WorldWideScience

Sample records for discrete dynamical systems

  1. Geometric phases in discrete dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Cartwright, Julyan H.E., E-mail: julyan.cartwright@csic.es [Instituto Andaluz de Ciencias de la Tierra, CSIC–Universidad de Granada, E-18100 Armilla, Granada (Spain); Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada (Spain); Piro, Nicolas, E-mail: nicolas.piro@epfl.ch [École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Piro, Oreste, E-mail: piro@imedea.uib-csic.es [Departamento de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Tuval, Idan, E-mail: ituval@imedea.uib-csic.es [Mediterranean Institute for Advanced Studies, CSIC–Universitat de les Illes Balears, E-07190 Mallorca (Spain)

    2016-10-14

    In order to study the behaviour of discrete dynamical systems under adiabatic cyclic variations of their parameters, we consider discrete versions of adiabatically-rotated rotators. Parallelling the studies in continuous systems, we generalize the concept of geometric phase to discrete dynamics and investigate its presence in these rotators. For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number of the system. For the discrete version of the rotated rotator considered by Berry, the rotated standard map, we further explore this connection as well as the role of the geometric phase at the onset of chaos. Further into the chaotic regime, we show that the geometric phase is also related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent. - Highlights: • We extend the concept of geometric phase to maps. • For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number. • For the rotated standard map, we explore the role of the geometric phase at the onset of chaos. • We show that the geometric phase is related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent.

  2. Chaos of discrete dynamical systems in complete metric spaces

    International Nuclear Information System (INIS)

    Shi Yuming; Chen Guanrong

    2004-01-01

    This paper is concerned with chaos of discrete dynamical systems in complete metric spaces. Discrete dynamical systems governed by continuous maps in general complete metric spaces are first discussed, and two criteria of chaos are then established. As a special case, two corresponding criteria of chaos for discrete dynamical systems in compact subsets of metric spaces are obtained. These results have extended and improved the existing relevant results of chaos in finite-dimensional Euclidean spaces

  3. Attractors for discrete periodic dynamical systems

    Science.gov (United States)

    John E. Franke; James F. Selgrade

    2003-01-01

    A mathematical framework is introduced to study attractors of discrete, nonautonomous dynamical systems which depend periodically on time. A structure theorem for such attractors is established which says that the attractor of a time-periodic dynamical system is the unin of attractors of appropriate autonomous maps. If the nonautonomous system is a perturbation of an...

  4. Non-Lipschitz Dynamics Approach to Discrete Event Systems

    Science.gov (United States)

    Zak, M.; Meyers, R.

    1995-01-01

    This paper presents and discusses a mathematical formalism for simulation of discrete event dynamics (DED) - a special type of 'man- made' system designed to aid specific areas of information processing. A main objective is to demonstrate that the mathematical formalism for DED can be based upon the terminal model of Newtonian dynamics which allows one to relax Lipschitz conditions at some discrete points.

  5. Modeling of Macroeconomics by a Novel Discrete Nonlinear Fractional Dynamical System

    Directory of Open Access Journals (Sweden)

    Zhenhua Hu

    2013-01-01

    Full Text Available We propose a new nonlinear economic system with fractional derivative. According to the Jumarie’s definition of fractional derivative, we obtain a discrete fractional nonlinear economic system. Three variables, the gross domestic production, inflation, and unemployment rate, are considered by this nonlinear system. Based on the concrete macroeconomic data of USA, the coefficients of this nonlinear system are estimated by the method of least squares. The application of discrete fractional economic model with linear and nonlinear structure is shown to illustrate the efficiency of modeling the macroeconomic data with discrete fractional dynamical system. The empirical study suggests that the nonlinear discrete fractional dynamical system can describe the actual economic data accurately and predict the future behavior more reasonably than the linear dynamic system. The method proposed in this paper can be applied to investigate other macroeconomic variables of more states.

  6. GDSCalc: A Web-Based Application for Evaluating Discrete Graph Dynamical Systems.

    Science.gov (United States)

    Elmeligy Abdelhamid, Sherif H; Kuhlman, Chris J; Marathe, Madhav V; Mortveit, Henning S; Ravi, S S

    2015-01-01

    Discrete dynamical systems are used to model various realistic systems in network science, from social unrest in human populations to regulation in biological networks. A common approach is to model the agents of a system as vertices of a graph, and the pairwise interactions between agents as edges. Agents are in one of a finite set of states at each discrete time step and are assigned functions that describe how their states change based on neighborhood relations. Full characterization of state transitions of one system can give insights into fundamental behaviors of other dynamical systems. In this paper, we describe a discrete graph dynamical systems (GDSs) application called GDSCalc for computing and characterizing system dynamics. It is an open access system that is used through a web interface. We provide an overview of GDS theory. This theory is the basis of the web application; i.e., an understanding of GDS provides an understanding of the software features, while abstracting away implementation details. We present a set of illustrative examples to demonstrate its use in education and research. Finally, we compare GDSCalc with other discrete dynamical system software tools. Our perspective is that no single software tool will perform all computations that may be required by all users; tools typically have particular features that are more suitable for some tasks. We situate GDSCalc within this space of software tools.

  7. Thermodynamic modeling, energy equipartition, and nonconservation of entropy for discrete-time dynamical systems

    Directory of Open Access Journals (Sweden)

    Chellaboina Vijaysekhar

    2005-01-01

    Full Text Available We develop thermodynamic models for discrete-time large-scale dynamical systems. Specifically, using compartmental dynamical system theory, we develop energy flow models possessing energy conservation, energy equipartition, temperature equipartition, and entropy nonconservation principles for discrete-time, large-scale dynamical systems. Furthermore, we introduce a new and dual notion to entropy; namely, ectropy, as a measure of the tendency of a dynamical system to do useful work and grow more organized, and show that conservation of energy in an isolated thermodynamic system necessarily leads to nonconservation of ectropy and entropy. In addition, using the system ectropy as a Lyapunov function candidate, we show that our discrete-time, large-scale thermodynamic energy flow model has convergent trajectories to Lyapunov stable equilibria determined by the system initial subsystem energies.

  8. Discrete dynamics versus analytic dynamics

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2014-01-01

    For discrete classical Molecular dynamics obtained by the “Verlet” algorithm (VA) with the time increment h there exists a shadow Hamiltonian H˜ with energy E˜(h) , for which the discrete particle positions lie on the analytic trajectories for H˜ . Here, we proof that there, independent...... of such an analytic analogy, exists an exact hidden energy invariance E * for VA dynamics. The fact that the discrete VA dynamics has the same invariances as Newtonian dynamics raises the question, which of the formulations that are correct, or alternatively, the most appropriate formulation of classical dynamics....... In this context the relation between the discrete VA dynamics and the (general) discrete dynamics investigated by Lee [Phys. Lett. B122, 217 (1983)] is presented and discussed....

  9. Projective Synchronization of Chaotic Discrete Dynamical Systems via Linear State Error Feedback Control

    Directory of Open Access Journals (Sweden)

    Baogui Xin

    2015-04-01

    Full Text Available A projective synchronization scheme for a kind of n-dimensional discrete dynamical system is proposed by means of a linear feedback control technique. The scheme consists of master and slave discrete dynamical systems coupled by linear state error variables. A kind of novel 3-D chaotic discrete system is constructed, to which the test for chaos is applied. By using the stability principles of an upper or lower triangular matrix, two controllers for achieving projective synchronization are designed and illustrated with the novel systems. Lastly some numerical simulations are employed to validate the effectiveness of the proposed projective synchronization scheme.

  10. Memorized discrete systems and time-delay

    CERN Document Server

    Luo, Albert C J

    2017-01-01

    This book examines discrete dynamical systems with memory—nonlinear systems that exist extensively in biological organisms and financial and economic organizations, and time-delay systems that can be discretized into the memorized, discrete dynamical systems. It book further discusses stability and bifurcations of time-delay dynamical systems that can be investigated through memorized dynamical systems as well as bifurcations of memorized nonlinear dynamical systems, discretization methods of time-delay systems, and periodic motions to chaos in nonlinear time-delay systems. The book helps readers find analytical solutions of MDS, change traditional perturbation analysis in time-delay systems, detect motion complexity and singularity in MDS; and determine stability, bifurcation, and chaos in any time-delay system.

  11. Adaptive Event-Triggered Control Based on Heuristic Dynamic Programming for Nonlinear Discrete-Time Systems.

    Science.gov (United States)

    Dong, Lu; Zhong, Xiangnan; Sun, Changyin; He, Haibo

    2017-07-01

    This paper presents the design of a novel adaptive event-triggered control method based on the heuristic dynamic programming (HDP) technique for nonlinear discrete-time systems with unknown system dynamics. In the proposed method, the control law is only updated when the event-triggered condition is violated. Compared with the periodic updates in the traditional adaptive dynamic programming (ADP) control, the proposed method can reduce the computation and transmission cost. An actor-critic framework is used to learn the optimal event-triggered control law and the value function. Furthermore, a model network is designed to estimate the system state vector. The main contribution of this paper is to design a new trigger threshold for discrete-time systems. A detailed Lyapunov stability analysis shows that our proposed event-triggered controller can asymptotically stabilize the discrete-time systems. Finally, we test our method on two different discrete-time systems, and the simulation results are included.

  12. On the Complete Integrability of Nonlinear Dynamical Systems on Discrete Manifolds within the Gradient-Holonomic Approach

    International Nuclear Information System (INIS)

    Prykarpatsky, Yarema A.; Bogolubov, Nikolai N. Jr.; Prykarpatsky, Anatoliy K.; Samoylenko, Valeriy H.

    2010-12-01

    A gradient-holonomic approach for the Lax type integrability analysis of differential-discrete dynamical systems is devised. The asymptotical solutions to the related Lax equation are studied and the related gradient identity is stated. The integrability of a discrete nonlinear Schroedinger type dynamical system is treated in detail. The integrability of a generalized Riemann type discrete hydrodynamical system is discussed. (author)

  13. Bifurcation and complex dynamics of a discrete-time predator-prey system

    Directory of Open Access Journals (Sweden)

    S. M. Sohel Rana

    2015-06-01

    Full Text Available In this paper, we investigate the dynamics of a discrete-time predator-prey system of Holling-I type in the closed first quadrant R+2. The existence and local stability of positive fixed point of the discrete dynamical system is analyzed algebraically. It is shown that the system undergoes a flip bifurcation and a Neimark-Sacker bifurcation in the interior of R+2 by using bifurcation theory. It has been found that the dynamical behavior of the model is very sensitive to the parameter values and the initial conditions. Numerical simulation results not only show the consistence with the theoretical analysis but also display the new and interesting dynamic behaviors, including phase portraits, period-9, 10, 20-orbits, attracting invariant circle, cascade of period-doubling bifurcation from period-20 leading to chaos, quasi-periodic orbits, and sudden disappearance of the chaotic dynamics and attracting chaotic set. In particular, we observe that when the prey is in chaotic dynamic, the predator can tend to extinction or to a stable equilibrium. The Lyapunov exponents are numerically computed to characterize the complexity of the dynamical behaviors. The analysis and results in this paper are interesting in mathematics and biology.

  14. Estimation of system parameters in discrete dynamical systems from time series

    International Nuclear Information System (INIS)

    Palaniyandi, P.; Lakshmanan, M.

    2005-01-01

    We propose a simple method to estimate the parameters involved in discrete dynamical systems from time series. The method is based on the concept of controlling chaos by constant feedback. The major advantages of the method are that it needs a minimal number of time series data (either vector or scalar) and is applicable to dynamical systems of any dimension. The method also works extremely well even in the presence of noise in the time series. The method is specifically illustrated by means of logistic and Henon maps

  15. A scheme for designing extreme multistable discrete dynamical ...

    Indian Academy of Sciences (India)

    A scheme for designing extreme multistable discrete dynamical systems ... Abstract. In this paper, we propose a scheme for designing discrete extreme multistable systems coupling two identical dynamical systems. Existence ... Department of Applied Mathematics, University of Calcutta, 92 APC Road, Kolkata 700 009, India ...

  16. Reachability in Biochemical Dynamical Systems by Quantitative Discrete Approximation (extended abstract

    Directory of Open Access Journals (Sweden)

    L. Brim

    2011-09-01

    Full Text Available In this paper, a novel computational technique for finite discrete approximation of continuous dynamical systems suitable for a significant class of biochemical dynamical systems is introduced. The method is parameterized in order to affect the imposed level of approximation provided that with increasing parameter value the approximation converges to the original continuous system. By employing this approximation technique, we present algorithms solving the reachability problem for biochemical dynamical systems. The presented method and algorithms are evaluated on several exemplary biological models and on a real case study.

  17. Discrete dynamic modeling of cellular signaling networks.

    Science.gov (United States)

    Albert, Réka; Wang, Rui-Sheng

    2009-01-01

    Understanding signal transduction in cellular systems is a central issue in systems biology. Numerous experiments from different laboratories generate an abundance of individual components and causal interactions mediating environmental and developmental signals. However, for many signal transduction systems there is insufficient information on the overall structure and the molecular mechanisms involved in the signaling network. Moreover, lack of kinetic and temporal information makes it difficult to construct quantitative models of signal transduction pathways. Discrete dynamic modeling, combined with network analysis, provides an effective way to integrate fragmentary knowledge of regulatory interactions into a predictive mathematical model which is able to describe the time evolution of the system without the requirement for kinetic parameters. This chapter introduces the fundamental concepts of discrete dynamic modeling, particularly focusing on Boolean dynamic models. We describe this method step-by-step in the context of cellular signaling networks. Several variants of Boolean dynamic models including threshold Boolean networks and piecewise linear systems are also covered, followed by two examples of successful application of discrete dynamic modeling in cell biology.

  18. Discrete Dynamical Systems Meet the Classic Monkey-and-the-Bananas Problem.

    Science.gov (United States)

    Gannon, Gerald E.; Martelli, Mario U.

    2001-01-01

    Presents a solution of the three-sailors-and-the-bananas problem and attempts a generalization. Introduces an interesting way of looking at the mathematics with an idea drawn from discrete dynamical systems. (KHR)

  19. Bifurcation and complex dynamics of a discrete-time predator-prey system involving group defense

    Directory of Open Access Journals (Sweden)

    S. M. Sohel Rana

    2015-09-01

    Full Text Available In this paper, we investigate the dynamics of a discrete-time predator-prey system involving group defense. The existence and local stability of positive fixed point of the discrete dynamical system is analyzed algebraically. It is shown that the system undergoes a flip bifurcation and a Neimark-Sacker bifurcation in the interior of R+2 by using bifurcation theory. Numerical simulation results not only show the consistence with the theoretical analysis but also display the new and interesting dynamical behaviors, including phase portraits, period-7, 20-orbits, attracting invariant circle, cascade of period-doubling bifurcation from period-20 leading to chaos, quasi-periodic orbits, and sudden disappearance of the chaotic dynamics and attracting chaotic set. The Lyapunov exponents are numerically computed to characterize the complexity of the dynamical behaviors.

  20. Formal methods for discrete-time dynamical systems

    CERN Document Server

    Belta, Calin; Aydin Gol, Ebru

    2017-01-01

    This book bridges fundamental gaps between control theory and formal methods. Although it focuses on discrete-time linear and piecewise affine systems, it also provides general frameworks for abstraction, analysis, and control of more general models. The book is self-contained, and while some mathematical knowledge is necessary, readers are not expected to have a background in formal methods or control theory. It rigorously defines concepts from formal methods, such as transition systems, temporal logics, model checking and synthesis. It then links these to the infinite state dynamical systems through abstractions that are intuitive and only require basic convex-analysis and control-theory terminology, which is provided in the appendix. Several examples and illustrations help readers understand and visualize the concepts introduced throughout the book.

  1. General method to find the attractors of discrete dynamic models of biological systems

    Science.gov (United States)

    Gan, Xiao; Albert, Réka

    2018-04-01

    Analyzing the long-term behaviors (attractors) of dynamic models of biological networks can provide valuable insight. We propose a general method that can find the attractors of multilevel discrete dynamical systems by extending a method that finds the attractors of a Boolean network model. The previous method is based on finding stable motifs, subgraphs whose nodes' states can stabilize on their own. We extend the framework from binary states to any finite discrete levels by creating a virtual node for each level of a multilevel node, and describing each virtual node with a quasi-Boolean function. We then create an expanded representation of the multilevel network, find multilevel stable motifs and oscillating motifs, and identify attractors by successive network reduction. In this way, we find both fixed point attractors and complex attractors. We implemented an algorithm, which we test and validate on representative synthetic networks and on published multilevel models of biological networks. Despite its primary motivation to analyze biological networks, our motif-based method is general and can be applied to any finite discrete dynamical system.

  2. General method to find the attractors of discrete dynamic models of biological systems.

    Science.gov (United States)

    Gan, Xiao; Albert, Réka

    2018-04-01

    Analyzing the long-term behaviors (attractors) of dynamic models of biological networks can provide valuable insight. We propose a general method that can find the attractors of multilevel discrete dynamical systems by extending a method that finds the attractors of a Boolean network model. The previous method is based on finding stable motifs, subgraphs whose nodes' states can stabilize on their own. We extend the framework from binary states to any finite discrete levels by creating a virtual node for each level of a multilevel node, and describing each virtual node with a quasi-Boolean function. We then create an expanded representation of the multilevel network, find multilevel stable motifs and oscillating motifs, and identify attractors by successive network reduction. In this way, we find both fixed point attractors and complex attractors. We implemented an algorithm, which we test and validate on representative synthetic networks and on published multilevel models of biological networks. Despite its primary motivation to analyze biological networks, our motif-based method is general and can be applied to any finite discrete dynamical system.

  3. Asymptotic behavior of dynamical and control systems under perturbation and discretization

    CERN Document Server

    Grüne, Lars

    2002-01-01

    This book provides an approach to the study of perturbation and discretization effects on the long-time behavior of dynamical and control systems. It analyzes the impact of time and space discretizations on asymptotically stable attracting sets, attractors, asumptotically controllable sets and their respective domains of attractions and reachable sets. Combining robust stability concepts from nonlinear control theory, techniques from optimal control and differential games and methods from nonsmooth analysis, both qualitative and quantitative results are obtained and new algorithms are developed, analyzed and illustrated by examples.

  4. MARKOV GRAPHS OF ONE–DIMENSIONAL DYNAMICAL SYSTEMS AND THEIR DISCRETE ANALOGUES AND THEIR DISCRETE ANALOGUES

    Directory of Open Access Journals (Sweden)

    SERGIY KOZERENKO

    2016-04-01

    Full Text Available One feature of the famous Sharkovsky’s theorem is that it can be proved using digraphs of a special type (the so–called Markov graphs. The most general definition assigns a Markov graph to every continuous map from the topological graph to itself. We show that this definition is too broad, i.e. every finite digraph can be viewed as a Markov graph of some one–dimensional dynamical system on a tree. We therefore consider discrete analogues of Markov graphs for vertex maps on combinatorial trees and characterize all maps on trees whose discrete Markov graphs are of the following types: complete, complete bipartite, the disjoint union of cycles, with every arc being a loop.

  5. Theoretical foundation for the discrete dynamics of physicochemical systems: Chaos, self-organization, time and space in complex systems

    Directory of Open Access Journals (Sweden)

    V. Gontar

    1997-01-01

    Full Text Available A new theoretical foundation for the discrete dynamics of physicochemical systems is presented. Based on the analogy between the π-theorem of the theory of dimensionality, the second law of thermodynamics and the stoichiometry of complex physicochemical reactions, basic dynamic equations and an extreme principle were formulated. The meaning of discrete time and space in the proposed equations is discussed. Some results of numerical calculations are presented to demonstrate the potential of the proposed approach to the mathematical simulation of spatiotemporal physicochemical reaction dynamics.

  6. Essential uncontrollability of discrete linear, time-invariant, dynamical systems

    Science.gov (United States)

    Cliff, E. M.

    1975-01-01

    The concept of a 'best approximating m-dimensional subspace' for a given set of vectors in n-dimensional whole space is introduced. Such a subspace is easily described in terms of the eigenvectors of an associated Gram matrix. This technique is used to approximate an achievable set for a discrete linear time-invariant dynamical system. This approximation characterizes the part of the state space that may be reached using modest levels of control. If the achievable set can be closely approximated by a proper subspace of the whole space then the system is 'essentially uncontrollable'. The notion finds application in studies of failure-tolerant systems, and in decoupling.

  7. Mei symmetry and conservation laws of discrete nonholonomic dynamical systems with regular and irregular lattices

    International Nuclear Information System (INIS)

    Zhao Gang-Ling; Chen Li-Qun; Fu Jing-Li; Hong Fang-Yu

    2013-01-01

    In this paper, Noether symmetry and Mei symmetry of discrete nonholonomic dynamical systems with regular and the irregular lattices are investigated. Firstly, the equations of motion of discrete nonholonomic systems are introduced for regular and irregular lattices. Secondly, for cases of the two lattices, based on the invariance of the Hamiltomian functional under the infinitesimal transformation of time and generalized coordinates, we present the quasi-extremal equation, the discrete analogues of Noether identity, Noether theorems, and the Noether conservation laws of the systems. Thirdly, in cases of the two lattices, we study the Mei symmetry in which we give the discrete analogues of the criterion, the theorem, and the conservative laws of Mei symmetry for the systems. Finally, an example is discussed for the application of the results

  8. Minimax approach problem with incomplete information for the two-level hierarchical discrete-time dynamical system

    Energy Technology Data Exchange (ETDEWEB)

    Shorikov, A. F. [Ural Federal University, 19 S. Mira, Ekaterinburg, 620002, Russia and Institute of Mathematics and Mechanics, Ural Division of Russian Academy of Sciences, 16 S. Kovalevskaya, Ekaterinburg, 620990 (Russian Federation)

    2014-11-18

    We consider a discrete-time dynamical system consisting of three controllable objects. The motions of all objects are given by the corresponding vector linear or convex discrete-time recurrent vector relations, and control system for its has two levels: basic (first or I level) that is dominating and subordinate level (second or II level) and both have different criterions of functioning and united a priori by determined informational and control connections defined in advance. For the dynamical system in question, we propose a mathematical formalization in the form of solving a multistep problem of two-level hierarchical minimax program control over the terminal approach process with incomplete information and give a general scheme for its solution.

  9. Hopf Bifurcation Analysis for a Stochastic Discrete-Time Hyperchaotic System

    Directory of Open Access Journals (Sweden)

    Jie Ran

    2015-01-01

    Full Text Available The dynamics of a discrete-time hyperchaotic system and the amplitude control of Hopf bifurcation for a stochastic discrete-time hyperchaotic system are investigated in this paper. Numerical simulations are presented to exhibit the complex dynamical behaviors in the discrete-time hyperchaotic system. Furthermore, the stochastic discrete-time hyperchaotic system with random parameters is transformed into its equivalent deterministic system with the orthogonal polynomial theory of discrete random function. In addition, the dynamical features of the discrete-time hyperchaotic system with random disturbances are obtained through its equivalent deterministic system. By using the Hopf bifurcation conditions of the deterministic discrete-time system, the specific conditions for the existence of Hopf bifurcation in the equivalent deterministic system are derived. And the amplitude control with random intensity is discussed in detail. Finally, the feasibility of the control method is demonstrated by numerical simulations.

  10. Discrete event dynamic system (DES)-based modeling for dynamic material flow in the pyroprocess

    International Nuclear Information System (INIS)

    Lee, Hyo Jik; Kim, Kiho; Kim, Ho Dong; Lee, Han Soo

    2011-01-01

    A modeling and simulation methodology was proposed in order to implement the dynamic material flow of the pyroprocess. Since the static mass balance provides the limited information on the material flow, it is hard to predict dynamic behavior according to event. Therefore, a discrete event system (DES)-based model named, PyroFlow, was developed at the Korea Atomic Energy Research Institute (KAERI). PyroFlow is able to calculate dynamic mass balance and also show various dynamic operational results in real time. By using PyroFlow, it is easy to rapidly predict unforeseeable results, such as throughput in unit process, accumulated product in buffer and operation status. As preliminary simulations, bottleneck analyses in the pyroprocess were carried out and consequently it was presented that operation strategy had influence on the productivity of the pyroprocess.

  11. A discrete exterior approach to structure-preserving discretization of distributed-parameter port-Hamiltonian systems

    NARCIS (Netherlands)

    Seslija, Marko; Scherpen, Jacquelien M.A.; van der Schaft, Arjan

    2011-01-01

    This paper addresses the issue of structure-preserving discretization of open distributed-parameter systems with Hamiltonian dynamics. Employing the formalism of discrete exterior calculus, we introduce simplicial Dirac structures as discrete analogues of the Stokes-Dirac structure and demonstrate

  12. Switching dynamics in reaction networks induced by molecular discreteness

    International Nuclear Information System (INIS)

    Togashi, Yuichi; Kaneko, Kunihiko

    2007-01-01

    To study the fluctuations and dynamics in chemical reaction processes, stochastic differential equations based on the rate equation involving chemical concentrations are often adopted. When the number of molecules is very small, however, the discreteness in the number of molecules cannot be neglected since the number of molecules must be an integer. This discreteness can be important in biochemical reactions, where the total number of molecules is not significantly larger than the number of chemical species. To elucidate the effects of such discreteness, we study autocatalytic reaction systems comprising several chemical species through stochastic particle simulations. The generation of novel states is observed; it is caused by the extinction of some molecular species due to the discreteness in their number. We demonstrate that the reaction dynamics are switched by a single molecule, which leads to the reconstruction of the acting network structure. We also show the strong dependence of the chemical concentrations on the system size, which is caused by transitions to discreteness-induced novel states

  13. Design of Experiment Using Simulation of a Discrete Dynamical System

    Directory of Open Access Journals (Sweden)

    Mašek Jan

    2016-12-01

    Full Text Available The topic of the presented paper is a promising approach to achieve optimal Design of Experiment (DoE, i.e. spreading of points within a design domain, using a simulation of a discrete dynamical system of interacting particles within an n-dimensional design space. The system of mutually repelling particles represents a physical analogy of the Audze-Eglājs (AE optimization criterion and its periodical modification (PAE, respectively. The paper compares the performance of two approaches to implementation: a single-thread process using the JAVA language environment and a massively parallel solution employing the nVidia CUDA platform.

  14. Discrete exterior geometry approach to structure-preserving discretization of distributed-parameter port-Hamiltonian systems

    NARCIS (Netherlands)

    Seslija, Marko; van der Schaft, Arjan; Scherpen, Jacquelien M.A.

    This paper addresses the issue of structure-preserving discretization of open distributed-parameter systems with Hamiltonian dynamics. Employing the formalism of discrete exterior calculus, we introduce a simplicial Dirac structure as a discrete analogue of the Stokes-Dirac structure and demonstrate

  15. Globally asymptotically stable analysis in a discrete time eco-epidemiological system

    International Nuclear Information System (INIS)

    Hu, Zengyun; Teng, Zhidong; Zhang, Tailei; Zhou, Qiming; Chen, Xi

    2017-01-01

    Highlights: • Dynamical behaviors of a discrete time eco-epidemiological system are discussed. • Global asymptotical stability of this system is obtained by an iteration scheme which can be expended to general dimensional discrete system. • More complex dynamical behaviors are obtained by numerical simulations. - Abstract: In this study, the dynamical behaviors of a discrete time eco-epidemiological system are discussed. The local stability, bifurcation and chaos are obtained. Moreover, the global asymptotical stability of this system is explored by an iteration scheme. The numerical simulations illustrate the theoretical results and exhibit the complex dynamical behaviors such as flip bifurcation, Hopf bifurcation and chaotic dynamical behaviors. Our main results provide an efficient method to analyze the global asymptotical stability for general three dimensional discrete systems.

  16. Research on a Hierarchical Dynamic Automatic Voltage Control System Based on the Discrete Event-Driven Method

    Directory of Open Access Journals (Sweden)

    Yong Min

    2013-06-01

    Full Text Available In this paper, concepts and methods of hybrid control systems are adopted to establish a hierarchical dynamic automatic voltage control (HD-AVC system, realizing the dynamic voltage stability of power grids. An HD-AVC system model consisting of three layers is built based on the hybrid control method and discrete event-driven mechanism. In the Top Layer, discrete events are designed to drive the corresponding control block so as to avoid solving complex multiple objective functions, the power system’s characteristic matrix is formed and the minimum amplitude eigenvalue (MAE is calculated through linearized differential-algebraic equations. MAE is applied to judge the system’s voltage stability and security and construct discrete events. The Middle Layer is responsible for management and operation, which is also driven by discrete events. Control values of the control buses are calculated based on the characteristics of power systems and the sensitivity method. Then control values generate control strategies through the interface block. In the Bottom Layer, various control devices receive and implement the control commands from the Middle Layer. In this way, a closed-loop power system voltage control is achieved. Computer simulations verify the validity and accuracy of the HD-AVC system, and verify that the proposed HD-AVC system is more effective than normal voltage control methods.

  17. Ensemble simulations with discrete classical dynamics

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2013-01-01

    For discrete classical Molecular dynamics (MD) obtained by the "Verlet" algorithm (VA) with the time increment $h$ there exist a shadow Hamiltonian $\\tilde{H}$ with energy $\\tilde{E}(h)$, for which the discrete particle positions lie on the analytic trajectories for $\\tilde{H}$. $\\tilde......{E}(h)$ is employed to determine the relation with the corresponding energy, $E$ for the analytic dynamics with $h=0$ and the zero-order estimate $E_0(h)$ of the energy for discrete dynamics, appearing in the literature for MD with VA. We derive a corresponding time reversible VA algorithm for canonical dynamics...

  18. A dynamic discretization method for reliability inference in Dynamic Bayesian Networks

    International Nuclear Information System (INIS)

    Zhu, Jiandao; Collette, Matthew

    2015-01-01

    The material and modeling parameters that drive structural reliability analysis for marine structures are subject to a significant uncertainty. This is especially true when time-dependent degradation mechanisms such as structural fatigue cracking are considered. Through inspection and monitoring, information such as crack location and size can be obtained to improve these parameters and the corresponding reliability estimates. Dynamic Bayesian Networks (DBNs) are a powerful and flexible tool to model dynamic system behavior and update reliability and uncertainty analysis with life cycle data for problems such as fatigue cracking. However, a central challenge in using DBNs is the need to discretize certain types of continuous random variables to perform network inference while still accurately tracking low-probability failure events. Most existing discretization methods focus on getting the overall shape of the distribution correct, with less emphasis on the tail region. Therefore, a novel scheme is presented specifically to estimate the likelihood of low-probability failure events. The scheme is an iterative algorithm which dynamically partitions the discretization intervals at each iteration. Through applications to two stochastic crack-growth example problems, the algorithm is shown to be robust and accurate. Comparisons are presented between the proposed approach and existing methods for the discretization problem. - Highlights: • A dynamic discretization method is developed for low-probability events in DBNs. • The method is compared to existing approaches on two crack growth problems. • The method is shown to improve on existing methods for low-probability events

  19. Discrete-time control system design with applications

    CERN Document Server

    Rabbath, C A

    2014-01-01

    This book presents practical techniques of discrete-time control system design. In general, the design techniques lead to low-order dynamic compensators that ensure satisfactory closed-loop performance for a wide range of sampling rates. The theory is given in the form of theorems, lemmas, and propositions. The design of the control systems is presented as step-by-step procedures and algorithms. The proposed feedback control schemes are applied to well-known dynamic system models. This book also discusses: Closed-loop performance of generic models of mobile robot and airborne pursuer dynamic systems under discrete-time feedback control with limited computing capabilities Concepts of discrete-time models and sampled-data models of continuous-time systems, for both single- and dual-rate operation Local versus global digital redesign Optimal, closed-loop digital redesign methods Plant input mapping design Generalized holds and samplers for use in feedback control loops, Numerical simulation of fixed-point arithm...

  20. Exploring high dimensional data with Butterfly: a novel classification algorithm based on discrete dynamical systems.

    Science.gov (United States)

    Geraci, Joseph; Dharsee, Moyez; Nuin, Paulo; Haslehurst, Alexandria; Koti, Madhuri; Feilotter, Harriet E; Evans, Ken

    2014-03-01

    We introduce a novel method for visualizing high dimensional data via a discrete dynamical system. This method provides a 2D representation of the relationship between subjects according to a set of variables without geometric projections, transformed axes or principal components. The algorithm exploits a memory-type mechanism inherent in a certain class of discrete dynamical systems collectively referred to as the chaos game that are closely related to iterative function systems. The goal of the algorithm was to create a human readable representation of high dimensional patient data that was capable of detecting unrevealed subclusters of patients from within anticipated classifications. This provides a mechanism to further pursue a more personalized exploration of pathology when used with medical data. For clustering and classification protocols, the dynamical system portion of the algorithm is designed to come after some feature selection filter and before some model evaluation (e.g. clustering accuracy) protocol. In the version given here, a univariate features selection step is performed (in practice more complex feature selection methods are used), a discrete dynamical system is driven by this reduced set of variables (which results in a set of 2D cluster models), these models are evaluated for their accuracy (according to a user-defined binary classification) and finally a visual representation of the top classification models are returned. Thus, in addition to the visualization component, this methodology can be used for both supervised and unsupervised machine learning as the top performing models are returned in the protocol we describe here. Butterfly, the algorithm we introduce and provide working code for, uses a discrete dynamical system to classify high dimensional data and provide a 2D representation of the relationship between subjects. We report results on three datasets (two in the article; one in the appendix) including a public lung cancer

  1. Modeling energy market dynamics using discrete event system simulation

    International Nuclear Information System (INIS)

    Gutierrez-Alcaraz, G.; Sheble, G.B.

    2009-01-01

    This paper proposes the use of Discrete Event System Simulation to study the interactions among fuel and electricity markets and consumers, and the decision-making processes of fuel companies (FUELCOs), generation companies (GENCOs), and consumers in a simple artificial energy market. In reality, since markets can reach a stable equilibrium or fail, it is important to observe how they behave in a dynamic framework. We consider a Nash-Cournot model in which marketers are depicted as Nash-Cournot players that determine supply to meet end-use consumption. Detailed engineering considerations such as transportation network flows are omitted, because the focus is upon the selection and use of appropriate market models to provide answers to policy questions. (author)

  2. Robust uniform persistence in discrete and continuous dynamical systems using Lyapunov exponents.

    Science.gov (United States)

    Salceanu, Paul L

    2011-07-01

    This paper extends the work of Salceanu and Smith [12, 13] where Lyapunov exponents were used to obtain conditions for uniform persistence ina class of dissipative discrete-time dynamical systems on the positive orthant of R(m), generated by maps. Here a united approach is taken, for both discrete and continuous time, and the dissipativity assumption is relaxed. Sufficient conditions are given for compact subsets of an invariant part of the boundary of R(m+) to be robust uniform weak repellers. These conditions require Lyapunov exponents be positive on such sets. It is shown how this leads to robust uniform persistence. The results apply to the investigation of robust uniform persistence of the disease in host populations, as shown in an application.

  3. Duality for discrete integrable systems

    International Nuclear Information System (INIS)

    Quispel, G R W; Capel, H W; Roberts, J A G

    2005-01-01

    A new class of discrete dynamical systems is introduced via a duality relation for discrete dynamical systems with a number of explicitly known integrals. The dual equation can be defined via the difference of an arbitrary linear combination of integrals and its upshifted version. We give an example of an integrable mapping with two parameters and four integrals leading to a (four-dimensional) dual mapping with four parameters and two integrals. We also consider a more general class of higher-dimensional mappings arising via a travelling-wave reduction from the (integrable) MKdV partial-difference equation. By differencing the trace of the monodromy matrix we obtain a class of novel dual mappings which is shown to be integrable as level-set-dependent versions of the original ones

  4. Time step rescaling recovers continuous-time dynamical properties for discrete-time Langevin integration of nonequilibrium systems.

    Science.gov (United States)

    Sivak, David A; Chodera, John D; Crooks, Gavin E

    2014-06-19

    When simulating molecular systems using deterministic equations of motion (e.g., Newtonian dynamics), such equations are generally numerically integrated according to a well-developed set of algorithms that share commonly agreed-upon desirable properties. However, for stochastic equations of motion (e.g., Langevin dynamics), there is still broad disagreement over which integration algorithms are most appropriate. While multiple desiderata have been proposed throughout the literature, consensus on which criteria are important is absent, and no published integration scheme satisfies all desiderata simultaneously. Additional nontrivial complications stem from simulating systems driven out of equilibrium using existing stochastic integration schemes in conjunction with recently developed nonequilibrium fluctuation theorems. Here, we examine a family of discrete time integration schemes for Langevin dynamics, assessing how each member satisfies a variety of desiderata that have been enumerated in prior efforts to construct suitable Langevin integrators. We show that the incorporation of a novel time step rescaling in the deterministic updates of position and velocity can correct a number of dynamical defects in these integrators. Finally, we identify a particular splitting (related to the velocity Verlet discretization) that has essentially universally appropriate properties for the simulation of Langevin dynamics for molecular systems in equilibrium, nonequilibrium, and path sampling contexts.

  5. Chaos for Discrete Dynamical System

    Directory of Open Access Journals (Sweden)

    Lidong Wang

    2013-01-01

    Full Text Available We prove that a dynamical system is chaotic in the sense of Martelli and Wiggins, when it is a transitive distributively chaotic in a sequence. Then, we give a sufficient condition for the dynamical system to be chaotic in the strong sense of Li-Yorke. We also prove that a dynamical system is distributively chaotic in a sequence, when it is chaotic in the strong sense of Li-Yorke.

  6. Cross Coursing in Mathematics: Physical Modelling in Differential Equations Crossing to Discrete Dynamical Systems

    Science.gov (United States)

    Winkel, Brian

    2012-01-01

    We give an example of cross coursing in which a subject or approach in one course in undergraduate mathematics is used in a completely different course. This situation crosses falling body modelling in an upper level differential equations course into a modest discrete dynamical systems unit of a first-year mathematics course. (Contains 1 figure.)

  7. Discretization model for nonlinear dynamic analysis of three dimensional structures

    International Nuclear Information System (INIS)

    Hayashi, Y.

    1982-12-01

    A discretization model for nonlinear dynamic analysis of three dimensional structures is presented. The discretization is achieved through a three dimensional spring-mass system and the dynamic response obtained by direct integration of the equations of motion using central diferences. First the viability of the model is verified through the analysis of homogeneous linear structures and then its performance in the analysis of structures subjected to impulsive or impact loads, taking into account both geometrical and physical nonlinearities is evaluated. (Author) [pt

  8. Planning "discrete" movements using a continuous system: insights from a dynamic field theory of movement preparation.

    Science.gov (United States)

    Schutte, Anne R; Spencer, John P

    2007-04-01

    The timed-initiation paradigm developed by Ghez and colleagues (1997) has revealed two modes of motor planning: continuous and discrete. Continuous responding occurs when targets are separated by less than 60 degrees of spatial angle, and discrete responding occurs when targets are separated by greater than 60 degrees . Although these two modes are thought to reflect the operation of separable strategic planning systems, a new theory of movement preparation, the Dynamic Field Theory, suggests that two modes emerge flexibly from the same system. Experiment 1 replicated continuous and discrete performance using a task modified to allow for a critical test of the single system view. In Experiment 2, participants were allowed to correct their movements following movement initiation (the standard task does not allow corrections). Results showed continuous planning performance at large and small target separations. These results are consistent with the proposal that the two modes reflect the time-dependent "preshaping" of a single planning system.

  9. TQ-bifurcations in discrete dynamical systems: Analysis of qualitative rearrangements of the oscillation mode

    Energy Technology Data Exchange (ETDEWEB)

    Makarenko, A. V., E-mail: avm.science@mail.ru [Constructive Cybernetics Research Group (Russian Federation)

    2016-10-15

    A new class of bifurcations is defined in discrete dynamical systems, and methods for their diagnostics and the analysis of their properties are presented. The TQ-bifurcations considered are implemented in discrete mappings and are related to the qualitative rearrangement of the shape of trajectories in an extended space of states. Within the demonstration of the main capabilities of the toolkit, an analysis is carried out of a logistic mapping in a domain to the right of the period-doubling limit point. Five critical values of the parameter are found for which the geometric structure of the trajectories of the mapping experiences a qualitative rearrangement. In addition, an analysis is carried out of the so-called “trace map,” which arises in the problems of quantum-mechanical description of various properties of discrete crystalline and quasicrystalline lattices.

  10. Discrete Dynamics Lab

    Science.gov (United States)

    Wuensche, Andrew

    DDLab is interactive graphics software for creating, visualizing, and analyzing many aspects of Cellular Automata, Random Boolean Networks, and Discrete Dynamical Networks in general and studying their behavior, both from the time-series perspective — space-time patterns, and from the state-space perspective — attractor basins. DDLab is relevant to research, applications, and education in the fields of complexity, self-organization, emergent phenomena, chaos, collision-based computing, neural networks, content addressable memory, genetic regulatory networks, dynamical encryption, generative art and music, and the study of the abstract mathematical/physical/dynamical phenomena in their own right.

  11. Individual chaos implies collective chaos for weakly mixing discrete dynamical systems

    International Nuclear Information System (INIS)

    Liao Gongfu; Ma Xianfeng; Wang Lidong

    2007-01-01

    Let X be a metric space (X,f) a discrete dynamical system, where f:X->X is a continuous function. Let f-bar denote the natural extension of f to the space of all non-empty compact subsets of X endowed with Hausdorff metric induced by d. In this paper we investigate some dynamical properties of f and f-bar . It is proved that f is weakly mixing (mixing) if and only if f-bar is weakly mixing (mixing, respectively). From this, we deduce that weak-mixing of f implies transitivity of f-bar , further, if f is mixing or weakly mixing, then chaoticity of f (individual chaos) implies chaoticity of f-bar (collective chaos) and if X is a closed interval then f-bar is chaotic (in the sense of Devaney) if and only if f is weakly mixing

  12. Neural networks for tracking of unknown SISO discrete-time nonlinear dynamic systems.

    Science.gov (United States)

    Aftab, Muhammad Saleheen; Shafiq, Muhammad

    2015-11-01

    This article presents a Lyapunov function based neural network tracking (LNT) strategy for single-input, single-output (SISO) discrete-time nonlinear dynamic systems. The proposed LNT architecture is composed of two feedforward neural networks operating as controller and estimator. A Lyapunov function based back propagation learning algorithm is used for online adjustment of the controller and estimator parameters. The controller and estimator error convergence and closed-loop system stability analysis is performed by Lyapunov stability theory. Moreover, two simulation examples and one real-time experiment are investigated as case studies. The achieved results successfully validate the controller performance. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Discrete-Time Nonlinear Control of VSC-HVDC System

    Directory of Open Access Journals (Sweden)

    TianTian Qian

    2015-01-01

    Full Text Available Because VSC-HVDC is a kind of strong nonlinear, coupling, and multi-input multioutput (MIMO system, its control problem is always attracting much attention from scholars. And a lot of papers have done research on its control strategy in the continuous-time domain. But the control system is implemented through the computer discrete sampling in practical engineering. It is necessary to study the mathematical model and control algorithm in the discrete-time domain. The discrete mathematical model based on output feedback linearization and discrete sliding mode control algorithm is proposed in this paper. And to ensure the effectiveness of the control system in the quasi sliding mode state, the fast output sampling method is used in the output feedback. The results from simulation experiment in MATLAB/SIMULINK prove that the proposed discrete control algorithm can make the VSC-HVDC system have good static, dynamic, and robust characteristics in discrete-time domain.

  14. Dynamic modeling method for infrared smoke based on enhanced discrete phase model

    Science.gov (United States)

    Zhang, Zhendong; Yang, Chunling; Zhang, Yan; Zhu, Hongbo

    2018-03-01

    The dynamic modeling of infrared (IR) smoke plays an important role in IR scene simulation systems and its accuracy directly influences the system veracity. However, current IR smoke models cannot provide high veracity, because certain physical characteristics are frequently ignored in fluid simulation; simplifying the discrete phase as a continuous phase and ignoring the IR decoy missile-body spinning. To address this defect, this paper proposes a dynamic modeling method for IR smoke, based on an enhanced discrete phase model (DPM). A mathematical simulation model based on an enhanced DPM is built and a dynamic computing fluid mesh is generated. The dynamic model of IR smoke is then established using an extended equivalent-blackbody-molecule model. Experiments demonstrate that this model realizes a dynamic method for modeling IR smoke with higher veracity.

  15. Explicit/multi-parametric model predictive control (MPC) of linear discrete-time systems by dynamic and multi-parametric programming

    KAUST Repository

    Kouramas, K.I.; Faí sca, N.P.; Panos, C.; Pistikopoulos, E.N.

    2011-01-01

    This work presents a new algorithm for solving the explicit/multi- parametric model predictive control (or mp-MPC) problem for linear, time-invariant discrete-time systems, based on dynamic programming and multi-parametric programming techniques

  16. ADAM: analysis of discrete models of biological systems using computer algebra.

    Science.gov (United States)

    Hinkelmann, Franziska; Brandon, Madison; Guang, Bonny; McNeill, Rustin; Blekherman, Grigoriy; Veliz-Cuba, Alan; Laubenbacher, Reinhard

    2011-07-20

    Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based on mathematical algorithms as a web

  17. Dynamics of continuous-time bidirectional associative memory neural networks with impulses and their discrete counterparts

    International Nuclear Information System (INIS)

    Huo Haifeng; Li Wantong

    2009-01-01

    This paper is concerned with the global stability characteristics of a system of equations modelling the dynamics of continuous-time bidirectional associative memory neural networks with impulses. Sufficient conditions which guarantee the existence of a unique equilibrium and its exponential stability of the networks are obtained. For the goal of computation, discrete-time analogues of the corresponding continuous-time bidirectional associative memory neural networks with impulses are also formulated and studied. Our results show that the above continuous-time and discrete-time systems with impulses preserve the dynamics of the networks without impulses when we make some modifications and impose some additional conditions on the systems, the convergence characteristics dynamics of the networks are preserved by both continuous-time and discrete-time systems with some restriction imposed on the impulse effect.

  18. Three-dimensional poor man's Navier-Stokes equation: a discrete dynamical system exhibiting k(-5/3) inertial subrange energy scaling.

    Science.gov (United States)

    McDonough, J M

    2009-06-01

    Outline of the derivation and mathematical and physical interpretations are presented for a discrete dynamical system known as the "poor man's Navier-Stokes equation." Numerical studies demonstrate that velocity fields produced by this dynamical system are similar to those seen in laboratory experiments and in detailed simulations, and they lead to scaling for the turbulence kinetic energy spectrum in accord with Kolmogorov K41 theory.

  19. Quantization of systems with temporally varying discretization. I. Evolving Hilbert spaces

    International Nuclear Information System (INIS)

    Höhn, Philipp A.

    2014-01-01

    A temporally varying discretization often features in discrete gravitational systems and appears in lattice field theory models subject to a coarse graining or refining dynamics. To better understand such discretization changing dynamics in the quantum theory, an according formalism for constrained variational discrete systems is constructed. While this paper focuses on global evolution moves and, for simplicity, restricts to flat configuration spaces R N , a Paper II [P. A. Höhn, “Quantization of systems with temporally varying discretization. II. Local evolution moves,” J. Math. Phys., e-print http://arxiv.org/abs/arXiv:1401.7731 [gr-qc].] discusses local evolution moves. In order to link the covariant and canonical picture, the dynamics of the quantum states is generated by propagators which satisfy the canonical constraints and are constructed using the action and group averaging projectors. This projector formalism offers a systematic method for tracing and regularizing divergences in the resulting state sums. Non-trivial coarse graining evolution moves lead to non-unitary, and thus irreversible, projections of physical Hilbert spaces and Dirac observables such that these concepts become evolution move dependent on temporally varying discretizations. The formalism is illustrated in a toy model mimicking a “creation from nothing.” Subtleties arising when applying such a formalism to quantum gravity models are discussed

  20. Discrete Localized States and Localization Dynamics in Discrete Nonlinear Schrödinger Equations

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Gaididei, Yu.B.; Mezentsev, V.K.

    1996-01-01

    Dynamics of two-dimensional discrete structures is studied in the framework of the generalized two-dimensional discrete nonlinear Schrodinger equation. The nonlinear coupling in the form of the Ablowitz-Ladik nonlinearity is taken into account. Stability properties of the stationary solutions...

  1. Nonlinear wave propagation in discrete and continuous systems

    Science.gov (United States)

    Rothos, V. M.

    2016-09-01

    In this review we try to capture some of the recent excitement induced by a large volume of theoretical and computational studies addressing nonlinear Schrödinger models (discrete and continuous) and the localized structures that they support. We focus on some prototypical structures, namely the breather solutions and solitary waves. In particular, we investigate the bifurcation of travelling wave solution in Discrete NLS system applying dynamical systems methods. Next, we examine the combined effects of cubic and quintic terms of the long range type in the dynamics of a double well potential. The relevant bifurcations, the stability of the branches and their dynamical implications are examined both in the reduced (ODE) and in the full (PDE) setting. We also offer an outlook on interesting possibilities for future work on this theme.

  2. Improved decomposition–coordination and discrete differential dynamic programming for optimization of large-scale hydropower system

    International Nuclear Information System (INIS)

    Li, Chunlong; Zhou, Jianzhong; Ouyang, Shuo; Ding, Xiaoling; Chen, Lu

    2014-01-01

    Highlights: • Optimization of large-scale hydropower system in the Yangtze River basin. • Improved decomposition–coordination and discrete differential dynamic programming. • Generating initial solution randomly to reduce generation time. • Proposing relative coefficient for more power generation. • Proposing adaptive bias corridor technology to enhance convergence speed. - Abstract: With the construction of major hydro plants, more and more large-scale hydropower systems are taking shape gradually, which brings up a challenge to optimize these systems. Optimization of large-scale hydropower system (OLHS), which is to determine water discharges or water levels of overall hydro plants for maximizing total power generation when subjecting to lots of constrains, is a high dimensional, nonlinear and coupling complex problem. In order to solve the OLHS problem effectively, an improved decomposition–coordination and discrete differential dynamic programming (IDC–DDDP) method is proposed in this paper. A strategy that initial solution is generated randomly is adopted to reduce generation time. Meanwhile, a relative coefficient based on maximum output capacity is proposed for more power generation. Moreover, an adaptive bias corridor technology is proposed to enhance convergence speed. The proposed method is applied to long-term optimal dispatches of large-scale hydropower system (LHS) in the Yangtze River basin. Compared to other methods, IDC–DDDP has competitive performances in not only total power generation but also convergence speed, which provides a new method to solve the OLHS problem

  3. Discrete time population dynamics of a two-stage species with recruitment and capture

    International Nuclear Information System (INIS)

    Ladino, Lilia M.; Mammana, Cristiana; Michetti, Elisabetta; Valverde, Jose C.

    2016-01-01

    This work models and analyzes the dynamics of a two-stage species with recruitment and capture factors. It arises from the discretization of a previous model developed by Ladino and Valverde (2013), which represents a progress in the knowledge of the dynamics of exploited populations. Although the methods used here are related to the study of discrete-time systems and are different from those related to continuous version, the results are similar in both the discrete and the continuous case what confirm the skill in the selection of the factors to design the model. Unlike for the continuous-time case, for the discrete-time one some (non-negative) parametric constraints are derived from the biological significance of the model and become fundamental for the proofs of such results. Finally, numerical simulations show different scenarios of dynamics related to the analytical results which confirm the validity of the model.

  4. Discrete control systems

    CERN Document Server

    Okuyama, Yoshifumi

    2014-01-01

    Discrete Control Systems establishes a basis for the analysis and design of discretized/quantized control systemsfor continuous physical systems. Beginning with the necessary mathematical foundations and system-model descriptions, the text moves on to derive a robust stability condition. To keep a practical perspective on the uncertain physical systems considered, most of the methods treated are carried out in the frequency domain. As part of the design procedure, modified Nyquist–Hall and Nichols diagrams are presented and discretized proportional–integral–derivative control schemes are reconsidered. Schemes for model-reference feedback and discrete-type observers are proposed. Although single-loop feedback systems form the core of the text, some consideration is given to multiple loops and nonlinearities. The robust control performance and stability of interval systems (with multiple uncertainties) are outlined. Finally, the monograph describes the relationship between feedback-control and discrete ev...

  5. DEVS representation of dynamical systems - Event-based intelligent control. [Discrete Event System Specification

    Science.gov (United States)

    Zeigler, Bernard P.

    1989-01-01

    It is shown how systems can be advantageously represented as discrete-event models by using DEVS (discrete-event system specification), a set-theoretic formalism. Such DEVS models provide a basis for the design of event-based logic control. In this control paradigm, the controller expects to receive confirming sensor responses to its control commands within definite time windows determined by its DEVS model of the system under control. The event-based contral paradigm is applied in advanced robotic and intelligent automation, showing how classical process control can be readily interfaced with rule-based symbolic reasoning systems.

  6. Modelling and real-time simulation of continuous-discrete systems in mechatronics

    Energy Technology Data Exchange (ETDEWEB)

    Lindow, H. [Rostocker, Magdeburg (Germany)

    1996-12-31

    This work presents a methodology for simulation and modelling of systems with continuous - discrete dynamics. It derives hybrid discrete event models from Lagrange`s equations of motion. This method combines continuous mechanical, electrical and thermodynamical submodels on one hand with discrete event models an the other hand into a hybrid discrete event model. This straight forward software development avoids numeric overhead.

  7. Comments on `A discrete optimal control problem for descriptor systems'

    DEFF Research Database (Denmark)

    Ravn, Hans

    1990-01-01

    In the above-mentioned work (see ibid., vol.34, p.177-81 (1989)), necessary and sufficient optimality conditions are derived for a discrete-time optimal problem, as well as other specific cases of implicit and explicit dynamic systems. The commenter corrects a mistake and demonstrates that there ......In the above-mentioned work (see ibid., vol.34, p.177-81 (1989)), necessary and sufficient optimality conditions are derived for a discrete-time optimal problem, as well as other specific cases of implicit and explicit dynamic systems. The commenter corrects a mistake and demonstrates...

  8. A study of discrete nonlinear systems

    International Nuclear Information System (INIS)

    Dhillon, H.S.

    2001-04-01

    An investigation of various spatially discrete time-independent nonlinear models was undertaken. These models are generically applicable to many different physical systems including electron-phonon interactions in solids, magnetic multilayers, layered superconductors and classical lattice systems. To characterise the possible magnetic structures created on magnetic multilayers a model has been formulated and studied. The Euler-Lagrange equation for this model is a discrete version of the Sine-Gordon equation. Solutions of this equation are generated by applying the methods of Chaotic Dynamics - treating the space variable associated with the layer number as a discrete time variable. The states found indicate periodic, quasiperiodic and chaotic structures. Analytic solutions to the discrete nonlinear Schroedinger Equation (DNSE) with cubic nonlinearity are presented in the strong coupling limit. Using these as a starting point, a procedure is developed to determine the wave function and the energy eigenvalue for moderate coupling. The energy eigenvalues of the different structures of the wave function are found to be in excellent agreement with the exact strong coupling result. The solutions to the DNSE indicate commensurate and incommensurate spatial structures associated with different localisation patterns of the wave function. The states which arise may be fractal, periodic, quasiperiodic or chaotic. This work is then extended to solve a first order discrete nonlinear equation. The exact solutions for both the first and second order discrete nonlinear equations with cubic nonlinearity suggests that this method of studying discrete nonlinear equations may be applied to solve discrete equations with any order difference and cubic nonlinearity. (author)

  9. Stabilization and tracking controller for a class of nonlinear discrete-time systems

    International Nuclear Information System (INIS)

    Sharma, B.B.; Kar, I.N.

    2011-01-01

    Highlights: → We present recursive design of stabilizing controller for nonlinear discrete-time systems. → Problem of stabilizing and tracking control of single link manipulator system is addressed. → We extend the proposed results to output tracking problems. → The proposed methodology is applied satisfactorily to discrete-time chaotic maps. - Abstract: In this paper, stabilization and tracking control problem for parametric strict feedback class of discrete time systems is addressed. Recursive design of control function based on contraction theory framework is proposed instead of traditional Lyapunov based method. Explicit structure of controller is derived for the addressed class of nonlinear discrete-time systems. Conditions for exponential stability of system states are derived in terms of controller parameters. At each stage of recursive procedure a specific structure of Jacobian matrix is ensured so as to satisfy conditions of stability. The closed loop dynamics in this case remains nonlinear in nature. The proposed algorithm establishes global stability results in quite a simple manner as it does not require formulation of error dynamics. Problem of stabilization and output tracking control in case of single link manipulator system with actuator dynamics is analyzed using the proposed strategy. The proposed results are further extended to stabilization of discrete time chaotic systems. Numerical simulations presented in the end show the effectiveness of the proposed approach.

  10. Discrete kink dynamics in hydrogen-bonded chains: The two-component model

    DEFF Research Database (Denmark)

    Karpan, V.M.; Zolotaryuk, Yaroslav; Christiansen, Peter Leth

    2004-01-01

    We study discrete topological solitary waves (kinks and antikinks) in two nonlinear diatomic chain models that describe the collective dynamics of proton transfers in one-dimensional hydrogen-bonded networks. The essential ingredients of the models are (i) a realistic (anharmonic) ion-proton inte......We study discrete topological solitary waves (kinks and antikinks) in two nonlinear diatomic chain models that describe the collective dynamics of proton transfers in one-dimensional hydrogen-bonded networks. The essential ingredients of the models are (i) a realistic (anharmonic) ion...... chain subject to a substrate with two optical bands), both providing a bistability of the hydrogen-bonded proton. Exact two-component (kink and antikink) discrete solutions for these models are found numerically. We compare the soliton solutions and their properties in both the one- (when the heavy ions...... principal differences, like a significant difference in the stability switchings behavior for the kinks and the antikinks. Water-filled carbon nanotubes are briefly discussed as possible realistic systems, where topological discrete (anti)kink states might exist....

  11. Verifying detailed fluctuation relations for discrete feedback-controlled quantum dynamics

    Science.gov (United States)

    Camati, Patrice A.; Serra, Roberto M.

    2018-04-01

    Discrete quantum feedback control consists of a managed dynamics according to the information acquired by a previous measurement. Energy fluctuations along such dynamics satisfy generalized fluctuation relations, which are useful tools to study the thermodynamics of systems far away from equilibrium. Due to the practical challenge to assess energy fluctuations in the quantum scenario, the experimental verification of detailed fluctuation relations in the presence of feedback control remains elusive. We present a feasible method to experimentally verify detailed fluctuation relations for discrete feedback control quantum dynamics. Two detailed fluctuation relations are developed and employed. The method is based on a quantum interferometric strategy that allows the verification of fluctuation relations in the presence of feedback control. An analytical example to illustrate the applicability of the method is discussed. The comprehensive technique introduced here can be experimentally implemented at a microscale with the current technology in a variety of experimental platforms.

  12. The discrete null space method for the energy-consistent integration of constrained mechanical systems. Part III: Flexible multibody dynamics

    International Nuclear Information System (INIS)

    Leyendecker, Sigrid; Betsch, Peter; Steinmann, Paul

    2008-01-01

    In the present work, the unified framework for the computational treatment of rigid bodies and nonlinear beams developed by Betsch and Steinmann (Multibody Syst. Dyn. 8, 367-391, 2002) is extended to the realm of nonlinear shells. In particular, a specific constrained formulation of shells is proposed which leads to the semi-discrete equations of motion characterized by a set of differential-algebraic equations (DAEs). The DAEs provide a uniform description for rigid bodies, semi-discrete beams and shells and, consequently, flexible multibody systems. The constraints may be divided into two classes: (i) internal constraints which are intimately connected with the assumption of rigidity of the bodies, and (ii) external constraints related to the presence of joints in a multibody framework. The present approach thus circumvents the use of rotational variables throughout the whole time discretization, facilitating the design of energy-momentum methods for flexible multibody dynamics. After the discretization has been completed a size-reduction of the discrete system is performed by eliminating the constraint forces. Numerical examples dealing with a spatial slider-crank mechanism and with intersecting shells illustrate the performance of the proposed method

  13. Autonomous learning by simple dynamical systems with a discrete-time formulation

    Science.gov (United States)

    Bilen, Agustín M.; Kaluza, Pablo

    2017-05-01

    We present a discrete-time formulation for the autonomous learning conjecture. The main feature of this formulation is the possibility to apply the autonomous learning scheme to systems in which the errors with respect to target functions are not well-defined for all times. This restriction for the evaluation of functionality is a typical feature in systems that need a finite time interval to process a unit piece of information. We illustrate its application on an artificial neural network with feed-forward architecture for classification and a phase oscillator system with synchronization properties. The main characteristics of the discrete-time formulation are shown by constructing these systems with predefined functions.

  14. Integrated information in discrete dynamical systems: motivation and theoretical framework.

    Directory of Open Access Journals (Sweden)

    David Balduzzi

    2008-06-01

    Full Text Available This paper introduces a time- and state-dependent measure of integrated information, phi, which captures the repertoire of causal states available to a system as a whole. Specifically, phi quantifies how much information is generated (uncertainty is reduced when a system enters a particular state through causal interactions among its elements, above and beyond the information generated independently by its parts. Such mathematical characterization is motivated by the observation that integrated information captures two key phenomenological properties of consciousness: (i there is a large repertoire of conscious experiences so that, when one particular experience occurs, it generates a large amount of information by ruling out all the others; and (ii this information is integrated, in that each experience appears as a whole that cannot be decomposed into independent parts. This paper extends previous work on stationary systems and applies integrated information to discrete networks as a function of their dynamics and causal architecture. An analysis of basic examples indicates the following: (i phi varies depending on the state entered by a network, being higher if active and inactive elements are balanced and lower if the network is inactive or hyperactive. (ii phi varies for systems with identical or similar surface dynamics depending on the underlying causal architecture, being low for systems that merely copy or replay activity states. (iii phi varies as a function of network architecture. High phi values can be obtained by architectures that conjoin functional specialization with functional integration. Strictly modular and homogeneous systems cannot generate high phi because the former lack integration, whereas the latter lack information. Feedforward and lattice architectures are capable of generating high phi but are inefficient. (iv In Hopfield networks, phi is low for attractor states and neutral states, but increases if the networks

  15. Integrated information in discrete dynamical systems: motivation and theoretical framework.

    Science.gov (United States)

    Balduzzi, David; Tononi, Giulio

    2008-06-13

    This paper introduces a time- and state-dependent measure of integrated information, phi, which captures the repertoire of causal states available to a system as a whole. Specifically, phi quantifies how much information is generated (uncertainty is reduced) when a system enters a particular state through causal interactions among its elements, above and beyond the information generated independently by its parts. Such mathematical characterization is motivated by the observation that integrated information captures two key phenomenological properties of consciousness: (i) there is a large repertoire of conscious experiences so that, when one particular experience occurs, it generates a large amount of information by ruling out all the others; and (ii) this information is integrated, in that each experience appears as a whole that cannot be decomposed into independent parts. This paper extends previous work on stationary systems and applies integrated information to discrete networks as a function of their dynamics and causal architecture. An analysis of basic examples indicates the following: (i) phi varies depending on the state entered by a network, being higher if active and inactive elements are balanced and lower if the network is inactive or hyperactive. (ii) phi varies for systems with identical or similar surface dynamics depending on the underlying causal architecture, being low for systems that merely copy or replay activity states. (iii) phi varies as a function of network architecture. High phi values can be obtained by architectures that conjoin functional specialization with functional integration. Strictly modular and homogeneous systems cannot generate high phi because the former lack integration, whereas the latter lack information. Feedforward and lattice architectures are capable of generating high phi but are inefficient. (iv) In Hopfield networks, phi is low for attractor states and neutral states, but increases if the networks are optimized

  16. Discrete and continuous time dynamic mean-variance analysis

    OpenAIRE

    Reiss, Ariane

    1999-01-01

    Contrary to static mean-variance analysis, very few papers have dealt with dynamic mean-variance analysis. Here, the mean-variance efficient self-financing portfolio strategy is derived for n risky assets in discrete and continuous time. In the discrete setting, the resulting portfolio is mean-variance efficient in a dynamic sense. It is shown that the optimal strategy for n risky assets may be dominated if the expected terminal wealth is constrained to exactly attain a certain goal instead o...

  17. Modelling machine ensembles with discrete event dynamical system theory

    Science.gov (United States)

    Hunter, Dan

    1990-01-01

    Discrete Event Dynamical System (DEDS) theory can be utilized as a control strategy for future complex machine ensembles that will be required for in-space construction. The control strategy involves orchestrating a set of interactive submachines to perform a set of tasks for a given set of constraints such as minimum time, minimum energy, or maximum machine utilization. Machine ensembles can be hierarchically modeled as a global model that combines the operations of the individual submachines. These submachines are represented in the global model as local models. Local models, from the perspective of DEDS theory , are described by the following: a set of system and transition states, an event alphabet that portrays actions that takes a submachine from one state to another, an initial system state, a partial function that maps the current state and event alphabet to the next state, and the time required for the event to occur. Each submachine in the machine ensemble is presented by a unique local model. The global model combines the local models such that the local models can operate in parallel under the additional logistic and physical constraints due to submachine interactions. The global model is constructed from the states, events, event functions, and timing requirements of the local models. Supervisory control can be implemented in the global model by various methods such as task scheduling (open-loop control) or implementing a feedback DEDS controller (closed-loop control).

  18. Advances in discrete differential geometry

    CERN Document Server

    2016-01-01

    This is one of the first books on a newly emerging field of discrete differential geometry and an excellent way to access this exciting area. It surveys the fascinating connections between discrete models in differential geometry and complex analysis, integrable systems and applications in computer graphics. The authors take a closer look at discrete models in differential geometry and dynamical systems. Their curves are polygonal, surfaces are made from triangles and quadrilaterals, and time is discrete. Nevertheless, the difference between the corresponding smooth curves, surfaces and classical dynamical systems with continuous time can hardly be seen. This is the paradigm of structure-preserving discretizations. Current advances in this field are stimulated to a large extent by its relevance for computer graphics and mathematical physics. This book is written by specialists working together on a common research project. It is about differential geometry and dynamical systems, smooth and discrete theories, ...

  19. Discrete Control Processes, Dynamic Games and Multicriterion Control Problems

    Directory of Open Access Journals (Sweden)

    Dumitru Lozovanu

    2002-07-01

    Full Text Available The discrete control processes with state evaluation in time of dynamical system is considered. A general model of control problems with integral-time cost criterion by a trajectory is studied and a general scheme for solving such classes of problems is proposed. In addition the game-theoretical and multicriterion models for control problems are formulated and studied.

  20. Nonparametric Identification and Estimation of Finite Mixture Models of Dynamic Discrete Choices

    OpenAIRE

    Hiroyuki Kasahara; Katsumi Shimotsu

    2006-01-01

    In dynamic discrete choice analysis, controlling for unobserved heterogeneity is an important issue, and finite mixture models provide flexible ways to account for unobserved heterogeneity. This paper studies nonparametric identifiability of type probabilities and type-specific component distributions in finite mixture models of dynamic discrete choices. We derive sufficient conditions for nonparametric identification for various finite mixture models of dynamic discrete choices used in appli...

  1. A Discrete Dynamical System Approach to Pathway Activation Profiles of Signaling Cascades.

    Science.gov (United States)

    Catozzi, S; Sepulchre, J-A

    2017-08-01

    In living organisms, cascades of covalent modification cycles are one of the major intracellular signaling mechanisms, allowing to transduce physical or chemical stimuli of the external world into variations of activated biochemical species within the cell. In this paper, we develop a novel method to study the stimulus-response of signaling cascades and overall the concept of pathway activation profile which is, for a given stimulus, the sequence of activated proteins at each tier of the cascade. Our approach is based on a correspondence that we establish between the stationary states of a cascade and pieces of orbits of a 2D discrete dynamical system. The study of its possible phase portraits in function of the biochemical parameters, and in particular of the contraction/expansion properties around the fixed points of this discrete map, as well as their bifurcations, yields a classification of the cascade tiers into three main types, whose biological impact within a signaling network is examined. In particular, our approach enables to discuss quantitatively the notion of cascade amplification/attenuation from this new perspective. The method allows also to study the interplay between forward and "retroactive" signaling, i.e., the upstream influence of an inhibiting drug bound to the last tier of the cascade.

  2. Discrete port-Hamiltonian systems

    NARCIS (Netherlands)

    Talasila, V.; Clemente-Gallardo, J.; Schaft, A.J. van der

    2006-01-01

    Either from a control theoretic viewpoint or from an analysis viewpoint it is necessary to convert smooth systems to discrete systems, which can then be implemented on computers for numerical simulations. Discrete models can be obtained either by discretizing a smooth model, or by directly modeling

  3. The magnetic flux dynamics in the critical state of one-dimensional discrete superconductor

    International Nuclear Information System (INIS)

    Ginzburg, S.L.; Nakin, A.V.; Savitskaya, N.E.

    2006-01-01

    We give a theoretical description of avalanche-like dynamics of magnetic flux in the critical state of discrete superconductors using a one-dimensional model of a multijunction SQUID. We show that the system under consideration demonstrates the self-organized criticality. The avalanches of vortices manifest themselves as jumps of the total magnetic flux in the sample. The sizes of these jumps have a power-law distribution. We argue that similarities in the behavior of discrete and usual type-II superconductors allows to extend our results for description of avalanche-like dynamics in type-II superconductors with strong pinning

  4. Stability of molecular dynamics simulations of classical systems

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2012-01-01

    The existence of a shadow Hamiltonian for discrete classical dynamics, obtained by an asymptotic expansion for a discrete symplectic algorithm, is employed to determine the limit of stability for molecular dynamics (MD) simulations with respect to the time-increment h of the discrete dynamics....... The investigation is based on the stability of the shadow energy, obtained by including the first term in the asymptotic expansion, and on the exact solution of discrete dynamics for a single harmonic mode. The exact solution of discrete dynamics for a harmonic potential with frequency ω gives a criterion...... for the limit of stability h ⩽ 2/ω. Simulations of the Lennard-Jones system and the viscous Kob-Andersen system show that one can use the limit of stability of the shadow energy or the stability criterion for a harmonic mode on the spectrum of instantaneous frequencies to determine the limit of stability of MD...

  5. Discrete-Time Local Value Iteration Adaptive Dynamic Programming: Admissibility and Termination Analysis.

    Science.gov (United States)

    Wei, Qinglai; Liu, Derong; Lin, Qiao

    In this paper, a novel local value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon optimal control problems for discrete-time nonlinear systems. The focuses of this paper are to study admissibility properties and the termination criteria of discrete-time local value iteration ADP algorithms. In the discrete-time local value iteration ADP algorithm, the iterative value functions and the iterative control laws are both updated in a given subset of the state space in each iteration, instead of the whole state space. For the first time, admissibility properties of iterative control laws are analyzed for the local value iteration ADP algorithm. New termination criteria are established, which terminate the iterative local ADP algorithm with an admissible approximate optimal control law. Finally, simulation results are given to illustrate the performance of the developed algorithm.In this paper, a novel local value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon optimal control problems for discrete-time nonlinear systems. The focuses of this paper are to study admissibility properties and the termination criteria of discrete-time local value iteration ADP algorithms. In the discrete-time local value iteration ADP algorithm, the iterative value functions and the iterative control laws are both updated in a given subset of the state space in each iteration, instead of the whole state space. For the first time, admissibility properties of iterative control laws are analyzed for the local value iteration ADP algorithm. New termination criteria are established, which terminate the iterative local ADP algorithm with an admissible approximate optimal control law. Finally, simulation results are given to illustrate the performance of the developed algorithm.

  6. A Decision Tool that Combines Discrete Event Software Process Models with System Dynamics Pieces for Software Development Cost Estimation and Analysis

    Science.gov (United States)

    Mizell, Carolyn Barrett; Malone, Linda

    2007-01-01

    The development process for a large software development project is very complex and dependent on many variables that are dynamic and interrelated. Factors such as size, productivity and defect injection rates will have substantial impact on the project in terms of cost and schedule. These factors can be affected by the intricacies of the process itself as well as human behavior because the process is very labor intensive. The complex nature of the development process can be investigated with software development process models that utilize discrete event simulation to analyze the effects of process changes. The organizational environment and its effects on the workforce can be analyzed with system dynamics that utilizes continuous simulation. Each has unique strengths and the benefits of both types can be exploited by combining a system dynamics model and a discrete event process model. This paper will demonstrate how the two types of models can be combined to investigate the impacts of human resource interactions on productivity and ultimately on cost and schedule.

  7. Discrete Model Reference Adaptive Control System for Automatic Profiling Machine

    Directory of Open Access Journals (Sweden)

    Peng Song

    2012-01-01

    Full Text Available Automatic profiling machine is a movement system that has a high degree of parameter variation and high frequency of transient process, and it requires an accurate control in time. In this paper, the discrete model reference adaptive control system of automatic profiling machine is discussed. Firstly, the model of automatic profiling machine is presented according to the parameters of DC motor. Then the design of the discrete model reference adaptive control is proposed, and the control rules are proven. The results of simulation show that adaptive control system has favorable dynamic performances.

  8. Stationary solutions and self-trapping in discrete quadratic nonlinear systems

    DEFF Research Database (Denmark)

    Bang, Ole; Christiansen, Peter Leth; Clausen, Carl A. Balslev

    1998-01-01

    We consider the simplest equations describing coupled quadratic nonlinear (chi((2))) systems, which each consists of a fundamental mode resonantly interacting with its second harmonic. Such discrete equations apply, e.g., to optics, where they can describe arrays of chi((2)) waveguides...... the nonintegrable dimer reduce to the discrete nonlinear Schrodinger (DNLS) equation with two degrees of freedom, which is integrable. We show how the stationary solutions to the two systems correspond to each other and how the self-trapped DNLS solutions gradually develop chaotic dynamics in the chi((2)) system...

  9. Complex Dynamics on the Routes to Chaos in a Discrete Predator-Prey System with Crowley-Martin Type Functional Response

    Directory of Open Access Journals (Sweden)

    Huayong Zhang

    2018-01-01

    Full Text Available We present in this paper an investigation on a discrete predator-prey system with Crowley-Martin type functional response to know its complex dynamics on the routes to chaos which are induced by bifurcations. Via application of the center manifold theorem and bifurcation theorems, occurrence conditions for flip bifurcation and Neimark-Sacker bifurcation are determined, respectively. Numerical simulations are performed, on the one hand, verifying the theoretical results and, on the other hand, revealing new interesting dynamical behaviors of the discrete predator-prey system, including period-doubling cascades, period-2, period-3, period-4, period-5, period-6, period-7, period-8, period-9, period-11, period-13, period-15, period-16, period-20, period-22, period-24, period-30, and period-34 orbits, invariant cycles, chaotic attractors, sub-flip bifurcation, sub-(inverse Neimark-Sacker bifurcation, chaotic interior crisis, chaotic band, sudden disappearance of chaotic dynamics and abrupt emergence of chaos, and intermittent periodic behaviors. Moreover, three-dimensional bifurcation diagrams are utilized to study the transition between flip bifurcation and Neimark-Sacker bifurcation, and a critical case between the two bifurcations is found. This critical bifurcation case is a combination of flip bifurcation and Neimark-Sacker bifurcation, showing the nonlinear characteristics of both bifurcations.

  10. The discrete adjoint method for parameter identification in multibody system dynamics.

    Science.gov (United States)

    Lauß, Thomas; Oberpeilsteiner, Stefan; Steiner, Wolfgang; Nachbagauer, Karin

    2018-01-01

    The adjoint method is an elegant approach for the computation of the gradient of a cost function to identify a set of parameters. An additional set of differential equations has to be solved to compute the adjoint variables, which are further used for the gradient computation. However, the accuracy of the numerical solution of the adjoint differential equation has a great impact on the gradient. Hence, an alternative approach is the discrete adjoint method , where the adjoint differential equations are replaced by algebraic equations. Therefore, a finite difference scheme is constructed for the adjoint system directly from the numerical time integration method. The method provides the exact gradient of the discretized cost function subjected to the discretized equations of motion.

  11. Discrete time and continuous time dynamic mean-variance analysis

    OpenAIRE

    Reiss, Ariane

    1999-01-01

    Contrary to static mean-variance analysis, very few papers have dealt with dynamic mean-variance analysis. Here, the mean-variance efficient self-financing portfolio strategy is derived for n risky assets in discrete and continuous time. In the discrete setting, the resulting portfolio is mean-variance efficient in a dynamic sense. It is shown that the optimal strategy for n risky assets may be dominated if the expected terminal wealth is constrained to exactly attain a certain goal instead o...

  12. Discrete Globalised Dual Heuristic Dynamic Programming in Control of the Two-Wheeled Mobile Robot

    OpenAIRE

    Marcin Szuster; Zenon Hendzel

    2014-01-01

    Network-based control systems have been emerging technologies in the control of nonlinear systems over the past few years. This paper focuses on the implementation of the approximate dynamic programming algorithm in the network-based tracking control system of the two-wheeled mobile robot, Pioneer 2-DX. The proposed discrete tracking control system consists of the globalised dual heuristic dynamic programming algorithm, the PD controller, the supervisory term, and an additional control signal...

  13. Can time be a discrete dynamical variable

    International Nuclear Information System (INIS)

    Lee, T.D.

    1983-01-01

    The possibility that time can be regarded as a discrete dynamical variable is examined through all phases of mechanics: from classical mechanics to nonrelativistic quantum mechanics, and to relativistic quantum field theories. (orig.)

  14. Two new discrete integrable systems

    International Nuclear Information System (INIS)

    Chen Xiao-Hong; Zhang Hong-Qing

    2013-01-01

    In this paper, we focus on the construction of new (1+1)-dimensional discrete integrable systems according to a subalgebra of loop algebra à 1 . By designing two new (1+1)-dimensional discrete spectral problems, two new discrete integrable systems are obtained, namely, a 2-field lattice hierarchy and a 3-field lattice hierarchy. When deriving the two new discrete integrable systems, we find the generalized relativistic Toda lattice hierarchy and the generalized modified Toda lattice hierarchy. Moreover, we also obtain the Hamiltonian structures of the two lattice hierarchies by means of the discrete trace identity

  15. Discrete Globalised Dual Heuristic Dynamic Programming in Control of the Two-Wheeled Mobile Robot

    Directory of Open Access Journals (Sweden)

    Marcin Szuster

    2014-01-01

    Full Text Available Network-based control systems have been emerging technologies in the control of nonlinear systems over the past few years. This paper focuses on the implementation of the approximate dynamic programming algorithm in the network-based tracking control system of the two-wheeled mobile robot, Pioneer 2-DX. The proposed discrete tracking control system consists of the globalised dual heuristic dynamic programming algorithm, the PD controller, the supervisory term, and an additional control signal. The structure of the supervisory term derives from the stability analysis realised using the Lyapunov stability theorem. The globalised dual heuristic dynamic programming algorithm consists of two structures: the actor and the critic, realised in a form of neural networks. The actor generates the suboptimal control law, while the critic evaluates the realised control strategy by approximation of value function from the Bellman’s equation. The presented discrete tracking control system works online, the neural networks’ weights adaptation process is realised in every iteration step, and the neural networks preliminary learning procedure is not required. The performance of the proposed control system was verified by a series of computer simulations and experiments realised using the wheeled mobile robot Pioneer 2-DX.

  16. System dynamics with interaction discontinuity

    CERN Document Server

    Luo, Albert C J

    2015-01-01

    This book describes system dynamics with discontinuity caused by system interactions and presents the theory of flow singularity and switchability at the boundary in discontinuous dynamical systems. Based on such a theory, the authors address dynamics and motion mechanism of engineering discontinuous systems due to interaction. Stability and bifurcations of fixed points in nonlinear discrete dynamical systems are presented, and mapping dynamics are developed for analytical predictions of periodic motions in engineering discontinuous dynamical systems. Ultimately, the book provides an alternative way to discuss the periodic and chaotic behaviors in discontinuous dynamical systems.

  17. Quasicanonical structure of optimal control in constrained discrete systems

    Science.gov (United States)

    Sieniutycz, S.

    2003-06-01

    This paper considers discrete processes governed by difference rather than differential equations for the state transformation. The basic question asked is if and when Hamiltonian canonical structures are possible in optimal discrete systems. Considering constrained discrete control, general optimization algorithms are derived that constitute suitable theoretical and computational tools when evaluating extremum properties of constrained physical models. The mathematical basis of the general theory is the Bellman method of dynamic programming (DP) and its extension in the form of the so-called Carathéodory-Boltyanski (CB) stage criterion which allows a variation of the terminal state that is otherwise fixed in the Bellman's method. Two relatively unknown, powerful optimization algorithms are obtained: an unconventional discrete formalism of optimization based on a Hamiltonian for multistage systems with unconstrained intervals of holdup time, and the time interval constrained extension of the formalism. These results are general; namely, one arrives at: the discrete canonical Hamilton equations, maximum principles, and (at the continuous limit of processes with free intervals of time) the classical Hamilton-Jacobi theory along with all basic results of variational calculus. Vast spectrum of applications of the theory is briefly discussed.

  18. Parallel Stochastic discrete event simulation of calcium dynamics in neuron.

    Science.gov (United States)

    Ishlam Patoary, Mohammad Nazrul; Tropper, Carl; McDougal, Robert A; Zhongwei, Lin; Lytton, William W

    2017-09-26

    The intra-cellular calcium signaling pathways of a neuron depends on both biochemical reactions and diffusions. Some quasi-isolated compartments (e.g. spines) are so small and calcium concentrations are so low that one extra molecule diffusing in by chance can make a nontrivial difference in its concentration (percentage-wise). These rare events can affect dynamics discretely in such way that they cannot be evaluated by a deterministic simulation. Stochastic models of such a system provide a more detailed understanding of these systems than existing deterministic models because they capture their behavior at a molecular level. Our research focuses on the development of a high performance parallel discrete event simulation environment, Neuron Time Warp (NTW), which is intended for use in the parallel simulation of stochastic reaction-diffusion systems such as intra-calcium signaling. NTW is integrated with NEURON, a simulator which is widely used within the neuroscience community. We simulate two models, a calcium buffer and a calcium wave model. The calcium buffer model is employed in order to verify the correctness and performance of NTW by comparing it to a serial deterministic simulation in NEURON. We also derived a discrete event calcium wave model from a deterministic model using the stochastic IP3R structure.

  19. Discrete Adjoint-Based Design Optimization of Unsteady Turbulent Flows on Dynamic Unstructured Grids

    Science.gov (United States)

    Nielsen, Eric J.; Diskin, Boris; Yamaleev, Nail K.

    2009-01-01

    An adjoint-based methodology for design optimization of unsteady turbulent flows on dynamic unstructured grids is described. The implementation relies on an existing unsteady three-dimensional unstructured grid solver capable of dynamic mesh simulations and discrete adjoint capabilities previously developed for steady flows. The discrete equations for the primal and adjoint systems are presented for the backward-difference family of time-integration schemes on both static and dynamic grids. The consistency of sensitivity derivatives is established via comparisons with complex-variable computations. The current work is believed to be the first verified implementation of an adjoint-based optimization methodology for the true time-dependent formulation of the Navier-Stokes equations in a practical computational code. Large-scale shape optimizations are demonstrated for turbulent flows over a tiltrotor geometry and a simulated aeroelastic motion of a fighter jet.

  20. Discrete dynamic modeling of T cell survival signaling networks

    Science.gov (United States)

    Zhang, Ranran

    2009-03-01

    Biochemistry-based frameworks are often not applicable for the modeling of heterogeneous regulatory systems that are sparsely documented in terms of quantitative information. As an alternative, qualitative models assuming a small set of discrete states are gaining acceptance. This talk will present a discrete dynamic model of the signaling network responsible for the survival and long-term competence of cytotoxic T cells in the blood cancer T-LGL leukemia. We integrated the signaling pathways involved in normal T cell activation and the known deregulations of survival signaling in leukemic T-LGL, and formulated the regulation of each network element as a Boolean (logic) rule. Our model suggests that the persistence of two signals is sufficient to reproduce all known deregulations in leukemic T-LGL. It also indicates the nodes whose inactivity is necessary and sufficient for the reversal of the T-LGL state. We have experimentally validated several model predictions, including: (i) Inhibiting PDGF signaling induces apoptosis in leukemic T-LGL. (ii) Sphingosine kinase 1 and NFκB are essential for the long-term survival of T cells in T-LGL leukemia. (iii) T box expressed in T cells (T-bet) is constitutively activated in the T-LGL state. The model has identified potential therapeutic targets for T-LGL leukemia and can be used for generating long-term competent CTL necessary for tumor and cancer vaccine development. The success of this model, and of other discrete dynamic models, suggests that the organization of signaling networks has an determining role in their dynamics. Reference: R. Zhang, M. V. Shah, J. Yang, S. B. Nyland, X. Liu, J. K. Yun, R. Albert, T. P. Loughran, Jr., Network Model of Survival Signaling in LGL Leukemia, PNAS 105, 16308-16313 (2008).

  1. Synchronization of discrete-time hyperchaotic systems: An application in communications

    International Nuclear Information System (INIS)

    Aguilar-Bustos, A.Y.; Cruz-Hernandez, C.

    2009-01-01

    In this paper, the synchronization problem of discrete-time complex dynamics is presented. In particular, we use the model-matching approach from nonlinear control theory to synchronize two unidirectionally coupled discrete-time hyperchaotic systems. A potential application to secure/private communication of confidential information is also given. By using different (hyperchaotic) encryption schemes with a single and two transmission channels, we show that output synchronization of hyperchaotic maps is indeed suitable for encryption, transmission, and decryption of information.

  2. Continuous versus discrete structures II -- Discrete Hamiltonian systems and Helmholtz conditions

    OpenAIRE

    Cresson, Jacky; Pierret, Frédéric

    2015-01-01

    We define discrete Hamiltonian systems in the framework of discrete embeddings. An explicit comparison with previous attempts is given. We then solve the discrete Helmholtz's inverse problem for the discrete calculus of variation in the Hamiltonian setting. Several applications are discussed.

  3. Direct output feedback control of discrete-time systems

    International Nuclear Information System (INIS)

    Lin, C.C.; Chung, L.L.; Lu, K.H.

    1993-01-01

    An optimal direct output feedback control algorithm is developed for discrete-time systems with the consideration of time delay in control force action. Optimal constant output feedback gains are obtained through variational process such that certain prescribed quadratic performance index is minimized. Discrete-time control forces are then calculated from the multiplication of output measurements by these pre-calculated feedback gains. According to the proposed algorithm, structural system is assured to remain stable even in the presence of time delay. The number of sensors and controllers may be very small as compared with the dimension of states. Numerical results show that direct velocity feedback control is more sensitive to time delay than state feedback but, is still quite effective in reducing the dynamic responses under earthquake excitation. (author)

  4. GPU accelerated Discrete Element Method (DEM) molecular dynamics for conservative, faceted particle simulations

    Energy Technology Data Exchange (ETDEWEB)

    Spellings, Matthew [Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 (United States); Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 (United States); Marson, Ryan L. [Materials Science & Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109 (United States); Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 (United States); Anderson, Joshua A. [Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 (United States); Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 (United States); Glotzer, Sharon C., E-mail: sglotzer@umich.edu [Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 (United States); Materials Science & Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109 (United States); Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 (United States)

    2017-04-01

    Faceted shapes, such as polyhedra, are commonly found in systems of nanoscale, colloidal, and granular particles. Many interesting physical phenomena, like crystal nucleation and growth, vacancy motion, and glassy dynamics are challenging to model in these systems because they require detailed dynamical information at the individual particle level. Within the granular materials community the Discrete Element Method has been used extensively to model systems of anisotropic particles under gravity, with friction. We provide an implementation of this method intended for simulation of hard, faceted nanoparticles, with a conservative Weeks–Chandler–Andersen (WCA) interparticle potential, coupled to a thermodynamic ensemble. This method is a natural extension of classical molecular dynamics and enables rigorous thermodynamic calculations for faceted particles.

  5. Geometric methods for discrete dynamical systems

    CERN Document Server

    Easton, Robert W

    1998-01-01

    This book looks at dynamics as an iteration process where the output of a function is fed back as an input to determine the evolution of an initial state over time. The theory examines errors which arise from round-off in numerical simulations, from the inexactness of mathematical models used to describe physical processes, and from the effects of external controls. The author provides an introduction accessible to beginning graduate students and emphasizing geometric aspects of the theory. Conley''s ideas about rough orbits and chain-recurrence play a central role in the treatment. The book will be a useful reference for mathematicians, scientists, and engineers studying this field, and an ideal text for graduate courses in dynamical systems.

  6. Quantum circuit dynamics via path integrals: Is there a classical action for discrete-time paths?

    Science.gov (United States)

    Penney, Mark D.; Enshan Koh, Dax; Spekkens, Robert W.

    2017-07-01

    It is straightforward to compute the transition amplitudes of a quantum circuit using the sum-over-paths methodology when the gates in the circuit are balanced, where a balanced gate is one for which all non-zero transition amplitudes are of equal magnitude. Here we consider the question of whether, for such circuits, the relative phases of different discrete-time paths through the configuration space can be defined in terms of a classical action, as they are for continuous-time paths. We show how to do so for certain kinds of quantum circuits, namely, Clifford circuits where the elementary systems are continuous-variable systems or discrete systems of odd-prime dimension. These types of circuit are distinguished by having phase-space representations that serve to define their classical counterparts. For discrete systems, the phase-space coordinates are also discrete variables. We show that for each gate in the generating set, one can associate a symplectomorphism on the phase-space and to each of these one can associate a generating function, defined on two copies of the configuration space. For discrete systems, the latter association is achieved using tools from algebraic geometry. Finally, we show that if the action functional for a discrete-time path through a sequence of gates is defined using the sum of the corresponding generating functions, then it yields the correct relative phases for the path-sum expression. These results are likely to be relevant for quantizing physical theories where time is fundamentally discrete, characterizing the classical limit of discrete-time quantum dynamics, and proving complexity results for quantum circuits.

  7. Explicit/multi-parametric model predictive control (MPC) of linear discrete-time systems by dynamic and multi-parametric programming

    KAUST Repository

    Kouramas, K.I.

    2011-08-01

    This work presents a new algorithm for solving the explicit/multi- parametric model predictive control (or mp-MPC) problem for linear, time-invariant discrete-time systems, based on dynamic programming and multi-parametric programming techniques. The algorithm features two key steps: (i) a dynamic programming step, in which the mp-MPC problem is decomposed into a set of smaller subproblems in which only the current control, state variables, and constraints are considered, and (ii) a multi-parametric programming step, in which each subproblem is solved as a convex multi-parametric programming problem, to derive the control variables as an explicit function of the states. The key feature of the proposed method is that it overcomes potential limitations of previous methods for solving multi-parametric programming problems with dynamic programming, such as the need for global optimization for each subproblem of the dynamic programming step. © 2011 Elsevier Ltd. All rights reserved.

  8. Local and global dynamics of Ramsey model: From continuous to discrete time.

    Science.gov (United States)

    Guzowska, Malgorzata; Michetti, Elisabetta

    2018-05-01

    The choice of time as a discrete or continuous variable may radically affect equilibrium stability in an endogenous growth model with durable consumption. In the continuous-time Ramsey model [F. P. Ramsey, Econ. J. 38(152), 543-559 (1928)], the steady state is locally saddle-path stable with monotonic convergence. However, in the discrete-time version, the steady state may be unstable or saddle-path stable with monotonic or oscillatory convergence or periodic solutions [see R.-A. Dana et al., Handbook on Optimal Growth 1 (Springer, 2006) and G. Sorger, Working Paper No. 1505 (2015)]. When this occurs, the discrete-time counterpart of the continuous-time model is not consistent with the initial framework. In order to obtain a discrete-time Ramsey model preserving the main properties of the continuous-time counterpart, we use a general backward and forward discretisation as initially proposed by Bosi and Ragot [Theor. Econ. Lett. 2(1), 10-15 (2012)]. The main result of the study here presented is that, with this hybrid discretisation method, fixed points and local dynamics do not change. For what it concerns global dynamics, i.e., long-run behavior for initial conditions taken on the state space, we mainly perform numerical analysis with the main scope of comparing both qualitative and quantitative evolution of the two systems, also varying some parameters of interest.

  9. Critical bifurcation surfaces of 3D discrete dynamics

    Directory of Open Access Journals (Sweden)

    Michael Sonis

    2000-01-01

    Full Text Available This paper deals with the analytical representation of bifurcations of each 3D discrete dynamics depending on the set of bifurcation parameters. The procedure of bifurcation analysis proposed in this paper represents the 3D elaboration and specification of the general algorithm of the n-dimensional linear bifurcation analysis proposed by the author earlier. It is proven that 3D domain of asymptotic stability (attraction of the fixed point for a given 3D discrete dynamics is bounded by three critical bifurcation surfaces: the divergence, flip and flutter surfaces. The analytical construction of these surfaces is achieved with the help of classical Routh–Hurvitz conditions of asymptotic stability. As an application the adjustment process proposed by T. Puu for the Cournot oligopoly model is considered in detail.

  10. Simulation of interim spent fuel storage system with discrete event model

    International Nuclear Information System (INIS)

    Yoon, Wan Ki; Song, Ki Chan; Lee, Jae Sol; Park, Hyun Soo

    1989-01-01

    This paper describes dynamic simulation of the spent fuel storage system which is described by statistical discrete event models. It visualizes flow and queue of system over time, assesses the operational performance of the system activities and establishes the system components and streams. It gives information on system organization and operation policy with reference to the design. System was tested and analyzed over a number of critical parameters to establish the optimal system. Workforce schedule and resources with long processing time dominate process. A combination of two workforce shifts a day and two cooling pits gives the optimal solution of storage system. Discrete system simulation is an useful tool to get information on optimal design and operation of the storage system. (Author)

  11. Risk-based design of process systems using discrete-time Bayesian networks

    International Nuclear Information System (INIS)

    Khakzad, Nima; Khan, Faisal; Amyotte, Paul

    2013-01-01

    Temporal Bayesian networks have gained popularity as a robust technique to model dynamic systems in which the components' sequential dependency, as well as their functional dependency, cannot be ignored. In this regard, discrete-time Bayesian networks have been proposed as a viable alternative to solve dynamic fault trees without resort to Markov chains. This approach overcomes the drawbacks of Markov chains such as the state-space explosion and the error-prone conversion procedure from dynamic fault tree. It also benefits from the inherent advantages of Bayesian networks such as probability updating. However, effective mapping of the dynamic gates of dynamic fault trees into Bayesian networks while avoiding the consequent huge multi-dimensional probability tables has always been a matter of concern. In this paper, a new general formalism has been developed to model two important elements of dynamic fault tree, i.e., cold spare gate and sequential enforcing gate, with any arbitrary probability distribution functions. Also, an innovative Neutral Dependency algorithm has been introduced to model dynamic gates such as priority-AND gate, thus reducing the dimension of conditional probability tables by an order of magnitude. The second part of the paper is devoted to the application of discrete-time Bayesian networks in the risk assessment and safety analysis of complex process systems. It has been shown how dynamic techniques can effectively be applied for optimal allocation of safety systems to obtain maximum risk reduction.

  12. Simulation of dynamic systems with Matlab and Simulink

    CERN Document Server

    Klee, Harold

    2011-01-01

    Mathematical ModelingDerivation of a Mathematical ModelDifference EquationsFirst Look at Discrete-Time SystemsCase Study: Population Dynamics (Single Species)Continuous-Time SystemsFirst-Order SystemsSecond-Order SystemsSimulation DiagramsHigher-Order SystemsState VariablesNonlinear SystemsCase Study: Submarine Depth Control SystemElementary Numerical IntegrationDiscrete-Time System Approximation of a Continuous-

  13. Discrete Time McKean–Vlasov Control Problem: A Dynamic Programming Approach

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Huyên, E-mail: pham@math.univ-paris-diderot.fr; Wei, Xiaoli, E-mail: tyswxl@gmail.com [Laboratoire de Probabilités et Modèles Aléatoires, CNRS, UMR 7599, Université Paris Diderot (France)

    2016-12-15

    We consider the stochastic optimal control problem of nonlinear mean-field systems in discrete time. We reformulate the problem into a deterministic control problem with marginal distribution as controlled state variable, and prove that dynamic programming principle holds in its general form. We apply our method for solving explicitly the mean-variance portfolio selection and the multivariate linear-quadratic McKean–Vlasov control problem.

  14. Discrete Time McKean–Vlasov Control Problem: A Dynamic Programming Approach

    International Nuclear Information System (INIS)

    Pham, Huyên; Wei, Xiaoli

    2016-01-01

    We consider the stochastic optimal control problem of nonlinear mean-field systems in discrete time. We reformulate the problem into a deterministic control problem with marginal distribution as controlled state variable, and prove that dynamic programming principle holds in its general form. We apply our method for solving explicitly the mean-variance portfolio selection and the multivariate linear-quadratic McKean–Vlasov control problem.

  15. A Discrete Dynamical Model of Signed Partitions

    Directory of Open Access Journals (Sweden)

    G. Chiaselotti

    2013-01-01

    Full Text Available We use a discrete dynamical model with three evolution rules in order to analyze the structure of a partially ordered set of signed integer partitions whose main properties are actually not known. This model is related to the study of some extremal combinatorial sum problems.

  16. Noether symmetries of discrete mechanico–electrical systems

    International Nuclear Information System (INIS)

    Fu Jingli; Xie Fengping; Chen Benyong

    2008-01-01

    This paper focuses on studying Noether symmetries and conservation laws of the discrete mechanico-electrical systems with the nonconservative and the dissipative forces. Based on the invariance of discrete Hamilton action of the systems under the infinitesimal transformation with respect to the generalized coordinates, the generalized electrical quantities and time, it presents the discrete analogue of variational principle, the discrete analogue of Lagrange–Maxwell equations, the discrete analogue of Noether theorems for Lagrange–Maxwell and Lagrange mechanico-electrical systems. Also, the discrete Noether operator identity and the discrete Noether-type conservation laws are obtained for these systems. An actual example is given to illustrate these results. (general)

  17. Dynamic nonlinear interaction of elastic plates on discrete supports

    International Nuclear Information System (INIS)

    Coutinho, A.L.G.A.; Landau, L.; Lima, E.C.P. de; Ebecken, N.F.F.

    1984-01-01

    A study on the dynamic nonlinear interaction of elastic plates using the finite element method is presented. The elastic plate is discretized by 4-node isoparametric Mindlin elements. The constitutive relation of the discrete supports can be any nonlinear curve given by pairs of force-displacement points. The nonlinear behaviour is represented by the overlay approach. This model also allows the simulation of a progressive decrease on the supports stiffnesses during load cycles. The dynamic nonlinear incremental movement equations are integrated by the Newmark implicit operator. Two alternatives for the incremental-iterative formulation are compared. The paper ends with a discussion of the advantages and limitations of the presented numerical models. (Author) [pt

  18. Discretization-induced delays and their role in the dynamics

    International Nuclear Information System (INIS)

    Ramani, A; Grammaticos, B; Satsuma, J; Willox, R

    2008-01-01

    We show that a discretization of a continuous system may entail 'hidden' delays and thus introduce instabilities. In this case, while the continuous system has an attractive fixed point, the instabilities present in the equivalent discrete one may lead to the appearance of a limit cycle. We explain that it is possible, thanks to the proper staggering of the discrete variables, to eliminate the hidden delay. However, in general, other instabilities may appear in the discrete system which can even lead to chaotic behaviour

  19. Polynomial algebra of discrete models in systems biology.

    Science.gov (United States)

    Veliz-Cuba, Alan; Jarrah, Abdul Salam; Laubenbacher, Reinhard

    2010-07-01

    An increasing number of discrete mathematical models are being published in Systems Biology, ranging from Boolean network models to logical models and Petri nets. They are used to model a variety of biochemical networks, such as metabolic networks, gene regulatory networks and signal transduction networks. There is increasing evidence that such models can capture key dynamic features of biological networks and can be used successfully for hypothesis generation. This article provides a unified framework that can aid the mathematical analysis of Boolean network models, logical models and Petri nets. They can be represented as polynomial dynamical systems, which allows the use of a variety of mathematical tools from computer algebra for their analysis. Algorithms are presented for the translation into polynomial dynamical systems. Examples are given of how polynomial algebra can be used for the model analysis. alanavc@vt.edu Supplementary data are available at Bioinformatics online.

  20. Counting and classifying attractors in high dimensional dynamical systems.

    Science.gov (United States)

    Bagley, R J; Glass, L

    1996-12-07

    Randomly connected Boolean networks have been used as mathematical models of neural, genetic, and immune systems. A key quantity of such networks is the number of basins of attraction in the state space. The number of basins of attraction changes as a function of the size of the network, its connectivity and its transition rules. In discrete networks, a simple count of the number of attractors does not reveal the combinatorial structure of the attractors. These points are illustrated in a reexamination of dynamics in a class of random Boolean networks considered previously by Kauffman. We also consider comparisons between dynamics in discrete networks and continuous analogues. A continuous analogue of a discrete network may have a different number of attractors for many different reasons. Some attractors in discrete networks may be associated with unstable dynamics, and several different attractors in a discrete network may be associated with a single attractor in the continuous case. Special problems in determining attractors in continuous systems arise when there is aperiodic dynamics associated with quasiperiodicity of deterministic chaos.

  1. Quantum circuit dynamics via path integrals: Is there a classical action for discrete-time paths?

    International Nuclear Information System (INIS)

    Penney, Mark D; Koh, Dax Enshan; Spekkens, Robert W

    2017-01-01

    It is straightforward to compute the transition amplitudes of a quantum circuit using the sum-over-paths methodology when the gates in the circuit are balanced, where a balanced gate is one for which all non-zero transition amplitudes are of equal magnitude. Here we consider the question of whether, for such circuits, the relative phases of different discrete-time paths through the configuration space can be defined in terms of a classical action, as they are for continuous-time paths. We show how to do so for certain kinds of quantum circuits, namely, Clifford circuits where the elementary systems are continuous-variable systems or discrete systems of odd-prime dimension. These types of circuit are distinguished by having phase-space representations that serve to define their classical counterparts. For discrete systems, the phase-space coordinates are also discrete variables. We show that for each gate in the generating set, one can associate a symplectomorphism on the phase-space and to each of these one can associate a generating function, defined on two copies of the configuration space. For discrete systems, the latter association is achieved using tools from algebraic geometry. Finally, we show that if the action functional for a discrete-time path through a sequence of gates is defined using the sum of the corresponding generating functions, then it yields the correct relative phases for the path-sum expression. These results are likely to be relevant for quantizing physical theories where time is fundamentally discrete, characterizing the classical limit of discrete-time quantum dynamics, and proving complexity results for quantum circuits. (paper)

  2. Discrete port-Hamiltonian systems : mixed interconnections

    NARCIS (Netherlands)

    Talasila, Viswanath; Clemente-Gallardo, J.; Schaft, A.J. van der

    2005-01-01

    Either from a control theoretic viewpoint or from an analysis viewpoint it is necessary to convert smooth systems to discrete systems, which can then be implemented on computers for numerical simulations. Discrete models can be obtained either by discretizing a smooth model, or by directly modeling

  3. A necessary condition for dispersal driven growth of populations with discrete patch dynamics.

    Science.gov (United States)

    Guiver, Chris; Packman, David; Townley, Stuart

    2017-07-07

    We revisit the question of when can dispersal-induced coupling between discrete sink populations cause overall population growth? Such a phenomenon is called dispersal driven growth and provides a simple explanation of how dispersal can allow populations to persist across discrete, spatially heterogeneous, environments even when individual patches are adverse or unfavourable. For two classes of mathematical models, one linear and one non-linear, we provide necessary conditions for dispersal driven growth in terms of the non-existence of a common linear Lyapunov function, which we describe. Our approach draws heavily upon the underlying positive dynamical systems structure. Our results apply to both discrete- and continuous-time models. The theory is illustrated with examples and both biological and mathematical conclusions are drawn. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Exact wave packet decoherence dynamics in a discrete spectrum environment

    International Nuclear Information System (INIS)

    Tu, Matisse W Y; Zhang Weimin

    2008-01-01

    We find an exact analytical solution of the reduced density matrix from the Feynman-Vernon influence functional theory for a wave packet in an environment containing a few discrete modes. We obtain two intrinsic energy scales relating to the time scales of the system and the environment. The different relationship between these two scales alters the overall form of the solution of the system. We also introduce a decoherence measure for a single wave packet which is defined as the ratio of Schroedinger uncertainty over the delocalization extension of the wave packet and characterizes the time-evolution behaviour of the off-diagonal reduced density matrix element. We utilize the exact solution and the decoherence measure to study the wave packet decoherence dynamics. We further demonstrate how the dynamical diffusion of the wave packet leads to non-Markovian decoherence in such a microscopic environment.

  5. Energy Cost of Avoiding Pressure Oscillations in a Discrete Fluid Power Force System

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik Clemmensen

    2015-01-01

    In secondary valve controlled discrete fluid power force systems the valve opening trajectory greatly influences the pressure dynamics in the actuator chambers. For discrete fluid power systems featuring hoses of significant length pressure oscillations due to fast valve switching is well......-known. This paper builds upon theoretical findings on how shaping of the valve opening may reduce the cylinder pressure oscillations. The current paper extents the work by implementing the valve opening characteristics reducing the pressure oscillations on a full scale power take-off test-bench for wave energy...... will present measurements comparing pressure dynamics for two valve opening algorithms. In addition the paper will give a theoretical investigation of the energy loss during valve shifting and finally measurements of average power output from the power take-off system in various sea states are compared...

  6. Indirect adaptive control of discrete chaotic systems

    International Nuclear Information System (INIS)

    Salarieh, Hassan; Shahrokhi, Mohammad

    2007-01-01

    In this paper an indirect adaptive control algorithm is proposed to stabilize the fixed points of discrete chaotic systems. It is assumed that the functionality of the chaotic dynamics is known but the system parameters are unknown. This assumption is usually applicable to many chaotic systems, such as the Henon map, logistic and many other nonlinear maps. Using the recursive-least squares technique, the system parameters are identified and based on the feedback linearization method an adaptive controller is designed for stabilizing the fixed points, or unstable periodic orbits of the chaotic maps. The stability of the proposed scheme has been shown and the effectiveness of the control algorithm has been demonstrated through computer simulations

  7. Geometric analysis of nondeterminacy in dynamical systems

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Raussen, Martin Hubert

    2007-01-01

    This article intends to provide some new insights into concurrency using ideas from the theory of dynamical systems. Inherently discrete concurrency corresponds to a parallel continuous concept: a discrete state space corresponds to a differential manifold, an execution path corresponds to a flow...

  8. Discrete-Time Systems

    Indian Academy of Sciences (India)

    We also describe discrete-time systems in terms of difference ... A more modern alternative, especially for larger systems, is to convert ... In other words, ..... picture?) State-variable equations are also called state-space equations because the ...

  9. Observability of discretized partial differential equations

    Science.gov (United States)

    Cohn, Stephen E.; Dee, Dick P.

    1988-01-01

    It is shown that complete observability of the discrete model used to assimilate data from a linear partial differential equation (PDE) system is necessary and sufficient for asymptotic stability of the data assimilation process. The observability theory for discrete systems is reviewed and applied to obtain simple observability tests for discretized constant-coefficient PDEs. Examples are used to show how numerical dispersion can result in discrete dynamics with multiple eigenvalues, thereby detracting from observability.

  10. Application of network methods for understanding evolutionary dynamics in discrete habitats.

    Science.gov (United States)

    Greenbaum, Gili; Fefferman, Nina H

    2017-06-01

    In populations occupying discrete habitat patches, gene flow between habitat patches may form an intricate population structure. In such structures, the evolutionary dynamics resulting from interaction of gene-flow patterns with other evolutionary forces may be exceedingly complex. Several models describing gene flow between discrete habitat patches have been presented in the population-genetics literature; however, these models have usually addressed relatively simple settings of habitable patches and have stopped short of providing general methodologies for addressing nontrivial gene-flow patterns. In the last decades, network theory - a branch of discrete mathematics concerned with complex interactions between discrete elements - has been applied to address several problems in population genetics by modelling gene flow between habitat patches using networks. Here, we present the idea and concepts of modelling complex gene flows in discrete habitats using networks. Our goal is to raise awareness to existing network theory applications in molecular ecology studies, as well as to outline the current and potential contribution of network methods to the understanding of evolutionary dynamics in discrete habitats. We review the main branches of network theory that have been, or that we believe potentially could be, applied to population genetics and molecular ecology research. We address applications to theoretical modelling and to empirical population-genetic studies, and we highlight future directions for extending the integration of network science with molecular ecology. © 2017 John Wiley & Sons Ltd.

  11. Discrete integrable systems and deformations of associative algebras

    International Nuclear Information System (INIS)

    Konopelchenko, B G

    2009-01-01

    Interrelations between discrete deformations of the structure constants for associative algebras and discrete integrable systems are reviewed. Theory of deformations for associative algebras is presented. Closed left ideal generated by the elements representing the multiplication table plays a central role in this theory. Deformations of the structure constants are generated by the deformation driving algebra and governed by the central system of equations. It is demonstrated that many discrete equations such as discrete Boussinesq equation, discrete WDVV equation, discrete Schwarzian KP and BKP equations, discrete Hirota-Miwa equations for KP and BKP hierarchies are particular realizations of the central system. An interaction between the theories of discrete integrable systems and discrete deformations of associative algebras is reciprocal and fruitful. An interpretation of the Menelaus relation (discrete Schwarzian KP equation), discrete Hirota-Miwa equation for KP hierarchy, consistency around the cube as the associativity conditions and the concept of gauge equivalence, for instance, between the Menelaus and KP configurations are particular examples.

  12. Geometry and Hamiltonian mechanics on discrete spaces

    International Nuclear Information System (INIS)

    Talasila, V; Clemente-Gallardo, J; Schaft, A J van der

    2004-01-01

    Numerical simulation is often crucial for analysing the behaviour of many complex systems which do not admit analytic solutions. To this end, one either converts a 'smooth' model into a discrete (in space and time) model, or models systems directly at a discrete level. The goal of this paper is to provide a discrete analogue of differential geometry, and to define on these discrete models a formal discrete Hamiltonian structure-in doing so we try to bring together various fundamental concepts from numerical analysis, differential geometry, algebraic geometry, simplicial homology and classical Hamiltonian mechanics. For example, the concept of a twisted derivation is borrowed from algebraic geometry for developing a discrete calculus. The theory is applied to a nonlinear pendulum and we compare the dynamics obtained through a discrete modelling approach with the dynamics obtained via the usual discretization procedures. Also an example of an energy-conserving algorithm on a simple harmonic oscillator is presented, and its effect on the Poisson structure is discussed

  13. A Review of Fuzzy Logic and Neural Network Based Intelligent Control Design for Discrete-Time Systems

    Directory of Open Access Journals (Sweden)

    Yiming Jiang

    2016-01-01

    Full Text Available Over the last few decades, the intelligent control methods such as fuzzy logic control (FLC and neural network (NN control have been successfully used in various applications. The rapid development of digital computer based control systems requires control signals to be calculated in a digital or discrete-time form. In this background, the intelligent control methods developed for discrete-time systems have drawn great attentions. This survey aims to present a summary of the state of the art of the design of FLC and NN-based intelligent control for discrete-time systems. For discrete-time FLC systems, numerous remarkable design approaches are introduced and a series of efficient methods to deal with the robustness, stability, and time delay of FLC discrete-time systems are recommended. Techniques for NN-based intelligent control for discrete-time systems, such as adaptive methods and adaptive dynamic programming approaches, are also reviewed. Overall, this paper is devoted to make a brief summary for recent progresses in FLC and NN-based intelligent control design for discrete-time systems as well as to present our thoughts and considerations of recent trends and potential research directions in this area.

  14. Discrete Routh reduction

    International Nuclear Information System (INIS)

    Jalnapurkar, Sameer M; Leok, Melvin; Marsden, Jerrold E; West, Matthew

    2006-01-01

    This paper develops the theory of Abelian Routh reduction for discrete mechanical systems and applies it to the variational integration of mechanical systems with Abelian symmetry. The reduction of variational Runge-Kutta discretizations is considered, as well as the extent to which symmetry reduction and discretization commute. These reduced methods allow the direct simulation of dynamical features such as relative equilibria and relative periodic orbits that can be obscured or difficult to identify in the unreduced dynamics. The methods are demonstrated for the dynamics of an Earth orbiting satellite with a non-spherical J 2 correction, as well as the double spherical pendulum. The J 2 problem is interesting because in the unreduced picture, geometric phases inherent in the model and those due to numerical discretization can be hard to distinguish, but this issue does not appear in the reduced algorithm, where one can directly observe interesting dynamical structures in the reduced phase space (the cotangent bundle of shape space), in which the geometric phases have been removed. The main feature of the double spherical pendulum example is that it has a non-trivial magnetic term in its reduced symplectic form. Our method is still efficient as it can directly handle the essential non-canonical nature of the symplectic structure. In contrast, a traditional symplectic method for canonical systems could require repeated coordinate changes if one is evoking Darboux' theorem to transform the symplectic structure into canonical form, thereby incurring additional computational cost. Our method allows one to design reduced symplectic integrators in a natural way, despite the non-canonical nature of the symplectic structure

  15. Experiments of reconstructing discrete atmospheric dynamic models from data (I)

    Science.gov (United States)

    Lin, Zhenshan; Zhu, Yanyu; Deng, Ziwang

    1995-03-01

    In this paper, we give some experimental results of our study in reconstructing discrete atmospheric dynamic models from data. After a great deal of numerical experiments, we found that the logistic map, x n + 1 = 1- μx {2/n}, could be used in monthly mean temperature prediction when it was approaching the chaotic region, and its predictive results were in reverse states to the practical data. This means that the nonlinear developing behavior of the monthly mean temperature system is bifurcating back into the critical chaotic states from the chaotic ones.

  16. Discrete breathers dynamic in a model for DNA chain with a finite stacking enthalpy

    Science.gov (United States)

    Gninzanlong, Carlos Lawrence; Ndjomatchoua, Frank Thomas; Tchawoua, Clément

    2018-04-01

    The nonlinear dynamics of a homogeneous DNA chain based on site-dependent finite stacking and pairing enthalpies is studied. A new variant of extended discrete nonlinear Schrödinger equation describing the dynamics of modulated wave is derived. The regions of discrete modulational instability of plane carrier waves are studied, and it appears that these zones depend strongly on the phonon frequency of Fourier's mode. The staggered/unstaggered discrete breather (SDB/USDB) is obtained straightforwardly without the staggering transformation, and it is demonstrated that SDBs are less unstable than USDB. The instability of discrete multi-humped SDB/USDB solution does not depend on the number of peaks of the discrete breather (DB). By using the concept of Peierls-Nabarro energy barrier, it appears that the low-frequency DBs are more mobile.

  17. Hybrid dynamical systems observation and control

    CERN Document Server

    Defoort, Michael

    2015-01-01

    This book is a collection of contributions defining the state of current knowledge and new trends in hybrid systemssystems involving both continuous dynamics and discrete events – as described by the work of several well-known groups of researchers. Hybrid Dynamical Systems presents theoretical advances in such areas as diagnosability, observability and stabilization for various classes of system. Continuous and discrete state estimation and self-triggering control of nonlinear systems are advanced. The text employs various methods, among them, high-order sliding modes, Takagi–Sugeno representation and sampled-data switching to achieve its ends. The many applications of hybrid systems from power converters to computer science are not forgotten; studies of flexible-joint robotic arms and – as representative biological systems – the behaviour of the human heart and vasculature, demonstrate the wide-ranging practical significance of control in hybrid systems. The cross-disciplinary origins of study ...

  18. A 2+1 non-isospectral discrete integrable system and its discrete integrable coupling system

    International Nuclear Information System (INIS)

    Yu Fajun; Zhang Hongqing

    2006-01-01

    In this Letter by considering a (2+1)-dimensional discrete non-isospectral linear problem, a new (2+1)-dimensional integrable lattice hierarchy is constructed. It shows that generalization of the Blaszak-Marciniak lattice hierarchy can be obtained as a reduction. Then an extended algebraic system X-bar of X is presented, from which the integrable coupling system of the (2+1)-dimensional discrete non-isospectral Blaszak-Marciniak lattice equations are obtained

  19. Thermodynamic framework for discrete optimal control in multiphase flow systems

    Science.gov (United States)

    Sieniutycz, Stanislaw

    1999-08-01

    Bellman's method of dynamic programming is used to synthesize diverse optimization approaches to active (work producing) and inactive (entropy generating) multiphase flow systems. Thermal machines, optimally controlled unit operations, nonlinear heat conduction, spontaneous relaxation processes, and self-propagating wave fronts are all shown to satisfy a discrete Hamilton-Jacobi-Bellman equation and a corresponding discrete optimization algorithm of Pontryagin's type, with the maximum principle for a Hamiltonian. The extremal structures are always canonical. A common unifying criterion is set for all considered systems, which is the criterion of a minimum generated entropy. It is shown that constraints can modify the entropy functionals in a different way for each group of the processes considered; thus the resulting structures of these functionals may differ significantly. Practical conclusions are formulated regarding the energy savings and energy policy in optimally controlled systems.

  20. Discrete systems and integrability

    CERN Document Server

    Hietarinta, J; Nijhoff, F W

    2016-01-01

    This first introductory text to discrete integrable systems introduces key notions of integrability from the vantage point of discrete systems, also making connections with the continuous theory where relevant. While treating the material at an elementary level, the book also highlights many recent developments. Topics include: Darboux and Bäcklund transformations; difference equations and special functions; multidimensional consistency of integrable lattice equations; associated linear problems (Lax pairs); connections with Padé approximants and convergence algorithms; singularities and geometry; Hirota's bilinear formalism for lattices; intriguing properties of discrete Painlevé equations; and the novel theory of Lagrangian multiforms. The book builds the material in an organic way, emphasizing interconnections between the various approaches, while the exposition is mostly done through explicit computations on key examples. Written by respected experts in the field, the numerous exercises and the thoroug...

  1. Dynamical systems and linear algebra

    OpenAIRE

    Colonius, Fritz (Prof.)

    2007-01-01

    Dynamical systems and linear algebra / F. Colonius, W. Kliemann. - In: Handbook of linear algebra / ed. by Leslie Hogben. - Boca Raton : Chapman & Hall/CRC, 2007. - S. 56,1-56,22. - (Discrete mathematics and its applications)

  2. Value Iteration Adaptive Dynamic Programming for Optimal Control of Discrete-Time Nonlinear Systems.

    Science.gov (United States)

    Wei, Qinglai; Liu, Derong; Lin, Hanquan

    2016-03-01

    In this paper, a value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon undiscounted optimal control problems for discrete-time nonlinear systems. The present value iteration ADP algorithm permits an arbitrary positive semi-definite function to initialize the algorithm. A novel convergence analysis is developed to guarantee that the iterative value function converges to the optimal performance index function. Initialized by different initial functions, it is proven that the iterative value function will be monotonically nonincreasing, monotonically nondecreasing, or nonmonotonic and will converge to the optimum. In this paper, for the first time, the admissibility properties of the iterative control laws are developed for value iteration algorithms. It is emphasized that new termination criteria are established to guarantee the effectiveness of the iterative control laws. Neural networks are used to approximate the iterative value function and compute the iterative control law, respectively, for facilitating the implementation of the iterative ADP algorithm. Finally, two simulation examples are given to illustrate the performance of the present method.

  3. Stochastic ℋ∞ Finite-Time Control of Discrete-Time Systems with Packet Loss

    Directory of Open Access Journals (Sweden)

    Yingqi Zhang

    2012-01-01

    Full Text Available This paper investigates the stochastic finite-time stabilization and ℋ∞ control problem for one family of linear discrete-time systems over networks with packet loss, parametric uncertainties, and time-varying norm-bounded disturbance. Firstly, the dynamic model description studied is given, which, if the packet dropout is assumed to be a discrete-time homogenous Markov process, the class of discrete-time linear systems with packet loss can be regarded as Markovian jump systems. Based on Lyapunov function approach, sufficient conditions are established for the resulting closed-loop discrete-time system with Markovian jumps to be stochastic ℋ∞ finite-time boundedness and then state feedback controllers are designed to guarantee stochastic ℋ∞ finite-time stabilization of the class of stochastic systems. The stochastic ℋ∞ finite-time boundedness criteria can be tackled in the form of linear matrix inequalities with a fixed parameter. As an auxiliary result, we also give sufficient conditions on the robust stochastic stabilization of the class of linear systems with packet loss. Finally, simulation examples are presented to illustrate the validity of the developed scheme.

  4. The discrete dynamics of symmetric competition in the plane.

    Science.gov (United States)

    Jiang, H; Rogers, T D

    1987-01-01

    We consider the generalized Lotka-Volterra two-species system xn + 1 = xn exp(r1(1 - xn) - s1yn) yn + 1 = yn exp(r2(1 - yn) - s2xn) originally proposed by R. M. May as a model for competitive interaction. In the symmetric case that r1 = r2 and s1 = s2, a region of ultimate confinement is found and the dynamics therein are described in some detail. The bifurcations of periodic points of low period are studied, and a cascade of period-doubling bifurcations is indicated. Within the confinement region, a parameter region is determined for the stable Hopf bifurcation of a pair of symmetrically placed period-two points, which imposes a second component of oscillation near the stable cycles. It is suggested that the symmetric competitive model contains much of the dynamical complexity to be expected in any discrete two-dimensional competitive model.

  5. uncertain dynamic systems on time scales

    Directory of Open Access Journals (Sweden)

    V. Lakshmikantham

    1995-01-01

    Full Text Available A basic feedback control problem is that of obtaining some desired stability property from a system which contains uncertainties due to unknown inputs into the system. Despite such imperfect knowledge in the selected mathematical model, we often seek to devise controllers that will steer the system in a certain required fashion. Various classes of controllers whose design is based on the method of Lyapunov are known for both discrete [4], [10], [15], and continuous [3–9], [11] models described by difference and differential equations, respectively. Recently, a theory for what is known as dynamic systems on time scales has been built which incorporates both continuous and discrete times, namely, time as an arbitrary closed sets of reals, and allows us to handle both systems simultaneously [1], [2], [12], [13]. This theory permits one to get some insight into and better understanding of the subtle differences between discrete and continuous systems. We shall, in this paper, utilize the framework of the theory of dynamic systems on time scales to investigate the stability properties of conditionally invariant sets which are then applied to discuss controlled systems with uncertain elements. For the notion of conditionally invariant set and its stability properties, see [14]. Our results offer a new approach to the problem in question.

  6. Complex dynamics of a delayed discrete neural network of two nonidentical neurons.

    Science.gov (United States)

    Chen, Yuanlong; Huang, Tingwen; Huang, Yu

    2014-03-01

    In this paper, we discover that a delayed discrete Hopfield neural network of two nonidentical neurons with self-connections and no self-connections can demonstrate chaotic behaviors. To this end, we first transform the model, by a novel way, into an equivalent system which has some interesting properties. Then, we identify the chaotic invariant set for this system and show that the dynamics of this system within this set is topologically conjugate to the dynamics of the full shift map with two symbols. This confirms chaos in the sense of Devaney. Our main results generalize the relevant results of Huang and Zou [J. Nonlinear Sci. 15, 291-303 (2005)], Kaslik and Balint [J. Nonlinear Sci. 18, 415-432 (2008)] and Chen et al. [Sci. China Math. 56(9), 1869-1878 (2013)]. We also give some numeric simulations to verify our theoretical results.

  7. Fractal sets generated by chemical reactions discrete chaotic dynamics

    International Nuclear Information System (INIS)

    Gontar, V.; Grechko, O.

    2007-01-01

    Fractal sets composed by the parameters values of difference equations derived from chemical reactions discrete chaotic dynamics (DCD) and corresponding to the sequences of symmetrical patterns were obtained in this work. Examples of fractal sets with the corresponding symmetrical patterns have been presented

  8. Lattice fluid dynamics from perfect discretizations of continuum flows

    International Nuclear Information System (INIS)

    Katz, E.; Wiese, U.

    1998-01-01

    We use renormalization group methods to derive equations of motion for large scale variables in fluid dynamics. The large scale variables are averages of the underlying continuum variables over cubic volumes and naturally exist on a lattice. The resulting lattice dynamics represents a perfect discretization of continuum physics, i.e., grid artifacts are completely eliminated. Perfect equations of motion are derived for static, slow flows of incompressible, viscous fluids. For Hagen-Poiseuille flow in a channel with a square cross section the equations reduce to a perfect discretization of the Poisson equation for the velocity field with Dirichlet boundary conditions. The perfect large scale Poisson equation is used in a numerical simulation and is shown to represent the continuum flow exactly. For nonsquare cross sections one can use a numerical iterative procedure to derive flow equations that are approximately perfect. copyright 1998 The American Physical Society

  9. Computable Types for Dynamic Systems

    NARCIS (Netherlands)

    P.J. Collins (Pieter); K. Ambos-Spies; B. Loewe; W. Merkle

    2009-01-01

    textabstractIn this paper, we develop a theory of computable types suitable for the study of dynamic systems in discrete and continuous time. The theory uses type-two effectivity as the underlying computational model, but we quickly develop a type system which can be manipulated abstractly, but for

  10. Simulating continuous-time Hamiltonian dynamics by way of a discrete-time quantum walk

    International Nuclear Information System (INIS)

    Schmitz, A.T.; Schwalm, W.A.

    2016-01-01

    Much effort has been made to connect the continuous-time and discrete-time quantum walks. We present a method for making that connection for a general graph Hamiltonian on a bigraph. Furthermore, such a scheme may be adapted for simulating discretized quantum models on a quantum computer. A coin operator is found for the discrete-time quantum walk which exhibits the same dynamics as the continuous-time evolution. Given the spectral decomposition of the graph Hamiltonian and certain restrictions, the discrete-time evolution is solved for explicitly and understood at or near important values of the parameters. Finally, this scheme is connected to past results for the 1D chain. - Highlights: • A discrete-time quantum walk is purposed which approximates a continuous-time quantum walk. • The purposed quantum walk could be used to simulate Hamiltonian dynamics on a quantum computer. • Given the spectra decomposition of the Hamiltonian, the quantum walk is solved explicitly. • The method is demonstrated and connected to previous work done on the 1D chain.

  11. Fractional-Order Discrete-Time Laguerre Filters: A New Tool for Modeling and Stability Analysis of Fractional-Order LTI SISO Systems

    Directory of Open Access Journals (Sweden)

    Rafał Stanisławski

    2016-01-01

    Full Text Available This paper presents new results on modeling and analysis of dynamics of fractional-order discrete-time linear time-invariant single-input single-output (LTI SISO systems by means of new, two-layer, “fractional-order discrete-time Laguerre filters.” It is interesting that the fractionality of the filters at the upper system dynamics layer is directly projected from the lower Laguerre-based approximation layer for the Grünwald-Letnikov difference. A new stability criterion for discrete-time fractional-order Laguerre-based LTI SISO systems is introduced and supplemented with a stability preservation analysis. Both the stability criterion and the stability preservation analysis bring up rather surprising results, which is illustrated with simulation examples.

  12. Discrete modeling considerations in multiphase fluid dynamics

    International Nuclear Information System (INIS)

    Ransom, V.H.; Ramshaw, J.D.

    1988-01-01

    The modeling of multiphase flows play a fundamental role in light water reactor safety. The main ingredients in our discrete modeling Weltanschauung are the following considerations: (1) Any physical model must be cast into discrete form for a digital computer. (2) The usual approach of formulating models in differential form and then discretizing them is potentially hazardous. It may be preferable to formulate the model in discrete terms from the outset. (3) Computer time and storage constraints limit the resolution that can be employed in practical calculations. These limits effectively define the physical phenomena, length scales, and time scales which cannot be directly represented in the calculation and therefore must be modeled. This information should be injected into the model formulation process at an early stage. (4) Practical resolution limits are generally so coarse that traditional convergence and truncation-error analyses become irrelevant. (5) A discrete model constitutes a reduced description of a physical system, from which fine-scale details are eliminated. This elimination creates a statistical closure problem. Methods from statistical physics may therefore be useful in the formulation of discrete models. In the present paper we elaborate on these themes and illustrate them with simple examples. 48 refs

  13. Dynamical barrier for the formation of solitary waves in discrete lattices

    International Nuclear Information System (INIS)

    Kevrekidis, P.G.; Espinola-Rocha, J.A.; Drossinos, Y.; Stefanov, A.

    2008-01-01

    We consider the problem of the existence of a dynamical barrier of 'mass' that needs to be excited on a lattice site to lead to the formation and subsequent persistence of localized modes for a nonlinear Schroedinger lattice. We contrast the existence of a dynamical barrier with its absence in the static theory of localized modes in one spatial dimension. We suggest an energetic criterion that provides a sufficient, but not necessary, condition on the amplitude of a single-site initial condition required to form a solitary wave. We show that this effect is not one-dimensional by considering its two-dimensional analog. The existence of a sufficient condition for the excitation of localized modes in the non-integrable, discrete, nonlinear Schroedinger equation is compared to the dynamics of excitations in the integrable, both discrete and continuum, version of the nonlinear Schroedinger equation

  14. Six-component semi-discrete integrable nonlinear Schrödinger system

    Science.gov (United States)

    Vakhnenko, Oleksiy O.

    2018-01-01

    We suggest the six-component integrable nonlinear system on a quasi-one-dimensional lattice. Due to its symmetrical form, the general system permits a number of reductions; one of which treated as the semi-discrete integrable nonlinear Schrödinger system on a lattice with three structural elements in the unit cell is considered in considerable details. Besides six truly independent basic field variables, the system is characterized by four concomitant fields whose background values produce three additional types of inter-site resonant interactions between the basic fields. As a result, the system dynamics becomes associated with the highly nonstandard form of Poisson structure. The elementary Poisson brackets between all field variables are calculated and presented explicitly. The richness of system dynamics is demonstrated on the multi-component soliton solution written in terms of properly parameterized soliton characteristics.

  15. Dynamics of a two-dimensional discrete-time SIS model

    Directory of Open Access Journals (Sweden)

    Jaime H. Barrera

    2012-04-01

    Full Text Available We analyze a two-dimensional discrete-time SIS model with a non-constant total population. Our goal is to determine the interaction between the total population, the susceptible class and the infective class, and the implications this may have for the disease dynamics. Utilizing a constant recruitment rate in the susceptible class, it is possible to assume the existence of an asymptotic limiting equation, which enables us to reduce the system of, two-equations into a single, dynamically equivalent equation. In this case, we are able to demonstrate the global stability of the disease-free and the endemic equilibria when the basic reproductive number (Ro is less than one and greater than one, respectively. When we consider a non-constant recruitment rate, the total population bifurcates as we vary the birth rate and the death rate. Using computer simulations, we observe different behavior among the infective class and the total population, and possibly, the occurrence of a strange attractor.

  16. A novel condition for stable nonlinear sampled-data models using higher-order discretized approximations with zero dynamics.

    Science.gov (United States)

    Zeng, Cheng; Liang, Shan; Xiang, Shuwen

    2017-05-01

    Continuous-time systems are usually modelled by the form of ordinary differential equations arising from physical laws. However, the use of these models in practice and utilizing, analyzing or transmitting these data from such systems must first invariably be discretized. More importantly, for digital control of a continuous-time nonlinear system, a good sampled-data model is required. This paper investigates the new consistency condition which is weaker than the previous similar results presented. Moreover, given the stability of the high-order approximate model with stable zero dynamics, the novel condition presented stabilizes the exact sampled-data model of the nonlinear system for sufficiently small sampling periods. An insightful interpretation of the obtained results can be made in terms of the stable sampling zero dynamics, and the new consistency condition is surprisingly associated with the relative degree of the nonlinear continuous-time system. Our controller design, based on the higher-order approximate discretized model, extends the existing methods which mainly deal with the Euler approximation. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Dynamic generation of light states with discrete symmetries

    Science.gov (United States)

    Cordero, S.; Nahmad-Achar, E.; Castaños, O.; López-Peña, R.

    2018-01-01

    A dynamic procedure is established within the generalized Tavis-Cummings model to generate light states with discrete point symmetries, given by the cyclic group Cn. We consider arbitrary dipolar coupling strengths of the atoms with a one-mode electromagnetic field in a cavity. The method uses mainly the matter-field entanglement properties of the system, which can be extended to any number of three-level atoms. An initial state constituted by the superposition of two states with definite total excitation numbers, |ψ〉 M1,and |ψ〉 M 2, is considered. It can be generated by the proper selection of the time of flight of an atom passing through the cavity. We demonstrate that the resulting Husimi function of the light is invariant under cyclic point transformations of order n =| M1-M2| .

  18. Enhanced Discrete-Time Scheduler Engine for MBMS E-UMTS System Level Simulator

    DEFF Research Database (Denmark)

    Pratas, Nuno; Rodrigues, António

    2007-01-01

    In this paper the design of an E-UMTS system level simulator developed for the study of optimization methods for the MBMS is presented. The simulator uses a discrete event based philosophy, which captures the dynamic behavior of the Radio Network System. This dynamic behavior includes the user...... mobility, radio interfaces and the Radio Access Network. Its given emphasis on the enhancements developed for the simulator core, the Event Scheduler Engine. Two implementations for the Event Scheduler Engine are proposed, one optimized for single core processors and other for multi-core ones....

  19. Perfect discretization of path integrals

    International Nuclear Information System (INIS)

    Steinhaus, Sebastian

    2012-01-01

    In order to obtain a well-defined path integral one often employs discretizations. In the case of General Relativity these generically break diffeomorphism symmetry, which has severe consequences since these symmetries determine the dynamics of the corresponding system. In this article we consider the path integral of reparametrization invariant systems as a toy example and present an improvement procedure for the discretized propagator. Fixed points and convergence of the procedure are discussed. Furthermore we show that a reparametrization invariant path integral implies discretization independence and acts as a projector onto physical states.

  20. Perfect discretization of path integrals

    Science.gov (United States)

    Steinhaus, Sebastian

    2012-05-01

    In order to obtain a well-defined path integral one often employs discretizations. In the case of General Relativity these generically break diffeomorphism symmetry, which has severe consequences since these symmetries determine the dynamics of the corresponding system. In this article we consider the path integral of reparametrization invariant systems as a toy example and present an improvement procedure for the discretized propagator. Fixed points and convergence of the procedure are discussed. Furthermore we show that a reparametrization invariant path integral implies discretization independence and acts as a projector onto physical states.

  1. Bifurcation Analysis and Chaos Control in a Discrete Epidemic System

    Directory of Open Access Journals (Sweden)

    Wei Tan

    2015-01-01

    Full Text Available The dynamics of discrete SI epidemic model, which has been obtained by the forward Euler scheme, is investigated in detail. By using the center manifold theorem and bifurcation theorem in the interior R+2, the specific conditions for the existence of flip bifurcation and Neimark-Sacker bifurcation have been derived. Numerical simulation not only presents our theoretical analysis but also exhibits rich and complex dynamical behavior existing in the case of the windows of period-1, period-3, period-5, period-6, period-7, period-9, period-11, period-15, period-19, period-23, period-34, period-42, and period-53 orbits. Meanwhile, there appears the cascade of period-doubling 2, 4, 8 bifurcation and chaos sets from the fixed point. These results show the discrete model has more richer dynamics compared with the continuous model. The computations of the largest Lyapunov exponents more than 0 confirm the chaotic behaviors of the system x→x+δ[rN(1-N/K-βxy/N-(μ+mx], y→y+δ[βxy/N-(μ+dy]. Specifically, the chaotic orbits at an unstable fixed point are stabilized by using the feedback control method.

  2. Complex dynamics of a delayed discrete neural network of two nonidentical neurons

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuanlong [Mathematics Department, GuangDong University of Finance, Guangzhou 510521 (China); Huang, Tingwen [Mathematics Department, Texas A and M University at Qatar, P. O. Box 23874, Doha (Qatar); Huang, Yu, E-mail: stshyu@mail.sysu.edu.cn [Mathematics Department, Sun Yat-Sen University, Guangzhou 510275, People' s Republic China (China)

    2014-03-15

    In this paper, we discover that a delayed discrete Hopfield neural network of two nonidentical neurons with self-connections and no self-connections can demonstrate chaotic behaviors. To this end, we first transform the model, by a novel way, into an equivalent system which has some interesting properties. Then, we identify the chaotic invariant set for this system and show that the dynamics of this system within this set is topologically conjugate to the dynamics of the full shift map with two symbols. This confirms chaos in the sense of Devaney. Our main results generalize the relevant results of Huang and Zou [J. Nonlinear Sci. 15, 291–303 (2005)], Kaslik and Balint [J. Nonlinear Sci. 18, 415–432 (2008)] and Chen et al. [Sci. China Math. 56(9), 1869–1878 (2013)]. We also give some numeric simulations to verify our theoretical results.

  3. Complex dynamics of a delayed discrete neural network of two nonidentical neurons

    International Nuclear Information System (INIS)

    Chen, Yuanlong; Huang, Tingwen; Huang, Yu

    2014-01-01

    In this paper, we discover that a delayed discrete Hopfield neural network of two nonidentical neurons with self-connections and no self-connections can demonstrate chaotic behaviors. To this end, we first transform the model, by a novel way, into an equivalent system which has some interesting properties. Then, we identify the chaotic invariant set for this system and show that the dynamics of this system within this set is topologically conjugate to the dynamics of the full shift map with two symbols. This confirms chaos in the sense of Devaney. Our main results generalize the relevant results of Huang and Zou [J. Nonlinear Sci. 15, 291–303 (2005)], Kaslik and Balint [J. Nonlinear Sci. 18, 415–432 (2008)] and Chen et al. [Sci. China Math. 56(9), 1869–1878 (2013)]. We also give some numeric simulations to verify our theoretical results

  4. State transformations and Hamiltonian structures for optimal control in discrete systems

    Science.gov (United States)

    Sieniutycz, S.

    2006-04-01

    Preserving usual definition of Hamiltonian H as the scalar product of rates and generalized momenta we investigate two basic classes of discrete optimal control processes governed by the difference rather than differential equations for the state transformation. The first class, linear in the time interval θ, secures the constancy of optimal H and satisfies a discrete Hamilton-Jacobi equation. The second class, nonlinear in θ, does not assure the constancy of optimal H and satisfies only a relationship that may be regarded as an equation of Hamilton-Jacobi type. The basic question asked is if and when Hamilton's canonical structures emerge in optimal discrete systems. For a constrained discrete control, general optimization algorithms are derived that constitute powerful theoretical and computational tools when evaluating extremum properties of constrained physical systems. The mathematical basis is Bellman's method of dynamic programming (DP) and its extension in the form of the so-called Carathéodory-Boltyanski (CB) stage optimality criterion which allows a variation of the terminal state that is otherwise fixed in Bellman's method. For systems with unconstrained intervals of the holdup time θ two powerful optimization algorithms are obtained: an unconventional discrete algorithm with a constant H and its counterpart for models nonlinear in θ. We also present the time-interval-constrained extension of the second algorithm. The results are general; namely, one arrives at: discrete canonical equations of Hamilton, maximum principles, and (at the continuous limit of processes with free intervals of time) the classical Hamilton-Jacobi theory, along with basic results of variational calculus. A vast spectrum of applications and an example are briefly discussed with particular attention paid to models nonlinear in the time interval θ.

  5. Constant pressure and temperature discrete-time Langevin molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Grønbech-Jensen, Niels [Department of Mechanical and Aerospace Engineering, University of California, Davis, California 95616 (United States); Department of Mathematics, University of California, Davis, California 95616 (United States); Farago, Oded [Department of Biomedical Engineering, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel)

    2014-11-21

    We present a new and improved method for simultaneous control of temperature and pressure in molecular dynamics simulations with periodic boundary conditions. The thermostat-barostat equations are built on our previously developed stochastic thermostat, which has been shown to provide correct statistical configurational sampling for any time step that yields stable trajectories. Here, we extend the method and develop a set of discrete-time equations of motion for both particle dynamics and system volume in order to seek pressure control that is insensitive to the choice of the numerical time step. The resulting method is simple, practical, and efficient. The method is demonstrated through direct numerical simulations of two characteristic model systems—a one-dimensional particle chain for which exact statistical results can be obtained and used as benchmarks, and a three-dimensional system of Lennard-Jones interacting particles simulated in both solid and liquid phases. The results, which are compared against the method of Kolb and Dünweg [J. Chem. Phys. 111, 4453 (1999)], show that the new method behaves according to the objective, namely that acquired statistical averages and fluctuations of configurational measures are accurate and robust against the chosen time step applied to the simulation.

  6. Dynamical barrier for the formation of solitary waves in discrete lattices

    Energy Technology Data Exchange (ETDEWEB)

    Kevrekidis, P.G. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003 (United States)], E-mail: kevrekid@math.umass.edu; Espinola-Rocha, J.A. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003 (United States); Drossinos, Y. [European Commission, Joint Research Centre, I-21020 Ispra (Vatican City State, Holy See,) (Italy); School of Mechanical and Systems Engineering, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU (United Kingdom); Stefanov, A. [Department of Mathematics, University of Kansas, 1460 Jayhawk Blvd., Lawrence, KS 66045-7523 (United States)

    2008-03-24

    We consider the problem of the existence of a dynamical barrier of 'mass' that needs to be excited on a lattice site to lead to the formation and subsequent persistence of localized modes for a nonlinear Schroedinger lattice. We contrast the existence of a dynamical barrier with its absence in the static theory of localized modes in one spatial dimension. We suggest an energetic criterion that provides a sufficient, but not necessary, condition on the amplitude of a single-site initial condition required to form a solitary wave. We show that this effect is not one-dimensional by considering its two-dimensional analog. The existence of a sufficient condition for the excitation of localized modes in the non-integrable, discrete, nonlinear Schroedinger equation is compared to the dynamics of excitations in the integrable, both discrete and continuum, version of the nonlinear Schroedinger equation.

  7. Positive dynamical systems in discrete time theory, models, and applications

    CERN Document Server

    Krause, Ulrich

    2015-01-01

    This book provides a systematic, rigorous and self-contained treatment of positive dynamical systems. A dynamical system is positive when all relevant variables of a systemare nonnegative in a natural way. This is in biology, demography or economics, where the levels of populations or prices of goods are positive. The principle also finds application in electrical engineering, physics and computer sciences.

  8. Kato's chaos in set-valued discrete systems

    International Nuclear Information System (INIS)

    Gu Rongbao

    2007-01-01

    In this paper, we investigate the relationships between Kato's chaoticity of a dynamical system (X,f) and Kato's chaoticity of the set-valued discrete system (K(X),f-bar ) associated to (X,f), where X is a compact metric space and f:X->X is a continuous map. We show that Kato's chaoticity of (K(X),f-bar ) implies the Kato's chaoticity of (X,f) in general and (X,f) is chaotic in the sense of Kato if and only if (K(X),f-bar ) is Kato chaotic in w e -topology. We also show that Ruelle-Takens' chaoticity implies Kato's chaoticity for a continuous map with a fixed point from a complete metric space without isolated point into itself

  9. Chaos and its synchronization in two-neuron systems with discrete delays

    International Nuclear Information System (INIS)

    Zhou Shangbo; Liao Xiaofeng; Yu Juebang; Wong Kwokwo

    2004-01-01

    It is well known that complex dynamic behaviors exist in time-delayed neural systems. Infinite positive Lyapunov exponents can be found in time-delayed chaotic systems since the dimension of such systems is infinite. However, theoretical and experimental models studied thus far are low dimensional systems with only one positive Lyapunov exponent. Consequently, messages masked by such chaotic systems are shown to be easily extracted in some cases. Therefore, communication system with a higher security level can be design by means of the time-delayed neuron systems. In this paper, we firstly investigate the dynamical behaviors of two-neuron systems with discrete delays. Then, the chaos synchronization in time-delayed neuron system is studied based on the method of designing the coupled system and employing Krasovskii-Lyapunov theory to search the synchronization conditions. Numerical results illustrate the correctness of our theoretical analyses

  10. Fault diagnosis for discrete event systems: Modelling and verification

    International Nuclear Information System (INIS)

    Simeu-Abazi, Zineb; Di Mascolo, Maria; Knotek, Michal

    2010-01-01

    This paper proposes an effective way for diagnosis of discrete-event systems using a timed-automaton. It is based on the model-checking technique, thanks to time analysis of the timed model. The paper proposes a method to construct all the timed models and details the different steps used to obtain the diagnosis path. A dynamic model with temporal transitions is proposed in order to model the system. By 'dynamical model', we mean an extension of timed automata for which the faulty states are identified. The model of the studied system contains the faultless functioning states and all the faulty states. Our method is based on the backward exploitation of the dynamic model, where all possible reverse paths are searched. The reverse path is the connection of the faulty state to the initial state. The diagnosis method is based on the coherence between the faulty occurrence time and the reverse path length. A real-world batch process is used to demonstrate the modelling steps and the proposed backward time analysis method to reach the diagnosis results.

  11. Stochastic modeling and simulation of reaction-diffusion system with Hill function dynamics.

    Science.gov (United States)

    Chen, Minghan; Li, Fei; Wang, Shuo; Cao, Young

    2017-03-14

    Stochastic simulation of reaction-diffusion systems presents great challenges for spatiotemporal biological modeling and simulation. One widely used framework for stochastic simulation of reaction-diffusion systems is reaction diffusion master equation (RDME). Previous studies have discovered that for the RDME, when discretization size approaches zero, reaction time for bimolecular reactions in high dimensional domains tends to infinity. In this paper, we demonstrate that in the 1D domain, highly nonlinear reaction dynamics given by Hill function may also have dramatic change when discretization size is smaller than a critical value. Moreover, we discuss methods to avoid this problem: smoothing over space, fixed length smoothing over space and a hybrid method. Our analysis reveals that the switch-like Hill dynamics reduces to a linear function of discretization size when the discretization size is small enough. The three proposed methods could correctly (under certain precision) simulate Hill function dynamics in the microscopic RDME system.

  12. Resonance and web structure in discrete soliton systems: the two-dimensional Toda lattice and its fully discrete and ultra-discrete analogues

    International Nuclear Information System (INIS)

    Maruno, Ken-ichi; Biondini, Gino

    2004-01-01

    We present a class of solutions of the two-dimensional Toda lattice equation, its fully discrete analogue and its ultra-discrete limit. These solutions demonstrate the existence of soliton resonance and web-like structure in discrete integrable systems such as differential-difference equations, difference equations and cellular automata (ultra-discrete equations)

  13. Discrete event systems in dioid algebra and conventional algebra

    CERN Document Server

    Declerck, Philippe

    2013-01-01

    This book concerns the use of dioid algebra as (max, +) algebra to treat the synchronization of tasks expressed by the maximum of the ends of the tasks conditioning the beginning of another task - a criterion of linear programming. A classical example is the departure time of a train which should wait for the arrival of other trains in order to allow for the changeover of passengers.The content focuses on the modeling of a class of dynamic systems usually called "discrete event systems" where the timing of the events is crucial. Events are viewed as sudden changes in a process which i

  14. Fermion systems in discrete space-time

    International Nuclear Information System (INIS)

    Finster, Felix

    2007-01-01

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure

  15. Fermion systems in discrete space-time

    Energy Technology Data Exchange (ETDEWEB)

    Finster, Felix [NWF I - Mathematik, Universitaet Regensburg, 93040 Regensburg (Germany)

    2007-05-15

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.

  16. Fermion Systems in Discrete Space-Time

    OpenAIRE

    Finster, Felix

    2006-01-01

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.

  17. Fermion systems in discrete space-time

    Science.gov (United States)

    Finster, Felix

    2007-05-01

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.

  18. Energy conservation in molecular dynamics simulations of classical systems

    DEFF Research Database (Denmark)

    Toxværd, Søren; Heilmann, Ole; Dyre, J. C.

    2012-01-01

    Classical Newtonian dynamics is analytic and the energy of an isolated system is conserved. The energy of such a system, obtained by the discrete “Verlet” algorithm commonly used in molecular dynamics simulations, fluctuates but is conserved in the mean. This is explained by the existence...

  19. Butschli Dynamic Droplet System

    DEFF Research Database (Denmark)

    Armstrong, R.; Hanczyc, M.

    2013-01-01

    Dynamical oil-water systems such as droplets display lifelike properties and may lend themselves to chemical programming to perform useful work, specifically with respect to the built environment. We present Butschli water-in-oil droplets as a model for further investigation into the development...... reconstructed the Butschli system and observed its life span under a light microscope, observing chemical patterns and droplet behaviors in nearly three hundred replicate experiments. Self-organizing patterns were observed, and during this dynamic, embodied phase the droplets provided a means of introducing...... temporal and spatial order in the system with the potential for chemical programmability. The authors propose that the discrete formation of dynamic droplets, characterized by their lifelike behavior patterns, during a variable window of time (from 30 s to 30 min after the addition of alkaline water...

  20. Perfect discretization of path integrals

    OpenAIRE

    Steinhaus, Sebastian

    2011-01-01

    In order to obtain a well-defined path integral one often employs discretizations. In the case of General Relativity these generically break diffeomorphism symmetry, which has severe consequences since these symmetries determine the dynamics of the corresponding system. In this article we consider the path integral of reparametrization invariant systems as a toy example and present an improvement procedure for the discretized propagator. Fixed points and convergence of the procedure are discu...

  1. Theoretical foundation for jung's “Mandala Symbolism” based on discrete chaotic dynamics of interacting neurons

    Directory of Open Access Journals (Sweden)

    V. Gontar

    2000-01-01

    Full Text Available Based on discrete chaotic dynamics algorithms different patterns in a form of mandalas have been generated. This fact gives us the possibility to make a link between mechanism of biochemical reaction dynamics undergoing in brain resulted to the brain creativity process in form of mandalas. Obtained patterns can be related to the space distributed chemicals according to the law of extended principle of maximum entropy, consideration of the information exchange during biochemical transformations, mass conservation law and discrete chaotic dynamics principles.

  2. Many-Body Quantum Spin Dynamics with Monte Carlo Trajectories on a Discrete Phase Space

    Directory of Open Access Journals (Sweden)

    J. Schachenmayer

    2015-02-01

    Full Text Available Interacting spin systems are of fundamental relevance in different areas of physics, as well as in quantum information science and biology. These spin models represent the simplest, yet not fully understood, manifestation of quantum many-body systems. An important outstanding problem is the efficient numerical computation of dynamics in large spin systems. Here, we propose a new semiclassical method to study many-body spin dynamics in generic spin lattice models. The method is based on a discrete Monte Carlo sampling in phase space in the framework of the so-called truncated Wigner approximation. Comparisons with analytical and numerically exact calculations demonstrate the power of the technique. They show that it correctly reproduces the dynamics of one- and two-point correlations and spin squeezing at short times, thus capturing entanglement. Our results open the possibility to study the quantum dynamics accessible to recent experiments in regimes where other numerical methods are inapplicable.

  3. Hybrid discrete-time neural networks.

    Science.gov (United States)

    Cao, Hongjun; Ibarz, Borja

    2010-11-13

    Hybrid dynamical systems combine evolution equations with state transitions. When the evolution equations are discrete-time (also called map-based), the result is a hybrid discrete-time system. A class of biological neural network models that has recently received some attention falls within this category: map-based neuron models connected by means of fast threshold modulation (FTM). FTM is a connection scheme that aims to mimic the switching dynamics of a neuron subject to synaptic inputs. The dynamic equations of the neuron adopt different forms according to the state (either firing or not firing) and type (excitatory or inhibitory) of their presynaptic neighbours. Therefore, the mathematical model of one such network is a combination of discrete-time evolution equations with transitions between states, constituting a hybrid discrete-time (map-based) neural network. In this paper, we review previous work within the context of these models, exemplifying useful techniques to analyse them. Typical map-based neuron models are low-dimensional and amenable to phase-plane analysis. In bursting models, fast-slow decomposition can be used to reduce dimensionality further, so that the dynamics of a pair of connected neurons can be easily understood. We also discuss a model that includes electrical synapses in addition to chemical synapses with FTM. Furthermore, we describe how master stability functions can predict the stability of synchronized states in these networks. The main results are extended to larger map-based neural networks.

  4. Exterior difference systems and invariance properties of discrete mechanics

    International Nuclear Information System (INIS)

    Xie Zheng; Xie Duanqiang; Li Hongbo

    2008-01-01

    Invariance properties describe the fundamental physical laws in discrete mechanics. Can those properties be described in a geometric way? We investigate an exterior difference system called the discrete Euler-Lagrange system, whose solution has one-to-one correspondence with solutions of discrete Euler-Lagrange equations, and use it to define the first integrals. The preservation of the discrete symplectic form along the discrete Hamilton phase flows and the discrete Noether's theorem is also described in the language of difference forms

  5. The Reach-and-Evolve Algorithm for Reachability Analysis of Nonlinear Dynamical Systems

    NARCIS (Netherlands)

    P.J. Collins (Pieter); A. Goldsztejn

    2008-01-01

    htmlabstractThis paper introduces a new algorithm dedicated to the rigorous reachability analysis of nonlinear dynamical systems. The algorithm is initially presented in the context of discrete time dynamical systems, and then extended to continuous time dynamical systems driven by ODEs. In

  6. A Baecklund transformation between two integrable discrete hungry systems

    International Nuclear Information System (INIS)

    Fukuda, Akiko; Yamamoto, Yusaku; Iwasaki, Masashi; Ishiwata, Emiko; Nakamura, Yoshimasa

    2011-01-01

    The discrete hungry Toda (dhToda) equation and the discrete hungry Lotka-Volterra (dhLV) system are known as integrable discrete hungry systems. In this Letter, through finding the LR transformations associated with the dhToda equation and the dhLV system, we present a Baecklund transformation between these integrable systems.

  7. A Baecklund transformation between two integrable discrete hungry systems

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Akiko, E-mail: j1409704@ed.kagu.tus.ac.j [Department of Mathematical Information Science, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Yamamoto, Yusaku [Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan); Iwasaki, Masashi [Department of Informatics and Environmental Science, Kyoto Prefectural University, 1-5, Nakaragi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522 (Japan); Ishiwata, Emiko [Department of Mathematical Information Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Nakamura, Yoshimasa [Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)

    2011-01-17

    The discrete hungry Toda (dhToda) equation and the discrete hungry Lotka-Volterra (dhLV) system are known as integrable discrete hungry systems. In this Letter, through finding the LR transformations associated with the dhToda equation and the dhLV system, we present a Baecklund transformation between these integrable systems.

  8. Generalized Detectability for Discrete Event Systems

    Science.gov (United States)

    Shu, Shaolong; Lin, Feng

    2011-01-01

    In our previous work, we investigated detectability of discrete event systems, which is defined as the ability to determine the current and subsequent states of a system based on observation. For different applications, we defined four types of detectabilities: (weak) detectability, strong detectability, (weak) periodic detectability, and strong periodic detectability. In this paper, we extend our results in three aspects. (1) We extend detectability from deterministic systems to nondeterministic systems. Such a generalization is necessary because there are many systems that need to be modeled as nondeterministic discrete event systems. (2) We develop polynomial algorithms to check strong detectability. The previous algorithms are based on observer whose construction is of exponential complexity, while the new algorithms are based on a new automaton called detector. (3) We extend detectability to D-detectability. While detectability requires determining the exact state of a system, D-detectability relaxes this requirement by asking only to distinguish certain pairs of states. With these extensions, the theory on detectability of discrete event systems becomes more applicable in solving many practical problems. PMID:21691432

  9. Darboux and binary Darboux transformations for discrete integrable systems I. Discrete potential KdV equation

    International Nuclear Information System (INIS)

    Shi, Ying; Zhang, Da-jun; Nimmo, Jonathan J C

    2014-01-01

    The Hirota–Miwa equation can be written in ‘nonlinear’ form in two ways: the discrete KP equation and, by using a compatible continuous variable, the discrete potential KP equation. For both systems, we consider the Darboux and binary Darboux transformations, expressed in terms of the continuous variable, and obtain exact solutions in Wronskian and Grammian form. We discuss reductions of both systems to the discrete KdV and discrete potential KdV equation, respectively, and exploit this connection to find the Darboux and binary Darboux transformations and exact solutions of these equations. (paper)

  10. Dynamic induced softening in frictional granular materials investigated by discrete-element-method simulation

    Science.gov (United States)

    Lemrich, Laure; Carmeliet, Jan; Johnson, Paul A.; Guyer, Robert; Jia, Xiaoping

    2017-12-01

    A granular system composed of frictional glass beads is simulated using the discrete element method. The intergrain forces are based on the Hertz contact law in the normal direction with frictional tangential force. The damping due to collision is also accounted for. Systems are loaded at various stresses and their quasistatic elastic moduli are characterized. Each system is subjected to an extensive dynamic testing protocol by measuring the resonant response to a broad range of ac drive amplitudes and frequencies via a set of diagnostic strains. The system, linear at small ac drive amplitudes, has resonance frequencies that shift downward (i.e., modulus softening) with increased ac drive amplitude. Detailed testing shows that the slipping contact ratio does not contribute significantly to this dynamic modulus softening, but the coordination number is strongly correlated to this reduction. This suggests that the softening arises from the extended structural change via break and remake of contacts during the rearrangement of bead positions driven by the ac amplitude.

  11. SPATIAL SEARCH IN COMMERCIAL FISHING: A DISCRETE CHOICE DYNAMIC PROGRAMMING APPROACH

    OpenAIRE

    Smith, Martin D.; Provencher, Bill

    2003-01-01

    We specify a discrete choice dynamic programming model of commercial fishing participation and location choices. This approach allows us to examine how fishermen collect information about resource abundance and whether their behavior is forward-looking.

  12. Effective Hamiltonian for travelling discrete breathers

    Science.gov (United States)

    MacKay, Robert S.; Sepulchre, Jacques-Alexandre

    2002-05-01

    Hamiltonian chains of oscillators in general probably do not sustain exact travelling discrete breathers. However solutions which look like moving discrete breathers for some time are not difficult to observe in numerics. In this paper we propose an abstract framework for the description of approximate travelling discrete breathers in Hamiltonian chains of oscillators. The method is based on the construction of an effective Hamiltonian enabling one to describe the dynamics of the translation degree of freedom of moving breathers. Error estimate on the approximate dynamics is also studied. The concept of the Peierls-Nabarro barrier can be made clear in this framework. We illustrate the method with two simple examples, namely the Salerno model which interpolates between the Ablowitz-Ladik lattice and the discrete nonlinear Schrödinger system, and the Fermi-Pasta-Ulam chain.

  13. The reverse effects of random perturbation on discrete systems for single and multiple population models

    International Nuclear Information System (INIS)

    Kang, Li; Tang, Sanyi

    2016-01-01

    Highlights: • The discrete single species and multiple species models with random perturbation are proposed. • The complex dynamics and interesting bifurcation behavior have been investigated. • The reverse effects of random perturbation on discrete systems have been discussed and revealed. • The main results can be applied for pest control and resources management. - Abstract: The natural species are likely to present several interesting and complex phenomena under random perturbations, which have been confirmed by simple mathematical models. The important questions are: how the random perturbations influence the dynamics of the discrete population models with multiple steady states or multiple species interactions? and is there any different effects for single species and multiple species models with random perturbation? To address those interesting questions, we have proposed the discrete single species model with two stable equilibria and the host-parasitoid model with Holling type functional response functions to address how the random perturbation affects the dynamics. The main results indicate that the random perturbation does not change the number of blurred orbits of the single species model with two stable steady states compared with results for the classical Ricker model with same random perturbation, but it can strength the stability. However, extensive numerical investigations depict that the random perturbation does not influence the complexities of the host-parasitoid models compared with the results for the models without perturbation, while it does increase the period of periodic orbits doubly. All those confirm that the random perturbation has a reverse effect on the dynamics of the discrete single and multiple population models, which could be applied in reality including pest control and resources management.

  14. Hopping system control with an approximated dynamics model and upper-body motion

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyang Jun; Oh, Jun Ho [KAIST, Daejeon (Korea, Republic of)

    2015-11-15

    A hopping system is highly non-linear due to the nature of its dynamics, which has alternating phases in a cycle, flight and stance phases and related transitions. Every control method that stabilizes the hopping system satisfies the Poincaré stability condition. At the Poincaré section, a hopping system cycle is considered as discrete sectional data set. By controlling the sectional data in a discrete control form, we can generate a stable hopping cycle. We utilize phase-mapping matrices to build a Poincaré return map by approximating the dynamics of the hopping system with SLIP model. We can generate various Poincaré stable gait patterns with the approximated discrete control form which uses upper-body motions as inputs.

  15. On mixing property in set-valued discrete systems

    International Nuclear Information System (INIS)

    Gu Rongbao; Guo Wenjing

    2006-01-01

    Let (X,d) be a compact metric space and f:X->X be a continuous map. Let (K(X),H) be the space of all non-empty compact subsets of X endowed with the Hausdorff metric induced by d and f-bar :K(X)->K(X) be the map defined by f-bar (A):{f(a):a-bar A}. In this paper we investigate the relationships between the mixing property of (K(X),f-bar ) and the mixing property of (X,f). In addition, we discuss specification for the set-valued discrete dynamical system (K(X),f-bar )

  16. Multistability and complex dynamics in a simple discrete economic model

    International Nuclear Information System (INIS)

    Peng Mingshu; Jiang Zhonghao; Jiang Xiaoxia; Hu Jiping; Qu Youli

    2009-01-01

    In this paper, we will propose a generalized Cournot duopoly model with Z 2 symmetry. We demonstrate that cost functions incorporating an interfirm externality lead to a system of couple one-dimensional maps. In the situation where agents take turns, we find in an analytic way that there coexist multiple unstable/stable period-2 cycles or synchronized/asynchronized periodic orbits. Coupling one-dimension chaos can be observed. In a more general situation, where agents move simultaneously, a closer analysis reveals some well-known local bifurcations and global bifurcations which typically occur in two-parameter families of two-dimensional discrete time dynamical systems, including codimension-one (fold-, flip-, Neimark-Sacker-) bifurcations, codimension-two (fold/flip, 1:2 resonance, 1:3 resonance and 1:4 resonance) bifurcations, and hetero-clinic, homo-clinic bifurcations, etc. Multistability, including the coexistence of synchronized/asynchronized solutions are also discussed.

  17. Nonlinear dynamical system approaches towards neural prosthesis

    International Nuclear Information System (INIS)

    Torikai, Hiroyuki; Hashimoto, Sho

    2011-01-01

    An asynchronous discrete-state spiking neurons is a wired system of shift registers that can mimic nonlinear dynamics of an ODE-based neuron model. The control parameter of the neuron is the wiring pattern among the registers and thus they are suitable for on-chip learning. In this paper an asynchronous discrete-state spiking neuron is introduced and its typical nonlinear phenomena are demonstrated. Also, a learning algorithm for a set of neurons is presented and it is demonstrated that the algorithm enables the set of neurons to reconstruct nonlinear dynamics of another set of neurons with unknown parameter values. The learning function is validated by FPGA experiments.

  18. Consensus of Discrete Multiagent System with Various Time Delays and Environmental Disturbances

    Directory of Open Access Journals (Sweden)

    Zheping Yan

    2014-12-01

    Full Text Available In this paper, the consensus problem of discrete multiagent systems with time varying sampling periods is studied. Firstly, with thorough analysis of various delays among agents, the control input of each agent is designed with consideration of sending delay and receiving delay. With construction of discrete dynamics of state error vector, it is proved by applying Halanay inequality that consensus of the system can be reached. Further, the definition of bounded consensus is proposed in the situation where environmental disturbances exist. In order to handle this problem, the Halanay inequality is extended into a more general one with boundedness property. Based on the new Halanay inequality obtained, the boundedness of consensus error is guaranteed. At last, simulation examples are presented to demonstrate the theoretical conclusions.

  19. Single-crossover recombination in discrete time.

    Science.gov (United States)

    von Wangenheim, Ute; Baake, Ellen; Baake, Michael

    2010-05-01

    Modelling the process of recombination leads to a large coupled nonlinear dynamical system. Here, we consider a particular case of recombination in discrete time, allowing only for single crossovers. While the analogous dynamics in continuous time admits a closed solution (Baake and Baake in Can J Math 55:3-41, 2003), this no longer works for discrete time. A more general model (i.e. without the restriction to single crossovers) has been studied before (Bennett in Ann Hum Genet 18:311-317, 1954; Dawson in Theor Popul Biol 58:1-20, 2000; Linear Algebra Appl 348:115-137, 2002) and was solved algorithmically by means of Haldane linearisation. Using the special formalism introduced by Baake and Baake (Can J Math 55:3-41, 2003), we obtain further insight into the single-crossover dynamics and the particular difficulties that arise in discrete time. We then transform the equations to a solvable system in a two-step procedure: linearisation followed by diagonalisation. Still, the coefficients of the second step must be determined in a recursive manner, but once this is done for a given system, they allow for an explicit solution valid for all times.

  20. Perfect discretization of reparametrization invariant path integrals

    International Nuclear Information System (INIS)

    Bahr, Benjamin; Dittrich, Bianca; Steinhaus, Sebastian

    2011-01-01

    To obtain a well-defined path integral one often employs discretizations. In the case of gravity and reparametrization-invariant systems, the latter of which we consider here as a toy example, discretizations generically break diffeomorphism and reparametrization symmetry, respectively. This has severe implications, as these symmetries determine the dynamics of the corresponding system. Indeed we will show that a discretized path integral with reparametrization-invariance is necessarily also discretization independent and therefore uniquely determined by the corresponding continuum quantum mechanical propagator. We use this insight to develop an iterative method for constructing such a discretized path integral, akin to a Wilsonian RG flow. This allows us to address the problem of discretization ambiguities and of an anomaly-free path integral measure for such systems. The latter is needed to obtain a path integral, that can act as a projector onto the physical states, satisfying the quantum constraints. We will comment on implications for discrete quantum gravity models, such as spin foams.

  1. Perfect discretization of reparametrization invariant path integrals

    Science.gov (United States)

    Bahr, Benjamin; Dittrich, Bianca; Steinhaus, Sebastian

    2011-05-01

    To obtain a well-defined path integral one often employs discretizations. In the case of gravity and reparametrization-invariant systems, the latter of which we consider here as a toy example, discretizations generically break diffeomorphism and reparametrization symmetry, respectively. This has severe implications, as these symmetries determine the dynamics of the corresponding system. Indeed we will show that a discretized path integral with reparametrization-invariance is necessarily also discretization independent and therefore uniquely determined by the corresponding continuum quantum mechanical propagator. We use this insight to develop an iterative method for constructing such a discretized path integral, akin to a Wilsonian RG flow. This allows us to address the problem of discretization ambiguities and of an anomaly-free path integral measure for such systems. The latter is needed to obtain a path integral, that can act as a projector onto the physical states, satisfying the quantum constraints. We will comment on implications for discrete quantum gravity models, such as spin foams.

  2. Robust stability and ℋ ∞ -estimation for uncertain discrete systems with state-delay

    Directory of Open Access Journals (Sweden)

    Mahmoud Magdi S.

    2001-01-01

    Full Text Available In this paper, we investigate the problems of robust stability and ℋ ∞ -estimation for a class of linear discrete-time systems with time-varying norm-bounded parameter uncertainty and unknown state-delay. We provide complete results for robust stability with prescribed performance measure and establish a version of the discrete Bounded Real Lemma. Then, we design a linear estimator such that the estimation error dynamics is robustly stable with a guaranteed ℋ ∞ -performance irrespective of the parameteric uncertainties and unknown state delays. A numerical example is worked out to illustrate the developed theory.

  3. Optimal reduction of flexible dynamic system

    International Nuclear Information System (INIS)

    Jankovic, J.

    1994-01-01

    Dynamic system reduction is basic procedure in various problems of active control synthesis of flexible structures. In this paper is presented direct method for system reduction by explicit extraction of modes included in reduced model form. Criterion for optimal system discrete approximation in synthesis reduced dynamic model is also presented. Subjected method of system decomposition is discussed in relation to the Schur method of solving matrix algebraic Riccati equation as condition for system reduction. By using exposed method procedure of flexible system reduction in addition with corresponding example is presented. Shown procedure is powerful in problems of active control synthesis of flexible system vibrations

  4. A discrete control model of PLANT

    Science.gov (United States)

    Mitchell, C. M.

    1985-01-01

    A model of the PLANT system using the discrete control modeling techniques developed by Miller is described. Discrete control models attempt to represent in a mathematical form how a human operator might decompose a complex system into simpler parts and how the control actions and system configuration are coordinated so that acceptable overall system performance is achieved. Basic questions include knowledge representation, information flow, and decision making in complex systems. The structure of the model is a general hierarchical/heterarchical scheme which structurally accounts for coordination and dynamic focus of attention. Mathematically, the discrete control model is defined in terms of a network of finite state systems. Specifically, the discrete control model accounts for how specific control actions are selected from information about the controlled system, the environment, and the context of the situation. The objective is to provide a plausible and empirically testable accounting and, if possible, explanation of control behavior.

  5. Dynamics and elastic interactions of the discrete multi-dark soliton solutions for the Kaup-Newell lattice equation

    Science.gov (United States)

    Liu, Nan; Wen, Xiao-Yong

    2018-03-01

    Under consideration in this paper is the Kaup-Newell (KN) lattice equation which is an integrable discretization of the KN equation. Infinitely, many conservation laws and discrete N-fold Darboux transformation (DT) for this system are constructed and established based on its Lax representation. Via the resulting N-fold DT, the discrete multi-dark soliton solutions in terms of determinants are derived from non-vanishing background. Propagation and elastic interaction structures of such solitons are shown graphically. Overtaking interaction phenomena between/among the two, three and four solitons are discussed. Numerical simulations are used to explore their dynamical behaviors of such multi-dark solitons. Numerical results show that their evolutions are stable against a small noise. Results in this paper might be helpful for understanding the propagation of nonlinear Alfvén waves in plasmas.

  6. Taylor O(h³) Discretization of ZNN Models for Dynamic Equality-Constrained Quadratic Programming With Application to Manipulators.

    Science.gov (United States)

    Liao, Bolin; Zhang, Yunong; Jin, Long

    2016-02-01

    In this paper, a new Taylor-type numerical differentiation formula is first presented to discretize the continuous-time Zhang neural network (ZNN), and obtain higher computational accuracy. Based on the Taylor-type formula, two Taylor-type discrete-time ZNN models (termed Taylor-type discrete-time ZNNK and Taylor-type discrete-time ZNNU models) are then proposed and discussed to perform online dynamic equality-constrained quadratic programming. For comparison, Euler-type discrete-time ZNN models (called Euler-type discrete-time ZNNK and Euler-type discrete-time ZNNU models) and Newton iteration, with interesting links being found, are also presented. It is proved herein that the steady-state residual errors of the proposed Taylor-type discrete-time ZNN models, Euler-type discrete-time ZNN models, and Newton iteration have the patterns of O(h(3)), O(h(2)), and O(h), respectively, with h denoting the sampling gap. Numerical experiments, including the application examples, are carried out, of which the results further substantiate the theoretical findings and the efficacy of Taylor-type discrete-time ZNN models. Finally, the comparisons with Taylor-type discrete-time derivative model and other Lagrange-type discrete-time ZNN models for dynamic equality-constrained quadratic programming substantiate the superiority of the proposed Taylor-type discrete-time ZNN models once again.

  7. Discrete-time inverse optimal control for nonlinear systems

    CERN Document Server

    Sanchez, Edgar N

    2013-01-01

    Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller. Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems The book presents two approaches for controller synthesis: the first based on passivity theory and the second on a control Lyapunov function (CLF). Th

  8. Using Difference Equation to Model Discrete-time Behavior in System Dynamics Modeling

    NARCIS (Netherlands)

    Hesan, R.; Ghorbani, A.; Dignum, M.V.

    2014-01-01

    In system dynamics modeling, differential equations have been used as the basic mathematical operator. Using difference equation to build system dynamics models instead of differential equation, can be insightful for studying small organizations or systems with micro behavior. In this paper we

  9. On Stochastic Finite-Time Control of Discrete-Time Fuzzy Systems with Packet Dropout

    Directory of Open Access Journals (Sweden)

    Yingqi Zhang

    2012-01-01

    Full Text Available This paper is concerned with the stochastic finite-time stability and stochastic finite-time boundedness problems for one family of fuzzy discrete-time systems over networks with packet dropout, parametric uncertainties, and time-varying norm-bounded disturbance. Firstly, we present the dynamic model description studied, in which the discrete-time fuzzy T-S systems with packet loss can be described by one class of fuzzy Markovian jump systems. Then, the concepts of stochastic finite-time stability and stochastic finite-time boundedness and problem formulation are given. Based on Lyapunov function approach, sufficient conditions on stochastic finite-time stability and stochastic finite-time boundedness are established for the resulting closed-loop fuzzy discrete-time system with Markovian jumps, and state-feedback controllers are designed to ensure stochastic finite-time stability and stochastic finite-time boundedness of the class of fuzzy systems. The stochastic finite-time stability and stochastic finite-time boundedness criteria can be tackled in the form of linear matrix inequalities with a fixed parameter. As an auxiliary result, we also give sufficient conditions on the stochastic stability of the class of fuzzy T-S systems with packet loss. Finally, two illustrative examples are presented to show the validity of the developed methodology.

  10. The endogenous grid method for discrete-continuous dynamic choice models with (or without) taste shocks

    DEFF Research Database (Denmark)

    Iskhakov, Fedor; Jørgensen, Thomas H.; Rust, John

    2017-01-01

    We present a fast and accurate computational method for solving and estimating a class of dynamic programming models with discrete and continuous choice variables. The solution method we develop for structural estimation extends the endogenous grid-point method (EGM) to discrete-continuous (DC) p...

  11. Controlling chaos in dynamical systems described by maps

    International Nuclear Information System (INIS)

    Crispin, Y.; Marduel, C.

    1994-01-01

    The problem of suppressing chaotic behavior in dynamical systems is treated using a feedback control method with limited control effort. The proposed method is validated on archetypal systems described by maps, i.e. discrete-time difference equations. The method is also applicable to dynamical systems described by flows, i.e. by systems of ordinary differential equations. Results are presented for the one-dimensional logistic map and for a two-dimensional Lotka-Volterra map describing predator-prey population dynamics. It is shown that chaos can be suppressed and the system stabilized about a period-1 fixed point of the maps

  12. Secure Hashing of Dynamic Hand Signatures Using Wavelet-Fourier Compression with BioPhasor Mixing and Discretization

    Directory of Open Access Journals (Sweden)

    Wai Kuan Yip

    2007-01-01

    Full Text Available We introduce a novel method for secure computation of biometric hash on dynamic hand signatures using BioPhasor mixing and discretization. The use of BioPhasor as the mixing process provides a one-way transformation that precludes exact recovery of the biometric vector from compromised hashes and stolen tokens. In addition, our user-specific discretization acts both as an error correction step as well as a real-to-binary space converter. We also propose a new method of extracting compressed representation of dynamic hand signatures using discrete wavelet transform (DWT and discrete fourier transform (DFT. Without the conventional use of dynamic time warping, the proposed method avoids storage of user's hand signature template. This is an important consideration for protecting the privacy of the biometric owner. Our results show that the proposed method could produce stable and distinguishable bit strings with equal error rates (EERs of and for random and skilled forgeries for stolen token (worst case scenario, and for both forgeries in the genuine token (optimal scenario.

  13. Analysis hierarchical model for discrete event systems

    Science.gov (United States)

    Ciortea, E. M.

    2015-11-01

    The This paper presents the hierarchical model based on discrete event network for robotic systems. Based on the hierarchical approach, Petri network is analysed as a network of the highest conceptual level and the lowest level of local control. For modelling and control of complex robotic systems using extended Petri nets. Such a system is structured, controlled and analysed in this paper by using Visual Object Net ++ package that is relatively simple and easy to use, and the results are shown as representations easy to interpret. The hierarchical structure of the robotic system is implemented on computers analysed using specialized programs. Implementation of hierarchical model discrete event systems, as a real-time operating system on a computer network connected via a serial bus is possible, where each computer is dedicated to local and Petri model of a subsystem global robotic system. Since Petri models are simplified to apply general computers, analysis, modelling, complex manufacturing systems control can be achieved using Petri nets. Discrete event systems is a pragmatic tool for modelling industrial systems. For system modelling using Petri nets because we have our system where discrete event. To highlight the auxiliary time Petri model using transport stream divided into hierarchical levels and sections are analysed successively. Proposed robotic system simulation using timed Petri, offers the opportunity to view the robotic time. Application of goods or robotic and transmission times obtained by measuring spot is obtained graphics showing the average time for transport activity, using the parameters sets of finished products. individually.

  14. Review of various dynamic modeling methods and development of an intuitive modeling method for dynamic systems

    International Nuclear Information System (INIS)

    Shin, Seung Ki; Seong, Poong Hyun

    2008-01-01

    Conventional static reliability analysis methods are inadequate for modeling dynamic interactions between components of a system. Various techniques such as dynamic fault tree, dynamic Bayesian networks, and dynamic reliability block diagrams have been proposed for modeling dynamic systems based on improvement of the conventional modeling methods. In this paper, we review these methods briefly and introduce dynamic nodes to the existing Reliability Graph with General Gates (RGGG) as an intuitive modeling method to model dynamic systems. For a quantitative analysis, we use a discrete-time method to convert an RGGG to an equivalent Bayesian network and develop a software tool for generation of probability tables

  15. Stabilization of discrete-time LTI positive systems

    Directory of Open Access Journals (Sweden)

    Krokavec Dušan

    2017-12-01

    Full Text Available The paper mitigates the existing conditions reported in the previous literature for control design of discrete-time linear positive systems. Incorporating an associated structure of linear matrix inequalities, combined with the Lyapunov inequality guaranteing asymptotic stability of discrete-time positive system structures, new conditions are presented with which the state-feedback controllers and the system state observers can be designed. Associated solutions of the proposed design conditions are illustrated by numerical illustrative examples.

  16. Variational discretization of the nonequilibrium thermodynamics of simple systems

    Science.gov (United States)

    Gay-Balmaz, François; Yoshimura, Hiroaki

    2018-04-01

    In this paper, we develop variational integrators for the nonequilibrium thermodynamics of simple closed systems. These integrators are obtained by a discretization of the Lagrangian variational formulation of nonequilibrium thermodynamics developed in (Gay-Balmaz and Yoshimura 2017a J. Geom. Phys. part I 111 169–93 Gay-Balmaz and Yoshimura 2017b J. Geom. Phys. part II 111 194–212) and thus extend the variational integrators of Lagrangian mechanics, to include irreversible processes. In the continuous setting, we derive the structure preserving property of the flow of such systems. This property is an extension of the symplectic property of the flow of the Euler–Lagrange equations. In the discrete setting, we show that the discrete flow solution of our numerical scheme verifies a discrete version of this property. We also present the regularity conditions which ensure the existence of the discrete flow. We finally illustrate our discrete variational schemes with the implementation of an example of a simple and closed system.

  17. Process Modeling for Energy Usage in “Smart House” System with a Help of Markov Discrete Chain

    Directory of Open Access Journals (Sweden)

    Victor Kravets

    2016-05-01

    Full Text Available Method for evaluating economic efficiency of technical systems using discrete Markov chains modelling illustrated by the system of “Smart house”, consisting, for example, of the three independently functioning elements. Dynamic model of a random power consumption process in the form of a symmetrical state graph of heterogeneous discrete Markov chain is built. The corresponding mathematical model of a random Markov process of power consumption in the “smart house” system in recurrent matrix form is being developed. Technique of statistical determination of probability of random transition elements of the system and the corresponding to the transition probability matrix of the discrete inhomogeneous Markov chain are developed. Statistically determined random transitions of system elements power consumption and the corresponding distribution laws are introduced. The matrix of transition prices, expectations for the possible states of a system price transition and, eventually, the cost of Markov process of power consumption throughout the day.

  18. Dynamics in discrete two-dimensional nonlinear Schrödinger equations in the presence of point defects

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Rasmussen, Kim

    1996-01-01

    The dynamics of two-dimensional discrete structures is studied in the framework of the generalized two-dimensional discrete nonlinear Schrodinger equation. The nonlinear coupling in the form of the Ablowitz-Ladik nonlinearity and point impurities is taken into account. The stability properties...... of the stationary solutions are examined. The essential importance of the existence of stable immobile solitons in the two-dimensional dynamics of the traveling pulses is demonstrated. The typical scenario of the two-dimensional quasicollapse of a moving intense pulse represents the formation of standing trapped...... narrow spikes. The influence of the point impurities on this dynamics is also investigated....

  19. The effects of host-feeding on stability of discrete-time host-parasitoid population dynamic models.

    Science.gov (United States)

    Emerick, Brooks; Singh, Abhyudai

    2016-02-01

    Discrete-time models are the traditional approach for capturing population dynamics of a host-parasitoid system. Recent work has introduced a semi-discrete framework for obtaining model update functions that connect host-parasitoid population levels from year-to-year. In particular, this framework uses differential equations to describe the host-parasitoid interaction during the time of year when they come in contact, allowing specific behaviors to be mechanistically incorporated. We use the semi-discrete approach to study the effects of host-feeding, which occurs when a parasitoid consumes a potential host larva without ovipositing. We find that host-feeding by itself cannot stabilize the system, and both populations exhibit behavior similar to the Nicholson-Bailey model. However, when combined with stabilizing mechanisms such as density-dependent host mortality, host-feeding contracts the region of parameter space that allows for a stable host-parasitoid equilibrium. In contrast, when combined with a density-dependent parasitoid attack rate, host-feeding expands the non-zero equilibrium stability region. Our results show that host-feeding causes inefficiency in the parasitoid population, which yields a higher population of hosts per generation. This suggests that host-feeding may have limited long-term impact in terms of suppressing host levels for biological control applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Control of Discrete-Event Systems Automata and Petri Net Perspectives

    CERN Document Server

    Silva, Manuel; Schuppen, Jan

    2013-01-01

    Control of Discrete-event Systems provides a survey of the most important topics in the discrete-event systems theory with particular focus on finite-state automata, Petri nets and max-plus algebra. Coverage ranges from introductory material on the basic notions and definitions of discrete-event systems to more recent results. Special attention is given to results on supervisory control, state estimation and fault diagnosis of both centralized and distributed/decentralized systems developed in the framework of the Distributed Supervisory Control of Large Plants (DISC) project. Later parts of the text are devoted to the study of congested systems though fluidization, an over approximation allowing a much more efficient study of observation and control problems of timed Petri nets. Finally, the max-plus algebraic approach to the analysis and control of choice-free systems is also considered. Control of Discrete-event Systems provides an introduction to discrete-event systems for readers that are not familiar wi...

  1. An extended discrete gradient formula for oscillatory Hamiltonian systems

    International Nuclear Information System (INIS)

    Liu Kai; Shi Wei; Wu Xinyuan

    2013-01-01

    In this paper, incorporating the idea of the discrete gradient method into the extended Runge–Kutta–Nyström integrator, we derive and analyze an extended discrete gradient formula for the oscillatory Hamiltonian system with the Hamiltonian H(p,q)= 1/2 p T p+ 1/2 q T Mq+U(q), where q:R→R d represents generalized positions, p:R→R d represents generalized momenta and M is an element of R dxd is a symmetric and positive semi-definite matrix. The solution of this system is a nonlinear oscillator. Basically, many nonlinear oscillatory mechanical systems with a partitioned Hamiltonian function lend themselves to this approach. The extended discrete gradient formula presented in this paper exactly preserves the energy H(p, q). We derive some properties of the new formula. The convergence is analyzed for the implicit schemes based on the discrete gradient formula, and it turns out that the convergence of the implicit schemes based on the extended discrete gradient formula is independent of ‖M‖, which is a significant property for the oscillatory Hamiltonian system. Thus, it transpires that a larger step size can be chosen for the new energy-preserving schemes than that for the traditional discrete gradient methods when applied to the oscillatory Hamiltonian system. Illustrative examples show the competence and efficiency of the new schemes in comparison with the traditional discrete gradient methods in the scientific literature. (paper)

  2. A time-varying extremum-seeking control approach for discrete-time systems with application to model predictive control

    NARCIS (Netherlands)

    Guay, M.; Beerens, R.; Nijmeijer, H.

    2014-01-01

    This paper considers the solution of a real-time optimization problem using adaptive extremum seeking control for a class of unknown discrete-time nonlinear systems. It is assumed that the equations describing the dynamics of the nonlinear system and the cost function to be minimized are unknown and

  3. Output-Feedback Control of Unknown Linear Discrete-Time Systems With Stochastic Measurement and Process Noise via Approximate Dynamic Programming.

    Science.gov (United States)

    Wang, Jun-Sheng; Yang, Guang-Hong

    2017-07-25

    This paper studies the optimal output-feedback control problem for unknown linear discrete-time systems with stochastic measurement and process noise. A dithered Bellman equation with the innovation covariance matrix is constructed via the expectation operator given in the form of a finite summation. On this basis, an output-feedback-based approximate dynamic programming method is developed, where the terms depending on the innovation covariance matrix are available with the aid of the innovation covariance matrix identified beforehand. Therefore, by iterating the Bellman equation, the resulting value function can converge to the optimal one in the presence of the aforementioned noise, and the nearly optimal control laws are delivered. To show the effectiveness and the advantages of the proposed approach, a simulation example and a velocity control experiment on a dc machine are employed.

  4. Modeling and simulation of discrete event systems

    CERN Document Server

    Choi, Byoung Kyu

    2013-01-01

    Computer modeling and simulation (M&S) allows engineers to study and analyze complex systems. Discrete-event system (DES)-M&S is used in modern management, industrial engineering, computer science, and the military. As computer speeds and memory capacity increase, so DES-M&S tools become more powerful and more widely used in solving real-life problems. Based on over 20 years of evolution within a classroom environment, as well as on decades-long experience in developing simulation-based solutions for high-tech industries, Modeling and Simulation of Discrete-Event Systems is the only book on

  5. Discrete Cosserat Approach for Multi-Section Soft Robots Dynamics

    OpenAIRE

    Renda, Federico; Boyer, Frederic; Dias, Jorge; Seneviratne, Lakmal

    2017-01-01

    In spite of recent progress, soft robotics still suffers from a lack of unified modeling framework. Nowadays, the most adopted model for the design and control of soft robots is the piece-wise constant curvature model, with its consolidated benefits and drawbacks. In this work, an alternative model for multisection soft robots dynamics is presented based on a discrete Cosserat approach, which, not only takes into account shear and torsional deformations, essentials to cope with out-of-plane e...

  6. A Family of Integrable Rational Semi-Discrete Systems and Its Reduction

    International Nuclear Information System (INIS)

    Xu Xixiang

    2010-01-01

    Within framework of zero curvature representation theory, a family of integrahle rational semi-discrete systems is derived from a matrix spectral problem. The Hamiltonian forms of obtained semi-discrete systems are constructed by means of the discrete trace identity. The Liouville integrability for the obtained family is demonstrated. In the end, a reduced family of obtained semi-discrete systems and its Hamiltonian form are worked out. (general)

  7. OBSERVING LYAPUNOV EXPONENTS OF INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS.

    Science.gov (United States)

    Ott, William; Rivas, Mauricio A; West, James

    2015-12-01

    Can Lyapunov exponents of infinite-dimensional dynamical systems be observed by projecting the dynamics into ℝ N using a 'typical' nonlinear projection map? We answer this question affirmatively by developing embedding theorems for compact invariant sets associated with C 1 maps on Hilbert spaces. Examples of such discrete-time dynamical systems include time- T maps and Poincaré return maps generated by the solution semigroups of evolution partial differential equations. We make every effort to place hypotheses on the projected dynamics rather than on the underlying infinite-dimensional dynamical system. In so doing, we adopt an empirical approach and formulate checkable conditions under which a Lyapunov exponent computed from experimental data will be a Lyapunov exponent of the infinite-dimensional dynamical system under study (provided the nonlinear projection map producing the data is typical in the sense of prevalence).

  8. Robust Moving Horizon H∞ Control of Discrete Time-Delayed Systems with Interval Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    F. Yıldız Tascikaraoglu

    2014-01-01

    Full Text Available In this study, design of a delay-dependent type moving horizon state-feedback control (MHHC is considered for a class of linear discrete-time system subject to time-varying state delays, norm-bounded uncertainties, and disturbances with bounded energies. The closed-loop robust stability and robust performance problems are considered to overcome the instability and poor disturbance rejection performance due to the existence of parametric uncertainties and time-delay appeared in the system dynamics. Utilizing a discrete-time Lyapunov-Krasovskii functional, some delay-dependent linear matrix inequality (LMI based conditions are provided. It is shown that if one can find a feasible solution set for these LMI conditions iteratively at each step of run-time, then we can construct a control law which guarantees the closed-loop asymptotic stability, maximum disturbance rejection performance, and closed-loop dissipativity in view of the actuator limitations. Two numerical examples with simulations on a nominal and uncertain discrete-time, time-delayed systems, are presented at the end, in order to demonstrate the efficiency of the proposed method.

  9. Dynamical systems on 2- and 3-manifolds

    CERN Document Server

    Grines, Viacheslav Z; Pochinka, Olga V

    2016-01-01

    This book provides an introduction to the topological classification of smooth structurally stable diffeomorphisms on closed orientable 2- and 3-manifolds.The topological classification is one of the main problems of the theory of dynamical systems and the results presented in this book are mostly for dynamical systems satisfying Smale's Axiom A. The main results on the topological classification of discrete dynamical systems are widely scattered among many papers and surveys. This book presents these results fluidly, systematically, and for the first time in one publication. Additionally, this book discusses the recent results on the topological classification of Axiom A diffeomorphisms focusing on the nontrivial effects of the dynamical systems on 2- and 3-manifolds. The classical methods and approaches which are considered to be promising for the further research are also discussed. < The reader needs to be familiar with the basic concepts of the qualitative theory of dynamical systems which are present...

  10. Adaptive Dynamic Programming for Discrete-Time Zero-Sum Games.

    Science.gov (United States)

    Wei, Qinglai; Liu, Derong; Lin, Qiao; Song, Ruizhuo

    2018-04-01

    In this paper, a novel adaptive dynamic programming (ADP) algorithm, called "iterative zero-sum ADP algorithm," is developed to solve infinite-horizon discrete-time two-player zero-sum games of nonlinear systems. The present iterative zero-sum ADP algorithm permits arbitrary positive semidefinite functions to initialize the upper and lower iterations. A novel convergence analysis is developed to guarantee the upper and lower iterative value functions to converge to the upper and lower optimums, respectively. When the saddle-point equilibrium exists, it is emphasized that both the upper and lower iterative value functions are proved to converge to the optimal solution of the zero-sum game, where the existence criteria of the saddle-point equilibrium are not required. If the saddle-point equilibrium does not exist, the upper and lower optimal performance index functions are obtained, respectively, where the upper and lower performance index functions are proved to be not equivalent. Finally, simulation results and comparisons are shown to illustrate the performance of the present method.

  11. Switched periodic systems in discrete time: stability and input-output norms

    Science.gov (United States)

    Bolzern, Paolo; Colaneri, Patrizio

    2013-07-01

    This paper deals with the analysis of stability and the characterisation of input-output norms for discrete-time periodic switched linear systems. Such systems consist of a network of time-periodic linear subsystems sharing the same state vector and an exogenous switching signal that triggers the jumps between the subsystems. The overall system exhibits a complex dynamic behaviour due to the interplay between the time periodicity of the subsystem parameters and the switching signal. Both arbitrary switching signals and signals satisfying a dwell-time constraint are considered. Linear matrix inequality conditions for stability and guaranteed H2 and H∞ performances are provided. The results heavily rely on the merge of the theory of linear periodic systems and recent developments on switched linear time-invariant systems.

  12. Nonlinear integrodifferential equations as discrete systems

    Science.gov (United States)

    Tamizhmani, K. M.; Satsuma, J.; Grammaticos, B.; Ramani, A.

    1999-06-01

    We analyse a class of integrodifferential equations of the `intermediate long wave' (ILW) type. We show that these equations can be formally interpreted as discrete, differential-difference systems. This allows us to link equations of this type with previous results of ours involving differential-delay equations and, on the basis of this, propose new integrable equations of ILW type. Finally, we extend this approach to pure difference equations and propose ILW forms for the discrete lattice KdV equation.

  13. How to discretize differential systems in a systematic way

    International Nuclear Information System (INIS)

    Murata, M; Satsuma, J; Ramani, A; Grammaticos, B

    2010-01-01

    We present a systematic approach to the construction of discrete analogues for differential systems. Our method is tailored to first-order differential equations and relies on a formal linearization, followed by a Pade-like rational approximation of an exponential evolution operator. We apply our method to a host of systems for which there exist discretization results obtained by what we call the 'intuitive' method and compare the discretizations obtained. A discussion of our method as compared to one of the Mickens is also presented. Finally we apply our method to a system of coupled Riccati equations with emphasis on the preservation of the integrable character of the differential system.

  14. A modified discrete element model for sea ice dynamics

    Institute of Scientific and Technical Information of China (English)

    LI Baohui; LI Hai; LIU Yu; WANG Anliang; JI Shunying

    2014-01-01

    Considering the discontinuous characteristics of sea ice on various scales, a modified discrete element mod-el (DEM) for sea ice dynamics is developed based on the granular material rheology. In this modified DEM, a soft sea ice particle element is introduced as a self-adjustive particle size function. Each ice particle can be treated as an assembly of ice floes, with its concentration and thickness changing to variable sizes un-der the conservation of mass. In this model, the contact forces among ice particles are calculated using a viscous-elastic-plastic model, while the maximum shear forces are described with the Mohr-Coulomb fric-tion law. With this modified DEM, the ice flow dynamics is simulated under the drags of wind and current in a channel of various widths. The thicknesses, concentrations and velocities of ice particles are obtained, and then reasonable dynamic process is analyzed. The sea ice dynamic process is also simulated in a vortex wind field. Taking the influence of thermodynamics into account, this modified DEM will be improved in the future work.

  15. Stochastic sensitivity analysis of periodic attractors in non-autonomous nonlinear dynamical systems based on stroboscopic map

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Kong-Ming, E-mail: kmguo@xidian.edu.cn [School of Electromechanical Engineering, Xidian University, P.O. Box 187, Xi' an 710071 (China); Jiang, Jun, E-mail: jun.jiang@mail.xjtu.edu.cn [State Key Laboratory for Strength and Vibration, Xi' an Jiaotong University, Xi' an 710049 (China)

    2014-07-04

    To apply stochastic sensitivity function method, which can estimate the probabilistic distribution of stochastic attractors, to non-autonomous dynamical systems, a 1/N-period stroboscopic map for a periodic motion is constructed in order to discretize the continuous cycle into a discrete one. In this way, the sensitivity analysis of a cycle for discrete map can be utilized and a numerical algorithm for the stochastic sensitivity analysis of periodic solutions of non-autonomous nonlinear dynamical systems under stochastic disturbances is devised. An external excited Duffing oscillator and a parametric excited laser system are studied as examples to show the validity of the proposed method. - Highlights: • A method to analyze sensitivity of stochastic periodic attractors in non-autonomous dynamical systems is proposed. • Probabilistic distribution around periodic attractors in an external excited Φ{sup 6} Duffing system is obtained. • Probabilistic distribution around a periodic attractor in a parametric excited laser system is determined.

  16. Discrete Green’s functions for propagators between complex objects in discrete space-time nonlinear electromagnetics

    NARCIS (Netherlands)

    Arnold, J.M.; Hon, de B.P.; Graglia, R.D.

    2007-01-01

    We propose a potential-based form of the FDTD scheme, with potentials driven by sources that are themselves simple dynamical systems. This formulation admits a radiative boundary condition for the discrete-mesh Maxwell's equations in a multiply connected exterior domain, which facilitates

  17. Fixed Points in Discrete Models for Regulatory Genetic Networks

    Directory of Open Access Journals (Sweden)

    Orozco Edusmildo

    2007-01-01

    Full Text Available It is desirable to have efficient mathematical methods to extract information about regulatory iterations between genes from repeated measurements of gene transcript concentrations. One piece of information is of interest when the dynamics reaches a steady state. In this paper we develop tools that enable the detection of steady states that are modeled by fixed points in discrete finite dynamical systems. We discuss two algebraic models, a univariate model and a multivariate model. We show that these two models are equivalent and that one can be converted to the other by means of a discrete Fourier transform. We give a new, more general definition of a linear finite dynamical system and we give a necessary and sufficient condition for such a system to be a fixed point system, that is, all cycles are of length one. We show how this result for generalized linear systems can be used to determine when certain nonlinear systems (monomial dynamical systems over finite fields are fixed point systems. We also show how it is possible to determine in polynomial time when an ordinary linear system (defined over a finite field is a fixed point system. We conclude with a necessary condition for a univariate finite dynamical system to be a fixed point system.

  18. Evolutionary Design of Both Topologies and Parameters of a Hybrid Dynamical System

    DEFF Research Database (Denmark)

    Dupuis, Jean-Francois; Fan, Zhun; Goodman, Erik

    2012-01-01

    This paper investigates the issue of evolutionary design of open-ended plants for hybrid dynamical systems--i.e. both their topologies and parameters. Hybrid bond graphs are used to represent dynamical systems involving both continuous and discrete system dynamics. Genetic programming, with some...... of hybrid dynamical systems that fulfill predefined design specifications. A comprehensive investigation of a case study of DC-DC converter design demonstrates the feasibility and effectiveness of the HBGGP approach. Important characteristics of the approach are also discussed, with some future research...

  19. Noise Induced Dissipation in Discrete-Time Classical and Quantum Dynamical Systems

    OpenAIRE

    Wolowski, Lech

    2004-01-01

    We introduce a new characteristics of chaoticity of classical and quantum dynamical systems by defining the notion of the dissipation time which enables us to test how the system responds to the noise and in particular to measure the speed at which an initially closed, conservative system converges to the equilibrium when subjected to noisy (stochastic) perturbations. We prove fast dissipation result for classical Anosov systems and ...

  20. Application of Hybrid Dynamical Theory to the Cardiovascular System

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2014-10-14

    In hybrid dynamical systems, the state evolves in continuous time as well as in discrete modes activated by internal conditions or by external events. In the recent years, hybrid systems modeling has been used to represent the dynamics of biological systems. In such systems, discrete behaviors might originate from unexpected changes in normal performance, e.g., a transition from a healthy to an abnormal condition. Simplifications, model assumptions, and/or modeled (and ignored) nonlinearities can be represented by sudden changes in the state. Modeling cardiovascular system (CVS), one of the most fascinating but most complex human physiological systems, with a hybrid approach, is the focus of this chapter. The hybrid property appears naturally in the CVS thanks to the presence of valves which, depending on their state (closed or open), divide the cardiac cycle into four phases. This chapter shows how hybrid models can be used for modeling the CVS. In addition, it describes a preliminary study on the detection of some cardiac anomalies based on the hybrid model and using the standard observer-based approach.

  1. Consequences of nonclassical measurement for the algorithmic description of continuous dynamical systems

    Science.gov (United States)

    Fields, Chris

    1989-01-01

    Continuous dynamical systems intuitively seem capable of more complex behavior than discrete systems. If analyzed in the framework of the traditional theory of computation, a continuous dynamical system with countablely many quasistable states has at least the computational power of a universal Turing machine. Such an analyses assumes, however, the classical notion of measurement. If measurement is viewed nonclassically, a continuous dynamical system cannot, even in principle, exhibit behavior that cannot be simulated by a universal Turing machine.

  2. Discrete ergodic Jacobi matrices: Spectral properties and Quantum dynamical bounds

    OpenAIRE

    Han, Rui

    2017-01-01

    In this thesis we study discrete quasiperiodic Jacobi operators as well as ergodic operators driven by more general zero topological entropy dynamics. Such operators are deeply connected to physics (quantum Hall effect and graphene) and have enjoyed great attention from mathematics (e.g. several of Simon’s problems). The thesis has two main themes. First, to study spectral properties of quasiperiodic Jacobi matrices, in particular when off-diagonal sampling function has non-zero winding numbe...

  3. Dynamic Simulation and Optimization of Nuclear Hydrogen Production Systems

    Energy Technology Data Exchange (ETDEWEB)

    Paul I. Barton; Mujid S. Kaximi; Georgios Bollas; Patricio Ramirez Munoz

    2009-07-31

    This project is part of a research effort to design a hydrogen plant and its interface with a nuclear reactor. This project developed a dynamic modeling, simulation and optimization environment for nuclear hydrogen production systems. A hybrid discrete/continuous model captures both the continuous dynamics of the nuclear plant, the hydrogen plant, and their interface, along with discrete events such as major upsets. This hybrid model makes us of accurate thermodynamic sub-models for the description of phase and reaction equilibria in the thermochemical reactor. Use of the detailed thermodynamic models will allow researchers to examine the process in detail and have confidence in the accurary of the property package they use.

  4. Optimization of stochastic discrete systems and control on complex networks computational networks

    CERN Document Server

    Lozovanu, Dmitrii

    2014-01-01

    This book presents the latest findings on stochastic dynamic programming models and on solving optimal control problems in networks. It includes the authors' new findings on determining the optimal solution of discrete optimal control problems in networks and on solving game variants of Markov decision problems in the context of computational networks. First, the book studies the finite state space of Markov processes and reviews the existing methods and algorithms for determining the main characteristics in Markov chains, before proposing new approaches based on dynamic programming and combinatorial methods. Chapter two is dedicated to infinite horizon stochastic discrete optimal control models and Markov decision problems with average and expected total discounted optimization criteria, while Chapter three develops a special game-theoretical approach to Markov decision processes and stochastic discrete optimal control problems. In closing, the book's final chapter is devoted to finite horizon stochastic con...

  5. Signatures of discrete breathers in coherent state quantum dynamics

    International Nuclear Information System (INIS)

    Igumenshchev, Kirill; Ovchinnikov, Misha; Prezhdo, Oleg; Maniadis, Panagiotis

    2013-01-01

    In classical mechanics, discrete breathers (DBs) – a spatial time-periodic localization of energy – are predicted in a large variety of nonlinear systems. Motivated by a conceptual bridging of the DB phenomena in classical and quantum mechanical representations, we study their signatures in the dynamics of a quantum equivalent of a classical mechanical point in phase space – a coherent state. In contrast to the classical point that exhibits either delocalized or localized motion, the coherent state shows signatures of both localized and delocalized behavior. The transition from normal to local modes have different characteristics in quantum and classical perspectives. Here, we get an insight into the connection between classical and quantum perspectives by analyzing the decomposition of the coherent state into system's eigenstates, and analyzing the spacial distribution of the wave-function density within these eigenstates. We find that the delocalized and localized eigenvalue components of the coherent state are separated by a mixed region, where both kinds of behavior can be observed. Further analysis leads to the following observations. Considered as a function of coupling, energy eigenstates go through avoided crossings between tunneling and non-tunneling modes. The dominance of tunneling modes in the high nonlinearity region is compromised by the appearance of new types of modes – high order tunneling modes – that are similar to the tunneling modes but have attributes of non-tunneling modes. Certain types of excitations preferentially excite higher order tunneling modes, allowing one to study their properties. Since auto-correlation functions decrease quickly in highly nonlinear systems, short-time dynamics are sufficient for modeling quantum DBs. This work provides a foundation for implementing modern semi-classical methods to model quantum DBs, bridging classical and quantum mechanical signatures of DBs, and understanding spectroscopic experiments

  6. Reducing pressure oscillations in discrete fluid power systems

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik Clemmensen

    2016-01-01

    Discrete fluid power systems featuring transmission lines inherently include pressure oscillations. Experimental verification of a discrete fluid power power take off system for wave energy converters has shown the cylinder pressure to oscillate as force shifts are performed. This article investi...... investigates how cylinder pressure oscillations may be reduced by shaping the valve opening trajectory without the need for closed loop pressure feedback. Furthermore the energy costs of reducing pressure oscillations are investigated....

  7. Estimation of flow stress of radiation induced F/M steels using molecular dynamics and discrete dislocation dynamics approach

    International Nuclear Information System (INIS)

    More, Ameya; Dutta, B.K.; Durgaprasad, P.V.; Arya, A.K.

    2012-01-01

    Fe-Cr based Ferritic/Martensitic (F/M) steels are the candidate structural materials for future fusion reactors. In this work, a multi-scale approach comprising atomistic Molecular Dynamics (MD) simulations and Discrete Dislocation Dynamics (DDD) simulations are used to model the effect of irradiation dose on the flow stress of F/M steels. At the atomic scale, molecular dynamics simulations are used to study the dislocation interaction with irradiation induced defects, i.e. voids and He bubbles. Whereas, the DDD simulations are used to estimate the change in flow stress of the material as a result of irradiation hardening. (author)

  8. A discrete force allocation algorithm for modelling wind turbines in computational fluid dynamics

    DEFF Research Database (Denmark)

    Réthoré, Pierre-Elouan; Sørensen, Niels N.

    2012-01-01

    at the position of the wind turbine rotor to estimate correctly the power production and the rotor loading. The method proposed in this paper solves this issue by spreading the force on the direct neighbouring cells and applying an equivalent pressure jump at the cell faces. This can potentially open......This paper describes an algorithm for allocating discrete forces in computational fluid dynamics (CFD). Discrete forces are useful in wind energy CFD. They are used as an approximation of the wind turbine blades’ action on the wind (actuator disc/line), to model forests and to model turbulent...

  9. Engineering applications of discrete-time optimal control

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui; Ravn, Hans V.

    1990-01-01

    Many problems of design and operation of engineering systems can be formulated as optimal control problems where time has been discretisized. This is also true even if 'time' is not involved in the formulation of the problem, but rather another one-dimensional parameter. This paper gives a review...... of some well-known and new results in discrete time optimal control methods applicable to practical problem solving within engineering. Emphasis is placed on dynamic programming, the classical maximum principle and generalized versions of the maximum principle for optimal control of discrete time systems...

  10. Long-time behavior in numerical solutions of certain dynamical systems

    International Nuclear Information System (INIS)

    Vazquez, L.

    1987-01-01

    A general discretization of the ordinary nonlinear differential equations d 2 v/dt 2 =f(v) and dv/dt=g(v) is studied. The discrete scheme conserves the discrete analogous of a quantity that is conserved by the corresponding equations. This method is applied to two cases and no ''ghost solutions'' were observed for the long range calculation. In these cases we analyze the stability of the corresponding numerical scheme as a dynamical system and in the sense studied by Kuo Pen-Yu and Stetter. In particular we find a correspondence between both kinds of stability. (author)

  11. Trivial dynamics in discrete-time systems: carrying simplex and translation arcs

    Science.gov (United States)

    Niu, Lei; Ruiz-Herrera, Alfonso

    2018-06-01

    In this paper we show that the dynamical behavior in (first octant) of the classical Kolmogorov systems of competitive type admitting a carrying simplex can be sometimes determined completely by the number of fixed points on the boundary and the local behavior around them. Roughly speaking, T has trivial dynamics (i.e. the omega limit set of any orbit is a connected set contained in the set of fixed points) provided T has exactly four hyperbolic nontrivial fixed points in with local attractors on the carrying simplex and local repellers on the carrying simplex; and there exists a unique hyperbolic fixed point in Int. Our results are applied to some classical models including the Leslie–Gower models, Atkinson-Allen systems and Ricker maps.

  12. Periodic Properties of 1D FE Discrete Models in High Frequency Dynamics

    Directory of Open Access Journals (Sweden)

    A. Żak

    2016-01-01

    Full Text Available Finite element discrete models of various engineering 1D structures may be considered as structures of certain periodic characteristics. The source of this periodicity comes from the discontinuity of stress/strain field between the elements. This behaviour remains unnoticeable, when low frequency dynamics of these structures is investigated. At high frequency regimes, however, its influence may be strong enough to dominate calculated structural responses distorting or even falsifying them completely. In this paper, certain computational aspects of structural periodicity of 1D FE discrete models are discussed by the authors. In this discussion, the authors focus their attention on an exemplary problem of 1D rod modelled according to the elementary theory.

  13. Discrete event systems diagnosis and diagnosability

    CERN Document Server

    Sayed-Mouchaweh, Moamar

    2014-01-01

    Discrete Event Systems: Diagnosis and Diagnosability addresses the problem of fault diagnosis of Discrete Event Systems (DES). This book provides the basic techniques and approaches necessary for the design of an efficient fault diagnosis system for a wide range of modern engineering applications. The different techniques and approaches are classified according to several criteria such as: modeling tools (Automata, Petri nets) that is used to construct the model; the information (qualitative based on events occurrences and/or states outputs, quantitative based on signal processing and data analysis) that is needed to analyze and achieve the diagnosis; the decision structure (centralized, decentralized) that is required to achieve the diagnosis. The goal of this classification is to select the efficient method to achieve the fault diagnosis according to the application constraints. This book focuses on the centralized and decentralized event based diagnosis approaches using formal language and automata as mode...

  14. Robust Adaptive Stabilization of Linear Time-Invariant Dynamic Systems by Using Fractional-Order Holds and Multirate Sampling Controls

    Directory of Open Access Journals (Sweden)

    S. Alonso-Quesada

    2010-01-01

    Full Text Available This paper presents a strategy for designing a robust discrete-time adaptive controller for stabilizing linear time-invariant (LTI continuous-time dynamic systems. Such systems may be unstable and noninversely stable in the worst case. A reduced-order model is considered to design the adaptive controller. The control design is based on the discretization of the system with the use of a multirate sampling device with fast-sampled control signal. A suitable on-line adaptation of the multirate gains guarantees the stability of the inverse of the discretized estimated model, which is used to parameterize the adaptive controller. A dead zone is included in the parameters estimation algorithm for robustness purposes under the presence of unmodeled dynamics in the controlled dynamic system. The adaptive controller guarantees the boundedness of the system measured signal for all time. Some examples illustrate the efficacy of this control strategy.

  15. Modelling a reliability system governed by discrete phase-type distributions

    International Nuclear Information System (INIS)

    Ruiz-Castro, Juan Eloy; Perez-Ocon, Rafael; Fernandez-Villodre, Gemma

    2008-01-01

    We present an n-system with one online unit and the others in cold standby. There is a repairman. When the online fails it goes to repair, and instantaneously a standby unit becomes the online one. The operational and repair times follow discrete phase-type distributions. Given that any discrete distribution defined on the positive integers is a discrete phase-type distribution, the system can be considered a general one. A model with unlimited number of units is considered for approximating a system with a great number of units. We show that the process that governs the system is a quasi-birth-and-death process. For this system, performance reliability measures; the up and down periods, and the involved costs are calculated in a matrix and algorithmic form. We show that the discrete case is not a trivial case of the continuous one. The results given in this paper have been implemented computationally with Matlab

  16. Modelling a reliability system governed by discrete phase-type distributions

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Castro, Juan Eloy [Departamento de Estadistica e Investigacion Operativa, Universidad de Granada, 18071 Granada (Spain)], E-mail: jeloy@ugr.es; Perez-Ocon, Rafael [Departamento de Estadistica e Investigacion Operativa, Universidad de Granada, 18071 Granada (Spain)], E-mail: rperezo@ugr.es; Fernandez-Villodre, Gemma [Departamento de Estadistica e Investigacion Operativa, Universidad de Granada, 18071 Granada (Spain)

    2008-11-15

    We present an n-system with one online unit and the others in cold standby. There is a repairman. When the online fails it goes to repair, and instantaneously a standby unit becomes the online one. The operational and repair times follow discrete phase-type distributions. Given that any discrete distribution defined on the positive integers is a discrete phase-type distribution, the system can be considered a general one. A model with unlimited number of units is considered for approximating a system with a great number of units. We show that the process that governs the system is a quasi-birth-and-death process. For this system, performance reliability measures; the up and down periods, and the involved costs are calculated in a matrix and algorithmic form. We show that the discrete case is not a trivial case of the continuous one. The results given in this paper have been implemented computationally with Matlab.

  17. Discrete modelling of drapery systems

    Science.gov (United States)

    Thoeni, Klaus; Giacomini, Anna

    2016-04-01

    Drapery systems are an efficient and cost-effective measure in preventing and controlling rockfall hazards on rock slopes. The simplest form consists of a row of ground anchors along the top of the slope connected to a horizontal support cable from which a wire mesh is suspended down the face of the slope. Such systems are generally referred to as simple or unsecured draperies (Badger and Duffy 2012). Variations such as secured draperies, where a pattern of ground anchors is incorporated within the field of the mesh, and hybrid systems, where the upper part of an unsecured drapery is elevated to intercept rockfalls originating upslope of the installation, are becoming more and more popular. This work presents a discrete element framework for simulation of unsecured drapery systems and its variations. The numerical model is based on the classical discrete element method (DEM) and implemented into the open-source framework YADE (Šmilauer et al., 2010). The model takes all relevant interactions between block, drapery and slope into account (Thoeni et al., 2014) and was calibrated and validated based on full-scale experiments (Giacomini et al., 2012).The block is modelled as a rigid clump made of spherical particles which allows any shape to be approximated. The drapery is represented by a set of spherical particle with remote interactions. The behaviour of the remote interactions is governed by the constitutive behaviour of the wire and generally corresponds to a piecewise linear stress-strain relation (Thoeni et al., 2013). The same concept is used to model wire ropes. The rock slope is represented by rigid triangular elements where material properties (e.g., normal coefficient of restitution, friction angle) are assigned to each triangle. The capabilities of the developed model to simulate drapery systems and estimate the residual hazard involved with such systems is shown. References Badger, T.C., Duffy, J.D. (2012) Drapery systems. In: Turner, A.K., Schuster R

  18. Actor-critic-based optimal tracking for partially unknown nonlinear discrete-time systems.

    Science.gov (United States)

    Kiumarsi, Bahare; Lewis, Frank L

    2015-01-01

    This paper presents a partially model-free adaptive optimal control solution to the deterministic nonlinear discrete-time (DT) tracking control problem in the presence of input constraints. The tracking error dynamics and reference trajectory dynamics are first combined to form an augmented system. Then, a new discounted performance function based on the augmented system is presented for the optimal nonlinear tracking problem. In contrast to the standard solution, which finds the feedforward and feedback terms of the control input separately, the minimization of the proposed discounted performance function gives both feedback and feedforward parts of the control input simultaneously. This enables us to encode the input constraints into the optimization problem using a nonquadratic performance function. The DT tracking Bellman equation and tracking Hamilton-Jacobi-Bellman (HJB) are derived. An actor-critic-based reinforcement learning algorithm is used to learn the solution to the tracking HJB equation online without requiring knowledge of the system drift dynamics. That is, two neural networks (NNs), namely, actor NN and critic NN, are tuned online and simultaneously to generate the optimal bounded control policy. A simulation example is given to show the effectiveness of the proposed method.

  19. Is Fitts' law continuous in discrete aiming?

    Directory of Open Access Journals (Sweden)

    Rita Sleimen-Malkoun

    Full Text Available The lawful continuous linear relation between movement time and task difficulty (i.e., index of difficulty; ID in a goal-directed rapid aiming task (Fitts' law has been recently challenged in reciprocal performance. Specifically, a discontinuity was observed at critical ID and was attributed to a transition between two distinct dynamic regimes that occurs with increasing difficulty. In the present paper, we show that such a discontinuity is also present in discrete aiming when ID is manipulated via target width (experiment 1 but not via target distance (experiment 2. Fitts' law's discontinuity appears, therefore, to be a suitable indicator of the underlying functional adaptations of the neuro-muscular-skeletal system to task properties/requirements, independently of reciprocal or discrete nature of the task. These findings open new perspectives to the study of dynamic regimes involved in discrete aiming and sensori-motor mechanisms underlying the speed-accuracy trade-off.

  20. Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale

    International Nuclear Information System (INIS)

    Maslennikov, Oleg V.; Nekorkin, Vladimir I.

    2016-01-01

    In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.

  1. About several classes of bi-orthogonal polynomials and discrete integrable systems

    International Nuclear Information System (INIS)

    Chang, Xiang-Ke; Chen, Xiao-Min; Hu, Xing-Biao; Tam, Hon-Wah

    2015-01-01

    By introducing some special bi-orthogonal polynomials, we derive the so-called discrete hungry quotient-difference (dhQD) algorithm and a system related to the QD-type discrete hungry Lotka–Volterra (QD-type dhLV) system, together with their Lax pairs. These two known equations can be regarded as extensions of the QD algorithm. When this idea is applied to a higher analogue of the discrete-time Toda (HADT) equation and the quotient–quotient-difference (QQD) scheme proposed by Spicer, Nijhoff and van der Kamp, two extended systems are constructed. We call these systems the hungry forms of the higher analogue discrete-time Toda (hHADT) equation and the quotient-quotient-difference (hQQD) scheme, respectively. In addition, the corresponding Lax pairs are provided. (paper)

  2. Local bounds preserving stabilization for continuous Galerkin discretization of hyperbolic systems

    Science.gov (United States)

    Mabuza, Sibusiso; Shadid, John N.; Kuzmin, Dmitri

    2018-05-01

    The objective of this paper is to present a local bounds preserving stabilized finite element scheme for hyperbolic systems on unstructured meshes based on continuous Galerkin (CG) discretization in space. A CG semi-discrete scheme with low order artificial dissipation that satisfies the local extremum diminishing (LED) condition for systems is used to discretize a system of conservation equations in space. The low order artificial diffusion is based on approximate Riemann solvers for hyperbolic conservation laws. In this case we consider both Rusanov and Roe artificial diffusion operators. In the Rusanov case, two designs are considered, a nodal based diffusion operator and a local projection stabilization operator. The result is a discretization that is LED and has first order convergence behavior. To achieve high resolution, limited antidiffusion is added back to the semi-discrete form where the limiter is constructed from a linearity preserving local projection stabilization operator. The procedure follows the algebraic flux correction procedure usually used in flux corrected transport algorithms. To further deal with phase errors (or terracing) common in FCT type methods, high order background dissipation is added to the antidiffusive correction. The resulting stabilized semi-discrete scheme can be discretized in time using a wide variety of time integrators. Numerical examples involving nonlinear scalar Burgers equation, and several shock hydrodynamics simulations for the Euler system are considered to demonstrate the performance of the method. For time discretization, Crank-Nicolson scheme and backward Euler scheme are utilized.

  3. Spatially localized, temporally quasiperiodic, discrete nonlinear excitations

    International Nuclear Information System (INIS)

    Cai, D.; Bishop, A.R.; Gronbech-Jensen, N.

    1995-01-01

    In contrast to the commonly discussed discrete breather, which is a spatially localized, time-periodic solution, we present an exact solution of a discrete nonlinear Schroedinger breather which is a spatially localized, temporally quasiperiodic nonlinear coherent excitation. This breather is a multiple-soliton solution in the sense of the inverse scattering transform. A discrete breather of multiple frequencies is conceptually important in studies of nonlinear lattice systems. We point out that, for this breather, the incommensurability of its frequencies is a discrete lattice effect and these frequencies become commensurate in the continuum limit. To understand the dynamical properties of the breather, we also discuss its stability and its behavior in the presence of an external potential. Finally, we indicate how to obtain an exact N-soliton breather as a discrete generalization of the continuum multiple-soliton solution

  4. Electro-mechanical dynamics of spiral waves in a discrete 2D model of human atrial tissue.

    Directory of Open Access Journals (Sweden)

    Paul Brocklehurst

    Full Text Available We investigate the effect of mechano-electrical feedback and atrial fibrillation induced electrical remodelling (AFER of cellular ion channel properties on the dynamics of spiral waves in a discrete 2D model of human atrial tissue. The tissue electro-mechanics are modelled using the discrete element method (DEM. Millions of bonded DEM particles form a network of coupled atrial cells representing 2D cardiac tissue, allowing simulations of the dynamic behaviour of electrical excitation waves and mechanical contraction in the tissue. In the tissue model, each cell is modelled by nine particles, accounting for the features of individual cellular geometry; and discrete inter-cellular spatial arrangement of cells is also considered. The electro-mechanical model of a human atrial single-cell was constructed by strongly coupling the electrophysiological model of Colman et al. to the mechanical myofilament model of Rice et al., with parameters modified based on experimental data. A stretch-activated channel was incorporated into the model to simulate the mechano-electrical feedback. In order to investigate the effect of mechano-electrical feedback on the dynamics of spiral waves, simulations of spiral waves were conducted in both the electromechanical model and the electrical-only model in normal and AFER conditions, to allow direct comparison of the results between the models. Dynamics of spiral waves were characterized by tracing their tip trajectories, stability, excitation frequencies and meandering range of tip trajectories. It was shown that the developed DEM method provides a stable and efficient model of human atrial tissue with considerations of the intrinsically discrete and anisotropic properties of the atrial tissue, which are challenges to handle in traditional continuum mechanics models. This study provides mechanistic insights into the complex behaviours of spiral waves and the genesis of atrial fibrillation by showing an important role of

  5. Electro-mechanical dynamics of spiral waves in a discrete 2D model of human atrial tissue.

    Science.gov (United States)

    Brocklehurst, Paul; Ni, Haibo; Zhang, Henggui; Ye, Jianqiao

    2017-01-01

    We investigate the effect of mechano-electrical feedback and atrial fibrillation induced electrical remodelling (AFER) of cellular ion channel properties on the dynamics of spiral waves in a discrete 2D model of human atrial tissue. The tissue electro-mechanics are modelled using the discrete element method (DEM). Millions of bonded DEM particles form a network of coupled atrial cells representing 2D cardiac tissue, allowing simulations of the dynamic behaviour of electrical excitation waves and mechanical contraction in the tissue. In the tissue model, each cell is modelled by nine particles, accounting for the features of individual cellular geometry; and discrete inter-cellular spatial arrangement of cells is also considered. The electro-mechanical model of a human atrial single-cell was constructed by strongly coupling the electrophysiological model of Colman et al. to the mechanical myofilament model of Rice et al., with parameters modified based on experimental data. A stretch-activated channel was incorporated into the model to simulate the mechano-electrical feedback. In order to investigate the effect of mechano-electrical feedback on the dynamics of spiral waves, simulations of spiral waves were conducted in both the electromechanical model and the electrical-only model in normal and AFER conditions, to allow direct comparison of the results between the models. Dynamics of spiral waves were characterized by tracing their tip trajectories, stability, excitation frequencies and meandering range of tip trajectories. It was shown that the developed DEM method provides a stable and efficient model of human atrial tissue with considerations of the intrinsically discrete and anisotropic properties of the atrial tissue, which are challenges to handle in traditional continuum mechanics models. This study provides mechanistic insights into the complex behaviours of spiral waves and the genesis of atrial fibrillation by showing an important role of the mechano

  6. A study on discrete event dynamic model for nuclear operations of main feed water pump

    International Nuclear Information System (INIS)

    Bae, J. C.; Choi, J. I.

    2000-01-01

    A major objective of the study is to propose a supervisory control algorithm based on the discrete event dynamic system (DEDS) model and apply it to the automation of nuclear operations. The study is motivated by the suitability of the DEDS model for simulation of man-made control action and the potential of the DEDS based supervisory control algorithm for enhanced licensibility, when implemented in nuclear plants, through design transparency due to strong analytic backgrounds. The DEDS model can analytically show the robust stability of the proposed supervisory controller providing design transparency for enhanced licensibility when implemented in nuclear operations

  7. Differential-discrete mathematical model of two phase flow heat exchanger

    International Nuclear Information System (INIS)

    Debeljkovic, D.Lj.; Zitek, Pavel; Simeunovic, G.; Inard, Christian

    2007-01-01

    A dynamic thermal-hydraulic mathematical model of evaporator dynamics of a once - through sub critical steam generator is derived and presented. This model allows the investigation of evaporator dynamics including its transients responses. The evaporator was considered as a part of three-section (economizer, evaporator and super-heater) model with time varying phase boundaries and is described by a set of linearized discrete - difference equations which, with some other algebraic equations, constitutes a closed system of equations possible for exact computer solution. This model has been derived upon the fundamental equations of mass, energy and momentum balance. For the first time, a discrete differential approach has been applied in order to investigate such complex, two phase processes. Namely, this approach allows one to escape from the model of this process usually described by a set of partial differential equations and enables one, using this method, to simulate evaporators dynamics in an extraordinarily simple way. In current literature this approach is sometimes called physical discretization. (author)

  8. Adaptive Control and Function Projective Synchronization in 2D Discrete-Time Chaotic Systems

    International Nuclear Information System (INIS)

    Li Yin; Chen Yong; Li Biao

    2009-01-01

    This study addresses the adaptive control and function projective synchronization problems between 2D Rulkov discrete-time system and Network discrete-time system. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate the function projective synchronization of discrete-time chaotic systems. In addition, the adaptive control function is applied to achieve the state synchronization of two discrete-time systems. Numerical results demonstrate the effectiveness of the proposed control scheme.

  9. Applications of exterior difference systems to variations in discrete mechanics

    International Nuclear Information System (INIS)

    Xie Zheng; Li Hongbo

    2008-01-01

    In discrete mechanics, difference equations describe the fundamental physical laws and exhibit many geometric properties. Can these equations be obtained in a geometric way? Using some techniques in exterior difference systems, we investigate the discrete variational problem. As an application, we give a positive answer to the above question for the discrete Newton's, Euler-Lagrange, and Hamilton's equations

  10. A new discrete dynamic model of ABA-induced stomatal closure predicts key feedback loops.

    Directory of Open Access Journals (Sweden)

    Réka Albert

    2017-09-01

    Full Text Available Stomata, microscopic pores in leaf surfaces through which water loss and carbon dioxide uptake occur, are closed in response to drought by the phytohormone abscisic acid (ABA. This process is vital for drought tolerance and has been the topic of extensive experimental investigation in the last decades. Although a core signaling chain has been elucidated consisting of ABA binding to receptors, which alleviates negative regulation by protein phosphatases 2C (PP2Cs of the protein kinase OPEN STOMATA 1 (OST1 and ultimately results in activation of anion channels, osmotic water loss, and stomatal closure, over 70 additional components have been identified, yet their relationships with each other and the core components are poorly elucidated. We integrated and processed hundreds of disparate observations regarding ABA signal transduction responses underlying stomatal closure into a network of 84 nodes and 156 edges and, as a result, established those relationships, including identification of a 36-node, strongly connected (feedback-rich component as well as its in- and out-components. The network's domination by a feedback-rich component may reflect a general feature of rapid signaling events. We developed a discrete dynamic model of this network and elucidated the effects of ABA plus knockout or constitutive activity of 79 nodes on both the outcome of the system (closure and the status of all internal nodes. The model, with more than 1024 system states, is far from fully determined by the available data, yet model results agree with existing experiments in 82 cases and disagree in only 17 cases, a validation rate of 75%. Our results reveal nodes that could be engineered to impact stomatal closure in a controlled fashion and also provide over 140 novel predictions for which experimental data are currently lacking. Noting the paucity of wet-bench data regarding combinatorial effects of ABA and internal node activation, we experimentally confirmed

  11. A new discrete dynamic model of ABA-induced stomatal closure predicts key feedback loops.

    Science.gov (United States)

    Albert, Réka; Acharya, Biswa R; Jeon, Byeong Wook; Zañudo, Jorge G T; Zhu, Mengmeng; Osman, Karim; Assmann, Sarah M

    2017-09-01

    Stomata, microscopic pores in leaf surfaces through which water loss and carbon dioxide uptake occur, are closed in response to drought by the phytohormone abscisic acid (ABA). This process is vital for drought tolerance and has been the topic of extensive experimental investigation in the last decades. Although a core signaling chain has been elucidated consisting of ABA binding to receptors, which alleviates negative regulation by protein phosphatases 2C (PP2Cs) of the protein kinase OPEN STOMATA 1 (OST1) and ultimately results in activation of anion channels, osmotic water loss, and stomatal closure, over 70 additional components have been identified, yet their relationships with each other and the core components are poorly elucidated. We integrated and processed hundreds of disparate observations regarding ABA signal transduction responses underlying stomatal closure into a network of 84 nodes and 156 edges and, as a result, established those relationships, including identification of a 36-node, strongly connected (feedback-rich) component as well as its in- and out-components. The network's domination by a feedback-rich component may reflect a general feature of rapid signaling events. We developed a discrete dynamic model of this network and elucidated the effects of ABA plus knockout or constitutive activity of 79 nodes on both the outcome of the system (closure) and the status of all internal nodes. The model, with more than 1024 system states, is far from fully determined by the available data, yet model results agree with existing experiments in 82 cases and disagree in only 17 cases, a validation rate of 75%. Our results reveal nodes that could be engineered to impact stomatal closure in a controlled fashion and also provide over 140 novel predictions for which experimental data are currently lacking. Noting the paucity of wet-bench data regarding combinatorial effects of ABA and internal node activation, we experimentally confirmed several predictions

  12. Sampled Data Systems Passivity and Discrete Port-Hamiltonian Systems

    NARCIS (Netherlands)

    Stramigioli, Stefano; Secchi, Cristian; Schaft, Arjan J. van der; Fantuzzi, Cesare

    2005-01-01

    In this paper, we present a novel way to approach the interconnection of a continuous and a discrete time physical system. This is done in a way which preserves passivity of the coupled system independently of the sampling time T. This strategy can be used both in the field of telemanipulation, for

  13. Control of discrete-event systems with modular or distributed structure

    Czech Academy of Sciences Publication Activity Database

    Komenda, Jan; van Schuppen, J. H.

    2007-01-01

    Roč. 388, č. 3 (2007), s. 199-226 ISSN 0304-3975 R&D Projects: GA AV ČR(CZ) KJB100190609 Institutional research plan: CEZ:AV0Z10190503 Keywords : supervisory control * modular discrete-event system * distributed discrete-event system Subject RIV: BA - General Mathematics Impact factor: 0.735, year: 2007

  14. Online Identification of Multivariable Discrete Time Delay Systems Using a Recursive Least Square Algorithm

    Directory of Open Access Journals (Sweden)

    Saïda Bedoui

    2013-01-01

    Full Text Available This paper addresses the problem of simultaneous identification of linear discrete time delay multivariable systems. This problem involves both the estimation of the time delays and the dynamic parameters matrices. In fact, we suggest a new formulation of this problem allowing defining the time delay and the dynamic parameters in the same estimated vector and building the corresponding observation vector. Then, we use this formulation to propose a new method to identify the time delays and the parameters of these systems using the least square approach. Convergence conditions and statistics properties of the proposed method are also developed. Simulation results are presented to illustrate the performance of the proposed method. An application of the developed approach to compact disc player arm is also suggested in order to validate simulation results.

  15. Dense time discretization technique for verification of real time systems

    International Nuclear Information System (INIS)

    Makackas, Dalius; Miseviciene, Regina

    2016-01-01

    Verifying the real-time system there are two different models to control the time: discrete and dense time based models. This paper argues a novel verification technique, which calculates discrete time intervals from dense time in order to create all the system states that can be reached from the initial system state. The technique is designed for real-time systems specified by a piece-linear aggregate approach. Key words: real-time system, dense time, verification, model checking, piece-linear aggregate

  16. Superlinearly scalable noise robustness of redundant coupled dynamical systems.

    Science.gov (United States)

    Kohar, Vivek; Kia, Behnam; Lindner, John F; Ditto, William L

    2016-03-01

    We illustrate through theory and numerical simulations that redundant coupled dynamical systems can be extremely robust against local noise in comparison to uncoupled dynamical systems evolving in the same noisy environment. Previous studies have shown that the noise robustness of redundant coupled dynamical systems is linearly scalable and deviations due to noise can be minimized by increasing the number of coupled units. Here, we demonstrate that the noise robustness can actually be scaled superlinearly if some conditions are met and very high noise robustness can be realized with very few coupled units. We discuss these conditions and show that this superlinear scalability depends on the nonlinearity of the individual dynamical units. The phenomenon is demonstrated in discrete as well as continuous dynamical systems. This superlinear scalability not only provides us an opportunity to exploit the nonlinearity of physical systems without being bogged down by noise but may also help us in understanding the functional role of coupled redundancy found in many biological systems. Moreover, engineers can exploit superlinear noise suppression by starting a coupled system near (not necessarily at) the appropriate initial condition.

  17. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2011-01-01

    The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics......; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...

  18. On various integrable discretizations of a general two-component Volterra system

    International Nuclear Information System (INIS)

    Babalic, Corina N; Carstea, A S

    2013-01-01

    We present two integrable discretizations of a general differential–difference bicomponent Volterra system. The results are obtained by discretizing directly the corresponding Hirota bilinear equations in two different ways. Multisoliton solutions are presented together with a new discrete form of Lotka–Volterra equation obtained by an alternative bilinearization. (paper)

  19. Discrete-time Calogero-Moser system and Lagrangian 1-form structure

    International Nuclear Information System (INIS)

    Yoo-Kong, Sikarin; Lobb, Sarah; Nijhoff, Frank

    2011-01-01

    We study the Lagrange formalism of the (rational) Calogero-Moser (CM) system, both in discrete time and continuous time, as a first example of a Lagrangian 1-form structure in the sense of the recent paper (Lobb and Nijhoff 2009 J. Phys. A: Math. Theor.42 454013). The discrete-time model of the CM system was established some time ago arising as a pole reduction of a semi-discrete version of the Kadomtsev-Petviashvili (KP) equation, and was shown to lead to an exactly integrable correspondence (multivalued map). In this paper, we present the full KP solution based on the commutativity of the discrete-time flows in the two discrete KP variables. The compatibility of the corresponding Lax matrices is shown to lead directly to the relevant closure relation on the level of the Lagrangians. Performing successive continuum limits on both the level of the KP equation and the level of the CM system, we establish the proper Lagrangian 1-form structure for the continuum case of the CM model. We use the example of the three-particle case to elucidate the implementation of the novel least-action principle, which was presented in Lobb and Nijhoff (2009), for the simpler case of Lagrangian 1-forms. (paper)

  20. Hierarchical Discrete Event Supervisory Control of Aircraft Propulsion Systems

    Science.gov (United States)

    Yasar, Murat; Tolani, Devendra; Ray, Asok; Shah, Neerav; Litt, Jonathan S.

    2004-01-01

    This paper presents a hierarchical application of Discrete Event Supervisory (DES) control theory for intelligent decision and control of a twin-engine aircraft propulsion system. A dual layer hierarchical DES controller is designed to supervise and coordinate the operation of two engines of the propulsion system. The two engines are individually controlled to achieve enhanced performance and reliability, necessary for fulfilling the mission objectives. Each engine is operated under a continuously varying control system that maintains the specified performance and a local discrete-event supervisor for condition monitoring and life extending control. A global upper level DES controller is designed for load balancing and overall health management of the propulsion system.

  1. Neimark-Sacker bifurcations and evidence of chaos in a discrete dynamical model of walkers

    International Nuclear Information System (INIS)

    Rahman, Aminur; Blackmore, Denis

    2016-01-01

    Bouncing droplets on a vibrating fluid bath can exhibit wave-particle behavior, such as being propelled by interacting with its own wave field. These droplets seem to walk across the bath, and thus are dubbed walkers. Experiments have shown that walkers can exhibit exotic dynamical behavior indicative of chaos. While the integro-differential models developed for these systems agree well with the experiments, they are difficult to analyze mathematically. In recent years, simpler discrete dynamical models have been derived and studied numerically. The numerical simulations of these models show evidence of exotic dynamics such as period doubling bifurcations, Neimark–Sacker (N–S) bifurcations, and even chaos. For example, in [1], based on simulations Gilet conjectured the existence of a supercritical N-S bifurcation as the damping factor in his one- dimensional path model. We prove Gilet’s conjecture and more; in fact, both supercritical and subcritical (N-S) bifurcations are produced by separately varying the damping factor and wave-particle coupling for all eigenmode shapes. Then we compare our theoretical results with some previous and new numerical simulations, and find complete qualitative agreement. Furthermore, evidence of chaos is shown by numerically studying a global bifurcation.

  2. Discretization of Stationary Solutions of Stochastic Systems Driven by Fractional Brownian Motion

    International Nuclear Information System (INIS)

    Garrido-Atienza, Maria J.; Kloeden, Peter E.; Neuenkirch, Andreas

    2009-01-01

    In this article we study the behavior of dissipative systems with additive fractional noise of any Hurst parameter. Under a one-sided dissipative Lipschitz condition on the drift the continuous stochastic system is shown to have a unique stationary solution, which pathwise attracts all other solutions. The same holds for the discretized stochastic system, if the drift-implicit Euler method is used for the discretization. Moreover, the unique stationary solution of the drift-implicit Euler scheme converges to the unique stationary solution of the original system as the stepsize of the discretization decreases

  3. Minimax terminal approach problem in two-level hierarchical nonlinear discrete-time dynamical system

    Energy Technology Data Exchange (ETDEWEB)

    Shorikov, A. F., E-mail: afshorikov@mail.ru [Ural Federal University, 19 S. Mira, Ekaterinburg, 620002, Russia Institute of Mathematics and Mechanics, Ural Branch of Russian Academy of Sciences, 16 S. Kovalevskaya, Ekaterinburg, 620990 (Russian Federation)

    2015-11-30

    We consider a discrete–time dynamical system consisting of three controllable objects. The motions of all objects are given by the corresponding vector nonlinear or linear discrete–time recurrent vector relations, and control system for its has two levels: basic (first or I level) that is dominating and subordinate level (second or II level) and both have different criterions of functioning and united a priori by determined informational and control connections defined in advance. For the dynamical system in question, we propose a mathematical formalization in the form of solving a multistep problem of two-level hierarchical minimax program control over the terminal approach process with incomplete information and give a general scheme for its solving.

  4. Exactly and quasi-exactly solvable 'discrete' quantum mechanics.

    Science.gov (United States)

    Sasaki, Ryu

    2011-03-28

    A brief introduction to discrete quantum mechanics is given together with the main results on various exactly solvable systems. Namely, the intertwining relations, shape invariance, Heisenberg operator solutions, annihilation/creation operators and dynamical symmetry algebras, including the q-oscillator algebra and the Askey-Wilson algebra. A simple recipe to construct exactly and quasi-exactly solvable (QES) Hamiltonians in one-dimensional 'discrete' quantum mechanics is presented. It reproduces all the known Hamiltonians whose eigenfunctions consist of the Askey scheme of hypergeometric orthogonal polynomials of a continuous or a discrete variable. Several new exactly and QES Hamiltonians are constructed. The sinusoidal coordinate plays an essential role.

  5. Two Monthly Continuous Dynamic Model Based on Nash Bargaining Theory for Conflict Resolution in Reservoir System.

    Science.gov (United States)

    Homayounfar, Mehran; Zomorodian, Mehdi; Martinez, Christopher J; Lai, Sai Hin

    2015-01-01

    So far many optimization models based on Nash Bargaining Theory associated with reservoir operation have been developed. Most of them have aimed to provide practical and efficient solutions for water allocation in order to alleviate conflicts among water users. These models can be discussed from two viewpoints: (i) having a discrete nature; and (ii) working on an annual basis. Although discrete dynamic game models provide appropriate reservoir operator policies, their discretization of variables increases the run time and causes dimensionality problems. In this study, two monthly based non-discrete optimization models based on the Nash Bargaining Solution are developed for a reservoir system. In the first model, based on constrained state formulation, the first and second moments (mean and variance) of the state variable (water level in the reservoir) is calculated. Using moment equations as the constraint, the long-term utility of the reservoir manager and water users are optimized. The second model is a dynamic approach structured based on continuous state Markov decision models. The corresponding solution based on the collocation method is structured for a reservoir system. In this model, the reward function is defined based on the Nash Bargaining Solution. Indeed, it is used to yield equilibrium in every proper sub-game, thereby satisfying the Markov perfect equilibrium. Both approaches are applicable for water allocation in arid and semi-arid regions. A case study was carried out at the Zayandeh-Rud river basin located in central Iran to identify the effectiveness of the presented methods. The results are compared with the results of an annual form of dynamic game, a classical stochastic dynamic programming model (e.g. Bayesian Stochastic Dynamic Programming model, BSDP), and a discrete stochastic dynamic game model (PSDNG). By comparing the results of alternative methods, it is shown that both models are capable of tackling conflict issues in water allocation

  6. Two Monthly Continuous Dynamic Model Based on Nash Bargaining Theory for Conflict Resolution in Reservoir System.

    Directory of Open Access Journals (Sweden)

    Mehran Homayounfar

    Full Text Available So far many optimization models based on Nash Bargaining Theory associated with reservoir operation have been developed. Most of them have aimed to provide practical and efficient solutions for water allocation in order to alleviate conflicts among water users. These models can be discussed from two viewpoints: (i having a discrete nature; and (ii working on an annual basis. Although discrete dynamic game models provide appropriate reservoir operator policies, their discretization of variables increases the run time and causes dimensionality problems. In this study, two monthly based non-discrete optimization models based on the Nash Bargaining Solution are developed for a reservoir system. In the first model, based on constrained state formulation, the first and second moments (mean and variance of the state variable (water level in the reservoir is calculated. Using moment equations as the constraint, the long-term utility of the reservoir manager and water users are optimized. The second model is a dynamic approach structured based on continuous state Markov decision models. The corresponding solution based on the collocation method is structured for a reservoir system. In this model, the reward function is defined based on the Nash Bargaining Solution. Indeed, it is used to yield equilibrium in every proper sub-game, thereby satisfying the Markov perfect equilibrium. Both approaches are applicable for water allocation in arid and semi-arid regions. A case study was carried out at the Zayandeh-Rud river basin located in central Iran to identify the effectiveness of the presented methods. The results are compared with the results of an annual form of dynamic game, a classical stochastic dynamic programming model (e.g. Bayesian Stochastic Dynamic Programming model, BSDP, and a discrete stochastic dynamic game model (PSDNG. By comparing the results of alternative methods, it is shown that both models are capable of tackling conflict issues in

  7. Discrete instability in the DNA double helix

    International Nuclear Information System (INIS)

    Tabi, Conrad Bertrand; Mohamadou, Alidou; Kofane, Timoleon Crepin

    2009-06-01

    Modulational instability (MI) is explored in the framework of the base-rotor model of DNA dynamics. We show in fact that, the helicoidal coupling introduced in the spin model of DNA reduces the system to a modified discrete sine-Gordon (sG) equation. The MI criterion is thus modified and displays interesting features because of the helicoidal coupling. This is confirmed in the numerical analysis where a critical value of the helicoidal coupling constant is derived. In the simulations, we have found that a train of pulses are generated when the lattice is subjected to MI, in agreement with analytical results obtained in a modified discrete sG equation. Also, the competitive effects of the harmonic longitudinal and helicoidal constants on the dynamics of the system are notably pointed out. In the same way, it is shown that MI can lead to energy localization which is high for some values of the helicoidal coupling constant. (author)

  8. Influence of discretization method on the digital control system performance

    Directory of Open Access Journals (Sweden)

    Futás József

    2003-12-01

    Full Text Available The design of control system can be divided into two steps. First the process or plant have to be convert into mathematical model form, so that its behavior can be analyzed. Then an appropriate controller have to be design in order to get the desired response of the controlled system. In the continuous time domain the system is represented by differential equations. Replacing a continuous system into discrete time form is always an approximation of the continuous system. The different discretization methods give different digital controller performance. The methods presented on the paper are Step Invariant or Zero Order Hold (ZOH Method, Matched Pole-Zero Method, Backward difference Method and Bilinear transformation. The above mentioned discretization methods are used in developing PI position controller of a dc motor. The motor model was converted by the ZOH method. The performances of the different methods are compared and the results are presented.

  9. Modification of the SAS4A Safety Analysis Code for Integration with the ADAPT Discrete Dynamic Event Tree Framework.

    Energy Technology Data Exchange (ETDEWEB)

    Jankovsky, Zachary Kyle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Denman, Matthew R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    It is difficult to assess the consequences of a transient in a sodium-cooled fast reactor (SFR) using traditional probabilistic risk assessment (PRA) methods, as numerous safety-related sys- tems have passive characteristics. Often there is significant dependence on the value of con- tinuous stochastic parameters rather than binary success/failure determinations. One form of dynamic PRA uses a system simulator to represent the progression of a transient, tracking events through time in a discrete dynamic event tree (DDET). In order to function in a DDET environment, a simulator must have characteristics that make it amenable to changing physical parameters midway through the analysis. The SAS4A SFR system analysis code did not have these characteristics as received. This report describes the code modifications made to allow dynamic operation as well as the linking to a Sandia DDET driver code. A test case is briefly described to demonstrate the utility of the changes.

  10. On the relationship of steady states of continuous and discrete models arising from biology.

    Science.gov (United States)

    Veliz-Cuba, Alan; Arthur, Joseph; Hochstetler, Laura; Klomps, Victoria; Korpi, Erikka

    2012-12-01

    For many biological systems that have been modeled using continuous and discrete models, it has been shown that such models have similar dynamical properties. In this paper, we prove that this happens in more general cases. We show that under some conditions there is a bijection between the steady states of continuous and discrete models arising from biological systems. Our results also provide a novel method to analyze certain classes of nonlinear models using discrete mathematics.

  11. Causal Dynamics of Discrete Surfaces

    Directory of Open Access Journals (Sweden)

    Pablo Arrighi

    2014-03-01

    Full Text Available We formalize the intuitive idea of a labelled discrete surface which evolves in time, subject to two natural constraints: the evolution does not propagate information too fast; and it acts everywhere the same.

  12. Discrete meso-element simulation of the failure behavior of short-fiber composites under dynamic loading

    International Nuclear Information System (INIS)

    Liu Wenyan; Tang, Z.P.; Liu Yunxin

    2000-01-01

    In recent years, more attention has been paid to a better understanding of the failure behavior and mechanism of heterogeneous materials at the meso-scale level. In this paper, the crack initiation and development in epoxy composites reinforced with short steel fibers under dynamic loading were simulated and analyzed with the 2D Discrete Meso-Element Dynamic Method. Results show that the damage process depends greatly on the binding property between matrix and fibers

  13. Discrete-time sliding mode control for MR vehicle suspension system

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, J W; Choi, S B [Smart Structures and Systems Laboratory, Department of Mechanical Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Wereley, N M [Smart Structures Laboratory, Department of Aerospace Engineering, University of Maryland, College Park, MD 20742 (United States)], E-mail: seungbok@inha.ac.kr

    2009-02-01

    This paper presents control performance of a full-vehicle suspension system featuring magnetorheological (MR) dampers via a discrete-time sliding mode control algorithm (DSMC). A cylindrical MR damper is designed by incorporating Bingham model of the MR fluid and the field-dependent damping characteristics of the MR damper are evaluated. A full-vehicle suspension model installed with independent four MR dampers is constructed and the governing equations which include vertical, pitch and roll motion are derived. A discrete-time control model is established with considering system uncertainties and a discrete-time sliding mode controller which has inherent robustness to model uncertainty and external disturbance is formulated. Vibration control performances under bump excitation are evaluated and presented.

  14. Discrete-time sliding mode control for MR vehicle suspension system

    International Nuclear Information System (INIS)

    Sohn, J W; Choi, S B; Wereley, N M

    2009-01-01

    This paper presents control performance of a full-vehicle suspension system featuring magnetorheological (MR) dampers via a discrete-time sliding mode control algorithm (DSMC). A cylindrical MR damper is designed by incorporating Bingham model of the MR fluid and the field-dependent damping characteristics of the MR damper are evaluated. A full-vehicle suspension model installed with independent four MR dampers is constructed and the governing equations which include vertical, pitch and roll motion are derived. A discrete-time control model is established with considering system uncertainties and a discrete-time sliding mode controller which has inherent robustness to model uncertainty and external disturbance is formulated. Vibration control performances under bump excitation are evaluated and presented.

  15. A scheme for designing extreme multistable discrete dynamical ...

    Indian Academy of Sciences (India)

    PRIYANKA CHAKRABORTY

    2017-08-21

    Aug 21, 2017 ... tems [12,13], in neuron dynamics [14], in climate dynamics [15–18], in social systems [19,20] etc. A multistable dynamical system is one that possesses a large number of asymptotic stable states for a fixed set of parameters depending on initial conditions. Triv- ial multistability of a system can be considered ...

  16. Extinction in Two-Species Nonlinear Discrete Competitive System

    Directory of Open Access Journals (Sweden)

    Liqiong Pu

    2016-01-01

    Full Text Available We propose a nonlinear discrete system of two species with the effect of toxic substances. By constructing a suitable Lyapunov-type function, we obtain the sufficient conditions which guarantee that one of the components will be driven to extinction while the other will be globally attractive with any positive solution of a discrete equation. Two examples together with their numerical simulations illustrate the feasibility of our main results. The results not only improve but also complement some known results.

  17. Continuous limit of discrete systems with long-range interaction

    International Nuclear Information System (INIS)

    Tarasov, Vasily E

    2006-01-01

    Discrete systems with long-range interactions are considered. Continuous medium models as continuous limit of discrete chain system are defined. Long-range interactions of chain elements that give the fractional equations for the medium model are discussed. The chain equations of motion with long-range interaction are mapped into the continuum equation with the Riesz fractional derivative. We formulate the consistent definition of continuous limit for the systems with long-range interactions. In this paper, we consider a wide class of long-range interactions that give fractional medium equations in the continuous limit. The power-law interaction is a special case of this class

  18. Discrete-event system simulation on small and medium enterprises productivity improvement

    Science.gov (United States)

    Sulistio, J.; Hidayah, N. A.

    2017-12-01

    Small and medium industries in Indonesia is currently developing. The problem faced by SMEs is the difficulty of meeting growing demand coming into the company. Therefore, SME need an analysis and evaluation on its production process in order to meet all orders. The purpose of this research is to increase the productivity of SMEs production floor by applying discrete-event system simulation. This method preferred because it can solve complex problems die to the dynamic and stochastic nature of the system. To increase the credibility of the simulation, model validated by cooperating the average of two trials, two trials of variance and chi square test. Afterwards, Benferroni method applied to development several alternatives. The article concludes that, the productivity of SMEs production floor increased up to 50% by adding the capacity of dyeing and drying machines.

  19. Discrete breathers for a discrete nonlinear Schrödinger ring coupled to a central site.

    Science.gov (United States)

    Jason, Peter; Johansson, Magnus

    2016-01-01

    We examine the existence and properties of certain discrete breathers for a discrete nonlinear Schrödinger model where all but one site are placed in a ring and coupled to the additional central site. The discrete breathers we focus on are stationary solutions mainly localized on one or a few of the ring sites and possibly also the central site. By numerical methods, we trace out and study the continuous families the discrete breathers belong to. Our main result is the discovery of a split bifurcation at a critical value of the coupling between neighboring ring sites. Below this critical value, families form closed loops in a certain parameter space, implying that discrete breathers with and without central-site occupation belong to the same family. Above the split bifurcation the families split up into several separate ones, which bifurcate with solutions with constant ring amplitudes. For symmetry reasons, the families have different properties below the split bifurcation for even and odd numbers of sites. It is also determined under which conditions the discrete breathers are linearly stable. The dynamics of some simpler initial conditions that approximate the discrete breathers are also studied and the parameter regimes where the dynamics remain localized close to the initially excited ring site are related to the linear stability of the exact discrete breathers.

  20. Discrete and mesoscopic regimes of finite-size wave turbulence

    International Nuclear Information System (INIS)

    L'vov, V. S.; Nazarenko, S.

    2010-01-01

    Bounding volume results in discreteness of eigenmodes in wave systems. This leads to a depletion or complete loss of wave resonances (three-wave, four-wave, etc.), which has a strong effect on wave turbulence (WT) i.e., on the statistical behavior of broadband sets of weakly nonlinear waves. This paper describes three different regimes of WT realizable for different levels of the wave excitations: discrete, mesoscopic and kinetic WT. Discrete WT comprises chaotic dynamics of interacting wave 'clusters' consisting of discrete (often finite) number of connected resonant wave triads (or quarters). Kinetic WT refers to the infinite-box theory, described by well-known wave-kinetic equations. Mesoscopic WT is a regime in which either the discrete and the kinetic evolutions alternate or when none of these two types is purely realized. We argue that in mesoscopic systems the wave spectrum experiences a sandpile behavior. Importantly, the mesoscopic regime is realized for a broad range of wave amplitudes which typically spans over several orders on magnitude, and not just for a particular intermediate level.

  1. Distinct timing mechanisms produce discrete and continuous movements.

    Directory of Open Access Journals (Sweden)

    Raoul Huys

    2008-04-01

    Full Text Available The differentiation of discrete and continuous movement is one of the pillars of motor behavior classification. Discrete movements have a definite beginning and end, whereas continuous movements do not have such discriminable end points. In the past decade there has been vigorous debate whether this classification implies different control processes. This debate up until the present has been empirically based. Here, we present an unambiguous non-empirical classification based on theorems in dynamical system theory that sets discrete and continuous movements apart. Through computational simulations of representative modes of each class and topological analysis of the flow in state space, we show that distinct control mechanisms underwrite discrete and fast rhythmic movements. In particular, we demonstrate that discrete movements require a time keeper while fast rhythmic movements do not. We validate our computational findings experimentally using a behavioral paradigm in which human participants performed finger flexion-extension movements at various movement paces and under different instructions. Our results demonstrate that the human motor system employs different timing control mechanisms (presumably via differential recruitment of neural subsystems to accomplish varying behavioral functions such as speed constraints.

  2. MATHEMATICAL MODEL FOR ESTIMATION OF MECHANICAL SYSTEM CONDITION IN DYNAMICS

    Directory of Open Access Journals (Sweden)

    D. N. Mironov

    2011-01-01

    Full Text Available The paper considers an estimation of a complicated mechanical system condition in dynamics with due account of material degradation and accumulation of micro-damages. An element of continuous medium has been simulated and described with the help of a discrete element. The paper contains description of a model for determination of mechanical system longevity in accordance with number of cycles and operational period.

  3. Cryptanalysis of a discrete-time synchronous chaotic encryption system

    International Nuclear Information System (INIS)

    Arroyo, David; Alvarez, Gonzalo; Li Shujun; Li Chengqing; Nunez, Juana

    2008-01-01

    Recently a chaotic cryptosystem based on discrete-time synchronization has been proposed. Some weaknesses of that new encryption system are addressed and exploited in order to successfully cryptanalyze the system

  4. Nonlinear dynamic macromodeling techniques for audio systems

    Science.gov (United States)

    Ogrodzki, Jan; Bieńkowski, Piotr

    2015-09-01

    This paper develops a modelling method and a models identification technique for the nonlinear dynamic audio systems. Identification is performed by means of a behavioral approach based on a polynomial approximation. This approach makes use of Discrete Fourier Transform and Harmonic Balance Method. A model of an audio system is first created and identified and then it is simulated in real time using an algorithm of low computational complexity. The algorithm consists in real time emulation of the system response rather than in simulation of the system itself. The proposed software is written in Python language using object oriented programming techniques. The code is optimized for a multithreads environment.

  5. Zero-sum two-player game theoretic formulation of affine nonlinear discrete-time systems using neural networks.

    Science.gov (United States)

    Mehraeen, Shahab; Dierks, Travis; Jagannathan, S; Crow, Mariesa L

    2013-12-01

    In this paper, the nearly optimal solution for discrete-time (DT) affine nonlinear control systems in the presence of partially unknown internal system dynamics and disturbances is considered. The approach is based on successive approximate solution of the Hamilton-Jacobi-Isaacs (HJI) equation, which appears in optimal control. Successive approximation approach for updating control and disturbance inputs for DT nonlinear affine systems are proposed. Moreover, sufficient conditions for the convergence of the approximate HJI solution to the saddle point are derived, and an iterative approach to approximate the HJI equation using a neural network (NN) is presented. Then, the requirement of full knowledge of the internal dynamics of the nonlinear DT system is relaxed by using a second NN online approximator. The result is a closed-loop optimal NN controller via offline learning. A numerical example is provided illustrating the effectiveness of the approach.

  6. A spectral approach for discrete dislocation dynamics simulations of nanoindentation

    Science.gov (United States)

    Bertin, Nicolas; Glavas, Vedran; Datta, Dibakar; Cai, Wei

    2018-07-01

    We present a spectral approach to perform nanoindentation simulations using three-dimensional nodal discrete dislocation dynamics. The method relies on a two step approach. First, the contact problem between an indenter of arbitrary shape and an isotropic elastic half-space is solved using a spectral iterative algorithm, and the contact pressure is fully determined on the half-space surface. The contact pressure is then used as a boundary condition of the spectral solver to determine the resulting stress field produced in the simulation volume. In both stages, the mechanical fields are decomposed into Fourier modes and are efficiently computed using fast Fourier transforms. To further improve the computational efficiency, the method is coupled with a subcycling integrator and a special approach is devised to approximate the displacement field associated with surface steps. As a benchmark, the method is used to compute the response of an elastic half-space using different types of indenter. An example of a dislocation dynamics nanoindentation simulation with complex initial microstructure is presented.

  7. Alternation of regular and chaotic dynamics in a simple two-degree-of-freedom system with nonlinear inertial coupling.

    Science.gov (United States)

    Sigalov, G; Gendelman, O V; AL-Shudeifat, M A; Manevitch, L I; Vakakis, A F; Bergman, L A

    2012-03-01

    We show that nonlinear inertial coupling between a linear oscillator and an eccentric rotator can lead to very interesting interchanges between regular and chaotic dynamical behavior. Indeed, we show that this model demonstrates rather unusual behavior from the viewpoint of nonlinear dynamics. Specifically, at a discrete set of values of the total energy, the Hamiltonian system exhibits non-conventional nonlinear normal modes, whose shape is determined by phase locking of rotatory and oscillatory motions of the rotator at integer ratios of characteristic frequencies. Considering the weakly damped system, resonance capture of the dynamics into the vicinity of these modes brings about regular motion of the system. For energy levels far from these discrete values, the motion of the system is chaotic. Thus, the succession of resonance captures and escapes by a discrete set of the normal modes causes a sequence of transitions between regular and chaotic behavior, provided that the damping is sufficiently small. We begin from the Hamiltonian system and present a series of Poincaré sections manifesting the complex structure of the phase space of the considered system with inertial nonlinear coupling. Then an approximate analytical description is presented for the non-conventional nonlinear normal modes. We confirm the analytical results by numerical simulation and demonstrate the alternate transitions between regular and chaotic dynamics mentioned above. The origin of the chaotic behavior is also discussed.

  8. Lyapunov equation for infinite-dimensional discrete bilinear systems

    International Nuclear Information System (INIS)

    Costa, O.L.V.; Kubrusly, C.S.

    1991-03-01

    Mean-square stability for discrete systems requires that uniform convergence is preserved between input and state correlation sequences. Such a convergence preserving property holds for an infinite-dimensional bilinear system if and only if the associate Lyapunov equation has a unique strictly positive solution. (author)

  9. Robust output observer-based control of neutral uncertain systems with discrete and distributed time delays: LMI optimization approach

    International Nuclear Information System (INIS)

    Chen, J.-D.

    2007-01-01

    In this paper, the robust control problem of output dynamic observer-based control for a class of uncertain neutral systems with discrete and distributed time delays is considered. Linear matrix inequality (LMI) optimization approach is used to design the new output dynamic observer-based controls. Three classes of observer-based controls are proposed and the maximal perturbed bound is given. Based on the results of this paper, the constraint of matrix equality is not necessary for designing the observer-based controls. Finally, a numerical example is given to illustrate the usefulness of the proposed method

  10. About a Class of Positive Hybrid Dynamic Linear Systems and an Associate Extended Kalman-Yakubovich-Popov Lemma

    Directory of Open Access Journals (Sweden)

    M. De la Sen

    2017-01-01

    Full Text Available This paper formulates an “ad hoc” robust version under parametrical disturbances of the discrete version of the Kalman-Yakubovich-Popov Lemma for a class of positive hybrid dynamic linear systems which consist of a continuous-time system coupled with a discrete-time or a digital one. An extended discrete system, whose state vector contains both the digital one and the discretization of the continuous-time one at sampling instants, is a key analysis element in the formulation. The hyperstability and asymptotic hyperstability properties of the studied class of positive hybrid systems under feedback from any member of a nonlinear (and, eventually, time-varying class of controllers, which satisfies a Popov’s-type inequality, are also investigated as linked to the positive realness of the associated transfer matrices.

  11. Discrete integration of continuous Kalman filtering equations for time invariant second-order structural systems

    Science.gov (United States)

    Park, K. C.; Belvin, W. Keith

    1990-01-01

    A general form for the first-order representation of the continuous second-order linear structural-dynamics equations is introduced to derive a corresponding form of first-order continuous Kalman filtering equations. Time integration of the resulting equations is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete Kalman filtering equations involving only symmetric sparse N x N solution matrices.

  12. Generalized Synchronization in AN Array of Nonlinear Dynamic Systems with Applications to Chaotic Cnn

    Science.gov (United States)

    Min, Lequan; Chen, Guanrong

    This paper establishes some generalized synchronization (GS) theorems for a coupled discrete array of difference systems (CDADS) and a coupled continuous array of differential systems (CCADS). These constructive theorems provide general representations of GS in CDADS and CCADS. Based on these theorems, one can design GS-driven CDADS and CCADS via appropriate (invertible) transformations. As applications, the results are applied to autonomous and nonautonomous coupled Chen cellular neural network (CNN) CDADS and CCADS, discrete bidirectional Lorenz CNN CDADS, nonautonomous bidirectional Chua CNN CCADS, and nonautonomously bidirectional Chen CNN CDADS and CCADS, respectively. Extensive numerical simulations show their complex dynamic behaviors. These theorems provide new means for understanding the GS phenomena of complex discrete and continuously differentiable networks.

  13. On Generating Discrete Integrable Systems via Lie Algebras and Commutator Equations

    International Nuclear Information System (INIS)

    Zhang Yu-Feng; Tam, Honwah

    2016-01-01

    In the paper, we introduce the Lie algebras and the commutator equations to rewrite the Tu-d scheme for generating discrete integrable systems regularly. By the approach the various loop algebras of the Lie algebra A_1 are defined so that the well-known Toda hierarchy and a novel discrete integrable system are obtained, respectively. A reduction of the later hierarchy is just right the famous Ablowitz–Ladik hierarchy. Finally, via two different enlarging Lie algebras of the Lie algebra A_1, we derive two resulting differential-difference integrable couplings of the Toda hierarchy, of course, they are all various discrete expanding integrable models of the Toda hierarchy. When the introduced spectral matrices are higher degrees, the way presented in the paper is more convenient to generate discrete integrable equations than the Tu-d scheme by using the software Maple. (paper)

  14. Control of Discrete Event Systems

    NARCIS (Netherlands)

    Smedinga, Rein

    1989-01-01

    Systemen met discrete gebeurtenissen spelen in vele gebieden een rol. In dit proefschrift staat de volgorde van gebeurtenissen centraal en worden tijdsaspecten buiten beschouwing gelaten. In dat geval kunnen systemen met discrete gebeurtenissen goed worden gemodelleerd door gebruik te maken van

  15. The ultimatum game: Discrete vs. continuous offers

    Science.gov (United States)

    Dishon-Berkovits, Miriam; Berkovits, Richard

    2014-09-01

    In many experimental setups in social-sciences, psychology and economy the subjects are requested to accept or dispense monetary compensation which is usually given in discrete units. Using computer and mathematical modeling we show that in the framework of studying the dynamics of acceptance of proposals in the ultimatum game, the long time dynamics of acceptance of offers in the game are completely different for discrete vs. continuous offers. For discrete values the dynamics follow an exponential behavior. However, for continuous offers the dynamics are described by a power-law. This is shown using an agent based computer simulation as well as by utilizing an analytical solution of a mean-field equation describing the model. These findings have implications to the design and interpretation of socio-economical experiments beyond the ultimatum game.

  16. Discrete two-sex models of population dynamics: On modelling the mating function

    Science.gov (United States)

    Bessa-Gomes, Carmen; Legendre, Stéphane; Clobert, Jean

    2010-09-01

    Although sexual reproduction has long been a central subject of theoretical ecology, until recently its consequences for population dynamics were largely overlooked. This is now changing, and many studies have addressed this issue, showing that when the mating system is taken into account, the population dynamics depends on the relative abundance of males and females, and is non-linear. Moreover, sexual reproduction increases the extinction risk, namely due to the Allee effect. Nevertheless, different studies have identified diverse potential consequences, depending on the choice of mating function. In this study, we investigate the consequences of three alternative mating functions that are frequently used in discrete population models: the minimum; the harmonic mean; and the modified harmonic mean. We consider their consequences at three levels: on the probability that females will breed; on the presence and intensity of the Allee effect; and on the extinction risk. When we consider the harmonic mean, the number of times the individuals of the least abundant sex mate exceeds their mating potential, which implies that with variable sex-ratios the potential reproductive rate is no longer under the modeller's control. Consequently, the female breeding probability exceeds 1 whenever the sex-ratio is male-biased, which constitutes an obvious problem. The use of the harmonic mean is thus only justified if we think that this parameter should be re-defined in order to represent the females' breeding rate and the fact that females may reproduce more than once per breeding season. This phenomenon buffers the Allee effect, and reduces the extinction risk. However, when we consider birth-pulse populations, such a phenomenon is implausible because the number of times females can reproduce per birth season is limited. In general, the minimum or modified harmonic mean mating functions seem to be more suitable for assessing the impact of mating systems on population dynamics.

  17. Generalized Synchronization of Time-Delayed Discrete Systems

    International Nuclear Information System (INIS)

    Jing Jianyi; Min Lequan

    2009-01-01

    This paper establishes two theorems for two time-delayed (chaotic) discrete systems to achieve time-delayed generalized synchronization (TDGS). These two theorems uncover the general forms of two TDGS systems via a prescribed transformation. As examples, we convert the Lorenz three-dimensional chaotic map to an equal time-delayed system as the driving system, and construct the TDGS driven systems according to the Theorems 1 and 2. Numerical simulations demonstrate the effectiveness of the proposed theorems. (interdisciplinary physics and related areas of science and technology)

  18. Transformation of nonlinear discrete-time system into the extended observer form

    Science.gov (United States)

    Kaparin, V.; Kotta, Ü.

    2018-04-01

    The paper addresses the problem of transforming discrete-time single-input single-output nonlinear state equations into the extended observer form, which, besides the input and output, also depends on a finite number of their past values. Necessary and sufficient conditions for the existence of both the extended coordinate and output transformations, solving the problem, are formulated in terms of differential one-forms, associated with the input-output equation, corresponding to the state equations. An algorithm for transformation of state equations into the extended observer form is proposed and illustrated by an example. Moreover, the considered approach is compared with the method of dynamic observer error linearisation, which likewise is intended to enlarge the class of systems transformable into an observer form.

  19. Dynamical systems with applications using MATLAB

    CERN Document Server

    Lynch, Stephen

    2014-01-01

    This textbook, now in its second edition, provides a broad introduction to both continuous and discrete dynamical systems, the theory of which is motivated by examples from a wide range of disciplines. It emphasizes applications and simulation utilizing MATLAB®, Simulink®, the Image Processing Toolbox™, and the Symbolic Math Toolbox™, including MuPAD. Features new to the second edition include, sections on series solutions of ordinary differential equations, perturbation methods, normal forms, Gröbner bases, and chaos synchronization; chapters on image processing and binary oscillator computing; hundreds of new illustrations, examples, and exercises with solutions; and over eighty up-to-date MATLAB® program files and Simulink model files available online. These files were voted MATLAB® Central Pick of the Week in July 2013.  The hands-on approach of Dynamical Systems with Applications using MATLAB®, Second Edition, has minimal prerequisites, only requiring familiarity with ordinary differential equ...

  20. User interface to an ICAI system that teaches discrete math

    OpenAIRE

    Calcote, Roy Keith.; Howard, Richard Anthony

    1990-01-01

    Approved for public release; distribution is unlimited. The main thrust of this thesis is the design of a usable Intelligent Computer Aided Instruction (ICAI) user interface that does not use a natural language processor and runs on a personal computer. Discrete Mathematics is the knowledge domain for this project and the Discrete Math Tutor (DMT) is the name of the tutoring system. The DMT will allow the average student to benefit from a tutoring system now and not have to wait until the ...

  1. Discrete Adjoint-Based Design for Unsteady Turbulent Flows On Dynamic Overset Unstructured Grids

    Science.gov (United States)

    Nielsen, Eric J.; Diskin, Boris

    2012-01-01

    A discrete adjoint-based design methodology for unsteady turbulent flows on three-dimensional dynamic overset unstructured grids is formulated, implemented, and verified. The methodology supports both compressible and incompressible flows and is amenable to massively parallel computing environments. The approach provides a general framework for performing highly efficient and discretely consistent sensitivity analysis for problems involving arbitrary combinations of overset unstructured grids which may be static, undergoing rigid or deforming motions, or any combination thereof. General parent-child motions are also accommodated, and the accuracy of the implementation is established using an independent verification based on a complex-variable approach. The methodology is used to demonstrate aerodynamic optimizations of a wind turbine geometry, a biologically-inspired flapping wing, and a complex helicopter configuration subject to trimming constraints. The objective function for each problem is successfully reduced and all specified constraints are satisfied.

  2. The discrete hungry Lotka Volterra system and a new algorithm for computing matrix eigenvalues

    Science.gov (United States)

    Fukuda, Akiko; Ishiwata, Emiko; Iwasaki, Masashi; Nakamura, Yoshimasa

    2009-01-01

    The discrete hungry Lotka-Volterra (dhLV) system is a generalization of the discrete Lotka-Volterra (dLV) system which stands for a prey-predator model in mathematical biology. In this paper, we show that (1) some invariants exist which are expressed by dhLV variables and are independent from the discrete time and (2) a dhLV variable converges to some positive constant or zero as the discrete time becomes sufficiently large. Some characteristic polynomial is then factorized with the help of the dhLV system. The asymptotic behaviour of the dhLV system enables us to design an algorithm for computing complex eigenvalues of a certain band matrix.

  3. The discrete hungry Lotka–Volterra system and a new algorithm for computing matrix eigenvalues

    International Nuclear Information System (INIS)

    Fukuda, Akiko; Ishiwata, Emiko; Iwasaki, Masashi; Nakamura, Yoshimasa

    2009-01-01

    The discrete hungry Lotka–Volterra (dhLV) system is a generalization of the discrete Lotka–Volterra (dLV) system which stands for a prey–predator model in mathematical biology. In this paper, we show that (1) some invariants exist which are expressed by dhLV variables and are independent from the discrete time and (2) a dhLV variable converges to some positive constant or zero as the discrete time becomes sufficiently large. Some characteristic polynomial is then factorized with the help of the dhLV system. The asymptotic behaviour of the dhLV system enables us to design an algorithm for computing complex eigenvalues of a certain band matrix

  4. Numerical modeling of the dynamic behavior of structures under impact with a discrete elements / finite elements coupling

    International Nuclear Information System (INIS)

    Rousseau, J.

    2009-07-01

    That study focuses on concrete structures submitted to impact loading and is aimed at predicting local damage in the vicinity of an impact zone as well as the global response of the structure. The Discrete Element Method (DEM) seems particularly well suited in this context for modeling fractures. An identification process of DEM material parameters from macroscopic data (Young's modulus, compressive and tensile strength, fracture energy, etc.) will first be presented for the purpose of enhancing reproducibility and reliability of the simulation results with DE samples of various sizes. Then, a particular interaction, between concrete and steel elements, was developed for the simulation of reinforced concrete. The discrete elements method was validated on quasi-static and dynamic tests carried out on small samples of concrete and reinforced concrete. Finally, discrete elements were used to simulate impacts on reinforced concrete slabs in order to confront the results with experimental tests. The modeling of a large structure by means of DEM may lead to prohibitive computation times. A refined discretization becomes required in the vicinity of the impact, while the structure may be modeled using a coarse FE mesh further from the impact area, where the material behaves elastically. A coupled discrete-finite element approach is thus proposed: the impact zone is modeled by means of DE and elastic FE are used on the rest of the structure. An existing method for 3D finite elements was extended to shells. This new method was then validated on many quasi-static and dynamic tests. The proposed approach is then applied to an impact on a concrete structure in order to validate the coupled method and compare computation times. (author)

  5. Dynamic Systems and Software

    DEFF Research Database (Denmark)

    Thomsen, Per Grove

    1996-01-01

    A one-dimensional model with axial discretization of engine components has been formulated using tha balance equations for mass energy and momentum and the ideal gas equation of state. ODE's that govern the dynamic behaviour of the regenerator matrix temperatures are included in the model. Known...

  6. On periodic orbits in discrete-time cascade systems

    Directory of Open Access Journals (Sweden)

    Huimin Li

    2006-01-01

    Full Text Available We present some results on existence, minimum period, number of periodic orbits, and stability of periodic orbits in discrete-time cascade systems. Some examples are presented to illustrate these results.

  7. Global consensus for discrete-time competitive systems

    International Nuclear Information System (INIS)

    Shih, C.-W.; Tseng, J.-P.

    2009-01-01

    Grossberg established a remarkable convergence theorem for a class of competitive systems without knowing and using Lyapunov function for the systems. We present the parallel investigations for the discrete-time version of the Grossberg's model. Through developing an extended component-competing analysis for the coupled system, without knowing a Lyapunov function and applying the LaSalle's invariance principle, the global pattern formation or the so-called global consensus for the system can be achieved. A numerical simulation is performed to illustrate the present theory.

  8. 3D Discrete Dislocation Dynamics: Influence of Segment Mobility on Critical Shear Stress

    Czech Academy of Sciences Publication Activity Database

    Záležák, Tomáš; Dlouhý, Antonín

    2015-01-01

    Roč. 128, č. 4 (2015), s. 654-656 ISSN 0587-4246. [ISPMA 13 - International Symposium on Physics of Materials /13./. Praha, 31.08.2014-04.09.2014] R&D Projects: GA MŠk(CZ) EE2.3.20.0214; GA ČR(CZ) GA14-22834S Institutional support: RVO:68081723 Keywords : metal matrix composites * discrete dislocation dynamics * high temperature creep Subject RIV: JG - Metallurgy Impact factor: 0.525, year: 2015

  9. Adaptive control of discrete-time chaotic systems: a fuzzy control approach

    International Nuclear Information System (INIS)

    Feng Gang; Chen Guanrong

    2005-01-01

    This paper discusses adaptive control of a class of discrete-time chaotic systems from a fuzzy control approach. Using the T-S model of discrete-time chaotic systems, an adaptive control algorithm is developed based on some conventional adaptive control techniques. The resulting adaptively controlled chaotic system is shown to be globally stable, and its robustness is discussed. A simulation example of the chaotic Henon map control is finally presented, to illustrate an application and the performance of the proposed control algorithm

  10. Numerical simulations of granular dynamics: I. Hard-sphere discrete element method and tests

    Science.gov (United States)

    Richardson, Derek C.; Walsh, Kevin J.; Murdoch, Naomi; Michel, Patrick

    2011-03-01

    We present a new particle-based (discrete element) numerical method for the simulation of granular dynamics, with application to motions of particles on small solar system body and planetary surfaces. The method employs the parallel N-body tree code pkdgrav to search for collisions and compute particle trajectories. Collisions are treated as instantaneous point-contact events between rigid spheres. Particle confinement is achieved by combining arbitrary combinations of four provided wall primitives, namely infinite plane, finite disk, infinite cylinder, and finite cylinder, and degenerate cases of these. Various wall movements, including translation, oscillation, and rotation, are supported. We provide full derivations of collision prediction and resolution equations for all geometries and motions. Several tests of the method are described, including a model granular “atmosphere” that achieves correct energy equipartition, and a series of tumbler simulations that show the expected transition from tumbling to centrifuging as a function of rotation rate.

  11. A Generalized Stability Theorem for Discrete-Time Nonautonomous Chaos System with Applications

    Directory of Open Access Journals (Sweden)

    Mei Zhang

    2015-01-01

    Full Text Available Firstly, this study introduces a definition of generalized stability (GST in discrete-time nonautonomous chaos system (DNCS, which is an extension for chaos generalized synchronization. Secondly, a constructive theorem of DNCS has been proposed. As an example, a GST DNCS is constructed based on a novel 4-dimensional discrete chaotic map. Numerical simulations show that the dynamic behaviors of this map have chaotic attractor characteristics. As one application, we design a chaotic pseudorandom number generator (CPRNG based on the GST DNCS. We use the SP800-22 test suite to test the randomness of four 100-key streams consisting of 1,000,000 bits generated by the CPRNG, the RC4 algorithm, the ZUC algorithm, and a 6-dimensional CGS-based CPRNG, respectively. The numerical results show that the randomness performances of the two CPRNGs are promising. In addition, theoretically the key space of the CPRNG is larger than 21116. As another application, this study designs a stream avalanche encryption scheme (SAES in RGB image encryption. The results show that the GST DNCS is able to generate the avalanche effects which are similar to those generated via ideal CPRNGs.

  12. Discrete-Time Nonzero-Sum Games for Multiplayer Using Policy-Iteration-Based Adaptive Dynamic Programming Algorithms.

    Science.gov (United States)

    Zhang, Huaguang; Jiang, He; Luo, Chaomin; Xiao, Geyang

    2017-10-01

    In this paper, we investigate the nonzero-sum games for a class of discrete-time (DT) nonlinear systems by using a novel policy iteration (PI) adaptive dynamic programming (ADP) method. The main idea of our proposed PI scheme is to utilize the iterative ADP algorithm to obtain the iterative control policies, which not only ensure the system to achieve stability but also minimize the performance index function for each player. This paper integrates game theory, optimal control theory, and reinforcement learning technique to formulate and handle the DT nonzero-sum games for multiplayer. First, we design three actor-critic algorithms, an offline one and two online ones, for the PI scheme. Subsequently, neural networks are employed to implement these algorithms and the corresponding stability analysis is also provided via the Lyapunov theory. Finally, a numerical simulation example is presented to demonstrate the effectiveness of our proposed approach.

  13. Traveling waves in the discrete fast buffered bistable system.

    Science.gov (United States)

    Tsai, Je-Chiang; Sneyd, James

    2007-11-01

    We study the existence and uniqueness of traveling wave solutions of the discrete buffered bistable equation. Buffered excitable systems are used to model, among other things, the propagation of waves of increased calcium concentration, and discrete models are often used to describe the propagation of such waves across multiple cells. We derive necessary conditions for the existence of waves, and, under some restrictive technical assumptions, we derive sufficient conditions. When the wave exists it is unique and stable.

  14. On H∞ Fault Estimator Design for Linear Discrete Time-Varying Systems under Unreliable Communication Link

    Directory of Open Access Journals (Sweden)

    Yueyang Li

    2014-01-01

    Full Text Available This paper investigates the H∞ fixed-lag fault estimator design for linear discrete time-varying (LDTV systems with intermittent measurements, which is described by a Bernoulli distributed random variable. Through constructing a novel partially equivalent dynamic system, the fault estimator design is converted into a deterministic quadratic minimization problem. By applying the innovation reorganization technique and the projection formula in Krein space, a necessary and sufficient condition is obtained for the existence of the estimator. The parameter matrices of the estimator are derived by recursively solving two standard Riccati equations. An illustrative example is provided to show the effectiveness and applicability of the proposed algorithm.

  15. Smooth Adaptive Internal Model Control Based on U Model for Nonlinear Systems with Dynamic Uncertainties

    Directory of Open Access Journals (Sweden)

    Li Zhao

    2016-01-01

    Full Text Available An improved smooth adaptive internal model control based on U model control method is presented to simplify modeling structure and parameter identification for a class of uncertain dynamic systems with unknown model parameters and bounded external disturbances. Differing from traditional adaptive methods, the proposed controller can simplify the identification of time-varying parameters in presence of bounded external disturbances. Combining the small gain theorem and the virtual equivalent system theory, learning rate of smooth adaptive internal model controller has been analyzed and the closed-loop virtual equivalent system based on discrete U model has been constructed as well. The convergence of this virtual equivalent system is proved, which further shows the convergence of the complex closed-loop discrete U model system. Finally, simulation and experimental results on a typical nonlinear dynamic system verified the feasibility of the proposed algorithm. The proposed method is shown to have lighter identification burden and higher control accuracy than the traditional adaptive controller.

  16. Fractional Dynamics Applications of Fractional Calculus to Dynamics of Particles, Fields and Media

    CERN Document Server

    Tarasov, Vasily E

    2010-01-01

    "Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media" presents applications of fractional calculus, integral and differential equations of non-integer orders in describing systems with long-time memory, non-local spatial and fractal properties. Mathematical models of fractal media and distributions, generalized dynamical systems and discrete maps, non-local statistical mechanics and kinetics, dynamics of open quantum systems, the hydrodynamics and electrodynamics of complex media with non-local properties and memory are considered. This book is intended to meet the needs of scientists and graduate students in physics, mechanics and applied mathematics who are interested in electrodynamics, statistical and condensed matter physics, quantum dynamics, complex media theories and kinetics, discrete maps and lattice models, and nonlinear dynamics and chaos. Dr. Vasily E. Tarasov is a Senior Research Associate at Nuclear Physics Institute of Moscow State University and...

  17. LQR-Based Optimal Distributed Cooperative Design for Linear Discrete-Time Multiagent Systems.

    Science.gov (United States)

    Zhang, Huaguang; Feng, Tao; Liang, Hongjing; Luo, Yanhong

    2017-03-01

    In this paper, a novel linear quadratic regulator (LQR)-based optimal distributed cooperative design method is developed for synchronization control of general linear discrete-time multiagent systems on a fixed, directed graph. Sufficient conditions are derived for synchronization, which restrict the graph eigenvalues into a bounded circular region in the complex plane. The synchronizing speed issue is also considered, and it turns out that the synchronizing region reduces as the synchronizing speed becomes faster. To obtain more desirable synchronizing capacity, the weighting matrices are selected by sufficiently utilizing the guaranteed gain margin of the optimal regulators. Based on the developed LQR-based cooperative design framework, an approximate dynamic programming technique is successfully introduced to overcome the (partially or completely) model-free cooperative design for linear multiagent systems. Finally, two numerical examples are given to illustrate the effectiveness of the proposed design methods.

  18. Alfvénic Dynamics and Fine Structuring of Discrete Auroral Arcs: Swarm and e-POP Observations

    Science.gov (United States)

    Miles, D.; Mann, I. R.; Pakhotin, I.; Burchill, J. K.; Howarth, A. D.; Knudsen, D. J.; Wallis, D. D.; Yau, A. W.; Lysak, R. L.

    2017-12-01

    The electrodynamics associated with dual discrete arc aurora with anti-parallel flow along the arcs were observed nearly simultaneously by the enhanced Polar Outflow Probe (e-POP) and the Swarm A and C spacecraft. Auroral imaging from e-POP reveal 1-10 km structuring of the arcs, which move and evolve on second timescales and confound the traditional single-spacecraft field-aligned current algorithms. High-cadence magnetic data from e-POP shows 1-10 Hz, presumably Alfvénic perturbations co-incident with and at the same scale size as the observed dynamic auroral fine structures. High-cadence electric and magnetic field data from Swarm A reveals non-stationary electrodynamics involving reflected and interfering Alfvén waves and signatures of modulation consistent with trapping in the Ionospheric Alfvén Resonator (IAR). Together, these observations suggest a role for Alfven waves, perhaps also the IAR, in discrete arc dynamics on 0.2 - 10s timescales and 1-10 km spatial scales.

  19. Three-dimensional discrete-time Lotka-Volterra models with an application to industrial clusters

    Science.gov (United States)

    Bischi, G. I.; Tramontana, F.

    2010-10-01

    We consider a three-dimensional discrete dynamical system that describes an application to economics of a generalization of the Lotka-Volterra prey-predator model. The dynamic model proposed is used to describe the interactions among industrial clusters (or districts), following a suggestion given by [23]. After studying some local and global properties and bifurcations in bidimensional Lotka-Volterra maps, by numerical explorations we show how some of them can be extended to their three-dimensional counterparts, even if their analytic and geometric characterization becomes much more difficult and challenging. We also show a global bifurcation of the three-dimensional system that has no two-dimensional analogue. Besides the particular economic application considered, the study of the discrete version of Lotka-Volterra dynamical systems turns out to be a quite rich and interesting topic by itself, i.e. from a purely mathematical point of view.

  20. Chaos Enhanced Differential Evolution in the Task of Evolutionary Control of Selected Set of Discrete Chaotic Systems

    Directory of Open Access Journals (Sweden)

    Roman Senkerik

    2014-01-01

    Full Text Available Evolutionary technique differential evolution (DE is used for the evolutionary tuning of controller parameters for the stabilization of set of different chaotic systems. The novelty of the approach is that the selected controlled discrete dissipative chaotic system is used also as the chaotic pseudorandom number generator to drive the mutation and crossover process in the DE. The idea was to utilize the hidden chaotic dynamics in pseudorandom sequences given by chaotic map to help differential evolution algorithm search for the best controller settings for the very same chaotic system. The optimizations were performed for three different chaotic systems, two types of case studies and developed cost functions.

  1. Conservative fourth-order time integration of non-linear dynamic systems

    DEFF Research Database (Denmark)

    Krenk, Steen

    2015-01-01

    An energy conserving time integration algorithm with fourth-order accuracy is developed for dynamic systems with nonlinear stiffness. The discrete formulation is derived by integrating the differential state-space equations of motion over the integration time increment, and then evaluating...... the resulting time integrals of the inertia and stiffness terms via integration by parts. This process introduces the time derivatives of the state space variables, and these are then substituted from the original state-space differential equations. The resulting discrete form of the state-space equations...... is a direct fourth-order accurate representation of the original differential equations. This fourth-order form is energy conserving for systems with force potential in the form of a quartic polynomial in the displacement components. Energy conservation for a force potential of general form is obtained...

  2. Linear discrete-time state space realization of a modified quadruple tank system with state estimation using Kalman filter

    DEFF Research Database (Denmark)

    Mohd. Azam, Sazuan Nazrah

    2017-01-01

    In this paper, we used the modified quadruple tank system that represents a multi-input-multi-output (MIMO) system as an example to present the realization of a linear discrete-time state space model and to obtain the state estimation using Kalman filter in a methodical mannered. First, an existing...... part of the Kalman filter is used to estimates the current state, based on the model and the measurements. The static and dynamic Kalman filter is compared and all results is demonstrated through simulations....

  3. Discrete kink dynamics in hydrogen-bonded chains: The one-component model

    DEFF Research Database (Denmark)

    Karpan, V. M.; Zolotaryuk, Yaroslav; Christiansen, Peter Leth

    2002-01-01

    "parabola-constant" approximation of the double-Morse potential is suggested and studied analytically. The dependence of the Peierls-Nabarro potential on the system parameters is studied. Discrete traveling-wave solutions of a narrow permanent profile are shown to exist, depending on the anharmonicity...

  4. Nonautonomous discrete bright soliton solutions and interaction management for the Ablowitz-Ladik equation.

    Science.gov (United States)

    Yu, Fajun

    2015-03-01

    We present the nonautonomous discrete bright soliton solutions and their interactions in the discrete Ablowitz-Ladik (DAL) equation with variable coefficients, which possesses complicated wave propagation in time and differs from the usual bright soliton waves. The differential-difference similarity transformation allows us to relate the discrete bright soliton solutions of the inhomogeneous DAL equation to the solutions of the homogeneous DAL equation. Propagation and interaction behaviors of the nonautonomous discrete solitons are analyzed through the one- and two-soliton solutions. We study the discrete snaking behaviors, parabolic behaviors, and interaction behaviors of the discrete solitons. In addition, the interaction management with free functions and dynamic behaviors of these solutions is investigated analytically, which have certain applications in electrical and optical systems.

  5. A semi-discrete integrable multi-component coherently coupled nonlinear Schrödinger system

    International Nuclear Information System (INIS)

    Zhao, Hai-qiong; Yuan, Jinyun

    2016-01-01

    A new integrable semi-discrete version is proposed for the multi-component coherently coupled nonlinear Schrödinger equation. The integrability of the semi-discrete system is confirmed by existence of Lax pair and infinite number of conservation laws. With the aid of gauge transformations, explicit formulas for N -fold Darboux transformations are derived whereby some physically important solutions of the system are presented. Furthermore, the theory of the semi-discrete system including Lax pair, Darboux transformations, exact solutions and infinite number of conservation laws are shown for their continuous counterparts in the continuous limit. (paper)

  6. Qualitative aspects of Volterra integro-dynamic system on time scales

    Directory of Open Access Journals (Sweden)

    Vasile Lupulescu

    2013-01-01

    Full Text Available This paper deals with the resolvent, asymptotic stability and boundedness of the solution of time-varying Volterra integro-dynamic system on time scales in which the coefficient matrix is not necessarily stable. We generalize at time scale some known properties about asymptotic behavior and boundedness from the continuous case. Some new results for discrete case are obtained.

  7. Ecological monitoring in a discrete-time prey-predator model.

    Science.gov (United States)

    Gámez, M; López, I; Rodríguez, C; Varga, Z; Garay, J

    2017-09-21

    The paper is aimed at the methodological development of ecological monitoring in discrete-time dynamic models. In earlier papers, in the framework of continuous-time models, we have shown how a systems-theoretical methodology can be applied to the monitoring of the state process of a system of interacting populations, also estimating certain abiotic environmental changes such as pollution, climatic or seasonal changes. In practice, however, there may be good reasons to use discrete-time models. (For instance, there may be discrete cycles in the development of the populations, or observations can be made only at discrete time steps.) Therefore the present paper is devoted to the development of the monitoring methodology in the framework of discrete-time models of population ecology. By monitoring we mean that, observing only certain component(s) of the system, we reconstruct the whole state process. This may be necessary, e.g., when in a complex ecosystem the observation of the densities of certain species is impossible, or too expensive. For the first presentation of the offered methodology, we have chosen a discrete-time version of the classical Lotka-Volterra prey-predator model. This is a minimal but not trivial system where the methodology can still be presented. We also show how this methodology can be applied to estimate the effect of an abiotic environmental change, using a component of the population system as an environmental indicator. Although this approach is illustrated in a simplest possible case, it can be easily extended to larger ecosystems with several interacting populations and different types of abiotic environmental effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Design and application of discrete wavelet packet transform based multiresolution controller for liquid level system.

    Science.gov (United States)

    Paul, Rimi; Sengupta, Anindita

    2017-11-01

    A new controller based on discrete wavelet packet transform (DWPT) for liquid level system (LLS) has been presented here. This controller generates control signal using node coefficients of the error signal which interprets many implicit phenomena such as process dynamics, measurement noise and effect of external disturbances. Through simulation results on LLS problem, this controller is shown to perform faster than both the discrete wavelet transform based controller and conventional proportional integral controller. Also, it is more efficient in terms of its ability to provide better noise rejection. To overcome the wind up phenomenon by considering the saturation due to presence of actuator, anti-wind up technique is applied to the conventional PI controller and compared to the wavelet packet transform based controller. In this case also, packet controller is found better than the other ones. This similar work has been extended for analogous first order RC plant as well as second order plant also. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Discrete event simulation of crop operations in sweet pepper in support of work method innovation

    NARCIS (Netherlands)

    Ooster, van 't Bert; Aantjes, Wiger; Melamed, Z.

    2017-01-01

    Greenhouse Work Simulation, GWorkS, is a model that simulates crop operations in greenhouses for the purpose of analysing work methods. GWorkS is a discrete event model that approaches reality as a discrete stochastic dynamic system. GWorkS was developed and validated using cut-rose as a case

  10. Function Projective Synchronization in Discrete-Time Chaotic System with Uncertain Parameters

    International Nuclear Information System (INIS)

    Chen Yong; Li Xin

    2009-01-01

    The function projective synchronization of discrete-time chaotic systems is presented. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate function projective synchronization (FPS) of discrete-time chaotic systems with uncertain parameters. With the aid of symbolic-numeric computation, we use the proposed scheme to illustrate FPS between two identical 3D Henon-like maps with uncertain parameters. Numeric simulations are used to verify the effectiveness of our scheme. (general)

  11. Discretizing LTI Descriptor (Regular Differential Input Systems with Consistent Initial Conditions

    Directory of Open Access Journals (Sweden)

    Athanasios D. Karageorgos

    2010-01-01

    Full Text Available A technique for discretizing efficiently the solution of a Linear descriptor (regular differential input system with consistent initial conditions, and Time-Invariant coefficients (LTI is introduced and fully discussed. Additionally, an upper bound for the error ‖x¯(kT−x¯k‖ that derives from the procedure of discretization is also provided. Practically speaking, we are interested in such kind of systems, since they are inherent in many physical, economical and engineering phenomena.

  12. Systems approaches to study root architecture dynamics

    Directory of Open Access Journals (Sweden)

    Candela eCuesta

    2013-12-01

    Full Text Available The plant root system is essential for providing anchorage to the soil, supplying minerals and water, and synthesizing metabolites. It is a dynamic organ modulated by external cues such as environmental signals, water and nutrients availability, salinity and others. Lateral roots are initiated from the primary root post-embryonically, after which they progress through discrete developmental stages which can be independently controlled, providing a high level of plasticity during root system formation.Within this review, main contributions are presented, from the classical forward genetic screens to the more recent high-throughput approaches, combined with computer model predictions, dissecting how lateral roots and thereby root system architecture is established and developed.

  13. On Some Sufficiency-Type Stability and Linear State-Feedback Stabilization Conditions for a Class of Multirate Discrete-Time Systems

    Directory of Open Access Journals (Sweden)

    M. De la Sen

    2018-05-01

    Full Text Available This paper presents and discusses the stability of a discrete multirate sampling system whose sets of sampling rates (or sampling periods are the integer multiple of those operating on all the preceding substates. Each of such substates is associated with a particular sampling rate. The sufficiency-type stability conditions are derived based on simple conditions on the norm, spectral radius and numerical radius of the matrix of the dynamics of a system parameterized at the largest sampling period.

  14. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2010-01-01

    The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Spring 2010 Ectent: 5 ects Class size: 18......The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Spring 2010 Ectent: 5 ects Class size: 18...

  15. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2010-01-01

    The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Autumn 2010 Ectent: 5 ects Class size: 15......The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Autumn 2010 Ectent: 5 ects Class size: 15...

  16. Differential geometry and topology with a view to dynamical systems

    CERN Document Server

    Burns, Keith

    2005-01-01

    MANIFOLDSIntroductionReview of topological conceptsSmooth manifoldsSmooth mapsTangent vectors and the tangent bundleTangent vectors as derivationsThe derivative of a smooth mapOrientationImmersions, embeddings and submersionsRegular and critical points and valuesManifolds with boundarySard's theoremTransversalityStabilityExercisesVECTOR FIELDS AND DYNAMICAL SYSTEMSIntroductionVector fieldsSmooth dynamical systemsLie derivative, Lie bracketDiscrete dynamical systemsHyperbolic fixed points and periodic orbitsExercisesRIEMANNIAN METRICSIntroductionRiemannian metricsStandard geometries on surfacesExercisesRIEMANNIAN CONNECTIONS AND GEODESICSIntroductionAffine connectionsRiemannian connectionsGeodesicsThe exponential mapMinimizing properties of geodesicsThe Riemannian distanceExercisesCURVATUREIntroductionThe curvature tensorThe second fundamental formSectional and Ricci curvaturesJacobi fieldsManifolds of constant curvatureConjugate pointsHorizontal and vertical sub-bundlesThe geodesic flowExercisesTENSORS AND DI...

  17. Discrete breathers in classical ferromagnetic lattices with easy-plane anisotropy

    DEFF Research Database (Denmark)

    Khalack, J. M.; Zolotaryuk, Yaroslav; Christiansen, Peter Leth

    2003-01-01

    Discrete breathers (nonlinear localized modes) have been shown to exist in various nonlinear Hamiltonian lattice systems. This paper is devoted to the investigation of a classical d-dimensional ferromagnetic lattice with easy plane anisotropy. Its dynamics is described via the Heisenberg model...

  18. 3D Discrete Dislocation Dynamics Applied to Interactions between Dislocation Walls and Particles

    Czech Academy of Sciences Publication Activity Database

    Záležák, Tomáš; Dlouhý, Antonín

    2012-01-01

    Roč. 122, č. 3 (2012), s. 450-452 ISSN 0587-4246. [International Symposium on Physics of Materials /12./ - ISPMA 12. Prague, 04.09.2011-08.09.2011] R&D Projects: GA ČR GD106/09/H035; GA ČR GA202/09/2073; GA MŠk OC 162 Institutional research plan: CEZ:AV0Z20410507 Keywords : 3D discrete dislocation dynamics * tilt boundary * migration * diffusion * pecipitation hardening Subject RIV: JG - Metallurgy Impact factor: 0.531, year: 2012

  19. PREFACE: Continuum Models and Discrete Systems Symposia (CMDS-12)

    Science.gov (United States)

    Chakrabarti, Bikas K.

    2011-09-01

    of interest were: Thermodynamics, transport theory and statistical mechanics in the context of continuum modeling discrete systems; Statistical mechanics and dynamics of fluid flows; Continuum mechanics of complex fluids and deformable solids with microstructure; Fundamentals of fracture, defect dynamics, fatigue, and fracture dynamics; Statics and dynamics of dislocations, dislocation mediated phase transitions and plasticity; Granular materials: statics and dynamics; Physics and mechanics of earthquakes; Transport in composite materials; and Continuum theory of soft matter systems of biological motivation and living structures. The scientific program consisted of General Lectures and Research Communications. The four General Lectures (40 min + 5 min) introduced the most recent ideas and advances in the fields covered. The 25 Research Communications reported new results and methods in these fields and were presented orally (30 min + 5 min). In addition there were 15 posters which also presented interesting results and five of these posters were selected by a special committee chaired by David J Bergman to contribute to this proceedings. The selected five posters were presented by Moutushi D Choudhury, Morten Grova, Arya Paul, Arnab Saha and Amartya Sarkar. We were happy to note that 32 scientists from ten countries and a large number of students (both from India and other countries) participated in this symposium. The talks and poster sessions generated a lot of discussions, arguments and collaborations. The articles that appear in this proceedings are based on the invited talks and selected poster presentations. We would like to thank the Journal of Physics Conference Series (IOP Publishing) for publishing the proceedings of the conference. We would also like to thank all the contributors to this proceedings for their kind co-operation and the referees for their prompt and active support. A number of invited participants (Amit Acharya, Alexander Altland, Kamal K

  20. A representation theorem for linear discrete-space systems

    Directory of Open Access Journals (Sweden)

    Sandberg Irwin W.

    1998-01-01

    Full Text Available The cornerstone of the theory of discrete-time single-input single-output linear systems is the idea that every such system has an input–output map H that can be represented by a convolution or the familiar generalization of a convolution. This thinking involves an oversight which is corrected in this note by adding an additional term to the representation.

  1. A Lie algebraic condition for exponential stability of discrete hybrid systems and application to hybrid synchronization.

    Science.gov (United States)

    Zhao, Shouwei

    2011-06-01

    A Lie algebraic condition for global exponential stability of linear discrete switched impulsive systems is presented in this paper. By considering a Lie algebra generated by all subsystem matrices and impulsive matrices, when not all of these matrices are Schur stable, we derive new criteria for global exponential stability of linear discrete switched impulsive systems. Moreover, simple sufficient conditions in terms of Lie algebra are established for the synchronization of nonlinear discrete systems using a hybrid switching and impulsive control. As an application, discrete chaotic system's synchronization is investigated by the proposed method.

  2. Hybrid modelling in discrete-event control system design

    NARCIS (Netherlands)

    Beek, van D.A.; Rooda, J.E.; Gordijn, S.H.F.; Borne, P.

    1996-01-01

    Simulation-based testing of discrete-event control systems can be advantageous. There is, however, a considerable difference between languages for real-time control and simulation languages. The Chi language, presented in this paper, is suited to specification and simulation of real-time control

  3. Analysis of discrete and continuous distributions of ventilatory time constants from dynamic computed tomography

    International Nuclear Information System (INIS)

    Doebrich, Marcus; Markstaller, Klaus; Karmrodt, Jens; Kauczor, Hans-Ulrich; Eberle, Balthasar; Weiler, Norbert; Thelen, Manfred; Schreiber, Wolfgang G

    2005-01-01

    In this study, an algorithm was developed to measure the distribution of pulmonary time constants (TCs) from dynamic computed tomography (CT) data sets during a sudden airway pressure step up. Simulations with synthetic data were performed to test the methodology as well as the influence of experimental noise. Furthermore the algorithm was applied to in vivo data. In five pigs sudden changes in airway pressure were imposed during dynamic CT acquisition in healthy lungs and in a saline lavage ARDS model. The fractional gas content in the imaged slice (FGC) was calculated by density measurements for each CT image. Temporal variations of the FGC were analysed assuming a model with a continuous distribution of exponentially decaying time constants. The simulations proved the feasibility of the method. The influence of experimental noise could be well evaluated. Analysis of the in vivo data showed that in healthy lungs ventilation processes can be more likely characterized by discrete TCs whereas in ARDS lungs continuous distributions of TCs are observed. The temporal behaviour of lung inflation and deflation can be characterized objectively using the described new methodology. This study indicates that continuous distributions of TCs reflect lung ventilation mechanics more accurately compared to discrete TCs

  4. Applied discrete-time queues

    CERN Document Server

    Alfa, Attahiru S

    2016-01-01

    This book introduces the theoretical fundamentals for modeling queues in discrete-time, and the basic procedures for developing queuing models in discrete-time. There is a focus on applications in modern telecommunication systems. It presents how most queueing models in discrete-time can be set up as discrete-time Markov chains. Techniques such as matrix-analytic methods (MAM) that can used to analyze the resulting Markov chains are included. This book covers single node systems, tandem system and queueing networks. It shows how queues with time-varying parameters can be analyzed, and illustrates numerical issues associated with computations for the discrete-time queueing systems. Optimal control of queues is also covered. Applied Discrete-Time Queues targets researchers, advanced-level students and analysts in the field of telecommunication networks. It is suitable as a reference book and can also be used as a secondary text book in computer engineering and computer science. Examples and exercises are includ...

  5. Dynamics of Large Systems of Nonlinearly Evolving Units

    Science.gov (United States)

    Lu, Zhixin

    the Ott Antonsen Ansatz and obtain a low-dimensional macroscopic description. Using this reduced macroscopic system, we explain the east-west asymmetry of jet-lag recovery and discus the consequences of our findings. (c) Thirdly, we study neuron firing in integrate-and-fire neural networks. We build a discrete-state/discrete-time model with both excitatory and inhibitory neurons and find a phase transition between avalanching dynamics and ceaseless firing dynamics. Power-law firing avalanche size/duration distributions are observed at critical parameter values. Furthermore, in this critical regime we find the same power law exponents as those observed from experiments and previous, more restricted, simulation studies. We also employ a mean-field method and show that inhibitory neurons in this system promote robustness of the criticality (i.e., an enhanced range of system parameter where power-law avalanche statistics applies). (d) Lastly, we study the dynamics of "reservoir computing networks" (RCN's), which is a recurrent neural network (RNN) scheme for machine learning. The advantage of RCN's over traditional RNN's is that the training is done only on the output layer, usually via a simple least-square method. We show that RCN's are very effective for inferring unmeasured state variables of dynamical systems whose system state is only partially measured. Using the examples of the Lorenz system and the Rossler system we demonstrate the potential of an RCN to perform as an universal model-free "observer".

  6. Robust performance results for discrete-time systems

    Directory of Open Access Journals (Sweden)

    Mahmoud Magdi S.

    1997-01-01

    Full Text Available The problems of robust performance and feedback control synthesis for a class of linear discrete-time systems with time-varying parametric uncertainties are addressed in this paper. The uncertainties are bound and have a linear matrix fractional form. Based on the concept of strongly robust H ∞ -performance criterion, results of robust stability and performance are developed and expressed in easily computable linear matrix inequalities. Synthesis of robust feedback controllers is carried out for several system models of interest.

  7. Complex dynamics of a stochastic discrete modified Leslie-Gower predator-prey model with Michaelis-Menten type prey harvesting

    Directory of Open Access Journals (Sweden)

    A. Elhassanein

    2014-06-01

    Full Text Available This paper introduced a stochastic discretized version of the modified Leslie-Gower predator-prey model with Michaelis-Menten type prey harvesting. The dynamical behavior of the proposed model was investigated. The existence and stability of the equilibria of the skeleton were studied. Numerical simulations were employed to show the model's complex dynamics by means of the largest Lyapunov exponents, bifurcations, time series diagrams and phase portraits. The effects of noise intensity on its dynamics and the intermittency phenomenon were also discussed via simulation.

  8. Gross-Pitaevski map as a chaotic dynamical system.

    Science.gov (United States)

    Guarneri, Italo

    2017-03-01

    The Gross-Pitaevski map is a discrete time, split-operator version of the Gross-Pitaevski dynamics in the circle, for which exponential instability has been recently reported. Here it is studied as a classical dynamical system in its own right. A systematic analysis of Lyapunov exponents exposes strongly chaotic behavior. Exponential growth of energy is then shown to be a direct consequence of rotational invariance and for stationary solutions the full spectrum of Lyapunov exponents is analytically computed. The present analysis includes the "resonant" case, when the free rotation period is commensurate to 2π, and the map has countably many constants of the motion. Except for lowest-order resonances, this case exhibits an integrable-chaotic transition.

  9. Applications of dynamical systems in biology and medicine

    CERN Document Server

    Radunskaya, Ami

    2015-01-01

    This volume highlights problems from a range of biological and medical applications that can be interpreted as questions about system behavior or control.  Topics include drug resistance in cancer and malaria, biological fluid dynamics, auto-regulation in the kidney, anti-coagulation therapy, evolutionary diversification and photo-transduction.  Mathematical techniques used to describe and investigate these biological and medical problems include ordinary, partial and stochastic differentiation equations, hybrid discrete-continuous approaches, as well as 2 and 3D numerical simulation. .

  10. Dynamical Properties of Discrete-Time Background Neural Networks with Uniform Firing Rate

    Directory of Open Access Journals (Sweden)

    Min Wan

    2013-01-01

    Full Text Available The dynamics of a discrete-time background network with uniform firing rate and background input is investigated. The conditions for stability are firstly derived. An invariant set is then obtained so that the nondivergence of the network can be guaranteed. In the invariant set, it is proved that all trajectories of the network starting from any nonnegative value will converge to a fixed point under some conditions. In addition, bifurcation and chaos are discussed. It is shown that the network can engender bifurcation and chaos with the increase of background input. The computations of Lyapunov exponents confirm the chaotic behaviors.

  11. Recent Progress in Discrete Dislocation Dynamics and Its Applications to Micro Plasticity

    KAUST Repository

    Po, Giacomo; Mohamed, Mamdouh S.; Crosby, Tamer; Erel, Can; El-Azab, Anter; Ghoniem, Nasr

    2014-01-01

    We present a self-contained review of the discrete dislocation dynamics (DDD) method for the numerical investigation of plasticity in crystals, focusing on recent development and implementation progress. The review covers the theoretical foundations of DDD within the framework of incompatible elasticity, its numerical implementation via the nodal method, the extension of the method to finite domains and several implementation details. Applications of the method to current topics in micro-plasticity are presented, including the size effects in nano-indentation, the evolution of the dislocation microstructure in persistent slip bands, and the phenomenon of dislocation avalanches in micro-pillar compression.

  12. Recent Progress in Discrete Dislocation Dynamics and Its Applications to Micro Plasticity

    KAUST Repository

    Po, Giacomo

    2014-09-27

    We present a self-contained review of the discrete dislocation dynamics (DDD) method for the numerical investigation of plasticity in crystals, focusing on recent development and implementation progress. The review covers the theoretical foundations of DDD within the framework of incompatible elasticity, its numerical implementation via the nodal method, the extension of the method to finite domains and several implementation details. Applications of the method to current topics in micro-plasticity are presented, including the size effects in nano-indentation, the evolution of the dislocation microstructure in persistent slip bands, and the phenomenon of dislocation avalanches in micro-pillar compression.

  13. The inverse problem of the calculus of variations for discrete systems

    Science.gov (United States)

    Barbero-Liñán, María; Farré Puiggalí, Marta; Ferraro, Sebastián; Martín de Diego, David

    2018-05-01

    We develop a geometric version of the inverse problem of the calculus of variations for discrete mechanics and constrained discrete mechanics. The geometric approach consists of using suitable Lagrangian and isotropic submanifolds. We also provide a transition between the discrete and the continuous problems and propose variationality as an interesting geometric property to take into account in the design and computer simulation of numerical integrators for constrained systems. For instance, nonholonomic mechanics is generally non variational but some special cases admit an alternative variational description. We apply some standard nonholonomic integrators to such an example to study which ones conserve this property.

  14. New block matrix spectral problem and Hamiltonian structure of the discrete integrable coupling system

    Energy Technology Data Exchange (ETDEWEB)

    Yu Fajun [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)], E-mail: yufajun888@163.com

    2008-06-09

    In [W.X. Ma, J. Phys. A: Math. Theor. 40 (2007) 15055], Prof. Ma gave a beautiful result (a discrete variational identity). In this Letter, based on a discrete block matrix spectral problem, a new hierarchy of Lax integrable lattice equations with four potentials is derived. By using of the discrete variational identity, we obtain Hamiltonian structure of the discrete soliton equation hierarchy. Finally, an integrable coupling system of the soliton equation hierarchy and its Hamiltonian structure are obtained through the discrete variational identity.

  15. New block matrix spectral problem and Hamiltonian structure of the discrete integrable coupling system

    International Nuclear Information System (INIS)

    Yu Fajun

    2008-01-01

    In [W.X. Ma, J. Phys. A: Math. Theor. 40 (2007) 15055], Prof. Ma gave a beautiful result (a discrete variational identity). In this Letter, based on a discrete block matrix spectral problem, a new hierarchy of Lax integrable lattice equations with four potentials is derived. By using of the discrete variational identity, we obtain Hamiltonian structure of the discrete soliton equation hierarchy. Finally, an integrable coupling system of the soliton equation hierarchy and its Hamiltonian structure are obtained through the discrete variational identity

  16. Discrete repulsive oscillator wavefunctions

    International Nuclear Information System (INIS)

    Munoz, Carlos A; Rueda-Paz, Juvenal; Wolf, Kurt Bernardo

    2009-01-01

    For the study of infinite discrete systems on phase space, the three-dimensional Lorentz algebra and group, so(2,1) and SO(2,1), provide a discrete model of the repulsive oscillator. Its eigenfunctions are found in the principal irreducible representation series, where the compact generator-that we identify with the position operator-has the infinite discrete spectrum of the integers Z, while the spectrum of energies is a double continuum. The right- and left-moving wavefunctions are given by hypergeometric functions that form a Dirac basis for l 2 (Z). Under contraction, the discrete system limits to the well-known quantum repulsive oscillator. Numerical computations of finite approximations raise further questions on the use of Dirac bases for infinite discrete systems.

  17. A systematic method for constructing time discretizations of integrable lattice systems: local equations of motion

    International Nuclear Information System (INIS)

    Tsuchida, Takayuki

    2010-01-01

    We propose a new method for discretizing the time variable in integrable lattice systems while maintaining the locality of the equations of motion. The method is based on the zero-curvature (Lax pair) representation and the lowest-order 'conservation laws'. In contrast to the pioneering work of Ablowitz and Ladik, our method allows the auxiliary dependent variables appearing in the stage of time discretization to be expressed locally in terms of the original dependent variables. The time-discretized lattice systems have the same set of conserved quantities and the same structures of the solutions as the continuous-time lattice systems; only the time evolution of the parameters in the solutions that correspond to the angle variables is discretized. The effectiveness of our method is illustrated using examples such as the Toda lattice, the Volterra lattice, the modified Volterra lattice, the Ablowitz-Ladik lattice (an integrable semi-discrete nonlinear Schroedinger system) and the lattice Heisenberg ferromagnet model. For the modified Volterra lattice, we also present its ultradiscrete analogue.

  18. P-Adic Analog of Navier–Stokes Equations: Dynamics of Fluid’s Flow in Percolation Networks (from Discrete Dynamics with Hierarchic Interactions to Continuous Universal Scaling Model

    Directory of Open Access Journals (Sweden)

    Klaudia Oleschko

    2017-04-01

    Full Text Available Recently p-adic (and, more generally, ultrametric spaces representing tree-like networks of percolation, and as a special case of capillary patterns in porous media, started to be used to model the propagation of fluids (e.g., oil, water, oil-in-water, and water-in-oil emulsion. The aim of this note is to derive p-adic dynamics described by fractional differential operators (Vladimirov operators starting with discrete dynamics based on hierarchically-structured interactions between the fluids’ volumes concentrated at different levels of the percolation tree and coming to the multiscale universal topology of the percolating nets. Similar systems of discrete hierarchic equations were widely applied to modeling of turbulence. However, in the present work this similarity is only formal since, in our model, the trees are real physical patterns with a tree-like topology of capillaries (or fractures in random porous media (not cascade trees, as in the case of turbulence, which we will be discussed elsewhere for the spinner flowmeter commonly used in the petroleum industry. By going to the “continuous limit” (with respect to the p-adic topology we represent the dynamics on the tree-like configuration space as an evolutionary nonlinear p-adic fractional (pseudo- differential equation, the tree-like analog of the Navier–Stokes equation. We hope that our work helps to come closer to a nonlinear equation solution, taking into account the scaling, hierarchies, and formal derivations, imprinted from the similar properties of the real physical world. Once this coupling is resolved, the more problematic question of information scaling in industrial applications will be achieved.

  19. Amenable crossed product Banach algebras associated with a class of C*-dynamical systems

    NARCIS (Netherlands)

    Jeu, de M.F.E.; Elharti, R.; Pinto, P.R.

    2017-01-01

    We prove that the crossed product Banach algebra ℓ1(G,A;α) that is associated with a C∗-dynamical system (A,G,α) is amenable if G is a discrete amenable group and A is a commutative or finite dimensional C∗-algebra. Perspectives for further developments are indicated.

  20. Discrete-Event Simulation

    Directory of Open Access Journals (Sweden)

    Prateek Sharma

    2015-04-01

    Full Text Available Abstract Simulation can be regarded as the emulation of the behavior of a real-world system over an interval of time. The process of simulation relies upon the generation of the history of a system and then analyzing that history to predict the outcome and improve the working of real systems. Simulations can be of various kinds but the topic of interest here is one of the most important kind of simulation which is Discrete-Event Simulation which models the system as a discrete sequence of events in time. So this paper aims at introducing about Discrete-Event Simulation and analyzing how it is beneficial to the real world systems.

  1. Constructing New Discrete Integrable Coupling System for Soliton Equation by Kronecker Product

    International Nuclear Information System (INIS)

    Yu Fajun; Zhang Hongqing

    2008-01-01

    It is shown that the Kronecker product can be applied to constructing new discrete integrable coupling system of soliton equation hierarchy in this paper. A direct application to the fractional cubic Volterra lattice spectral problem leads to a novel integrable coupling system of soliton equation hierarchy. It is also indicated that the study of discrete integrable couplings by using the Kronecker product is an efficient and straightforward method. This method can be used generally

  2. Modular Control of Discrete-Event Systems with Coalgebra

    Czech Academy of Sciences Publication Activity Database

    Komenda, Jan; van Schuppen, J. H.

    2008-01-01

    Roč. 53, č. 2 (2008), s. 447-460 ISSN 0018-9286 R&D Projects: GA AV ČR(CZ) KJB100190609 Institutional research plan: CEZ:AV0Z10190503 Keywords : discrete-event systems * modular supervisory control * coalgebra Subject RIV: BA - General Mathematics Impact factor: 3.293, year: 2008

  3. Dynamic simulation of a circulating fluidized bed boiler system part I: Description of the dynamic system and transient behavior of sub-models

    International Nuclear Information System (INIS)

    Kim, Seong Il; Choi, Sang Min; Yang, Jong In

    2016-01-01

    Dynamic performance simulation of a CFB boiler in a commercial-scale power plant is reported. The boiler system was modeled by a finite number of heat exchanger units, which are sub-grouped into the gas-solid circulation loop, the water-steam circulation loop, and the inter-connected heat exchangers blocks of the boiler. This dynamic model is an extension from the previously reported performance simulation model, which was designed to simulate static performance of the same power plant, where heat and mass for each of the heat exchanger units were balanced for the inter-connected heat exchanger network among the fuel combustion system and the water-steam system. Dynamic performance simulation was achieved by calculating the incremental difference from the previous time step, and progressing for the next time step. Additional discretization of the heat exchanger blocks was necessary to accommodate the dynamic response of the water evaporation and natural circulation as well as the transient response of the metal temperature of the heat exchanger elements. Presentation of the simulation modeling is organized into two parts; system configuration of the model plant and the general approach of the simulation are presented along with the transient behavior of the sub-models in Part I. Dynamic sub-models were integrated in terms of the mass flow and the heat transfer for simulating the CFB boiler system. Dynamic simulation for the open loop response was performed to check the integrated system of the water-steam loop and the solid-gas loop of the total boiler system. Simulation of the total boiler system which includes the closed-loop control system blocks is presented in the following Part II

  4. Dynamic simulation of a circulating fluidized bed boiler system part I: Description of the dynamic system and transient behavior of sub-models

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Il; Choi, Sang Min; Yang, Jong In [Dept. of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2016-12-15

    Dynamic performance simulation of a CFB boiler in a commercial-scale power plant is reported. The boiler system was modeled by a finite number of heat exchanger units, which are sub-grouped into the gas-solid circulation loop, the water-steam circulation loop, and the inter-connected heat exchangers blocks of the boiler. This dynamic model is an extension from the previously reported performance simulation model, which was designed to simulate static performance of the same power plant, where heat and mass for each of the heat exchanger units were balanced for the inter-connected heat exchanger network among the fuel combustion system and the water-steam system. Dynamic performance simulation was achieved by calculating the incremental difference from the previous time step, and progressing for the next time step. Additional discretization of the heat exchanger blocks was necessary to accommodate the dynamic response of the water evaporation and natural circulation as well as the transient response of the metal temperature of the heat exchanger elements. Presentation of the simulation modeling is organized into two parts; system configuration of the model plant and the general approach of the simulation are presented along with the transient behavior of the sub-models in Part I. Dynamic sub-models were integrated in terms of the mass flow and the heat transfer for simulating the CFB boiler system. Dynamic simulation for the open loop response was performed to check the integrated system of the water-steam loop and the solid-gas loop of the total boiler system. Simulation of the total boiler system which includes the closed-loop control system blocks is presented in the following Part II.

  5. Multi-rate sensor fusion-based adaptive discrete finite-time synergetic control for flexible-joint mechanical systems

    International Nuclear Information System (INIS)

    Xue Guang-Yue; Ren Xue-Mei; Xia Yuan-Qing

    2013-01-01

    This paper proposes an adaptive discrete finite-time synergetic control (ADFTSC) scheme based on a multi-rate sensor fusion estimator for flexible-joint mechanical systems in the presence of unmeasured states and dynamic uncertainties. Multi-rate sensors are employed to observe the system states which cannot be directly obtained by encoders due to the existence of joint flexibilities. By using an extended Kalman filter (EKF), the finite-time synergetic controller is designed based on a sensor fusion estimator which estimates states and parameters of the mechanical system with multi-rate measurements. The proposed controller can guarantee the finite-time convergence of tracking errors by the theoretical derivation. Simulation and experimental studies are included to validate the effectiveness of the proposed approach. (general)

  6. Dynamic Optimization of a Polymer Flooding Process Based on Implicit Discrete Maximum Principle

    Directory of Open Access Journals (Sweden)

    Yang Lei

    2012-01-01

    Full Text Available Polymer flooding is one of the most important technologies for enhanced oil recovery (EOR. In this paper, an optimal control model of distributed parameter systems (DPSs for polymer injection strategies is established, which involves the performance index as maximum of the profit, the governing equations as the fluid flow equations of polymer flooding, and some inequality constraints as polymer concentration and injection amount limitation. The optimal control model is discretized by full implicit finite-difference method. To cope with the discrete optimal control problem (OCP, the necessary conditions for optimality are obtained through application of the calculus of variations and Pontryagin’s discrete maximum principle. A modified gradient method with new adjoint construction is proposed for the computation of optimal injection strategies. The numerical results of an example illustrate the effectiveness of the proposed method.

  7. A discrete dislocation dynamics model of creeping single crystals

    Science.gov (United States)

    Rajaguru, M.; Keralavarma, S. M.

    2018-04-01

    Failure by creep is a design limiting issue for metallic materials used in several high temperature applications. Current theoretical models of creep are phenomenological with little connection to the underlying microscopic mechanisms. In this paper, a bottom-up simulation framework based on the discrete dislocation dynamics method is presented for dislocation creep aided by the diffusion of vacancies, known to be the rate controlling mechanism at high temperature and stress levels. The time evolution of the creep strain and the dislocation microstructure in a periodic unit cell of a nominally infinite single crystal is simulated using the kinetic Monte Carlo method, together with approximate constitutive laws formulated for the rates of thermal activation of dislocations over local pinning obstacles. The deformation of the crystal due to dislocation glide between individual thermal activation events is simulated using a standard dislocation dynamics algorithm, extended to account for constant stress periodic boundary conditions. Steady state creep conditions are obtained in the simulations with the predicted creep rates as a function of stress and temperature in good agreement with experimentally reported values. Arrhenius scaling of the creep rates as a function of temperature and power-law scaling with the applied stress are also reproduced, with the values of the power-law exponents in the high stress regime in good agreement with experiments.

  8. On synchronized regions of discrete-time complex dynamical networks

    International Nuclear Information System (INIS)

    Duan Zhisheng; Chen Guanrong

    2011-01-01

    In this paper, the local synchronization of discrete-time complex networks is studied. First, it is shown that for any natural number n, there exists a discrete-time network which has at least left floor n/2 right floor +1 disconnected synchronized regions for local synchronization, which implies the possibility of intermittent synchronization behaviors. Different from the continuous-time networks, the existence of an unbounded synchronized region is impossible for discrete-time networks. The convexity of the synchronized regions is also characterized based on the stability of a class of matrix pencils, which is useful for enlarging the stability region so as to improve the network synchronizability.

  9. Image compression-encryption algorithms by combining hyper-chaotic system with discrete fractional random transform

    Science.gov (United States)

    Gong, Lihua; Deng, Chengzhi; Pan, Shumin; Zhou, Nanrun

    2018-07-01

    Based on hyper-chaotic system and discrete fractional random transform, an image compression-encryption algorithm is designed. The original image is first transformed into a spectrum by the discrete cosine transform and the resulting spectrum is compressed according to the method of spectrum cutting. The random matrix of the discrete fractional random transform is controlled by a chaotic sequence originated from the high dimensional hyper-chaotic system. Then the compressed spectrum is encrypted by the discrete fractional random transform. The order of DFrRT and the parameters of the hyper-chaotic system are the main keys of this image compression and encryption algorithm. The proposed algorithm can compress and encrypt image signal, especially can encrypt multiple images once. To achieve the compression of multiple images, the images are transformed into spectra by the discrete cosine transform, and then the spectra are incised and spliced into a composite spectrum by Zigzag scanning. Simulation results demonstrate that the proposed image compression and encryption algorithm is of high security and good compression performance.

  10. Discrete integrable systems and hodograph transformations arising from motions of discrete plane curves

    International Nuclear Information System (INIS)

    Feng Baofeng; Maruno, Ken-ichi; Inoguchi, Jun-ichi; Kajiwara, Kenji; Ohta, Yasuhiro

    2011-01-01

    We consider integrable discretizations of some soliton equations associated with the motions of plane curves: the Wadati-Konno-Ichikawa elastic beam equation, the complex Dym equation and the short pulse equation. They are related to the modified KdV or the sine-Gordon equations by the hodograph transformations. Based on the observation that the hodograph transformations are regarded as the Euler-Lagrange transformations of the curve motions, we construct the discrete analogues of the hodograph transformations, which yield integrable discretizations of those soliton equations. (paper)

  11. Minimizing the Total Service Time of Discrete Dynamic Berth Allocation Problem by an Iterated Greedy Heuristic

    Science.gov (United States)

    2014-01-01

    Berth allocation is the forefront operation performed when ships arrive at a port and is a critical task in container port optimization. Minimizing the time ships spend at berths constitutes an important objective of berth allocation problems. This study focuses on the discrete dynamic berth allocation problem (discrete DBAP), which aims to minimize total service time, and proposes an iterated greedy (IG) algorithm to solve it. The proposed IG algorithm is tested on three benchmark problem sets. Experimental results show that the proposed IG algorithm can obtain optimal solutions for all test instances of the first and second problem sets and outperforms the best-known solutions for 35 out of 90 test instances of the third problem set. PMID:25295295

  12. Minimizing the Total Service Time of Discrete Dynamic Berth Allocation Problem by an Iterated Greedy Heuristic

    Directory of Open Access Journals (Sweden)

    Shih-Wei Lin

    2014-01-01

    Full Text Available Berth allocation is the forefront operation performed when ships arrive at a port and is a critical task in container port optimization. Minimizing the time ships spend at berths constitutes an important objective of berth allocation problems. This study focuses on the discrete dynamic berth allocation problem (discrete DBAP, which aims to minimize total service time, and proposes an iterated greedy (IG algorithm to solve it. The proposed IG algorithm is tested on three benchmark problem sets. Experimental results show that the proposed IG algorithm can obtain optimal solutions for all test instances of the first and second problem sets and outperforms the best-known solutions for 35 out of 90 test instances of the third problem set.

  13. Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) Study of Mass-Transfer Mechanisms in Riser Flow.

    Science.gov (United States)

    Carlos Varas, Álvaro E; Peters, E A J F; Kuipers, J A M

    2017-05-17

    We report a computational fluid dynamics-discrete element method (CFD-DEM) simulation study on the interplay between mass transfer and a heterogeneous catalyzed chemical reaction in cocurrent gas-particle flows as encountered in risers. Slip velocity, axial gas dispersion, gas bypassing, and particle mixing phenomena have been evaluated under riser flow conditions to study the complex system behavior in detail. The most important factors are found to be directly related to particle cluster formation. Low air-to-solids flux ratios lead to more heterogeneous systems, where the cluster formation is more pronounced and mass transfer more influenced. Falling clusters can be partially circumvented by the gas phase, which therefore does not fully interact with the cluster particles, leading to poor gas-solid contact efficiencies. Cluster gas-solid contact efficiencies are quantified at several gas superficial velocities, reaction rates, and dilution factors in order to gain more insight regarding the influence of clustering phenomena on the performance of riser reactors.

  14. Dynamical systems with applications using Mathematica

    CERN Document Server

    Lynch, Stephen

    2017-01-01

    This textbook, now in its second edition, provides a broad introduction to the theory and practice of both continuous and discrete dynamical systems with the aid of the Mathematica software suite. Taking a hands-on approach, the reader is guided from basic concepts to modern research topics. Emphasized throughout are numerous applications to biology, chemical kinetics, economics, electronics, epidemiology, nonlinear optics, mechanics, population dynamics, and neural networks. The book begins with an efficient tutorial introduction to Mathematica, enabling new users to become familiar with the program, while providing a good reference source for experts. Working Mathematica notebooks will be available at: http://library.wolfram.com/infocenter/Books/9563/ The author has focused on breadth of coverage rather than fine detail, with theorems and proofs being kept to a minimum, though references are included for the inquisitive reader. The book is intended for senior undergraduate and graduate students as well as w...

  15. Discrete time-crystalline order in black diamond

    Science.gov (United States)

    Zhou, Hengyun; Choi, Soonwon; Choi, Joonhee; Landig, Renate; Kucsko, Georg; Isoya, Junichi; Jelezko, Fedor; Onoda, Shinobu; Sumiya, Hitoshi; Khemani, Vedika; von Keyserlingk, Curt; Yao, Norman; Demler, Eugene; Lukin, Mikhail D.

    2017-04-01

    The interplay of periodic driving, disorder, and strong interactions has recently been predicted to result in exotic ``time-crystalline'' phases, which spontaneously break the discrete time-translation symmetry of the underlying drive. Here, we report the experimental observation of such discrete time-crystalline order in a driven, disordered ensemble of 106 dipolar spin impurities in diamond at room-temperature. We observe long-lived temporal correlations at integer multiples of the fundamental driving period, experimentally identify the phase boundary and find that the temporal order is protected by strong interactions; this order is remarkably stable against perturbations, even in the presence of slow thermalization. Our work opens the door to exploring dynamical phases of matter and controlling interacting, disordered many-body systems.

  16. The formulation of dynamical contact problems with friction in the case of systems of rigid bodies and general discrete mechanical systems—Painlevé and Kane paradoxes revisited

    Science.gov (United States)

    Charles, Alexandre; Ballard, Patrick

    2016-08-01

    The dynamics of mechanical systems with a finite number of degrees of freedom (discrete mechanical systems) is governed by the Lagrange equation which is a second-order differential equation on a Riemannian manifold (the configuration manifold). The handling of perfect (frictionless) unilateral constraints in this framework (that of Lagrange's analytical dynamics) was undertaken by Schatzman and Moreau at the beginning of the 1980s. A mathematically sound and consistent evolution problem was obtained, paving the road for many subsequent theoretical investigations. In this general evolution problem, the only reaction force which is involved is a generalized reaction force, consistently with the virtual power philosophy of Lagrange. Surprisingly, such a general formulation was never derived in the case of frictional unilateral multibody dynamics. Instead, the paradigm of the Coulomb law applying to reaction forces in the real world is generally invoked. So far, this paradigm has only enabled to obtain a consistent evolution problem in only some very few specific examples and to suggest numerical algorithms to produce computational examples (numerical modeling). In particular, it is not clear what is the evolution problem underlying the computational examples. Moreover, some of the few specific cases in which this paradigm enables to write down a precise evolution problem are known to show paradoxes: the Painlevé paradox (indeterminacy) and the Kane paradox (increase in kinetic energy due to friction). In this paper, we follow Lagrange's philosophy and formulate the frictional unilateral multibody dynamics in terms of the generalized reaction force and not in terms of the real-world reaction force. A general evolution problem that governs the dynamics is obtained for the first time. We prove that all the solutions are dissipative; that is, this new formulation is free of Kane paradox. We also prove that some indeterminacy of the Painlevé paradox is fixed in this

  17. The optimal filtering of a class of dynamic multiscale systems

    Institute of Scientific and Technical Information of China (English)

    PAN Quan; ZHANG Lei; CUI Peiling; ZHANG Hongcai

    2004-01-01

    This paper discusses the optimal filtering of a class of dynamic multiscale systems (DMS), which are observed independently by several sensors distributed at different resolution spaces. The system is subject to known dynamic system model. The resolution and sampling frequencies of the sensors are supposed to decrease by a factor of two. By using the Haar wavelet transform to link the state nodes at each of the scales within a time block, a discrete-time model of this class of multiscale systems is given, and the conditions for applying Kalman filtering are proven. Based on the linear time-invariant system, the controllability and observability of the system and the stability of the Kalman filtering is studied, and a theorem is given. It is proved that the Kalman filter is stable if only the system is controllable and observable at the finest scale. Finally, a constant-velocity process is used to obtain insight into the efficiencies offered by our model and algorithm.

  18. Dynamics of a discrete geotropic sensor subject to rotation-induced gravity compensation

    Energy Technology Data Exchange (ETDEWEB)

    Silver, I.L.

    1976-01-01

    A clinostat achieves gravity compensation by providing circular rotation with uniform speed, about a horizontal axis. The dynamics of an assumed, discrete and free-moving subcellular gravity receptor, subject to clinostat rotation, is analyzed. The results imply that there is an optimum rotation rate; higher speeds result in circular motions with diameters more comparable to thermal noise fluctuations, but with greater linear velocities due to increasing centrifugal forces. An optimizing function is proposed. The nucleolus and mitochondrion is chosen as a gravity receptor for illustrating the use of this theory. The characteristics of their clinostat-induced motions are incorporated with experimental results on Avena plant shoots in an illustrative example.

  19. A Robust Computational Technique for Model Order Reduction of Two-Time-Scale Discrete Systems via Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Othman M. K. Alsmadi

    2015-01-01

    Full Text Available A robust computational technique for model order reduction (MOR of multi-time-scale discrete systems (single input single output (SISO and multi-input multioutput (MIMO is presented in this paper. This work is motivated by the singular perturbation of multi-time-scale systems where some specific dynamics may not have significant influence on the overall system behavior. The new approach is proposed using genetic algorithms (GA with the advantage of obtaining a reduced order model, maintaining the exact dominant dynamics in the reduced order, and minimizing the steady state error. The reduction process is performed by obtaining an upper triangular transformed matrix of the system state matrix defined in state space representation along with the elements of B, C, and D matrices. The GA computational procedure is based on maximizing the fitness function corresponding to the response deviation between the full and reduced order models. The proposed computational intelligence MOR method is compared to recently published work on MOR techniques where simulation results show the potential and advantages of the new approach.

  20. System for Automatic Generation of Examination Papers in Discrete Mathematics

    Science.gov (United States)

    Fridenfalk, Mikael

    2013-01-01

    A system was developed for automatic generation of problems and solutions for examinations in a university distance course in discrete mathematics and tested in a pilot experiment involving 200 students. Considering the success of such systems in the past, particularly including automatic assessment, it should not take long before such systems are…

  1. Stabilisation of discrete-time polynomial fuzzy systems via a polynomial lyapunov approach

    Science.gov (United States)

    Nasiri, Alireza; Nguang, Sing Kiong; Swain, Akshya; Almakhles, Dhafer

    2018-02-01

    This paper deals with the problem of designing a controller for a class of discrete-time nonlinear systems which is represented by discrete-time polynomial fuzzy model. Most of the existing control design methods for discrete-time fuzzy polynomial systems cannot guarantee their Lyapunov function to be a radially unbounded polynomial function, hence the global stability cannot be assured. The proposed control design in this paper guarantees a radially unbounded polynomial Lyapunov functions which ensures global stability. In the proposed design, state feedback structure is considered and non-convexity problem is solved by incorporating an integrator into the controller. Sufficient conditions of stability are derived in terms of polynomial matrix inequalities which are solved via SOSTOOLS in MATLAB. A numerical example is presented to illustrate the effectiveness of the proposed controller.

  2. Avoidance of Pressure Oscillations in Discrete Fluid Power Systems with Transmission Lines - An Analytical Approach

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik C.

    2014-01-01

    Discrete fluid power technology attracts great attention because it enables energy efficiency and robust system architectures. However, the discrete nature of this technology naturally brings shifting phenomenons into the picture. For fluid power system the relative high inductance of fluid...

  3. System Reduction in Nonlinear Multibody Dynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Holm-Jørgensen, Kristian; Nielsen, Søren R.K.; Rubak, Rune

    2007-01-01

    In this paper the system reduction in nonlinear multibody dynamics of wind turbines is investigated for various updating schemes of the moving frame of reference. In one case, the moving frame of reference is updated to a stiff body, relative to which the elastic deformations are fixed at one end....... In the other case, the stiff body motion is defined as the chord line connecting the end points of the beam, and the elastic deformations are simply supported at the end points. The system reduction is performed by discretizing the spatial motion into a set of rigid body modes and linear elastic eigenmodes...

  4. Submodularity in dynamics and control of networked systems

    CERN Document Server

    Clark, Andrew; Bushnell, Linda; Poovendran, Radha

    2016-01-01

    This book presents a framework for the control of networked systems utilizing submodular optimization techniques. The main focus is on selecting input nodes for the control of networked systems, an inherently discrete optimization problem with applications in power system stability, social influence dynamics, and the control of vehicle formations. The first part of the book is devoted to background information on submodular functions, matroids, and submodular optimization, and presents algorithms for distributed submodular optimization that are scalable to large networked systems. In turn, the second part develops a unifying submodular optimization approach to controlling networked systems based on multiple performance and controllability criteria. Techniques are introduced for selecting input nodes to ensure smooth convergence, synchronization, and robustness to environmental and adversarial noise. Submodular optimization is the first unifying approach towards guaranteeing both performance and controllabilit...

  5. Multivariable controller for discrete stochastic amplitude-constrained systems

    Directory of Open Access Journals (Sweden)

    Hannu T. Toivonen

    1983-04-01

    Full Text Available A sub-optimal multivariable controller for discrete stochastic amplitude-constrained systems is presented. In the approach the regulator structure is restricted to the class of linear saturated feedback laws. The stationary covariances of the controlled system are evaluated by approximating the stationary probability distribution of the state by a gaussian distribution. An algorithm for minimizing a quadratic loss function is given, and examples are presented to illustrate the performance of the sub-optimal controller.

  6. Control of the formation of projective synchronisation in lower-dimensional discrete-time systems

    International Nuclear Information System (INIS)

    Chee, C.Y.; Xu Daolin

    2003-01-01

    Projective synchronisation was recently observed in partially linear discrete-time systems. The scaling factor that characterises the behaviour of projective synchronisation is however unpredictable. In order to manipulate the ultimate state of the synchronisation, a control algorithm based on Schur-Chon stability criteria is proposed to direct the scaling factor onto any predestined value. In the numerical experiment, we illustrate the application on two chaotic discrete-time systems

  7. Hybrid Semantics of Stochastic Programs with Dynamic Reconfiguration

    Directory of Open Access Journals (Sweden)

    Alberto Policriti

    2009-10-01

    Full Text Available We begin by reviewing a technique to approximate the dynamics of stochastic programs --written in a stochastic process algebra-- by a hybrid system, suitable to capture a mixed discrete/continuous evolution. In a nutshell, the discrete dynamics is kept stochastic while the continuous evolution is given in terms of ODEs, and the overall technique, therefore, naturally associates a Piecewise Deterministic Markov Process with a stochastic program. The specific contribution in this work consists in an increase of the flexibility of the translation scheme, obtained by allowing a dynamic reconfiguration of the degree of discreteness/continuity of the semantics. We also discuss the relationships of this approach with other hybrid simulation strategies for biochemical systems.

  8. A Discrete Events Delay Differential System Model for Transmission of Vancomycin-Resistant Enterococcus (VRE) in Hospitals

    Science.gov (United States)

    2010-09-19

    estimated directly form the surveillance data Infection control measures were implemented in the form of health care worker hand - hygiene before and after...hospital infections , is used to motivate possibilities of modeling nosocomial infec- tion dynamics. This is done in the context of hospital monitoring and...model development. Key Words: Delay equations, discrete events, nosocomial infection dynamics, surveil- lance data, inverse problems, parameter

  9. Out-of-order parallel discrete event simulation for electronic system-level design

    CERN Document Server

    Chen, Weiwei

    2014-01-01

    This book offers readers a set of new approaches and tools a set of tools and techniques for facing challenges in parallelization with design of embedded systems.? It provides an advanced parallel simulation infrastructure for efficient and effective system-level model validation and development so as to build better products in less time.? Since parallel discrete event simulation (PDES) has the potential to exploit the underlying parallel computational capability in today's multi-core simulation hosts, the author begins by reviewing the parallelization of discrete event simulation, identifyin

  10. Time Discretization Techniques

    KAUST Repository

    Gottlieb, S.; Ketcheson, David I.

    2016-01-01

    The time discretization of hyperbolic partial differential equations is typically the evolution of a system of ordinary differential equations obtained by spatial discretization of the original problem. Methods for this time evolution include

  11. A New Approach to Rational Discrete-Time Approximations to Continuous-Time Fractional-Order Systems

    OpenAIRE

    Matos , Carlos; Ortigueira , Manuel ,

    2012-01-01

    Part 10: Signal Processing; International audience; In this paper a new approach to rational discrete-time approximations to continuous fractional-order systems of the form 1/(sα+p) is proposed. We will show that such fractional-order LTI system can be decomposed into sub-systems. One has the classic behavior and the other is similar to a Finite Impulse Response (FIR) system. The conversion from continuous-time to discrete-time systems will be done using the Laplace transform inversion integr...

  12. Supporting scalable Bayesian networks using configurable discretizer actuators

    CSIR Research Space (South Africa)

    Osunmakinde, I

    2009-04-01

    Full Text Available The authors propose a generalized model with configurable discretizer actuators as a solution to the problem of the discretization of massive numerical datasets. Their solution is based on a concurrent distribution of the actuators and uses dynamic...

  13. Discretizing the transcritical and pitchfork bifurcations – conjugacy results

    KAUST Repository

    Lóczi, Lajos

    2015-01-07

    © 2015 Taylor & Francis. We present two case studies in one-dimensional dynamics concerning the discretization of transcritical (TC) and pitchfork (PF) bifurcations. In the vicinity of a TC or PF bifurcation point and under some natural assumptions on the one-step discretization method of order (Formula presented.) , we show that the time- (Formula presented.) exact and the step-size- (Formula presented.) discretized dynamics are topologically equivalent by constructing a two-parameter family of conjugacies in each case. As a main result, we prove that the constructed conjugacy maps are (Formula presented.) -close to the identity and these estimates are optimal.

  14. Logical Discrete Event Systems in a trace theory based setting

    NARCIS (Netherlands)

    Smedinga, R.

    1993-01-01

    Discrete event systems can be modelled using a triple consisting of some alphabet (representing the events that might occur), and two trace sets (sets of possible strings) denoting the possible behaviour and the completed tasks of the system. Using this definition we are able to formulate and solve

  15. Invariant set computation for constrained uncertain discrete-time systems

    NARCIS (Netherlands)

    Athanasopoulos, N.; Bitsoris, G.

    2010-01-01

    In this article a novel approach to the determination of polytopic invariant sets for constrained discrete-time linear uncertain systems is presented. First, the problem of stabilizing a prespecified initial condition set in the presence of input and state constraints is addressed. Second, the

  16. Observer-based hyperchaos synchronization in cascaded discrete-time systems

    International Nuclear Information System (INIS)

    Grassi, Giuseppe

    2009-01-01

    This paper deals with the observer-based synchronization in a cascade connection of hyperchaotic discrete-time systems. The paper demonstrates that exact synchronization in finite time is achievable between pairs of drive-response systems using only a scalar synchronizing signal. This 'propagated synchronization' starts from the innermost drive-response system pair and propagates toward the outermost drive-system pair. Choosing the drive-system input to be an information signal (encrypted via an arbitrary encryption function) yields a potential application of this architecture in chaos-based communications.

  17. The Lagrangian and Hamiltonian Analysis of Integrable Infinite-Dimensional Dynamical Systems

    International Nuclear Information System (INIS)

    Bogolubov, Nikolai N. Jr.; Prykarpatsky, Yarema A.; Blackmorte, Denis; Prykarpatsky, Anatoliy K.

    2010-12-01

    The analytical description of Lagrangian and Hamiltonian formalisms naturally arising from the invariance structure of given nonlinear dynamical systems on the infinite- dimensional functional manifold is presented. The basic ideas used to formulate the canonical symplectic structure are borrowed from the Cartan's theory of differential systems on associated jet-manifolds. The symmetry structure reduced on the invariant submanifolds of critical points of some nonlocal Euler-Lagrange functional is described thoroughly for both differential and differential-discrete dynamical systems. The Hamiltonian representation for a hierarchy of Lax type equations on a dual space to the Lie algebra of integral-differential operators with matrix coefficients, extended by evolutions for eigenfunctions and adjoint eigenfunctions of the corresponding spectral problems, is obtained via some special Backlund transformation. The connection of this hierarchy with integrable by Lax spatially two-dimensional systems is studied. (author)

  18. Continuous-time quantum random walks require discrete space

    International Nuclear Information System (INIS)

    Manouchehri, K; Wang, J B

    2007-01-01

    Quantum random walks are shown to have non-intuitive dynamics which makes them an attractive area of study for devising quantum algorithms for long-standing open problems as well as those arising in the field of quantum computing. In the case of continuous-time quantum random walks, such peculiar dynamics can arise from simple evolution operators closely resembling the quantum free-wave propagator. We investigate the divergence of quantum walk dynamics from the free-wave evolution and show that, in order for continuous-time quantum walks to display their characteristic propagation, the state space must be discrete. This behavior rules out many continuous quantum systems as possible candidates for implementing continuous-time quantum random walks

  19. Continuous-time quantum random walks require discrete space

    Science.gov (United States)

    Manouchehri, K.; Wang, J. B.

    2007-11-01

    Quantum random walks are shown to have non-intuitive dynamics which makes them an attractive area of study for devising quantum algorithms for long-standing open problems as well as those arising in the field of quantum computing. In the case of continuous-time quantum random walks, such peculiar dynamics can arise from simple evolution operators closely resembling the quantum free-wave propagator. We investigate the divergence of quantum walk dynamics from the free-wave evolution and show that, in order for continuous-time quantum walks to display their characteristic propagation, the state space must be discrete. This behavior rules out many continuous quantum systems as possible candidates for implementing continuous-time quantum random walks.

  20. Rich dynamics of discrete delay ecological models

    International Nuclear Information System (INIS)

    Peng Mingshu

    2005-01-01

    We study multiple bifurcations and chaotic behavior of a discrete delay ecological model. New form of chaos for the 2-D map is observed: the combination of potential period doubling and reverse period-doubling leads to cascading bubbles

  1. Observation of Discrete-Time-Crystal Signatures in an Ordered Dipolar Many-Body System

    Science.gov (United States)

    Rovny, Jared; Blum, Robert L.; Barrett, Sean E.

    2018-05-01

    A discrete time crystal (DTC) is a robust phase of driven systems that breaks the discrete time translation symmetry of the driving Hamiltonian. Recent experiments have observed DTC signatures in two distinct systems. Here we show nuclear magnetic resonance observations of DTC signatures in a third, strikingly different system: an ordered spatial crystal. We use a novel DTC echo experiment to probe the coherence of the driven system. Finally, we show that interactions during the pulse of the DTC sequence contribute to the decay of the signal, complicating attempts to measure the intrinsic lifetime of the DTC.

  2. Cryptanalyzing a discrete-time chaos synchronization secure communication system

    International Nuclear Information System (INIS)

    Alvarez, G.; Montoya, F.; Romera, M.; Pastor, G.

    2004-01-01

    This paper describes the security weakness of a recently proposed secure communication method based on discrete-time chaos synchronization. We show that the security is compromised even without precise knowledge of the chaotic system used. We also make many suggestions to improve its security in future versions

  3. Complexity of deciding detectability in discrete event systems

    Czech Academy of Sciences Publication Activity Database

    Masopust, Tomáš

    2018-01-01

    Roč. 93, July (2018), s. 257-261 ISSN 0005-1098 Institutional support: RVO:67985840 Keywords : discrete event systems * finite automata * detectability Subject RIV: BA - General Mathematics OBOR OECD: Computer science s, information science , bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 5.451, year: 2016 https://www. science direct.com/ science /article/pii/S0005109818301730

  4. Complexity of deciding detectability in discrete event systems

    Czech Academy of Sciences Publication Activity Database

    Masopust, Tomáš

    2018-01-01

    Roč. 93, July (2018), s. 257-261 ISSN 0005-1098 Institutional support: RVO:67985840 Keywords : discrete event systems * finite automata * detectability Subject RIV: BA - General Mathematics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 5.451, year: 2016 https://www.sciencedirect.com/science/article/pii/S0005109818301730

  5. Structural Dynamics

    International Nuclear Information System (INIS)

    Kim, Du Gi

    2005-08-01

    This book introduces summary of structural dynamics, the reason of learning of structural dynamics, single-degree of freedom system, simple harmonic vibration and application, numerical analysis method, such as time domain and frequency domain and nonlinear system, multi-degree of freedom system random vibration over discrete distribution, continuous distribution and extreme value distribution, circumstance vibration, earth quake vibration, including input earthquake, and earthquake-resistant design and capacity spectrum method, wind oscillation wave vibration, vibration control and maintenance control.

  6. Discrete element modeling of triggered slip in faults with granular gouge: application to dynamic earthquake triggering

    International Nuclear Information System (INIS)

    Ferdowsi, B.

    2014-01-01

    Recent seismological observations based on new, more sensitive instrumentation show that seismic waves radiated from large earthquakes can trigger other earthquakes globally. This phenomenon is called dynamic earthquake triggering and is well-documented for over 30 of the largest earthquakes worldwide. Granular materials are at the core of mature earthquake faults and play a key role in fault triggering by exhibiting a rich nonlinear response to external perturbations. The stick-slip dynamics in sheared granular layers is analogous to the seismic cycle for earthquake fault systems. In this research effort, we characterize the macroscopic scale statistics and the grain-scale mechanisms of triggered slip in sheared granular layers. We model the granular fault gouge using three dimensional discrete element method simulations. The modeled granular system is put into stick-slip dynamics by applying a conning pressure and a shear load. The dynamic triggering is simulated by perturbing the spontaneous stick-slip dynamics using an external vibration applied to the boundary of the layer. The influences of the triggering consist in a frictional weakening during the vibration interval, a clock advance of the next expected large slip event and long term effects in the form of suppression and recovery of the energy released from the granular layer. Our study suggests that above a critical amplitude, vibration causes a significant clock advance of large slip events. We link this clock advance to a major decline in the slipping contact ratio as well as a decrease in shear modulus and weakening of the granular gouge layer. We also observe that shear vibration is less effective in perturbing the stick-slip dynamics of the granular layer. Our study suggests that in order to have an effective triggering, the input vibration must also explore the granular layer at length scales about or less than the average grain size. The energy suppression and the subsequent recovery and increased

  7. Design of an Optimal Preview Controller for Linear Discrete-Time Descriptor Noncausal Multirate Systems

    Directory of Open Access Journals (Sweden)

    Mengjuan Cao

    2014-01-01

    Full Text Available The linear discrete-time descriptor noncausal multirate system is considered for the presentation of a new design approach for optimal preview control. First, according to the characteristics of causal controllability and causal observability, the descriptor noncausal system is constructed into a descriptor causal closed-loop system. Second, by using the characteristics of the causal system and elementary transformation, the descriptor causal closed-loop system is transformed into a normal system. Then, taking advantage of the discrete lifting technique, the normal multirate system is converted to a single-rate system. By making use of the standard preview control method, we construct the descriptor augmented error system. The quadratic performance index for the multirate system is given, which can be changed into one for the single-rate system. In addition, a new single-rate system is obtained, the optimal control law of which is given. Returning to the original system, the optimal preview controller for linear discrete-time descriptor noncausal multirate systems is derived. The stabilizability and detectability of the lifted single-rate system are discussed in detail. The optimal preview control design techniques are illustrated by simulation results for a simple example.

  8. A novel approach for modelling complex maintenance systems using discrete event simulation

    International Nuclear Information System (INIS)

    Alrabghi, Abdullah; Tiwari, Ashutosh

    2016-01-01

    Existing approaches for modelling maintenance rely on oversimplified assumptions which prevent them from reflecting the complexity found in industrial systems. In this paper, we propose a novel approach that enables the modelling of non-identical multi-unit systems without restrictive assumptions on the number of units or their maintenance characteristics. Modelling complex interactions between maintenance strategies and their effects on assets in the system is achieved by accessing event queues in Discrete Event Simulation (DES). The approach utilises the wide success DES has achieved in manufacturing by allowing integration with models that are closely related to maintenance such as production and spare parts systems. Additional advantages of using DES include rapid modelling and visual interactive simulation. The proposed approach is demonstrated in a simulation based optimisation study of a published case. The current research is one of the first to optimise maintenance strategies simultaneously with their parameters while considering production dynamics and spare parts management. The findings of this research provide insights for non-conflicting objectives in maintenance systems. In addition, the proposed approach can be used to facilitate the simulation and optimisation of industrial maintenance systems. - Highlights: • This research is one of the first to optimise maintenance strategies simultaneously. • New insights for non-conflicting objectives in maintenance systems. • The approach can be used to optimise industrial maintenance systems.

  9. Numerical Simulation of Antennae by Discrete Exterior Calculus

    International Nuclear Information System (INIS)

    Xie Zheng; Ye Zheng; Ma Yujie

    2009-01-01

    Numerical simulation of antennae is a topic in computational electromagnetism, which is concerned with the numerical study of Maxwell equations. By discrete exterior calculus and the lattice gauge theory with coefficient R, we obtain the Bianchi identity on prism lattice. By defining an inner product of discrete differential forms, we derive the source equation and continuity equation. Those equations compose the discrete Maxwell equations in vacuum case on discrete manifold, which are implemented on Java development platform to simulate the Gaussian pulse radiation on antennaes. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  10. Tensor calculus and analytical dynamics a classical introduction to holonomic and nonholonomic tensor calculus ; and its principal applications to the Lagrangean dynamics of constrained mechanical systems : for engineers, physicists, and mathematicians

    CERN Document Server

    Papastavridis, John G

    1999-01-01

    Tensor Calculus and Analytical Dynamics provides a concise, comprehensive, and readable introduction to classical tensor calculus - in both holonomic and nonholonomic coordinates - as well as to its principal applications to the Lagrangean dynamics of discrete systems under positional or velocity constraints. The thrust of the book focuses on formal structure and basic geometrical/physical ideas underlying most general equations of motion of mechanical systems under linear velocity constraints.

  11. Knowledge network model of the energy consumption in discrete manufacturing system

    Science.gov (United States)

    Xu, Binzi; Wang, Yan; Ji, Zhicheng

    2017-07-01

    Discrete manufacturing system generates a large amount of data and information because of the development of information technology. Hence, a management mechanism is urgently required. In order to incorporate knowledge generated from manufacturing data and production experience, a knowledge network model of the energy consumption in the discrete manufacturing system was put forward based on knowledge network theory and multi-granularity modular ontology technology. This model could provide a standard representation for concepts, terms and their relationships, which could be understood by both human and computer. Besides, the formal description of energy consumption knowledge elements (ECKEs) in the knowledge network was also given. Finally, an application example was used to verify the feasibility of the proposed method.

  12. The stochastic system approach for estimating dynamic treatments effect.

    Science.gov (United States)

    Commenges, Daniel; Gégout-Petit, Anne

    2015-10-01

    The problem of assessing the effect of a treatment on a marker in observational studies raises the difficulty that attribution of the treatment may depend on the observed marker values. As an example, we focus on the analysis of the effect of a HAART on CD4 counts, where attribution of the treatment may depend on the observed marker values. This problem has been treated using marginal structural models relying on the counterfactual/potential response formalism. Another approach to causality is based on dynamical models, and causal influence has been formalized in the framework of the Doob-Meyer decomposition of stochastic processes. Causal inference however needs assumptions that we detail in this paper and we call this approach to causality the "stochastic system" approach. First we treat this problem in discrete time, then in continuous time. This approach allows incorporating biological knowledge naturally. When working in continuous time, the mechanistic approach involves distinguishing the model for the system and the model for the observations. Indeed, biological systems live in continuous time, and mechanisms can be expressed in the form of a system of differential equations, while observations are taken at discrete times. Inference in mechanistic models is challenging, particularly from a numerical point of view, but these models can yield much richer and reliable results.

  13. Discrete-Event Simulation

    OpenAIRE

    Prateek Sharma

    2015-01-01

    Abstract Simulation can be regarded as the emulation of the behavior of a real-world system over an interval of time. The process of simulation relies upon the generation of the history of a system and then analyzing that history to predict the outcome and improve the working of real systems. Simulations can be of various kinds but the topic of interest here is one of the most important kind of simulation which is Discrete-Event Simulation which models the system as a discrete sequence of ev...

  14. From a Discrete to Continuous Description of Two-Dimensional Curved and Homogeneous Clusters: Some Kinetic Approach

    International Nuclear Information System (INIS)

    Gadomski, A.; Trame, Ch.

    1999-01-01

    Starting with a discrete picture of the self-avoiding polygon embeddable in the square lattice, and utilizing both scaling arguments as well as a Steinhaus rule for evaluating the polygon's area, we are able, by imposing a discrete time-dynamics and making use of the concept of quasi-static approximation, to arrive at some evolution rules for the surface fractal. The process is highly curvature-driven, which is very characteristic of many phenomena of biological interest, like crystallization, wetting, formation of biomembranes and interfaces. In a discrete regime, the number of subunits constituting the cluster is a nonlinear function of the number of the perimeter sites active for the growth. A change of the number of subunits in time is essentially determined by a change in the curvature in course of time, given explicitly by a difference operator. In a continuous limit, the process is assumed to proceed in time in a self-similar manner, and its description is generally offered in terms of a nonlinear dynamical system, even for the homogeneous clusters. For a sufficiently mature stage of the growing process, and when linearization of the dynamical system is realized, one may get some generalization of Mullins-Sekerka instability concept, where the function perturbing the circle is assumed to be everywhere continuous but not necessarily differentiable, like e.g., the Weierstrass function. Moreover, a time-dependent prefactor appears in the simplified dynamical system. (author)

  15. Generalized reciprocity principle for discrete symplectic systems

    Directory of Open Access Journals (Sweden)

    Julia Elyseeva

    2015-12-01

    Full Text Available This paper studies transformations for conjoined bases of symplectic difference systems $Y_{i+1}=\\mathcal S_{i}Y_{i}$ with the symplectic coefficient matrices $\\mathcal S_i.$ For an arbitrary symplectic transformation matrix $P_{i}$ we formulate most general sufficient conditions for $\\mathcal S_{i},\\, P_{i}$ which guarantee that $P_{i}$ preserves oscillatory properties of conjoined bases $Y_{i}.$ We present examples which show that our new results extend the applicability of the discrete transformation theory.

  16. Improving the Teaching of Discrete-Event Control Systems Using a LEGO Manufacturing Prototype

    Science.gov (United States)

    Sanchez, A.; Bucio, J.

    2012-01-01

    This paper discusses the usefulness of employing LEGO as a teaching-learning aid in a post-graduate-level first course on the control of discrete-event systems (DESs). The final assignment of the course is presented, which asks students to design and implement a modular hierarchical discrete-event supervisor for the coordination layer of a…

  17. Reflectionless discrete Schr\\"odinger operators are spectrally atypical

    OpenAIRE

    VandenBoom, Tom

    2017-01-01

    We prove that, if an isospectral torus contains a discrete Schr\\"odinger operator with nonconstant potential, the shift dynamics on that torus cannot be minimal. Consequently, we specify a generic sense in which finite unions of nondegenerate closed intervals having capacity one are not the spectrum of any reflectionless discrete Schr\\"odinger operator. We also show that the only reflectionless discrete Schr\\"odinger operators having zero, one, or two spectral gaps are periodic.

  18. Stability of dynamical systems on the role of monotonic and non-monotonic Lyapunov functions

    CERN Document Server

    Michel, Anthony N; Liu, Derong

    2015-01-01

    The second edition of this textbook provides a single source for the analysis of system models represented by continuous-time and discrete-time, finite-dimensional and infinite-dimensional, and continuous and discontinuous dynamical systems.  For these system models, it presents results which comprise the classical Lyapunov stability theory involving monotonic Lyapunov functions, as well as corresponding contemporary stability results involving non-monotonicLyapunov functions.Specific examples from several diverse areas are given to demonstrate the applicability of the developed theory to many important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, and artificial neural networks.   The authors cover the following four general topics:   -          Representation and modeling of dynamical systems of the types described above -          Presentation of Lyapunov and Lagrange stability theory for dynamical sy...

  19. Finite Discrete Gabor Analysis

    DEFF Research Database (Denmark)

    Søndergaard, Peter Lempel

    2007-01-01

    frequency bands at certain times. Gabor theory can be formulated for both functions on the real line and for discrete signals of finite length. The two theories are largely the same because many aspects come from the same underlying theory of locally compact Abelian groups. The two types of Gabor systems...... can also be related by sampling and periodization. This thesis extends on this theory by showing new results for window construction. It also provides a discussion of the problems associated to discrete Gabor bases. The sampling and periodization connection is handy because it allows Gabor systems...... on the real line to be well approximated by finite and discrete Gabor frames. This method of approximation is especially attractive because efficient numerical methods exists for doing computations with finite, discrete Gabor systems. This thesis presents new algorithms for the efficient computation of finite...

  20. Asymptotical Behaviors of Nonautonomous Discrete Kolmogorov System with Time Lags

    Directory of Open Access Journals (Sweden)

    Liu Shengqiang

    2010-01-01

    Full Text Available We discuss a general -species discrete Kolmogorov system with time lags. We build some new results about the sufficient conditions for permanence, extinction, and balancing survival. When applying these results to some Lotka-Volterra systems, we obtain the criteria on harmless delay for the permanence as well as profitless delay for balancing survival.

  1. Asymptotical Behaviors of Nonautonomous Discrete Kolmogorov System with Time Lags

    Directory of Open Access Journals (Sweden)

    Shengqiang Liu

    2010-01-01

    Full Text Available We discuss a general n-species discrete Kolmogorov system with time lags. We build some new results about the sufficient conditions for permanence, extinction, and balancing survival. When applying these results to some Lotka-Volterra systems, we obtain the criteria on harmless delay for the permanence as well as profitless delay for balancing survival.

  2. Chaotic synchronization of symbolic information in the discrete nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Pando L, C.L.

    2003-08-01

    We have studied the discrete nonlinear Schrodinger equation (DNLSE) with on-site defects and periodic boundary conditions. When the array dynamics becomes chaotic, the otherwise quasiperiodic amplitude correlations between the oscillators are destroyed. However, we show that synchronization of symbolic information of suitable amplitude signals is possible in this hamiltonian system. (author)

  3. Fuzzy Stabilization for Nonlinear Discrete Ship Steering Stochastic Systems Subject to State Variance and Passivity Constraints

    Directory of Open Access Journals (Sweden)

    Wen-Jer Chang

    2014-01-01

    Full Text Available For nonlinear discrete-time stochastic systems, a fuzzy controller design methodology is developed in this paper subject to state variance constraint and passivity constraint. According to fuzzy model based control technique, the nonlinear discrete-time stochastic systems considered in this paper are represented by the discrete-time Takagi-Sugeno fuzzy models with multiplicative noise. Employing Lyapunov stability theory, upper bound covariance control theory, and passivity theory, some sufficient conditions are derived to find parallel distributed compensation based fuzzy controllers. In order to solve these sufficient conditions, an iterative linear matrix inequality algorithm is applied based on the linear matrix inequality technique. Finally, the fuzzy stabilization problem for nonlinear discrete ship steering stochastic systems is investigated in the numerical example to illustrate the feasibility and validity of proposed fuzzy controller design method.

  4. Dynamic behavior of district heating systems

    International Nuclear Information System (INIS)

    Kunz, J.

    1994-01-01

    The goal of this study is to develop a simulation model of a hot water system taking into account the time dependent phenomena which are important for the operational management of such a system. A state of the art literature review has shown that there is no such model considering all parts from the generation of the heat at the plant to its consumption in the connected buildings so far. First, an exhaustive list of all dynamic phenomena occurring in district heating systems has been drawn and analyzed. Considering this list, this thesis proposes that a model which satisfies the criteria listed above can be developed by superposing four sub-models which are a dynamic model of the heat generation plant, a steady state model of the hydraulic calculation of the distribution network, a dynamic model of the thermal behavior of the network and a dynamic model of the heat consumers. The development of the four sub-models starts from the fundamental conservation equations for fluid systems, i.e. the conservation of mass, momentum and energy. The transformations of those general equations into simple calculation formulas show and justify the hypotheses made in the modeling process. The heat generation plant model itself is a set of sub-models: the models for steam boilers, hot water boilers and heat accumulators which take account of the dynamic evolution of the water temperature by a simple form of the energy conservation equation, as well as the steady state models for circulation pumps and pressurizers. Since the velocities in the network pipes are small, a consideration of steady states is adopted. A network model allowing to calculate the hydraulic variables in every point is adopted from the graph theory. The pressures and flow rates in the network are calculated at discrete time steps and they are considered to be constant for the duration between the time steps. (author) figs., tabs., refs

  5. On the discretization of linear fractional representations of LPV systems

    NARCIS (Netherlands)

    Toth, R.; Lovera, M.; Heuberger, P.S.C.; Corno, M.; Hof, Van den P.M.J.

    2012-01-01

    Commonly, controllers for linear parameter-varying (LPV) systems are designed in continuous time using a linear fractional representation (LFR) of the plant. However, the resulting controllers are implemented on digital hardware. Furthermore, discrete-time LPV synthesis approaches require a

  6. Bounded Model Checking and Inductive Verification of Hybrid Discrete-Continuous Systems

    DEFF Research Database (Denmark)

    Becker, Bernd; Behle, Markus; Eisenbrand, Fritz

    2004-01-01

    We present a concept to signicantly advance the state of the art for bounded model checking (BMC) and inductive verication (IV) of hybrid discrete-continuous systems. Our approach combines the expertise of partners coming from dierent domains, like hybrid systems modeling and digital circuit veri...

  7. Variable threshold algorithm for division of labor analyzed as a dynamical system.

    Science.gov (United States)

    Castillo-Cagigal, Manuel; Matallanas, Eduardo; Navarro, Iñaki; Caamaño-Martín, Estefanía; Monasterio-Huelin, Félix; Gutiérrez, Álvaro

    2014-12-01

    Division of labor is a widely studied aspect of colony behavior of social insects. Division of labor models indicate how individuals distribute themselves in order to perform different tasks simultaneously. However, models that study division of labor from a dynamical system point of view cannot be found in the literature. In this paper, we define a division of labor model as a discrete-time dynamical system, in order to study the equilibrium points and their properties related to convergence and stability. By making use of this analytical model, an adaptive algorithm based on division of labor can be designed to satisfy dynamic criteria. In this way, we have designed and tested an algorithm that varies the response thresholds in order to modify the dynamic behavior of the system. This behavior modification allows the system to adapt to specific environmental and collective situations, making the algorithm a good candidate for distributed control applications. The variable threshold algorithm is based on specialization mechanisms. It is able to achieve an asymptotically stable behavior of the system in different environments and independently of the number of individuals. The algorithm has been successfully tested under several initial conditions and number of individuals.

  8. Discrete breathers in graphane: Effect of temperature

    Energy Technology Data Exchange (ETDEWEB)

    Baimova, J. A., E-mail: julia.a.baimova@gmail.com [Russian Academy of Sciences, Institute of Metal Physics, Ural Branch (Russian Federation); Murzaev, R. T.; Lobzenko, I. P.; Dmitriev, S. V. [Russian Academy of Sciences, Institute for Metals Superplasticity Problems (Russian Federation); Zhou, Kun [Nanyang Technological University, School of Mechanical and Aerospace Engineering (Singapore)

    2016-05-15

    The discrete breathers in graphane in thermodynamic equilibrium in the temperature range 50–600 K are studied by molecular dynamics simulation. A discrete breather is a hydrogen atom vibrating along the normal to a sheet of graphane at a high amplitude. As was found earlier, the lifetime of a discrete breather at zero temperature corresponds to several tens of thousands of vibrations. The effect of temperature on the decay time of discrete breathers and the probability of their detachment from a sheet of graphane are studied in this work. It is shown that closely spaced breathers can exchange energy with each other at zero temperature. The data obtained suggest that thermally activated discrete breathers can be involved in the dehydrogenation of graphane, which is important for hydrogen energetics.

  9. Complex Nonlinear Dynamic System of Oligopolies Price Game with Heterogeneous Players Under Noise

    Science.gov (United States)

    Liu, Feng; Li, Yaguang

    A nonlinear four oligopolies price game with heterogeneous players, that are boundedly rational and adaptive, is built using two different special demand costs. Based on the theory of complex discrete dynamical system, the stability and the existing equilibrium point are investigated. The complex dynamic behavior is presented via bifurcation diagrams, the Lyapunov exponents to show equilibrium state, bifurcation and chaos with the variation in parameters. As disturbance is ubiquitous in economic systems, this paper focuses on the analysis of delay feedback control method under noise circumstances. Stable dynamics is confirmed to depend mainly on the low price adjustment speed, and if all four players have limited opportunities to stabilize the market, the new adaptive player facing profits of scale are found to be higher than the incumbents of bounded rational.

  10. How to apply the Score-Function method to standard discrete event simulation tools in order to optimise a set of system parameters simultaneously: A Job-Shop example will be discussed

    DEFF Research Database (Denmark)

    Nielsen, Erland Hejn

    2000-01-01

    During the last 1-2 decades, simulation optimisation of discrete event dynamic systems (DEDS) has made considerable theoretical progress with respect to computational efficiency. The score-function (SF) method and the infinitesimal perturbation analysis (IPA) are two candidates belonging to this ...

  11. Safety Discrete Event Models for Holonic Cyclic Manufacturing Systems

    Science.gov (United States)

    Ciufudean, Calin; Filote, Constantin

    In this paper the expression “holonic cyclic manufacturing systems” refers to complex assembly/disassembly systems or fork/join systems, kanban systems, and in general, to any discrete event system that transforms raw material and/or components into products. Such a system is said to be cyclic if it provides the same sequence of products indefinitely. This paper considers the scheduling of holonic cyclic manufacturing systems and describes a new approach using Petri nets formalism. We propose an approach to frame the optimum schedule of holonic cyclic manufacturing systems in order to maximize the throughput while minimize the work in process. We also propose an algorithm to verify the optimum schedule.

  12. Nonparametric Estimation of Interval Reliability for Discrete-Time Semi-Markov Systems

    DEFF Research Database (Denmark)

    Georgiadis, Stylianos; Limnios, Nikolaos

    2016-01-01

    In this article, we consider a repairable discrete-time semi-Markov system with finite state space. The measure of the interval reliability is given as the probability of the system being operational over a given finite-length time interval. A nonparametric estimator is proposed for the interval...

  13. Dynamic flowgraph modeling of process and control systems of a nuclear-based hydrogen production plant

    Energy Technology Data Exchange (ETDEWEB)

    Al-Dabbagh, Ahmad W. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario (Canada); Lu, Lixuan [Faculty of Energy Systems and Nuclear Science, Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario (Canada)

    2010-09-15

    Modeling and analysis of system reliability facilitate the identification of areas of potential improvement. The Dynamic Flowgraph Methodology (DFM) is an emerging discrete modeling framework that allows for capturing time dependent behaviour, switching logic and multi-state representation of system components. The objective of this research is to demonstrate the process of dynamic flowgraph modeling of a nuclear-based hydrogen production plant with the copper-chlorine (Cu-Cl) cycle. Modeling of the thermochemical process of the Cu-Cl cycle in conjunction with a networked control system proposed for monitoring and control of the process is provided. This forms the basis for future component selection. (author)

  14. Modeling and Optimal Control of a Class of Warfare Hybrid Dynamic Systems Based on Lanchester (n,1) Attrition Model

    OpenAIRE

    Chen, Xiangyong; Zhang, Ancai

    2014-01-01

    For the particularity of warfare hybrid dynamic process, a class of warfare hybrid dynamic systems is established based on Lanchester equation in a (n,1) battle, where a heterogeneous force of n different troop types faces a homogeneous force. This model can be characterized by the interaction of continuous-time models (governed by Lanchester equation), and discrete event systems (described by variable tactics). Furthermore, an expository discussion is presented on an optimal variable tact...

  15. Information model of trainee characteristics with definition of stochastic behavior of dynamic system

    Science.gov (United States)

    Sumin, V. I.; Smolentseva, T. E.; Belokurov, S. V.; Lankin, O. V.

    2018-03-01

    In the work the process of formation of trainee characteristics with their subsequent change is analyzed and analyzed. Characteristics of trainees were obtained as a result of testing for each section of information on the chosen discipline. The results obtained during testing were input to the dynamic system. The area of control actions consisting of elements of the dynamic system is formed. The limit of deterministic predictability of element trajectories in dynamical systems based on local or global attractors is revealed. The dimension of the phase space of the dynamic system is determined, which allows estimating the parameters of the initial system. On the basis of time series of observations, it is possible to determine the predictability interval of all parameters, which make it possible to determine the behavior of the system discretely in time. Then the measure of predictability will be the sum of Lyapunov’s positive indicators, which are a quantitative measure for all elements of the system. The components for the formation of an algorithm allowing to determine the correlation dimension of the attractor for known initial experimental values of the variables are revealed. The generated algorithm makes it possible to carry out an experimental study of the dynamics of changes in the trainee’s parameters with initial uncertainty.

  16. An automatic system for Turkish word recognition using Discrete Wavelet Neural Network based on adaptive entropy

    International Nuclear Information System (INIS)

    Avci, E.

    2007-01-01

    In this paper, an automatic system is presented for word recognition using real Turkish word signals. This paper especially deals with combination of the feature extraction and classification from real Turkish word signals. A Discrete Wavelet Neural Network (DWNN) model is used, which consists of two layers: discrete wavelet layer and multi-layer perceptron. The discrete wavelet layer is used for adaptive feature extraction in the time-frequency domain and is composed of Discrete Wavelet Transform (DWT) and wavelet entropy. The multi-layer perceptron used for classification is a feed-forward neural network. The performance of the used system is evaluated by using noisy Turkish word signals. Test results showing the effectiveness of the proposed automatic system are presented in this paper. The rate of correct recognition is about 92.5% for the sample speech signals. (author)

  17. Discrete-Event Simulation with Agents for Modeling of Dynamic Asymmetric Threats in Maritime Security

    National Research Council Canada - National Science Library

    Ng, Chee W

    2007-01-01

    .... Discrete-event simulation (DES) was used to simulate a typical port-security, local, waterside-threat response model and to test the adaptive response of asymmetric threats in reaction to port-security procedures, while a multi-agent system (MAS...

  18. Modeling discrete and rhythmic movements through motor primitives: a review.

    Science.gov (United States)

    Degallier, Sarah; Ijspeert, Auke

    2010-10-01

    Rhythmic and discrete movements are frequently considered separately in motor control, probably because different techniques are commonly used to study and model them. Yet the increasing interest in finding a comprehensive model for movement generation requires bridging the different perspectives arising from the study of those two types of movements. In this article, we consider discrete and rhythmic movements within the framework of motor primitives, i.e., of modular generation of movements. In this way we hope to gain an insight into the functional relationships between discrete and rhythmic movements and thus into a suitable representation for both of them. Within this framework we can define four possible categories of modeling for discrete and rhythmic movements depending on the required command signals and on the spinal processes involved in the generation of the movements. These categories are first discussed in terms of biological concepts such as force fields and central pattern generators and then illustrated by several mathematical models based on dynamical system theory. A discussion on the plausibility of theses models concludes the work.

  19. A Study of the Use of a Handheld Computer Algebra System in Discrete Mathematics

    Science.gov (United States)

    Powers, Robert A.; Allison, Dean E.; Grassl, Richard M.

    2005-01-01

    This study investigated the impact of the TI-92 handheld Computer Algebra System (CAS) on student achievement in a discrete mathematics course. Specifically, the researchers examined the differences between a CAS section and a control section of discrete mathematics on students' in-class examinations. Additionally, they analysed student approaches…

  20. Development Of Dynamic Probabilistic Safety Assessment: The Accident Dynamic Simulator (ADS) Tool

    International Nuclear Information System (INIS)

    Chang, Y.H.; Mosleh, A.; Dang, V.N.

    2003-01-01

    The development of a dynamic methodology for Probabilistic Safety Assessment (PSA) addresses the complex interactions between the behaviour of technical systems and personnel response in the evolution of accident scenarios. This paper introduces the discrete dynamic event tree, a framework for dynamic PSA, and its implementation in the Accident Dynamic Simulator (ADS) tool. Dynamic event tree tools generate and quantify accident scenarios through coupled simulation models of the plant physical processes, its automatic systems, the equipment reliability, and the human response. The current research on the framework, the ADS tool, and on Human Reliability Analysis issues within dynamic PSA, is discussed. (author)

  1. Development Of Dynamic Probabilistic Safety Assessment: The Accident Dynamic Simulator (ADS) Tool

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.H.; Mosleh, A.; Dang, V.N

    2003-03-01

    The development of a dynamic methodology for Probabilistic Safety Assessment (PSA) addresses the complex interactions between the behaviour of technical systems and personnel response in the evolution of accident scenarios. This paper introduces the discrete dynamic event tree, a framework for dynamic PSA, and its implementation in the Accident Dynamic Simulator (ADS) tool. Dynamic event tree tools generate and quantify accident scenarios through coupled simulation models of the plant physical processes, its automatic systems, the equipment reliability, and the human response. The current research on the framework, the ADS tool, and on Human Reliability Analysis issues within dynamic PSA, is discussed. (author)

  2. An implicit finite element method for discrete dynamic fracture

    Energy Technology Data Exchange (ETDEWEB)

    Gerken, Jobie M. [Colorado State Univ., Fort Collins, CO (United States)

    1999-12-01

    A method for modeling the discrete fracture of two-dimensional linear elastic structures with a distribution of small cracks subject to dynamic conditions has been developed. The foundation for this numerical model is a plane element formulated from the Hu-Washizu energy principle. The distribution of small cracks is incorporated into the numerical model by including a small crack at each element interface. The additional strain field in an element adjacent to this crack is treated as an externally applied strain field in the Hu-Washizu energy principle. The resulting stiffness matrix is that of a standard plane element. The resulting load vector is that of a standard plane element with an additional term that includes the externally applied strain field. Except for the crack strain field equations, all terms of the stiffness matrix and load vector are integrated symbolically in Maple V so that fully integrated plane stress and plane strain elements are constructed. The crack strain field equations are integrated numerically. The modeling of dynamic behavior of simple structures was demonstrated within acceptable engineering accuracy. In the model of axial and transverse vibration of a beam and the breathing mode of vibration of a thin ring, the dynamic characteristics were shown to be within expected limits. The models dominated by tensile forces (the axially loaded beam and the pressurized ring) were within 0.5% of the theoretical values while the shear dominated model (the transversely loaded beam) is within 5% of the calculated theoretical value. The constant strain field of the tensile problems can be modeled exactly by the numerical model. The numerical results should therefore, be exact. The discrepancies can be accounted for by errors in the calculation of frequency from the numerical results. The linear strain field of the transverse model must be modeled by a series of constant strain elements. This is an approximation to the true strain field, so some

  3. System dynamics

    International Nuclear Information System (INIS)

    Kim, Do Hun; Mun, Tae Hun; Kim, Dong Hwan

    1999-02-01

    This book introduces systems thinking and conceptual tool and modeling tool of dynamics system such as tragedy of single thinking, accessible way of system dynamics, feedback structure and causal loop diagram analysis, basic of system dynamics modeling, causal loop diagram and system dynamics modeling, information delay modeling, discovery and application for policy, modeling of crisis of agricultural and stock breeding products, dynamic model and lesson in ecosystem, development and decadence of cites and innovation of education forward system thinking.

  4. Discrete event simulation versus conventional system reliability analysis approaches

    DEFF Research Database (Denmark)

    Kozine, Igor

    2010-01-01

    Discrete Event Simulation (DES) environments are rapidly developing and appear to be promising tools for building reliability and risk analysis models of safety-critical systems and human operators. If properly developed, they are an alternative to the conventional human reliability analysis models...... and systems analysis methods such as fault and event trees and Bayesian networks. As one part, the paper describes briefly the author’s experience in applying DES models to the analysis of safety-critical systems in different domains. The other part of the paper is devoted to comparing conventional approaches...

  5. Analysis and Design of International Emission Trading Markets Applying System Dynamics Techniques

    Science.gov (United States)

    Hu, Bo; Pickl, Stefan

    2010-11-01

    The design and analysis of international emission trading markets is an important actual challenge. Time-discrete models are needed to understand and optimize these procedures. We give an introduction into this scientific area and present actual modeling approaches. Furthermore, we develop a model which is embedded in a holistic problem solution. Measures for energy efficiency are characterized. The economic time-discrete "cap-and-trade" mechanism is influenced by various underlying anticipatory effects. With a systematic dynamic approach the effects can be examined. First numerical results show that fair international emissions trading can only be conducted with the use of protective export duties. Furthermore a comparatively high price which evokes emission reduction inevitably has an inhibiting effect on economic growth according to our model. As it always has been expected it is not without difficulty to find a balance between economic growth and emission reduction. It can be anticipated using our System Dynamics model simulation that substantial changes must be taken place before international emissions trading markets can contribute to global GHG emissions mitigation.

  6. Nonlinear dynamic response of cable-suspended systems under swinging and heaving motion

    International Nuclear Information System (INIS)

    Cao, Guohua; Wang, Naige; Wang, Lei; Zhu, Zhencai

    2017-01-01

    In order to enhance the fidelity, convenient and flexibility of swinging motion, the structure of incompletely restrained cablesuspended system controlled by two drums was proposed, and the dynamic response of the system under swinging and heaving motion were investigated in this paper. The cables are spatially discretized using the assumed modes method and the system equations of motion are derived by Lagrange equations of the first kind. Based on geometric boundary conditions and linear complementary theory, the differential algebraic equations are transformed to a set of classical difference equations. Nonlinear dynamic behavior occurs under certain range of rotational velocity and frequency. The results show that asynchronous motion of suspension platform is easily caused imbalance for cable tension. Dynamic response of different swing frequencies were obtained via power frequency analysis, which could be used in the selection of the working frequency of the swing motion. The work will contribute to a better understanding of the swing frequency, cable tension and posture with dynamic characteristics of unilateral geometric and kinematic constraints in this system, and it is also useful to investigate the accuracy and reliability of instruments in future.

  7. Nonlinear dynamic response of cable-suspended systems under swinging and heaving motion

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Guohua; Wang, Naige; Wang, Lei; Zhu, Zhencai [China University of Mining and Technology, Xuzhou (China)

    2017-07-15

    In order to enhance the fidelity, convenient and flexibility of swinging motion, the structure of incompletely restrained cablesuspended system controlled by two drums was proposed, and the dynamic response of the system under swinging and heaving motion were investigated in this paper. The cables are spatially discretized using the assumed modes method and the system equations of motion are derived by Lagrange equations of the first kind. Based on geometric boundary conditions and linear complementary theory, the differential algebraic equations are transformed to a set of classical difference equations. Nonlinear dynamic behavior occurs under certain range of rotational velocity and frequency. The results show that asynchronous motion of suspension platform is easily caused imbalance for cable tension. Dynamic response of different swing frequencies were obtained via power frequency analysis, which could be used in the selection of the working frequency of the swing motion. The work will contribute to a better understanding of the swing frequency, cable tension and posture with dynamic characteristics of unilateral geometric and kinematic constraints in this system, and it is also useful to investigate the accuracy and reliability of instruments in future.

  8. Discrete Lorentzian quantum gravity

    NARCIS (Netherlands)

    Loll, R.

    2000-01-01

    Just as for non-abelian gauge theories at strong coupling, discrete lattice methods are a natural tool in the study of non-perturbative quantum gravity. They have to reflect the fact that the geometric degrees of freedom are dynamical, and that therefore also the lattice theory must be formulated

  9. Reducing Fatigue Loading Due to Pressure Shift in Discrete Fluid Power Force Systems

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik Clemmensen

    2016-01-01

    power force system. The current paper investigates the correlation between pressure oscillations in the cylinder chambers and valve flow in the manifold. Furthermore, the correlation between the pressure shifting time and the pressure overshoot is investigated. The study therefore focus on how to shape......Discrete Fluid Power Force Systems is one of the topologies gaining focus in the pursuit of lowering energy losses in fluid power transmission systems. The cylinder based Fluid Power Force System considered in this article is constructed with a multi-chamber cylinder, a number of constant pressure...... oscillations in the cylinder chamber, especially for systems with long connections between the cylinder and the valve manifold. Hose pressure oscillations will induce oscillations in the produced piston force. Hence, pressure oscillations may increase the fatigue loading on systems employing a discrete fluid...

  10. Discrete time duration models with group-level heterogeneity

    DEFF Research Database (Denmark)

    Frederiksen, Anders; Honoré, Bo; Hu, Loujia

    2007-01-01

    Dynamic discrete choice panel data models have received a great deal of attention. In those models, the dynamics is usually handled by including the lagged outcome as an explanatory variable. In this paper we consider an alternative model in which the dynamics is handled by using the duration...

  11. Discrete bacteria foraging optimization algorithm for graph based problems - a transition from continuous to discrete

    Science.gov (United States)

    Sur, Chiranjib; Shukla, Anupam

    2018-03-01

    Bacteria Foraging Optimisation Algorithm is a collective behaviour-based meta-heuristics searching depending on the social influence of the bacteria co-agents in the search space of the problem. The algorithm faces tremendous hindrance in terms of its application for discrete problems and graph-based problems due to biased mathematical modelling and dynamic structure of the algorithm. This had been the key factor to revive and introduce the discrete form called Discrete Bacteria Foraging Optimisation (DBFO) Algorithm for discrete problems which exceeds the number of continuous domain problems represented by mathematical and numerical equations in real life. In this work, we have mainly simulated a graph-based road multi-objective optimisation problem and have discussed the prospect of its utilisation in other similar optimisation problems and graph-based problems. The various solution representations that can be handled by this DBFO has also been discussed. The implications and dynamics of the various parameters used in the DBFO are illustrated from the point view of the problems and has been a combination of both exploration and exploitation. The result of DBFO has been compared with Ant Colony Optimisation and Intelligent Water Drops Algorithms. Important features of DBFO are that the bacteria agents do not depend on the local heuristic information but estimates new exploration schemes depending upon the previous experience and covered path analysis. This makes the algorithm better in combination generation for graph-based problems and combination generation for NP hard problems.

  12. Crystallographic fatigue crack growth in a polycrystal: simulations based on FEM and discrete dislocation dynamics

    International Nuclear Information System (INIS)

    Bertolino, G.; Sauzay, M.; Bertolino, G.; Doquet, V.

    2003-01-01

    An attempt to model the variability of short cracks development in high-cycle fatigue is made by coupling finite element calculations of the stresses ahead of a microcrack in a polycrystal with simulations of crack growth along slip planes based on discrete dislocations dynamics. The model predicts a large scatter in growth rates related to the roughness of the crack path. It also describes the influence of the mean grain size and the fact that overloads may suppress the endurance limit by allowing arrested cracks to cross the grain boundaries. (authors)

  13. A Discrete Numerical Scheme of Modified Leslie-Gower With Harvesting Model

    Directory of Open Access Journals (Sweden)

    Riski Nur Istiqomah Dinnullah

    2018-05-01

    Full Text Available Recently, exploitation of biological resources and the harvesting of two populations or more are widely practiced, such as fishery or foresty. The simplest way to describe the interaction of two species is by using predator prey model, that is one species feeds on another. The Leslie-Gower predator prey model has been studied in many works. In this paper, we use Euler method to discretisize the modified Leslie-Gower with harvesting model. The model consists of two simultanious predator prey equations. We show numerically that this discrete numerical scheme model is dynamically consistent with its continuous model only for relatively small step-size. By using computer simulation software, we show that equlibrium points can be stable, saddles, and unstable. It is shown that the numerical simulations not only illustrate the results, but also show the rich dynamics behaviors of the discrete system.

  14. Disease processes as hybrid dynamical systems

    Directory of Open Access Journals (Sweden)

    Pietro Liò

    2012-08-01

    Full Text Available We investigate the use of hybrid techniques in complex processes of infectious diseases. Since predictive disease models in biomedicine require a multiscale approach for understanding the molecule-cell-tissue-organ-body interactions, heterogeneous methodologies are often employed for describing the different biological scales. Hybrid models provide effective means for complex disease modelling where the action and dosage of a drug or a therapy could be meaningfully investigated: the infection dynamics can be classically described in a continuous fashion, while the scheduling of multiple treatment discretely. We define an algebraic language for specifying general disease processes and multiple treatments, from which a semantics in terms of hybrid dynamical system can be derived. Then, the application of control-theoretic tools is proposed in order to compute the optimal scheduling of multiple therapies. The potentialities of our approach are shown in the case study of the SIR epidemic model and we discuss its applicability on osteomyelitis, a bacterial infection affecting the bone remodelling system in a specific and multiscale manner. We report that formal languages are helpful in giving a general homogeneous formulation for the different scales involved in a multiscale disease process; and that the combination of hybrid modelling and control theory provides solid grounds for computational medicine.

  15. An application of multigrid methods for a discrete elastic model for epitaxial systems

    International Nuclear Information System (INIS)

    Caflisch, R.E.; Lee, Y.-J.; Shu, S.; Xiao, Y.-X.; Xu, J.

    2006-01-01

    We apply an efficient and fast algorithm to simulate the atomistic strain model for epitaxial systems, recently introduced by Schindler et al. [Phys. Rev. B 67, 075316 (2003)]. The discrete effects in this lattice statics model are crucial for proper simulation of the influence of strain for thin film epitaxial growth, but the size of the atomistic systems of interest is in general quite large and hence the solution of the discrete elastic equations is a considerable numerical challenge. In this paper, we construct an algebraic multigrid method suitable for efficient solution of the large scale discrete strain model. Using this method, simulations are performed for several representative physical problems, including an infinite periodic step train, a layered nanocrystal, and a system of quantum dots. The results demonstrate the effectiveness and robustness of the method and show that the method attains optimal convergence properties, regardless of the problem size, the geometry and the physical parameters. The effects of substrate depth and of invariance due to traction-free boundary conditions are assessed. For a system of quantum dots, the simulated strain energy density supports the observations that trench formation near the dots provides strain relief

  16. Uniform discretizations: a quantization procedure for totally constrained systems including gravity

    Energy Technology Data Exchange (ETDEWEB)

    Campiglia, Miguel [Instituto de Fisica, Facultad de Ciencias, Igua 4225, esq. Mataojo, Montevideo (Uruguay); Di Bartolo, Cayetano [Departamento de Fisica, Universidad Simon BolIvar, Aptdo. 89000, Caracas 1080-A (Venezuela); Gambini, Rodolfo [Instituto de Fisica, Facultad de Ciencias, Igua 4225, esq. Mataojo, Montevideo (Uruguay); Pullin, Jorge [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States)

    2007-05-15

    We present a new method for the quantization of totally constrained systems including general relativity. The method consists in constructing discretized theories that have a well defined and controlled continuum limit. The discrete theories are constraint-free and can be readily quantized. This provides a framework where one can introduce a relational notion of time and that nevertheless approximates in a well defined fashion the theory of interest. The method is equivalent to the group averaging procedure for many systems where the latter makes sense and provides a generalization otherwise. In the continuum limit it can be shown to contain, under certain assumptions, the 'master constraint' of the 'Phoenix project'. It also provides a correspondence principle with the classical theory that does not require to consider the semiclassical limit.

  17. Fashion cycle dynamics in a model with endogenous discrete evolution of heterogeneous preferences

    Science.gov (United States)

    Naimzada, A. K.; Pireddu, M.

    2018-05-01

    We propose a discrete-time exchange economy evolutionary model, in which two groups of agents are characterized by different preference structures. The reproduction level of a group is related to its attractiveness degree, which depends on the social visibility level, determined by the consumption choices of the agents in that group. The attractiveness of a group is initially increasing with its visibility level, but it becomes decreasing when its visibility exceeds a given threshold value, due to a congestion effect. Thanks to the combined action of the price mechanism and of the share updating rule, the model is able to reproduce the recurrent dynamic behavior typical of the fashion cycle, presenting booms and busts both in the agents' consumption choices and in the population shares. More precisely, we investigate the existence of equilibria and their stability, and we perform a qualitative bifurcation analysis on varying the parameter describing the group's heterogeneity degree. From a global viewpoint, we detect, among others, multistability phenomena in which the group coexistence is dynamic, either regular or irregular, and the fashion cycle occurs. The existence of complex dynamics is proven via the method of the turbulent maps, working with homoclinic orbits. Finally, we provide a social and economic interpretation of the main scenarios.

  18. Discrete optimization in architecture extremely modular systems

    CERN Document Server

    Zawidzki, Machi

    2017-01-01

    This book is comprised of two parts, both of which explore modular systems: Pipe-Z (PZ) and Truss-Z (TZ), respectively. It presents several methods of creating PZ and TZ structures subjected to discrete optimization. The algorithms presented employ graph-theoretic and heuristic methods. The underlying idea of both systems is to create free-form structures using the minimal number of types of modular elements. PZ is more conceptual, as it forms single-branch mathematical knots with a single type of module. Conversely, TZ is a skeletal system for creating free-form pedestrian ramps and ramp networks among any number of terminals in space. In physical space, TZ uses two types of modules that are mirror reflections of each other. The optimization criteria discussed include: the minimal number of units, maximal adherence to the given guide paths, etc.

  19. Sliding mode control-based linear functional observers for discrete-time stochastic systems

    Science.gov (United States)

    Singh, Satnesh; Janardhanan, Sivaramakrishnan

    2017-11-01

    Sliding mode control (SMC) is one of the most popular techniques to stabilise linear discrete-time stochastic systems. However, application of SMC becomes difficult when the system states are not available for feedback. This paper presents a new approach to design a SMC-based functional observer for discrete-time stochastic systems. The functional observer is based on the Kronecker product approach. Existence conditions and stability analysis of the proposed observer are given. The control input is estimated by a novel linear functional observer. This approach leads to a non-switching type of control, thereby eliminating the fundamental cause of chatter. Furthermore, the functional observer is designed in such a way that the effect of process and measurement noise is minimised. Simulation example is given to illustrate and validate the proposed design method.

  20. Symmetric, discrete fractional splines and Gabor systems

    DEFF Research Database (Denmark)

    Søndergaard, Peter Lempel

    2006-01-01

    In this paper we consider fractional splines as windows for Gabor frames. We introduce two new types of symmetric, fractional splines in addition to one found by Unser and Blu. For the finite, discrete case we present two families of splines: One is created by sampling and periodizing the continu......In this paper we consider fractional splines as windows for Gabor frames. We introduce two new types of symmetric, fractional splines in addition to one found by Unser and Blu. For the finite, discrete case we present two families of splines: One is created by sampling and periodizing...... the continuous splines, and one is a truly finite, discrete construction. We discuss the properties of these splines and their usefulness as windows for Gabor frames and Wilson bases....

  1. Dynamics of Multibody Systems Near Lagrangian Points

    Science.gov (United States)

    Wong, Brian

    This thesis examines the dynamics of a physically connected multi-spacecraft system in the vicinity of the Lagrangian points of a Circular Restricted Three-Body System. The spacecraft system is arranged in a wheel-spoke configuration with smaller and less massive satellites connected to a central hub using truss/beams or tether connectors. The kinematics of the system is first defined, and the kinetic, gravitational potential energy and elastic potential energy of the system are derived. The Assumed Modes Method is used to discretize the continuous variables of the system, and a general set of ordinary differential equations describing the dynamics of the connectors and the central hub are obtained using the Lagrangian method. The flexible body dynamics of the tethered and truss connected systems are examined using numerical simulations. The results show that these systems experienced only small elastic deflections when they are naturally librating or rotating at moderate angular velocities, and these deflections have relatively small effect on the attitude dynamics of the systems. Based on these results, it is determined that the connectors can be modeled as rigid when only the attitude dynamics of the system is of interest. The equations of motion of rigid satellites stationed at the Lagrangian points are linearized, and the stability conditions of the satellite are obtained from the linear equations. The required conditions are shown to be similar to those of geocentric satellites. Study of the linear equations also revealed the resonant conditions of rigid Lagrangian point satellites, when a librational natural frequency of the satellite matches the frequency of its station-keeping orbit leading to large attitude motions. For tethered satellites, the linear analysis shows that the tethers are in stable equilibrium when they lie along a line joining the two primary celestial bodies of the Three-Body System. Numerical simulations are used to study the long term

  2. Application of discrete function and software control flow to dependability assessment of embedded digital system

    International Nuclear Information System (INIS)

    Choi, Jong Gyun; Seong, Poong Hyun

    2001-01-01

    This article describes a combinatorial model for estimating the reliability of the embedded digital system by means of discrete function theory and software control flow. This model includes a coverage model for fault processing mechanisms implemented in digital system. Furthermore, the model considers the interaction between hardware and software. The fault processing mechanisms make it difficult for many types of components in digital system to be treated as binary state, good or bad. The discrete function theory provides a complete analysis of multi-state system as which the digital system can be regarded Through adaptation software control flow to discrete function theory, the HW/SW interaction is considered for estimation of the reliability of digital system. Using this model, we predict the reliability of one board controller in a digital system, Interposing Logic System(ILS), which is installed in YGN nuclear power units 3 and 4. Since the proposed model is general combinatinal model, the simplification of this model becomes a conservative model that treats the system as binary state. Moreover, if information for coverage factor of fault tolerance mechanisms implemented in system through fault injection experiment is obtained, this model can consider detailed interaction of system components

  3. Discrete Displacement Hydraulic Power Take-Off System for the Wavestar Wave Energy Converter

    DEFF Research Database (Denmark)

    Hansen, Rico Hjerm; Kramer, Morten; Vidal, Enrique

    2013-01-01

    . This is achieved by using special multi-chambered cylinders, where the different chambers may be connected to the available system pressures using fast on/off valves. Resultantly, a Discrete Displacement Cylinder (DDC) is created, allowing near loss free discrete force control. This paper presents a complete PTO...... system for a 20 float Wavestar based on the DDC. The WEC and PTO is rigorously modeled from incident waves to the electric output to the grid. The resulting model of +600 states is simulated in different irregular seas, showing that power conversion efficiencies above 70% from input power to electrical...

  4. Discrete-Time Biomedical Signal Encryption

    Directory of Open Access Journals (Sweden)

    Victor Grigoraş

    2017-12-01

    Full Text Available Chaotic modulation is a strong method of improving communication security. Analog and discrete chaotic systems are presented in actual literature. Due to the expansion of digital communication, discrete-time systems become more efficient and closer to actual technology. The present contribution offers an in-depth analysis of the effects chaos encryption produce on 1D and 2D biomedical signals. The performed simulations show that modulating signals are precisely recovered by the synchronizing receiver if discrete systems are digitally implemented and the coefficients precisely correspond. Channel noise is also applied and its effects on biomedical signal demodulation are highlighted.

  5. The Basics of Anisotropy-Based Analysis of Discrete Time-Invariant Systems

    Directory of Open Access Journals (Sweden)

    I. R. Belov

    2017-01-01

    Full Text Available When investigating a behavior of dynamical systems, we should take into account the external noises, which have an effect on the system. The article introduces a concept of the anisotropy-based norm of the system as one of the ways to describe the measure of the effect of external disturbances on the system. The definition of the anisotropic norm includes some concepts from information theory, such as relative entropy and anisotropy. The theoretical section at the beginning of the article describes these definitions. The considered norm of the system can be evaluated in several ways. The article examines two methods - in the frequency domain and in the state space. To find the norm in the state space it is necessary to find the solution of the Riccati equation. This problem is rather laborious. So the algorithms to avoid the solution of Riccati equation are used in application of anisotropy-based norm’s evaluation methods. The principle of these algorithms is replacement of Riccati equation by the system of linear matrix inequalities. The software implementation of methods under consideration is designed using the MATLAB packages. The calculation results of the anisotropy-based norm for a given linear discrete system are obtained using this program. The article presents these results as graphs.This article enters into the Master's qualifying work "Basic quality criteria in the theory of linear systems". In this paper we consider various quality criteria, the solution of the optimal control problem for each of them, and compare the results obtained for different criteria. The anisotropy-based norm considered in the article is one of the quality criteria.

  6. Discrete Hamiltonian evolution and quantum gravity

    International Nuclear Information System (INIS)

    Husain, Viqar; Winkler, Oliver

    2004-01-01

    We study constrained Hamiltonian systems by utilizing general forms of time discretization. We show that for explicit discretizations, the requirement of preserving the canonical Poisson bracket under discrete evolution imposes strong conditions on both allowable discretizations and Hamiltonians. These conditions permit time discretizations for a limited class of Hamiltonians, which does not include homogeneous cosmological models. We also present two general classes of implicit discretizations which preserve Poisson brackets for any Hamiltonian. Both types of discretizations generically do not preserve first class constraint algebras. Using this observation, we show that time discretization provides a complicated time gauge fixing for quantum gravity models, which may be compared with the alternative procedure of gauge fixing before discretization

  7. An integrable semi-discretization of the Boussinesq equation

    International Nuclear Information System (INIS)

    Zhang, Yingnan; Tian, Lixin

    2016-01-01

    Highlights: • A new integrable semi-discretization of the Boussinesq equation is present. • A Bäcklund transformation and a Lax pair for the differential-difference system is derived by using Hirota's bilinear method. • The soliton solutions of 'good' Boussinesq equation and numerical algorithms are investigated. - Abstract: In this paper, we present an integrable semi-discretization of the Boussinesq equation. Different from other discrete analogues, we discretize the ‘time’ variable and get an integrable differential-difference system. Under a standard limitation, the differential-difference system converges to the continuous Boussinesq equation such that the discrete system can be used to design numerical algorithms. Using Hirota's bilinear method, we find a Bäcklund transformation and a Lax pair of the differential-difference system. For the case of ‘good’ Boussinesq equation, we investigate the soliton solutions of its discrete analogue and design numerical algorithms. We find an effective way to reduce the phase shift caused by the discretization. The numerical results coincide with our analysis.

  8. A continuous-discrete approach for evaluation of natural frequencies and mode shapes of high-rise buildings

    Science.gov (United States)

    Malekinejad, Mohsen; Rahgozar, Reza; Malekinejad, Ali; Rahgozar, Peyman

    2016-09-01

    In this paper, a continuous-discrete approach based on the concept of lumped mass and equivalent continuous approach is proposed for free vibration analysis of combined system of framed tube, shear core and outrigger-belt truss in high-rise buildings. This system is treated as a continuous system (i.e., discrete beams and columns are replaced with equivalent continuous membranes) and a discrete system (or lumped mass system) at different stages of dynamic analysis. The structure is discretized at each floor of the building as a series of lumped masses placed at the center of shear core. Each mass has two transitional degrees of freedom (lateral and axial( and one rotational. The effect of shear core and outrigger-belt truss on framed tube system is modeled as a rotational spring placed at the location of outrigger-belt truss system along structure's height. By solving the resulting eigen problem, natural frequencies and mode-shapes are obtained. Numerical examples are presented to show acceptable accuracy of the procedure in estimating the fundamental frequencies and corresponding mode shapes of the combined system as compared to finite element analysis of the complete structure. The simplified proposed method is much faster and should be more suitable for rapid interactive design.

  9. Aggregation patterns from nonlocal interactions: Discrete stochastic and continuum modeling

    KAUST Repository

    Hackett-Jones, Emily J.

    2012-04-17

    Conservation equations governed by a nonlocal interaction potential generate aggregates from an initial uniform distribution of particles. We address the evolution and formation of these aggregating steady states when the interaction potential has both attractive and repulsive singularities. Currently, no existence theory for such potentials is available. We develop and compare two complementary solution methods, a continuous pseudoinverse method and a discrete stochastic lattice approach, and formally show a connection between the two. Interesting aggregation patterns involving multiple peaks for a simple doubly singular attractive-repulsive potential are determined. For a swarming Morse potential, characteristic slow-fast dynamics in the scaled inverse energy is observed in the evolution to steady state in both the continuous and discrete approaches. The discrete approach is found to be remarkably robust to modifications in movement rules, related to the potential function. The comparable evolution dynamics and steady states of the discrete model with the continuum model suggest that the discrete stochastic approach is a promising way of probing aggregation patterns arising from two- and three-dimensional nonlocal interaction conservation equations. © 2012 American Physical Society.

  10. Reflectionless Discrete Schrödinger Operators are Spectrally Atypical

    Science.gov (United States)

    VandenBoom, Tom

    2017-12-01

    We prove that, if an isospectral torus contains a discrete Schrödinger operator with nonconstant potential, the shift dynamics on that torus cannot be minimal. Consequently, we specify a generic sense in which finite unions of nondegenerate closed intervals having capacity one are not the spectrum of any reflectionless discrete Schrödinger operator. We also show that the only reflectionless discrete Schrödinger operators having zero, one, or two spectral gaps are periodic.

  11. Human visual system automatically encodes sequential regularities of discrete events.

    Science.gov (United States)

    Kimura, Motohiro; Schröger, Erich; Czigler, István; Ohira, Hideki

    2010-06-01

    For our adaptive behavior in a dynamically changing environment, an essential task of the brain is to automatically encode sequential regularities inherent in the environment into a memory representation. Recent studies in neuroscience have suggested that sequential regularities embedded in discrete sensory events are automatically encoded into a memory representation at the level of the sensory system. This notion is largely supported by evidence from investigations using auditory mismatch negativity (auditory MMN), an event-related brain potential (ERP) correlate of an automatic memory-mismatch process in the auditory sensory system. However, it is still largely unclear whether or not this notion can be generalized to other sensory modalities. The purpose of the present study was to investigate the contribution of the visual sensory system to the automatic encoding of sequential regularities using visual mismatch negativity (visual MMN), an ERP correlate of an automatic memory-mismatch process in the visual sensory system. To this end, we conducted a sequential analysis of visual MMN in an oddball sequence consisting of infrequent deviant and frequent standard stimuli, and tested whether the underlying memory representation of visual MMN generation contains only a sensory memory trace of standard stimuli (trace-mismatch hypothesis) or whether it also contains sequential regularities extracted from the repetitive standard sequence (regularity-violation hypothesis). The results showed that visual MMN was elicited by first deviant (deviant stimuli following at least one standard stimulus), second deviant (deviant stimuli immediately following first deviant), and first standard (standard stimuli immediately following first deviant), but not by second standard (standard stimuli immediately following first standard). These results are consistent with the regularity-violation hypothesis, suggesting that the visual sensory system automatically encodes sequential

  12. Dynamics of breathers in discrete nonlinear Schrodinger models

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Johansson, Magnus; Aubry, Serge

    1998-01-01

    We review some recent results concerning the existence and stability of spatially localized and temporally quasiperiodic (non-stationary) excitations in discrete nonlinear Schrodinger (DNLS) models. In two dimensions, we show the existence of linearly stable, stationary and non-stationary localized...

  13. Discrete simulation system based on artificial intelligence methods

    Energy Technology Data Exchange (ETDEWEB)

    Futo, I; Szeredi, J

    1982-01-01

    A discrete event simulation system based on the AI language Prolog is presented. The system called t-Prolog extends the traditional possibilities of simulation languages toward automatic problem solving by using backtrack in time and automatic model modification depending on logical deductions. As t-Prolog is an interactive tool, the user has the possibility to interrupt the simulation run to modify the model or to force it to return to a previous state for trying possible alternatives. It admits the construction of goal-oriented or goal-seeking models with variable structure. Models are defined in a restricted version of the first order predicate calculus using Horn clauses. 21 references.

  14. H 2 guaranteed cost control of discrete linear systems

    Directory of Open Access Journals (Sweden)

    Colmenares W.

    2000-01-01

    Full Text Available This paper presents necessary and sufficient conditions for the existence of a quadratically stabilizing output feedback controller which also assures H 2 guaranteed cost performance on a discrete linear uncertain system where the uncertainty is of the norm bounded type. The conditions are presented as a collection of linear matrix inequalities.The solution, however requires a search over a scalar parameter space.

  15. Time Span of Discretion and Administrative Work in School Systems: Results of a Pilot Study.

    Science.gov (United States)

    Allison, Derek J.; Morfitt, Grace

    This paper presents findings of a study that utilized Elliott Jaques' theories of organizational depth structure and time span of discretion in administrative work to examine administrators' responsibilities in two Ontario (Canada) school systems. The theory predicts that the time-span of discretion associated with the administrative tasks will…

  16. On constructing optimistic simulation algorithms for the discrete event system specification

    International Nuclear Information System (INIS)

    Nutaro, James J.

    2008-01-01

    This article describes a Time Warp simulation algorithm for discrete event models that are described in terms of the Discrete Event System Specification (DEVS). The article shows how the total state transition and total output function of a DEVS atomic model can be transformed into an event processing procedure for a logical process. A specific Time Warp algorithm is constructed around this logical process, and it is shown that the algorithm correctly simulates a DEVS coupled model that consists entirely of interacting atomic models. The simulation algorithm is presented abstractly; it is intended to provide a basis for implementing efficient and scalable parallel algorithms that correctly simulate DEVS models

  17. Lyapunov spectrum of the separated flow around the NACA 0012 airfoil and its dependence on numerical discretization

    International Nuclear Information System (INIS)

    Fernandez, P.; Wang, Q.

    2017-01-01

    We investigate the impact of numerical discretization on the Lyapunov spectrum of separated flow simulations. The two-dimensional chaotic flow around the NACA 0012 airfoil at a low Reynolds number and large angle of attack is considered to that end. Time, space and accuracy-order refinement studies are performed to examine each of these effects separately. Numerical results show that the time discretization has a small impact on the dynamics of the system, whereas the spatial discretization can dramatically change them. Also, the finite-time Lyapunov exponents associated to unstable modes are shown to be positively skewed, and quasi-homoclinic tangencies are observed in the attractor of the system. The implications of these results on flow physics and sensitivity analysis of chaotic flows are discussed.

  18. Lyapunov spectrum of the separated flow around the NACA 0012 airfoil and its dependence on numerical discretization

    Science.gov (United States)

    Fernandez, P.; Wang, Q.

    2017-12-01

    We investigate the impact of numerical discretization on the Lyapunov spectrum of separated flow simulations. The two-dimensional chaotic flow around the NACA 0012 airfoil at a low Reynolds number and large angle of attack is considered to that end. Time, space and accuracy-order refinement studies are performed to examine each of these effects separately. Numerical results show that the time discretization has a small impact on the dynamics of the system, whereas the spatial discretization can dramatically change them. Also, the finite-time Lyapunov exponents associated to unstable modes are shown to be positively skewed, and quasi-homoclinic tangencies are observed in the attractor of the system. The implications of these results on flow physics and sensitivity analysis of chaotic flows are discussed.

  19. Effect of delayed response in growth on the dynamics of a chemostat model with impulsive input

    International Nuclear Information System (INIS)

    Jiao Jianjun; Yang Xiaosong; Chen Lansun; Cai Shaohong

    2009-01-01

    In this paper, a chemostat model with delayed response in growth and impulsive perturbations on the substrate is considered. Using the discrete dynamical system determined by the stroboscopic map, we obtain a microorganism-extinction periodic solution, further, the globally attractive condition of the microorganism-extinction periodic solution is obtained. By the use of the theory on delay functional and impulsive differential equation, we also obtain the permanent condition of the investigated system. Our results indicate that the discrete time delay has influence to the dynamics behaviors of the investigated system, and provide tactical basis for the experimenters to control the outcome of the chemostat. Furthermore, numerical analysis is inserted to illuminate the dynamics of the system affected by the discrete time delay.

  20. Discrete gradients in discrete classical mechanics

    International Nuclear Information System (INIS)

    Renna, L.

    1987-01-01

    A simple model of discrete classical mechanics is given where, starting from the continuous Hamilton equations, discrete equations of motion are established together with a proper discrete gradient definition. The conservation laws of the total discrete momentum, angular momentum, and energy are demonstrated