariably valid for spatial dimensions no greater than three. The book also presents a numerical method for obtaining corresponding discrete operators that mimic the continuum differential and

  12. Chance Events in Career Development: Influence, Control and Multiplicity

    Science.gov (United States)

    Bright, Jim E. H.; Pryor, Robert G. L.; Chan, Eva Wing Man; Rijanto, Jeniyanti

    2009-01-01

    This article reports three studies on the nature and impact of chance events. The first study investigated chance events in terms of the dimensions of influence and control. The second and third studies investigated the effects of multiplicity of chance events on career development are in terms of respondents' own careers and then in terms of…

  13. The Iterative Solution to Discrete-Time H∞ Control Problems for Periodic Systems

    Directory of Open Access Journals (Sweden)

    Ivan G. Ivanov

    2016-03-01

    Full Text Available This paper addresses the problem of solving discrete-time H ∞ control problems for periodic systems. The approach for solving such a type of equations is well known in the literature. However, the focus of our research is set on the numerical computation of the stabilizing solution. In particular, two effective methods for practical realization of the known iterative processes are described. Furthermore, a new iterative approach is investigated and applied. On the basis of numerical experiments, we compare the presented methods. A major conclusion is that the new iterative approach is faster than rest of the methods and it uses less RAM memory than other methods.

  14. Continuous versus discrete structures II -- Discrete Hamiltonian systems and Helmholtz conditions

    OpenAIRE

    Cresson, Jacky; Pierret, Frédéric

    2015-01-01

    We define discrete Hamiltonian systems in the framework of discrete embeddings. An explicit comparison with previous attempts is given. We then solve the discrete Helmholtz's inverse problem for the discrete calculus of variation in the Hamiltonian setting. Several applications are discussed.

  15. A Systematic Controller Design for a Grid-Connected Inverter with LCL Filter Using a Discrete-Time Integral State Feedback Control and State Observer

    Directory of Open Access Journals (Sweden)

    Seung-Jin Yoon

    2018-02-01

    Full Text Available Inductive-capacitive-inductive (LCL-type filters are currently preferred as a replacement for L-type filters in distributed generation (DG power systems, due to their superior harmonic attenuation capability. However, the third-order dynamics introduced by LCL filters pose a challenge to design a satisfactory controller for such a system. Conventionally, an LCL-filtered grid-connected inverter can be effectively controlled by using a full-state feedback control. However, this control approach requires the measurement of all system state variables, which brings about more complexity for the inverter system. To address this issue, this paper presents a systematic procedure to design an observer-based integral state feedback control for a LCL-filtered grid-connected inverter in the discrete-time domain. The proposed control scheme consists of an integral state feedback controller and a full-state observer which uses the control input, grid-side currents, and grid voltages to predict all the system state variables. Therefore, only the grid-side current sensors and grid voltage sensors are required to implement the proposed control scheme. Due to the discrete-time integrator incorporated in the state feedback controller, the proposed control scheme ensures both the reference tracking and disturbance rejection performance of the inverter system in a practical and simple way. As a result, superior control performance can be achieved by using the reduced number of sensors, which significantly reduces the cost and complexity of the LCL-filtered grid-connected inverter system in DG applications. To verify the practical usefulness of the proposed control scheme, a 2 kW three-phase prototype grid-connected inverter has been constructed, and the proposed control system has been implemented based on 32-bit floating-point digital signal processor (DSP TMS320F28335. The effectiveness of the proposed scheme is demonstrated through the comprehensive simulation

  16. Random vs. Combinatorial Methods for Discrete Event Simulation of a Grid Computer Network

    Science.gov (United States)

    Kuhn, D. Richard; Kacker, Raghu; Lei, Yu

    2010-01-01

    This study compared random and t-way combinatorial inputs of a network simulator, to determine if these two approaches produce significantly different deadlock detection for varying network configurations. Modeling deadlock detection is important for analyzing configuration changes that could inadvertently degrade network operations, or to determine modifications that could be made by attackers to deliberately induce deadlock. Discrete event simulation of a network may be conducted using random generation, of inputs. In this study, we compare random with combinatorial generation of inputs. Combinatorial (or t-way) testing requires every combination of any t parameter values to be covered by at least one test. Combinatorial methods can be highly effective because empirical data suggest that nearly all failures involve the interaction of a small number of parameters (1 to 6). Thus, for example, if all deadlocks involve at most 5-way interactions between n parameters, then exhaustive testing of all n-way interactions adds no additional information that would not be obtained by testing all 5-way interactions. While the maximum degree of interaction between parameters involved in the deadlocks clearly cannot be known in advance, covering all t-way interactions may be more efficient than using random generation of inputs. In this study we tested this hypothesis for t = 2, 3, and 4 for deadlock detection in a network simulation. Achieving the same degree of coverage provided by 4-way tests would have required approximately 3.2 times as many random tests; thus combinatorial methods were more efficient for detecting deadlocks involving a higher degree of interactions. The paper reviews explanations for these results and implications for modeling and simulation.

  17. Robust output observer-based control of neutral uncertain systems with discrete and distributed time delays: LMI optimization approach

    International Nuclear Information System (INIS)

    Chen, J.-D.

    2007-01-01

    In this paper, the robust control problem of output dynamic observer-based control for a class of uncertain neutral systems with discrete and distributed time delays is considered. Linear matrix inequality (LMI) optimization approach is used to design the new output dynamic observer-based controls. Three classes of observer-based controls are proposed and the maximal perturbed bound is given. Based on the results of this paper, the constraint of matrix equality is not necessary for designing the observer-based controls. Finally, a numerical example is given to illustrate the usefulness of the proposed method

  18. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2011-01-01

    ; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics...... to new problems. Relations and functions: Define a product set; define and apply equivalence relations; construct and apply functions. Apply these concepts to new problems. Natural numbers and induction: Define the natural numbers; apply the principle of induction to verify a selection of properties...

  19. Digital Discretion

    DEFF Research Database (Denmark)

    Busch, Peter Andre; Zinner Henriksen, Helle

    2018-01-01

    discretion is suggested to reduce this footprint by influencing or replacing their discretionary practices using ICT. What is less researched is whether digital discretion can cause changes in public policy outcomes, and under what conditions such changes can occur. Using the concept of public service values......This study reviews 44 peer-reviewed articles on digital discretion published in the period from 1998 to January 2017. Street-level bureaucrats have traditionally had a wide ability to exercise discretion stirring debate since they can add their personal footprint on public policies. Digital......, we suggest that digital discretion can strengthen ethical and democratic values but weaken professional and relational values. Furthermore, we conclude that contextual factors such as considerations made by policy makers on the macro-level and the degree of professionalization of street...

  20. A Comparison of State Space LQG, Wiener IMC and Polynomial LQG Discrete Time Feedback Control for Active Vibration Control Purposes

    DEFF Research Database (Denmark)

    Mørkholt, Jakob; Elliott, S.J.; Sors, T.C.

    1997-01-01

    with a piezoceramic patch control actuator and a point velocity sensor and excited by a point force driven by white noise acting as the primary source. The design objective has been to suppress the effect of the primary disturbance on the output by minimising the mean square value of the output. Apart from comparing......A comparison of three ways of designing optimal discrete time feedback controllers has been carried out via computer simulations. The three design methods are similar in that they are all based on the minimisation of a quadratic cost function under certain assumptions about the disturbance noise...... and sensor noise in the system to be controlled. They are also based on (different) models of the plant under control and the disturbance to be suppressed by the controllers. Controllers based on the three methods have been designed from a model of a lightly damped, rectangular plate fitted...

  1. Event-Triggered Output-Feedback Control for Disturbed Linear Systems

    Directory of Open Access Journals (Sweden)

    Hao Jiang

    2018-01-01

    Full Text Available In the last few decades, event-triggered control received considerable attention, because of advantages in reducing the resource utilization, such as communication load and processor. In this paper, we propose an event-triggered output-feedback controller for disturbed linear systems, in order to achieve both better resource utilization and disturbance attenuation properties at the same time. Based on our prior work on state-feedback H∞ control for disturbed systems, we propose an approach to design an output-feedback H∞ controller for the system whose states are not completely observable, and a sufficient condition guaranteeing the asymptotic stability and robustness of the system is given in the form of LMIs (Linear Matrix Inequalities.

  2. Discrete symmetries and their stringy origin

    International Nuclear Information System (INIS)

    Mayorga Pena, Damian Kaloni

    2014-05-01

    Discrete symmetries have proven to be very useful in controlling the phenomenology of theories beyond the standard model. In this work we explore how these symmetries emerge from string compactifications. Our approach is twofold: On the one hand, we consider the heterotic string on orbifold backgrounds. In this case the discrete symmetries can be derived from the orbifold conformal field theory, and it can be shown that they are in close relation with the orbifold geometry. We devote special attention to R-symmetries, which arise from discrete remnants of the Lorentz group in compact space. Further we discuss the physical implications of these symmetries both in the heterotic mini-landscape and in newly constructed models based on the Z 2 x Z 4 orbifold. In both cases we observe that the discrete symmetries favor particular locations in the orbifold where the particles of standard model should live. On the other hand we consider a class of F-theory models exhibiting an SU(5) gauge group, times additional U(1) symmetries. In this case, the smooth compactification background does not permit us to track the discrete symmetries as transparently as in orbifold models. Hence, we follow a different approach and search for discrete subgroups emerging after the U(1)s are broken. We observe that in this approach it is possible to obtain the standard Z 2 matter parity of the MSSM.

  3. Control of a 420 KN Discrete Displacement Cylinder Drive for the Wavestar Wave Energy Converter

    DEFF Research Database (Denmark)

    Hansen, Rico H.; Andersen, Torben Ole; Pedersen, Henrik C.

    2014-01-01

    absorbers. The system is implemented using multi-chambered cylinders, where the different chambers may be switched between three pressure lines using a manifold with fast on/off valves. Resultantly, a Discrete Displacement Cylinder (DDC) is obtained, where force control is implemented by shifting between...... different area/pressure combinations. Currently, a 420 kN DDC prototype has been implemented and tested at the newly commissioned full size wave energy testbench at Aalborg University. The initial design and control of the DDC had poorly damped switching transients. These issues treated in this paper....... This leads to a new control, which gives a smooth operating DDC, while meeting the requirements to the efficiency of the drive....

  4. Frequency and time domain characteristics of digital control of electric vehicle in-wheel drives

    Directory of Open Access Journals (Sweden)

    Jarzebowicz Leszek

    2017-12-01

    Full Text Available In-wheel electric drives are promising as actuators in active safety systems of electric and hybrid vehicles. This new function requires dedicated control algorithms, making it essential to deliver models that reflect better the wheel-torque control dynamics of electric drives. The timing of digital control events, whose importance is stressed in current research, still lacks an analytical description allowing for modeling its influence on control system dynamics. In this paper, authors investigate and compare approaches to the analog and discrete analytical modeling of torque control loop in digitally controlled electric drive. Five different analytical models of stator current torque component control are compared to judge their accuracy in representing drive control dynamics related to the timing of digital control events. The Bode characteristics and stepresponse characteristics of the analytical models are then compared with those of a reference model for three commonly used cases of motor discrete control schemes. Finally, the applicability of the presented models is discussed.

  5. Combined Discrete Space Voltage Vector with Direct Torque Control for Bearingless Brushless DC Motor and Closed-Loop Suspended Force Control

    Directory of Open Access Journals (Sweden)

    Weiran Wang

    2013-06-01

    Full Text Available In order to improve the performance of bearingless brushless DC motor, a closed-loop suspended force controller combining the discrete space voltage vector modulation is applied and the direct torque control is presented in this paper. Firstly, we increase the number of the control vector to reduce the torque ripple. Then, the suspending equation is constructed which is spired by the direct torque control algorithm. As a result, the closed-loop suspended force controller is built. The simulated and experimental results evaluate the performance of the proposed method. The more advantage is that the proposed algorithm can achieve the fast torque response, reduce the torque ripple, and follow ideal stator flux track. Furthermore, the motor which implants the closed-loop suspended force controller cannot onlyobtain the dynamic response rapidly and displacement control accurately, but also has the characteristics of bearingless brushless DC motor (such as simple structure, high energy efficiency, small volume and low failure rate.

  6. A Software Control Framework for Learning Coordinated, Multi-Robot Strategies in Open Environments

    National Research Council Canada - National Science Library

    Grupen, Roderic

    2003-01-01

    .... The UMass effort marries high-level process descriptions, discrete event analysis and model checking, learning and stochastic exploration, and a control theoretic substrate to accomplish these goals...

  7. Accounting for costs, QALYs, and capacity constraints: using discrete-event simulation to evaluate alternative service delivery and organizational scenarios for hospital-based glaucoma services.

    Science.gov (United States)

    Crane, Glenis J; Kymes, Steven M; Hiller, Janet E; Casson, Robert; Martin, Adam; Karnon, Jonathan D

    2013-11-01

    Decision-analytic models are routinely used as a framework for cost-effectiveness analyses of health care services and technologies; however, these models mostly ignore resource constraints. In this study, we use a discrete-event simulation model to inform a cost-effectiveness analysis of alternative options for the organization and delivery of clinical services in the ophthalmology department of a public hospital. The model is novel, given that it represents both disease outcomes and resource constraints in a routine clinical setting. A 5-year discrete-event simulation model representing glaucoma patient services at the Royal Adelaide Hospital (RAH) was implemented and calibrated to patient-level data. The data were sourced from routinely collected waiting and appointment lists, patient record data, and the published literature. Patient-level costs and quality-adjusted life years were estimated for a range of alternative scenarios, including combinations of alternate follow-up times, booking cycles, and treatment pathways. The model shows that a) extending booking cycle length from 4 to 6 months, b) extending follow-up visit times by 2 to 3 months, and c) using laser in preference to medication are more cost-effective than current practice at the RAH eye clinic. The current simulation model provides a useful tool for informing improvements in the organization and delivery of glaucoma services at a local level (e.g., within a hospital), on the basis of expected effects on costs and health outcomes while accounting for current capacity constraints. Our model may be adapted to represent glaucoma services at other hospitals, whereas the general modeling approach could be applied to many other clinical service areas.

  8. Theoretical and experimental analysis of amplitude control ablation and bipolar ablation in creating linear lesion and discrete lesions for treating atrial fibrillation.

    Science.gov (United States)

    Yan, Shengjie; Wu, Xiaomei; Wang, Weiqi

    2017-09-01

    Radiofrequency (RF) energy is often used to create a linear lesion or discrete lesions for blocking the accessory conduction pathways for treating atrial fibrillation. By using finite element analysis, we study the ablation effect of amplitude control ablation mode (AcM) and bipolar ablation mode (BiM) in creating a linear lesion and discrete lesions in a 5-mm-thick atrial wall; particularly, the characteristic of lesion shape has been investigated in amplitude control ablation. Computer models of multipolar catheter were developed to study the lesion dimensions in atrial walls created through AcM, BiM and special electrodes activated ablation methods in AcM and BiM. To validate the theoretical results in this study, an in vitro experiment with porcine cardiac tissue was performed. At 40 V/20 V root mean squared (RMS) of the RF voltage for AcM, the continuous and transmural lesion was created by AcM-15s, AcM-5s and AcM-ad-20V ablation in 5-mm-thick atrial wall. At 20 V RMS for BiM, the continuous but not transmural lesion was created. AcM ablation yielded asymmetrical and discrete lesions shape, whereas the lesion shape turned to more symmetrical and continuous as the electrodes alternative activated period decreased from 15 s to 5 s. Two discrete lesions were created when using AcM, AcM-ad-40V, BiM-ad-20V and BiM-ad-40V. The experimental and computational thermal lesion shapes created in cardiac tissue were in agreement. Amplitude control ablation technology and bipolar ablation technology are feasible methods to create continuous lesion or discrete for pulmonary veins isolation.

  9. Identification "boîte-noire" des systèmes automatisés à événements discrets

    OpenAIRE

    Estrada Vargas , Ana Paula

    2013-01-01

    This thesis deals with the identification of automated discrete event systems (DES) operating in an industrial context. In particular the work focuses on the systems composed by a plant and a programmable logic controller (PLC) operating in a closed loop- the identification consists in obtaining an approximate model expressed in interpreted Petri nets (IPN) from the observed behaviour given under the form of a single sequence of input-output vectors of the PLC. First, an overview of previous ...

  10. Using relational databases to collect and store discrete-event simulation results

    DEFF Research Database (Denmark)

    Poderys, Justas; Soler, José

    2016-01-01

    , export the results to a data carrier file and then process the results stored in a file using the data processing software. In this work, we propose to save the simulation results directly from a simulation tool to a computer database. We implemented a link between the discrete-even simulation tool...... and the database and performed performance evaluation of 3 different open-source database systems. We show, that with a right choice of a database system, simulation results can be collected and exported up to 2.67 times faster, and use 1.78 times less disk space when compared to using simulation software built...

  11. Event-by-event simulation of single-neutron experiments to test uncertainty relations

    International Nuclear Information System (INIS)

    Raedt, H De; Michielsen, K

    2014-01-01

    Results from a discrete-event simulation of a recent single-neutron experiment that tests Ozawa's generalization of Heisenberg's uncertainty relation are presented. The event-based simulation algorithm reproduces the results of the quantum theoretical description of the experiment but does not require the knowledge of the solution of a wave equation, nor does it rely on detailed concepts of quantum theory. In particular, the data from these non-quantum simulations satisfy uncertainty relations derived in the context of quantum theory. (paper)

  12. Discrete-Time Local Value Iteration Adaptive Dynamic Programming: Admissibility and Termination Analysis.

    Science.gov (United States)

    Wei, Qinglai; Liu, Derong; Lin, Qiao

    In this paper, a novel local value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon optimal control problems for discrete-time nonlinear systems. The focuses of this paper are to study admissibility properties and the termination criteria of discrete-time local value iteration ADP algorithms. In the discrete-time local value iteration ADP algorithm, the iterative value functions and the iterative control laws are both updated in a given subset of the state space in each iteration, instead of the whole state space. For the first time, admissibility properties of iterative control laws are analyzed for the local value iteration ADP algorithm. New termination criteria are established, which terminate the iterative local ADP algorithm with an admissible approximate optimal control law. Finally, simulation results are given to illustrate the performance of the developed algorithm.In this paper, a novel local value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon optimal control problems for discrete-time nonlinear systems. The focuses of this paper are to study admissibility properties and the termination criteria of discrete-time local value iteration ADP algorithms. In the discrete-time local value iteration ADP algorithm, the iterative value functions and the iterative control laws are both updated in a given subset of the state space in each iteration, instead of the whole state space. For the first time, admissibility properties of iterative control laws are analyzed for the local value iteration ADP algorithm. New termination criteria are established, which terminate the iterative local ADP algorithm with an admissible approximate optimal control law. Finally, simulation results are given to illustrate the performance of the developed algorithm.

  13. Observer-based adaptive control of chaos in nonlinear discrete-time systems using time-delayed state feedback

    International Nuclear Information System (INIS)

    Goharrizi, Amin Yazdanpanah; Khaki-Sedigh, Ali; Sepehri, Nariman

    2009-01-01

    A new approach to adaptive control of chaos in a class of nonlinear discrete-time-varying systems, using a delayed state feedback scheme, is presented. It is discussed that such systems can show chaotic behavior as their parameters change. A strategy is employed for on-line calculation of the Lyapunov exponents that will be used within an adaptive scheme that decides on the control effort to suppress the chaotic behavior once detected. The scheme is further augmented with a nonlinear observer for estimation of the states that are required by the controller but are hard to measure. Simulation results for chaotic control problem of Jin map are provided to show the effectiveness of the proposed scheme.

  14. Episodes, events, and models

    Directory of Open Access Journals (Sweden)

    Sangeet eKhemlani

    2015-10-01

    Full Text Available We describe a novel computational theory of how individuals segment perceptual information into representations of events. The theory is inspired by recent findings in the cognitive science and cognitive neuroscience of event segmentation. In line with recent theories, it holds that online event segmentation is automatic, and that event segmentation yields mental simulations of events. But it posits two novel principles as well: first, discrete episodic markers track perceptual and conceptual changes, and can be retrieved to construct event models. Second, the process of retrieving and reconstructing those episodic markers is constrained and prioritized. We describe a computational implementation of the theory, as well as a robotic extension of the theory that demonstrates the processes of online event segmentation and event model construction. The theory is the first unified computational account of event segmentation and temporal inference. We conclude by demonstrating now neuroimaging data can constrain and inspire the construction of process-level theories of human reasoning.

  15. Control Design for Untimed Petri Nets Using Markov Decision Processes

    Directory of Open Access Journals (Sweden)

    Cherki Daoui

    2017-01-01

    Full Text Available Design of control sequences for discrete event systems (DESs has been presented modelled by untimed Petri nets (PNs. PNs are well-known mathematical and graphical models that are widely used to describe distributed DESs, including choices, synchronizations and parallelisms. The domains of application include, but are not restricted to, manufacturing systems, computer science and transportation networks. We are motivated by the observation that such systems need to plan their production or services. The paper is more particularly concerned with control issues in uncertain environments when unexpected events occur or when control errors disturb the behaviour of the system. To deal with such uncertainties, a new approach based on discrete time Markov decision processes (MDPs has been proposed that associates the modelling power of PNs with the planning power of MDPs. Finally, the simulation results illustrate the benefit of our method from the computational point of view. (original abstract

  16. Abstracting event-based control models for high autonomy systems

    Science.gov (United States)

    Luh, Cheng-Jye; Zeigler, Bernard P.

    1993-01-01

    A high autonomy system needs many models on which to base control, management, design, and other interventions. These models differ in level of abstraction and in formalism. Concepts and tools are needed to organize the models into a coherent whole. The paper deals with the abstraction processes for systematic derivation of related models for use in event-based control. The multifaceted modeling methodology is briefly reviewed. The morphism concepts needed for application to model abstraction are described. A theory for supporting the construction of DEVS models needed for event-based control is then presented. An implemented morphism on the basis of this theory is also described.

  17. Event-triggered output feedback control for distributed networked systems.

    Science.gov (United States)

    Mahmoud, Magdi S; Sabih, Muhammad; Elshafei, Moustafa

    2016-01-01

    This paper addresses the problem of output-feedback communication and control with event-triggered framework in the context of distributed networked control systems. The design problem of the event-triggered output-feedback control is proposed as a linear matrix inequality (LMI) feasibility problem. The scheme is developed for the distributed system where only partial states are available. In this scheme, a subsystem uses local observers and share its information to its neighbors only when the subsystem's local error exceeds a specified threshold. The developed method is illustrated by using a coupled cart example from the literature. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Discrete Exterior Calculus Discretization of Incompressible Navier-Stokes Equations

    KAUST Repository

    Mohamed, Mamdouh S.

    2017-05-23

    A conservative discretization of incompressible Navier-Stokes equations over surface simplicial meshes is developed using discrete exterior calculus (DEC). Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy otherwise. The mimetic character of many of the DEC operators provides exact conservation of both mass and vorticity, in addition to superior kinetic energy conservation. The employment of barycentric Hodge star allows the discretization to admit arbitrary simplicial meshes. The discretization scheme is presented along with various numerical test cases demonstrating its main characteristics.

  19. Life events, locus of control, and behavioral problems among Chinese adolescents.

    Science.gov (United States)

    Liu, X; Kurita, H; Uchiyama, M; Okawa, M; Liu, L; Ma, D

    2000-12-01

    This study examined associations of life events and locus of control with behavioral problems among 1,365 Chinese adolescents by using the Youth Self-Report (YSR), Adolescent Self-Rating Life Events Checklist (ASLEC), and the Nowicki-Strickland Locus of Control Scale for Children. Results indicated that the overall prevalence of behavioral and emotional problems was 10.7% (95% CI = 9.9-11.5%). Logistic-regression analyses showed that a total of 13 negative life events mainly coming from academic domain and interpersonal relationships, high life-stress score, and high external locus score significantly increased the risk for behavioral problems. Life stress and locus of control significantly interacted with behavioral problems. These findings support the linkage between stressful life events and psychopathology in a general population of adolescents from mainland China, and demonstrate the stress-moderating effects of locus of control on psychopathology as well.

  20. A Discrete-Time Chattering Free Sliding Mode Control with Multirate Sampling Method for Flight Simulator

    Directory of Open Access Journals (Sweden)

    Yunjie Wu

    2013-01-01

    Full Text Available In order to improve the tracking accuracy of flight simulator and expend its frequency response, a multirate-sampling-method-based discrete-time chattering free sliding mode control is developed and imported into the systems. By constructing the multirate sampling sliding mode controller, the flight simulator can perfectly track a given reference signal with an arbitrarily small dynamic tracking error, and the problems caused by a contradiction of reference signal period and control period in traditional design method can be eliminated. It is proved by theoretical analysis that the extremely high dynamic tracking precision can be obtained. Meanwhile, the robustness is guaranteed by sliding mode control even though there are modeling mismatch, external disturbances and measure noise. The validity of the proposed method is confirmed by experiments on flight simulator.

  1. Model Development for Auto Spare Parts Inventory Control and ...

    African Journals Online (AJOL)

    2012-12-01

    Dec 1, 2012 ... essential motivating factors for providing control in manufacturing companies has never showed any sign ... The management of these parts can only be done with the aid of a computer; ... perform a discrete event simulation of.

  2. Value Iteration Adaptive Dynamic Programming for Optimal Control of Discrete-Time Nonlinear Systems.

    Science.gov (United States)

    Wei, Qinglai; Liu, Derong; Lin, Hanquan

    2016-03-01

    In this paper, a value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon undiscounted optimal control problems for discrete-time nonlinear systems. The present value iteration ADP algorithm permits an arbitrary positive semi-definite function to initialize the algorithm. A novel convergence analysis is developed to guarantee that the iterative value function converges to the optimal performance index function. Initialized by different initial functions, it is proven that the iterative value function will be monotonically nonincreasing, monotonically nondecreasing, or nonmonotonic and will converge to the optimum. In this paper, for the first time, the admissibility properties of the iterative control laws are developed for value iteration algorithms. It is emphasized that new termination criteria are established to guarantee the effectiveness of the iterative control laws. Neural networks are used to approximate the iterative value function and compute the iterative control law, respectively, for facilitating the implementation of the iterative ADP algorithm. Finally, two simulation examples are given to illustrate the performance of the present method.

  3. Compatible Spatial Discretizations for Partial Differential Equations

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Douglas, N, ed.

    2004-11-25

    From May 11--15, 2004, the Institute for Mathematics and its Applications held a hot topics workshop on Compatible Spatial Discretizations for Partial Differential Equations. The numerical solution of partial differential equations (PDE) is a fundamental task in science and engineering. The goal of the workshop was to bring together a spectrum of scientists at the forefront of the research in the numerical solution of PDEs to discuss compatible spatial discretizations. We define compatible spatial discretizations as those that inherit or mimic fundamental properties of the PDE such as topology, conservation, symmetries, and positivity structures and maximum principles. A wide variety of discretization methods applied across a wide range of scientific and engineering applications have been designed to or found to inherit or mimic intrinsic spatial structure and reproduce fundamental properties of the solution of the continuous PDE model at the finite dimensional level. A profusion of such methods and concepts relevant to understanding them have been developed and explored: mixed finite element methods, mimetic finite differences, support operator methods, control volume methods, discrete differential forms, Whitney forms, conservative differencing, discrete Hodge operators, discrete Helmholtz decomposition, finite integration techniques, staggered grid and dual grid methods, etc. This workshop seeks to foster communication among the diverse groups of researchers designing, applying, and studying such methods as well as researchers involved in practical solution of large scale problems that may benefit from advancements in such discretizations; to help elucidate the relations between the different methods and concepts; and to generally advance our understanding in the area of compatible spatial discretization methods for PDE. Particular points of emphasis included: + Identification of intrinsic properties of PDE models that are critical for the fidelity of numerical

  4. Modelling road accident blackspots data with the discrete generalized Pareto distribution.

    Science.gov (United States)

    Prieto, Faustino; Gómez-Déniz, Emilio; Sarabia, José María

    2014-10-01

    This study shows how road traffic networks events, in particular road accidents on blackspots, can be modelled with simple probabilistic distributions. We considered the number of crashes and the number of fatalities on Spanish blackspots in the period 2003-2007, from Spanish General Directorate of Traffic (DGT). We modelled those datasets, respectively, with the discrete generalized Pareto distribution (a discrete parametric model with three parameters) and with the discrete Lomax distribution (a discrete parametric model with two parameters, and particular case of the previous model). For that, we analyzed the basic properties of both parametric models: cumulative distribution, survival, probability mass, quantile and hazard functions, genesis and rth-order moments; applied two estimation methods of their parameters: the μ and (μ+1) frequency method and the maximum likelihood method; used two goodness-of-fit tests: Chi-square test and discrete Kolmogorov-Smirnov test based on bootstrap resampling; and compared them with the classical negative binomial distribution in terms of absolute probabilities and in models including covariates. We found that those probabilistic models can be useful to describe the road accident blackspots datasets analyzed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Discrete variational Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Lall, S; West, M

    2006-01-01

    The main contribution of this paper is to present a canonical choice of a Hamiltonian theory corresponding to the theory of discrete Lagrangian mechanics. We make use of Lagrange duality and follow a path parallel to that used for construction of the Pontryagin principle in optimal control theory. We use duality results regarding sensitivity and separability to show the relationship between generating functions and symplectic integrators. We also discuss connections to optimal control theory and numerical algorithms

  6. Dynamic Event Tree advancements and control logic improvements

    Energy Technology Data Exchange (ETDEWEB)

    Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sen, Ramazan Sonat [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cogliati, Joshua Joseph [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The RAVEN code has been under development at the Idaho National Laboratory since 2012. Its main goal is to create a multi-purpose platform for the deploying of all the capabilities needed for Probabilistic Risk Assessment, uncertainty quantification, data mining analysis and optimization studies. RAVEN is currently equipped with three different sampling categories: Forward samplers (Monte Carlo, Latin Hyper Cube, Stratified, Grid Sampler, Factorials, etc.), Adaptive Samplers (Limit Surface search, Adaptive Polynomial Chaos, etc.) and Dynamic Event Tree (DET) samplers (Deterministic and Adaptive Dynamic Event Trees). The main subject of this document is to report the activities that have been done in order to: start the migration of the RAVEN/RELAP-7 control logic system into MOOSE, and develop advanced dynamic sampling capabilities based on the Dynamic Event Tree approach. In order to provide to all MOOSE-based applications a control logic capability, in this Fiscal Year an initial migration activity has been initiated, moving the control logic system, designed for RELAP-7 by the RAVEN team, into the MOOSE framework. In this document, a brief explanation of what has been done is going to be reported. The second and most important subject of this report is about the development of a Dynamic Event Tree (DET) sampler named “Hybrid Dynamic Event Tree” (HDET) and its Adaptive variant “Adaptive Hybrid Dynamic Event Tree” (AHDET). As other authors have already reported, among the different types of uncertainties, it is possible to discern two principle types: aleatory and epistemic uncertainties. The classical Dynamic Event Tree is in charge of treating the first class (aleatory) uncertainties; the dependence of the probabilistic risk assessment and analysis on the epistemic uncertainties are treated by an initial Monte Carlo sampling (MCDET). From each Monte Carlo sample, a DET analysis is run (in total, N trees). The Monte Carlo employs a pre-sampling of the

  7. Dynamic Event Tree advancements and control logic improvements

    International Nuclear Information System (INIS)

    Alfonsi, Andrea; Rabiti, Cristian; Mandelli, Diego; Sen, Ramazan Sonat; Cogliati, Joshua Joseph

    2015-01-01

    The RAVEN code has been under development at the Idaho National Laboratory since 2012. Its main goal is to create a multi-purpose platform for the deploying of all the capabilities needed for Probabilistic Risk Assessment, uncertainty quantification, data mining analysis and optimization studies. RAVEN is currently equipped with three different sampling categories: Forward samplers (Monte Carlo, Latin Hyper Cube, Stratified, Grid Sampler, Factorials, etc.), Adaptive Samplers (Limit Surface search, Adaptive Polynomial Chaos, etc.) and Dynamic Event Tree (DET) samplers (Deterministic and Adaptive Dynamic Event Trees). The main subject of this document is to report the activities that have been done in order to: start the migration of the RAVEN/RELAP-7 control logic system into MOOSE, and develop advanced dynamic sampling capabilities based on the Dynamic Event Tree approach. In order to provide to all MOOSE-based applications a control logic capability, in this Fiscal Year an initial migration activity has been initiated, moving the control logic system, designed for RELAP-7 by the RAVEN team, into the MOOSE framework. In this document, a brief explanation of what has been done is going to be reported. The second and most important subject of this report is about the development of a Dynamic Event Tree (DET) sampler named 'Hybrid Dynamic Event Tree' (HDET) and its Adaptive variant 'Adaptive Hybrid Dynamic Event Tree' (AHDET). As other authors have already reported, among the different types of uncertainties, it is possible to discern two principle types: aleatory and epistemic uncertainties. The classical Dynamic Event Tree is in charge of treating the first class (aleatory) uncertainties; the dependence of the probabilistic risk assessment and analysis on the epistemic uncertainties are treated by an initial Monte Carlo sampling (MCDET). From each Monte Carlo sample, a DET analysis is run (in total, N trees). The Monte Carlo employs a pre

  8. A discrete event modelling framework for simulation of long-term outcomes of sequential treatment strategies for ankylosing spondylitis.

    Science.gov (United States)

    Tran-Duy, An; Boonen, Annelies; van de Laar, Mart A F J; Franke, Angelinus C; Severens, Johan L

    2011-12-01

    To develop a modelling framework which can simulate long-term quality of life, societal costs and cost-effectiveness as affected by sequential drug treatment strategies for ankylosing spondylitis (AS). Discrete event simulation paradigm was selected for model development. Drug efficacy was modelled as changes in disease activity (Bath Ankylosing Spondylitis Disease Activity Index (BASDAI)) and functional status (Bath Ankylosing Spondylitis Functional Index (BASFI)), which were linked to costs and health utility using statistical models fitted based on an observational AS cohort. Published clinical data were used to estimate drug efficacy and time to events. Two strategies were compared: (1) five available non-steroidal anti-inflammatory drugs (strategy 1) and (2) same as strategy 1 plus two tumour necrosis factor α inhibitors (strategy 2). 13,000 patients were followed up individually until death. For probability sensitivity analysis, Monte Carlo simulations were performed with 1000 sets of parameters sampled from the appropriate probability distributions. The models successfully generated valid data on treatments, BASDAI, BASFI, utility, quality-adjusted life years (QALYs) and costs at time points with intervals of 1-3 months during the simulation length of 70 years. Incremental cost per QALY gained in strategy 2 compared with strategy 1 was €35,186. At a willingness-to-pay threshold of €80,000, it was 99.9% certain that strategy 2 was cost-effective. The modelling framework provides great flexibility to implement complex algorithms representing treatment selection, disease progression and changes in costs and utilities over time of patients with AS. Results obtained from the simulation are plausible.

  9. Distributed computation of supremal conditionally-controllable sublanguages

    Czech Academy of Sciences Publication Activity Database

    Komenda, Jan; Masopust, Tomáš

    2016-01-01

    Roč. 89, č. 2 (2016), s. 424-436 ISSN 0020-7179 R&D Projects: GA ČR GA15-02532S; GA MŠk LH13012 Institutional support: RVO:67985840 Keywords : discrete-event systems * supervisory control * coordination control Subject RIV: BA - General Mathematics Impact factor: 2.208, year: 2016 http://www.tandfonline.com/doi/full/10.1080/00207179.2015.1079736

  10. Multi-channel control circuit for real-time control of events in Aditya tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Edappala, Praveenlal, E-mail: praveen@ipr.res.in; Shah, Minsha; Rajpal, Rachana; Tanna, R.L.; Ghosh, Joydeep; Chattopadhyay, P.K.; Jha, R.

    2016-11-15

    Highlights: • Low cost microcontroller based control circuit. • The control hardware can be programmed/configured very easily for different applications. • Microcontroller programming is done in assembly language so that precise timing can be achieved with micro seconds resolution. • Successful implementation of this circuit in noisy tokamak environment. • Efficient noise and burst elimination. • Can be integrated in to the other subsystems. • Low cost solution for implementing feedback control in small and medium size tokamaks and other experiments requiring feedback control. - Abstract: Tokamak plasma is prone to many random events having potential for causing severe damages to the machine, such as disruptions, production and elimination of high-energy runaway electrons etc. These events can be mitigated by obtaining pre-cursor signal leading to these events and then taking proper measures just before their onset to avoid their happenings, like disruptions can be mitigated by massive gas injection or putting a bias voltage on an electrode placed inside the plasma, the runaways can be mitigated by gas injection and by applying specific magnetic fields. Hence for real time control of these events, the pre-cursors should be electronically recorded and the mitigation techniques should be initiated by sending triggers to their individual operational systems. To implement these methodologies of real-time controlling of events in Aditya Tokamak, a low cost multi-channel Micro-Controller based timing circuit is designed and developed in-house. This circuit first compares the precursor signals fed into it with the pre-set values and gives a trigger output whenever the signals overshoot the pre-set values. The circuit readies itself for operation along with start of the tokamak discharge and waits up to an initial pre-determined delay and then initiates a trigger at the time of overshooting of precursor signal. The circuit is fully integrated and assembled in

  11. Discrete gene replication events drive coupling between the cell cycle and circadian clocks.

    Science.gov (United States)

    Paijmans, Joris; Bosman, Mark; Ten Wolde, Pieter Rein; Lubensky, David K

    2016-04-12

    Many organisms possess both a cell cycle to control DNA replication and a circadian clock to anticipate changes between day and night. In some cases, these two rhythmic systems are known to be coupled by specific, cross-regulatory interactions. Here, we use mathematical modeling to show that, additionally, the cell cycle generically influences circadian clocks in a nonspecific fashion: The regular, discrete jumps in gene-copy number arising from DNA replication during the cell cycle cause a periodic driving of the circadian clock, which can dramatically alter its behavior and impair its function. A clock built on negative transcriptional feedback either phase-locks to the cell cycle, so that the clock period tracks the cell division time, or exhibits erratic behavior. We argue that the cyanobacterium Synechococcus elongatus has evolved two features that protect its clock from such disturbances, both of which are needed to fully insulate it from the cell cycle and give it its observed robustness: a phosphorylation-based protein modification oscillator, together with its accompanying push-pull read-out circuit that responds primarily to the ratios of different phosphoform concentrations, makes the clock less susceptible to perturbations in protein synthesis; the presence of multiple, asynchronously replicating copies of the same chromosome diminishes the effect of replicating any single copy of a gene.

  12. Generation and monitoring of discrete stable random processes using multiple immigration population models

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, J O; Hopcraft, K I; Jakeman, E [Applied Mathematics Division, School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD (United Kingdom)

    2003-11-21

    Some properties of classical population processes that comprise births, deaths and multiple immigrations are investigated. The rates at which the immigrants arrive can be tailored to produce a population whose steady state fluctuations are described by a pre-selected distribution. Attention is focused on the class of distributions with a discrete stable law, which have power-law tails and whose moments and autocorrelation function do not exist. The separate problem of monitoring and characterizing the fluctuations is studied, analysing the statistics of individuals that leave the population. The fluctuations in the size of the population are transferred to the times between emigrants that form an intermittent time series of events. The emigrants are counted with a detector of finite dynamic range and response time. This is modelled through clipping the time series or saturating it at an arbitrary but finite level, whereupon its moments and correlation properties become finite. Distributions for the time to the first counted event and for the time between events exhibit power-law regimes that are characteristic of the fluctuations in population size. The processes provide analytical models with which properties of complex discrete random phenomena can be explored, and in addition provide generic means by which random time series encompassing a wide range of intermittent and other discrete random behaviour may be generated.

  13. Generation and monitoring of discrete stable random processes using multiple immigration population models

    International Nuclear Information System (INIS)

    Matthews, J O; Hopcraft, K I; Jakeman, E

    2003-01-01

    Some properties of classical population processes that comprise births, deaths and multiple immigrations are investigated. The rates at which the immigrants arrive can be tailored to produce a population whose steady state fluctuations are described by a pre-selected distribution. Attention is focused on the class of distributions with a discrete stable law, which have power-law tails and whose moments and autocorrelation function do not exist. The separate problem of monitoring and characterizing the fluctuations is studied, analysing the statistics of individuals that leave the population. The fluctuations in the size of the population are transferred to the times between emigrants that form an intermittent time series of events. The emigrants are counted with a detector of finite dynamic range and response time. This is modelled through clipping the time series or saturating it at an arbitrary but finite level, whereupon its moments and correlation properties become finite. Distributions for the time to the first counted event and for the time between events exhibit power-law regimes that are characteristic of the fluctuations in population size. The processes provide analytical models with which properties of complex discrete random phenomena can be explored, and in addition provide generic means by which random time series encompassing a wide range of intermittent and other discrete random behaviour may be generated

  14. GXNOR-Net: Training deep neural networks with ternary weights and activations without full-precision memory under a unified discretization framework.

    Science.gov (United States)

    Deng, Lei; Jiao, Peng; Pei, Jing; Wu, Zhenzhi; Li, Guoqi

    2018-04-01

    Although deep neural networks (DNNs) are being a revolutionary power to open up the AI era, the notoriously huge hardware overhead has challenged their applications. Recently, several binary and ternary networks, in which the costly multiply-accumulate operations can be replaced by accumulations or even binary logic operations, make the on-chip training of DNNs quite promising. Therefore there is a pressing need to build an architecture that could subsume these networks under a unified framework that achieves both higher performance and less overhead. To this end, two fundamental issues are yet to be addressed. The first one is how to implement the back propagation when neuronal activations are discrete. The second one is how to remove the full-precision hidden weights in the training phase to break the bottlenecks of memory/computation consumption. To address the first issue, we present a multi-step neuronal activation discretization method and a derivative approximation technique that enable the implementing the back propagation algorithm on discrete DNNs. While for the second issue, we propose a discrete state transition (DST) methodology to constrain the weights in a discrete space without saving the hidden weights. Through this way, we build a unified framework that subsumes the binary or ternary networks as its special cases, and under which a heuristic algorithm is provided at the website https://github.com/AcrossV/Gated-XNOR. More particularly, we find that when both the weights and activations become ternary values, the DNNs can be reduced to sparse binary networks, termed as gated XNOR networks (GXNOR-Nets) since only the event of non-zero weight and non-zero activation enables the control gate to start the XNOR logic operations in the original binary networks. This promises the event-driven hardware design for efficient mobile intelligence. We achieve advanced performance compared with state-of-the-art algorithms. Furthermore, the computational sparsity

  15. Co-Design of Event Generator and Dynamic Output Feedback Controller for LTI Systems

    Directory of Open Access Journals (Sweden)

    Dan Ma

    2015-01-01

    Full Text Available This paper presents a co-design method of the event generator and the dynamic output feedback controller for a linear time-invariant (LIT system. The event-triggered condition on the sensor-to-controller and the controller-to-actuator depends on the plant output and the controller output, respectively. A sufficient condition on the existence of the event generator and the dynamic output feedback controller is proposed and the co-design problem can be converted into the feasibility of linear matrix inequalities (LMIs. The LTI system is asymptotically stable under the proposed event-triggered controller and also reduces the computing resources with respect to the time-triggered one. In the end, a numerical example is given to illustrate the effectiveness of the proposed approach.

  16. A novel technique to extract events from access control system and locate persons

    International Nuclear Information System (INIS)

    Vincent, M.; Vaidyanathan, Mythili; Patidar, Suresh Chandra; Prabhakara Rao, G.

    2011-01-01

    Indira Gandhi Centre for Atomic Research houses many laboratories which handle radioactive materials and classified materials. Protection and accounting of men and material and critical facilities are important aspect of nuclear security. Access Control System (ACS) is used to enhance the protective measures against elevated threat environment. Access control system hardware consists of hand geometry readers, RFID readers, Controllers, Electromagnetic door locks, Turnstiles, fiber cable laying and termination etc. Access Control System controls and monitors the people accessing the secured facilities. Access Control System generates events on: 1. Showing of RFID card, 2. Rotation of turnstile, 3. Download of valid card numbers, 4. Generation of alarms etc. Access control system turnstiles are located in main entrance of a facility, entrance of inside laboratory and door locks are fixed on secured facilities. Events are stored in SQL server database. From the events stored in database a novel technique is developed to extract events and list the persons in a particular facility, list all entry/exit events on one day, list the first in and last out entries. This paper discusses the complex multi level group by queries and software developed to extract events from database, locate persons and generate reports. Software is developed as a web application in ASP.Net and query is written in SQL. User can select the doors, type of events and generate reports. Reports are generated using the master data stored about employees RFID cards and events data stored in tables. Four types of reports are generated 1. Plant Emergency Report, 2. Locate User Report, 3. Entry - Exit Report, 4. First in Last out Report. To generate plant emergency report for whole plant only events generated in outer gates have to be considered. To generate plant emergency report for inside laboratory, events generated in entrance gates have to be ignored. (author)

  17. Synchronization of Switched Neural Networks With Communication Delays via the Event-Triggered Control.

    Science.gov (United States)

    Wen, Shiping; Zeng, Zhigang; Chen, Michael Z Q; Huang, Tingwen

    2017-10-01

    This paper addresses the issue of synchronization of switched delayed neural networks with communication delays via event-triggered control. For synchronizing coupled switched neural networks, we propose a novel event-triggered control law which could greatly reduce the number of control updates for synchronization tasks of coupled switched neural networks involving embedded microprocessors with limited on-board resources. The control signals are driven by properly defined events, which depend on the measurement errors and current-sampled states. By using a delay system method, a novel model of synchronization error system with delays is proposed with the communication delays and event-triggered control in the unified framework for coupled switched neural networks. The criteria are derived for the event-triggered synchronization analysis and control synthesis of switched neural networks via the Lyapunov-Krasovskii functional method and free weighting matrix approach. A numerical example is elaborated on to illustrate the effectiveness of the derived results.

  18. An introduction to non-Abelian discrete symmetries for particle physicists

    CERN Document Server

    Ishimori, Hajime; Ohki, Hiroshi; Okada, Hiroshi; Shimizu, Yusuke; Tanimoto, Morimitsu

    2012-01-01

    These lecture notes provide a tutorial review of non-Abelian discrete groups and show some applications to issues in physics where discrete symmetries constitute an important principle for model building in particle physics. While Abelian discrete symmetries are often imposed in order to control couplings for particle physics - in particular model building beyond the standard model - non-Abelian discrete symmetries have been applied to understand the three-generation flavor structure in particular. Indeed, non-Abelian discrete symmetries are considered to be the most attractive choice for the flavor sector: model builders have tried to derive experimental values of quark and lepton masses, and mixing angles by assuming non-Abelian discrete flavor symmetries of quarks and leptons, yet, lepton mixing has already been intensively discussed in this context, as well. The possible origins of the non-Abelian discrete symmetry for flavors is another topic of interest, as they can arise from an underlying theory -...

  19. Discrete dynamic event tree modeling and analysis of nuclear power plant crews for safety assessment

    International Nuclear Information System (INIS)

    Mercurio, D.

    2011-01-01

    Current Probabilistic Risk Assessment (PRA) and Human Reliability Analysis (HRA) methodologies model the evolution of accident sequences in Nuclear Power Plants (NPPs) mainly based on Logic Trees. The evolution of these sequences is a result of the interactions between the crew and plant; in current PRA methodologies, simplified models of these complex interactions are used. In this study, the Accident Dynamic Simulator (ADS), a modeling framework based on the Discrete Dynamic Event Tree (DDET), has been used for the simulation of crew-plant interactions during potential accident scenarios in NPPs. In addition, an operator/crew model has been developed to treat the response of the crew to the plant. The 'crew model' is made up of three operators whose behavior is guided by a set of rules-of-behavior (which represents the knowledge and training of the operators) coupled with written and mental procedures. In addition, an approach for addressing the crew timing variability in DDETs has been developed and implemented based on a set of HRA data from a simulator study. Finally, grouping techniques were developed and applied to the analysis of the scenarios generated by the crew-plant simulation. These techniques support the post-simulation analysis by grouping similar accident sequences, identifying the key contributing events, and quantifying the conditional probability of the groups. These techniques are used to characterize the context of the crew actions in order to obtain insights for HRA. The model has been applied for the analysis of a Small Loss Of Coolant Accident (SLOCA) event for a Pressurized Water Reactor (PWR). The simulation results support an improved characterization of the performance conditions or context of operator actions, which can be used in an HRA, in the analysis of the reliability of the actions. By providing information on the evolution of system indications, dynamic of cues, crew timing in performing procedure steps, situation

  20. Cooperative Control of Mobile Sensor Networks for Environmental Monitoring: An Event-Triggered Finite-Time Control Scheme.

    Science.gov (United States)

    Lu, Qiang; Han, Qing-Long; Zhang, Botao; Liu, Dongliang; Liu, Shirong

    2017-12-01

    This paper deals with the problem of environmental monitoring by developing an event-triggered finite-time control scheme for mobile sensor networks. The proposed control scheme can be executed by each sensor node independently and consists of two parts: one part is a finite-time consensus algorithm while the other part is an event-triggered rule. The consensus algorithm is employed to enable the positions and velocities of sensor nodes to quickly track the position and velocity of a virtual leader in finite time. The event-triggered rule is used to reduce the updating frequency of controllers in order to save the computational resources of sensor nodes. Some stability conditions are derived for mobile sensor networks with the proposed control scheme under both a fixed communication topology and a switching communication topology. Finally, simulation results illustrate the effectiveness of the proposed control scheme for the problem of environmental monitoring.

  1. Stabilisation of discrete-time polynomial fuzzy systems via a polynomial lyapunov approach

    Science.gov (United States)

    Nasiri, Alireza; Nguang, Sing Kiong; Swain, Akshya; Almakhles, Dhafer

    2018-02-01

    This paper deals with the problem of designing a controller for a class of discrete-time nonlinear systems which is represented by discrete-time polynomial fuzzy model. Most of the existing control design methods for discrete-time fuzzy polynomial systems cannot guarantee their Lyapunov function to be a radially unbounded polynomial function, hence the global stability cannot be assured. The proposed control design in this paper guarantees a radially unbounded polynomial Lyapunov functions which ensures global stability. In the proposed design, state feedback structure is considered and non-convexity problem is solved by incorporating an integrator into the controller. Sufficient conditions of stability are derived in terms of polynomial matrix inequalities which are solved via SOSTOOLS in MATLAB. A numerical example is presented to illustrate the effectiveness of the proposed controller.

  2. Discrete Exterior Calculus Discretization of Incompressible Navier-Stokes Equations

    KAUST Repository

    Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi

    2017-01-01

    A conservative discretization of incompressible Navier-Stokes equations over surface simplicial meshes is developed using discrete exterior calculus (DEC). Numerical experiments for flows over surfaces reveal a second order accuracy

  3. Modeling biological tissue growth: discrete to continuum representations.

    Science.gov (United States)

    Hywood, Jack D; Hackett-Jones, Emily J; Landman, Kerry A

    2013-09-01

    There is much interest in building deterministic continuum models from discrete agent-based models governed by local stochastic rules where an agent represents a biological cell. In developmental biology, cells are able to move and undergo cell division on and within growing tissues. A growing tissue is itself made up of cells which undergo cell division, thereby providing a significant transport mechanism for other cells within it. We develop a discrete agent-based model where domain agents represent tissue cells. Each agent has the ability to undergo a proliferation event whereby an additional domain agent is incorporated into the lattice. If a probability distribution describes the waiting times between proliferation events for an individual agent, then the total length of the domain is a random variable. The average behavior of these stochastically proliferating agents defining the growing lattice is determined in terms of a Fokker-Planck equation, with an advection and diffusion term. The diffusion term differs from the one obtained Landman and Binder [J. Theor. Biol. 259, 541 (2009)] when the rate of growth of the domain is specified, but the choice of agents is random. This discrepancy is reconciled by determining a discrete-time master equation for this process and an associated asymmetric nonexclusion random walk, together with consideration of synchronous and asynchronous updating schemes. All theoretical results are confirmed with numerical simulations. This study furthers our understanding of the relationship between agent-based rules, their implementation, and their associated partial differential equations. Since tissue growth is a significant cellular transport mechanism during embryonic growth, it is important to use the correct partial differential equation description when combining with other cellular functions.

  4. Simulating subduction zone earthquakes using discrete element method: a window into elusive source processes

    Science.gov (United States)

    Blank, D. G.; Morgan, J.

    2017-12-01

    Large earthquakes that occur on convergent plate margin interfaces have the potential to cause widespread damage and loss of life. Recent observations reveal that a wide range of different slip behaviors take place along these megathrust faults, which demonstrate both their complexity, and our limited understanding of fault processes and their controls. Numerical modeling provides us with a useful tool that we can use to simulate earthquakes and related slip events, and to make direct observations and correlations among properties and parameters that might control them. Further analysis of these phenomena can lead to a more complete understanding of the underlying mechanisms that accompany the nucleation of large earthquakes, and what might trigger them. In this study, we use the discrete element method (DEM) to create numerical analogs to subduction megathrusts with heterogeneous fault friction. Displacement boundary conditions are applied in order to simulate tectonic loading, which in turn, induces slip along the fault. A wide range of slip behaviors are observed, ranging from creep to stick slip. We are able to characterize slip events by duration, stress drop, rupture area, and slip magnitude, and to correlate the relationships among these quantities. These characterizations allow us to develop a catalog of rupture events both spatially and temporally, for comparison with slip processes on natural faults.

  5. Enhanced Discrete-Time Scheduler Engine for MBMS E-UMTS System Level Simulator

    DEFF Research Database (Denmark)

    Pratas, Nuno; Rodrigues, António

    2007-01-01

    In this paper the design of an E-UMTS system level simulator developed for the study of optimization methods for the MBMS is presented. The simulator uses a discrete event based philosophy, which captures the dynamic behavior of the Radio Network System. This dynamic behavior includes the user...... mobility, radio interfaces and the Radio Access Network. Its given emphasis on the enhancements developed for the simulator core, the Event Scheduler Engine. Two implementations for the Event Scheduler Engine are proposed, one optimized for single core processors and other for multi-core ones....

  6. DISCRETE MATHEMATICS/NUMBER THEORY

    OpenAIRE

    Mrs. Manju Devi*

    2017-01-01

    Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous. In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics such as integers, graphs, and statements do not vary smoothly in this way, but have distinct, separated values. Discrete mathematics therefore excludes topics in "continuous mathematics" such as calculus and analysis. Discrete objects can often be enumerated by ...

  7. A discretized algorithm for the solution of a constrained, continuous ...

    African Journals Online (AJOL)

    A discretized algorithm for the solution of a constrained, continuous quadratic control problem. ... The results obtained show that the Discretized constrained algorithm (DCA) is much more accurate and more efficient than some of these techniques, particularly the FSA. Journal of the Nigerian Association of Mathematical ...

  8. Resonance and web structure in discrete soliton systems: the two-dimensional Toda lattice and its fully discrete and ultra-discrete analogues

    International Nuclear Information System (INIS)

    Maruno, Ken-ichi; Biondini, Gino

    2004-01-01

    We present a class of solutions of the two-dimensional Toda lattice equation, its fully discrete analogue and its ultra-discrete limit. These solutions demonstrate the existence of soliton resonance and web-like structure in discrete integrable systems such as differential-difference equations, difference equations and cellular automata (ultra-discrete equations)

  9. Using the Integration of Discrete Event and Agent-Based Simulation to Enhance Outpatient Service Quality in an Orthopedic Department

    Directory of Open Access Journals (Sweden)

    Cholada Kittipittayakorn

    2016-01-01

    Full Text Available Many hospitals are currently paying more attention to patient satisfaction since it is an important service quality index. Many Asian countries’ healthcare systems have a mixed-type registration, accepting both walk-in patients and scheduled patients. This complex registration system causes a long patient waiting time in outpatient clinics. Different approaches have been proposed to reduce the waiting time. This study uses the integration of discrete event simulation (DES and agent-based simulation (ABS to improve patient waiting time and is the first attempt to apply this approach to solve this key problem faced by orthopedic departments. From the data collected, patient behaviors are modeled and incorporated into a massive agent-based simulation. The proposed approach is an aid for analyzing and modifying orthopedic department processes, allows us to consider far more details, and provides more reliable results. After applying the proposed approach, the total waiting time of the orthopedic department fell from 1246.39 minutes to 847.21 minutes. Thus, using the correct simulation model significantly reduces patient waiting time in an orthopedic department.

  10. Using the Integration of Discrete Event and Agent-Based Simulation to Enhance Outpatient Service Quality in an Orthopedic Department.

    Science.gov (United States)

    Kittipittayakorn, Cholada; Ying, Kuo-Ching

    2016-01-01

    Many hospitals are currently paying more attention to patient satisfaction since it is an important service quality index. Many Asian countries' healthcare systems have a mixed-type registration, accepting both walk-in patients and scheduled patients. This complex registration system causes a long patient waiting time in outpatient clinics. Different approaches have been proposed to reduce the waiting time. This study uses the integration of discrete event simulation (DES) and agent-based simulation (ABS) to improve patient waiting time and is the first attempt to apply this approach to solve this key problem faced by orthopedic departments. From the data collected, patient behaviors are modeled and incorporated into a massive agent-based simulation. The proposed approach is an aid for analyzing and modifying orthopedic department processes, allows us to consider far more details, and provides more reliable results. After applying the proposed approach, the total waiting time of the orthopedic department fell from 1246.39 minutes to 847.21 minutes. Thus, using the correct simulation model significantly reduces patient waiting time in an orthopedic department.

  11. Detection of anomalous events

    Science.gov (United States)

    Ferragut, Erik M.; Laska, Jason A.; Bridges, Robert A.

    2016-06-07

    A system is described for receiving a stream of events and scoring the events based on anomalousness and maliciousness (or other classification). The system can include a plurality of anomaly detectors that together implement an algorithm to identify low-probability events and detect atypical traffic patterns. The anomaly detector provides for comparability of disparate sources of data (e.g., network flow data and firewall logs.) Additionally, the anomaly detector allows for regulatability, meaning that the algorithm can be user configurable to adjust a number of false alerts. The anomaly detector can be used for a variety of probability density functions, including normal Gaussian distributions, irregular distributions, as well as functions associated with continuous or discrete variables.

  12. Event-based cluster synchronization of coupled genetic regulatory networks

    Science.gov (United States)

    Yue, Dandan; Guan, Zhi-Hong; Li, Tao; Liao, Rui-Quan; Liu, Feng; Lai, Qiang

    2017-09-01

    In this paper, the cluster synchronization of coupled genetic regulatory networks with a directed topology is studied by using the event-based strategy and pinning control. An event-triggered condition with a threshold consisting of the neighbors' discrete states at their own event time instants and a state-independent exponential decay function is proposed. The intra-cluster states information and extra-cluster states information are involved in the threshold in different ways. By using the Lyapunov function approach and the theories of matrices and inequalities, we establish the cluster synchronization criterion. It is shown that both the avoidance of continuous transmission of information and the exclusion of the Zeno behavior are ensured under the presented triggering condition. Explicit conditions on the parameters in the threshold are obtained for synchronization. The stability criterion of a single GRN is also given under the reduced triggering condition. Numerical examples are provided to validate the theoretical results.

  13. Digital atom interferometer with single particle control on a discretized space-time geometry.

    Science.gov (United States)

    Steffen, Andreas; Alberti, Andrea; Alt, Wolfgang; Belmechri, Noomen; Hild, Sebastian; Karski, Michał; Widera, Artur; Meschede, Dieter

    2012-06-19

    Engineering quantum particle systems, such as quantum simulators and quantum cellular automata, relies on full coherent control of quantum paths at the single particle level. Here we present an atom interferometer operating with single trapped atoms, where single particle wave packets are controlled through spin-dependent potentials. The interferometer is constructed from a sequence of discrete operations based on a set of elementary building blocks, which permit composing arbitrary interferometer geometries in a digital manner. We use this modularity to devise a space-time analogue of the well-known spin echo technique, yielding insight into decoherence mechanisms. We also demonstrate mesoscopic delocalization of single atoms with a separation-to-localization ratio exceeding 500; this result suggests their utilization beyond quantum logic applications as nano-resolution quantum probes in precision measurements, being able to measure potential gradients with precision 5 x 10(-4) in units of gravitational acceleration g.

  14. Chaos Enhanced Differential Evolution in the Task of Evolutionary Control of Selected Set of Discrete Chaotic Systems

    Directory of Open Access Journals (Sweden)

    Roman Senkerik

    2014-01-01

    Full Text Available Evolutionary technique differential evolution (DE is used for the evolutionary tuning of controller parameters for the stabilization of set of different chaotic systems. The novelty of the approach is that the selected controlled discrete dissipative chaotic system is used also as the chaotic pseudorandom number generator to drive the mutation and crossover process in the DE. The idea was to utilize the hidden chaotic dynamics in pseudorandom sequences given by chaotic map to help differential evolution algorithm search for the best controller settings for the very same chaotic system. The optimizations were performed for three different chaotic systems, two types of case studies and developed cost functions.

  15. A new look at the robust control of discrete-time Markov jump linear systems

    Science.gov (United States)

    Todorov, M. G.; Fragoso, M. D.

    2016-03-01

    In this paper, we make a foray in the role played by a set of four operators on the study of robust H2 and mixed H2/H∞ control problems for discrete-time Markov jump linear systems. These operators appear in the study of mean square stability for this class of systems. By means of new linear matrix inequality (LMI) characterisations of controllers, which include slack variables that, to some extent, separate the robustness and performance objectives, we introduce four alternative approaches to the design of controllers which are robustly stabilising and at the same time provide a guaranteed level of H2 performance. Since each operator provides a different degree of conservatism, the results are unified in the form of an iterative LMI technique for designing robust H2 controllers, whose convergence is attained in a finite number of steps. The method yields a new way of computing mixed H2/H∞ controllers, whose conservatism decreases with iteration. Two numerical examples illustrate the applicability of the proposed results for the control of a small unmanned aerial vehicle, and for an underactuated robotic arm.

  16. An integrated logit model for contamination event detection in water distribution systems.

    Science.gov (United States)

    Housh, Mashor; Ostfeld, Avi

    2015-05-15

    The problem of contamination event detection in water distribution systems has become one of the most challenging research topics in water distribution systems analysis. Current attempts for event detection utilize a variety of approaches including statistical, heuristics, machine learning, and optimization methods. Several existing event detection systems share a common feature in which alarms are obtained separately for each of the water quality indicators. Unifying those single alarms from different indicators is usually performed by means of simple heuristics. A salient feature of the current developed approach is using a statistically oriented model for discrete choice prediction which is estimated using the maximum likelihood method for integrating the single alarms. The discrete choice model is jointly calibrated with other components of the event detection system framework in a training data set using genetic algorithms. The fusing process of each indicator probabilities, which is left out of focus in many existing event detection system models, is confirmed to be a crucial part of the system which could be modelled by exploiting a discrete choice model for improving its performance. The developed methodology is tested on real water quality data, showing improved performances in decreasing the number of false positive alarms and in its ability to detect events with higher probabilities, compared to previous studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Managing unforeseen events in production scheduling and control

    DEFF Research Database (Denmark)

    Arica, E.; Falster, Peter; Hvolby, H. H.

    2016-01-01

    initial plans unfeasible or obsolete during production execution. How to effectively handle the unscheduled events and take corrective actions still remains a central question to academics and practitioners. In this paper, we explore this issue through a review of the relevant literature and an in......The production planning and control process is performed within complex and dynamic organizations made up of customer expectations, equipment, materials, people, information, and technologies. Changes in both internal and external factors can create a variety of unforeseen events, which make...

  18. Multi-rate sensor fusion-based adaptive discrete finite-time synergetic control for flexible-joint mechanical systems

    International Nuclear Information System (INIS)

    Xue Guang-Yue; Ren Xue-Mei; Xia Yuan-Qing

    2013-01-01

    This paper proposes an adaptive discrete finite-time synergetic control (ADFTSC) scheme based on a multi-rate sensor fusion estimator for flexible-joint mechanical systems in the presence of unmeasured states and dynamic uncertainties. Multi-rate sensors are employed to observe the system states which cannot be directly obtained by encoders due to the existence of joint flexibilities. By using an extended Kalman filter (EKF), the finite-time synergetic controller is designed based on a sensor fusion estimator which estimates states and parameters of the mechanical system with multi-rate measurements. The proposed controller can guarantee the finite-time convergence of tracking errors by the theoretical derivation. Simulation and experimental studies are included to validate the effectiveness of the proposed approach. (general)

  19. Evaluation of extreme temperature events in northern Spain based on process control charts

    Science.gov (United States)

    Villeta, M.; Valencia, J. L.; Saá, A.; Tarquis, A. M.

    2018-02-01

    Extreme climate events have recently attracted the attention of a growing number of researchers because these events impose a large cost on agriculture and associated insurance planning. This study focuses on extreme temperature events and proposes a new method for their evaluation based on statistical process control tools, which are unusual in climate studies. A series of minimum and maximum daily temperatures for 12 geographical areas of a Spanish region between 1931 and 2009 were evaluated by applying statistical process control charts to statistically test whether evidence existed for an increase or a decrease of extreme temperature events. Specification limits were determined for each geographical area and used to define four types of extreme anomalies: lower and upper extremes for the minimum and maximum anomalies. A new binomial Markov extended process that considers the autocorrelation between extreme temperature events was generated for each geographical area and extreme anomaly type to establish the attribute control charts for the annual fraction of extreme days and to monitor the occurrence of annual extreme days. This method was used to assess the significance of changes and trends of extreme temperature events in the analysed region. The results demonstrate the effectiveness of an attribute control chart for evaluating extreme temperature events. For example, the evaluation of extreme maximum temperature events using the proposed statistical process control charts was consistent with the evidence of an increase in maximum temperatures during the last decades of the last century.

  20. Traffic flow model at fixed control signals with discrete service time distribution

    Directory of Open Access Journals (Sweden)

    Lucky I. Igbinosun

    2016-04-01

    Full Text Available Most of the models of road traffic flow at fixed-cycle controlled intersection assume stationary distributions and provide steady state results. The assumption that a constant number of vehicles can leave the system during the green phase is unrealistic in real life situations. A discrete time queuing model was developed to describe the operation of traffic flow at a road intersection with fixed-cycle signalized control and to account for the randomness in the number of vehicles that can leave the system. The results show the expected queue size in the system when the traffic is light and for a busy period, respectively. For the light period, when the traffic intensity is less than one, it takes a shorter green cycle time for vehicles to clear up than during high traffic intensity (the road junction is saturated. Increasing the number of cars that can leave the junction at the turn of the green phase reduces the number of cycle times before the queue is cleared.

  1. Organisational Routines--The Interplay of Legal Standards and Professional Discretion

    Science.gov (United States)

    Ottesen, Eli; Møller, Jorunn

    2016-01-01

    Discretion is described as a hallmark of professional work. Professional discretion rests on trust in the ability of certain occupational groups to make sound decisions 'on behalf' of societal authorities. It has been suggested that in Europe, managerialist-influenced policies with increased focus on control and accountability have placed pressure…

  2. Secondary Restoration Control of Islanded Microgrids With Decentralized Event-triggered Strategy

    DEFF Research Database (Denmark)

    Guerrero, Josep M.; Chen, Meng; Xiao, Xiangning

    2018-01-01

    in the feedback control laws, the proposed control strategies just require the communication between distributed secondary controllers at some particular instants while having frequency and voltage restoration function and accurate active power sharing. The stability and inter-event interval are also analyzed......Distributed cooperative control methods attract more and more attention in microgrid secondary control because they are more reliable and flexible. However, the traditional methods rely on the periodic communication, which is neither economic nor efficient due to its large communication burden...... in this paper. An islanded microgrid test system is built in PSCAD/EMTDC to validate the proposed control strategies. It shows that the proposed secondary control strategies based on event-triggered approach can highly reduce the inter-agent communication....

  3. Life event stress in duodenal ulcer compared with functional dyspepsia: A case-control study

    OpenAIRE

    Abdel Hafeiz Hassan; Al Quorain Abdulaziz; Karim Ahmed; Al-Mangoor Shuaa

    1997-01-01

    This is a prospective study of life event stress in 80 duodenal ulcer patients compared with 80 patients with functional dyspepsia and 80 healthy controls; matched for age, sex and marital status. A semi structured psychiatric interview was used in the psychiatric assessment of the dyspeptic patients and controls. A modified version of Life Events Scale by Tennant and Andrews was used in the assessment of life event stress. More dyspeptic patients reported life events than the controls, but, ...

  4. Is the effect of a political event more pronounced for government controlled firms?

    Directory of Open Access Journals (Sweden)

    Irwan Trinugroho

    2016-11-01

    Full Text Available This study investigates market reaction to a political event, which is the presidential election of Republic of Indonesia in 2014 by studying 387 publicly traded firms in the Indonesia Stock Exchange. It employs event study method to measure the information content of this event. By going deeper, this study looked at the effect difference between government controlled firms (partially privatized firms and private firms. The results show that there was a significant abnormal return around the event date. The negative abnormal return one day before the election date, which was followed by rebounding one day after the event, indicate that investors consider that the election had been done well particularly with respect to the political stability and security. Moreover, this paper reveals that the effect of presidential election is more pronounced for government-controlled firms than private firms. Government controlled firms may be more susceptible to political event.

  5. Finite-Horizon $H_\\infty $ Consensus for Multiagent Systems With Redundant Channels via An Observer-Type Event-Triggered Scheme.

    Science.gov (United States)

    Xu, Wenying; Wang, Zidong; Ho, Daniel W C

    2018-05-01

    This paper is concerned with the finite-horizon consensus problem for a class of discrete time-varying multiagent systems with external disturbances and missing measurements. To improve the communication reliability, redundant channels are introduced and the corresponding protocol is constructed for the information transmission over redundant channels. An event-triggered scheme is adopted to determine whether the information of agents should be transmitted to their neighbors. Subsequently, an observer-type event-triggered control protocol is proposed based on the latest received neighbors' information. The purpose of the addressed problem is to design a time-varying controller based on the observed information to achieve the consensus performance in a finite horizon. By utilizing a constrained recursive Riccati difference equation approach, some sufficient conditions are obtained to guarantee the consensus performance, and the controller parameters are also designed. Finally, a numerical example is provided to demonstrate the desired reliability of redundant channels and the effectiveness of the event-triggered control protocol.

  6. Organizational Learning in Rare Events

    DEFF Research Database (Denmark)

    Andersen, Kristina Vaarst; Tyler, Beverly; Beukel, Karin

    When organizations encounter rare events they often find it challenging to extract learning from the experience. We analyze opportunities for organizational learning in one such rare event, namely Intellectual Property (IP) litigation, i.e., when organizations take disputes regarding their intell......When organizations encounter rare events they often find it challenging to extract learning from the experience. We analyze opportunities for organizational learning in one such rare event, namely Intellectual Property (IP) litigation, i.e., when organizations take disputes regarding...... the organization little discretion to utilize any learning from past litigation success. Thus, learning appears be to most beneficial in infringement cases. Based on statistical analysis of 10,211 litigation court cases in China, we find support for our hypotheses. Our findings suggest that organizations can learn...

  7. Semi-Discrete Ingham-Type Inequalities

    International Nuclear Information System (INIS)

    Komornik, Vilmos; Loreti, Paola

    2007-01-01

    One of the general methods in linear control theory is based on harmonic and non-harmonic Fourier series. The key of this approach is the establishment of various suitable adaptations and generalizations of the classical Parseval equality. A new and systematic approach was begun in our papers in collaboration with Baiocchi. Many recent results of this kind, obtained through various Ingham-type theorems, were exposed recently. Although this work concentrated on continuous models, in connection with numerical simulations a natural question is whether these results also admit useful discrete versions. The purpose of this paper is to establish discrete versions of various Ingham-type theorems by using our approach. They imply the earlier continuous results by a simple limit process

  8. Supervisory control of (max,+) automata: extensions towards applications

    Czech Academy of Sciences Publication Activity Database

    Lahaye, S.; Komenda, Jan; Boimond, J.-L.

    2015-01-01

    Roč. 88, č. 12 (2015), s. 2523-2537 ISSN 0020-7179 Institutional support: RVO:67985840 Keywords : discrete event systems * logical and timed behaviors * (max,+) automata * supervisory control Subject RIV: BA - General Mathematics Impact factor: 1.880, year: 2015 http://www.tandfonline.com/doi/full/10.1080/00207179.2015.1048295

  9. Supervisory control of (max,+) automata: extensions towards applications

    Czech Academy of Sciences Publication Activity Database

    Lahaye, S.; Komenda, Jan; Boimond, J.-L.

    2015-01-01

    Roč. 88, č. 12 (2015), s. 2523-2537 ISSN 0020-7179 Institutional support: RVO:67985840 Keywords : discrete event systems * logical and time d behaviors * (max,+) automata * supervisory control Subject RIV: BA - General Mathematics Impact factor: 1.880, year: 2015 http://www.tandfonline.com/doi/full/10.1080/00207179.2015.1048295

  10. A human factors experiment on the event-paced control tasks issue

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Chul; Park, Jae Chang; Oh, In Seok; Lee, Jung Woon; Lee, Ki Young; Park, Jong Kyun [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    KEPRI(Korea Electric Power Research Institute) requires human factors validation tests according to the progress of the KNGR MMI design. This report describes the experimental results of an human factors validation issue, Event-Paced Control Tasks issue. The Event-Paced Control Task issue is to test that the designed MMI shall support operators in performing control tasks in pace with the plant dynamics. Task completion time and successful execution are defined as performance measures on the issue. Through an experiment on the issue with 3 scenarios and 5 subjects, we report that the variation of task completion time between subjects has a narrow band for each scenarios, however two among the total 15 experimental runs result in the failure that subject does not reach to the predefined operational goal. Incorrect operational strategy, insufficient training, and MMI design discrepancies are inferred as the causes of the failures. However these experimental results don't indicate the close of the Event-Paced Control Tasks issue. The validation test results under the experimental environment composed of the partial MMI representations, an unstable simulator, and insufficient subject training, are significant in the limited conditions. Thus, for the purpose of the complete issue close, the validation test on the Event-Paced Control Tasks issue should be repeatedly carried out in pace with the performance improvement of the experimental environment. 13 figs., 4 tabs. (Author)

  11. Discrete Element Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Morris, J; Johnson, S

    2007-12-03

    The Distinct Element Method (also frequently referred to as the Discrete Element Method) (DEM) is a Lagrangian numerical technique where the computational domain consists of discrete solid elements which interact via compliant contacts. This can be contrasted with Finite Element Methods where the computational domain is assumed to represent a continuum (although many modern implementations of the FEM can accommodate some Distinct Element capabilities). Often the terms Discrete Element Method and Distinct Element Method are used interchangeably in the literature, although Cundall and Hart (1992) suggested that Discrete Element Methods should be a more inclusive term covering Distinct Element Methods, Displacement Discontinuity Analysis and Modal Methods. In this work, DEM specifically refers to the Distinct Element Method, where the discrete elements interact via compliant contacts, in contrast with Displacement Discontinuity Analysis where the contacts are rigid and all compliance is taken up by the adjacent intact material.

  12. HEPTech Academia – Industry Matching Event on Control Systems for Accelerators and Detectors

    CERN Multimedia

    Anastasios Charitonidis (FP/KT), on behalf of the organizing committee

    2013-01-01

    The HEPTech AIME (Academia – Industry Matching Event) on Controls for accelerators and detectors will take place from 2 to 3 December in Athens, Greece.   The HEPTech network invites you to Demokritos NCSR to participate in an event that aims to bring together Academia and Industry to share ideas and potential applications of Controls Technology. The event will provide an overview of current Controls Systems for large scale projects including the LHC, the CMS and ATLAS detectors, medical accelerator facilities and contributions from companies active in these fields. CERN Computer Centre. The programme will also address some of the challenges faced by future High Energy Physics projects in the controls area and provide a glimpse into the future requirements of research infrastructures such as the European Spallation Source (ESS), and the Extreme Light Infrastructure (ELI), while exploring different possible approaches to the commercialisation of controls technology. The event ...

  13. Using CONFIG for Simulation of Operation of Water Recovery Subsystems for Advanced Control Software Evaluation

    Science.gov (United States)

    Malin, Jane T.; Flores, Luis; Fleming, Land; Throop, Daiv

    2002-01-01

    A hybrid discrete/continuous simulation tool, CONFIG, has been developed to support evaluation of the operability life support systems. CON FIG simulates operations scenarios in which flows and pressures change continuously while system reconfigurations occur as discrete events. In simulations, intelligent control software can interact dynamically with hardware system models. CONFIG simulations have been used to evaluate control software and intelligent agents for automating life support systems operations. A CON FIG model of an advanced biological water recovery system has been developed to interact with intelligent control software that is being used in a water system test at NASA Johnson Space Center

  14. Procedural Reform and the Reduction of Discretion: The Case of the Juvenile Court.

    Science.gov (United States)

    Sosin, Michael

    The issue of controlling discretion in large public institutions is a crucial one in modern society, and procedural legal reforms are often viewed as one tactic of control. Using due process guarantees in juvenile courts as the substantive issue, this paper tests the utility of procedural reform in reducing discretion. Results indicate that…

  15. Fuzzy Stabilization for Nonlinear Discrete Ship Steering Stochastic Systems Subject to State Variance and Passivity Constraints

    Directory of Open Access Journals (Sweden)

    Wen-Jer Chang

    2014-01-01

    Full Text Available For nonlinear discrete-time stochastic systems, a fuzzy controller design methodology is developed in this paper subject to state variance constraint and passivity constraint. According to fuzzy model based control technique, the nonlinear discrete-time stochastic systems considered in this paper are represented by the discrete-time Takagi-Sugeno fuzzy models with multiplicative noise. Employing Lyapunov stability theory, upper bound covariance control theory, and passivity theory, some sufficient conditions are derived to find parallel distributed compensation based fuzzy controllers. In order to solve these sufficient conditions, an iterative linear matrix inequality algorithm is applied based on the linear matrix inequality technique. Finally, the fuzzy stabilization problem for nonlinear discrete ship steering stochastic systems is investigated in the numerical example to illustrate the feasibility and validity of proposed fuzzy controller design method.

  16. Discrete Emotion Effects on Lexical Decision Response Times

    Science.gov (United States)

    Briesemeister, Benny B.; Kuchinke, Lars; Jacobs, Arthur M.

    2011-01-01

    Our knowledge about affective processes, especially concerning effects on cognitive demands like word processing, is increasing steadily. Several studies consistently document valence and arousal effects, and although there is some debate on possible interactions and different notions of valence, broad agreement on a two dimensional model of affective space has been achieved. Alternative models like the discrete emotion theory have received little interest in word recognition research so far. Using backward elimination and multiple regression analyses, we show that five discrete emotions (i.e., happiness, disgust, fear, anger and sadness) explain as much variance as two published dimensional models assuming continuous or categorical valence, with the variables happiness, disgust and fear significantly contributing to this account. Moreover, these effects even persist in an experiment with discrete emotion conditions when the stimuli are controlled for emotional valence and arousal levels. We interpret this result as evidence for discrete emotion effects in visual word recognition that cannot be explained by the two dimensional affective space account. PMID:21887307

  17. Discrete emotion effects on lexical decision response times.

    Science.gov (United States)

    Briesemeister, Benny B; Kuchinke, Lars; Jacobs, Arthur M

    2011-01-01

    Our knowledge about affective processes, especially concerning effects on cognitive demands like word processing, is increasing steadily. Several studies consistently document valence and arousal effects, and although there is some debate on possible interactions and different notions of valence, broad agreement on a two dimensional model of affective space has been achieved. Alternative models like the discrete emotion theory have received little interest in word recognition research so far. Using backward elimination and multiple regression analyses, we show that five discrete emotions (i.e., happiness, disgust, fear, anger and sadness) explain as much variance as two published dimensional models assuming continuous or categorical valence, with the variables happiness, disgust and fear significantly contributing to this account. Moreover, these effects even persist in an experiment with discrete emotion conditions when the stimuli are controlled for emotional valence and arousal levels. We interpret this result as evidence for discrete emotion effects in visual word recognition that cannot be explained by the two dimensional affective space account.

  18. Discrete emotion effects on lexical decision response times.

    Directory of Open Access Journals (Sweden)

    Benny B Briesemeister

    Full Text Available Our knowledge about affective processes, especially concerning effects on cognitive demands like word processing, is increasing steadily. Several studies consistently document valence and arousal effects, and although there is some debate on possible interactions and different notions of valence, broad agreement on a two dimensional model of affective space has been achieved. Alternative models like the discrete emotion theory have received little interest in word recognition research so far. Using backward elimination and multiple regression analyses, we show that five discrete emotions (i.e., happiness, disgust, fear, anger and sadness explain as much variance as two published dimensional models assuming continuous or categorical valence, with the variables happiness, disgust and fear significantly contributing to this account. Moreover, these effects even persist in an experiment with discrete emotion conditions when the stimuli are controlled for emotional valence and arousal levels. We interpret this result as evidence for discrete emotion effects in visual word recognition that cannot be explained by the two dimensional affective space account.

  19. Nonparametric Identification and Estimation of Finite Mixture Models of Dynamic Discrete Choices

    OpenAIRE

    Hiroyuki Kasahara; Katsumi Shimotsu

    2006-01-01

    In dynamic discrete choice analysis, controlling for unobserved heterogeneity is an important issue, and finite mixture models provide flexible ways to account for unobserved heterogeneity. This paper studies nonparametric identifiability of type probabilities and type-specific component distributions in finite mixture models of dynamic discrete choices. We derive sufficient conditions for nonparametric identification for various finite mixture models of dynamic discrete choices used in appli...

  20. It's Deja Vu All over Again: Using Multiple-Spell Discrete-Time Survival Analysis.

    Science.gov (United States)

    Willett, John B.; Singer, Judith D.

    1995-01-01

    The multiple-spell discrete-time survival analysis method is introduced and illustrated using longitudinal data on exit from and reentry into the teaching profession. The method is applicable to many educational problems involving the sequential occurrence of disparate events or episodes. (SLD)

  1. Rising cyclin-CDK levels order cell cycle events.

    Directory of Open Access Journals (Sweden)

    Catherine Oikonomou

    Full Text Available Diverse mitotic events can be triggered in the correct order and time by a single cyclin-CDK. A single regulator could confer order and timing on multiple events if later events require higher cyclin-CDK than earlier events, so that gradually rising cyclin-CDK levels can sequentially trigger responsive events: the "quantitative model" of ordering.This 'quantitative model' makes predictions for the effect of locking cyclin at fixed levels for a protracted period: at low cyclin levels, early events should occur rapidly, while late events should be slow, defective, or highly variable (depending on threshold mechanism. We titrated the budding yeast mitotic cyclin Clb2 within its endogenous expression range to a stable, fixed level and measured time to occurrence of three mitotic events: growth depolarization, spindle formation, and spindle elongation, as a function of fixed Clb2 level. These events require increasingly more Clb2 according to their normal order of occurrence. Events occur efficiently and with low variability at fixed Clb2 levels similar to those observed when the events normally occur. A second prediction of the model is that increasing the rate of cyclin accumulation should globally advance timing of all events. Moderate (<2-fold overexpression of Clb2 accelerates all events of mitosis, resulting in consistently rapid sequential cell cycles. However, this moderate overexpression also causes a significant frequency of premature mitoses leading to inviability, suggesting that Clb2 expression level is optimized to balance the fitness costs of variability and catastrophe.We conclude that mitotic events are regulated by discrete cyclin-CDK thresholds. These thresholds are sequentially triggered as cyclin increases, yielding reliable order and timing. In many biological processes a graded input must be translated into discrete outputs. In such systems, expression of the central regulator is likely to be tuned to an optimum level, as we

  2. Event detection and exception handling strategies in the ASDEX Upgrade discharge control system

    International Nuclear Information System (INIS)

    Treutterer, W.; Neu, G.; Rapson, C.; Raupp, G.; Zasche, D.; Zehetbauer, T.

    2013-01-01

    Highlights: •Event detection and exception handling is integrated in control system architecture. •Pulse control with local exception handling and pulse supervision with central exception handling are strictly separated. •Local exception handling limits the effect of an exception to a minimal part of the controlled system. •Central Exception Handling solves problems requiring coordinated action of multiple control components. -- Abstract: Thermonuclear plasmas are governed by nonlinear characteristics: plasma operation can be classified into scenarios with pronounced features like L and H-mode, ELMs or MHD activity. Transitions between them may be treated as events. Similarly, technical systems are also subject to events such as failure of measurement sensors, actuator saturation or violation of machine and plant operation limits. Such situations often are handled with a mixture of pulse abortion and iteratively improved pulse schedule reference programming. In case of protection-relevant events, however, the complexity of even a medium-sized device as ASDEX Upgrade requires a sophisticated and coordinated shutdown procedure rather than a simple stop of the pulse. The detection of events and their intelligent handling by the control system has been shown to be valuable also in terms of saving experiment time and cost. This paper outlines how ASDEX Upgrade's discharge control system (DCS) detects events and handles exceptions in two stages: locally and centrally. The goal of local exception handling is to limit the effect of an unexpected or asynchronous event to a minimal part of the controlled system. Thus, local exception handling facilitates robustness to failures but keeps the decision structures lean. A central state machine deals with exceptions requiring coordinated action of multiple control components. DCS implements the state machine by means of pulse schedule segments containing pre-programmed waveforms to define discharge goal and control

  3. Event detection and exception handling strategies in the ASDEX Upgrade discharge control system

    Energy Technology Data Exchange (ETDEWEB)

    Treutterer, W., E-mail: Wolfgang.Treutterer@ipp.mpg.de; Neu, G.; Rapson, C.; Raupp, G.; Zasche, D.; Zehetbauer, T.

    2013-10-15

    Highlights: •Event detection and exception handling is integrated in control system architecture. •Pulse control with local exception handling and pulse supervision with central exception handling are strictly separated. •Local exception handling limits the effect of an exception to a minimal part of the controlled system. •Central Exception Handling solves problems requiring coordinated action of multiple control components. -- Abstract: Thermonuclear plasmas are governed by nonlinear characteristics: plasma operation can be classified into scenarios with pronounced features like L and H-mode, ELMs or MHD activity. Transitions between them may be treated as events. Similarly, technical systems are also subject to events such as failure of measurement sensors, actuator saturation or violation of machine and plant operation limits. Such situations often are handled with a mixture of pulse abortion and iteratively improved pulse schedule reference programming. In case of protection-relevant events, however, the complexity of even a medium-sized device as ASDEX Upgrade requires a sophisticated and coordinated shutdown procedure rather than a simple stop of the pulse. The detection of events and their intelligent handling by the control system has been shown to be valuable also in terms of saving experiment time and cost. This paper outlines how ASDEX Upgrade's discharge control system (DCS) detects events and handles exceptions in two stages: locally and centrally. The goal of local exception handling is to limit the effect of an unexpected or asynchronous event to a minimal part of the controlled system. Thus, local exception handling facilitates robustness to failures but keeps the decision structures lean. A central state machine deals with exceptions requiring coordinated action of multiple control components. DCS implements the state machine by means of pulse schedule segments containing pre-programmed waveforms to define discharge goal and control

  4. MAS Based Event-Triggered Hybrid Control for Smart Microgrids

    DEFF Research Database (Denmark)

    Dou, Chunxia; Liu, Bin; Guerrero, Josep M.

    2013-01-01

    This paper is focused on an advanced control for autonomous microgrids. In order to improve the performance regarding security and stability, a hierarchical decentralized coordinated control scheme is proposed based on multi-agents structure. Moreover, corresponding to the multi-mode and the hybrid...... haracteristics of microgrids, an event-triggered hybrid control, including three kinds of switching controls, is designed to intelligently reconstruct operation mode when the security stability assessment indexes or the constraint conditions are violated. The validity of proposed control scheme is demonstrated...

  5. ALGORITM PENTRU DETERMINAREA STRATEGIILOR OPTIME STAŢIONARE ÎN PROBLEMELE STOCASTICE DE CONTROL OPTIMAL DISCRET PE REŢELE DECIZIONALE CU MULTIPLE CLASE RECURENTE

    Directory of Open Access Journals (Sweden)

    Maria CAPCELEA

    2015-12-01

    Full Text Available Este elaborat şi argumentat teoretic un algoritm eficient pentru determinarea strategiilor optime staţionare în proble-mele stocastice de control optimal discret cu perioada de dirijare infinită, definite pe reţele decizionale cu multiple clase recurente, în care este aplicat criteriul de optimizare a combinaţiei convexe a costurilor medii în clasele recurente. Sunt examinate probleme în care costurile de tranziţie între stările sistemului dinamic şi probabilităţile de tranziţie, definite în stările necontrolabile, sunt constante independente de timp. Algoritmul elaborat este bazat pe modelul de programare liniară pentru determinarea strategiilor optime în problemele de control definite pe reţele decizionale perfecte [3,4].AN ALGORITHM FOR DETERMINING STATIONARY OPTIMAL STRATEGIES FOR STOCHASTIC DISCRETE OPTIMAL CONTROL PROBLEMS DEFINED ON NETWORKS WITH MULTIPLE RECURRENT CLASSESAn efficient algorithm for determining optimal stationary strategies for the stochastic discrete optimal control problems with infinite time horizon is developed and theoretically justified. The problems are defined on decision networks with multiple recurrent classes. The average costs convex combination optimization criterion is applied. We examine problems in which the costs of transitions between the states of the dynamic system and transition probabilities, defined on the uncontrollable states, are constants independent on time. The algorithm is based on the linear programming model developed for determining optimal strategies in control problems defined on perfect decision networks [3,4].

  6. Bit-string physics a finite and discrete approach to natural philosophy

    CERN Document Server

    Noyes, H Pierre

    2001-01-01

    We could be on the threshold of a scientific revolution. Quantum mechanics is based on unique, finite, and discrete events. General relativity assumes a continuous, curved space-time. Reconciling the two remains the most fundamental unsolved scientific problem left over from the last century. The papers of H Pierre Noyes collected in this volume reflect one attempt to achieve that unification by replacing the continuum with the bit-string events of computer science. Three principles are used: physics can determine whether two quantities are the same or different; measurement can tell something

  7. Fault tolerant control design for hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao; Jiang, Bin [Nanjing University of Aeronautics and Astronautics, Nanjing (China); Cocquempot, Vincent [Universite des Sciences et Technologies de Lille, Villeneuve d' Ascq (France)

    2010-07-01

    This book intends to provide the readers a good understanding on how to achieve Fault Tolerant Control goal of Hybrid Systems. The book can be used as a reference for the academic research on Fault Tolerant Control and Hybrid Systems or used in Ph.D. study of control theory and engineering. The knowledge background for this monograph would be some undergraduate and graduate courses on Fault Diagnosis and Fault Tolerant Control theory, linear system theory, nonlinear system theory, Hybrid Systems theory and Discrete Event System theory. (orig.)

  8. Improving the Critic Learning for Event-Based Nonlinear $H_{\\infty }$ Control Design.

    Science.gov (United States)

    Wang, Ding; He, Haibo; Liu, Derong

    2017-10-01

    In this paper, we aim at improving the critic learning criterion to cope with the event-based nonlinear H ∞ state feedback control design. First of all, the H ∞ control problem is regarded as a two-player zero-sum game and the adaptive critic mechanism is used to achieve the minimax optimization under event-based environment. Then, based on an improved updating rule, the event-based optimal control law and the time-based worst-case disturbance law are obtained approximately by training a single critic neural network. The initial stabilizing control is no longer required during the implementation process of the new algorithm. Next, the closed-loop system is formulated as an impulsive model and its stability issue is handled by incorporating the improved learning criterion. The infamous Zeno behavior of the present event-based design is also avoided through theoretical analysis on the lower bound of the minimal intersample time. Finally, the applications to an aircraft dynamics and a robot arm plant are carried out to verify the efficient performance of the present novel design method.

  9. Supervisory Control of (max,+) automata: a behavioral approach

    Czech Academy of Sciences Publication Activity Database

    Komenda, Jan; Lahaye, S.; Boimond, J.-L.

    2009-01-01

    Roč. 19, č. 4 (2009), s. 525-549 ISSN 0924-6703 Grant - others:EU Projekt(XE) EU.ICT.DISC 224498 Institutional research plan: CEZ:AV0Z10190503 Keywords : timed discrete-event systems * supervisory control * formal power series * (max,+) * automata Subject RIV: BA - General Mathematics Impact factor: 0.921, year: 2009

  10. Optimizing patient flow in a large hospital surgical centre by means of discrete-event computer simulation models.

    Science.gov (United States)

    Ferreira, Rodrigo B; Coelli, Fernando C; Pereira, Wagner C A; Almeida, Renan M V R

    2008-12-01

    This study used the discrete-events computer simulation methodology to model a large hospital surgical centre (SC), in order to analyse the impact of increases in the number of post-anaesthetic beds (PABs), of changes in surgical room scheduling strategies and of increases in surgery numbers. The used inputs were: number of surgeries per day, type of surgical room scheduling, anaesthesia and surgery duration, surgical teams' specialty and number of PABs, and the main outputs were: number of surgeries per day, surgical rooms' use rate and blocking rate, surgical teams' use rate, patients' blocking rate, surgery delays (minutes) and the occurrence of postponed surgeries. Two basic strategies were implemented: in the first strategy, the number of PABs was increased under two assumptions: (a) following the scheduling plan actually used by the hospital (the 'rigid' scheduling - surgical rooms were previously assigned and assignments could not be changed) and (b) following a 'flexible' scheduling (surgical rooms, when available, could be freely used by any surgical team). In the second, the same analysis was performed, increasing the number of patients (up to the system 'feasible maximum') but fixing the number of PABs, in order to evaluate the impact of the number of patients over surgery delays. It was observed that the introduction of a flexible scheduling/increase in PABs would lead to a significant improvement in the SC productivity.

  11. A Discrete Spectral Problem and Related Hierarchy of Discrete Hamiltonian Lattice Equations

    International Nuclear Information System (INIS)

    Xu Xixiang; Cao Weili

    2007-01-01

    Staring from a discrete matrix spectral problem, a hierarchy of lattice soliton equations is presented though discrete zero curvature representation. The resulting lattice soliton equations possess non-local Lax pairs. The Hamiltonian structures are established for the resulting hierarchy by the discrete trace identity. Liouville integrability of resulting hierarchy is demonstrated.

  12. Individual Violent Overtopping Events: New Insights

    DEFF Research Database (Denmark)

    Jayaratne, R.; Hunt-Raby, A.; Bullock, G. N.

    2009-01-01

    Wave overtopping is essentially a discrete process in which disastrous consequences can arise from the effect of one or two waves; few of the thousands of previous experiments have focused on the properties of individual events. The violent impacts of water waves on walls create velocities and pr...

  13. Discrete exterior calculus discretization of incompressible Navier–Stokes equations over surface simplicial meshes

    KAUST Repository

    Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi

    2016-01-01

    A conservative discretization of incompressible Navier–Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a

  14. Random and externally controlled occurrences of Dansgaard–Oeschger events

    Directory of Open Access Journals (Sweden)

    J. Lohmann

    2018-05-01

    Full Text Available Dansgaard–Oeschger (DO events constitute the most pronounced mode of centennial to millennial climate variability of the last glacial period. Since their discovery, many decades of research have been devoted to understand the origin and nature of these rapid climate shifts. In recent years, a number of studies have appeared that report emergence of DO-type variability in fully coupled general circulation models via different mechanisms. These mechanisms result in the occurrence of DO events at varying degrees of regularity, ranging from periodic to random. When examining the full sequence of DO events as captured in the North Greenland Ice Core Project (NGRIP ice core record, one can observe high irregularity in the timing of individual events at any stage within the last glacial period. In addition to the prevailing irregularity, certain properties of the DO event sequence, such as the average event frequency or the relative distribution of cold versus warm periods, appear to be changing throughout the glacial. By using statistical hypothesis tests on simple event models, we investigate whether the observed event sequence may have been generated by stationary random processes or rather was strongly modulated by external factors. We find that the sequence of DO warming events is consistent with a stationary random process, whereas dividing the event sequence into warming and cooling events leads to inconsistency with two independent event processes. As we include external forcing, we find a particularly good fit to the observed DO sequence in a model where the average residence time in warm periods are controlled by global ice volume and cold periods by boreal summer insolation.

  15. Random and externally controlled occurrences of Dansgaard-Oeschger events

    Science.gov (United States)

    Lohmann, Johannes; Ditlevsen, Peter D.

    2018-05-01

    Dansgaard-Oeschger (DO) events constitute the most pronounced mode of centennial to millennial climate variability of the last glacial period. Since their discovery, many decades of research have been devoted to understand the origin and nature of these rapid climate shifts. In recent years, a number of studies have appeared that report emergence of DO-type variability in fully coupled general circulation models via different mechanisms. These mechanisms result in the occurrence of DO events at varying degrees of regularity, ranging from periodic to random. When examining the full sequence of DO events as captured in the North Greenland Ice Core Project (NGRIP) ice core record, one can observe high irregularity in the timing of individual events at any stage within the last glacial period. In addition to the prevailing irregularity, certain properties of the DO event sequence, such as the average event frequency or the relative distribution of cold versus warm periods, appear to be changing throughout the glacial. By using statistical hypothesis tests on simple event models, we investigate whether the observed event sequence may have been generated by stationary random processes or rather was strongly modulated by external factors. We find that the sequence of DO warming events is consistent with a stationary random process, whereas dividing the event sequence into warming and cooling events leads to inconsistency with two independent event processes. As we include external forcing, we find a particularly good fit to the observed DO sequence in a model where the average residence time in warm periods are controlled by global ice volume and cold periods by boreal summer insolation.

  16. Asymptotic behavior of discrete holomorphic maps z^c, log(z) and discrete Painleve transcedents

    OpenAIRE

    Agafonov, S. I.

    2005-01-01

    It is shown that discrete analogs of z^c and log(z) have the same asymptotic behavior as their smooth counterparts. These discrete maps are described in terms of special solutions of discrete Painleve-II equations, asymptotics of these solutions providing the behaviour of discrete z^c and log(z) at infinity.

  17. Secure access control and large scale robust representation for online multimedia event detection.

    Science.gov (United States)

    Liu, Changyu; Lu, Bin; Li, Huiling

    2014-01-01

    We developed an online multimedia event detection (MED) system. However, there are a secure access control issue and a large scale robust representation issue when we want to integrate traditional event detection algorithms into the online environment. For the first issue, we proposed a tree proxy-based and service-oriented access control (TPSAC) model based on the traditional role based access control model. Verification experiments were conducted on the CloudSim simulation platform, and the results showed that the TPSAC model is suitable for the access control of dynamic online environments. For the second issue, inspired by the object-bank scene descriptor, we proposed a 1000-object-bank (1000OBK) event descriptor. Feature vectors of the 1000OBK were extracted from response pyramids of 1000 generic object detectors which were trained on standard annotated image datasets, such as the ImageNet dataset. A spatial bag of words tiling approach was then adopted to encode these feature vectors for bridging the gap between the objects and events. Furthermore, we performed experiments in the context of event classification on the challenging TRECVID MED 2012 dataset, and the results showed that the robust 1000OBK event descriptor outperforms the state-of-the-art approaches.

  18. Secure Access Control and Large Scale Robust Representation for Online Multimedia Event Detection

    Directory of Open Access Journals (Sweden)

    Changyu Liu

    2014-01-01

    Full Text Available We developed an online multimedia event detection (MED system. However, there are a secure access control issue and a large scale robust representation issue when we want to integrate traditional event detection algorithms into the online environment. For the first issue, we proposed a tree proxy-based and service-oriented access control (TPSAC model based on the traditional role based access control model. Verification experiments were conducted on the CloudSim simulation platform, and the results showed that the TPSAC model is suitable for the access control of dynamic online environments. For the second issue, inspired by the object-bank scene descriptor, we proposed a 1000-object-bank (1000OBK event descriptor. Feature vectors of the 1000OBK were extracted from response pyramids of 1000 generic object detectors which were trained on standard annotated image datasets, such as the ImageNet dataset. A spatial bag of words tiling approach was then adopted to encode these feature vectors for bridging the gap between the objects and events. Furthermore, we performed experiments in the context of event classification on the challenging TRECVID MED 2012 dataset, and the results showed that the robust 1000OBK event descriptor outperforms the state-of-the-art approaches.

  19. Central FPGA-based Destination and Load Control in the LHCb MHz Event Readout

    CERN Document Server

    Jacobsson, Richard

    2012-01-01

    The readout strategy of the LHCb experiment [1] is based on complete event readout at 1 MHz [2]. Over 300 sub-detector readout boards transmit event fragments at 1 MHz over a commercial 70 Gigabyte/s switching network to a distributed event building and trigger processing farm with 1470 individual multi-core computer nodes [3]. In the original specifications, the readout was based on a pure push protocol. This paper describes the proposal, implementation, and experience of a powerful non-conventional mixture of a push and a pull protocol, akin to credit-based flow control. A high-speed FPGA-based central master module controls the event fragment packing in the readout boards, the assignment of the farm node destination for each event, and controls the farm load based on an asynchronous pull mechanism from each farm node. This dynamic readout scheme relies on generic event requests and the concept of node credit allowing load balancing and trigger rate regulation as a function of the global farm load. It also ...

  20. Dynamical Scheduling and Robust Control in Uncertain Environments with Petri Nets for DESs

    Directory of Open Access Journals (Sweden)

    Dimitri Lefebvre

    2017-10-01

    Full Text Available This paper is about the incremental computation of control sequences for discrete event systems in uncertain environments where uncontrollable events may occur. Timed Petri nets are used for this purpose. The aim is to drive the marking of the net from an initial value to a reference one, in minimal or near-minimal time, by avoiding forbidden markings, deadlocks, and dead branches. The approach is similar to model predictive control with a finite set of control actions. At each step only a small area of the reachability graph is explored: this leads to a reasonable computational complexity. The robustness of the resulting trajectory is also evaluated according to a risk probability. A sufficient condition is provided to compute robust trajectories. The proposed results are applicable to a large class of discrete event systems, in particular in the domains of flexible manufacturing. However, they are also applicable to other domains as communication, computer science, transportation, and traffic as long as the considered systems admit Petri Nets (PNs models. They are suitable for dynamical deadlock-free scheduling and reconfiguration problems in uncertain environments.