Stabilities of MHD rotational discontinuities
Wang, S.
1984-11-01
In this paper, the stabilities of MHD rotational discontinuities are analyzed. The results show that the rotational discontinuities in an incompressible magnetofluid are not always stable with respect to infinitesimal perturbation. The instability condition in a special case is obtained. (author)
Feedback stabilization initiative
NONE
1997-06-01
Much progress has been made in attaining high confinement regimes in magnetic confinement devices. These operating modes tend to be transient, however, due to the onset of MHD instabilities, and their stabilization is critical for improved performance at steady state. This report describes the Feedback Stabilization Initiative (FSI), a broad-based, multi-institutional effort to develop and implement methods for raising the achievable plasma betas through active MHD feedback stabilization. A key element in this proposed effort is the Feedback Stabilization Experiment (FSX), a medium-sized, national facility that would be specifically dedicated to demonstrating beta improvement in reactor relevant plasmas by using a variety of MHD feedback stabilization schemes.
Feedback stabilization initiative
1997-06-01
Much progress has been made in attaining high confinement regimes in magnetic confinement devices. These operating modes tend to be transient, however, due to the onset of MHD instabilities, and their stabilization is critical for improved performance at steady state. This report describes the Feedback Stabilization Initiative (FSI), a broad-based, multi-institutional effort to develop and implement methods for raising the achievable plasma betas through active MHD feedback stabilization. A key element in this proposed effort is the Feedback Stabilization Experiment (FSX), a medium-sized, national facility that would be specifically dedicated to demonstrating beta improvement in reactor relevant plasmas by using a variety of MHD feedback stabilization schemes
On the stability of rotational discontinuities
Richter, P.; Scholer, M.
1989-01-01
The stability of symmetric rotational discontinuities in which the magnetic field rotates by 180 degree is investigated by means of a one-dimensional self-consistent hybrid code. Rotational discontinuities with an angle Θ > 45 degree between the discontinuity normal direction and the upstream magnetic field are found to be relatively stable. The discontinuity normal is in the x direction and the initial magnetic field has finite y component only in the transition region. In the case of the ion (left-handed) sense of rotation of the tangential magnetic field, the transition region does not broaden with time. In the case of the electron (right-handed) sense of rotation, a damped wavetrain builds up in the B y component downstream of the rotational discontinuity and the discontinuity broadens with time. Rotational discontinuities with smaller angles, Θ, are unstable. Examples for a rotational discontinuity with Θ = 30 degree and the electron sense of rotation as well as a rotational discontinuity with Θ = 15 degree and the ion sense of rotation show that these discontinuities into waves. These waves travel approximately with Alfven velocity in the upstream direction and are therefore phase standing in the simulation system. The magnetic hodograms of these disintegrated discontinuities are S-shaped. The upstream portion of the hodogram is always right-handed; the downstream portion is always left-handed
Feedback stabilization of plasma instabilities
Cap, F.F.
1977-01-01
This paper reviews the theoretical and experimental aspects of feedback stabilization. After giving an outline of a general theoretical model for electrostatic instabilities the author provides a theoretical analysis of the suppression of various types of instability. Experiments which have been carried out on the feedback stabilization of various types of plasma instability are reported. An extensive list of references is given. (B.R.H.)
On the stability of rotational discontinuities and intermediate shocks
Lee, L.C.; Huang, L.; Chao, J.K.
1989-01-01
The stability of rotational discontinuities and intermediate shocks is studied based on a hybrid simulation code. The simulation results show that rotational discontinuities are stable and intermediate shocks are not stationary. Intermediate shocks tend to evolve to rotational discontinuities and waves. The authors employ several different initial profiles for the magnetic field in the transition region and find that the final structure of the discontinuities or shocks is not sensitive to the initial magnetic field profile. The present results are different from those obtained from the resistive MHD simulations. Furthermore, their study indicates that the kinetic effect of particles plays an important role in the structure and stability of rotational discontinuities and intermediate shocks
Auto-control experiments on DIDO using discontinuous feedback
Lawrence, L.A.J.
1959-12-01
Experiments on auto-controlling the reactor DIDO are described and the equipment design discussed in some detail. The experiments are carried out to show the suitability of an on/off type of control for the maintenance of: (a) a constant flux level in the presence of noise. (b) constant period during power change. The controlling signals stem from measurement of neutron flux computed to give deviation from demanded power, and period respectively. These signals are fed to a D.C. amplifier with variable deadbang whose output is used to control relays, these in turn control the coarse control arms by means of three-phase motors. The system is designed on the basis of locus diagrams, a conventional non-linear technique being used to handle the relay performance. Calculation of the reactor transfer function at high and low power respectively shows that the stability margin is not appreciably affected by the inherent thermodynamic feedback in the reactor core. (author)
Stability Analysis of Discontinuous Galerkin Approximations to the Elastodynamics Problem
Antonietti, Paola F.
2015-11-21
We consider semi-discrete discontinuous Galerkin approximations of both displacement and displacement-stress formulations of the elastodynamics problem. We prove the stability analysis in the natural energy norm and derive optimal a-priori error estimates. For the displacement-stress formulation, schemes preserving the total energy of the system are introduced and discussed. We verify our theoretical estimates on two and three dimensions test problems.
Stability Analysis of Discontinuous Galerkin Approximations to the Elastodynamics Problem
Antonietti, Paola F.; Ayuso de Dios, Blanca; Mazzieri, Ilario; Quarteroni, Alfio
2015-01-01
We consider semi-discrete discontinuous Galerkin approximations of both displacement and displacement-stress formulations of the elastodynamics problem. We prove the stability analysis in the natural energy norm and derive optimal a-priori error estimates. For the displacement-stress formulation, schemes preserving the total energy of the system are introduced and discussed. We verify our theoretical estimates on two and three dimensions test problems.
Equations for studies of feedback stabilization
Boozer, A.H.
1998-01-01
Important ideal magnetohydrodynamic (MHD) instabilities grow slowly when a conducting wall surrounds a toroidal plasma. Feedback stabilization of these instabilities may be required for tokamaks and other magnetic confinement concepts to achieve adequate plasma pressure and self-driven current for practical fusion power. Equations are derived for simulating feedback stabilization, which require the minimum information about an ideal plasma for an exact analysis. The equations are solved in the approximation of one unstable mode, one wall circuit, one feedback circuit, and one sensor circuit. The analysis based on a single unstable mode is shown to be mathematically equivalent to the standard analysis of feedback of the axisymmetric vertical instability of tokamaks. Unlike that analysis, the method presented here applies to multiple modes that are coupled by the wall and to arbitrary toroidal mode numbers. copyright 1998 American Institute of Physics
Theory and Applications of Discontinuous State Feedback Generating Chaos for Linear Systems
Xiao-Dan, Zhang; Zhen, Wang; Pin-Dong, Zhao
2008-01-01
We investigate a kind of chaos generating technique on a type of n-dimensional linear differential systems by adding feedback control items under a discontinuous state. This method is checked with some examples of numeric simulation. A constructive theorem is proposed for generalized synchronization related to the above chaotic system
Feedback stabilization of electrostatic reactive instabilities
Richards, R.K.
1976-01-01
A general theory for the feedback stabilization of electrostatic reactive instabilities is developed which includes the effects of dissipation in the plasma and frequency dependence in the sensor-suppressor elements and in the external feedback circuit. This theory is compared to experiments involving particular reactive instability, an interchange mode, found in a magnetic mirror device; these results are found to be in good agreement with theory. One noteworthy result is that a frequency dependence in the overall gain and phase shift of the feedback loop can cause destabilization at large gain. Multimode feedback stabilization is studied using the spatial variation of two interchange modes to separate them such that each can be acted upon individually by the feedback system. The transfer function of the plasma is also examined. This analysis is used for mode identification and location of the pole positions. As an example of using feedback as a diagnostic tool, instability induced transport is studied. Here feedback is used to control the amplitude of fluctuations at saturation
Feedback stabilization of axisymmetric modes in tokamaks
Jardin, S.C.; Larrabee, D.A.
1982-01-01
Noncircular tokamak plasmas can be unstable to ideal MHD axisymmetric instabilities. Passive conductors with finite resistivity will at best slow down these instabilities to the resistive (L/R) time of the conductors. An active feedback system far from the plasma which responds on this resistive time can stabilize the system provided its mutual inductance with the passive coils is small enough
LHC beam stability and feedback control
Steinhagen, Ralph
2007-07-20
This report presents the stability and the control of the Large Hadron Collider's (LHC) two beam orbits and their particle momenta using beam-based feedback systems. The aim of this report is to contribute to a safe and reliable LHC commissioning and machine operation. The first part of the analysis gives an estimate of the expected sources of orbit and energy perturbations that can be grouped into environmental sources, machine-inherent sources and machine element failures: the slowest perturbation due to ground motion, tides, temperature fluctuations of the tunnel and other environmental influences are described in this report by a propagation model that is both qualitatively and quantitatively supported by geophone and beam motion measurements at LEP and other CERN accelerators. The second part of this analysis deals with the control of the two LHC beams' orbit and energy through automated feedback systems. Based on the reading of the more than 1056 beam position monitors (BPMs) that are distributed over the machine, a central global feedback controller calculates new deflection strengths for the more than 1060 orbit corrector magnets (CODs) that are suitable to correct the orbit and momentum around their references. this report provides an analysis of the BPMs and CODs involved in the orbit and energy feedback. The BPMs are based on a wide-band time normaliser circuit that converts the transverse beam position reading of each individual particle bunch into two laser pulses that are separated by a time delay and transmitted through optical fibres to an acquisition card that converts the delay signals into a digital position. A simple error model has been tested and compared to the measurement accuracy of LHC type BPMs, obtained through beam-based measurements in the SPS. The average beam position is controlled through 1060 superconducting and individually powered corrector dipole magnets. The proposed correction in 'time-domain' consists of a
LHC beam stability and feedback control
Steinhagen, Ralph
2007-01-01
This report presents the stability and the control of the Large Hadron Collider's (LHC) two beam orbits and their particle momenta using beam-based feedback systems. The aim of this report is to contribute to a safe and reliable LHC commissioning and machine operation. The first part of the analysis gives an estimate of the expected sources of orbit and energy perturbations that can be grouped into environmental sources, machine-inherent sources and machine element failures: the slowest perturbation due to ground motion, tides, temperature fluctuations of the tunnel and other environmental influences are described in this report by a propagation model that is both qualitatively and quantitatively supported by geophone and beam motion measurements at LEP and other CERN accelerators. The second part of this analysis deals with the control of the two LHC beams' orbit and energy through automated feedback systems. Based on the reading of the more than 1056 beam position monitors (BPMs) that are distributed over the machine, a central global feedback controller calculates new deflection strengths for the more than 1060 orbit corrector magnets (CODs) that are suitable to correct the orbit and momentum around their references. this report provides an analysis of the BPMs and CODs involved in the orbit and energy feedback. The BPMs are based on a wide-band time normaliser circuit that converts the transverse beam position reading of each individual particle bunch into two laser pulses that are separated by a time delay and transmitted through optical fibres to an acquisition card that converts the delay signals into a digital position. A simple error model has been tested and compared to the measurement accuracy of LHC type BPMs, obtained through beam-based measurements in the SPS. The average beam position is controlled through 1060 superconducting and individually powered corrector dipole magnets. The proposed correction in 'time-domain' consists of a proportional
Dynamic stability and failure modes of slopes in discontinuous rock mass
Shimizu, Yasuhiro; Aydan, O.; Ichikawa, Yasuaki; Kawamoto, Toshikazu.
1988-01-01
The stability of rock slopes during earthquakes are of great concern in rock engineering works such as highway, dam, and nuclear power station constructions. As rock mass in nature is usually discontinuous, the stability of rock slopes will be geverned by the spatial distribution of discontinuities in relation with the geometry of slope and their mechanical properties rather than the rock element. The authors have carried out some model tests on discontinuous rock slopes using three different model tests techniques in order to investigate the dynamic behaviour and failure modes of the slopes in discontinuous rock mass. This paper describes the findings and observations made on model rock slopes with various discontinuity patterns and slope geometry. In addition some stability criterions are developed and the calculated results are compared with those of experiments. (author)
Feedback stabilized tandem Fabry-Perot interferometer
Fukushima, Hiroyuki; Ito, Mikio; Shirasu, Hiroshi.
1986-01-01
A new system for measuring the isotopic ratio of uranium, in which two plane-type Fabry-Perot interferometers (tandem FP) are connected in series. The parallelism between the two FPs is achieved automatically by a feedback control mechanism based on laser interference fringe monitoring. The structure of the tandem FP, feedback control system, automatic parallelism adjustment mechanism and wavelength synchronization mechanism are described in detail. For experiments, a hollow cathode discharge tube of a pulse discharge type is employed. Measurements are made to determine the effects of pulse width on the 238 U peak height of 502.7 nm line, recorder traces of 235 U and 238 U lines, half width for 238 U component of the 502.7 nm line, SN ratio, reproducibility of the 235 U/ 238 U peak height ratio and 235 U/ 238 U intensity ratio. Considerations are made on the spectral line width, contrast, transmission factor, and stability of automatic parallelism control and wavelength synchronization. Results obtained indicates that a single-type interferometer would serve adequately for measuring the 235 U/ 238 U ratio if the automatic parallelism control developed here is used. The ultimate object of the tandem system is to make measurement of 236 U. Satisfactory results have not obtained as yet, but most likely the present system would make it possible if a light source of a higher intensity and advanced photometric techniques are developed. (Nogami, K.)
Periodic feedback stabilization for linear periodic evolution equations
Wang, Gengsheng
2016-01-01
This book introduces a number of recent advances regarding periodic feedback stabilization for linear and time periodic evolution equations. First, it presents selected connections between linear quadratic optimal control theory and feedback stabilization theory for linear periodic evolution equations. Secondly, it identifies several criteria for the periodic feedback stabilization from the perspective of geometry, algebra and analyses respectively. Next, it describes several ways to design periodic feedback laws. Lastly, the book introduces readers to key methods for designing the control machines. Given its coverage and scope, it offers a helpful guide for graduate students and researchers in the areas of control theory and applied mathematics.
Stability, gain, and robustness in quantum feedback networks
D'Helon, C.; James, M. R.
2006-01-01
In this paper we are concerned with the problem of stability for quantum feedback networks. We demonstrate in the context of quantum optics how stability of quantum feedback networks can be guaranteed using only simple gain inequalities for network components and algebraic relationships determined by the network. Quantum feedback networks are shown to be stable if the loop gain is less than one--this is an extension of the famous small gain theorem of classical control theory. We illustrate the simplicity and power of the small gain approach with applications to important problems of robust stability and robust stabilization
Numerical Feedback Stabilization with Applications to Networks
Simone Göttlich
2017-01-01
Full Text Available The focus is on the numerical consideration of feedback boundary control problems for linear systems of conservation laws including source terms. We explain under which conditions the numerical discretization can be used to design feedback boundary values for network applications such as electric transmission lines or traffic flow systems. Several numerical examples illustrate the properties of the results for different types of networks.
Analytic robust stability analysis of SVD orbit feedback
Pfingstner, Jürgen
2012-01-01
Orbit feedback controllers are indispensable for the operation of modern particle accelerators. Many such controllers are based on the decoupling of the inputs and outputs of the system to be controlled with the help of the singular value decomposition (SVD controller). It is crucial to verify the stability of SVD controllers, also in the presence of mismatches between the used accelerator model and the real machine (robust stability problem). In this paper, analytical criteria for guaranteed stability margins of SVD orbit feedback systems for three different types of model mismatches are presented: scaling errors of actuators and BPMs (beam position monitors) and additive errors of the orbit response matrix. For the derivation of these criteria, techniques from robust control theory have been used, e.g the small gain theorem. The obtained criteria can be easily applied directly to other SVD orbit feedback systems. As an example, the criteria were applied to the orbit feedback system of the Compact Linear ...
Boundary feedback stabilization of distributed parameter systems
Pedersen, Michael
1988-01-01
The author introduces the method of pseudo-differential stabilization. He notes that the theory of pseudo-differential boundary operators is a fruitful approach to problems arising in control and stabilization theory of distributed-parameter systems. The basic pseudo-differential calculus can...
Stability of digital feedback control systems
Larkin Eugene
2018-01-01
Lag time characteristics are used for investigation of stability of linear systems. Digital PID controller is divided onto linear part, which is realized with a soft and pure lag unit, which is realized with both hardware and software. With use notions amplitude and phase margins, condition for stability of system functioning are obtained. Theoretical results are confirm with computer experiment carried out on the third-order system.
Orbit stability and feedback control in synchrotron radiation rings
Yu, L.H.
1989-01-01
Stability of the electron orbit is essential for the utilization of a low emittance storage ring as a high brightness radiation source. We discuss the development of the measurement and feedback control of the closed orbit, with emphasis on the activities as the National Synchrotron Light Source of BNL. We discuss the performance of the beam position detectors in use and under development: the PUE rf detector, split ion chamber detector, photo-emission detector, solid state detector, and the graphite detector. Depending on the specific experiments, different beamlines require different tolerances on the orbit motion. Corresponding to these different requirements, we discuss two approaches to closed orbit feedback: the global and local feedback systems. Then we describe a new scheme for the real time global feedback by implementing a feedback system based upon a harmonic analysis of both the orbit movements and the correction magnetic fields. 14 refs., 6 figs., 2 tabs
Asymptotic stabilization of nonlinear systems using state feedback
D'Attellis, Carlos
1990-01-01
This paper studies the design of state-feedback controllers for the stabilization of single-input single-output nonlinear systems x = f(x) + g(x)u, y = h(x). Two approaches for the stabilization problem are given; the asymptotic stability is achieved by means of: a) nonlinear state feedback: two nonlinear feedbacks are used; the first separates the system in a controllable linear part and in the zeros-dynamic part. The second feedback generates an asymptotically stable equilibrium on the manifold where this dynamics evolves; b) nonlinear dynamic feedback: conditions are established under which the system can follow the output of a completely controllable bilinear system which uses bounded controls. This fact enables the system to reach, using bounded controls too, a desired output value in finite time. As this value corresponds to a state that lays in the attraction basin of a stable equilibrium with the same output, the system evolves to that point. The two methods are illustrated by examples. (Author) [es
Feedback and rotational stabilization of resistive wall modes in ITER
Liu Yueqiang; Bondeson, A.; Chu, M.S.; La Haye, R.J.; Favez, J.-Y.; Lister, J.B.; Gribov, Y.; Gryaznevich, M.; Hender, T.C.; Howell, D.F.
2005-01-01
Different models have been introduced in the stability code MARS-F in order to study the damping effect of resistive wall modes (RWM) in rotating plasmas. Benchmark of MARS-F calculations with RWM experiments on JET and D3D indicates that the semi-kinetic damping model is a good candidate for explaining the damping mechanisms. Based on these results, the critical rotation speeds required for RWM stabilization in an advanced ITER scenario are predicted. Active feedback control of the n = 1 RWM in ITER is also studied using the MARS-F code. (author)
Kubatko, Ethan J.; Yeager, Benjamin A.; Ketcheson, David I.
2013-01-01
Discontinuous Galerkin (DG) spatial discretizations are often used in a method-of-lines approach with explicit strong-stability-preserving (SSP) Runge–Kutta (RK) time steppers for the numerical solution of hyperbolic conservation laws. The time steps that are employed in this type of approach must satisfy Courant–Friedrichs–Lewy stability constraints that are dependent on both the region of absolute stability and the SSP coefficient of the RK method. While existing SSPRK methods have been optimized with respect to the latter, it is in fact the former that gives rise to stricter constraints on the time step in the case of RKDG stability. Therefore, in this work, we present the development of new “DG-optimized” SSPRK methods with stability regions that have been specifically designed to maximize the stable time step size for RKDG methods of a given order in one space dimension. These new methods represent the best available RKDG methods in terms of computational efficiency, with significant improvements over methods using existing SSPRK time steppers that have been optimized with respect to SSP coefficients. Second-, third-, and fourth-order methods with up to eight stages are presented, and their stability properties are verified through application to numerical test cases.
Kubatko, Ethan J.
2013-10-29
Discontinuous Galerkin (DG) spatial discretizations are often used in a method-of-lines approach with explicit strong-stability-preserving (SSP) Runge–Kutta (RK) time steppers for the numerical solution of hyperbolic conservation laws. The time steps that are employed in this type of approach must satisfy Courant–Friedrichs–Lewy stability constraints that are dependent on both the region of absolute stability and the SSP coefficient of the RK method. While existing SSPRK methods have been optimized with respect to the latter, it is in fact the former that gives rise to stricter constraints on the time step in the case of RKDG stability. Therefore, in this work, we present the development of new “DG-optimized” SSPRK methods with stability regions that have been specifically designed to maximize the stable time step size for RKDG methods of a given order in one space dimension. These new methods represent the best available RKDG methods in terms of computational efficiency, with significant improvements over methods using existing SSPRK time steppers that have been optimized with respect to SSP coefficients. Second-, third-, and fourth-order methods with up to eight stages are presented, and their stability properties are verified through application to numerical test cases.
The pointer basis and the feedback stabilization of quantum systems
Li, L; Chia, A; Wiseman, H M
2014-01-01
The dynamics for an open quantum system can be ‘unravelled’ in infinitely many ways, depending on how the environment is monitored, yielding different sorts of conditioned states, evolving stochastically. In the case of ideal monitoring these states are pure, and the set of states for a given monitoring forms a basis (which is overcomplete in general) for the system. It has been argued elsewhere (Atkins et al 2005 Europhys. Lett. 69 163) that the ‘pointer basis’ as introduced by Zurek et al (1993 Phys. Rev. Lett. 70 1187), should be identified with the unravelling-induced basis which decoheres most slowly. Here we show the applicability of this concept of pointer basis to the problem of state stabilization for quantum systems. In particular we prove that for linear Gaussian quantum systems, if the feedback control is assumed to be strong compared to the decoherence of the pointer basis, then the system can be stabilized in one of the pointer basis states with a fidelity close to one (the infidelity varies inversely with the control strength). Moreover, if the aim of the feedback is to maximize the fidelity of the unconditioned system state with a pure state that is one of its conditioned states, then the optimal unravelling for stabilizing the system in this way is that which induces the pointer basis for the conditioned states. We illustrate these results with a model system: quantum Brownian motion. We show that even if the feedback control strength is comparable to the decoherence, the optimal unravelling still induces a basis very close to the pointer basis. However if the feedback control is weak compared to the decoherence, this is not the case. (paper)
Output Feedback Stabilization with Nonlinear Predictive Control: Asymptotic properties
Lars Imsland
2003-07-01
Full Text Available State space based nonlinear model predictive control (NM PC needs the state for the prediction of the system behaviour. Unfortunately, for most applications, not all states are directly measurable. To recover the unmeasured states, typically a stable state observer is used. However, this implies that the stability of the closed-loop should be examined carefully, since no general nonlinear separation principle exists. Recently semi-global practical stability results for output feedback NMPC using a high-gain observer for state estimation have been established. One drawback of this result is that (in general the observer gain must be increased, if the desired set the state should converge to is made smaller. We show that under slightly stronger assumptions, not only practical stability, but also convergence of the system states and observer error to the origin for a sufficiently large but bounded observer gain can be achieved.
Stability and Bifurcation in Magnetic Flux Feedback Maglev Control System
Wen-Qing Zhang
2013-01-01
Full Text Available Nonlinear properties of magnetic flux feedback control system have been investigated mainly in this paper. We analyzed the influence of magnetic flux feedback control system on control property by time delay and interfering signal of acceleration. First of all, we have established maglev nonlinear model based on magnetic flux feedback and then discussed hopf bifurcation’s condition caused by the acceleration’s time delay. The critical value of delayed time is obtained. It is proved that the period solution exists in maglev control system and the stable condition has been got. We obtained the characteristic values by employing center manifold reduction theory and normal form method, which represent separately the direction of hopf bifurcation, the stability of the period solution, and the period of the period motion. Subsequently, we discussed the influence maglev system on stability of by acceleration’s interfering signal and obtained the stable domain of interfering signal. Some experiments have been done on CMS04 maglev vehicle of National University of Defense Technology (NUDT in Tangshan city. The results of experiments demonstrate that viewpoints of this paper are correct and scientific. When time lag reaches the critical value, maglev system will produce a supercritical hopf bifurcation which may cause unstable period motion.
Feedback stabilization system for pulsed single longitudinal mode tunable lasers
Esherick, Peter; Raymond, Thomas D.
1991-10-01
A feedback stabilization system for pulse single longitudinal mode tunable lasers having an excited laser medium contained within an adjustable length cavity and producing a laser beam through the use of an internal dispersive element, including detection of angular deviation in the output laser beam resulting from detuning between the cavity mode frequency and the passband of the internal dispersive element, and generating an error signal based thereon. The error signal can be integrated and amplified and then applied as a correcting signal to a piezoelectric transducer mounted on a mirror of the laser cavity for controlling the cavity length.
Hu, Cheng; Yu, Juan; Chen, Zhanheng; Jiang, Haijun; Huang, Tingwen
2017-05-01
In this paper, the fixed-time stability of dynamical systems and the fixed-time synchronization of coupled discontinuous neural networks are investigated under the framework of Filippov solution. Firstly, by means of reduction to absurdity, a theorem of fixed-time stability is established and a high-precision estimation of the settling-time is given. It is shown by theoretic proof that the estimation bound of the settling time given in this paper is less conservative and more accurate compared with the classical results. Besides, as an important application, the fixed-time synchronization of coupled neural networks with discontinuous activation functions is proposed. By designing a discontinuous control law and using the theory of differential inclusions, some new criteria are derived to ensure the fixed-time synchronization of the addressed coupled networks. Finally, two numerical examples are provided to show the effectiveness and validity of the theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.
On the roles of direct feedback and error field correction in stabilizing resistive-wall modes
In, Y.; Bogatu, I.N.; Kim, J.S.; Garofalo, A.M.; Jackson, G.L.; La Haye, R.J.; Schaffer, M.J.; Strait, E.J.; Lanctot, M.J.; Reimerdes, H.; Marrelli, L.; Martin, P.; Okabayashi, M.
2010-01-01
Active feedback control in the DIII-D tokamak has fully stabilized the current-driven ideal kink resistive-wall mode (RWM). While complete stabilization is known to require both low frequency error field correction (EFC) and high frequency feedback, unambiguous identification has been made about the distinctive role of each in a fully feedback-stabilized discharge. Specifically, the role of direct RWM feedback, which nullifies the RWM perturbation in a time scale faster than the mode growth time, cannot be replaced by low frequency EFC, which minimizes the lack of axisymmetry of external magnetic fields. (letter)
Durant, Bradford; Hackl, Jason; Balachandar, Sivaramakrishnan
2017-11-01
Nodal discontinuous Galerkin schemes present an attractive approach to robust high-order solution of the equations of fluid mechanics, but remain accompanied by subtle challenges in their consistent stabilization. The effect of quadrature choices (full mass matrix vs spectral elements), over-integration to manage aliasing errors, and explicit artificial viscosity on the numerical solution of a steady homentropic vortex are assessed over a wide range of resolutions and polynomial orders using quadrilateral elements. In both stagnant and advected vortices in periodic and non-periodic domains the need arises for explicit stabilization beyond the numerical surface fluxes of discontinuous Galerkin spectral elements. Artificial viscosity via the entropy viscosity method is assessed as a stabilizing mechanism. It is shown that the regularity of the artificial viscosity field is essential to its use for long-time stabilization of small-scale features in nodal discontinuous Galerkin solutions of the Euler equations of gas dynamics. Supported by the Department of Energy Predictive Science Academic Alliance Program Contract DE-NA0002378.
Analytic modeling of the feedback stabilization of resistive wall modes
Pustovitov, Vladimir D.
2003-01-01
Feedback suppression of resistive wall modes (RWM) is studied analytically using a model based on a standard cylindrical approximation. Optimal choice of the input signal for the feedback, effects related to the geometry of the feedback active coils, RWM suppression in a configuration with ITER-like double wall, are considered here. The widespread opinion that the feedback with poloidal sensors is better than that with radial sensors is discussed. It is shown that for an ideal feedback system the best input signal would be a combination of radial and poloidal perturbations measured inside the vessel. (author)
Normal mode approach to modelling of feedback stabilization of the resistive wall mode
Chu, M.S.; Chance, M.S.; Okabayashi, M.; Glasser, A.H.
2003-01-01
Feedback stabilization of the resistive wall mode (RWM) of a plasma in a general feedback configuration is formulated in terms of the normal modes of the plasma-resistive wall system. The growth/damping rates and the eigenfunctions of the normal modes are determined by an extended energy principle for the plasma during its open (feedback) loop operation. A set of equations are derived for the time evolution of these normal modes with currents in the feedback coils. The dynamics of the feedback system is completed by the prescription of the feedback logic. The feasibility of the feedback is evaluated by using the Nyquist diagram method or by solving the characteristic equations. The elements of the characteristic equations are formed from the growth and damping rates of the normal modes, the sensor matrix of the perturbation fluxes detected by the sensor loops, the excitation matrix of the energy input to the normal modes by the external feedback coils, and the feedback logic. (The RWM is also predicted to be excited by an external error field to a large amplitude when it is close to marginal stability.) This formulation has been implemented numerically and applied to the DIII-D tokamak. It is found that feedback with poloidal sensors is much more effective than feedback with radial sensors. Using radial sensors, increasing the number of feedback coils from a central band on the outboard side to include an upper and a lower band can substantially increase the effectiveness of the feedback system. The strength of the RWM that can be stabilized is increased from γτ w = 1 to 30 (γ is the growth rate of the RWM in the absence of feedback and τ w is the resistive wall time constant) Using poloidal sensors, just one central band of feedback coils is sufficient for the stabilization of the RWM with γτ w = 30. (author)
Yingwei Li
2013-01-01
Full Text Available The global exponential stability issues are considered for almost periodic solution of the neural networks with mixed time-varying delays and discontinuous neuron activations. Some sufficient conditions for the existence, uniqueness, and global exponential stability of almost periodic solution are achieved in terms of certain linear matrix inequalities (LMIs, by applying differential inclusions theory, matrix inequality analysis technique, and generalized Lyapunov functional approach. In addition, the existence and asymptotically almost periodic behavior of the solution of the neural networks are also investigated under the framework of the solution in the sense of Filippov. Two simulation examples are given to illustrate the validity of the theoretical results.
Global Stability in Dynamical Systems with Multiple Feedback Mechanisms
Andersen, Morten; Vinther, Frank; Ottesen, Johnny T.
2016-01-01
A class of n-dimensional ODEs with up to n feedbacks from the n’th variable is analysed. The feedbacks are represented by non-specific, bounded, non-negative C1 functions. The main result is the formulation and proof of an easily applicable criterion for existence of a globally stable fixed point...
ℋ∞ constant gain state feedback stabilization of stochastic hybrid systems with Wiener process
E. K. Boukas
2004-01-01
Full Text Available This paper considers the stabilization problem of the class of continuous-time linear stochastic hybrid systems with Wiener process. The ℋ∞ state feedback stabilization problem is treated. A state feedback controller with constant gain that does not require access to the system mode is designed. LMI-based conditions are developed to design the state feedback controller with constant gain that stochastically stabilizes the studied class of systems and, at the same time, achieve the disturbance rejection of a desired level. The minimum disturbance rejection is also determined. Numerical examples are given to show the usefulness of the proposed results.
Beam stability in synchrotrons with digital filters in the feedback loop of a transverse damper
Zhabitskij, V.M.
2009-01-01
The stability of an ion beam in synchrotrons with digital filters in the feedback loop of a transverse damper is treated. Solving the characteristic equation allows one to calculate the achievable damping rates as a function of instability growth rate, feedback gain and parameters of the signal processing. A transverse feedback system (TFS) is required in synchrotrons to stabilize the high intensity ion beams against transverse instabilities and to damp the beam injection errors. The TFS damper kicker (DK) corrects the transverse momentum of a bunch in proportion to its displacement from the closed orbit at the location of the beam position monitor (BPM). The digital signal processing unit in the feedback loop between BPM and DK ensures a condition to achieve optimal damping. Damping rates of the feedback systems with digital notch, Hilbert and all-pass filters are analyzed in comparison with those in an ideal feedback system
Active feedback stabilization of the flute instability in a mirror machine using field-aligned coils
Lifshitz, A.; Be'ery, I.; Fisher, A.; Ron, A.; Fruchtman, A.
2012-01-01
A plasma confined in linear mirror machines is unstable even at low β, mainly because of the flute instability. One possible way to stabilize the plasma is to use active feedback to correct the plasma shape in real time. The theoretically investigated apparatus consists of feedback coils aligned with the magnetic field, immersed in a cold plasma around the hot core. When the current through the feedback coils changes, the plasma moves to conserve the magnetic flux via compressional Alfvén waves. An analytical model is used to find a robust feedback algorithm with zero residual currents. It is shown that due to the plasma's rotation, maximal stability is obtained with a large phase angle between the perturbations' modes and the feedback integral-like term. Finally, a two-dimensional MHD simulation implementing the above algorithm in fact shows stabilization of the plasma with zero residual currents. (paper)
Feedback stabilization experiments using l = 2 equilibrium windings in Scyllac
Bartsch, R.R.; Cantrell, E.L.; Gribble, R.F.; Freese, K.B.; Handy, L.E.; Kristal, R.; Miller, G.; Quinn, W.E.
1977-01-01
The confinement time in the Scyllac Sector Feedback Experiment has been extended with a pre-programmed equilibrium compensation force. This force was produced by driving a current with a flexible waveform in an additional set of l = 2 windings
Ding, Xiaoshuai; Cao, Jinde; Zhao, Xuan; Alsaadi, Fuad E
2017-08-01
This paper is concerned with the drive-response synchronization for a class of fractional-order bidirectional associative memory neural networks with time delays, as well as in the presence of discontinuous activation functions. The global existence of solution under the framework of Filippov for such networks is firstly obtained based on the fixed-point theorem for condensing map. Then the state feedback and impulsive controllers are, respectively, designed to ensure the Mittag-Leffler synchronization of these neural networks and two new synchronization criteria are obtained, which are expressed in terms of a fractional comparison principle and Razumikhin techniques. Numerical simulations are presented to validate the proposed methodologies.
Liu Zhuo; Kuang Luelin; Hu Kai; Xu Luting; Wei Suhua; Guo Lingzhen; Li Xinqi
2010-01-01
In a solid-state circuit QED system, we demonstrate that a homodyne-current-based feedback can create and stabilize highly entangled two-qubit states in the presence of a moderate noisy environment. Particularly, we present an extended analysis for the current-based Markovian feedback, which leads to an improved feedback scheme. We show that this is essential to achieve a desirable control effect by the use of dispersive measurement.
Zhang, Shu; Xu, Jian; Chung, Kwok-wai
2015-05-01
Random early detection (RED) is an effective algorithm to control the Internet congestion. However, researches on RED parameters are difficult since there are state-dependent delay and discontinuous terms on the right-hand side of the model. We smooth the model by hyperbolic tangent function and reformulate it by a switch function to keep state variables positive. Numerical simulations on the original system validates the reformulated model. The multi-stability phenomenon is observed and some suggestions on the selection of RED parameters are given to enhance the global stability of the model by numerical bifurcation continuation on the reformulated model.
General Output Feedback Stabilization for Fractional Order Systems: An LMI Approach
Yiheng Wei
2014-01-01
Full Text Available This paper is concerned with the problem of general output feedback stabilization for fractional order linear time-invariant (FO-LTI systems with the fractional commensurate order 0<α<2. The objective is to design suitable output feedback controllers that guarantee the stability of the resulting closed-loop systems. Based on the slack variable method and our previous stability criteria, some new results in the form of linear matrix inequality (LMI are developed to the static and dynamic output feedback controllers synthesis for the FO-LTI system with 0<α<1. Furthermore, the results are extended to stabilize the FO-LTI systems with 1≤α<2. Finally, robust output feedback control is discussed. Numerical examples are given to illustrate the effectiveness of the proposed design methods.
Kwon, Sang Ki; Park, Jeong Hwa; Choi, Jong Won; Kang, Chul Hyung
2001-03-01
For the safe design of a high-level nuclear waste repository in deep location, it is necessary to confirm the stability of the underground excavations under the high overburden pressure and also to investigate the influence of discontinuities such as fault, fracture zone, and joints. In this study, computer simulations using 3DEC, which is a Distince Element (DEM) code, were carried out for determining important parameters on the stability of the disposal tunnel and deposition holes excavated in 500 m deep granite body. The development of plastic zone and stress and strain distributions were analyzed with various modelling conditions with variation on the parameters including joint numbers, tunnel size, joint properties, rock properties, and stress ratio. Furthermore, the influence of fracture zone, which is located around the underground excavations, on the stability of the excavation was investigated. In this study, the variation of stress and strain distribution due to the variation of fracture zone location, dip, and width was analyzed
Wang, Dongshu; Huang, Lihong
2014-03-01
In this paper, we investigate the periodic dynamical behaviors for a class of general Cohen-Grossberg neural networks with discontinuous right-hand sides, time-varying and distributed delays. By means of retarded differential inclusions theory and the fixed point theorem of multi-valued maps, the existence of periodic solutions for the neural networks is obtained. After that, we derive some sufficient conditions for the global exponential stability and convergence of the neural networks, in terms of nonsmooth analysis theory with generalized Lyapunov approach. Without assuming the boundedness (or the growth condition) and monotonicity of the discontinuous neuron activation functions, our results will also be valid. Moreover, our results extend previous works not only on discrete time-varying and distributed delayed neural networks with continuous or even Lipschitz continuous activations, but also on discrete time-varying and distributed delayed neural networks with discontinuous activations. We give some numerical examples to show the applicability and effectiveness of our main results. Copyright © 2013 Elsevier Ltd. All rights reserved.
Beam stability in synchrotrons with digital transverse feedback systems in dependence on beam tunes
Zhabitskij, V.M.
2011-01-01
The beam stability problem in synchrotrons with a digital transverse feedback system (TFS) is studied. The TFS damper kicker (DK) corrects the transverse momentum of a bunch in proportion to its displacement from the closed orbit measured at the location of the beam position monitor (BPM). It is shown that the area and configuration of the beam stability separatrix depend on the beam tune, the feedback gain, the phase balance between the phase advance from BPM to DK and the phase response of the feedback chain at the betatron frequency
Theoretical modeling of the feedback stabilization of external MHD modes of toroidal geometry
Chance, M.S.; Chu, M.S.; Okabayashi, M.
2001-01-01
A theoretical framework for understanding the feedback mechanism against external MHD modes has been formulated. Efficient computational tools - the GATO stability code coupled with a substantially modified VACUUM code - have been developed to effectively design viable feedback systems against these modes. The analysis assumed a thin resistive shell and a feedback coil structure accurately modeled in θ, with only a single harmonic variation in φ. An optimized configuration and placement of the feedback and sensor coils as well as the time constants and induced currents in the enclosing resistive shell have been computed for the DIII-D device. Up to 90% of the effectiveness of an ideal wall can be achieved. (author)
Feedback stabilization of the resistive shell mode in a tokamak fusion reactor
Fitzpatrick, R.
1997-01-01
Stabilization of the 'resistive shell mode' is vital to the success of the 'advanced tokamak' concept. The most promising reactor relevant approach is to apply external feedback using, for instance, the previously proposed 'fake rotating shell' scheme [R. Fitzpatrick and T. H. Jensen, Phys. Plasmas 3, 2641 (1996)]. This scheme, like other simple feedback schemes, only works if the feedback controlled conductors are located inside the 'critical radius' at which a perfectly conducting shell is just able to stabilize the ideal external kink mode. In general, this is not possible in a reactor, since engineering constraints demand that any feedback controlled conductors be placed outside the neutron shielding blanket (i.e., relatively far from the edge of the plasma). It is demonstrated that the fake rotating shell feedback scheme can be modified so that it works even when the feedback controlled conductors are located well beyond the critical radius. The gain, bandwidth, current, and total power requirements of such a feedback system for a reactor sized plasma are estimated to be less than 100, a few Hz, a fews tens of kA, and a few MW, respectively. These requirements could easily be met using existing technology. It is concluded that feedback stabilization of the resistive shell mode is possible in a tokamak fusion reactor. copyright 1997 American Institute of Physics
Rapid feedback control and stabilization of an optical tweezers with a budget microcontroller
Nino, Daniel; Wang, Haowei; N Milstein, Joshua
2014-01-01
Laboratories ranging the scientific disciplines employ feedback control to regulate variables within their experiments, from the flow of liquids within a microfluidic device to the temperature within a cell incubator. We have built an inexpensive, yet fast and rapidly deployed, feedback control system that is straightforward and flexible to implement from a commercially available Arduino Due microcontroller. This is in comparison with the complex, time-consuming and often expensive electronics that are commonly implemented. As an example of its utility, we apply our feedback controller to the task of stabilizing the main trapping laser of an optical tweezers. The feedback controller, which is inexpensive yet fast and rapidly deployed, was implemented from hacking an open source Arduino Due microcontroller. Our microcontroller based feedback system can stabilize the laser intensity to a few tenths of a per cent at 200 kHz, which is an order of magnitude better than the laser's base specifications, illustrating the utility of these devices. (paper)
Rapid feedback control and stabilization of an optical tweezers with a budget microcontroller
Nino, Daniel; Wang, Haowei; N Milstein, Joshua, E-mail: josh.milstein@utoronto.ca [Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6 (Canada)
2014-09-01
Laboratories ranging the scientific disciplines employ feedback control to regulate variables within their experiments, from the flow of liquids within a microfluidic device to the temperature within a cell incubator. We have built an inexpensive, yet fast and rapidly deployed, feedback control system that is straightforward and flexible to implement from a commercially available Arduino Due microcontroller. This is in comparison with the complex, time-consuming and often expensive electronics that are commonly implemented. As an example of its utility, we apply our feedback controller to the task of stabilizing the main trapping laser of an optical tweezers. The feedback controller, which is inexpensive yet fast and rapidly deployed, was implemented from hacking an open source Arduino Due microcontroller. Our microcontroller based feedback system can stabilize the laser intensity to a few tenths of a per cent at 200 kHz, which is an order of magnitude better than the laser's base specifications, illustrating the utility of these devices. (paper)
Stability of longitudinal bunch length feedback for heavy-ion synchrotrons
D. Lens
2013-03-01
Full Text Available In heavy-ion synchrotrons such as the SIS18 at Helmholtzzentrum für Schwerionenforschung, Helmholtz Centre for Heavy Ion Research (GSI, coherent oscillations of the particle bunches are damped by rf feedback systems to increase the stability and to improve the beam quality. In the longitudinal direction, important modes are the coherent longitudinal dipole and quadrupole oscillation. In this paper we present a new and rigorous approach to analyze the longitudinal feedback to damp these modes. The results are applied to the rf feedback loop at GSI that damps the quadrupole mode. The stability analysis is compared with simulations and is in good agreement with results of a beam experiment. Finally, we summarize practical implications for the operation of the feedback system regarding performance and stability.
Takizawa, Kenji; Tezduyar, Tayfun E.; Otoguro, Yuto
2018-04-01
Stabilized methods, which have been very common in flow computations for many years, typically involve stabilization parameters, and discontinuity-capturing (DC) parameters if the method is supplemented with a DC term. Various well-performing stabilization and DC parameters have been introduced for stabilized space-time (ST) computational methods in the context of the advection-diffusion equation and the Navier-Stokes equations of incompressible and compressible flows. These parameters were all originally intended for finite element discretization but quite often used also for isogeometric discretization. The stabilization and DC parameters we present here for ST computations are in the context of the advection-diffusion equation and the Navier-Stokes equations of incompressible flows, target isogeometric discretization, and are also applicable to finite element discretization. The parameters are based on a direction-dependent element length expression. The expression is outcome of an easy to understand derivation. The key components of the derivation are mapping the direction vector from the physical ST element to the parent ST element, accounting for the discretization spacing along each of the parametric coordinates, and mapping what we have in the parent element back to the physical element. The test computations we present for pure-advection cases show that the parameters proposed result in good solution profiles.
Stabilization of Large Generalized Lotka-Volterra Foodwebs By Evolutionary Feedback
Ackland, G. J.; Gallagher, I. D.
2004-10-01
Conventional ecological models show that complexity destabilizes foodwebs, suggesting that foodwebs should have neither large numbers of species nor a large number of interactions. However, in nature the opposite appears to be the case. Here we show that if the interactions between species are allowed to evolve within a generalized Lotka-Volterra model such stabilizing feedbacks and weak interactions emerge automatically. Moreover, we show that trophic levels also emerge spontaneously from the evolutionary approach, and the efficiency of the unperturbed ecosystem increases with time. The key to stability in large foodwebs appears to arise not from complexity perse but from evolution at the level of the ecosystem which favors stabilizing (negative) feedbacks.
Rayleigh-Taylor stability for a shock wave-density discontinuity interaction
Fraley, G.S.
1981-01-01
Shells in inertial fusion targets are typically accelerated and decelerated by two or three shocks followed by continuous acceleration. The analytic solution for perturbation growth of a shock wave striking a density discontinuity in an inviscid fluid is investigated. The Laplace transform of the solution results in a functional equation, which has a simple solution for weak shock waves. The solution for strong shock waves may be given by a power series. It is assumed that the equation of state is given by a gamma law. The four independent parameters of the solution are the gamma values on each side of the material interface, the density ratio at the interface, and the shock strength. The asymptotic behavior (for large distances and times) of the perturbation velocity is given. For strong shocks the decay of the perturbation away from the interface is much weaker than the exponential decay of an incompressible fluid. The asymptotic value is given by a constant term and a number of slowly decaying discreet frequencies. The number of frequencies is roughly proportional to the logarithm of the density discontinuity divided by that of the shock strength. The asymptotic velocity at the interface is tabulated for representative values of the independent parameters. For weak shocks the solution is compared with results for an incompressible fluid. The range of density ratios with possible zero asymptotic velocities is given
Nonlinear power flow feedback control for improved stability and performance of airfoil sections
Wilson, David G.; Robinett, III, Rush D.
2013-09-03
A computer-implemented method of determining the pitch stability of an airfoil system, comprising using a computer to numerically integrate a differential equation of motion that includes terms describing PID controller action. In one model, the differential equation characterizes the time-dependent response of the airfoil's pitch angle, .alpha.. The computer model calculates limit-cycles of the model, which represent the stability boundaries of the airfoil system. Once the stability boundary is known, feedback control can be implemented, by using, for example, a PID controller to control a feedback actuator. The method allows the PID controller gain constants, K.sub.I, K.sub.p, and K.sub.d, to be optimized. This permits operation closer to the stability boundaries, while preventing the physical apparatus from unintentionally crossing the stability boundaries. Operating closer to the stability boundaries permits greater power efficiencies to be extracted from the airfoil system.
Stabilization of Networked Control Systems Under Feedback-based Communication
Zhang, Lei; Hristu-Varsakelis, Dimitrios
2004-01-01
We study the stabilization of a networked control system (NSC) in which multiple sensors and actuators of a physical plant share a communication medium to exchange information with a remote controller...
Studies of feedback stabilization of axisymmetric modes in deformable tokamak plasmas
Ward, D.J.
1991-01-01
A new linear MHD stability code, NOVA-W, is described and applied to the study of the feedback stabilization of the axisymmetric mode in deformable tokamak plasma. The NOVA-W code is a modification of the non-variational MHD stability code NOVA that includes the effects of resistive passive conductors and active feedback circuits. The vacuum calculation has been reformulated in terms of the perturbed poloidal flux to allow the inclusion of perturbed toroidal currents outside the plasma. The boundary condition at the plasma-vacuum interface relates the instability displacement to the perturbed poloidal flux. This allows a solution of the linear MHD stability equations with the feedback effects included. The code has been tested for the case of passive stabilization against a simplified analytic model and against a different numerical calculation for a realistic tokamak configuration. The comparisons demonstrate the accuracy of the NOVA-W results. The NOVA-W code is used to examine the effects of plasma deformability on feedback stabilization. It is seen that plasmas with shaped cross sections have unstable motion different from a rigid shift. Plasma equilibria with large triangularity show particularly significant deviations from a uniform rigid shift. Furthermore, the placement of passive conductors is shown to modify the non-rigid components of the motion in a way that reduces the stabilizing effects of these conductors. The eigenfunction is also modified under the effects of active feedback. This deformation is seen to depend strongly on the position of the flux loops. These non-rigid components of the eigenfunction always serve to reduce the stabilizing effect of the active feedback system by reducing the measurable poloidal flux at the flux-loop locations
Static or feedback stabilization of the burn in a Tokamak
Minardi, E.
1980-02-01
The control of the burn in an ignited Tokamak using a space and time dependent external vertical magnetic field is discussed. It is shown that a static field, suitably shaped in space, is able to stabilize the burn for a certain range of the plasma parameters of physical interest. An oscillating magnetic field with constant frequency and amplitude fixed by the initial plasma parameters stabilizes the burn in all situations. (orig.)
Fast feedback system for energy and beam stabilization
R. Dickson; V. Lebedev
1999-01-01
The electron beams being delivered to targets of the Continuous Electron Beam Accelerator Facility (CEBAF) at Thomas Jefferson National Accelerator Facility (Jefferson Lab) are plagued with undesirable positional and energy fluctuations. These fluctuations primarily occur at harmonics of the power line frequency (60, 120, 180, etc. hertz), and their cause is rooted in electromagnetic fields generated by accelerator electronic equipment. It is possible to largely nullify these deviations by applying real time corrections to electromagnets and RF verniers along the beam line. This concept has been successfully applied at Jefferson Lab by extensively modifying the existing Beam Position Monitor (BPM) system with the integration of an algorithm that computes correction signals targeted at the power line harmonics. Many of the modifications required were due to the existing CEBAF BPM system not having the data acquisition bandwidth needed for this type of feedback system. This paper will describe the techniques required to transform the CEBAF standard BPM system into a high speed practical fast feedback system that coexists with the large scale control system--the Experimental Physics and Industrial Control System (EPICS)--that runs the CEBAF accelerator in daily operation
Active feedback stabilization of axisymmetric modes in highly elongated tokamak plasmas
Ward, D.J.; Hofmann, F.
1993-07-01
Active feedback stabilization of the vertical instability is studied for highly elongated tokamak plasmas (1≤κ≤3), and evaluated in particular for the TCV configuration. It is shown that the feedback can strongly affect the form of the eigenfunction for these highly elongated equilibria, and this can have detrimental effects on the ability of the feedback system to properly detect and stabilize the plasma. A calculation of the vertical displacement that uses poloidal flux measurements, poloidal magnetic field measurements, and corrections for the vessel eddy currents and active feedback currents was found to be effective even in the cases with the worst deformations of the eigenfunction. We also examine how these deformations affect differently shaped equilibria, and it is seen that the magnitude of the deformation of the eigenfunction is strongly function of the plasma elongation. (author) 15 figs., 13 refs
Final analysis of the engineering data on the scyllac feedback stabilization experiment
Kutac, K.J.; Kewish, R.W.; Miller, G.; Gribble, R.F.
1977-01-01
The feedback stabilization system consists of four basic components: plasma position detectors, a signal processor or mode analyzer driven by the position detector signals, power amplifiers which are driven by the mode analyzer, and feedback load coils driven by the power amplifiers. A short description of each of the four components of the system is presented. The location of the components in the experiment is shown
Ward, D.J.; Jardin, S.C.
1991-09-01
The effects of plasma deformability on the feedback stabilization of axisymmetric modes of tokamak plasmas are studied. It is seen that plasmas with strongly shaped cross sections have unstable motion different from a rigid shift. Furthermore, the placement of passive conductors is shown to modify the non-rigid components of the eigenfunction in a way that reduces the stabilizing eddy currents in these conductors. Passive feedback results using several equilibria of varying shape are presented. The eigenfunction is also modified under the effects of active feedback. This deformation is seen to depend strongly on the position of the flux loops which are used to determine plasma vertical position for the active feedback system. The variations of these non-rigid components of the eigenfunction always serve to reduce the stabilizing effect of the active feedback system by reducing the measurable poloidal flux at the flux-loop locations. Active feedback results are presented for the PBX-M tokamak configuration. (author) 19 figs., 2 tabs., 30 refs
Hamed, Kaveh Akbari; Gregg, Robert D.
2016-01-01
This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially stabilize periodic orbits for a class of hybrid dynamical systems arising from bipedal walking. The algorithm assumes a class of parameterized and nonlinear decentralized feedback controllers which coordinate lower-dimensional hybrid subsystems based on a common phasing variable. The exponential stabilization problem is translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities, which can be easily solved with available software packages. A set of sufficient conditions for the convergence of the iterative algorithm to a stabilizing decentralized feedback control solution is presented. The power of the algorithm is demonstrated by designing a set of local nonlinear controllers that cooperatively produce stable walking for a 3D autonomous biped with 9 degrees of freedom, 3 degrees of underactuation, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg. PMID:27990059
THEORETICAL MODELING OF THE FEEDBACK STABILIZATION OF EXTERNAL MHD MODES IN TOROIDAL GEOMETRY
CHANCE, M.S.; CHU, M.S.; OKABAYASHI, M.; TURNBULL, A.D.
2001-02-01
OAK-B135 A theoretical framework for understanding the feedback mechanism against external MHD modes has been formulated. Efficient computational tools--the GATO stability code coupled with a substantially modified VACUUM code--have been developed to effectively design viable feedback systems against these modes. The analysis assumed a thin resistive shell and a feedback coil structure accurately modeled in θ, with only a single harmonic variation in φ. Time constants and induced currents in the enclosing resistive shell are calculated. An optimized configuration based on an idealized model have been computed for the DIII-D device. Up to 90% of the effectiveness of an ideal wall can be achieved
Can vibratory feedback be used to improve postural stability in persons with transtibial limb loss?
Rusaw, David; Hagberg, Kerstin; Nolan, Lee; Ramstrand, Nerrolyn
2012-01-01
The use of vibration as a feedback modality to convey motion of the body has been shown to improve measures of postural stability in some groups of patients. Because individuals using transtibial prostheses lack sensation distal to the amputation, vibratory feedback could possibly be used to improve their postural stability. The current investigation provided transtibial prosthesis users (n = 24, mean age 48 yr) with vibratory feedback proportional to the signal received from force transducers located under the prosthetic foot. Postural stability was evaluated by measuring center of pressure (CoP) movement, limits of stability, and rhythmic weight shift while participants stood on a force platform capable of rotations in the pitch plane (toes up/toes down). The results showed that the vibratory feedback increased the mediolateral displacement amplitude of CoP in standing balance and reduced the response time to rapid voluntary movements of the center of gravity. The results suggest that the use of vibratory feedback in an experimental setting leads to improvements in fast open-loop mechanisms of postural control in transtibial prosthesis users.
Finite-time output feedback stabilization of high-order uncertain nonlinear systems
Jiang, Meng-Meng; Xie, Xue-Jun; Zhang, Kemei
2018-06-01
This paper studies the problem of finite-time output feedback stabilization for a class of high-order nonlinear systems with the unknown output function and control coefficients. Under the weaker assumption that output function is only continuous, by using homogeneous domination method together with adding a power integrator method, introducing a new analysis method, the maximal open sector Ω of output function is given. As long as output function belongs to any closed sector included in Ω, an output feedback controller can be developed to guarantee global finite-time stability of the closed-loop system.
Calculations of axisymmetric stability of tokamak plasmas with active and passive feedback
Ward, D.J.; Jardin, S.C.; Cheng, C.Z.
1991-07-01
A new linear MHD stability code, NOVA-W, has been developed in order to study feedback stabilization of the axisymmetric mode in deformable tokamak plasmas. The NOVA-W code is a modification of the non-variational MHD stability code NOVA that includes the effects of resistive passive conductors and active feedback circuits. The vacuum calculation has been reformulated in terms of the perturbed poloidal flux to allow the inclusion of perturbed toroidal currents outside the plasma. The boundary condition at the plasma-vacuum interface relates the instability displacement to the perturbed poloidal flux. This allows a solution of the linear MHD stability equations with the feedback effects included. The passive stability predictions of the code have been tested both against a simplified analytic model and against a different numerical calculation for a realistic tokamak configuration. The comparisons demonstrate the accuracy of the NOVA-W results. Active feedback calculations are performed for the CIT tokamak design demonstrating the effect of varying the position of the flux loops that provide the measurements of vertical displacement. The results compare well with those computed earlier using a less efficient nonlinear code. 37 refs., 13 figs
Faria, Teresa; Oliveira, José J.
This paper addresses the local and global stability of n-dimensional Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks. Necessary and sufficient conditions for local stability independent of the choice of the delay functions are given, by imposing a weak nondelayed diagonal dominance which cancels the delayed competition effect. The global asymptotic stability of positive equilibria is established under conditions slightly stronger than the ones required for the linear stability. For the case of monotone interactions, however, sharper conditions are presented. This paper generalizes known results for discrete delays to systems with distributed delays. Several applications illustrate the results.
Lyapunov-based Stability of Feedback Interconnections of Negative Imaginary Systems
Ghallab, Ahmed G.
2017-10-19
Feedback control systems using sensors and actuators such as piezoelectric sensors and actuators, micro-electro-mechanical systems (MEMS) sensors and opto-mechanical sensors, are allowing new advances in designing such high precision technologies. The negative imaginary control systems framework allows for robust control design for such high precision systems in the face of uncertainties due to unmodelled dynamics. The stability of the feedback interconnection of negative imaginary systems has been well established in the literature. However, the proofs of stability feedback interconnection which are used in some previous papers have a shortcoming due to a matrix inevitability issue. In this paper, we provide a new and correct Lyapunov-based proof of one such result and show that the result is still true.
Lyapunov-based Stability of Feedback Interconnections of Negative Imaginary Systems
Ghallab, Ahmed G.; Mabrok, Mohamed; Petersen, Ian R.
2017-01-01
Feedback control systems using sensors and actuators such as piezoelectric sensors and actuators, micro-electro-mechanical systems (MEMS) sensors and opto-mechanical sensors, are allowing new advances in designing such high precision technologies. The negative imaginary control systems framework allows for robust control design for such high precision systems in the face of uncertainties due to unmodelled dynamics. The stability of the feedback interconnection of negative imaginary systems has been well established in the literature. However, the proofs of stability feedback interconnection which are used in some previous papers have a shortcoming due to a matrix inevitability issue. In this paper, we provide a new and correct Lyapunov-based proof of one such result and show that the result is still true.
Stability investigations of the ASDEX feedback system with filters for reducing thyristor noise
Crisanti, F.; Schneider, F.
1983-06-01
A computer program for analysing the absolute and relative stabilities of any complex system by the root-locus method was developed. It is used to reanalyse the present horizontal position feed-back control in the ASDEX tokamak and to select the optimum parameters for this system with RCL filters for reducing thyristor noise. (orig.)
Feedback-controlled NTM stabilization on ASDEX Upgrade
Stober J.
2015-01-01
Full Text Available On ASDEX Upgrade a concept for real-time stabilization of NTMs has been realized and successfully applied to (3,2- and (2,1-NTMs. Since most of the work has meanwhile been published elsewhere, a short summary with the appropriate references is given. Limitations, deficits and future extensions of the system are discussed. In a second part the recent work on using modulated ECCD for NTM stabilisation is described in some detail. In these experiments ECCD power is modulated according to a magnetic footprint of the rotating NTM. In agreement with earlier results it could be shown that O-point heating reduces the necessary average power for stabilisation whereas X-point heating hampers stabilisation. Although this modulated scheme is not relevant for routine NTM stabilisation on ASDEX Upgrade it may be mandatory for ITER or DEMO. On ASDEX Upgrade it has been re-developed to demonstrate the usage of a FAst DIrectional Switch to continously heat the O-point of the rotating island with only one gyrotron switching between two launchers which target the mode at locations separated in phase by 180 degrees as described in [1].
Mao, Xuefeng; Zhou, Xinlei; Yu, Qingxu
2016-02-01
We describe a stabilizing operation point technique based on the tunable Distributed Feedback (DFB) laser for quadrature demodulation of interferometric sensors. By introducing automatic lock quadrature point and wavelength periodically tuning compensation into an interferometric system, the operation point of interferometric system is stabilized when the system suffers various environmental perturbations. To demonstrate the feasibility of this stabilizing operation point technique, experiments have been performed using a tunable-DFB-laser as light source to interrogate an extrinsic Fabry-Perot interferometric vibration sensor and a diaphragm-based acoustic sensor. Experimental results show that good tracing of Q-point was effectively realized.
Pedersen, Michael
1991-01-01
The stabilization problems for parabolic and hyperbolic partial differential equations with Dirichlet boundary condition are considered. The systems are stabilized by a boundary feedback in(1) The operator equation,(2) The boundary condition,(3) Both the operator equation and the boundary condition...... turns out to be a shortcut to some of the stabilization results of Lasiecka and Triggiani in [J. Differential Equations, 47 (1983), pp. 245-272], [SIAM J. Control Optim., 21(1983), pp. 766-802], and [Appl. Math. Optim., 8(1981), pp. 1-37], and it illuminates to some extent how a change of boundary...
Imaging stability in force-feedback high-speed atomic force microscopy
Kim, Byung I.; Boehm, Ryan D.
2013-01-01
We studied the stability of force-feedback high-speed atomic force microscopy (HSAFM) by imaging soft, hard, and biological sample surfaces at various applied forces. The HSAFM images showed sudden topographic variations of streaky fringes with a negative applied force when collected on a soft hydrocarbon film grown on a grating sample, whereas they showed stable topographic features with positive applied forces. The instability of HSAFM images with the negative applied force was explained by the transition between contact and noncontact regimes in the force–distance curve. When the grating surface was cleaned, and thus hydrophilic by removing the hydrocarbon film, enhanced imaging stability was observed at both positive and negative applied forces. The higher adhesive interaction between the tip and the surface explains the improved imaging stability. The effects of imaging rate on the imaging stability were tested on an even softer adhesive Escherichia coli biofilm deposited onto the grating structure. The biofilm and planktonic cell structures in HSAFM images were reproducible within the force deviation less than ∼0.5 nN at the imaging rate up to 0.2 s per frame, suggesting that the force-feedback HSAFM was stable for various imaging speeds in imaging softer adhesive biological samples. - Highlights: ► We investigated the imaging stability of force-feedback HSAFM. ► Stable–unstable imaging transitions rely on applied force and sample hydrophilicity. ► The stable–unstable transitions are found to be independent of imaging rate
Feedback stabilization of controlled dynamical systems in honor of Laurent Praly
2017-01-01
This book is a tribute to Professor Laurent Praly and follows on from a workshop celebrating the occasion of his 60th birthday. It presents new and unified visions of the numerous problems that Laurent Praly has worked on in his prolific career: adaptive control, output feedback and observers, stability and stabilization. His main contributions are the central topic of this book. The book collects contributions written by prominent international experts in the control community, addressing a rich variety of topics: emerging ideas, advanced applications, and theoretical concepts. Organized in three sections, the first section covers the field of adaptive control, where Laurent Praly started his career. The second section focuses on stabilization and output feedback, which is also the topic of the second half of his career. Lastly, the third section presents the emerging research that will form Laurent Praly’s scientific legacy.
Jhang, Hogun
2008-01-01
A study is conducted on the feedback stabilization of resistive wall modes (RWMs) in a tokamak plasma using a toroidal shell model. An analytically tractable form of the RWM dispersion relation is derived in the presence of a set of discrete feedback coil currents. A parametric study is carried out to optimize the feedback system configuration. It is shown that the total toroidal angle of a resistive wall spanned by the feedback coils and the poloidal angular extent of a feedback coil are crucial parameters to determine the efficacy of the feedback system
Improve beam position stability of SSRF BL15U beamline by using beam intensity feedback
Li Guoqiang; Liang Dongxu; Yan Fen; Li Aiguo; Yu Xiaohan
2013-01-01
Background: The shaking of micro-focus spot in the vertical direction is found during the energy scan experiments, such as XAFS scan. The beam position of vertical direction changes obviously with the energy. Purpose: In order to make the beam position shaking amplitude less than 1/10 of the beam size. Methods: The beam position stability of SSRF BL15U beamline is improved by using beam intensity feedback. The feedback system include beam intensity monitor of the beamline and fine adjust mechanism of pitch 2 (the pitch angle of the second crystal of the double crystal monochromator). The feedback control of the beam position is realized by adjusting the pitch 2 to fix beam intensity at its maximum value. Results: The test results show that the vertical beam vibration below 10 Hz frequency is significantly reduced and also the beam position stability during photon energy scan is improved by more than 5 times. Conclusions: By adopting the new feedback systems, the stability of the beam spot on the specimen stage was dramatically improved which achieved the anticipated target. (authors)
Climate-carbon cycle feedbacks under stabilization: uncertainty and observational constraints
Jones, Chris D.; Cox, Peter M.; Huntingford, Chris
2006-01-01
Avoiding 'dangerous climate change' by stabilization of atmospheric CO 2 concentrations at a desired level requires reducing the rate of anthropogenic carbon emissions so that they are balanced by uptake of carbon by the natural terrestrial and oceanic carbon cycles. Previous calculations of profiles of emissions which lead to stabilized CO 2 levels have assumed no impact of climate change on this natural carbon uptake. However, future climate change effects on the land carbon cycle are predicted to reduce its ability to act as a sink for anthropogenic carbon emissions and so quantification of this feedback is required to determine future permissible emissions. Here, we assess the impact of the climate-carbon cycle feedback and attempt to quantify its uncertainty due to both within-model parameter uncertainty and between-model structural uncertainty. We assess the use of observational constraints to reduce uncertainty in the future permissible emissions for climate stabilization and find that all realistic carbon cycle feedbacks consistent with the observational record give permissible emissions significantly less than previously assumed. However, the observational record proves to be insufficient to tightly constrain carbon cycle processes or future feedback strength with implications for climate-carbon cycle model evaluation
Yang, R; Zelyak, O; Fallone, B G; St-Aubin, J
2018-01-30
Angular discretization impacts nearly every aspect of a deterministic solution to the linear Boltzmann transport equation, especially in the presence of magnetic fields, as modeled by a streaming operator in angle. In this work a novel stabilization treatment of the magnetic field term is developed for an angular finite element discretization on the unit sphere, specifically involving piecewise partitioning of path integrals along curved element edges into uninterrupted segments of incoming and outgoing flux, with outgoing components updated iteratively. Correct order-of-accuracy for this angular framework is verified using the method of manufactured solutions for linear, quadratic, and cubic basis functions in angle. Higher order basis functions were found to reduce the error especially in strong magnetic fields and low density media. We combine an angular finite element mesh respecting octant boundaries on the unit sphere to spatial Cartesian voxel elements to guarantee an unambiguous transport sweep ordering in space. Accuracy for a dosimetrically challenging scenario involving bone and air in the presence of a 1.5 T parallel magnetic field is validated against the Monte Carlo package GEANT4. Accuracy and relative computational efficiency were investigated for various angular discretization parameters. 32 angular elements with quadratic basis functions yielded a reasonable compromise, with gamma passing rates of 99.96% (96.22%) for a 2%/2 mm (1%/1 mm) criterion. A rotational transformation of the spatial calculation geometry is performed to orient an arbitrary magnetic field vector to be along the z-axis, a requirement for a constant azimuthal angular sweep ordering. Working on the unit sphere, we apply the same rotational transformation to the angular domain to align its octants with the rotated Cartesian mesh. Simulating an oblique 1.5 T magnetic field against GEANT4 yielded gamma passing rates of 99.42% (95.45%) for a 2%/2 mm (1%/1 mm) criterion.
Yang, R.; Zelyak, O.; Fallone, B. G.; St-Aubin, J.
2018-02-01
Angular discretization impacts nearly every aspect of a deterministic solution to the linear Boltzmann transport equation, especially in the presence of magnetic fields, as modeled by a streaming operator in angle. In this work a novel stabilization treatment of the magnetic field term is developed for an angular finite element discretization on the unit sphere, specifically involving piecewise partitioning of path integrals along curved element edges into uninterrupted segments of incoming and outgoing flux, with outgoing components updated iteratively. Correct order-of-accuracy for this angular framework is verified using the method of manufactured solutions for linear, quadratic, and cubic basis functions in angle. Higher order basis functions were found to reduce the error especially in strong magnetic fields and low density media. We combine an angular finite element mesh respecting octant boundaries on the unit sphere to spatial Cartesian voxel elements to guarantee an unambiguous transport sweep ordering in space. Accuracy for a dosimetrically challenging scenario involving bone and air in the presence of a 1.5 T parallel magnetic field is validated against the Monte Carlo package GEANT4. Accuracy and relative computational efficiency were investigated for various angular discretization parameters. 32 angular elements with quadratic basis functions yielded a reasonable compromise, with gamma passing rates of 99.96% (96.22%) for a 2%/2 mm (1%/1 mm) criterion. A rotational transformation of the spatial calculation geometry is performed to orient an arbitrary magnetic field vector to be along the z-axis, a requirement for a constant azimuthal angular sweep ordering. Working on the unit sphere, we apply the same rotational transformation to the angular domain to align its octants with the rotated Cartesian mesh. Simulating an oblique 1.5 T magnetic field against GEANT4 yielded gamma passing rates of 99.42% (95.45%) for a 2%/2 mm (1%/1 mm) criterion.
Feedback stabilization of an l = 0, 1, 2 high-beta stellarator
Bartsch, R.R.; Cantrell, E.L.; Gribble, R.F.; Klare, K.A.; Kutac, K.J.; Miller, G.; Quinn, W.E.
1978-05-01
Feedback stabilization of the Scyllac 120 0 toroidal sector is reported. The confinement time was increased by 10-20 μs using feedback to a maximum time of 35-45 μs, which is over 10 growth times of the long-wavelength m = 1 instability. These results were obtained after circuits providing flexible waveforms were used to drive auxiliary equilibrium windings. The resultant improved equilibrium agrees well with recent theory. It was observed that normally stable short-wavelength m = 1 modes could be driven unstable by feedback. This instability, caused by local feedback control, increases the feedback system energy consumption. An instability involving direct coupling of the feedback l = 2 field to the plasma l = 1 motion was also observed. The plasma parameters were: temperature, T/sub e/ approximately equal to T 1 approximately equal to 100 eV; density, n/sub e/ approximately equal to 2 x 10 16 cm -8 ; radius, a approximately equal to 1 cm; and β approximately equal to 0.7. Beta decreased significantly in 40 μs, which can be accounted for by classical resistivity and particle loss from the sector ends
Exponential Stabilization of an Underactuated Surface Vessel
Kristin Y. Pettersen
1997-07-01
Full Text Available The paper shows that a large class of underactuated vehicles cannot be asymptotically stabilized by either continuous or discontinuous state feedback. Furthermore, stabilization of an underactuated surface vessel is considered. Controllability properties of the surface vessels is presented, and a continuous periodic time-varying feedback law is proposed. It is shown that this feedback law exponentially stabilizes the surface vessel to the origin, and this is illustrated by simulations.
Using DCM pitch modulation and feedback to improve long term X-ray beam stability
Bloomer, C; Dent, A; Diaz-Moreno, S; Dolbnya, I; Pedersen, U; Rehm, G; Tang, C; Thomas, C
2013-01-01
In this paper we demonstrate significant improvements to the stability of the monochromatic X-ray beam intensity on several beamlines at Diamond, using a modulation of the pitch axis of the DCM with a piezoelectric actuator. The modulation is detected on an intensity diagnostic (e.g. an ion chamber) using a software lock-in technique. The detected amplitude and phase are used in a feedback to keep the DCM at the peak of the rocking curve, or any arbitrary position 'off-peak' which might be desired to detune the DCM and reject unwanted harmonics. A major advantage of this software based system is the great flexibility offered, using standard, readily available instrumentation. Measurements of the short and long-term performance of the feedback on several beamlines are presented, and the limitations of such a feedback are discussed.
Gao, Fangzheng; Wu, Yuqiang; Zhang, Zhongcai
2015-11-01
This paper investigates the problem of finite-time stabilization by output feedback for a class of nonholonomic systems in chained form with uncertainties. Comparing with the existing relevant literature, a distinguishing feature of the systems under investigation is that the x-subsystem is a feedforward-like rather than feedback-like system. This renders the existing control methods inapplicable to the control problems of the systems. A constructive design procedure for output feedback control is given. The designed controller renders that the states of closed-loop system are regulated to zero in a finite time. Two simulation examples are provided to illustrate the effectiveness of the proposed approach. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Stability and oscillation of two coupled Duffing equations with time delay state feedback
El-Bassiouny, A F
2006-01-01
This paper presents an analytical study of the simultaneous principal parametric resonances of two coupled Duffing equations with time delay state feedback. The concept of an equivalent damping related to the delay feedback is proposed and the appropriate choice of the feedback gains and the time delay is discussed from the viewpoint of vibration control. The method of multiple scales is used to determine a set of ordinary differential equations governing the modulation of the amplitudes and phases of the two modes. The first order approximation of the resonances are derived and the effect of time delay on the resonances is investigated. The fixed points correspond to a periodic motion for the starting system and we show the frequency-response curves. We analyse the effect of time delay and the other different parameters on these oscillations. The stability of the fixed points is examined by using the variational method. Numerical solutions are carried out and graphical representations of the results are presented and discussed. Increasing in the time delay τ given decreasing and increasing in the regions of definition and stability respectively and the first mode has decreased magnitudes. The multivalued solutions disappear when decreasing the coefficients of cubic nonlinearities of the second mode α 3 and the detuning parameter σ 2 respectively. Both modes shift to the left for increasing linear feedback gain v 1 and the coefficient of parametric excitation f 1 respectively
Kenne, Godpromesse [Laboratoire d' Automatique et d' Informatique Appliquee (LAIA), Departement de Genie Electrique, Universite de Dschang, B.P. 134 Bandjoun, Cameroun; Goma, Raphael; Lamnabhi-Lagarrigue, Francoise [Laboratoire des Signaux et Systemes (L2S), CNRS-SUPELEC, Universite Paris XI, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France); Nkwawo, Homere [Departement GEII, Universite Paris XIII, IUT Villetaneuse, 99 Avenue Jean Baptiste Clement, 93430 Villetaneuse (France); Arzande, Amir; Vannier, Jean Claude [Departement Energie, Ecole Superieure d' Electricite-SUPELEC, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France)
2010-09-15
In this paper, a simple improved direct feedback linearization design method for transient stability and voltage regulation of power systems is discussed. Starting with the classical direct feedback linearization technique currently applied to power systems, an adaptive nonlinear excitation control of synchronous generators is proposed, which is new and effective for engineering. The power angle and mechanical power input are not assumed to be available. The proposed method is based on a standard third-order model of a synchronous generator which requires only information about the physical available measurements of angular speed, active electric power and generator terminal voltage. Experimental results of a practical power system show that fast response, robustness, damping, steady-state and transient stability as well as voltage regulation are all achieved satisfactorily. (author)
Nonlinear Feedback Control and Stability Analysis of a Proof-of-Work Blockchain
Geir Hovland
2017-10-01
Full Text Available In this paper a novel feedback controller and stability analysis of a blockchain implementation is developed by using a control engineering perspective. The controller output equals the difficulty adjustment in the mining process while the feedback variable is the average block time over a certain time period. The computational power (hash rate of the miners is considered a disturbance in the model. The developed controller is tested against a simulation model with constant disturbance, step and ramp responses as well as with a high-frequency sinusoidal disturbance. Stability and a fast response is demonstrated in all these cases with a controller which adjusts it's output at every new block. Finally the performance of the controller is implemented and demonstrated on a testnet with a constant hash rate as well as on the mainnet of a public open source blockchain project.
Feedback stabilization of the axisymmetric instability of a deformable tokamak plasma
Pomphrey, N.; Jardin, S.C.; Ward, D.J.
1989-01-01
The paper presents an analysis of the magnetohydrodynamic stability of the axisymmetric system consisting of a free boundary tokamak plasma with non-circular cross-section, finite resistivity passive conductors, and an active feedback system with magnetic flux pickup loops, a proportional amplifier with gain G and current carrying poloidal field coils. A numerical simulation of the system when G is set to zero identifies flux loop locations which correctly sense the plasma motion. However, when certain of these locations are incorporated into an active feedback scheme, the plasma fails to be stabilized, no matter what value of the gain is chosen. Analysis on the basis of an extended energy principle indicates that this failure is due to the deformability of the plasma cross-section. (author). 14 refs, 7 figs
Jardin, S.C.; Schmidt, J.A.
1998-01-01
The Tokamak Simulation Code (TSC) has been used to model a new method of feedback stabilization of the axisymmetric instability in tokamaks using driven halo (or scrape-off layer) currents. The method appears to be feasible for a wide range of plasma edge parameters. It may offer advantages over the more conventional method of controlling this instability when applied in a reactor environment. (author)
Stability of Nonlinear Systems with Unknown Time-varying Feedback Delay
Chunodkar, Apurva A.; Akella, Maruthi R.
2013-12-01
This paper considers the problem of stabilizing a class of nonlinear systems with unknown bounded delayed feedback wherein the time-varying delay is 1) piecewise constant 2) continuous with a bounded rate. We also consider application of these results to the stabilization of rigid-body attitude dynamics. In the first case, the time-delay in feedback is modeled specifically as a switch among an arbitrarily large set of unknown constant values with a known strict upper bound. The feedback is a linear function of the delayed states. In the case of linear systems with switched delay feedback, a new sufficiency condition for average dwell time result is presented using a complete type Lyapunov-Krasovskii (L-K) functional approach. Further, the corresponding switched system with nonlinear perturbations is proven to be exponentially stable inside a well characterized region of attraction for an appropriately chosen average dwell time. In the second case, the concept of the complete type L-K functional is extended to a class of nonlinear time-delay systems with unknown time-varying time-delay. This extension ensures stability robustness to time-delay in the control design for all values of time-delay less than the known upper bound. Model-transformation is used in order to partition the nonlinear system into a nominal linear part that is exponentially stable with a bounded perturbation. We obtain sufficient conditions which ensure exponential stability inside a region of attraction estimate. A constructive method to evaluate the sufficient conditions is presented together with comparison with the corresponding constant and piecewise constant delay. Numerical simulations are performed to illustrate the theoretical results of this paper.
Stabilization of exact nonlinear Timoshenko beams in space by boundary feedback
Do, K. D.
2018-05-01
Boundary feedback controllers are designed to stabilize Timoshenko beams with large translational and rotational motions in space under external disturbances. The exact nonlinear partial differential equations governing motion of the beams are derived and used in the control design. The designed controllers guarantee globally practically asymptotically (and locally practically exponentially) stability of the beam motions at the reference state. The control design, well-posedness and stability analysis are based on various relationships between the earth-fixed and body-fixed coordinates, Sobolev embeddings, and a Lyapunov-type theorem developed to study well-posedness and stability for a class of evolution systems in Hilbert space. Simulation results are included to illustrate the effectiveness of the proposed control design.
On fully three-dimensional resistive wall mode and feedback stabilization computations
Strumberger, E.; Merkel, P.; Sempf, M.; Guenter, S.
2008-01-01
Resistive walls, located close to the plasma boundary, reduce the growth rates of external kink modes to resistive time scales. For such slowly growing resistive wall modes, the stabilization by an active feedback system becomes feasible. The fully three-dimensional stability code STARWALL, and the feedback optimization code OPTIM have been developed [P. Merkel and M. Sempf, 21st IAEA Fusion Energy Conference 2006, Chengdu, China (International Atomic Energy Agency, Vienna, 2006, paper TH/P3-8] to compute the growth rates of resistive wall modes in the presence of nonaxisymmetric, multiply connected wall structures and to model the active feedback stabilization of these modes. In order to demonstrate the capabilities of the codes and to study the effect of the toroidal mode coupling caused by multiply connected wall structures, the codes are applied to test equilibria using the resistive wall structures currently under debate for ITER [M. Shimada et al., Nucl. Fusion 47, S1 (2007)] and ASDEX Upgrade [W. Koeppendoerfer et al., Proceedings of the 16th Symposium on Fusion Technology, London, 1990 (Elsevier, Amsterdam, 1991), Vol. 1, p. 208
Sheng Guangzhao
1993-01-01
The thermal stability of TETB-II is analyzed using different methods, viz., POPCON, linear stability analysis and the time evolution calculation of plasma parameters. A thermal instability of the TETB-II is predicted. Auxiliary power feedback control for thermal stability appears feasible and efficient
Blumthaler, Ingrid; Oberst, Ulrich
2012-03-01
Control design belongs to the most important and difficult tasks of control engineering and has therefore been treated by many prominent researchers and in many textbooks, the systems being generally described by their transfer matrices or by Rosenbrock equations and more recently also as behaviors. Our approach to controller design uses, in addition to the ideas of our predecessors on coprime factorizations of transfer matrices and on the parametrization of stabilizing compensators, a new mathematical technique which enables simpler design and also new theorems in spite of the many outstanding results of the literature: (1) We use an injective cogenerator signal module ℱ over the polynomial algebra [Formula: see text] (F an infinite field), a saturated multiplicatively closed set T of stable polynomials and its quotient ring [Formula: see text] of stable rational functions. This enables the simultaneous treatment of continuous and discrete systems and of all notions of stability, called T-stability. We investigate stabilizing control design by output feedback of input/output (IO) behaviors and study the full feedback IO behavior, especially its autonomous part and not only its transfer matrix. (2) The new technique is characterized by the permanent application of the injective cogenerator quotient signal module [Formula: see text] and of quotient behaviors [Formula: see text] of [Formula: see text]-behaviors B. (3) For the control tasks of tracking, disturbance rejection, model matching, and decoupling and not necessarily proper plants we derive necessary and sufficient conditions for the existence of proper stabilizing compensators with proper and stable closed loop behaviors, parametrize all such compensators as IO behaviors and not only their transfer matrices and give new algorithms for their construction. Moreover we solve the problem of pole placement or spectral assignability for the complete feedback behavior. The properness of the full feedback behavior
Time-dependent simulations of feedback stabilization of neoclassical tearing modes in KSTAR plasmas
Kim, Kyungjin [Department of Nuclear Engineering, Seoul National University, Seoul (Korea, Republic of); Na, Yong-Su, E-mail: ysna@snu.ac.kr [Department of Nuclear Engineering, Seoul National University, Seoul (Korea, Republic of); Kim, Hyun-Seok [Department of Nuclear Engineering, Seoul National University, Seoul (Korea, Republic of); Maraschek, M. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching bei München (Germany); Park, Y.S. [Department of Applied Physics and Applied Mathematics, Columbia University, New York (United States); Stober, J. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching bei München (Germany); Terzolo, L. [National Fusion Research Institute, Daejeon (Korea, Republic of); Zohm, H. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching bei München (Germany)
2014-06-15
A simulation is performed for feedback stabilization of neoclassical tearing mode (NTM) by electron cyclotron current drive (ECCD) for KSTAR in preparation for experiments. An integrated numerical system is constructed by coupling plasma transport, NTM stability, and heating and current drive modules and applied to a KSTAR plasma by assuming similar experimental conditions as ASDEX Upgrade to predict NTM behaviors in KSTAR. System identification is made with database produced by predictive simulations with this integrated numerical system so that three plasma response models are extracted which describe the relation between the EC poloidal launcher angle and the island width in KSTAR. Among them, the P1DI model exhibiting the highest fit accuracy is selected for designing a feedback controller based on the classical Proportional–Integral–Derivative (PID) concept. The controller is coupled with the integrated numerical system and applied to a simulation of NTM stabilization. It is observed that the controller can search and fully stabilize the mode even though the poloidal launch angle is misaligned with the island initially.
A switched state feedback law for the stabilization of LTI systems.
Santarelli, Keith R.
2009-09-01
Inspired by prior work in the design of switched feedback controllers for second order systems, we develop a switched state feedback control law for the stabilization of LTI systems of arbitrary dimension. The control law operates by switching between two static gain vectors in such a way that the state trajectory is driven onto a stable n - 1 dimensional hyperplane (where n represents the system dimension). We begin by briefly examining relevant geometric properties of the phase portraits in the case of two-dimensional systems to develop intuition, and we then show how these geometric properties can be expressed as algebraic constraints on the switched vector fields that are applicable to LTI systems of arbitrary dimension. We then derive necessary and sufficient conditions to ensure stabilizability of the resulting switched system (characterized primarily by simple conditions on eigenvalues), and describe an explicit procedure for designing stabilizing controllers. We then show how the newly developed control law can be applied to the problem of minimizing the maximal Lyapunov exponent of the corresponding closed-loop state trajectories, and we illustrate the closed-loop transient performance of these switched state feedback controllers via multiple examples.
Real-time feedback for spatiotemporal field stabilization in MR systems.
Duerst, Yolanda; Wilm, Bertram J; Dietrich, Benjamin E; Vannesjo, S Johanna; Barmet, Christoph; Schmid, Thomas; Brunner, David O; Pruessmann, Klaas P
2015-02-01
MR imaging and spectroscopy require a highly stable, uniform background field. The field stability is typically limited by hardware imperfections, external perturbations, or field fluctuations of physiological origin. The purpose of the present work is to address these issues by introducing spatiotemporal field stabilization based on real-time sensing and feedback control. An array of NMR field probes is used to sense the field evolution in a whole-body MR system concurrently with regular system operation. The field observations serve as inputs to a proportional-integral controller that governs correction currents in gradient and higher-order shim coils such as to keep the field stable in a volume of interest. The feedback system was successfully set up, currently reaching a minimum latency of 20 ms. Its utility is first demonstrated by countering thermal field drift during an EPI protocol. It is then used to address respiratory field fluctuations in a T2 *-weighted brain exam, resulting in substantially improved image quality. Feedback field control is an effective means of eliminating dynamic field distortions in MR systems. Third-order spatial control at an update time of 100 ms has proven sufficient to largely eliminate thermal and breathing effects in brain imaging at 7 Tesla. © 2014 Wiley Periodicals, Inc.
Mingzhu Song
2016-01-01
Full Text Available We address the problem of globally asymptotic stability for a class of stochastic nonlinear systems with time-varying delays. By the backstepping method and Lyapunov theory, we design a linear output feedback controller recursively based on the observable linearization for a class of stochastic nonlinear systems with time-varying delays to guarantee that the closed-loop system is globally asymptotically stable in probability. In particular, we extend the deterministic nonlinear system to stochastic nonlinear systems with time-varying delays. Finally, an example and its simulations are given to illustrate the theoretical results.
Hui Ye
2017-01-01
Full Text Available This paper investigates the problem of global stabilization for a class of switched nonlinear systems using multiple Lyapunov functions (MLFs. The restrictions on nonlinearities are neither linear growth condition nor Lipschitz condition with respect to system states. Based on adding a power integrator technique, we design homogeneous state feedback controllers of all subsystems and a switching law to guarantee that the closed-loop system is globally asymptotically stable. Finally, an example is given to illustrate the validity of the proposed control scheme.
Negative feedback mechanism for the long-term stabilization of earth's surface temperature
Walker, J.C.G.; Hays, P.B.; Kasting, J.F.
1981-01-01
We suggest that the partial pressure of carbon dioxide in the atmosphere is buffered, over geological time scales, by a negative feedback mechanism in which the rate of weathering of silicate minerals (followed by deposition of carbonate minerals) depends on surface temperature, and surface temperature, in turn, depends on carbon dioxide partial pressure through the green effect. Although the quantitative details of this mechanism are speculative, it appears able partially to stabilize earth's surface temperature against the steady increase of solar luminosity believed to have occured since the origin of the solar system
Remzi YILDIRIM
1998-01-01
Full Text Available In this study, dynamic stability analysis of semiconductor laser diodes with external optical feedback has been realized. In the analysis the frequency response of the transfer function of laser diode H jw( , the transfer m function of laser diode with external optical feedback TF jw( , and optical feedback transfer function m K jw( obtained from small signal equations has been m accomplished using Nyquist stability analysis in complex domain. The effect of optical feedback on the stability of the system has been introduced and to bring the laser diode to stable condition the working critical boundary range of dampig frequency and reflection power constant (R has been determined. In the study the reflection power has been taken as ( .
Saeed Ashrafpoor Navaee
2016-03-01
Full Text Available The purpose of the present study was to determine the effects of normative feedback on stability and efficacy of some selected muscles at different task difficulty levels in novice individuals. Thirty participants (age Mean= 22.60, SD=1.89 years were randomly assigned into three groups of positive, negative normative feedback and control. The experimental groups participated in 160 acquisition trials (16 blocks of 10trials for 4 consecutive days (40 per day. Post test was performed after last practice session. The result of ANOVA-repeated measure test indicated that positive normative feedback group outperformed the other groups in stability indices of overall stability (P=0.004, anterior-posterior (P=0.01 and medial-lateral (P=0.001. In addition, the result of Covariance test at electromyography indices of the Soleus and Peroneus brevis showed significant differences in the favor of positive normative feedback in post-test. The findings of the present study showed that normative feedback has functional motivation affect that directly influences physiological changes level of stability control. KEY WORDS: Electromyography, knowledge of result, normative feedback, performance, stability control.
Offshore Wind Farms and HVDC Grids Modeling as a Feedback Control System for Stability Analysis
Bidadfar, Ali; Saborío-Romano, Oscar; Altin, Müfit
The low impedance characteristics of DC transmission lines cause the voltage source converter (VSC) in HVDC networks to become electrically closer together and increase the risk of severe interactions between the converters. Such interactions, in turn, intensify the implementation of the grid...... control schemes and may lead the entire system to instability. Assessing the stability and adopting complex coordinated control schemes in an HVDC grid and wind farm turbines are challenging and require a precise model of the HVDC grid, wind farm, and the controllers. In this paper, a linear multivariable...... feedback control system (FCS) model is proposed to represent the dynamic characteristics of HVDC grids and their controllers. The FCS model can be used for different dynamic analyses in time and frequency domains. Moreover, using the FCS model the system stability is analyzed in both open- and closed...
Feedback-stabilized fractional fringe laser interferometer for plasma density measurements
Schneider, J.; Robertson, S.
1979-01-01
A feedback stabilization technique is described for a fractional fringe interferometer measuring plasma electron densities. Using this technique, a CO 2 laser Michelson interferometer with a pyroelectric detector exhibited a sensitivity of 3.4 x 10 -4 fringe on a 1-ms time scale and, due to acoustic pickup, 1.8 x 10 -2 fringe on a 10-ms time scale. The rise time is 45 μs. Stabilization against slow drifts in mirror distances is achieved by an electromechanically translated mirror driven by a servo system having a 0.2-s response time. A mechanical chopper in one of the two beam paths generates the signal which drives the servo system
STABILIZING CLOUD FEEDBACK DRAMATICALLY EXPANDS THE HABITABLE ZONE OF TIDALLY LOCKED PLANETS
Yang Jun; Abbot, Dorian S.; Cowan, Nicolas B.
2013-01-01
The habitable zone (HZ) is the circumstellar region where a planet can sustain surface liquid water. Searching for terrestrial planets in the HZ of nearby stars is the stated goal of ongoing and planned extrasolar planet surveys. Previous estimates of the inner edge of the HZ were based on one-dimensional radiative-convective models. The most serious limitation of these models is the inability to predict cloud behavior. Here we use global climate models with sophisticated cloud schemes to show that due to a stabilizing cloud feedback, tidally locked planets can be habitable at twice the stellar flux found by previous studies. This dramatically expands the HZ and roughly doubles the frequency of habitable planets orbiting red dwarf stars. At high stellar flux, strong convection produces thick water clouds near the substellar location that greatly increase the planetary albedo and reduce surface temperatures. Higher insolation produces stronger substellar convection and therefore higher albedo, making this phenomenon a stabilizing climate feedback. Substellar clouds also effectively block outgoing radiation from the surface, reducing or even completely reversing the thermal emission contrast between dayside and nightside. The presence of substellar water clouds and the resulting clement surface conditions will therefore be detectable with the James Webb Space Telescope.
Afzal, Muhammad Raheel; Byun, Ha-Young; Oh, Min-Kyun; Yoon, Jungwon
2015-03-13
Haptic control is a useful therapeutic option in rehabilitation featuring virtual reality interaction. As with visual and vibrotactile biofeedback, kinesthetic haptic feedback may assist in postural control, and can achieve balance control. Kinesthetic haptic feedback in terms of body sway can be delivered via a commercially available haptic device and can enhance the balance stability of both young healthy subjects and stroke patients. Our system features a waist-attached smartphone, software running on a computer (PC), and a dedicated Phantom Omni® device. Young healthy participants performed balance tasks after assumption of each of four distinct postures for 30 s (one foot on the ground; the Tandem Romberg stance; one foot on foam; and the Tandem Romberg stance on foam) with eyes closed. Patient eyes were not closed and assumption of the Romberg stance (only) was tested during a balance task 25 s in duration. An Android application running continuously on the smartphone sent mediolateral (ML) and anteroposterior (AP) tilt angles to a PC, which generated kinesthetic haptic feedback via Phantom Omni®. A total of 16 subjects, 8 of whom were young healthy and 8 of whom had suffered stroke, participated in the study. Post-experiment data analysis was performed using MATLAB®. Mean Velocity Displacement (MVD), Planar Deviation (PD), Mediolateral Trajectory (MLT) and Anteroposterior Trajectory (APT) parameters were analyzed to measure reduction in body sway. Our kinesthetic haptic feedback system was effective to reduce postural sway in young healthy subjects regardless of posture and the condition of the substrate (the ground) and to improve MVD and PD in stroke patients who assumed the Romberg stance. Analysis of Variance (ANOVA) revealed that kinesthetic haptic feedback significantly reduced body sway in both categories of subjects. Kinesthetic haptic feedback can be implemented using a commercial haptic device and a smartphone. Intuitive balance cues were
Plasma measurement by feedback-stabilized dual-beam laser interferometer
Yasuda, Akio; Kawahata, Kazuo; Kanai, Yasubumi.
1982-03-01
The plasma density in a dynamic magneto arcjet is measured by a stabilized dual-beam laser interferometer proposed by the authors. The fringe shift for a 0.63 μm beam of He-Ne laser is used to stabilize the interferometer against the effect of mechanical vibration by means of a feedback controlled speaker coil, while the other beam of 3.39 μm, for which the effect of mechanical vibrations is excluded, is used to measure plasma density. Stability of --1/500 of one fringe for 0.63 μm is obtained during a long period for frequencies lower than a few Hertz. Stability for higher frequencies, which determines the accuracy of the present measurement, is limited to --1/30 of one fringe for 0.63 μm, which corresponds to --1/200 of one fringe and a line electron density of --1.5 x 10 14 cm - 2 for 3.39 μm, by acoustic noise picked up by the speaker coil. The advantage of this technique over the single-laser technique is that the frequency response of the interferometer extends down to zero frequency. Since the effect of the neutral gas background is practically reduced to zero, the present interferometer is to be applied advantageously to the diagnostics of the plasma produced in high pressure gases. (author)
Katsuro-Hopkins, Oksana; Sabbagh, S. A.; Bialek, J. M.; Park, H. K.; Kim, J. Y.; You, K.-I.; Glasser, A. H.; Lao, L. L.
2007-11-01
Stability to ideal MHD kink/ballooning modes and the resistive wall mode (RWM) is investigated for the KSTAR tokamak. Free-boundary equilibria that comply with magnetic field coil current constraints are computed for monotonic and reversed shear safety factor profiles and H-mode tokamak pressure profiles. Advanced tokamak operation at moderate to low plasma internal inductance shows that a factor of two improvement in the plasma beta limit over the no-wall beta limit is possible for toroidal mode number of unity. The KSTAR conducting structure, passive stabilizers, and in-vessel control coils are modeled by the VALEN-3D code and the active RWM stabilization performance of the device is evaluated using both standard and advanced feedback algorithms. Steady-state power and voltage requirements for the system are estimated based on the expected noise on the RWM sensor signals. Using NSTX experimental RWM sensors noise data as input, a reduced VALEN state-space LQG controller is designed to realistically assess KSTAR stabilization system performance.
System dynamics with interaction discontinuity
Luo, Albert C J
2015-01-01
This book describes system dynamics with discontinuity caused by system interactions and presents the theory of flow singularity and switchability at the boundary in discontinuous dynamical systems. Based on such a theory, the authors address dynamics and motion mechanism of engineering discontinuous systems due to interaction. Stability and bifurcations of fixed points in nonlinear discrete dynamical systems are presented, and mapping dynamics are developed for analytical predictions of periodic motions in engineering discontinuous dynamical systems. Ultimately, the book provides an alternative way to discuss the periodic and chaotic behaviors in discontinuous dynamical systems.
Feedback stabilization of the axisymmetric instability of a deformable tokamak plasma
Pomphrey, N.; Jardin, S.C.
1987-09-01
We analyze the magnetohydrodynamic (MHD) stability of the axisymmetric system consisting of a free boundary, non-circular cross-section tokamak plasma, finite resistivity passive conductors, and an active feedback system with magnetic flux pickup loops, a proportional amplifier with gain G, and current carrying poloidal field coils. Numerical simulation of a system that is unstable with G = 0 shows that for some placements of the pickup loops, the system will remain unstable for all values of G, while for other placements of the loops, the system will be stable for G > G/sub crit/. This behavior is explained by analysis using an extended energy principle, and it is shown to result from the deformability of the plasma cross section. 9 refs., 5 figs
Hansen, Dorte Gilså; Felde, Lina; Gichangi, Anthony
2007-01-01
prevalence and rate of early discontinuation of different drugs consisting of, in this study, lipid-lowering drugs, antihypertensive drugs, antidepressants, antidiabetics and drugs against osteoporosis. Material and methods This was a register study based on prescription data covering a 4-year period...... and consisting of 470,000 citizens. For each practice and group of drug, a 1-year prevalence for 2002 and the rate of early discontinuation among new users in 2002-2003 were estimated. Early discontinuation was defined as no prescriptions during the second half-year following the first prescription....... There was a positive association between the prevalence of prescribing for the specific drugs studied (antidepressants, antidiabetics, drugs against osteoporosis and lipid-lowering drugs) and early discontinuation (r = 0.29 -0.44), but not for anti-hypertensive drugs. The analysis of the association between prevalence...
Ding Xiaohua; Su Huan; Liu Mingzhu
2008-01-01
The paper analyzes a discrete second-order, nonlinear delay differential equation with negative feedback. The characteristic equation of linear stability is solved, as a function of two parameters describing the strength of the feedback and the damping in the autonomous system. The existence of local Hopf bifurcations is investigated, and the direction and stability of periodic solutions bifurcating from the Hopf bifurcation of the discrete model are determined by the Hopf bifurcation theory of discrete system. Finally, some numerical simulations are performed to illustrate the analytical results found
Fehn, Niklas; Wall, Wolfgang A.; Kronbichler, Martin
2017-12-01
The present paper deals with the numerical solution of the incompressible Navier-Stokes equations using high-order discontinuous Galerkin (DG) methods for discretization in space. For DG methods applied to the dual splitting projection method, instabilities have recently been reported that occur for small time step sizes. Since the critical time step size depends on the viscosity and the spatial resolution, these instabilities limit the robustness of the Navier-Stokes solver in case of complex engineering applications characterized by coarse spatial resolutions and small viscosities. By means of numerical investigation we give evidence that these instabilities are related to the discontinuous Galerkin formulation of the velocity divergence term and the pressure gradient term that couple velocity and pressure. Integration by parts of these terms with a suitable definition of boundary conditions is required in order to obtain a stable and robust method. Since the intermediate velocity field does not fulfill the boundary conditions prescribed for the velocity, a consistent boundary condition is derived from the convective step of the dual splitting scheme to ensure high-order accuracy with respect to the temporal discretization. This new formulation is stable in the limit of small time steps for both equal-order and mixed-order polynomial approximations. Although the dual splitting scheme itself includes inf-sup stabilizing contributions, we demonstrate that spurious pressure oscillations appear for equal-order polynomials and small time steps highlighting the necessity to consider inf-sup stability explicitly.
Feedback-stabilized dual-beam laser interferometer for plasma measurements
Yasuda, A.; Kanai, Y.; Kusunoki, J.; Kawahata, K.; Takeda, S.
1980-01-01
A stabilized laser interferometer is proposed with two beams as the light source. The fringe shift for a 0.63 μm beam of a He--Ne laser is used to stabilize the interferometer against the effect of mechanical vibrations via a feedback controlled speaker coil, while another beam of 3.39 μm, for which consequently the effect of the mechanical vibrations is excluded, is used to measure the plasma density. A stability of approx.1/500 of one fringe for 0.63 μm is obtained during a long period for frequencies lower than a few Hz. The stability for higher frequencies is limited to approx.1/30 of one fringe for 0.63 μm, which correspondes to approx.1/200 of one fringe for 3.39 μm, by the acoustic noise picked up by the speaker coil. Furthermore, the total accuracy is limited by the detector noise to approx.1/60 of one fringe for 3.39 μm, which corresponds to a line electron density of approx.5 x 10 14 cm -2 . The detector noise may be reduced by cooling the detector. The advantage of this technique over the single-laser technique is that the frequency response of the interferometer extends down to zero frequency. The interferometer is tested with the measurement of a plasma in a dynamic magnetic arcjet. Since the effect of the neutral gas background is reduced in the present interferometer, the application has an advantage for the diagnostics of plasmas produced in high pressure gases
Sağlam, M; Lehnen, N
2014-01-01
During gaze shifts, humans can use visual, vestibular, and proprioceptive feedback, as well as feedforward mechanisms, for stabilization against active and passive head movements. The contributions of feedforward and sensory feedback control, and the role of the cerebellum, are still under debate. To quantify these contributions, we increased the head moment of inertia in three groups (ten healthy, five chronic vestibular-loss and nine cerebellar-ataxia patients) while they performed large gaze shifts to flashed targets in darkness. This induces undesired head oscillations. Consequently, both active (desired) and passive (undesired) head movements had to be compensated for to stabilize gaze. All groups compensated for active and passive head movements, vestibular-loss patients less than the other groups (P feedforward mechanisms substantially contribute to gaze stabilization. Proprioception alone is not sufficient (gain 0.2). Stabilization against active and passive head movements was not impaired in our cerebellar ataxia patients.
Tutorial on Feedback Control of Flows, Part I: Stabilization of Fluid Flows in Channels and Pipes
Ole M. Aamo
2002-07-01
Full Text Available The field of flow control has picked up pace over the past decade or so, on the promise of real-time distributed control on turbulent scales being realizable in the near future. This promise is due to the micromachining technology that emerged in the 1980s and developed at an amazing speed through the 1990s. In lab experiments, so called micro-electro-mechanical systems (MEMS that incorporate the entire detection-decision-actuation process on a single chip, have been batch processed in large numbers and assembled into flexible skins for gluing onto body-fluid interfaces for drag reduction purposes. Control of fluid flows span a wide variety of specialities. In Part I of this tutorial, we focus on the problem of reducing drag in channel and pipe flows by stabilizing the parabolic equilibrium profile using boundary feedback control. The control strategics used for this problem include classical control, based on the Nyquist criteria, and various optimal control techniques (H2, H-Infinity, as well as applications of Lyapunov stability theory.
Chung, Eunjung; Lee, Byoung-Hee; Hwang, Sujin
2014-01-01
The purpose of this study was to examine the feasibility of core stabilization exercise with real-time feedback on balance and gait function in patients with chronic hemiparetic stroke. Nineteen stroke subjects were enrolled in this study. The patients were randomly divided into the experimental (n = 10) and control groups (n = 9). Subjects in the experimental group performed core stabilization exercise with real-time feedback training for 30 minutes per day during a period of six weeks. Subjects in the control group performed core stabilization exercise during the same period. This study assessed the kinematic parameters using a portable walkway system, and timed up-and-go test. Gait velocity showed significantly greater improvement in the experimental group (7.3 ± 5.0 sec) than in the control group (-0.7 ± 10.6). Stride length showed significantly greater increase in the experimental group (13.2 ± 7.9 on the affected side and 12.6 ± 8.0 on the less affected side) than the control group (3.5 ± 8.7 on the affected side and 3.4 ± 8.5 on the less affected side). After training, change in results on the timed up and go test was significantly greater in the experimental group than in the control group. Core stabilization exercise using real-time feedback produces greater improvement in gait performance in chronic hemiparetic stroke patients than core stabilization exercise only.
Stabilization of self-mode-locked quantum dash lasers by symmetric dual-loop optical feedback
Asghar, Haroon; Wei, Wei; Kumar, Pramod; Sooudi, Ehsan; McInerney, John. G.
2018-02-01
We report experimental studies of the influence of symmetric dual-loop optical feedback on the RF linewidth and timing jitter of self-mode-locked two-section quantum dash lasers emitting at 1550 nm. Various feedback schemes were investigated and optimum levels determined for narrowest RF linewidth and low timing jitter, for single-loop and symmetric dual-loop feedback. Two symmetric dual-loop configurations, with balanced and unbalanced feedback ratios, were studied. We demonstrate that unbalanced symmetric dual loop feedback, with the inner cavity resonant and fine delay tuning of the outer loop, gives narrowest RF linewidth and reduced timing jitter over a wide range of delay, unlike single and balanced symmetric dual-loop configurations. This configuration with feedback lengths 80 and 140 m narrows the RF linewidth by 4-67x and 10-100x, respectively, across the widest delay range, compared to free-running. For symmetric dual-loop feedback, the influence of different power split ratios through the feedback loops was determined. Our results show that symmetric dual-loop feedback is markedly more effective than single-loop feedback in reducing RF linewidth and timing jitter, and is much less sensitive to delay phase, making this technique ideal for applications where robustness and alignment tolerance are essential.
Numerical simulation of feedback stabilization of the tearing mode in a rotating plasma
Speranskii, N.N.
1991-01-01
The suppression of the tearing mode by means of feedback is studied in a rotating plasma cylinder. The feedback is produced by a coil whose winding is specified by cos var-phi, var-phi = mθ - kz. It is shown that when a resonant surface is present in the rotating plasma the current in the feedback winding generates a magnetic flux in the plasma with cos var-phi and sin var-phi angular dependence. The processes of particle capture is explained. The rotational instability which arises because of the repulsion between the feedback and tearing-mode currents, which interferes with suppression of the tearing mode, is absent when the plasma rotates sufficiently rapidly. In this feedback dependence the form of the plasma current profile determines whether there can be an instability in the induced current resulting from the presence of the feedback
A boundary PDE feedback control approach for the stabilization of mortgage price dynamics
Rigatos, G.; Siano, P.; Sarno, D.
2017-11-01
Several transactions taking place in financial markets are dependent on the pricing of mortgages (loans for the purchase of residences, land or farms). In this article, a method for stabilization of mortgage price dynamics is developed. It is considered that mortgage prices follow a PDE model which is equivalent to a multi-asset Black-Scholes PDE. Actually it is a diffusion process evolving in a 2D assets space, where the first asset is the house price and the second asset is the interest rate. By applying semi-discretization and a finite differences scheme this multi-asset PDE is transformed into a state-space model consisting of ordinary nonlinear differential equations. For the local subsystems, into which the mortgage PDE is decomposed, it becomes possible to apply boundary-based feedback control. The controller design proceeds by showing that the state-space model of the mortgage price PDE stands for a differentially flat system. Next, for each subsystem which is related to a nonlinear ODE, a virtual control input is computed, that can invert the subsystem's dynamics and can eliminate the subsystem's tracking error. From the last row of the state-space description, the control input (boundary condition) that is actually applied to the multi-factor mortgage price PDE system is found. This control input contains recursively all virtual control inputs which were computed for the individual ODE subsystems associated with the previous rows of the state-space equation. Thus, by tracing the rows of the state-space model backwards, at each iteration of the control algorithm, one can finally obtain the control input that should be applied to the mortgage price PDE system so as to assure that all its state variables will converge to the desirable setpoints. By showing the feasibility of such a control method it is also proven that through selected modification of the PDE boundary conditions the price of the mortgage can be made to converge and stabilize at specific
Khutoryan, E. M.; Idehara, T.; Kuleshov, A. N.; Tatematsu, Y.; Yamaguchi, Y.; Matsuki, Y.; Fujiwara, T.
2017-07-01
In this paper, we present the results of simultaneous stabilization of both the frequency and the output power by a double PID feedback control on the acceleration and anode voltages in the 460-GHz gyrotron FU CW GVI, also known as "Gyrotron FU CW GO-1" (according to the nomenclature adopted at Osaka University). The approach used in the experiments is based on the modulation of the cyclotron frequency and the pitch factor (velocity ratio) of the electron beam by varying the acceleration and the anode voltages, respectively. In a long-term experiment, the frequency and power stabilities were made to be better than ±10-6 and ±1%, respectively.
Colli Franzone, P; Pavarino, L F; Scacchi, S
2017-09-01
In this work, we investigate the influence of cardiac tissue deformation on re-entrant wave dynamics. We have developed a 3D strongly coupled electro-mechanical Bidomain model posed on an ideal monoventricular geometry, including fiber direction anisotropy and stretch-activated currents (SACs). The cardiac mechanical deformation influences the bioelectrical activity with two main mechanical feedback: (a) the geometric feedback (GEF) due to the presence of the deformation gradient in the diffusion coefficients and in a convective term depending on the deformation rate and (b) the mechano-electric feedback (MEF) due to SACs. Here, we investigate the relative contribution of these two factors with respect to scroll wave stability. We extend the previous works [Keldermann et al., Am. J. Physiol. Heart Circ. Physiol. 299, H134-H143 (2010) and Hu et al., PLoS One 8(4), e60287 (2013)] that were based on the Monodomain model and a simple non-selective linear SAC, while here we consider the full Bidomain model and both selective and non-selective components of SACs. Our simulation results show that the stability of cardiac scroll waves is influenced by MEF, which in case of low reversal potential of non-selective SACs might be responsible for the onset of ventricular fibrillation; GEF increases the scroll wave meandering but does not determine the scroll wave stability.
Olav Slupphaug
1999-07-01
Full Text Available In this paper a method for nonlinear robust stabilization based on solving a bilinear matrix inequality (BMI feasibility problem is developed. Robustness against model uncertainty is handled. In different non-overlapping regions of the state-space called clusters the plant is assumed to be an element in a polytope which vertices (local models are affine systems. In the clusters containing the origin in their closure, the local models are restricted to be linear systems. The clusters cover the region of interest in the state-space. An affine state-feedback is associated with each cluster. By utilizing the affinity of the local models and the state-feedback, a set of linear matrix inequalities (LMIs combined with a single nonconvex BMI are obtained which, if feasible, guarantee quadratic stability of the origin of the closed-loop. The feasibility problem is attacked by a branch-and-bound based global approach. If the feasibility check is successful, the Liapunov matrix and the piecewise affine state-feedback are given directly by the feasible solution. Control constraints are shown to be representable by LMIs or BMIs, and an application of the control design method to robustify constrained nonlinear model predictive control is presented. Also, the control design method is applied to a simple example.
Boundary layer stability and Arctic climate change: a feedback study using EC-Earth
Bintanja, R.; Linden, E.C. van der; Hazeleger, W. [Royal Netherlands Meteorological Institute (KNMI), De Bilt (Netherlands)
2012-12-15
Amplified Arctic warming is one of the key features of climate change. It is evident in observations as well as in climate model simulations. Usually referred to as Arctic amplification, it is generally recognized that the surface albedo feedback governs the response. However, a number of feedback mechanisms play a role in AA, of which those related to the prevalent near-surface inversion have received relatively little attention. Here we investigate the role of the near-surface thermal inversion, which is caused by radiative surface cooling in autumn and winter, on Arctic warming. We employ idealized climate change experiments using the climate model EC-Earth together with ERA-Interim reanalysis data to show that boundary-layer mixing governs the efficiency by which the surface warming signal is 'diluted' to higher levels. Reduced vertical mixing, as in the stably stratified inversion layer in Arctic winter, thus amplifies surface warming. Modelling results suggest that both shortwave - through the (seasonal) interaction with the sea ice feedback - and longwave feedbacks are affected by boundary-layer mixing, both in the Arctic and globally, with the effect on the shortwave feedback dominating. The amplifying effect will decrease, however, with climate warming because the surface inversion becomes progressively weaker. We estimate that the reduced Arctic inversion has slowed down global warming by about 5% over the past 2 decades, and we anticipate that it will continue to do so with ongoing Arctic warming. (orig.)
Adaptive Fuzzy Output-Feedback Method Applied to Fin Control for Time-Delay Ship Roll Stabilization
Rui Bai
2014-01-01
Full Text Available The ship roll stabilization by fin control system is considered in this paper. Assuming that angular velocity in roll cannot be measured, an adaptive fuzzy output-feedback control is investigated. The fuzzy logic system is used to approximate the uncertain term of the controlled system, and a fuzzy state observer is designed to estimate the unmeasured states. By utilizing the fuzzy state observer and combining the adaptive backstepping technique with adaptive fuzzy control design, an observer-based adaptive fuzzy output-feedback control approach is developed. It is proved that the proposed control approach can guarantee that all the signals in the closed-loop system are semiglobally uniformly ultimately bounded (SGUUB, and the control strategy is effective to decrease the roll motion. Simulation results are included to illustrate the effectiveness of the proposed approach.
Feedback control and stabilization experiments on the Texas Experimental Tokamak (TEXT)
Uckan, T.; Richards, B.; Wootton, A.J.; Bengtson, R.D.; Bravenec, R.; Carreras, B.A.; Li, G.X.; Hurwitz, P.; Phillips, P.E.; Rowan, W.L.; Tsui, H.Y.W.; Uglum, J.R.; Wen, Y.; Winslow, D.
1995-01-01
Plasma edge feedback experiments on the Texas Experimental Tokamak (TEXT) have been successful in controlling the edge plasma potential fluctuation level. The feedback wave-launcher is driven by the local edge potential fluctuations. The edge potential fluctuations are modified in a broad frequency band. Moreover, the potential fluctuations can be reduced (≤100 kHz) without enhancing other modes, or excited (10 to 12 kHz), depending on the phase difference between the driver and the launcher signal, and gain of the system. This turbulence modification is achieved not only locally but also halfway around the torus and has about 2 cm of poloidal extent. The local plasma parameters at the edge and the estimated fluctuation-induced radial particle flux are somewhat affected by the edge feedback. ((orig.))
Grid-Current-Feedback Control for LCL-Filtered Grid Converters With Enhanced Stability
Xin, Zhen; Wang, Xiongfei; Loh, Poh Chiang
2017-01-01
This paper proposes a Second-Order-Generalized- Integrator (SOGI)-based time delay compensation method for extending the stable region of dual-loop Grid-Current-Feedback (GCF) control system. According to the analysis, stable region of the dual-loop system should be designed below a certain...... critical frequency, before time delay compensation method can be applied. To always meet the requirement, relationship between single-loop converter-current-feedback and dual-loop GCF control is clarified, before a robust inner-loop gain for the dualloop GCF scheme is determined. Enforcing this gain allows...
Aspect-Driven Changes in Slope Stability Due to Ecohydrologic Feedbacks
Poulos, M. J.; Pierce, J. L.; Flores, A. N.; Benner, S. G.; Smith, T. J.; McNamara, J. P.
2009-12-01
Seasonally integrated variation in insolation drives feedbacks among evapotranspiration, soil moisture, weathering, and erosion that lead to pronounced contrasts in slope angles and vegetation on north and south-facing hillslopes. Spatial variations in insolation associated with north-south contrasts in topographic aspect leads to corresponding variation in local microclimates and ecohydrologic regimes that, in turn, impact spatial patterns of weathering and erosion, ultimately impacting slope angles on north and south-facing slopes. Aspect-sensitive environments appear to be poised on a balance point between ecohydrologic systems, and may be especially susceptible to climate change. In the semi-arid Colorado Plateau of northeastern Arizona, cliffs often form on south-facing slopes where soil moisture is insufficient for weathering of clay-cemented sandstone that is susceptible to hydration. In contrast, cliffs are rare on northerly slopes, which are dominated by mantles of weathered sandstone and colluvium (Burnett et al., 2008, doi:10.1029/2007JF000789). However, in semi-arid regions of the Idaho Batholith, preliminary results indicate some north-facing slopes are significantly steeper than south-facing slopes. We hypothesize that in semi-arid areas with observable increases in vegetation on north vs. south-facing slopes, north-facing slopes will be steeper due to increased soil cohesion, increased capture of wind-borne loess due to vegetative wind-baffling, and differences in the type and magnitude of erosive processes. In moister areas where aspect does not visibly control vegetation type and density, differences in slope angles with aspect should not be observed. We investigate tectonically quiescent regions of the mostly-homogenous granodioritic Idaho Batholith to locate areas sensitive to aspect-induced variations in insolation and compare slope characteristics on north and south-facing slopes. Hillslopes within the Dry Creek Experimental Watershed, in the
Feedback control and stabilization experiments on the Texas Experimental Tokamak (TEXT)
Uckan, T.; Carreras, B.A.; Richards, B.; Wootton, A.J.; Bengtson, R.D.; Bravenec, R.; Li, G.X.; Hurwitz, P.D.; Phillips, P.E.; Rowan, W.L.
1994-06-01
Plasma edge feedback experiments on the Texas Experimental Tokamak (TEXT) have been successful in controlling the edge plasma potential fluctuation level. The feedback wave-launcher, consisting of electrostatic probes located in the shadow of the limiter, is driven by the local edge potential fluctuations. In general, the edge potential fluctuations are modified in a broad frequency band. Moreover, it is observed that the potential fluctuations can be reduced (≤100 kHz) without enhancing other modes, or excited (10 to 12 kHz), depending on the phase difference between the driver and the launcher signal, and gain of the system. This turbulence modification is achieved not only locally but also halfway around the torus and has about 2 cm of poloidal extent. Experiments on the characterization of the global plasma parameters with the edge feedback are discussed. Effects of the edge feedback on the estimated fluctuation-induced radial particle flux as well as on the local plasma parameters are presented
Enhanced Stability of Capacitor-Current Feedback Active Damping for LCL-Filtered Grid Converters
Xin, Zhen; Wang, Xiongfei; Loh, Poh Chiang
2015-01-01
The proportional capacitor-current feedback active damping method has been widely used to suppress the LCL-filter resonance. However, the time delay in the damping control loop may lead to non-minimum phase or even unstable responses when the resonance frequency varies in a wide range. To improve...
Stabilization and synchronization of Genesio-Tesi system via single variable feedback controller
Wang Guangming
2010-01-01
This Letter investigates the stabilization and synchronization of Genesio-Tesi systems. Firstly, modifying the previous method, we stabilize the Genesio-Tesi system. Then, we synchronize two identical Genesio chaotic system by extending the obtained stabilization results. To the best of our knowledge, the above controllers obtained in this Letter are simpler than those obtained in the existing results. Finally, numerical simulations verify the effectiveness and the validity of the above theoretical results.
Stability region for a prompt power variation of a coupled-core system with positive prompt feedback
Watanabe, S.; Nishina, K.
1984-01-01
A stability analysis using a one-group model is presented for a coupled-core system. Positive prompt feedback of a γp /SUB j/ form is assumed, where p /SUB j/ is the fractional power variation of core j. Prompt power variations over a range of a few milliseconds after a disturbance are analyzed. The analysis combines Lapunov's method, prompt jump approximation, and the eigenfunction expansion of coupling region response flux. The last is treated as a pseudo-delayed neutron precursor. An asymptotic stability region is found for p /SUB j/. For an asymmetric flux variation over a system of two coupled cores, either p /SUB I/ or p /SUB II/ can slightly exceed, by virtue of the coupling effect, the critical value (β/γ-1) of a single-core case. Such a stability region is increased by additional inclusion of the coupling region fundamental mode in the treatment. The coupling region contributes to stability through its delayed response and coupling. An optimum core separation distance for stability is found
M. De la Sen
2012-01-01
Full Text Available The stabilization of dynamic switched control systems is focused on and based on an operator-based formulation. It is assumed that the controlled object and the controller are described by sequences of closed operator pairs (L,C on a Hilbert space H of the input and output spaces and it is related to the existence of the inverse of the resulting input-output operator being admissible and bounded. The technical mechanism addressed to get the results is the appropriate use of the fact that closed operators being sufficiently close to bounded operators, in terms of the gap metric, are also bounded. That philosophy is followed for the operators describing the input-output relations in switched feedback control systems so as to guarantee the closed-loop stabilization.
Wilson, S. D.; James, M. R.; Carvalho, A. R. R.; Hope, J. J.
2007-01-01
We apply quantum filtering and control to a particle in a harmonic trap under continuous position measurement, and show that a simple static feedback law can be used to cool the system. The final steady state is Gaussian and dependent on the feedback strength and coupling between the system and probe. In the limit of weak coupling, this final state becomes the ground state. An earlier model by Haine et al. [Phys. Rev. A 69, 13605 (2004)] without measurement backaction showed dark states: states that did not display error signals, thus remaining unaffected by the control. This paper shows that for a realistic measurement process this is not true, which indicates that a Bose-Einstein condensate may be driven toward the ground state from any arbitrary initial state
To Stabilize Power Systems from Various Kind of Oscillations using a State Feedback Controller
Afridi, M. A.
2012-01-01
Damping of electromechanical oscillations in power systems is one of the major concerns in the operation of power system since many years. These oscillations cause improper of the power system incorporating losses. This thesis work presents the coordinated AVR+PSS structure, called the Desensitized four loops Regulator, designed to damp these oscillations in the power system. It is shown here that it is possible to transform the structure of this controller into any standard IEEE AVR+PSS structure. The AVR+PSS structure obtained through this structure is efficient to damp out many types of oscillations present in the Power system. These models are to be incorporated with the generator models to get a power system model with state feedback control. On simulating the system in Simulink with the controllers we have obtained the power system model with state feedback control and observed that how these controllers are helpful in damping the oscillations. (author)
Further results on global state feedback stabilization of nonlinear high-order feedforward systems.
Xie, Xue-Jun; Zhang, Xing-Hui
2014-03-01
In this paper, by introducing a combined method of sign function, homogeneous domination and adding a power integrator, and overcoming several troublesome obstacles in the design and analysis, the problem of state feedback control for a class of nonlinear high-order feedforward systems with the nonlinearity's order being relaxed to an interval rather than a fixed point is solved. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Taylor, P. C.; Boeke, R.; Hegyi, B.
2017-12-01
Arctic low clouds strongly affect the Arctic surface energy budget. Through this impact Arctic low clouds influence other important aspects of the Arctic climate system, namely surface and atmospheric temperature, sea ice extent and thickness, and atmospheric circulation. Arctic clouds are in turn influenced by these Arctic climate system elements creating the potential for Arctic cloud-climate feedbacks. To further our understanding of the potential for Arctic cloud-climate feedbacks, we quantify the influence of atmospheric state on the surface cloud radiative effect (CRE). In addition, we quantify the covariability between surface CRE and sea ice concentration (SIC). This paper builds on previous research using instantaneous, active remote sensing satellite footprint data from the NASA A-Train. First, the results indicate significant differences in the surface CRE when stratified by atmospheric state. Second, a statistically insignificant covariability is found between CRE and SIC for most atmospheric conditions. Third, we find a statistically significant increase in the average surface longwave CRE at lower SIC values in fall. Specifically, a +3-5 W m-2 larger longwave CRE is found over footprints with 0% versus 100% SIC. Because systematic changes on the order of 1 W m-2 are sufficient to explain the observed long-term reductions in sea ice extent, our results indicate a potentially significant amplifying sea ice-cloud feedback that could delay the fall freeze-up and influence the variability in sea ice extent and volume, under certain meteorological conditions. Our results also suggest that a small change in the frequency of occurrence of atmosphere states may yield a larger Arctic cloud feedback than any cloud response to sea ice.
Dynamic axial stabilization of counterpropagating beam-traps with feedback control
Tauro, Sandeep; Bañas, Andrew Rafael; Palima, Darwin
2010-01-01
Optical trapping in a counter-propagating (CP) beam-geometry provides unique advantages in terms of working distance, aberration requirements and intensity hotspots. However, its axial performance is governed by the wave propagation of the opposing beams, which can limit the practical geometries....... Advanced implementation of this feedback-driven approach can help make CP-trapping resistant to a host of perturbations such as laser fluctuations, mechanical vibrations and other distortions emphasizing its experimental versatility....
Gladyshev, G P
2002-01-01
The creation of structural hierarchies in open natural biosystems within the framework of quasi-closed systems is investigated by the methods of hierarchic thermodynamics (thermostatics). During the evolution of natural open systems, every higher hierarchic level j appears as a consequence of thermodynamic self-organization (self-assembly) of the structures of the lower (j-1)-th level. Such a self-assembly proceeds as a result of stabilization of the j-th level. This is related to the Gibbs' (Helmholtz') specific function of formation of the structure of the j-th level tending to a minimum. As a result of action of the principle of substance (matter) stability, the structures of the j-th level are enriched with less stable structures of the (j-1)-th level in the course of evolution. This provides a thermodynamic feedback between the structures of the higher j-th level and lower (j-1)-th level, thus preventing full structural stabilization of the j-th level and causing "thermodynamic rejuvenation" of biosystems. The latter enhances "thermodynamic" deceleration of evolution and practically unlimited maintenance of life. Examples of quantitative correlations are provided that call for further application of the substance stability principle to living and nonliving hierarchic structures.
Seong-Pil Moon
2018-01-01
Full Text Available This paper investigates the stability problem of the feedback active noise control (ANC system, which can be caused by the modeling error of the electro-acoustic path estimation in its feedback mechanism. A stability analysis method is proposed to obtain the stability bound as a form of a closed-form equation in terms of the delay error length of the secondary path, the ANC filter length, and the primary noise frequency. In the proposed method, the system’s open loop magnitude and phase response equations are separately exploited and approximated within the Nyquist stability criterion. The stability bound of the proposed method is verified by comparing both the original Nyquist stability condition and the simulation results.
Globally Asymptotic Stability of Stochastic Nonlinear Systems by the Output Feedback
Wenwen Cheng
2015-01-01
the traditional mathematical induction method. Indeed, we develop a new method to study the globally asymptotic stability by introducing a series of specific inequalities. Moreover, an example and its simulations are given to illustrate the theoretical result.
A digital feedback system for transverse orbit stabilization in the NSLS rings
Friedman, A.; Bozoki, E.
1993-01-01
We are reporting on the design and preliminary results of a prototype digital feedback system for the storage rings at the NSLS. the system will use a nolinear eigenvector decomposition algorithm. It will have a wide dynamic range and will be able to correct noise in the orbit over a bandwidth in excess of 60 Hz. A Motorola-162 CPU board is used to sample the PUE's at a minimum rate of 200 Hz and an HP-742rt board is used to read the sampled signals and to generate a correction signal for the orbit correctors
Inan, O T; Kovacs, G T A
2010-04-01
A novel two-electrode biosignal amplifier circuit is demonstrated by using a composite transimpedance amplifier input stage with active current feedback. Micropower, low gain-bandwidth product operational amplifiers can be used, leading to the lowest reported overall power consumption in the literature for a design implemented with off-the-shelf commercial integrated circuits (11 μW). Active current feedback forces the common-mode input voltage to stay within the supply rails, reducing baseline drift and amplifier saturation problems that can be present in two-electrode systems. The bandwidth of the amplifier extends from 0.05-200 Hz and the midband voltage gain (assuming an electrode-to-skin resistance of 100 kΩ) is 48 dB. The measured output noise level is 1.2 mV pp, corresponding to a voltage signal-to-noise ratio approaching 50 dB for a typical electrocardiogram (ECG) level input of 1 mVpp. Recordings were taken from a subject by using the proposed two-electrode circuit and, simultaneously, a three-electrode standard ECG circuit. The residual of the normalized ensemble averages for both measurements was computed, and the power of this residual was 0.54% of the power of the standard ECG measurement output. While this paper primarily focuses on ECG applications, the circuit can also be used for amplifying other biosignals, such as the electroencephalogram.
Berube-Lauziere, Yves
The measurement-based quantum feedback scheme developed and implemented by Haroche and collaborators to actively prepare and stabilize specific photon number states in cavity quantum electrodynamics (CQED) is a milestone achievement in the active protection of quantum states from decoherence. This feat was achieved by injecting, after each weak dispersive measurement of the cavity state via Rydberg atoms serving as cavity sensors, a low average number classical field (coherent state) to steer the cavity towards the targeted number state. This talk will present the generalization of the theory developed for targeting number states in order to prepare and stabilize desired superpositions of two cavity photon number states. Results from realistic simulations taking into account decoherence and imperfections in a CQED set-up will be presented. These demonstrate the validity of the generalized theory and points to the experimental feasibility of preparing and stabilizing such superpositions. This is a further step towards the active protection of more complex quantum states than number states. This work, cast in the context of CQED, is also almost readily applicable to circuit QED. YBL acknowledges financial support from the Institut Quantique through a Canada First Research Excellence Fund.
Virkar, Yogesh S.; Shew, Woodrow L.; Restrepo, Juan G.; Ott, Edward
2016-10-01
Learning and memory are acquired through long-lasting changes in synapses. In the simplest models, such synaptic potentiation typically leads to runaway excitation, but in reality there must exist processes that robustly preserve overall stability of the neural system dynamics. How is this accomplished? Various approaches to this basic question have been considered. Here we propose a particularly compelling and natural mechanism for preserving stability of learning neural systems. This mechanism is based on the global processes by which metabolic resources are distributed to the neurons by glial cells. Specifically, we introduce and study a model composed of two interacting networks: a model neural network interconnected by synapses that undergo spike-timing-dependent plasticity; and a model glial network interconnected by gap junctions that diffusively transport metabolic resources among the glia and, ultimately, to neural synapses where they are consumed. Our main result is that the biophysical constraints imposed by diffusive transport of metabolic resources through the glial network can prevent runaway growth of synaptic strength, both during ongoing activity and during learning. Our findings suggest a previously unappreciated role for glial transport of metabolites in the feedback control stabilization of neural network dynamics during learning.
Dandan Guo
2017-08-01
Full Text Available In this article we consider the boundary stabilization of a wave equation with variable coefficients. This equation has an acceleration term and a delayed velocity term on the boundary. Under suitable geometric conditions, we obtain the exponential decay for the solutions. Our proof relies on the geometric multiplier method and the Lyapunov approach.
Offshore Wind Farms and HVDC Grids Modeling as a Feedback Control System for Stability Analysis
Bidadfar, Ali; Saborío-Romano, Oscar; Altin, Müfit; Göksu, Ömer; Cutululis, Nicolaos Antonio; Sørensen, Poul Ejnar
2017-01-01
The low impedance characteristics of DC transmission lines cause the voltage source converter (VSC) in HVDC networks to become electrically closer together and increase the risk of severe interactions between the converters. Such interactions, in turn, intensify the implementation of the grid control schemes and may lead the entire system to instability. Assessing the stability and adopting complex coordinated control schemes in an HVDC grid and wind farm turbines are challenging and require ...
Voltage regulator for on-board CMS ECAL powering : dynamic stability of the feedback loop
Wertelaers, P
2010-01-01
Traditionally, a capacitor is parallelled to the load of the regulator. Its main function is to steer (limit) the loop bandwidth. An ideal capacitor would provoke near-to-no dynamic stability. A typical remedy, not always elegant, is to select a device with appreciable parasitic series resistance. In this Note, and alternative method is proposed. The CMS ECAL regulator is of adjustable type, and adding a small capacitor at the divider there, brings about a "lead" type control action.
Lin, Lyu-Chih; Liu, Ssu-Hsin; Lin, Fan-Yi
2017-10-16
We study the stability of period-one (P1) oscillations experimentally generated by semiconductor lasers subject to optical injection (OI) and by those subject to optical feedback (OF). With unique advantages of broad frequency tuning range and large sideband rejection ratio, P1 oscillations can be useful in applications such as photonic microwave generation, radio-over-fiber communication, and laser Doppler velocimeter. The stability of the P1 oscillations is critical for these applications, which can be affected by spontaneous emission and fluctuations in both temperature and injection current. Although linewidths of P1 oscillations generated by various schemes have been reported, the mechanisms and roles which each of the OI and the OF play have however not been investigated in detail. To characterize the stability of the P1 oscillations generated by the OI and the OF schemes, we measure the linewidths and linewidth reduction ratios (LRRs) of the P1 oscillations. The OF scheme has a narrowest linewidth of 0.21 ± 0.03 MHz compared to 4.7 ± 0.6 MHz in the OI scheme. In the OF scheme, a much larger region of LRRs higher than 90% is also found. The superior stability of the OF scheme is benefited by the fact that the P1 oscillations in the OF scheme are originated from the undamped relaxation oscillation of a single laser and can be phase-locked to one of its external cavity modes, whereas those in the OI scheme come from two independent lasers which bear no phase relation. Moreover, excess P1 linewidth broadening in the OI scheme caused by fluctuation in injection parameters associated with frequency jitter and relative intensity noise (RIN) is also minimized in the OF scheme.
Zhebel, E.; Minisini, S.; Mulder, W.A.
2012-01-01
We solve the three-dimensional acoustic wave equation, discretized on tetrahedral meshes. Two methods are considered: mass-lumped continuous finite elements and the symmetric interior-penalty discontinuous Galerkin method (SIP-DG). Combining the spatial discretization with the leap-frog
Jia, Zheng-Lin; Mei, Dong-Cheng
2011-01-01
We investigate numerically the effects of time delay on the phenomenon of noise-enhanced stability (NES) in a periodically modulated bistable system. Three types of time-delayed feedback, including linear delayed feedback, nonlinear delayed feedback and global delayed feedback, are considered. We find a non-monotonic behaviour of the mean first-passage time (MFPT) as a function of the delay time τ, with a maximum in the case of linear delayed feedback and with a minimum in the case of nonlinear delayed feedback. There are two peculiar values of τ around which the NES phenomenon is enhanced or weakened. For the case of global delayed feedback, the increase of τ always weakens the NES phenomenon. Moreover, we also show that the amplitude A and the frequency Ω of the periodic forcing play an opposite role in the NES phenomenon, i.e. the increase of A weakens the NES effect while the increase of Ω enhances it. These observations demonstrate that the time-delayed feedback can be used as a feasible control scheme for the NES phenomenon
Patil, M K; Janahanlal, P S
1978-06-01
A mathematical population model is presented and diagrammed. The model is a nonlinear, higher order, self-regulating, goal-seeking system. In other words, the model treats the population system like a biological system which has positive and negative feedbacks. The model incorporates the effects of important economic factors that influence human birth and death rates. It calculates the total population size, which is a determinant of resource usage. It also indicates the demographic response, through a changing birth and death rate, to a changing resource supply. The model is illustrated with Indian population data, disaggregated by age into 15 levels each of which is, in turn, divided into 4 income levels. The effect on population growth of various alternative population policies is analyzed with the goal of stabilizing the population growth quickly without causing undue hardship. Different computer runs of the model are conducted, using different levels of family planning practice, different ages at marriage, and different distributions of income throughout the country. The policy which would result in the lowest population for the year 2001 is 1 in which family planning acceptance levels would increase from 15% in 1975 to 60% in 1980 and 100% from 1990 on. However, there is widespread opposition to this policy. It is felt that a much slower rise in family planning acceptance would be a more acceptable policy for stabilizing population in India.
Self-Generated Auditory Feedback as a Cue to Support Rhythmic Motor Stability
Gopher Daniel
2011-12-01
Full Text Available A goal of the SKILLS project is to develop Virtual Reality (VR-based training simulators for different application domains, one of which is juggling. Within this context the value of multimodal VR environments for skill acquisition is investigated. In this study, we investigated whether it was necessary to render the sounds of virtual balls hitting virtual hands within the juggling training simulator. First, we recorded sounds at the jugglers’ ears and found the sound of ball hitting hands to be audible. Second, we asked 24 jugglers to juggle under normal conditions (Audible or while listening to pink noise intended to mask the juggling sounds (Inaudible. We found that although the jugglers themselves reported no difference in their juggling across these two conditions, external juggling experts rated rhythmic stability worse in the Inaudible condition than in the Audible condition. This result suggests that auditory information should be rendered in the VR juggling training simulator.
Lam, H K
2012-02-01
This paper investigates the stability of sampled-data output-feedback (SDOF) polynomial-fuzzy-model-based control systems. Representing the nonlinear plant using a polynomial fuzzy model, an SDOF fuzzy controller is proposed to perform the control process using the system output information. As only the system output is available for feedback compensation, it is more challenging for the controller design and system analysis compared to the full-state-feedback case. Furthermore, because of the sampling activity, the control signal is kept constant by the zero-order hold during the sampling period, which complicates the system dynamics and makes the stability analysis more difficult. In this paper, two cases of SDOF fuzzy controllers, which either share the same number of fuzzy rules or not, are considered. The system stability is investigated based on the Lyapunov stability theory using the sum-of-squares (SOS) approach. SOS-based stability conditions are obtained to guarantee the system stability and synthesize the SDOF fuzzy controller. Simulation examples are given to demonstrate the merits of the proposed SDOF fuzzy control approach.
Tongchun Li
2015-01-01
element is proposed to solve the safety factor of local discontinuous rock mass. Slope system is divided into several continuous bodies and local discontinuous interface boundaries. Each block is treated as a partition of the system and contacted by discontinuous joints. The displacements of blocks are chosen as basic variables and the rigid displacements in the centroid of blocks are chosen as motion variables. The contact forces on interface boundaries and the rigid displacements to the centroid of each body are chosen as mixed variables and solved iteratively using the interface boundary equations. Flexibility matrix is formed through PFE according to the contact states of nodal pairs and spring flexibility is used to reflect the influence of weak structural plane so that nonlinear iteration is only limited to the possible contact region. With cohesion and friction coefficient reduced gradually, the states of all nodal pairs at the open or slip state for the first time are regarded as failure criterion, which can decrease the effect of subjectivity in determining safety factor. Examples are used to verify the validity of the proposed method.
Yang, Jia Sheng
2018-06-01
In this paper, we investigate a H∞ memory controller with input limitation minimization (HMCIM) for offshore jacket platforms stabilization. The main objective of this study is to reduce the control consumption as well as protect the actuator when satisfying the requirement of the system performance. First, we introduce a dynamic model of offshore platform with low order main modes based on mode reduction method in numerical analysis. Then, based on H∞ control theory and matrix inequality techniques, we develop a novel H∞ memory controller with input limitation. Furthermore, a non-convex optimization model to minimize input energy consumption is proposed. Since it is difficult to solve this non-convex optimization model by optimization algorithm, we use a relaxation method with matrix operations to transform this non-convex optimization model to be a convex optimization model. Thus, it could be solved by a standard convex optimization solver in MATLAB or CPLEX. Finally, several numerical examples are given to validate the proposed models and methods.
Organising medication discontinuation
Nixon, Michael; Kousgaard, Marius Brostrøm
2016-01-01
medication? Methods: Twenty four GPs were interviewed using a maximum variation sample strategy. Participant observations were done in three general practices, for one day each, totalling approximately 30 consultations. Results: The results show that different discontinuation cues (related to the type...... a medication, in agreement with the patients, from a professional perspective. Three research questions were examined in this study: when does medication discontinuation occur in general practice, how is discontinuing medication handled in the GP’s practice and how do GPs make decisions about discontinuing...
Fuchs, Lynn S.; And Others
1991-01-01
Nineteen special educators implemented Curriculum-Based Measurement with a total of 36 learning-disabled math pupils in grades 2-8 to examine the effects of goal line feedback. Results indicated comparable levels and slopes of student performance across treatment conditions, although goal line feedback was associated with greater performance…
Laurent, Heidemarie K.; Ablow, Jennifer C.; Measelle, Jeffrey
2012-01-01
This study investigated continuity and stability of hypothalamic-pituitary-adrenal (HPA) and sympathetic nervous system (SNS) response measures in mother-infant dyads across 2 different types of social stress sessions. Synchrony of response trajectories across systems (SNS-HPA coordination) and partners (mother-infant attunement) was addressed, as…
McGuire, K.M.; Kugel, H.W.; La Haye, R.J.; Mauel, M.E.; Nevins, W.M.; Prager, S.C.
1997-01-01
The transient operating performance of magnetic confinement devices is often limited by one or two unstable MHD modes. The feedback stabilization of MHD instabilities is an area of research that is critical for improving the steady state performance and economic attractiveness of magnetic confinement devices. This growing realization motivated a Workshop dedicated to feedback stabilization of MHD instabilities, which was held from 11 to 13 December 1996 at Princeton Plasma Physics Laboratory. The resulting presentations, conclusions and recommendations are summarized. (author)
Tsukamoto, O.; Utsunomiya, A.
2007-01-01
We propose an HTS bulk bearing flywheel energy system (FWES) with rotor shaft stabilization system using feed-back control of the armature currents of the motor-generator. In the proposed system the rotor shift has a pivot bearing at one end of the shaft and an HTS bulk bearing (SMB) at the other end. The fluctuation of the rotor shaft with SMB is damped by feed-back control of the armature currents of the motor-generator sensing the position of the rotor shaft. The method has merits that the fluctuations are damped without active control magnet bearings and extra devices which may deteriorate the energy storage efficiency and need additional costs. The principle of the method was demonstrated by an experiment using a model permanent magnet motor
Tsukamoto, O.; Utsunomiya, A.
2007-10-01
We propose an HTS bulk bearing flywheel energy system (FWES) with rotor shaft stabilization system using feed-back control of the armature currents of the motor-generator. In the proposed system the rotor shift has a pivot bearing at one end of the shaft and an HTS bulk bearing (SMB) at the other end. The fluctuation of the rotor shaft with SMB is damped by feed-back control of the armature currents of the motor-generator sensing the position of the rotor shaft. The method has merits that the fluctuations are damped without active control magnet bearings and extra devices which may deteriorate the energy storage efficiency and need additional costs. The principle of the method was demonstrated by an experiment using a model permanent magnet motor.
Ge, Hao; Wu, Pingping; Qian, Hong; Xie, Xiaoliang Sunney
2018-03-01
Within an isogenic population, even in the same extracellular environment, individual cells can exhibit various phenotypic states. The exact role of stochastic gene-state switching regulating the transition among these phenotypic states in a single cell is not fully understood, especially in the presence of positive feedback. Recent high-precision single-cell measurements showed that, at least in bacteria, switching in gene states is slow relative to the typical rates of active transcription and translation. Hence using the lac operon as an archetype, in such a region of operon-state switching, we present a fluctuating-rate model for this classical gene regulation module, incorporating the more realistic operon-state switching mechanism that was recently elucidated. We found that the positive feedback mechanism induces bistability (referred to as deterministic bistability), and that the parameter range for its occurrence is significantly broadened by stochastic operon-state switching. We further show that in the absence of positive feedback, operon-state switching must be extremely slow to trigger bistability by itself. However, in the presence of positive feedback, which stabilizes the induced state, the relatively slow operon-state switching kinetics within the physiological region are sufficient to stabilize the uninduced state, together generating a broadened parameter region of bistability (referred to as stochastic bistability). We illustrate the opposite phenotype-transition rate dependence upon the operon-state switching rates in the two types of bistability, with the aid of a recently proposed rate formula for fluctuating-rate models. The rate formula also predicts a maximal transition rate in the intermediate region of operon-state switching, which is validated by numerical simulations in our model. Overall, our findings suggest a biological function of transcriptional "variations" among genetically identical cells, for the emergence of bistability and
Gang Zhao
2016-09-01
Full Text Available A novel, intensity-stabilized, fast-scanned, direct absorption spectroscopy (IS-FS-DAS instrumentation, based on a distributed feedback (DFB diode laser, is developed. A fiber-coupled polarization rotator and a fiber-coupled polarizer are used to stabilize the intensity of the laser, which significantly reduces its relative intensity noise (RIN. The influence of white noise is reduced by fast scanning over the spectral feature (at 1 kHz, followed by averaging. By combining these two noise-reducing techniques, it is demonstrated that direct absorption spectroscopy (DAS can be swiftly performed down to a limit of detection (LOD (1σ of 4 × 10−6, which opens up a number of new applications.
Discontinuous Galerkin Method for Hyperbolic Conservation Laws
Mousikou, Ioanna
2016-11-11
Hyperbolic conservation laws form a special class of partial differential equations. They describe phenomena that involve conserved quantities and their solutions show discontinuities which reflect the formation of shock waves. We consider one-dimensional systems of hyperbolic conservation laws and produce approximations using finite difference, finite volume and finite element methods. Due to stability issues of classical finite element methods for hyperbolic conservation laws, we study the discontinuous Galerkin method, which was recently introduced. The method involves completely discontinuous basis functions across each element and it can be considered as a combination of finite volume and finite element methods. We illustrate the implementation of discontinuous Galerkin method using Legendre polynomials, in case of scalar equations and in case of quasi-linear systems, and we review important theoretical results about stability and convergence of the method. The applications of finite volume and discontinuous Galerkin methods to linear and non-linear scalar equations, as well as to the system of elastodynamics, are exhibited.
Discontinuous Galerkin Method for Hyperbolic Conservation Laws
Mousikou, Ioanna
2016-01-01
Hyperbolic conservation laws form a special class of partial differential equations. They describe phenomena that involve conserved quantities and their solutions show discontinuities which reflect the formation of shock waves. We consider one-dimensional systems of hyperbolic conservation laws and produce approximations using finite difference, finite volume and finite element methods. Due to stability issues of classical finite element methods for hyperbolic conservation laws, we study the discontinuous Galerkin method, which was recently introduced. The method involves completely discontinuous basis functions across each element and it can be considered as a combination of finite volume and finite element methods. We illustrate the implementation of discontinuous Galerkin method using Legendre polynomials, in case of scalar equations and in case of quasi-linear systems, and we review important theoretical results about stability and convergence of the method. The applications of finite volume and discontinuous Galerkin methods to linear and non-linear scalar equations, as well as to the system of elastodynamics, are exhibited.
M. De la Sen
2018-05-01
Full Text Available This paper presents and discusses the stability of a discrete multirate sampling system whose sets of sampling rates (or sampling periods are the integer multiple of those operating on all the preceding substates. Each of such substates is associated with a particular sampling rate. The sufficiency-type stability conditions are derived based on simple conditions on the norm, spectral radius and numerical radius of the matrix of the dynamics of a system parameterized at the largest sampling period.
Audio Feedback -- Better Feedback?
Voelkel, Susanne; Mello, Luciane V.
2014-01-01
National Student Survey (NSS) results show that many students are dissatisfied with the amount and quality of feedback they get for their work. This study reports on two case studies in which we tried to address these issues by introducing audio feedback to one undergraduate (UG) and one postgraduate (PG) class, respectively. In case study one…
Aldo-Jonathan Muñoz-Vázquez
2017-01-01
Full Text Available The problem of designing a continuous control to guarantee finite-time tracking based on output feedback for a system subject to a Hölder disturbance has remained elusive. The main difficulty stems from the fact that such disturbance stands for a function that is continuous but not necessarily differentiable in any integer-order sense, yet it is fractional-order differentiable. This problem imposes a formidable challenge of practical interest in engineering because (i it is common that only partial access to the state is available and, then, output feedback is needed; (ii such disturbances are present in more realistic applications, suggesting a fractional-order controller; and (iii continuous robust control is a must in several control applications. Consequently, these stringent requirements demand a sound mathematical framework for designing a solution to this control problem. To estimate the full state in finite-time, a high-order sliding mode-based differentiator is considered. Then, a continuous fractional differintegral sliding mode is proposed to reject Hölder disturbances, as well as for uncertainties and unmodeled dynamics. Finally, a homogeneous closed-loop system is enforced by means of a continuous nominal control, assuring finite-time convergence. Numerical simulations are presented to show the reliability of the proposed method.
Glenn M Marshall
2011-06-01
Full Text Available The N-Myc oncoprotein is a critical factor in neuroblastoma tumorigenesis which requires additional mechanisms converting a low-level to a high-level N-Myc expression. N-Myc protein is stabilized when phosphorylated at Serine 62 by phosphorylated ERK protein. Here we describe a novel positive feedback loop whereby N-Myc directly induced the transcription of the class III histone deacetylase SIRT1, which in turn increased N-Myc protein stability. SIRT1 binds to Myc Box I domain of N-Myc protein to form a novel transcriptional repressor complex at gene promoter of mitogen-activated protein kinase phosphatase 3 (MKP3, leading to transcriptional repression of MKP3, ERK protein phosphorylation, N-Myc protein phosphorylation at Serine 62, and N-Myc protein stabilization. Importantly, SIRT1 was up-regulated, MKP3 down-regulated, in pre-cancerous cells, and preventative treatment with the SIRT1 inhibitor Cambinol reduced tumorigenesis in TH-MYCN transgenic mice. Our data demonstrate the important roles of SIRT1 in N-Myc oncogenesis and SIRT1 inhibitors in the prevention and therapy of N-Myc-induced neuroblastoma.
Roset, B.J.P.; Lazar, M.; Heemels, W.P.M.H.; Nijmeijer, H.
2007-01-01
Abstract—This paper focuses on the synthesis of nonlinear Model Predictive Controllers that can guarantee robustness with respect to measurement noise. The input-to-state stability framework is employed to analyze the robustness of the resulting Model Predictive Control (MPC) closed-loop system. It
Henein, K.L.
1978-02-01
In nuclear spectroscopy, baseline instability and random fluctuations at the output of the amplifier create imperfectly solved problems mainly at high counting rates. After a critical examination of current systems, solutions are proposed which surpass existing ones. It is shown that restorers and stabilizers of baselines have their own preferential application. Considering natural limits of performance the proposed solutions give entirely satisfactory results [fr
Toure K. Augustin
2014-06-01
Full Text Available This paper studies a variant of an overhead crane model's problem, with a control force in velocity and rotating velocity on the platform. We obtain under certain conditions the well-posedness and the strong stabilization of the closed-loop system. We then analyze the spectrum of the system. Using a method due to Shkalikov, we prove the existence of a sequence of generalized eigenvectors of the system, which forms a Riesz basis for the state energy Hilbert space.
Wiker, Steven F.; Hershkowitz, Elaine; Zik, John
1989-01-01
The following question is addressed: How much force should operators exert, or experience, when operating a telemanipulator master-controller for sustained periods without encountering significant fatigue and discomfort, and without loss of stability in psychometric perception of force. The need to minimize exertion demands to avoid fatigue is diametrically opposed by the need to present a wide range of force stimuli to enhance perception of applied or reflected forces. For 104 minutes subjects repetitiously performed a series of 15 s isometric pinch grasps; controlled at 5, 15, and 25 percent of their maximum voluntary strength. Cyclic pinch grasps were separated by rest intervals of 7.5 and 15 s. Upon completion of every 10 minute period, subjects interrupted grasping activities to gage the intensity of fatigue and discomfort in the hand and forearm using a cross-modal matching technique. A series of psychometric tests were then conducted to determine accuracy and stability in the subject's perception of force experienced. Results showed that onset of sensations of discomfort and fatigue were dependent upon the magnitude of grasp force, work/rest ratio, and progression of task. Declines in force magnitude estimation slopes, indicating a reduction in force perception sensitivity, occurred with increased grasp force when work/rest ratios were greater than 1.0. Specific recommendations for avoiding discomfort and shifts in force perception, by limiting pinch grasp force required for master-controller operation and range of force reflection or work/rest ratios, are provided.
Zender, C. S.; Wang, W.; van As, D.
2017-12-01
Clouds have strong impacts on Greenland's surface melt through the interaction with the dry atmosphere and reflective surfaces. However, their effects are uncertain due to the lack of in situ observations. To better quantify cloud radiative effects (CRE) in Greenland, we analyze and interpret multi-year radiation measurements from 30 automatic weather stations encompassing a broad range of climatological and topographical conditions. During melt season, clouds warm surface over most of Greenland, meaning the longwave greenhouse effect outweighs the shortwave shading effect; on the other hand, the spatial variability of net (longwave and shortwave) CRE is dominated by shortwave CRE and in turn by surface albedo, which controls the potential absorption of solar radiation when clouds are absent. The net warming effect decreases with shortwave CRE from high to low altitudes and from north to south (Fig. 1). The spatial correlation between albedo and net CRE is strong (r=0.93, palbedo determines the net CRE seasonal trend, which decreases from May to July and increases afterwards. On an hourly timescale, we find two distinct radiative states in Greenland (Fig. 2). The clear state is characterized by clear-sky conditions or thin clouds, when albedo and solar zenith angle (SZA) weakly correlates with CRE. The cloudy state is characterized by opaque clouds, when the combination of albedo and SZA strongly correlates with CRE (r=0.85, palbedo and solar zenith angle, explains the majority of the CRE variation in spatial distribution, seasonal trend in the ablation zone, and in hourly variability in the cloudy radiative state. Clouds warm the brighter and colder surfaces of Greenland, enhance snow melt, and tend to lower the albedo. Clouds cool the darker and warmer surfaces, inhibiting snow melt, which increases albedo, and thus stabilizes surface melt. This stabilizing mechanism may also occur over sea ice, helping to forestall surface melt as the Arctic becomes dimmer.
Time-optimal feedback control for linear systems
Mirica, S.
1976-01-01
The paper deals with the results of qualitative investigations of the time-optimal feedback control for linear systems with constant coefficients. In the first section, after some definitions and notations, two examples are given and it is shown that even the time-optimal control problem for linear systems with constant coefficients which looked like ''completely solved'' requires a further qualitative investigation of the stability to ''permanent perturbations'' of optimal feedback control. In the second section some basic results of the linear time-optimal control problem are reviewed. The third section deals with the definition of Boltyanskii's ''regular synthesis'' and its connection to Filippov's theory of right-hand side discontinuous differential equations. In the fourth section a theorem is proved concerning the stability to perturbations of time-optimal feedback control for linear systems with scalar control. In the last two sections it is proved that, if the matrix which defines the system has only real eigenvalues or is three-dimensional, the time-optimal feedback control defines a regular synthesis and therefore is stable to perturbations. (author)
Grewal, Gurtej Singh; Schwenk, Michael; Lee-Eng, Jacqueline; Parvaneh, Saman; Bharara, Manish; Menzies, Robert A; Talal, Talal K; Armstrong, David G; Najafi, Bijan
2015-01-01
Individuals with diabetic peripheral neuropathy (DPN) have deficits in sensory and motor skills leading to inadequate proprioceptive feedback, impaired postural balance and higher fall risk. This study investigated the effect of sensor-based interactive balance training on postural stability and daily physical activity in older adults with diabetes. Thirty-nine older adults with DPN were enrolled (age 63.7 ± 8.2 years, BMI 30.6 ± 6, 54% females) and randomized to either an intervention (IG) or a control (CG) group. The IG received sensor-based interactive exercise training tailored for people with diabetes (twice a week for 4 weeks). The exercises focused on shifting weight and crossing virtual obstacles. Body-worn sensors were implemented to acquire kinematic data and provide real-time joint visual feedback during the training. Outcome measurements included changes in center of mass (CoM) sway, ankle and hip joint sway measured during a balance test while the eyes were open and closed at baseline and after the intervention. Daily physical activities were also measured during a 48-hour period at baseline and at follow-up. Analysis of covariance was performed for the post-training outcome comparison. Compared with the CG, the patients in the IG showed a significantly reduced CoM sway (58.31%; p = 0.009), ankle sway (62.7%; p = 0.008) and hip joint sway (72.4%; p = 0.017) during the balance test with open eyes. The ankle sway was also significantly reduced in the IG group (58.8%; p = 0.037) during measurements while the eyes were closed. The number of steps walked showed a substantial but nonsignificant increase (+27.68%; p = 0.064) in the IG following training. The results of this randomized controlled trial demonstrate that people with DPN can significantly improve their postural balance with diabetes-specific, tailored, sensor-based exercise training. The results promote the use of wearable technology in exercise training; however, future studies comparing this
A note on iterated function systems with discontinuous probabilities
Jaroszewska, Joanna
2013-01-01
Highlights: ► Certain iterated function system with discontinuous probabilities is discussed. ► Existence of an invariant measure via the Schauder–Tychonov theorem is established. ► Asymptotic stability of the system under examination is proved. -- Abstract: We consider an example of an iterated function system with discontinuous probabilities. We prove that it posses an invariant probability measure. We also prove that it is asymptotically stable provided probabilities are positive
Testing discontinuities in nonparametric regression
Dai, Wenlin
2017-01-19
In nonparametric regression, it is often needed to detect whether there are jump discontinuities in the mean function. In this paper, we revisit the difference-based method in [13 H.-G. Müller and U. Stadtmüller, Discontinuous versus smooth regression, Ann. Stat. 27 (1999), pp. 299–337. doi: 10.1214/aos/1018031100
Testing discontinuities in nonparametric regression
Dai, Wenlin; Zhou, Yuejin; Tong, Tiejun
2017-01-01
In nonparametric regression, it is often needed to detect whether there are jump discontinuities in the mean function. In this paper, we revisit the difference-based method in [13 H.-G. Müller and U. Stadtmüller, Discontinuous versus smooth regression, Ann. Stat. 27 (1999), pp. 299–337. doi: 10.1214/aos/1018031100
Discontinuity formulas for multiparticle amplitudes
Stapp, H.P.
1976-03-01
It is shown how discontinuity formulas for multiparticle scattering amplitudes are derived from unitarity and analyticity. The assumed analyticity property is the normal analytic structure, which was shown to be equivalent to the space-time macrocausality condition. The discontinuity formulas to be derived are the basis of multi-particle fixed-t dispersion relations
Muhammad H. Al-Malack
2016-07-01
Full Text Available Fuel oil flyash (FFA produced in power and water desalination plants firing crude oils in the Kingdom of Saudi Arabia is being disposed in landfills, which increases the burden on the environment, therefore, FFA utilization must be encouraged. In the current research, the effect of adding FFA on the engineering properties of two indigenous soils, namely sand and marl, was investigated. FFA was added at concentrations of 5%, 10% and 15% to both soils with and without the addition of Portland cement. Mixtures of the stabilized soils were thoroughly evaluated using compaction, California Bearing Ratio (CBR, unconfined compressive strength (USC and durability tests. Results of these tests indicated that stabilized sand mixtures could not attain the ACI strength requirements. However, marl was found to satisfy the ACI strength requirement when only 5% of FFA was added together with 5% of cement. When the FFA was increased to 10% and 15%, the mixture’s strength was found to decrease to values below the ACI requirements. Results of the Toxicity Characteristics Leaching Procedure (TCLP, which was performed on samples that passed the ACI requirements, indicated that FFA must be cautiously used in soil stabilization.
Ding, Xiaoshuai; Cao, Jinde; Alsaedi, Ahmed; Alsaadi, Fuad E; Hayat, Tasawar
2017-06-01
This paper is concerned with the fixed-time synchronization for a class of complex-valued neural networks in the presence of discontinuous activation functions and parameter uncertainties. Fixed-time synchronization not only claims that the considered master-slave system realizes synchronization within a finite time segment, but also requires a uniform upper bound for such time intervals for all initial synchronization errors. To accomplish the target of fixed-time synchronization, a novel feedback control procedure is designed for the slave neural networks. By means of the Filippov discontinuity theories and Lyapunov stability theories, some sufficient conditions are established for the selection of control parameters to guarantee synchronization within a fixed time, while an upper bound of the settling time is acquired as well, which allows to be modulated to predefined values independently on initial conditions. Additionally, criteria of modified controller for assurance of fixed-time anti-synchronization are also derived for the same system. An example is included to illustrate the proposed methodologies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Brown, L R
1993-01-01
Usual trends in the world have changed direction in the 1990s. We do not yet fully know the consequences of these altered trends. As population continues to grow, basic agricultural and industrial production falls (e.g., 1%/year decline in grain production and 0.6%/year decline in oil production). Moreover, world economic growth has fallen .8% annually in the early 1990s. It is feared that these shifts are not short term as were the instabilities generated during the 1973 increase in oil prices. The shifts in the 1990s are not limited to several national political leaders (e.g., OPEC), but are a result of the collision between swelling human numbers and their needs and the limitations of the earth's natural systems on the other. These limitations include the capacity of seas to produce seafood, of grasslands to yield mutton and beef, of the hydrological cycle to generate fresh water, of crops to use fertilizer, of the atmosphere to absorb carbon dioxide and chlorofluorocarbons, and of people to inhale polluted air, and of forests to resist acid rain. These constraints are forcing the realization that each nation must reduce consumption of the earth's natural resources and implement a population policy. The challenge is for social institutions to quickly check and stabilize population growth without infringing in human rights.
Convergence Improvement of Response Matrix Method with Large Discontinuity Factors
Yamamoto, Akio
2003-01-01
In the response matrix method, a numerical divergence problem has been reported when extremely small or large discontinuity factors are utilized in the calculations. In this paper, an alternative response matrix formulation to solve the divergence problem is discussed, and properties of iteration matrixes are investigated through eigenvalue analyses. In the conventional response matrix formulation, partial currents between adjacent nodes are assumed to be discontinuous, and outgoing partial currents are converted into incoming partial currents by the discontinuity factor matrix. Namely, the partial currents of the homogeneous system (i.e., homogeneous partial currents) are treated in the conventional response matrix formulation. In this approach, the spectral radius of an iteration matrix for the partial currents may exceed unity when an extremely small or large discontinuity factor is used. Contrary to this, an alternative response matrix formulation using heterogeneous partial currents is discussed in this paper. In the latter approach, partial currents are assumed to be continuous between adjacent nodes, and discontinuity factors are directly considered in the coefficients of a response matrix. From the eigenvalue analysis of the iteration matrix for the one-group, one-dimensional problem, the spectral radius for the heterogeneous partial current formulation does not exceed unity even if an extremely small or large discontinuity factor is used in the calculation; numerical stability of the alternative formulation is superior to the conventional one. The numerical stability of the heterogeneous partial current formulation is also confirmed by the two-dimensional light water reactor core analysis. Since the heterogeneous partial current formulation does not require any approximation, the converged solution exactly reproduces the reference solution when the discontinuity factors are directly derived from the reference calculation
Management applications of discontinuity theory
Angeler, David G.; Allen, Craig R.; Barichievy, Chris; Eason, Tarsha; Garmestani, Ahjond S.; Graham, Nicholas A.J.; Granholm, Dean; Gunderson, Lance H.; Knutson, Melinda; Nash, Kirsty L.; Nelson, R. John; Nystrom, Magnus; Spanbauer, Trisha; Stow, Craig A.; Sundstrom, Shana M.
2015-01-01
Human impacts on the environment are multifaceted and can occur across distinct spatiotemporal scales. Ecological responses to environmental change are therefore difficult to predict, and entail large degrees of uncertainty. Such uncertainty requires robust tools for management to sustain ecosystem goods and services and maintain resilient ecosystems.We propose an approach based on discontinuity theory that accounts for patterns and processes at distinct spatial and temporal scales, an inherent property of ecological systems. Discontinuity theory has not been applied in natural resource management and could therefore improve ecosystem management because it explicitly accounts for ecological complexity.Synthesis and applications. We highlight the application of discontinuity approaches for meeting management goals. Specifically, discontinuity approaches have significant potential to measure and thus understand the resilience of ecosystems, to objectively identify critical scales of space and time in ecological systems at which human impact might be most severe, to provide warning indicators of regime change, to help predict and understand biological invasions and extinctions and to focus monitoring efforts. Discontinuity theory can complement current approaches, providing a broader paradigm for ecological management and conservation.
A second order discontinuous Galerkin method for advection on unstructured triangular meshes
Geijselaers, Hubertus J.M.; Huetink, Han
2003-01-01
In this paper the advection of element data which are linearly distributed inside the elements is addressed. Across element boundaries the data are assumed discontinuous. The equations are discretized by the Discontinuous Galerkin method. For stability and accuracy at large step sizes (large values
Hyldahl, Kirsten Kofod
Denne bog undersøger, hvordan lærere kan anvende feedback til at forbedre undervisningen i klasselokalet. I denne sammenhæng har John Hattie, professor ved Melbourne Universitet, udviklet en model for feedback, hvilken er baseret på synteser af meta-analyser. I 2009 udgav han bogen "Visible...
Fast feedback for linear colliders
Hendrickson, L.; Adolphsen, C.; Allison, S.; Gromme, T.; Grossberg, P.; Himel, T.; Krauter, K.; MacKenzie, R.; Minty, M.; Sass, R.
1995-01-01
A fast feedback system provides beam stabilization for the SLC. As the SLC is in some sense a prototype for future linear colliders, this system may be a prototype for future feedbacks. The SLC provides a good base of experience for feedback requirements and capabilities as well as a testing ground for performance characteristics. The feedback system controls a wide variety of machine parameters throughout the SLC and associated experiments, including regulation of beam position, angle, energy, intensity and timing parameters. The design and applications of the system are described, in addition to results of recent performance studies
Continuous versus discontinuous albedo representations in a simple diffusive climate model
Simmons, P. A.; Griffel, D. H.
1988-07-01
A one-dimensional annually and zonally averaged energy-balance model, with diffusive meridional heat transport and including icealbedo feedback, is considered. This type of model is found to be very sensitive to the form of albedo used. The solutions for a discontinuous step-function albedo are compared to those for a more realistic smoothly varying albedo. The smooth albedo gives a closer fit to present conditions, but the discontinuous form gives a better representation of climates in earlier epochs.
Discontinuities and the magnetospheric phenomena
Rajaram, R.; Kalra, G.L.; Tandon, J.N.
1978-01-01
Wave coupling at contact discontinuities has an important bearing on the transmission of waves from the solar wind into the magnetosphere across the cusp region of the solar wind-magnetosphere boundary and on the propagation of geomagnetic pulsations in the polar exosphere. Keeping this in view, the problems of wave coupling across a contact discontinuity in a collisionless plasma, described by a set of double adiabatic fluid equations, is examined. The magnetic field is taken normal to the interface and it is shown that total reflection is not possible for any angle of incidence. The Alfven and the magneto-acoustic waves are not coupled. The transmission is most efficient for small density discontinuities. Inhibition of the transmission of the Alfven wave by the sharp density gradients above the F2-peak in the polar exosphere appears to account for the decrease in the pulsation amplitude, on the ground, as the poles are approached from the auroral zone. (author)
The structure of rotational discontinuities
Neugebauer, M.
1989-01-01
This study examines the structures of a set of rotational discontinuities detected in the solar wind by the ISEE-3 spacecraft. It is found that the complexity of the structure increases as the angle θ between the propagation vector k and the magnetic field decreases. For rotational discontinuities that propagate at a large angle to the field with an ion (left-hand) sense of rotation, the magnetic hodograms tend to be flattened, in agreement with prior numerical simulations. When θ is large, angular overshoots are often observed at one or both ends of the discontinuity. When the propagation is nearly parallel to the field (i.e., when θ is small), many different types of structure are seen, ranging from straight lines, the S-shaped curves, to complex, disorganized shapes
Bartosz Kochański
2016-07-01
4 Katedra Neuropsychologii, Wydział Nauk o Zdrowiu, Uniwersytet Mikołaja Kopernika w Toruniu; Streszczenie Wstęp. Ważną rolę w stabilizacji kręgosłupa pełni mięsień poprzeczny brzucha. Doniesienia naukowe wykazują korelację między aktywnością tego mięśnia, a dolegliwościami bólowymi w odcinku lędźwiowo-krzyżowym. Cel pracy: 1. Ocena oraz porównanie aktywności mięśnia poprzecznego brzucha z wykorzystaniem urządzenia Pressure Bio-Feedback Stabilizer u osób z dolegliwościami bólowymi kręgosłupa w odcinku lędźwiowo-krzyżowym oraz u osób bez dolegliwości bólowych kręgosłupa w odcinku lędźwiowo-krzyżowym. 2. Ocena poziomu zgodności ocen dwóch terapeutów w badaniu aktywności mięśnia poprzecznego brzucha z wykorzystaniem urządzenia Pressure Bio-Feedback Stabilizer. Materiał i metody. Badania przeprowadzono na grupie 50 osób w wieku 28,36, w tym 28 kobiet oraz 22 mężczyzn. Badanych podzielono na dwie grupy: Grupę I - badaną stanowiły osoby z dolegliwościami bólowymi kręgosłupa w odcinku lędźwiowo – krzyżowym z aktualnym epizodem bólowym trwającym minimum 3 miesiące. Grupę II - kontrolną stanowiły osoby „zdrowe” bez dolegliwości bólowych w odcinku lędźwiowo – krzyżowym przez minimum 6 miesięcy. Wyniki. U osób z dolegliwościami bólowymi kręgosłupa obserwuje się nieprawidłową aktywację mięśnia poprzecznego brzucha. Analiza statystyczna wykazała istotne różnice pomiędzy badanymi grupami w aktywności mięśnia poprzecznego brzucha - p<0,05. Współczynnik zgodności ICC dla dwóch terapeutów badających aktywność mięśnia poprzecznego brzucha z wykorzystaniem urządzenia Pressure Bio-Feedback Stabilizer wynosi - 0,82. Wnioski: 1. U osób z dolegliwościami bólowymi kręgosłupa w odcinku lędźwiowo-krzyżowym obserwuje się nieprawidłowości w aktywności mięśnia poprzecznego brzucha. 2. Stopień zgodności ocen dwóch terapeutów badających aktywność mi
Regge calculus from discontinuous metrics
Khatsymovsky, V.M.
2003-01-01
Regge calculus is considered as a particular case of the more general system where the linklengths of any two neighbouring 4-tetrahedra do not necessarily coincide on their common face. This system is treated as that one described by metric discontinuous on the faces. In the superspace of all discontinuous metrics the Regge calculus metrics form some hypersurface defined by continuity conditions. Quantum theory of the discontinuous metric system is assumed to be fixed somehow in the form of quantum measure on (the space of functionals on) the superspace. The problem of reducing this measure to the Regge hypersurface is addressed. The quantum Regge calculus measure is defined from a discontinuous metric measure by inserting the δ-function-like phase factor. The requirement that continuity conditions be imposed in a 'face-independent' way fixes this factor uniquely. The term 'face-independent' means that this factor depends only on the (hyper)plane spanned by the face, not on it's form and size. This requirement seems to be natural from the viewpoint of existence of the well-defined continuum limit maximally free of lattice artefacts
Zamir, Amir R.; Wu, Te-Lin; Sun, Lin; Shen, William; Malik, Jitendra; Savarese, Silvio
2016-01-01
Currently, the most successful learning models in computer vision are based on learning successive representations followed by a decision layer. This is usually actualized through feedforward multilayer neural networks, e.g. ConvNets, where each layer forms one of such successive representations. However, an alternative that can achieve the same goal is a feedback based approach in which the representation is formed in an iterative manner based on a feedback received from previous iteration's...
Discontinuity and complexity in nonlinear physical systems
Baleanu, Dumitru; Luo, Albert
2014-01-01
This unique book explores recent developments in experimental research in this broad field, organized in four distinct sections. Part I introduces the reader to the fractional dynamics and Lie group analysis for nonlinear partial differential equations. Part II covers chaos and complexity in nonlinear Hamiltonian systems, important to understand the resonance interactions in nonlinear dynamical systems, such as Tsunami waves and wildfire propagations; as well as Lev flights in chaotic trajectories, dynamical system synchronization and DNA information complexity analysis. Part III examines chaos and periodic motions in discontinuous dynamical systems, extensively present in a range of systems, including piecewise linear systems, vibro-impact systems and drilling systems in engineering. And in Part IV, engineering and financial nonlinearity are discussed. The mechanism of shock wave with saddle-node bifurcation and rotating disk stability will be presented, and the financial nonlinear models will be discussed....
Thompson, K.A.; Jobe, R.K.; Johnson, R.; Phinney, N.
1987-02-01
Two classes of computer-controlled feedback have been implemented to stabilize parameters in subsystems of the SLC: (1) ''slow'' (time scales ∼ minutes) feedback, and (2) ''fast'', i.e., pulse-to-pulse, feedback. The slow loops run in a single FEEDBACK process in the SLC host VAX, which acquires signals and sets control parameters via communication with the database and the network of normal SLC microprocessors. Slow loops exist to stabilize beam energy and energy spread, beam position and angle, and timing of kicker magnets, and to compensate for changes in the phase length of the rf drive line. The fast loops run in dedicated microprocessors, and may sample and/or feedback on particular parameters as often as every pulse of the SLC beam. The first implementations of fast feedback are to control transverse beam blow-up and to stabilize the energy and energy spread of bunches going into the SLC arcs. The overall architecture of the feedback software and the operator interface for controlling loops are discussed
Strategies for discontinuation of proton pump inhibitors
Haastrup, Peter; Paulsen, Maja S; Begtrup, Luise M
2014-01-01
PURPOSE: Proton pump inhibitors (PPIs) are considered to be overprescribed. Consensus on how to attempt discontinuation is, however, lacking. We therefore conducted a systematic review of clinical studies on discontinuation of PPIs. METHODS: Systematic review based on clinical studies investigating...
Factors affecting IUCD discontinuation in Nepal
Thapa, Subash; Paudel, Ishwari Sharma; Bhattarai, Sailesh
2015-01-01
Information related to contraception discontinuation, especially in the context of Nepal is very limited. A nested case-control study was carried out to determine the factors affecting discontinuation of intrauterine contraceptive devices (IUCDs). A total of 115 cases (IUCD discontinuers) and 115...
Ceux, Tanja; Montagne, Gilles; Buekers, Martinus J
2010-12-01
The present study examined whether the beneficial role of coherently grouped visual motion structures for performing complex (interlimb) coordination patterns can be generalized to synchronization behavior in a visuo-proprioceptive conflict situation. To achieve this goal, 17 participants had to synchronize a self-moved circle, representing the arm movement, with a visual target signal corresponding to five temporally shifted visual feedback conditions (0%, 25%, 50%, 75%, and 100% of the target cycle duration) in three synchronization modes (in-phase, anti-phase, and intermediate). The results showed that the perception of a newly generated perceptual Gestalt between the visual feedback of the arm and the target signal facilitated the synchronization performance in the preferred in-phase synchronization mode in contrast to the less stable anti-phase and intermediate mode. Our findings suggest that the complexity of the synchronization mode defines to what extent the visual and/or proprioceptive information source affects the synchronization performance in the present unimanual synchronization task. Copyright © 2010 Elsevier B.V. All rights reserved.
General Practitioners’ Decisions about Discontinuation of Medication
Nixon, Michael Simon; Vendelø, Morten Thanning
2016-01-01
insights about decision making when discontinuing medication. It also offers one of the first examinations of how the institutional context embedding GPs influences their decisions about discontinuation. For policymakers interested in the discontinuation of medication, the findings suggest that de......Purpose – The purpose of this paper is to investigate how general practitioners’ (GPs) decisions about discontinuation of medication are influenced by their institutional context. Design/methodology/approach – In total, 24 GPs were interviewed, three practices were observed and documents were...... a weak frame for discontinuation. Three reasons for this are identified: the guidelines provide dominating triggers for prescribing, they provide weak priming for discontinuation as an option, and they underscore a cognitive constraint against discontinuation. Originality/value – The analysis offers new...
Recent Developments on Discontinuous Precipitation
Zięba P.
2017-06-01
Full Text Available The discontinuous precipitation (DP belongs to a group of diffusive solid state phase transformations during which the formation of a new phase is heterogeneous and limited to a migrating reaction front (RF. The use of analytical electron microscopy provided reliable information that there is no differences in the diffusion rate at the stationary grain boundary and moving RF of DP reaction. On the other hand, the use of “in situ” transmission electron microscopy observations indicated the importance of stop-go motion or oscillatory movement of the RF.
Rotational discontinuities in anisotropic plasmas
Omidi, N.
1992-01-01
The kinetic structure of rotational discontinuities (RDs) in anisotropic plasmas with T perpendicular /T parallel > 1 is investigated by using a one-dimensional electromagnetic hybrid code. To form the RD, a new approach is used where the plasma is injected from one boundary and reflected from the other, resulting in the generation of a traveling fast shock and an RD. Unlike the previously used methods, no a priori assumptions are made regarding the initial structure (i.e. width or sense of rotation) of the rotational discontinuity. The results show that across the RD both the magnetic field strength and direction, as well as the plasma density change. Given that such a change can also be associated with an intermediate shock, the Rankine-Hugoniot relations are used to confirm that the observed structures are indeed RDs. It is found that the thickness of RDs is a few ion inertial lengths and is independent of the rotation angle. Also, the preferred sense of rotation is in the electron sense; however, RDs with a rotation angle larger than 180 degree are found to be unstable, changing their rotation to a stable ion sense
Elena Adomaitienė
2017-01-01
Full Text Available We suggest employing the first-order stable RC filters, based on a single capacitor, for control of unstable fixed points in an array of oscillators. A single capacitor is sufficient to stabilize an entire array, if the oscillators are coupled strongly enough. An array, composed of 24 to 30 mean-field coupled FitzHugh–Nagumo (FHN type asymmetric oscillators, is considered as a case study. The investigation has been performed using analytical, numerical, and experimental methods. The analytical study is based on the mean-field approach, characteristic equation for finding the eigenvalue spectrum, and the Routh–Hurwitz stability criteria using low-rank Hurwitz matrix to calculate the threshold value of the coupling coefficient. Experiments have been performed with a hardware electronic analog, imitating dynamical behavior of an array of the FHN oscillators.
Feedback control of coupled-bunch instabilities
Fox, J.D.; Eisen, N.; Hindi, H.; Linscott, I.; Oxoby, G.; Sapozhnikov, L.; Serio, M.
1993-05-01
The next generation of synchrotron light sources and particle accelerators will require active feedback systems to control multi-bunch instabilities. Stabilizing hundreds or thousands of potentially unstable modes in these accelerator designs presents many technical challenges. Feedback systems to stabilize coupled-bunch instabilities may be understood in the frequency domain (mode-based feedback) or in the time domain (bunch-by-bunch feedback). In both approaches an external amplifier system is used to create damping fields that prevent coupled-bunch oscillations from growing without bound. The system requirements for transverse (betatron) and longitudinal (synchrotron) feedback are presented, and possible implementation options developed. Feedback system designs based on digital signal-processing techniques are described. Experimental results are shown from a synchrotron oscillation damper in the SSRL/SLAC storage ring SPEAR that uses digital signal-processing techniques
Dynamic feedback for multi-mode plasma instabilities
Sen, A.K.
1978-01-01
Constant feedback, which has been used exclusively, fails to stabilize more than one mode of a plasma instability. It is shown that a suitable dynamic or frequency-dependent feedback can stabilize all modes. Methods are developed in which such a feedback structure can be chosen in terms of its poles and zeros in relation to those of the plasma transfer function in the complex frequency plane. The synthesis procedure for such a feedback structure, in the form of an integrated electronic circuit is also discussed. As an example, a dynamic feedback for multi-mode stabilization of a collisional drift wave instability is developed in detail. (author)
Nixon, Michael; Kousgaard, Marius Brostrøm
2016-07-07
Discontinuing medications is a complex decision making process and an important medical practice. It is a tool in reducing polypharmacy, reducing health system expenditure and improving patient quality of life. Few studies have looked at how general practitioners (GPs) discontinue a medication, in agreement with the patients, from a professional perspective. Three research questions were examined in this study: when does medication discontinuation occur in general practice, how is discontinuing medication handled in the GP's practice and how do GPs make decisions about discontinuing medication? Twenty four GPs were interviewed using a maximum variation sample strategy. Participant observations were done in three general practices, for one day each, totalling approximately 30 consultations. The results show that different discontinuation cues (related to the type of consultation, medical records and the patient) create situations of dissonance that can lead to the GP considering the option of discontinuation. We also show that there is a lot of ambiguity in situations of discontinuing and that some GPs trialled discontinuing as means of generating more information that could be used to deal with the ambiguity. We conclude that the practice of discontinuation should be conceptualised as a continually evaluative process and one that requires sustained reflection through a culture of systematically scheduled check-ups, routinely eliciting the patient's experience of taking drugs and trialling discontinuation. Some policy recommendations are offered including supporting GPs with lists or handbooks that directly address discontinuation and by developing more person centred clinical guidelines that discuss discontinuation more explicitly.
Ermakov, I V; Tronciu, V Z; Colet, Pere; Mirasso, Claudio R
2009-05-25
We show the advantages of controlling the unstable dynamics of a semiconductor laser subject to conventional optical feedback by means of a second filtered feedback branch. We give an overview of the analytical solutions of the double cavity feedback and show numerically that the region of stabilization is much larger when using a second branch with filtered feedback than when using a conventional feedback one.
Ermakov, Ilya; Tronciu, Vasile; Colet, Pere; Mirasso, Claudio R.
2009-01-01
We show the advantages of controlling the unstable dynamics of a semiconductor laser subject to conventional optical feedback by means of a second filtered feedback branch. We give an overview of the analytical solutions of the double cavity feedback and show numerically that the region of stabilization is much larger when using a second branch with filtered feedback than when using a conventional feedback one.
Niemi, Antti; Collier, Nathan; Calo, Victor M.
2011-01-01
We revisit the finite element analysis of convection dominated flow problems within the recently developed Discontinuous Petrov-Galerkin (DPG) variational framework. We demonstrate how test function spaces that guarantee numerical stability can
Seismic imaging of lithospheric discontinuities and continental evolution
Bostock, M. G.
1999-09-01
Discontinuities in physical properties within the continental lithosphere reflect a range of processes that have contributed to craton stabilization and evolution. A survey of recent seismological studies concerning lithospheric discontinuities is made in an attempt to document their essential characteristics. Results from long-period seismology are inconsistent with the presence of continuous, laterally invariant, isotropic boundaries within the upper mantle at the global scale. At regional scales, two well-defined interfaces termed H (˜60 km depth) and L (˜200 km depth) of continental affinity are identified, with the latter boundary generally exhibiting an anisotropic character. Long-range refraction profiles are frequently characterized by subcontinental mantle that exhibits a complex stratification within the top 200 km. The shallow layering of this package can behave as an imperfect waveguide giving rise to the so-called teleseismic Pn phase, while the L-discontinuity may define its lower base as the culmination of a low velocity zone. High-resolution, seismic reflection profiling provides sufficient detail in a number of cases to document the merging of mantle interfaces into lower continental crust below former collisional sutures and magmatic arcs, thus unambiguously identifying some lithospheric discontinuities with thrust faults and subducted oceanic lithosphere. Collectively, these and other seismic observations point to a continental lithosphere whose internal structure is dominated by a laterally variable, subhorizontal layering. This stratigraphy appears to be more pronounced at shallower lithospheric levels, includes dense, anisotropic layers of order 10 km in thickness, and exhibits horizontal correlation lengths comparable to the lateral dimensions of overlying crustal blocks. A model of craton evolution which relies on shallow subduction as a principal agent of craton stabilization is shown to be broadly compatible with these characteristics.
Li, Jiarong; Jiang, Haijun; Hu, Cheng; Yu, Zhiyong
2018-03-01
This paper is devoted to the exponential synchronization, finite time synchronization, and fixed-time synchronization of Cohen-Grossberg neural networks (CGNNs) with discontinuous activations and time-varying delays. Discontinuous feedback controller and Novel adaptive feedback controller are designed to realize global exponential synchronization, finite time synchronization and fixed-time synchronization by adjusting the values of the parameters ω in the controller. Furthermore, the settling time of the fixed-time synchronization derived in this paper is less conservative and more accurate. Finally, some numerical examples are provided to show the effectiveness and flexibility of the results derived in this paper. Copyright © 2018 Elsevier Ltd. All rights reserved.
Carpenter, Mark H.; Fisher, Travis C.; Nielsen, Eric J.; Frankel, Steven H.
2013-01-01
Nonlinear entropy stability and a summation-by-parts framework are used to derive provably stable, polynomial-based spectral collocation methods of arbitrary order. The new methods are closely related to discontinuous Galerkin spectral collocation methods commonly known as DGFEM, but exhibit a more general entropy stability property. Although the new schemes are applicable to a broad class of linear and nonlinear conservation laws, emphasis herein is placed on the entropy stability of the compressible Navier-Stokes equations.
Continuous, saturation, and discontinuous tokamak plasma vertical position control systems
Mitrishkin, Yuri V., E-mail: y_mitrishkin@hotmail.com [M. V. Lomonosov Moscow State University, Faculty of Physics, Moscow 119991 (Russian Federation); Pavlova, Evgeniia A., E-mail: janerigoler@mail.ru [M. V. Lomonosov Moscow State University, Faculty of Physics, Moscow 119991 (Russian Federation); Kuznetsov, Evgenii A., E-mail: ea.kuznetsov@mail.ru [Troitsk Institute for Innovation and Fusion Research, Moscow 142190 (Russian Federation); Gaydamaka, Kirill I., E-mail: k.gaydamaka@gmail.com [V. A. Trapeznikov Institute of Control Sciences of the Russian Academy of Sciences, Moscow 117997 (Russian Federation)
2016-10-15
Highlights: • Robust new linear state feedback control system for tokamak plasma vertical position. • Plasma vertical position relay control system with voltage inverter in sliding mode. • Design of full models of multiphase rectifier and voltage inverter. • First-order unit approximation of full multiphase rectifier model with high accuracy. • Wider range of unstable plant parameters of stable control system with multiphase rectifier. - Abstract: This paper is devoted to the design and comparison of unstable plasma vertical position control systems in the T-15 tokamak with the application of two types of actuators: a multiphase thyristor rectifier and a transistor voltage inverter. An unstable dynamic element obtained by the identification of plasma-physical DINA code was used as the plasma model. The simplest static feedback state space control law was synthesized as a linear combination of signals accessible to physical measurements, namely the plasma vertical displacement, the current, and the voltage in a horizontal field coil, to solve the pole placement problem for a closed-loop system. Only one system distinctive parameter was used to optimize the performance of the feedback system, viz., a multiple real pole. A first-order inertial unit was used as the rectifier model in the feedback. A system with a complete rectifier model was investigated as well. A system with the voltage inverter model and static linear controller was brought into a sliding mode. As this takes place, real time delays were taken into account in the discontinuous voltage inverter model. The comparison of the linear and sliding mode systems showed that the linear system enjoyed an essentially wider range of the plant model parameters where the feedback system was stable.
Continuous, saturation, and discontinuous tokamak plasma vertical position control systems
Mitrishkin, Yuri V.; Pavlova, Evgeniia A.; Kuznetsov, Evgenii A.; Gaydamaka, Kirill I.
2016-01-01
Highlights: • Robust new linear state feedback control system for tokamak plasma vertical position. • Plasma vertical position relay control system with voltage inverter in sliding mode. • Design of full models of multiphase rectifier and voltage inverter. • First-order unit approximation of full multiphase rectifier model with high accuracy. • Wider range of unstable plant parameters of stable control system with multiphase rectifier. - Abstract: This paper is devoted to the design and comparison of unstable plasma vertical position control systems in the T-15 tokamak with the application of two types of actuators: a multiphase thyristor rectifier and a transistor voltage inverter. An unstable dynamic element obtained by the identification of plasma-physical DINA code was used as the plasma model. The simplest static feedback state space control law was synthesized as a linear combination of signals accessible to physical measurements, namely the plasma vertical displacement, the current, and the voltage in a horizontal field coil, to solve the pole placement problem for a closed-loop system. Only one system distinctive parameter was used to optimize the performance of the feedback system, viz., a multiple real pole. A first-order inertial unit was used as the rectifier model in the feedback. A system with a complete rectifier model was investigated as well. A system with the voltage inverter model and static linear controller was brought into a sliding mode. As this takes place, real time delays were taken into account in the discontinuous voltage inverter model. The comparison of the linear and sliding mode systems showed that the linear system enjoyed an essentially wider range of the plant model parameters where the feedback system was stable.
Anon.
1991-01-01
Critically aligned experiments are sensitive to small changes in the electron beam orbit. At the NSLS storage rings, the electron beam and photon beam motions have been monitored over the past several years. In the survey conducted in 1986 by the NSLS Users Executive Committee, experimenters requested the vertical beam position variation and the vertical angle variation, within a given fill, remain within 10 μm and 10 μr, respectively. This requires improvement in the beam stability by about one order of magnitude. At the NSLS and SSRL storage rings, the beam that is originally centered on the position monitor by a dc orbit correction is observed to have two kinds of motion: a dc drift over a storage period of several hours and a beam bounce about its nominal position. These motions are a result of the equilibrium orbit not being held perfectly stable due to time-varying errors introduced into the magnetic guide field by power supplies, mechanical vibration of the magnets, cooling water temperature variations, etc. The approach to orbit stabilization includes (1) identifying and suppressing as many noise sources on the machine as possible, (2) correcting the beam position globally (see Section 6) by controlling a number of correctors around the circumference of the machine, and (3) correcting the beam position and angle at a given source location by position feedback using local detectors and local orbit bumps. The third approach, called Local Orbit Feedback will be discussed in this section
Discontinuities during UV writing of waveguides
Svalgaard, Mikael; Harpøth, Anders; Andersen, Marc
2005-01-01
UV writing of waveguides can be hampered by discontinuities where the index change process suddenly shuts down. We show that thermal effects may account for this behaviour.......UV writing of waveguides can be hampered by discontinuities where the index change process suddenly shuts down. We show that thermal effects may account for this behaviour....
Robust stabilization of nonlinear systems: The LMI approach
iljak D. D.
2000-01-01
Full Text Available This paper presents a new approach to robust quadratic stabilization of nonlinear systems within the framework of Linear Matrix Inequalities (LMI. The systems are composed of a linear constant part perturbed by an additive nonlinearity which depends discontinuously on both time and state. The only information about the nonlinearity is that it satisfies a quadratic constraint. Our major objective is to show how linear constant feedback laws can be formulated to stabilize this type of systems and, at the same time, maximize the bounds on the nonlinearity which the system can tolerate without going unstable. We shall broaden the new setting to include design of decentralized control laws for robust stabilization of interconnected systems. Again, the LMI methods will be used to maximize the class of uncertain interconnections which leave the overall system connectively stable. It is useful to learn that the proposed LMI formulation “recognizes” the matching conditions by returning a feedback gain matrix for any prescribed bound on the interconnection terms. More importantly, the new formulation provides a suitable setting for robust stabilization of nonlinear systems where the nonlinear perturbations satisfy the generalized matching conditions.
Vertebral Fractures After Discontinuation of Denosumab
Cummings, Steven R; Ferrari, Serge; Eastell, Richard
2018-01-01
. We analyzed the risk of new or worsening vertebral fractures, especially multiple vertebral fractures, in participants who discontinued denosumab during the FREEDOM study or its Extension. Participants received ≥2 doses of denosumab or placebo Q6M, discontinued treatment, and stayed in the study ≥7...... months after the last dose. Of 1001 participants who discontinued denosumab during FREEDOM or Extension, the vertebral fracture rate increased from 1.2 per 100 participant-years during the on-treatment period to 7.1, similar to participants who received and then discontinued placebo (n = 470; 8.5 per 100....... Therefore, patients who discontinue denosumab should rapidly transition to an alternative antiresorptive treatment. Clinicaltrails.gov: NCT00089791 (FREEDOM) and NCT00523341 (Extension). © 2017 American Society for Bone and Mineral Research....
Green's function approach to neutron flux discontinuities
Saad, E.A.; El-Wakil, S.A.
1980-01-01
The present work is devoted to the presentation of analytical method for the calculation of elastically and inelastically slowed down neutrons in an infinite non-absorbing medium. On the basis of the central limit theory (CLT) and the integral transform technique the slowing down equation including inelastic scattering, in terms of the Green function of elastic scattering, is solved. The Green function is decomposed according to the number of collisions. Placzec discontinuity associated with elastic scattering in addition to two discontinuities due to inelastic scattering are investigated. Numerical calculations for Fe 56 show that the elastic discontinuity produces about 41.8% change in the collision density whilst the ratio of the inelastic collision density discontinuity at qsub(o)sup(+) to the Placzec discontinuity at usub(o) + 1n 1/oc gives 55.7 percent change. (author)
Special discontinuities in nonlinearly elastic media
Chugainova, A. P.
2017-06-01
Solutions of a nonlinear hyperbolic system of equations describing weakly nonlinear quasitransverse waves in a weakly anisotropic elastic medium are studied. The influence of small-scale processes of dissipation and dispersion is investigated. The small-scale processes determine the structure of discontinuities (shocks) and a set of discontinuities with a stationary structure. Among the discontinuities with a stationary structure, there are special ones that, in addition to relations following from conservation laws, satisfy additional relations required for the existence of their structure. In the phase plane, the structure of such discontinuities is represented by an integral curve joining two saddles. Special discontinuities lead to nonunique self-similar solutions of the Riemann problem. Asymptotics of non-self-similar problems for equations with dissipation and dispersion are found numerically. These asymptotics correspond to self-similar solutions of the problems.
Historical transformation and epistemological discontinuity
Močnik Rastko
2013-01-01
Full Text Available Starting from recent formulas of EU bureaucracy for subordinating scientific and educational apparatuses to the needs of the capital and to the requests of its political representatives, the article analyses the interconnection between the historical transformation of the ideological state apparatuses (universities, higher education institutions, research institutes etc. and the epistemological discontinuity provoked by the triumph of technosciences. The hypothesis to be tested is the following: While the crisis of West European-North American capitalism requires an ever tighter submission of ideological state apparatuses, and especially of scientific and academic apparatuses to the needs of the capital, theoretical practices in the humanities and social sciences have come to the point where they entered into an open conflict with the domination of the capital and have, as a consequence, started to subvert their own institutional supports in the ideological apparatuses of the capitalist state. For this purpose, the article reconsiders social sciences as a compromise formation and, eventually, reassesses the historical materialism as a non-Cartesian modern science.
Local stability perturbation in DNA structure induced by chain discontinuities
Jorcano, J.L.; Mingot, F.; Davila, C.A.
1976-01-01
The thermal dependence of parameter ''h'' (number of base pairs broken near to internucleotide breaks) is studied. At 25degC, 0,2 M Na + and pH 7, the ''h'' value is about 12. Far from DNA melting temperature, ''h'' is not dependent upon ionic strength and it depends very little on temperature. This behavior suggests a non cooperative, entropically driven chain unzipping from terminals. Near melting temperature, ''h'' shows a thermal dependence asymptotic to Tm, and correlated with DNA composition. It seems to correspond to the cooperative denaturation. ''h'' values have been calculated from double and single break probabilities evaluated from hydrodynamically determined molecular weight distributions. (author)
Generalized fast feedback system in the SLC
Hendrickson, L.; Allison, S.; Gromme, T.; Himel, T.; Krauter, K.; Rouse, F.; Sass, R.; Shoaee, H.
1992-01-01
A generalized fast feedback system has been developed to stabilize beams at various locations in the SLC. The system is designed to perform measurements and change actuator settings to control beam states such as position, angle and energy on a pulse to pulse basis. The software design is based on the state space formalism of digital control theory. The system is database-driven, facilitating the addition of new loops without requiring additional software. A communications system, KISNet, provides fast communications links between microprocessors for feedback loops which involve multiple micros. Feedback loops have been installed in seventeen locations throughout the SLC and have proven to be invaluable in stabilizing the machine. (author)
Generalized fast feedback system in the SLC
Hendrickson, L.; Allison, S.; Gromme, T.; Himel, T.; Krauter, K.; Rouse, F.; Sass, R.; Shoaee, H.
1991-11-01
A generalized fast feedback system has been developed to stabilize beams at various locations in the SLC. The system is designed to perform measurements and change actuator settings to control beam states such as position, angle and energy on a pulse to pulse basis. The software design is based on the state space formalism of digital control theory. The system is database-driven, facilitating the addition of new loops without requiring additional software. A communications system, KISNet, provides fast communications links between microprocessors for feedback loops which involve multiple micros. Feedback loops have been installed in seventeen locations throughout the SLC and have proven to be invaluable in stabilizing the machine
Structured population dynamics: continuous size and discontinuous stage structures.
Buffoni, Giuseppe; Pasquali, Sara
2007-04-01
A nonlinear stochastic model for the dynamics of a population with either a continuous size structure or a discontinuous stage structure is formulated in the Eulerian formalism. It takes into account dispersion effects due to stochastic variability of the development process of the individuals. The discrete equations of the numerical approximation are derived, and an analysis of the existence and stability of the equilibrium states is performed. An application to a copepod population is illustrated; numerical results of Eulerian and Lagrangian models are compared.
Ultrasonic assessment of shrinkage type discontinuities
Hubber, John
2010-01-01
This investigation into ultrasonic internal discontinuities is intended to demonstrate typical examples of internal 'shrinkage' type discontinuities and its connection with the casting suitability, integrity and reliability in service. This type of discontinuity can be misinterpreted by ultrasonic technicians and can lead to the rejection of castings unnecessarily, due to the mis-characterization of fine shrinkage - discrete porosity. The samples for this investigation were taken from thirty ton heavy section ductile iron mill flange castings, manufactured by Graham Campbell Ferrum International. The sampled area was of discontinuities that were recorded for sizing on an area due to loss of back wall echo, but had acceptable reflectivity. A comparative sample was taken adjacent to the area of discrete porosity. The discontinuities found by this investigation are of a 'spongy' type, gaseous in appearance and are surrounded by acoustically sound material. All discontinuities discussed in this paper are centrally located in the through thickness of the casting. The porous nature of this type of discontinuity consisting of approximately 80-90% metal has its own residual strength, as indicated by the proof stress results which reveal a residual strength of up to 50-60% of that of the unaffected area of the casting. The affected areas are elliptical in shape and vary in density and through thickness throughout.
Signal integrity analysis on discontinuous microstrip line
Qiao, Qingyang; Dai, Yawen; Chen, Zipeng
2013-01-01
In high speed PCB design, microstirp lines were used to control the impedance, however, the discontinuous microstrip line can cause signal integrity problems. In this paper, we use the transmission line theory to study the characteristics of microstrip lines. Research results indicate that the discontinuity such as truncation, gap and size change result in the problems such as radiation, reflection, delay and ground bounce. We change the discontinuities to distributed parameter circuits, analysed the steady-state response and transient response and the phase delay. The transient response cause radiation and voltage jump.
Trapped particles at a magnetic discontinuity
Stern, D. P.
1972-01-01
At a tangential discontinuity between two constant magnetic fields a layer of trapped particles can exist, this work examines the conditions under which the current carried by such particles tends to maintain the discontinuity. Three cases are examined. If the discontinuity separates aligned vacuum fields, the only requirement is that they be antiparallel. With arbitrary relative orientations, the field must have equal intensities on both sides. Finally, with a guiding center plasma on both sides, the condition reduces to a relation which is also derivable from hydromagnetic theory. Arguments are presented for the occurrence of such trapped modes in the magnetopause and for the non-existence of specular particle reflection.
Eriksson, Tor Viking; Poulsen, Anders; Villeval, Marie Claire
2009-01-01
This paper experimentally investigates the impact of different pay schemes and relative performance feedback policies on employee effort. We explore three feedback rules: no feedback on relative performance, feedback given halfway through the production period, and continuously updated feedback. ...... behind, and front runners do not slack off. But in both pay schemes relative performance feedback reduces the quality of the low performers' work; we refer to this as a "negative quality peer effect"....
Stability of dynamical systems on the role of monotonic and non-monotonic Lyapunov functions
Michel, Anthony N; Liu, Derong
2015-01-01
The second edition of this textbook provides a single source for the analysis of system models represented by continuous-time and discrete-time, finite-dimensional and infinite-dimensional, and continuous and discontinuous dynamical systems. For these system models, it presents results which comprise the classical Lyapunov stability theory involving monotonic Lyapunov functions, as well as corresponding contemporary stability results involving non-monotonicLyapunov functions.Specific examples from several diverse areas are given to demonstrate the applicability of the developed theory to many important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, and artificial neural networks. The authors cover the following four general topics: - Representation and modeling of dynamical systems of the types described above - Presentation of Lyapunov and Lagrange stability theory for dynamical sy...
Identifying the factors underlying discontinuation of triptans.
Wells, Rebecca E; Markowitz, Shira Y; Baron, Eric P; Hentz, Joseph G; Kalidas, Kavita; Mathew, Paul G; Halker, Rashmi; Dodick, David W; Schwedt, Todd J
2014-02-01
To identify factors associated with triptan discontinuation among migraine patients. It is unclear why many migraine patients who are prescribed triptans discontinue this treatment. This study investigated correlates of triptan discontinuation with a focus on potentially modifiable factors to improve compliance. This multicenter cross-sectional survey (n = 276) was performed at US tertiary care headache clinics. Headache fellows who were members of the American Headache Society Headache Fellows Research Consortium recruited episodic and chronic migraine patients who were current triptan users (use within prior 3 months and for ≥1 year) or past triptan users (no use within 6 months; prior use within 2 years). Univariate analyses were first completed to compare current triptan users to past users for: migraine characteristics, other migraine treatments, triptan education, triptan efficacy, triptan side effects, type of prescribing provider, Migraine Disability Assessment (MIDAS) scores and Beck Depression Inventory (BDI) scores. Then, a multivariable logistic regression model was selected from all possible combinations of predictor variables to determine the factors that best correlated with triptan discontinuation. Compared with those still using triptans (n = 207), those who had discontinued use (n = 69) had higher rates of medication overuse (30 vs. 18%, P = .04) and were more likely to have ever used opioids for migraine treatment (57 vs. 38%, P = .006) as well as higher MIDAS (mean 63 vs. 37, P = .001) and BDI scores (mean 10.4 vs. 7.4, P = .009). Compared with discontinued users, current triptan users were more likely to have had their triptan prescribed by a specialist (neurologist, headache specialist, or pain specialist) (74 vs. 54%, P = .002) and were more likely to report headache resolution (53 vs. 14%, P 24 (2.6, [1.5, 4.6]), BDI >4 (2.5, [1.4, 4.5]), and a history of ever using opioids for migraine therapy (2.2, [1
Discontinuance of ADHD Treatment in Adolescents
J Gordon Millichap
2009-04-01
Full Text Available Prevalence of ADHD drug discontinuance in adolescents and young adults was studied in the UK by using the General Practice Database for patients aged 15-21 years from 1999 to 2006.
Discontinuous Galerkin for the Radiative Transport Equation
Guermond, Jean-Luc; Kanschat, Guido; Ragusa, Jean C.
2013-01-01
This note presents some recent results regarding the approximation of the linear radiative transfer equation using discontinuous Galerkin methods. The locking effect occurring in the diffusion limit with the upwind numerical flux is investigated and a correction technique is proposed.
Neural networks with discontinuous/impact activations
Akhmet, Marat
2014-01-01
This book presents as its main subject new models in mathematical neuroscience. A wide range of neural networks models with discontinuities are discussed, including impulsive differential equations, differential equations with piecewise constant arguments, and models of mixed type. These models involve discontinuities, which are natural because huge velocities and short distances are usually observed in devices modeling the networks. A discussion of the models, appropriate for the proposed applications, is also provided. This book also: Explores questions related to the biological underpinning for models of neural networks\\ Considers neural networks modeling using differential equations with impulsive and piecewise constant argument discontinuities Provides all necessary mathematical basics for application to the theory of neural networks Neural Networks with Discontinuous/Impact Activations is an ideal book for researchers and professionals in the field of engineering mathematics that have an interest in app...
Discontinuous Galerkin for the Radiative Transport Equation
Guermond, Jean-Luc
2013-10-11
This note presents some recent results regarding the approximation of the linear radiative transfer equation using discontinuous Galerkin methods. The locking effect occurring in the diffusion limit with the upwind numerical flux is investigated and a correction technique is proposed.
Factors Influencing Contraceptive Choice and Discontinuation ...
Erah
2010-03-30
women indicated that their HIV status dictated contraceptive decisions, particularly with ... Women reported method discontinuation because of side effects, having met desired parity, ...... Washington, D.C., 2009. ... Accessed March 30, 2010.
Area Regge calculus and discontinuous metrics
Wainwright, Chris; Williams, Ruth M
2004-01-01
Taking the triangle areas as independent variables in the theory of Regge calculus can lead to ambiguities in the edge lengths, which can be interpreted as discontinuities in the metric. We construct solutions to area Regge calculus using a triangulated lattice and find that on a spacelike or timelike hypersurface no such discontinuity can arise. On a null hypersurface however, we can have such a situation and the resulting metric can be interpreted as a so-called refractive wave
Duru, Kenneth
2014-12-01
© 2014 Elsevier Inc. In this paper, we develop a stable and systematic procedure for numerical treatment of elastic waves in discontinuous and layered media. We consider both planar and curved interfaces where media parameters are allowed to be discontinuous. The key feature is the highly accurate and provably stable treatment of interfaces where media discontinuities arise. We discretize in space using high order accurate finite difference schemes that satisfy the summation by parts rule. Conditions at layer interfaces are imposed weakly using penalties. By deriving lower bounds of the penalty strength and constructing discrete energy estimates we prove time stability. We present numerical experiments in two space dimensions to illustrate the usefulness of the proposed method for simulations involving typical interface phenomena in elastic materials. The numerical experiments verify high order accuracy and time stability.
Management applications of discontinuity theory | Science ...
1.Human impacts on the environment are multifaceted and can occur across distinct spatiotemporal scales. Ecological responses to environmental change are therefore difficult to predict, and entail large degrees of uncertainty. Such uncertainty requires robust tools for management to sustain ecosystem goods and services and maintain resilient ecosystems. 2.We propose an approach based on discontinuity theory that accounts for patterns and processes at distinct spatial and temporal scales, an inherent property of ecological systems. Discontinuity theory has not been applied in natural resource management and could therefore improve ecosystem management because it explicitly accounts for ecological complexity. 3.Synthesis and applications. We highlight the application of discontinuity approaches for meeting management goals. Specifically, discontinuity approaches have significant potential to measure and thus understand the resilience of ecosystems, to objectively identify critical scales of space and time in ecological systems at which human impact might be most severe, to provide warning indicators of regime change, to help predict and understand biological invasions and extinctions and to focus monitoring efforts. Discontinuity theory can complement current approaches, providing a broader paradigm for ecological management and conservation This manuscript provides insight on using discontinuity approaches to aid in managing complex ecological systems. In part
Global convergence of periodic solution of neural networks with discontinuous activation functions
Huang Lihong; Guo Zhenyuan
2009-01-01
In this paper, without assuming boundedness and monotonicity of the activation functions, we establish some sufficient conditions ensuring the existence and global asymptotic stability of periodic solution of neural networks with discontinuous activation functions by using the Yoshizawa-like theorem and constructing proper Lyapunov function. The obtained results improve and extend previous works.
Skriftlig feedback i engelskundervisningen
Kjærgaard, Hanne Wacher
2017-01-01
The article describes useful feedback strategies in language teaching and describes the feedback practices of lower-seconday teachers in Denmark. The article is aimed at language teahcers in secondary schools.......The article describes useful feedback strategies in language teaching and describes the feedback practices of lower-seconday teachers in Denmark. The article is aimed at language teahcers in secondary schools....
Student Engagement with Feedback
Scott, Jon; Shields, Cathy; Gardner, James; Hancock, Alysoun; Nutt, Alex
2011-01-01
This report considers Biological Sciences students' perceptions of feedback, compared with those of the University as a whole, this includes what forms of feedback were considered most useful and how feedback used. Compared with data from previous studies, Biological Sciences students gave much greater recognition to oral feedback, placing it on a…
Feedback stabilization of transition boiling states
Gils, van R.W.; Speetjens, M.F.M.; Nijmeijer, H.
2010-01-01
A nonlinear one-dimensional heat-transfer model for pool boiling systems is considered. The model involves only the temperature distribution within the heater and models the heat exchange with the boiling medium via a nonlinear boundary condition imposed at the fluid-heater interface. This compact
Positive feedback stabilization of centrifugal compressor surge
Willems, Frank; Heemels, W.P.M.H.; de Jager, Bram; Stoorvogel, Antonie Arij
Stable operation of axial and centrifugal compressors is limited towards low mass flows due to the occurrence of surge. The stable operating region can be enlarged by active control. In this study, we use a control valve which is fully closed in the desired operating point and only opens to
Positive feedback stabilization of centrifugal compressor surge
Willems, F.P.T.; Heemels, W.P.M.H.; Jager, de A.G.; Stoorvogel, A.A.
2002-01-01
Stable operation of axial and centrifugal compressors is limited towards low mass flows due to the occurrence of surge. The stable operating region can be enlarged by active control. In this study, we use a control valve which is fully closed in the desired operating point and only opens to
Discontinuation Decision in Assisted Reproductive Techniques
Ashraf Moini
2009-01-01
Full Text Available Background: In vitro fertilization (IVF and intra cytoplasmic sperm injection (ICSI are recognizedas established and increasingly successful forms of treatment for infertility, yet significant numbersof couples discontinue treatment without achieving a live birth. This study aims to identify majorfactors that influence the decision to discontinue IVF/ICSI treatments.Materials and Methods: We studied the data of 338 couples who discontinued their infertilitytreatments after three cycles; based on medical records and phone contact. The main measure wasthe reason for stopping their treatments.Results: Economical problems were cited by 212 couples (62.7%, as their mean income wassignificantly less than other couples (p<0.0001. Lack of success was reported as a reason by229 (67.8%, from whom 165 (72% also had economical problems. Achieving independent-ART pregnancy was the reason for discontinuation in 20 (5.9% couples. Psychological stress,depression and anxiety were reported as other cessation factors by 169 (50%, 148 (43.8% and 182(53.8% couples, respectively.Conclusion: This survey suggests that the most common reasons for assisted reproductivetechnique (ART discontinuation after three cycles are: prior unsuccessful cycles, economicaland psychological problems. Therefore, the substantial proportion of couples could benefit frompsychological intervention, increasing awareness of ART outcomes and health funding to copemore adequately with failed treatments.
27 CFR 555.128 - Discontinuance of business.
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Discontinuance of business... Discontinuance of business. Where an explosive materials business or operations is discontinued and succeeded by... such facts and shall be delivered to the successor. Where discontinuance of the business or operations...
27 CFR 478.57 - Discontinuance of business.
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Discontinuance of business... Licenses § 478.57 Discontinuance of business. (a) Where a firearm or ammunition business is either discontinued or succeeded by a new owner, the owner of the business discontinued or succeeded shall within 30...
Continuous and discontinuous transitions to synchronization.
Wang, Chaoqing; Garnier, Nicolas B
2016-11-01
We describe how the transition to synchronization in a system of globally coupled Stuart-Landau oscillators changes from continuous to discontinuous when the nature of the coupling is moved from diffusive to reactive. We explain this drastic qualitative change as resulting from the co-existence of a particular synchronized macrostate together with the trivial incoherent macrostate, in a range of parameter values for which the latter is linearly stable. In contrast to the paradigmatic Kuramoto model, this particular state observed at the synchronization transition contains a finite, non-vanishing number of synchronized oscillators, which results in a discontinuous transition. We consider successively two situations where either a fully synchronized state or a partially synchronized state exists at the transition. Thermodynamic limit and finite size effects are briefly discussed, as well as connections with recently observed discontinuous transitions.
Quantum field theory near surfaces of discontinuity
Onishi, H.T.
1981-01-01
This work deals with the problem of a quantized scalar field propagating near a surface of discontinuity. The proper time formalism is employed to express the Green's function and stress tensor as proper time integrals of a transformation function. The transformation function is calculated by a WKB approximation which exhibits the essential singularities generated by the high frequency behavior of waves propagating near the surface. Two singularities are present, the usual direct singularity and an additional reflected singularity generated by the high frequency behavior of waves reflected by the discontinuity. The stress tensor is calculated by dimensional continuation. The results are employed to analyze energy generated by the surface
News and views in discontinuous phase transitions
Nagler, Jan
2014-03-01
Recent progress in the theory of discontinuous percolation allow us to better understand the the sudden emergence of large-scale connectedness both in networked systems and on the lattice. We analytically study mechanisms for the amplification of critical fluctuations at the phase transition point, non-self-averaging and power law fluctuations. A single event analysis allow to establish criteria for discontinuous percolation transitions, even on the high-dimensional lattice. Some applications such as salad bowl percolation, and inverse fragmentation are discussed.
MHD intermediate shock discontinuities: Pt. 1
Kennel, C.F.; Blandford, R.D.; Coppi, P.
1989-01-01
Recent numerical investigations have focused attention once more on the role of intermediate shocks in MHD. Four types of intermediate shock are identified using a graphical representation of the MHD Rankine-Hugoniot conditions. This same representation can be used to exhibit the close relationship of intermediate shocks to switch-on shocks and rotational discontinuities. The conditions under which intermediate discontinuities can be found are elucidated. The variations in velocity, pressure, entropy and magnetic-field jumps with upstream parameters in intermediate shocks are exhibited graphically. The evolutionary arguments traditionally advanced against intermediate shocks may fail because the equations of classical MHD are not strictly hyperbolic. (author)
Fault Tolerant Feedback Control
Stoustrup, Jakob; Niemann, H.
2001-01-01
An architecture for fault tolerant feedback controllers based on the Youla parameterization is suggested. It is shown that the Youla parameterization will give a residual vector directly in connection with the fault diagnosis part of the fault tolerant feedback controller. It turns out...... that there is a separation be-tween the feedback controller and the fault tolerant part. The closed loop feedback properties are handled by the nominal feedback controller and the fault tolerant part is handled by the design of the Youla parameter. The design of the fault tolerant part will not affect the design...... of the nominal feedback con-troller....
Feedback on Feedback--Does It Work?
Speicher, Oranna; Stollhans, Sascha
2015-01-01
It is well documented that providing assessment feedback through the medium of screencasts is favourably received by students and encourages deeper engagement with the feedback given by the language teacher (inter alia Abdous & Yoshimura, 2010; Brick & Holmes, 2008; Cann, 2007; Stannard, 2007). In this short paper we will report the…
Beam closed orbit feedback based on PID control
Xuan Ke; Wang Lin; Liu Gongfa; Li Weimin; Li Chuan; Wang Jigang; Bao Xun; Xu Hongliang
2013-01-01
The algorithm in the feedback system has important influence on the performance of the beam orbit. Good feedback algorithm can greatly improve the beam orbit stability. In this paper, the theory of beam closed orbit correction, the principle of PID control and the beam closed orbit feedback correction using PID control were introduced. The simulation results were given. Compared with least-square method, the PID feedback algorithm makes the steady-state error smaller and more accurate, and enhances the beam orbit stability. (authors)
Regulation causes nitrogen cycling discontinuities in Mediterranean rivers.
von Schiller, Daniel; Aristi, Ibon; Ponsatí, Lídia; Arroita, Maite; Acuña, Vicenç; Elosegi, Arturo; Sabater, Sergi
2016-01-01
River regulation has fundamentally altered large sections of the world's river networks. The effects of dams on the structural properties of downstream reaches are well documented, but less is known about their effect on river ecosystem processes. We investigated the effect of dams on river nutrient cycling by comparing net uptake of total dissolved nitrogen (TDN), phosphorus (TDP) and organic carbon (DOC) in river reaches located upstream and downstream from three reservoir systems in the Ebro River basin (NE Iberian Peninsula). Increased hydromorphological stability, organic matter standing stocks and ecosystem metabolism below dams enhanced the whole-reach net uptake of TDN, but not that of TDP or DOC. Upstream from dams, river reaches tended to be at biogeochemical equilibrium (uptake≈release) for all nutrients, whereas river reaches below dams acted as net sinks of TDN. Overall, our results suggest that flow regulation by dams may cause relevant N cycling discontinuities in rivers. Higher net N uptake capacity below dams could lead to reduced N export to downstream ecosystems. Incorporating these discontinuities could significantly improve predictive models of N cycling and transport in complex river networks. Copyright © 2015. Published by Elsevier B.V.
Regression Discontinuity Designs Based on Population Thresholds
Eggers, Andrew C.; Freier, Ronny; Grembi, Veronica
In many countries, important features of municipal government (such as the electoral system, mayors' salaries, and the number of councillors) depend on whether the municipality is above or below arbitrary population thresholds. Several papers have used a regression discontinuity design (RDD...
Mechanics of interfaces and evolving discontinuities
De Borst, René; Remmers, Joris J C; Verhoosel, Clemens V.; Needleman, Alan; Zingoni, A.
2013-01-01
The two main approaches to the modelling of discontinuities are reviewed concisely, followed by a discussion of cohesive models for fracture. Emphasis is put on a novel approach to incorporate triaxiality into cohesive-zone models, and on the representation of cohesive crack models by phase-field
Hybridized Multiscale Discontinuous Galerkin Methods for Multiphysics
2015-09-14
local approximation spaces of the hybridizable discontinuous Galerkin methods with precomputed phases which are solutions of the eikonal equation in...geometrical optics. Second, we propose a systematic procedure for computing multiple solutions of the eikonal equation. Third, we utilize the eigenvalue
Problems with Discontinuous Diffusion/Dispersion Coefficients
Stefano Ferraris
2012-01-01
accurate on smooth solutions and based on a special numerical treatment of the diffusion/dispersion coefficients that makes its application possible also when such coefficients are discontinuous. Numerical experiments confirm the convergence of the numerical approximation and show a good behavior on a set of benchmark problems in two space dimensions.
Discontinuous precipitation in copper base alloys
Discontinuous precipitation (DP) is associated with grain boundary migration in the wake of which alternate plates of the precipitate and the depleted matrix form. Some copper base alloys show DP while others do not. In this paper the misfit strain parameter, , has been calculated and predicted that if 100 > ± 0.1, DP is ...
Trial discontinuation: lessons for future trial design?
V.J.A.A. Nuij (Veerle); C.J. de Haar (Colin); C.J. van der Woude (Janneke)
2012-01-01
textabstractBackground: The current therapeutic arsenal still does not fulfill the therapeutic needs of inflammatory bowel disease patients. Although new drugs are constantly being developed, many will never reach the market. In this review we will search for reasons for discontinuing promising
Controlling chaos in discontinuous dynamical systems
Danca, Marius-F.
2004-01-01
In this paper we consider the possibility to implement the technique of changes in the system variables to control the chaos introduced by Gueemez and Matias for continuous dynamical systems to a class of discontinuous dynamical systems. The approach is realized via differential inclusions following the Filippov theory. Three practical examples are considered
Forecasting Technological Discontinuities in the ICT Industry
Hoisl, Karin; Stelzer, Tobias; Biala, Stefanie
2015-01-01
in the ICT industry. The conjoint approach allows for a simulation of the forecasting process and considers utility trade-offs. The results show that for both types of experts the perceived benefit of users most highly contributes to predicting technological discontinuities. Internal experts assign more...
77 FR 26185 - POSTNET Barcode Discontinuation
2012-05-03
... discontinue POSTNET barcodes for automation letter and flat price eligibility. There were six comments... on each piece, to facilitate processing by presort companies. We added language to specifically allow..., with or without prepayment of postage, for return to the address on the reply piece. If postage is...
Excursions in fluvial (dis)continuity
Grant, Gordon E.; O'Connor, James E.; Safran, Elizabeth
2017-01-01
Lurking below the twin concepts of connectivity and disconnectivity are their first, and in some ways, richer cousins: continuity and discontinuity. In this paper we explore how continuity and discontinuity represent fundamental and complementary perspectives in fluvial geomorphology, and how these perspectives inform and underlie our conceptions of connectivity in landscapes and rivers. We examine the historical roots of continuum and discontinuum thinking, and how much of our understanding of geomorphology rests on contrasting views of continuity and discontinuity. By continuum thinking we refer to a conception of geomorphic processes as well as geomorphic features that are expressed along continuous gradients without abrupt changes, transitions, or thresholds. Balance of forces, graded streams, and hydraulic geometry are all examples of this perspective. The continuum view has played a prominent role in diverse disciplinary fields, including ecology, paleontology, and evolutionary biology, in large part because it allows us to treat complex phenomena as orderly progressions and invoke or assume equilibrium processes that introduce order and prediction into our sciences.In contrast the discontinuous view is a distinct though complementary conceptual framework that incorporates non-uniform, non-progressive, and non-equilibrium thinking into understanding geomorphic processes and landscapes. We distinguish and discuss examples of three different ways in which discontinuous thinking can be expressed: 1) discontinuous spatial arrangements or singular events; 2) specific process domains generally associated with thresholds, either intrinsic or extrinsic; and 3) physical dynamics or changes in state, again often threshold-linked. In moving beyond the continuous perspective, a fertile set of ideas comes into focus: thresholds, non-equilibrium states, heterogeneity, catastrophe. The range of phenomena that is thereby opened up to scientific exploration similarly expands
Sørensen, Jesper Hemming; Koike-Akino, Toshiaki; Orlik, Philip
2012-01-01
This paper proposes a concept called rateless feedback coding. We redesign the existing LT and Raptor codes, by introducing new degree distributions for the case when a few feedback opportunities are available. We show that incorporating feedback to LT codes can significantly decrease both...... the coding overhead and the encoding/decoding complexity. Moreover, we show that, at the price of a slight increase in the coding overhead, linear complexity is achieved with Raptor feedback coding....
General practitioners' decisions about discontinuation of medication: an explorative study.
Nixon, Michael Simon; Vendelø, Morten Thanning
2016-06-20
Purpose - The purpose of this paper is to investigate how general practitioners' (GPs) decisions about discontinuation of medication are influenced by their institutional context. Design/methodology/approach - In total, 24 GPs were interviewed, three practices were observed and documents were collected. The Gioia methodology was used to analyse data, drawing on a theoretical framework that integrate the sensemaking perspective and institutional theory. Findings - Most GPs, who actively consider discontinuation, are reluctant to discontinue medication, because the safest course of action for GPs is to continue prescriptions, rather than discontinue them. The authors conclude that this is in part due to the ambiguity about the appropriateness of discontinuing medication, experienced by the GPs, and in part because the clinical guidelines do not encourage discontinuation of medication, as they offer GPs a weak frame for discontinuation. Three reasons for this are identified: the guidelines provide dominating triggers for prescribing, they provide weak priming for discontinuation as an option, and they underscore a cognitive constraint against discontinuation. Originality/value - The analysis offers new insights about decision making when discontinuing medication. It also offers one of the first examinations of how the institutional context embedding GPs influences their decisions about discontinuation. For policymakers interested in the discontinuation of medication, the findings suggest that de-stigmatising discontinuation on an institutional level may be beneficial, allowing GPs to better justify discontinuation in light of the ambiguity they experience.
Adcroft, Andy
2011-01-01
Much of the general education and discipline-specific literature on feedback suggests that it is a central and important element of student learning. This paper examines feedback from a social process perspective and suggests that feedback is best understood through an analysis of the interactions between academics and students. The paper argues…
Cai, Zuowei; Huang, Lihong; Guo, Zhenyuan; Zhang, Lingling; Wan, Xuting
2015-08-01
This paper is concerned with the periodic synchronization problem for a general class of delayed neural networks (DNNs) with discontinuous neuron activation. One of the purposes is to analyze the problem of periodic orbits. To do so, we introduce new tools including inequality techniques and Kakutani's fixed point theorem of set-valued maps to derive the existence of periodic solution. Another purpose is to design a switching state-feedback control for realizing global exponential synchronization of the drive-response network system with periodic coefficients. Unlike the previous works on periodic synchronization of neural network, both the neuron activations and controllers in this paper are allowed to be discontinuous. Moreover, owing to the occurrence of delays in neuron signal, the neural network model is described by the functional differential equation. So we introduce extended Filippov-framework to deal with the basic issues of solutions for discontinuous DNNs. Finally, two examples and simulation experiments are given to illustrate the proposed method and main results which have an important instructional significance in the design of periodic synchronized DNNs circuits involving discontinuous or switching factors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Global desertification: Drivers and feedbacks
D'Odorico, Paolo; Bhattachan, Abinash; Davis, Kyle F.; Ravi, Sujith; Runyan, Christiane W.
2013-01-01
Desertification is a change in soil properties, vegetation or climate, which results in a persistent loss of ecosystem services that are fundamental to sustaining life. Desertification affects large dryland areas around the world and is a major cause of stress in human societies. Here we review recent research on the drivers, feedbacks, and impacts of desertification. A multidisciplinary approach to understanding the drivers and feedbacks of global desertification is motivated by our increasing need to improve global food production and to sustainably manage ecosystems in the context of climate change. Classic desertification theories look at this process as a transition between stable states in bistable ecosystem dynamics. Climate change (i.e., aridification) and land use dynamics are the major drivers of an ecosystem shift to a “desertified” (or “degraded”) state. This shift is typically sustained by positive feedbacks, which stabilize the system in the new state. Desertification feedbacks may involve land degradation processes (e.g., nutrient loss or salinization), changes in rainfall regime resulting from land-atmosphere interactions (e.g., precipitation recycling, dust emissions), or changes in plant community composition (e.g., shrub encroachment, decrease in vegetation cover). We analyze each of these feedback mechanisms and discuss their possible enhancement by interactions with socio-economic drivers. Large scale effects of desertification include the emigration of “environmental refugees” displaced from degraded areas, climatic changes, and the alteration of global biogeochemical cycles resulting from the emission and long-range transport of fine mineral dust. Recent research has identified some possible early warning signs of desertification, which can be used as indicators of resilience loss and imminent shift to desert-like conditions. We conclude with a brief discussion on some desertification control strategies implemented in different
Fossen, T. I.; Blanke, Mogens
2000-01-01
Accurate propeller shaft speed controllers can be designed by using nonlinear control theory and feedback from the axial water velocity in the propeller disc. In this paper, an output feedback controller is derived, reconstructing the axial flow velocity from vehicle speed measurements, using...... a three-state model of propeller shaft speed, forward (surge) speed of the vehicle, and the axial flow velocity. Lyapunov stability theory is used to prove that a nonlinear observer combined with an output feedback integral controller provide exponential stability. The output feedback controller...... compensates for variations in thrust due to time variations in advance speed. This is a major problem when applying conventional vehicle-propeller control systems, The proposed controller is simulated for an underwater vehicle equipped with a single propeller. The simulations demonstrate that the axial water...
Bayesian feedback versus Markovian feedback in a two-level atom
Wiseman, H.M.; Mancini, Stefano; Wang Jin
2002-01-01
We compare two different approaches to the control of the dynamics of a continuously monitored open quantum system. The first is Markovian feedback, as introduced in quantum optics by Wiseman and Milburn [Phys. Rev. Lett. 70, 548 (1993)]. The second is feedback based on an estimate of the system state, developed recently by Doherty and Jacobs [Phys. Rev. A 60, 2700 (1999)]. Here we choose to call it, for brevity, Bayesian feedback. For systems with nonlinear dynamics, we expect these two methods of feedback control to give markedly different results. The simplest possible nonlinear system is a driven and damped two-level atom, so we choose this as our model system. The monitoring is taken to be homodyne detection of the atomic fluorescence, and the control is by modulating the driving. The aim of the feedback in both cases is to stabilize the internal state of the atom as close as possible to an arbitrarily chosen pure state, in the presence of inefficient detection and other forms of decoherence. Our results (obtained without recourse to stochastic simulations) prove that Bayesian feedback is never inferior, and is usually superior, to Markovian feedback. However, it would be far more difficult to implement than Markovian feedback and it loses its superiority when obvious simplifying approximations are made. It is thus not clear which form of feedback would be better in the face of inevitable experimental imperfections
Discontinuation of Preventive Drugs in General Practice
Andersen, John Sahl; Lindberg, Laura Maria Glahder; Nixon, Michael Simon
Introduction: In Denmark about 600,000 persons are treated for hypertension and more than 300,000 people are receiving cholesterol lowering drugs. The prevalence of hypertension in people aged 80 years is 70%. For antidepressants the defined daily doses/1000 aged >80 years/day exceed 200. By far...... the most preventive drugs are prescribed in general practice. Special considerations exist in relation to medication of elderly patients. The prevalence of polypharmacy and the subsequent increased risk of side effects and drug interactions is high. Drug-related problems represent the fifth leading cause...... of death in the United States. The public expenses to drug treatment are constantly increasing. The possibility to withdraw the medication must be taken into account but the decision to discontinue drugs is complex and poorly understood. Planned studies: 1. Patients’ views upon discontinuation...
Accountability Accentuates Interindividual-Intergroup Discontinuity by Enforcing Parochialism
Wildschut, T.; Van Horen, F.; Hart, C.
2015-01-01
Interindividual-intergroup discontinuity is the tendency for relations between groups to be more competitive than relations between individuals. We examined whether the discontinuity effect arises in part because group members experience normative pressure to favor the ingroup (parochialism).
RF feedback simulation results for PEP-II
Tighe, R.; Corredoura, P.
1995-06-01
A model of the RF feedback system for PEP-II has been developed to provide time-domain simulation and frequency-domain analysis of the complete system. The model includes the longitudinal beam dynamics, cavity fundamental resonance, feedback loops, and the nonlinear klystron operating near saturation. Transients from an ion clearing gap and a reference phase modulation from the longitudinal feedback system are also studied. Growth rates are predicted and overall system stability examined
Controlling chaotic systems via nonlinear feedback control
Park, Ju H.
2005-01-01
In this article, a new method to control chaotic systems is proposed. Using Lyapunov method, we design a nonlinear feedback controller to make the controlled system be stabilized. A numerical example is given to illuminate the design procedure and advantage of the result derived
Semiglobal H-infinity State Feedback Control
Cromme, Marc; Stoustrup, Jakob
1996-01-01
Semi-global set-stabilizing H-infinity controlis a local within some given compact set such that all statetrajectories are bounded inside the set, and are approaching an openloop invariant subset as time approaches infinity. Sufficientconditions for the existence of a continuous state feedback law...
Relay Feedback Analysis for Double Integral Plants
Zhen Ye
2011-01-01
Full Text Available Double integral plants under relay feedback are studied. Complete results on the uniqueness of solutions, existence, and stability of the limit cycles are established using the point transformation method. Analytical expressions are also given for determining the amplitude and period of a limit cycle from the plant parameters.
Discontinuity effects in dynamically loaded tilting pad journal bearings
Thomsen, Kim; Klit, Peder; Vølund, Anders
2011-01-01
This paper describes two discontinuity effects that can occur when modelling radial tilting pad bearings subjected to high dynamic loads. The first effect to be treated is a pressure build-up discontinuity effect. The second effect is a contact-related discontinuity that disappears when a contact...... force is included in the theoretical model. Methods for avoiding the pressure build-up discontinuity effect are proposed....
Quasi-period oscillations of relay feedback systems
Wen Guilin; Wang Qingguo; Lee, T.H.
2007-01-01
This paper presents an analytical method for investigation of the existence and stability of quasi-period oscillations (torus solutions) for a class of relay feedback systems. The idea is to analyze Poincare map from one switching surface to the next based on the Hopf bifurcation theory of maps. It is shown that there exist quasi-period oscillations in certain relay feedback systems
Experience with feedback and feedforward for plasma control in ASDEX
Schneider, F.
1983-01-01
Experimental results of vertical and radial position feedback are shown and discussed. In particular, stability problems of vertical position control are studied in detail. A feedforward procedure for the process computer is described and proved by measurements. (author)
27 CFR 478.127 - Discontinuance of business.
2010-04-01
... business was located: Provided, however, Where State law or local ordinance requires the delivery of... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Discontinuance of business... Records § 478.127 Discontinuance of business. Where a licensed business is discontinued and succeeded by a...
Motion of Charged Particles near Magnetic Field Discontinuities
Dodin, I.Y.; Fisch, N.J.
2000-01-01
The motion of charged particles in slowly changing magnetic fields exhibits adiabatic invariance even in the presence of abrupt magnetic discontinuities. Particles near discontinuities in magnetic fields, what we call ''boundary particles'', are constrained to remain near an arbitrarily fractured boundary even as the particle drifts along the discontinuity. A new adiabatic invariant applies to the motion of these particles
Seismic wave propagation in fractured media: A discontinuous Galerkin approach
De Basabe, Jonás D.
2011-01-01
We formulate and implement a discontinuous Galekin method for elastic wave propagation that allows for discontinuities in the displacement field to simulate fractures or faults using the linear- slip model. We show numerical results using a 2D model with one linear- slip discontinuity and different frequencies. The results show a good agreement with analytic solutions. © 2011 Society of Exploration Geophysicists.
Gong, Zhenxing; Li, Miaomiao; Qi, Yaoyuan; Zhang, Na
2017-01-01
In the formation mechanism of the feedback environment, the existing research pays attention to external feedback sources and regards individuals as objects passively accepting feedback. Thus, the external source fails to realize the individuals’ need for feedback, and the feedback environment cannot provide them with useful information, leading to a feedback vacuum. The aim of this study is to examine the effect of feedback-seeking by different strategies on the supervisor-feedback environme...
Extreme interplanetary rotational discontinuities at 1 AU
Lepping, R. P.; Wu, C.-C.
2005-11-01
This study is concerned with the identification and description of a special subset of four Wind interplanetary rotational discontinuities (from an earlier study of 134 directional discontinuities by Lepping et al. (2003)) with some "extreme" characteristics, in the sense that every case has (1) an almost planar current sheet surface, (2) a very large discontinuity angle (ω), (3) at least moderately strong normal field components (>0.8 nT), and (4) the overall set has a very broad range of transition layer thicknesses, with one being as thick as 50 RE and another at the other extreme being 1.6 RE, most being much thicker than are usually studied. Each example has a well-determined surface normal (n) according to minimum variance analysis and corroborated via time delay checking of the discontinuity with observations at IMP 8 by employing the local surface planarity. From the variance analyses, most of these cases had unusually large ratios of intermediate-to-minimum eigenvalues (λI/λmin), being on average 32 for three cases (with a fourth being much larger), indicating compact current sheet transition zones, another (the fifth) extreme property. For many years there has been a controversy as to the relative distribution of rotational (RDs) to tangential discontinuities (TDs) in the solar wind at 1 AU (and elsewhere, such as between the Sun and Earth), even to the point where some authors have suggested that RDs with large ∣Bn∣s are probably not generated or, if generated, are unstable and therefore very rare. Some of this disagreement apparently has been due to the different selection criteria used, e.g., some allowed eigenvalue ratios (λI/λmin) to be almost an order of magnitude lower than 32 in estimating n, usually introducing unacceptable error in n and therefore also in ∣Bn∣. However, we suggest that RDs may not be so rare at 1 AU, but good quality cases (where ∣Bn∣ confidently exceeds the error in ∣Bn∣) appear to be uncommon, and further
Kou, Jisheng; Sun, Shuyu
2013-01-01
A class of discontinuous Galerkin methods with interior penalties is presented for incompressible two-phase flow in heterogeneous porous media with capillary pressures. The semidiscrete approximate schemes for fully coupled system of two-phase flow are formulated. In highly heterogeneous permeable media, the saturation is discontinuous due to different capillary pressures, and therefore, the proposed methods incorporate the capillary pressures in the pressure equation instead of saturation equation. By introducing a coupling approach for stability and error estimates instead of the conventional separate analysis for pressure and saturation, the stability of the schemes in space and time and a priori hp error estimates are presented in the L2(H 1) for pressure and in the L∞(L2) and L2(H1) for saturation. Two time discretization schemes are introduced for effectively computing the discrete solutions. © 2013 Societ y for Industrial and Applied Mathematics.
Ezura, Eizi; Yoshimoto, Shin-ichi; Akai, Kazunori [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)
1996-08-01
This paper describes the present status of the RF feedback development for the KEK B-Factory (KEKB). A preliminary experiment concerning the RF feedback using a parallel comb-filter was performed through a choke-mode cavity and a klystron. The RF feedback has been tested using the beam of the TRISTAN Main Ring, and has proved to be effective in damping the beam instability. (author)
Neural cryptography with feedback.
Ruttor, Andreas; Kinzel, Wolfgang; Shacham, Lanir; Kanter, Ido
2004-04-01
Neural cryptography is based on a competition between attractive and repulsive stochastic forces. A feedback mechanism is added to neural cryptography which increases the repulsive forces. Using numerical simulations and an analytic approach, the probability of a successful attack is calculated for different model parameters. Scaling laws are derived which show that feedback improves the security of the system. In addition, a network with feedback generates a pseudorandom bit sequence which can be used to encrypt and decrypt a secret message.
Eriksson, Tor Viking; Poulsen, Anders; Villeval, Marie-Claire
This paper experimentally investigates the impact of different pay and relative performance information policies on employee effort. We explore three information policies: No feedback about relative performance, feedback given halfway through the production period, and continuously updated feedba...... of positive peer effects since the underdogs almost never quit the competition even when lagging significantly behind, and frontrunners do not slack off. Moreover, in both pay schemes information feedback reduces the quality of the low performers' work....
Ferreira, Monica Barcellos Jansen; Carmo, Eduardo Gomes Dutra do
2000-01-01
Heat transfer problems in heterogenous media with large variation of thermal conductivity are notorious for the difficulties in obtaining good numerical results. In this work it is proposed an application of a new mixed discontinuous finite element formulation to this class of problems, which produces good results without the need of high mesh refinement. Stability and consistency aspects are considered and numerical results are presented to show the efficacy of the method. (author)
Social Security Administration — The Policy Feedback System (PFS) is a web application developed by the Office of Disability Policy Management Information (ODPMI) team that gathers empirical data...
Feedback Loop Gains and Feedback Behavior (1996)
Kampmann, Christian Erik
2012-01-01
Linking feedback loops and system behavior is part of the foundation of system dynamics, yet the lack of formal tools has so far prevented a systematic application of the concept, except for very simple systems. Having such tools at their disposal would be a great help to analysts in understanding...... large, complicated simulation models. The paper applies tools from graph theory formally linking individual feedback loop strengths to the system eigenvalues. The significance of a link or a loop gain and an eigenvalue can be expressed in the eigenvalue elasticity, i.e., the relative change...... of an eigenvalue resulting from a relative change in the gain. The elasticities of individual links and loops may be found through simple matrix operations on the linearized system. Even though the number of feedback loops can grow rapidly with system size, reaching astronomical proportions even for modest systems...
Hybrid feedback feedforward: An efficient design of adaptive neural network control.
Pan, Yongping; Liu, Yiqi; Xu, Bin; Yu, Haoyong
2016-04-01
This paper presents an efficient hybrid feedback feedforward (HFF) adaptive approximation-based control (AAC) strategy for a class of uncertain Euler-Lagrange systems. The control structure includes a proportional-derivative (PD) control term in the feedback loop and a radial-basis-function (RBF) neural network (NN) in the feedforward loop, which mimics the human motor learning control mechanism. At the presence of discontinuous friction, a sigmoid-jump-function NN is incorporated to improve control performance. The major difference of the proposed HFF-AAC design from the traditional feedback AAC (FB-AAC) design is that only desired outputs, rather than both tracking errors and desired outputs, are applied as RBF-NN inputs. Yet, such a slight modification leads to several attractive properties of HFF-AAC, including the convenient choice of an approximation domain, the decrease of the number of RBF-NN inputs, and semiglobal practical asymptotic stability dominated by control gains. Compared with previous HFF-AAC approaches, the proposed approach possesses the following two distinctive features: (i) all above attractive properties are achieved by a much simpler control scheme; (ii) the bounds of plant uncertainties are not required to be known. Consequently, the proposed approach guarantees a minimum configuration of the control structure and a minimum requirement of plant knowledge for the AAC design, which leads to a sharp decrease of implementation cost in terms of hardware selection, algorithm realization and system debugging. Simulation results have demonstrated that the proposed HFF-AAC can perform as good as or even better than the traditional FB-AAC under much simpler control synthesis and much lower computational cost. Copyright © 2015 Elsevier Ltd. All rights reserved.
Requirements for active resistive wall mode (RWM) feedback control
In, Y; Kim, J S; Chu, M S; Jackson, G L; La Haye, R J; Strait, E J; Liu, Y Q; Marrelli, L; Okabayashi, M; Reimerdes, H
2010-01-01
The requirements for active resistive wall mode (RWM) feedback control have been systematically investigated and established using highly reproducible current-driven RWMs in ohmic discharges in DIII-D. The unambiguous evaluation of active RWM feedback control was not possible in previous RWM studies primarily due to the variability of the onset of the pressure-driven RWMs; the stability of the pressure-driven RWM is thought to be sensitive to various passive stabilization mechanisms. Both feedback control specifications and physics requirements for RWM stabilization have been clarified using the current-driven RWMs in ohmic discharges, when little or no passive stabilization effects are present. The use of derivative gain on top of proportional gain is found to be advantageous. An effective feedback control system should be equipped with a power supply with bandwidth greater than the RWM growth rate. It is beneficial to apply a feedback field that is toroidally phase-shifted from the measured RWM phase in the same direction as the plasma current. The efficacy of the RWM feedback control will ultimately be determined by the plasma fluctuations on internal diagnostics, as well as on external magnetics. The proximity of the feedback coils to the plasma appears to be an important factor in determining the effectiveness of the RWM feedback coils. It is desirable that an RWM feedback control system simultaneously handles error field correction at a low frequency, along with direct RWM feedback at a high frequency. There is an indication of the influence of a second least stable RWM, which had been theoretically predicted but never identified in experiments. A preliminary investigation based on active MHD spectroscopic measurement showed a strong plasma response around 400 Hz where the typical plasma response associated with the first least stable RWM was expected to be negligible. Present active feedback control requirements are based on a single mode assumption, so the
Singularity and dynamics on discontinuous vector fields
Luo, Albert CJ
2006-01-01
This book discussed fundamental problems in dynamics, which extensively exist in engineering, natural and social sciences. The book presented a basic theory for the interactions among many dynamical systems and for a system whose motions are constrained naturally or artificially. The methodology and techniques presented in this book are applicable to discontinuous dynamical systems in physics, engineering and control. In addition, they may provide useful tools to solve non-traditional dynamics in biology, stock market and internet network et al, which cannot be easily solved by the traditional
Diffusion piecewise homogenization via flux discontinuity factors
Sanchez, Richard; Zmijarevic, Igor
2011-01-01
We analyze the calculation of flux discontinuity factors (FDFs) for use with piecewise subdomain assembly homogenization. These coefficients depend on the numerical mesh used to compute the diffusion problem. When the mesh has a single degree of freedom on subdomain interfaces the solution is unique and can be computed independently per subdomain. For all other cases we have implemented an iterative calculation for the FDFs. Our numerical results show that there is no solution to this nonlinear problem but that the iterative algorithm converges towards FDFs values that reproduce subdomains reaction rates with a relatively high precision. In our test we have included both the GET and black-box FDFs. (author)
Spacetime Discontinuous Galerkin FEM: Spectral Response
Abedi, R; Omidi, O; Clarke, P L
2014-01-01
Materials in nature demonstrate certain spectral shapes in terms of their material properties. Since successful experimental demonstrations in 2000, metamaterials have provided a means to engineer materials with desired spectral shapes for their material properties. Computational tools are employed in two different aspects for metamaterial modeling: 1. Mircoscale unit cell analysis to derive and possibly optimize material's spectral response; 2. macroscale to analyze their interaction with conventional material. We compare two different approaches of Time-Domain (TD) and Frequency Domain (FD) methods for metamaterial applications. Finally, we discuss advantages of the TD method of Spacetime Discontinuous Galerkin finite element method (FEM) for spectral analysis of metamaterials
Discontinuation of the Bulletin's menu page
Publications Section
2005-01-01
The menus of the various CERN restaurants will no longer be published in the Bulletin as of Monday 4 April (issue No. 14/2005). The menu pages are being discontinued both as a savings measure and due to the low level of interest in this section of the Bulletin. The most recent survey of Bulletin readers showed that only 13% of the people questioned regularly read the menu section, compared to between 40% and 85% in the case of the other sections. Publications Section SG/CO Tel. 79971
Discontinuation of the Bulletin's menu page
Publications Section
2005-01-01
The menus of the various CERN restaurants will no longer be published in the Bulletin as of Monday 4 April (issue No. 14/2005). The menu pages are being discontinued both as a savings measure and due to the low level of interest in this section of the Bulletin. The most recent survey of Bulletin readers showed that only 13% of the people questioned regularly read the menu section, compared to between 40% and 85% in the case of the other sections. Publications Section DSU-CO Tel. 79971
Effects of feedback reliability on feedback-related brain activity: A feedback valuation account.
Ernst, Benjamin; Steinhauser, Marco
2018-04-06
Adaptive decision making relies on learning from feedback. Because feedback sometimes can be misleading, optimal learning requires that knowledge about the feedback's reliability be utilized to adjust feedback processing. Although previous research has shown that feedback reliability indeed influences feedback processing, the underlying mechanisms through which this is accomplished remain unclear. Here we propose that feedback processing is adjusted by the adaptive, top-down valuation of feedback. We assume that unreliable feedback is devalued relative to reliable feedback, thus reducing the reward prediction errors that underlie feedback-related brain activity and learning. A crucial prediction of this account is that the effects of feedback reliability are susceptible to contrast effects. That is, the effects of feedback reliability should be enhanced when both reliable and unreliable feedback are experienced within the same context, as compared to when only one level of feedback reliability is experienced. To evaluate this prediction, we measured the event-related potentials elicited by feedback in two experiments in which feedback reliability was varied either within or between blocks. We found that the fronto-central valence effect, a correlate of reward prediction errors during reinforcement learning, was reduced for unreliable feedback. But this result was obtained only when feedback reliability was varied within blocks, thus indicating a contrast effect. This suggests that the adaptive valuation of feedback is one mechanism underlying the effects of feedback reliability on feedback processing.
Stromer, Walter F.
1975-01-01
The author offers some feedback to those in the helping professions in three areas: (1) forms and letters; (2) jumping to conclusions; and (3) blaming and belittling, in hopes of stimulating more feedback as well as more positive ways of performing their services. (HMV)
'Peer feedback' voor huisartsopleiders
Damoiseaux, R A M J; Truijens, L
2016-01-01
In medical specialist training programmes it is common practice for residents to provide feedback to their medical trainers. The problem is that due to its anonymous nature, the feedback often lacks the specificity necessary to improve the performance of trainers. If anonymity is to be abolished,
Feedback og interpersonel kommunikation
Dindler, Camilla
2016-01-01
Som interpersonel kommunikationsform handler feedback om at observere, mærke og italesætte det, som handler om relationen mellem samtaleparterne mere end om samtaleemnet. Her er fokus på, hvad der siges og hvordan der kommunikeres sammen. Feedback er her ikke en korrigerende tilbagemelding til...
Geevers, Sjoerd; van der Vegt, J.J.W.
2017-01-01
We present sharp and sucient bounds for the interior penalty term and time step size to ensure stability of the symmetric interior penalty discontinuous Galerkin (SIPDG) method combined with an explicit time-stepping scheme. These conditions hold for generic meshes, including unstructured
Chiu Choi
2017-02-01
Full Text Available Transient response such as ringing in a control system can be reduced or removed by velocity feedback. It is a useful control technique that should be covered in the relevant engineering laboratory courses. We developed velocity feedback experiments using two different low cost technologies, viz., operational amplifiers and microcontrollers. These experiments can be easily integrated into laboratory courses on feedback control systems or microcontroller applications. The intent of developing these experiments was to illustrate the ringing problem and to offer effective, low cost solutions for removing such problem. In this paper the pedagogical approach for these velocity feedback experiments was described. The advantages and disadvantages of the two different implementation of velocity feedback were discussed also.
Sortkær, Bent
2017-01-01
Feedback bliver i litteraturen igen og igen fremhævet som et af de mest effektive midler til at fremme elevers præstationer i skolen (Hartberg, Dobson, & Gran, 2012; Hattie & Timperley, 2007; Wiliam, 2015). Dette på trods af, at flere forskere påpeger, at feedback ikke altid er læringsfremmende...... (Hattie & Gan, 2011), og nogle endda viser, at feedback kan have en negativ virkning i forhold til præstationer (Kluger & DeNisi, 1996). Artiklen vil undersøge disse tilsyneladende modstridende resultater ved at stille spørgsmålet: Under hvilke forudsætninger virker feedback i matematik læringsfremmende......? Dette gøres ved at dykke ned i forskningslitteraturen omhandlende feedback ud fra en række temaer for på den måde at besvare ovenstående spørgsmål....
Discontinuous precipitation in cobalt-tungsten alloys
Zieba, P.; Cliff, G.; Lorimer, G.W.
1997-01-01
Discontinuous precipitation in a Co32 wt% W alloy aged in the temperature range from 875 K to 1025 K has been investigated. Philips EM 430 STEM has been used to characterize the microstructure and to measure the composition profiles across individual lamellae of ε Co and Co 3 W phases in partially transformed specimens. Two kinds of cellular precipitates have been found in the alloy. The initial transformation product, identified as primary lamellae with spacing of a few nanometers is replaced during prolonged ageing by secondary lamellae with a much larger interlamellar spacing, typically a few tens of nm. Line scans across cell boundaries of the primary lamellae revealed that, just behind the advancing cell boundary, the solute content is far from the equilibrium state. This solute excess within the cells is quickly removed at the ageing temperature. Calculations show that the diffusion process was too rapid to be identified as ordinary volume diffusion. Investigation of the kinetics showed that discontinuous precipitation is controlled by diffusion processes at the advancing cell boundary. This proposal has been confirmed by STEM analysis of tungsten profiles in the depleted ε Co lamellae
Discontinuities in an axisymmetric generalized thermoelastic problem
Moncef Aouadi
2005-06-01
Full Text Available This paper deals with discontinuities analysis in the temperature, displacement, and stress fields of a thick plate whose lower and upper surfaces are traction-free and subjected to a given axisymmetric temperature distribution. The analysis is carried out under three thermoelastic theories. Potential functions together with Laplace and Hankel transform techniques are used to derive the solution in the transformed domain. Exact expressions for the magnitude of discontinuities are computed by using an exact method developed by Boley (1962. It is found that there exist two coupled waves, one of which is elastic and the other is thermal, both propagating with finite speeds with exponential attenuation, and a third which is called shear wave, propagating with constant speed but with no exponential attenuation. The Hankel transforms are inverted analytically. The inversion of the Laplace transforms is carried out using the inversion formula of the transform together with Fourier expansion techniques. Numerical results are presented graphically along with a comparison of the three theories of thermoelasticity.
Discontinuous approximate molecular electronic wave-functions
Stuebing, E.W.; Weare, J.H.; Parr, R.G.
1977-01-01
Following Kohn, Schlosser and Marcus and Weare and Parr an energy functional is defined for a molecular problem which is stationary in the neighborhood of the exact solution and permits the use of trial functions that are discontinuous. The functional differs from the functional of the standard Rayleigh--Ritz method in the replacement of the usual kinetic energy operators circumflex T(μ) with operators circumflex T'(μ) = circumflex T(μ) + circumflex I(μ) generates contributions from surfaces of nonsmooth behavior. If one uses the nabla PSI . nabla PSI way of writing the usual kinetic energy contributions, one must add surface integrals of the product of the average of nabla PSI and the change of PSI across surfaces of discontinuity. Various calculations are carried out for the hydrogen molecule-ion and the hydrogen molecule. It is shown that ab initio calculations on molecules can be carried out quite generally with a basis of atomic orbitals exactly obeying the zero-differential overlap (ZDO) condition, and a firm basis is thereby provided for theories of molecular electronic structure invoking the ZDO aoproximation. It is demonstrated that a valence bond theory employing orbitals exactly obeying ZDO can provide an adequate account of chemical bonding, and several suggestions are made regarding molecular orbital methods
Diffusion piecewise homogenization via flux discontinuity ratios
Sanchez, Richard; Dante, Giorgio; Zmijarevic, Igor
2013-01-01
We analyze piecewise homogenization with flux-weighted cross sections and preservation of averaged currents at the boundary of the homogenized domain. Introduction of a set of flux discontinuity ratios (FDR) that preserve reference interface currents leads to preservation of averaged region reaction rates and fluxes. We consider the class of numerical discretizations with one degree of freedom per volume and per surface and prove that when the homogenization and computing meshes are equal there is a unique solution for the FDRs which exactly preserve interface currents. For diffusion sub-meshing we introduce a Jacobian-Free Newton-Krylov method and for all cases considered obtain an 'exact' numerical solution (eight digits for the interface currents). The homogenization is completed by extending the familiar full assembly homogenization via flux discontinuity factors to the sides of regions laying on the boundary of the piecewise homogenized domain. Finally, for the familiar nodal discretization we numerically find that the FDRs obtained with no sub-mesh (nearly at no cost) can be effectively used for whole-core diffusion calculations with sub-mesh. This is not the case, however, for cell-centered finite differences. (authors)
Real-time orbit feedback at the APS
Carwardine, J.
1998-01-01
A real-time orbit feedback system has been implemented at the Advanced Photon Source in order to meet the stringent orbit stability requirements. The system reduces global orbit motion below 30Hz by a factor of four to below 5 microm rms horizontally and 2 microm rms vertically. This paper focuses on dynamic orbit stability and describes the all-digital orbit feedback system that has been implemented at the APS. Implementation of the global orbit feedback system is described and its latest performance is presented. Ultimately, the system will provide local feedback at each x-ray source point using installed photon BPMs to measure x-ray beam position and angle directly. Technical challenges associated with local feedback and with dynamics of the associated corrector magnets are described. The unique diagnostic capabilities provided by the APS system are discussed with reference to their use in identifying sources of the underlying orbit motion
Real-time orbit feedback at the APS.
Carwardine, J.
1998-06-18
A real-time orbit feedback system has been implemented at the Advanced Photon Source in order to meet the stringent orbit stability requirements. The system reduces global orbit motion below 30Hz by a factor of four to below 5{micro}m rms horizontally and 2{micro}m rms vertically. This paper focuses on dynamic orbit stability and describes the all-digital orbit feedback system that has been implemented at the APS. Implementation of the global orbit feedback system is described and its latest performance is presented. Ultimately, the system will provide local feedback at each x-ray source point using installed photon BPMs to measure x-ray beam position and angle directly. Technical challenges associated with local feedback and with dynamics of the associated corrector magnets are described. The unique diagnostic capabilities provided by the APS system are discussed with reference to their use in identifying sources of the underlying orbit motion.
Rock discontinuity surface roughness variation with scale
Bitenc, Maja; Kieffer, D. Scott; Khoshelham, Kourosh
2017-04-01
ABSTRACT: Rock discontinuity surface roughness refers to local departures of the discontinuity surface from planarity and is an important factor influencing the shear resistance. In practice, the Joint Roughness Coefficient (JRC) roughness parameter is commonly relied upon and input to a shear strength criterion such as developed by Barton and Choubey [1977]. The estimation of roughness by JRC is hindered firstly by the subjective nature of visually comparing the joint profile to the ten standard profiles. Secondly, when correlating the standard JRC values and other objective measures of roughness, the roughness idealization is limited to a 2D profile of 10 cm length. With the advance of measuring technologies that provide accurate and high resolution 3D data of surface topography on different scales, new 3D roughness parameters have been developed. A desirable parameter is one that describes rock surface geometry as well as the direction and scale dependency of roughness. In this research a 3D roughness parameter developed by Grasselli [2001] and adapted by Tatone and Grasselli [2009] is adopted. It characterizes surface topography as the cumulative distribution of local apparent inclination of asperities with respect to the shear strength (analysis) direction. Thus, the 3D roughness parameter describes the roughness amplitude and anisotropy (direction dependency), but does not capture the scale properties. In different studies the roughness scale-dependency has been attributed to data resolution or size of the surface joint (see a summary of researches in [Tatone and Grasselli, 2012]). Clearly, the lower resolution results in lower roughness. On the other hand, have the investigations of surface size effect produced conflicting results. While some studies have shown a decrease in roughness with increasing discontinuity size (negative scale effect), others have shown the existence of positive scale effects, or both positive and negative scale effects. We
Cai, Zuowei; Huang, Lihong
2013-01-01
Highlights: • A more practical form of harvesting management policy (DHP) has been proposed. • We analyze the periodic dynamics of a class of discontinuous and delayed Lotka–Volterra competition systems. • We present a new method to obtain the existence of positive periodic solutions via differential inclusions. • The global convergence in measure of harvesting solution is discussed. -- Abstract: This paper considers a general class of delayed Lotka–Volterra competition systems where the harvesting policies are modeled by discontinuous functions or by non-Lipschitz functions. By means of differential inclusions theory, cone expansion and compression fixed point theorem of multi-valued maps and nonsmooth analysis theory with generalized Lyapunov approach, a series of useful criteria on existence, uniqueness and global asymptotic stability of the positive periodic solution is established for the delayed Lotka–Volterra competition systems with discontinuous right-hand sides. Moreover, the global convergence in measure of harvesting solution is discussed. Our results improve and extend previous works on periodic dynamics of delayed Lotka–Volterra competition systems with not only continuous or even Lipschitz continuous but also discontinuous harvesting functions. Finally, we give some corollaries and numerical examples to show the applicability and effectiveness of the proposed criteria
Truncated predictor feedback for time-delay systems
Zhou, Bin
2014-01-01
This book provides a systematic approach to the design of predictor based controllers for (time-varying) linear systems with either (time-varying) input or state delays. Differently from those traditional predictor based controllers, which are infinite-dimensional static feedback laws and may cause difficulties in their practical implementation, this book develops a truncated predictor feedback (TPF) which involves only finite dimensional static state feedback. Features and topics: A novel approach referred to as truncated predictor feedback for the stabilization of (time-varying) time-delay systems in both the continuous-time setting and the discrete-time setting is built systematically Semi-global and global stabilization problems of linear time-delay systems subject to either magnitude saturation or energy constraints are solved in a systematic manner Both stabilization of a single system and consensus of a group of systems (multi-agent systems) are treated in a unified manner by applying the truncated pre...
Feedback and efficient behavior.
Sandro Casal
Full Text Available Feedback is an effective tool for promoting efficient behavior: it enhances individuals' awareness of choice consequences in complex settings. Our study aims to isolate the mechanisms underlying the effects of feedback on achieving efficient behavior in a controlled environment. We design a laboratory experiment in which individuals are not aware of the consequences of different alternatives and, thus, cannot easily identify the efficient ones. We introduce feedback as a mechanism to enhance the awareness of consequences and to stimulate exploration and search for efficient alternatives. We assess the efficacy of three different types of intervention: provision of social information, manipulation of the frequency, and framing of feedback. We find that feedback is most effective when it is framed in terms of losses, that it reduces efficiency when it includes information about inefficient peers' behavior, and that a lower frequency of feedback does not disrupt efficiency. By quantifying the effect of different types of feedback, our study suggests useful insights for policymakers.
Feedback - fra et elevperspektiv
Petersen, Benedikte Vilslev; Pedersen, Bent Sortkær
Feedback bliver i litteraturen igen og igen fremhævet som et af de mest effektive midler til at fremme elevers præstationer i skolen (Hattie og Timperley, 2007). Andre studier er dog inde på at feedback ikke altid er læringsfremmende og nogle viser endda at feedback kan have en negativ virkning i...... forhold til præstationer (Kluger & DeNisi, 1996). I forsøget på at forklare hvordan og hvorfor feedback virker (forskelligt), er der undersøgt flere dimensioner og forhold omkring feedback (se bl.a. Black og Wiliam, 1998; Hattie og Timperley, 2007; Shute, 2008). Dog er der få studier der undersøger...... hvordan feedback opleves fra et elevperspektiv (Ruiz-Primo og Li, 2013). Samtidig er der i feedbacklitteraturen en mangel på kvalitative studier, der kommer tæt på fænomenet feedback, som det viser sig i klasserummet (Ruiz-Primo og Li, 2013) i naturlige omgivelser (Black og Wiliam, 1998), og hvordan...
Nonlinear Output Feedback Control of Underwater Vehicle Propellers using Advance Speed Feedback
Fossen, T.I.; Blanke, M.
1999-01-01
More accurate propeller shaft speed controllers can be designed by using nonlinear control theory. In this paper, an output feedback controller reconstructing the advance speed (speed of water going into the propeller) from vehicle speed measurements is derived. For this purpose a three-state model...... minimizes thruster losses due to variations in propeller axial inlet flow which is a major problem when applying conventional vehicle-propeller control systems. The proposed controller is simulated for an underwater vehicle equipped with a single propeller. From the simulations it can be concluded...... of propeller shaft speed, forward (surge) speed of the vehicle and axial inlet flow of the propeller is applied. A nonlinear observer in combination with an output feedback integral controller are derived by applying Lyapunov stability theory and exponential stability is proven. The output feedback controller...
Training effectiveness feedback
Wiggin, N.A.
1987-01-01
A formal method of getting feedback about the job performance of employees is a necessary part of all the authors training programs. The formal process may prove to be inadequate if it is the only process in use. There are many ways and many opportunities to get good feedback about employee performance. It is important to document these methods and specific instances to supplement the more formalized process. The key is to identify them, encourage them, use them, and document the training actions that result from them. This paper describes one plant's method of getting feedback about performance of technicians in the field
1978-11-01
R 2. GOVT A $ SION NO. 3 RIEqLPýIVT’S.;TALOG NUMBER r/ 4. TITLE (and wbiFflT, -L M4 1 , FEEDBACK SYSTEM THEORY ~r Inter in- 6. PERFORMING ORG. REPORT...ANNUAL REPORT FEEDBACK SYSTEM THEORY AFOSR GRANT NO. 76-2946B Air Force Office of Scientific Research for year ending October 31, 1978 79 02 08 L|I...re less stringent than in other synthesis techniques which cannot handle significant parameter uncertainty. _I FEEDBACK SYSTEM THEORY 1. Introduction
Hvass, Helle; Heger, Stine
Studerende kan være medskabere af undervisning i akademisk skrivning, når de modtager og giver feedback til hinandens ufærdige akademiske tekster. Det ser vi i et udviklingsprojekt, hvor vi afprøver kollektive vejledningsformater. Vi har dog erfaret: 1. at studerende mangler træning i at give og ...... modtage feedback 2. at den manglende træning kan stå i vejen for realiseringen af læringspotentialet ved peer feedback....
Ideal and conventional feedback systems for RWM suppression
Pustovitov, V.D.
2002-01-01
Feedback suppression of resistive wall modes (RWM) is studied analytically using a model based on a standard cylindrical approximation. Two feedback systems are compared: 'ideal', creating only the field necessary for RMW suppression, and 'conventional', like that used in the DIII-D tokamak and considered as a candidate for ITER. The widespread opinion that the feedback with poloidal sensors is better than that with radial sensors is discussed. It is shown that the 'conventional' feedback with radial sensors can be effective only in a limited range, while using the input signal from internal poloidal sensors allows easy fulfilment of the stability criterion. This is a property of the 'conventional' feedback, but the 'ideal' feedback would stabilise RWM in both cases. (author)
Ideal and conventional feedback systems for RWM suppression
Pustovitov, V.D.
2002-01-01
Feedback suppression of resistive wall modes (RWM) is studied analytically using a model based on a standard cylindrical approximation. Two feedback systems are compared: 'ideal', creating only the field necessary for RMW suppression, and 'conventional', like that used in the DIII-D tokamak and considered as a candidate for ITER. The widespread opinion that the feedback with poloidal sensors is better than that with radial sensors is discussed. It is shown that the 'conventional' feedback with radial sensors can be effective only in a limited range, while using the input signal from internal poloidal sensors allows easy fulfilment of the stability criterion. This is a property of the 'conventional' feedback, but the 'ideal' feedback would stabilise RWM in both cases. (author)
Factors predicting successful discontinuation of continuous renal replacement therapy.
Katayama, S; Uchino, S; Uji, M; Ohnuma, T; Namba, Y; Kawarazaki, H; Toki, N; Takeda, K; Yasuda, H; Izawa, J; Tokuhira, N; Nagata, I
2016-07-01
This multicentre, retrospective observational study was conducted from January 2010 to December 2010 to determine the optimal time for discontinuing continuous renal replacement therapy (CRRT) by evaluating factors predictive of successful discontinuation in patients with acute kidney injury. Analysis was performed for patients after CRRT was discontinued because of renal function recovery. Patients were divided into two groups according to the success or failure of CRRT discontinuation. In multivariate logistic regression analysis, urine output at discontinuation, creatinine level and CRRT duration were found to be significant variables (area under the receiver operating characteristic curve for urine output, 0.814). In conclusion, we found that higher urine output, lower creatinine and shorter CRRT duration were significant factors to predict successful discontinuation of CRRT.
[Discontinuation of depression treatment from the perspective of suicide prevention].
Cho, Yoshinori
2012-01-01
It is assumed that discontinuation of treatment for depression may increase the risk of suicide. A population-based register study in Denmark did not find a lower risk among people over age 50 who followed treatment in comparison with those who discontinued treatment with antidepressants at an early stage. This result, however, does not allow us to think superficially that early discontinuation of treatment does not increase the risk of suicide. It is because the study has limitations without information of such as psychiatric diagnoses, severity of the depressed state, and reasons of discontinuation. It is safe for clinicians to aim at preventing discontinuation of treatment. Particularly, in Japan and South Korea where there is a sociocultural climate of tolerability for suicide, suicide can occur in milder depressed state and discontinuation of treatment should be taken more seriously than in Western countries.
Universal quantum computation by discontinuous quantum walk
Underwood, Michael S.; Feder, David L.
2010-01-01
Quantum walks are the quantum-mechanical analog of random walks, in which a quantum ''walker'' evolves between initial and final states by traversing the edges of a graph, either in discrete steps from node to node or via continuous evolution under the Hamiltonian furnished by the adjacency matrix of the graph. We present a hybrid scheme for universal quantum computation in which a quantum walker takes discrete steps of continuous evolution. This ''discontinuous'' quantum walk employs perfect quantum-state transfer between two nodes of specific subgraphs chosen to implement a universal gate set, thereby ensuring unitary evolution without requiring the introduction of an ancillary coin space. The run time is linear in the number of simulated qubits and gates. The scheme allows multiple runs of the algorithm to be executed almost simultaneously by starting walkers one time step apart.
Discontinuity minimization for omnidirectional video projections
Alshina, Elena; Zakharchenko, Vladyslav
2017-09-01
Advances in display technologies both for head mounted devices and television panels demand resolution increase beyond 4K for source signal in virtual reality video streaming applications. This poses a problem of content delivery trough a bandwidth limited distribution networks. Considering a fact that source signal covers entire surrounding space investigation reviled that compression efficiency may fluctuate 40% in average depending on origin selection at the conversion stage from 3D space to 2D projection. Based on these knowledge the origin selection algorithm for video compression applications has been proposed. Using discontinuity entropy minimization function projection origin rotation may be defined to provide optimal compression results. Outcome of this research may be applied across various video compression solutions for omnidirectional content.
Robust Discontinuity Preserving Optical Flow Methods
Nelson Monzón
2016-11-01
Full Text Available In this work, we present an implementation of discontinuity-preserving strategies in TV-L1 optical flow methods. These are based on exponential functions that mitigate the regularization at image edges, which usually provide precise flow boundaries. Nevertheless, if the smoothing is not well controlled, it may produce instabilities in the computed motion fields. We present an algorithm that allows three regularization strategies: the first one uses an exponential function together with a TV process; the second one combines this strategy with a small constant that ensures a minimum isotropic smoothing; the third one is a fully automatic approach that adapts the diffusion depending on the histogram of the image gradients. The last two alternatives are aimed at reducing the effect of instabilities. In the experiments, we observe that the pure exponential function is highly unstable while the other strategies preserve accurate motion contours for a large range of parameters.
RURAL TOURISM IN ROMANIA - EVOLUTIONS AND DISCONTINUITIES
Ionica SOARE
2011-12-01
Full Text Available This paper analyzes the evolution of rural tourism since the early '70s, the time of onset, and indicates the discontinuity recorded especially after 1989 until the brink of the preparation for Romania's joining the European Union and the present state, one far behind the countries with extremely high degree of urbanization and industrialization, probably as a result of a lack of strategy for this form of tourism in which the beneficiary is the Ministry of Tourism, as the health tourism and ecotourism have recently had. The location of many villages in areas of outstanding natural landscapes, the richness and variety of cultural heritage that endows them, are issues related to an increased tourism potential that can be capitalized and those unique tourism products that can not be seen, admired and offered by other countries.
Low-index discontinuity terahertz waveguides
Nagel, Michael; Marchewka, Astrid; Kurz, Heinrich
2006-10-01
A new type of dielectric THz waveguide based on recent approaches in the field of integrated optics is presented with theoretical and experimental results. Although the guiding mechanism of the low-index discontinuity (LID) THz waveguide is total internal reflection, the THz wave is predominantly confined in the virtually lossless low-index air gap within a high-index dielectric waveguide due to the continuity of electric flux density at the dielectric interface. Attenuation, dispersion and single-mode confinement properties of two LID structures are discussed and compared with other THz waveguide solutions. The new approach provides an outstanding combination of high mode confinement and low transmission losses currently not realizable with any other metal-based or photonic crystal approach. These exceptional properties might enable the breakthrough of novel integrated THz systems or endoscopy applications with sub-wavelength resolution.
Accountability Accentuates Interindividual-Intergroup Discontinuity by Enforcing Parochialism
Wildschut, T.; Van Horen, F.; Hart, C.
2015-01-01
Interindividual-intergroup discontinuity is the tendency for relations between groups to be more competitive than relations between individuals. We examined whether the discontinuity effect arises in part because group members experience normative pressure to favor the ingroup (parochialism). Building on the notion that accountability enhances normative pressure, we hypothesized that the discontinuity effect would be larger when accountability is present (compared to absent). A prisoner’s dil...
Preparation and Mechanical Properties of Aligned Discontinuous Carbon Fiber Composites
DENG Hua; GAO Junpeng; BAO Jianwen
2018-01-01
Aligned discontinuous carbon fiber composites were fabricated from aligned discontinuous carbon fiber prepreg, which was prepared from continuous carbon fiber prepreg via mechanical high-frequency cutting. The internal quality and mechanical properties were characterized and compared with continuous carbon fiber composites. The results show that the internal quality of the aligned discontinuous carbon fiber composites is fine and the mechanical properties have high retention rate after the fi...
Schroedinger propagation of initial discontinuities leads to divergence of moments
Marchewka, A.; Schuss, Z.
2009-01-01
We show that the large phase expansion of the Schroedinger propagation of an initially discontinuous wave function leads to the divergence of average energy, momentum, and displacement, rendering them unphysical states. If initially discontinuous wave functions are considered to be approximations to continuous ones, the determinant of the spreading rate of these averages is the maximal gradient of the initial wave function. Therefore a dilemma arises between the inclusion of discontinuous wave functions in quantum mechanics and the requirement of finite moments.
Schroedinger propagation of initial discontinuities leads to divergence of moments
Marchewka, A., E-mail: avi.marchewka@gmail.co [Ruppin Academic Center, Emek-Hefer 40250 (Israel); Schuss, Z., E-mail: schuss@post.tau.ac.i [Department of Mathematics, Tel-Aviv University, Ramat-Aviv, 69978 Tel-Aviv (Israel)
2009-09-21
We show that the large phase expansion of the Schroedinger propagation of an initially discontinuous wave function leads to the divergence of average energy, momentum, and displacement, rendering them unphysical states. If initially discontinuous wave functions are considered to be approximations to continuous ones, the determinant of the spreading rate of these averages is the maximal gradient of the initial wave function. Therefore a dilemma arises between the inclusion of discontinuous wave functions in quantum mechanics and the requirement of finite moments.
Feedback Valence Affects Auditory Perceptual Learning Independently of Feedback Probability
Amitay, Sygal; Moore, David R.; Molloy, Katharine; Halliday, Lorna F.
2015-01-01
Previous studies have suggested that negative feedback is more effective in driving learning than positive feedback. We investigated the effect on learning of providing varying amounts of negative and positive feedback while listeners attempted to discriminate between three identical tones; an impossible task that nevertheless produces robust learning. Four feedback conditions were compared during training: 90% positive feedback or 10% negative feedback informed the participants that they were doing equally well, while 10% positive or 90% negative feedback informed them they were doing equally badly. In all conditions the feedback was random in relation to the listeners’ responses (because the task was to discriminate three identical tones), yet both the valence (negative vs. positive) and the probability of feedback (10% vs. 90%) affected learning. Feedback that informed listeners they were doing badly resulted in better post-training performance than feedback that informed them they were doing well, independent of valence. In addition, positive feedback during training resulted in better post-training performance than negative feedback, but only positive feedback indicating listeners were doing badly on the task resulted in learning. As we have previously speculated, feedback that better reflected the difficulty of the task was more effective in driving learning than feedback that suggested performance was better than it should have been given perceived task difficulty. But contrary to expectations, positive feedback was more effective than negative feedback in driving learning. Feedback thus had two separable effects on learning: feedback valence affected motivation on a subjectively difficult task, and learning occurred only when feedback probability reflected the subjective difficulty. To optimize learning, training programs need to take into consideration both feedback valence and probability. PMID:25946173
Discontinuation of orthokeratology on eyeball elongation (DOEE).
Cho, P; Cheung, S W
2017-04-01
To evaluate and compare changes in axial elongation, over a 14-month period, in subjects who discontinued and then resumed ortho-k lens wear with those who continued to wear their lenses or spectacles following a 2-year myopia control study. This single masked, prospective study recruited subjects who had just completed a 2-year myopia control study. Ortho-k subjects were classified as Group OKc, in which subjects continued ortho-k lens wear for the duration of the study; or Group OKd in which subjects discontinued lens wear for seven months and wore single-vision spectacles (Phase I) and then resumed ortho-k lens wear for another seven months (Phase II). Spectacle-wearing control subjects from the initial myopia control study continued wearing spectacles as control subjects. Axial lengths were measured at scheduled visits using the IOLMaster. Thirteen, 16, and 15 Control, OKc, and OKd subjects, aged 8-14 years, respectively completed the study. Significant increase in axial elongation was found in OKd subjects only in Phase I but not in Phase II. On resuming lens wear, in Phase II, the rate of axial elongation was no longer significantly different from those of the Control or OKc subjects. Stopping ortho-k lens wear at or before the age of 14 years led to a more rapid increase in axial length; comparable to those wearing spectacles during the initial 2-year myopia control study, but greater than the Control and OKc group in this study. Axial elongation slowed again with resumed lens wear after six months. Copyright © 2016 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Correction of distortions in a discontinuous image
Geagan, M.J.; Chase, B.B.; Muehllehner, G.
1994-01-01
Large area position-sensitive NaI detectors have been successfully applied to positron emission tomography (PET). Typical PET studies involve detector singles rates in excess of 500 kcps, which can lead to pile-up and image degradation as a function of countrate. Better high countrate performance can be achieved with a local centroid algorithm, in which the position of each event is calculated from a small group of photomultipliers (PMTs) immediately surrounding the PMT with the highest signal (the peak PMT). The local centroid contains most of the light from the scintillation. If a local centroid of only seven PMTs is used, the position resolution becomes quite stable at high countrates, however, discontinuities appear in the detector flood image as events cluster around each PMT. We therefore developed a method for distortion correction of a discontinuous flood image. For each PMT on the detector, a peak PMT domain is defined. The peak PMT domain is the area on the detector where that PMT could have the highest signal. The peak PMT domains overlap slightly, so that all combinations of peak PMT and position are represented. A collimated source is moved through a regular grid of points - a template - over each peak PMT region. A short collection is performed at each point, and the real and measured position data are recorded. For each point in the spatial range of a given PMT, distortion correction offsets are computed by interpolating between the data points which correspond to that PMT. This new method has been implemented and evaluated. System resolution has been measured at low and high countrates. The high countrate resolution is better with the new method, with no degradation in low countrate resolution. The axial sensitivity profile is also more stable at high countrates, compared to the previously developed method. 3-D brain phantom images show a clear improvement in image quality at high countrates. ((orig.))
Stabilization of model-based networked control systems
Miranda, Francisco [CIDMA, Universidade de Aveiro, Aveiro (Portugal); Instituto Politécnico de Viana do Castelo, Viana do Castelo (Portugal); Abreu, Carlos [Instituto Politécnico de Viana do Castelo, Viana do Castelo (Portugal); CMEMS-UMINHO, Universidade do Minho, Braga (Portugal); Mendes, Paulo M. [CMEMS-UMINHO, Universidade do Minho, Braga (Portugal)
2016-06-08
A class of networked control systems called Model-Based Networked Control Systems (MB-NCSs) is considered. Stabilization of MB-NCSs is studied using feedback controls and simulation of stabilization for different feedbacks is made with the purpose to reduce the network trafic. The feedback control input is applied in a compensated model of the plant that approximates the plant dynamics and stabilizes the plant even under slow network conditions. Conditions for global exponential stabilizability and for the choosing of a feedback control input for a given constant time between the information moments of the network are derived. An optimal control problem to obtain an optimal feedback control is also presented.
Finger, Herbert; Weeks, Bill
1985-01-01
This presentation discusses instrumentation that will be used for a specific event, which we hope will carry on to future events within the Space Shuttle program. The experiment is the Autogenic Feedback Training Experiment (AFTE) scheduled for Spacelab 3, currently scheduled to be launched in November, 1984. The objectives of the AFTE are to determine the effectiveness of autogenic feedback in preventing or reducing space adaptation syndrome (SAS), to monitor and record in-flight data from the crew, to determine if prediction criteria for SAS can be established, and, finally, to develop an ambulatory instrument package to mount the crew throughout the mission. The purpose of the Ambulatory Feedback System (AFS) is to record the responses of the subject during a provocative event in space and provide a real-time feedback display to reinforce the training.
Farm Service Agency, Department of Agriculture — The NAIP 2015 Imagery Feedback web application allows users to make comments and observations about the quality of the 2015 National Agriculture Imagery Program...
Ochoa, Agustin
2016-01-01
This book describes a consistent and direct methodology to the analysis and design of analog circuits with particular application to circuits containing feedback. The analysis and design of circuits containing feedback is generally presented by either following a series of examples where each circuit is simplified through the use of insight or experience (someone else’s), or a complete nodal-matrix analysis generating lots of algebra. Neither of these approaches leads to gaining insight into the design process easily. The author develops a systematic approach to circuit analysis, the Driving Point Impedance and Signal Flow Graphs (DPI/SFG) method that does not require a-priori insight to the circuit being considered and results in factored analysis supporting the design function. This approach enables designers to account fully for loading and the bi-directional nature of elements both in the feedback path and in the amplifier itself, properties many times assumed negligible and ignored. Feedback circuits a...
Delirium Associated With Fluoxetine Discontinuation: A Case Report.
Fan, Kuang-Yuan; Liu, Hsing-Cheng
Withdrawal symptoms on selective serotonin reuptake inhibitor (SSRI) discontinuation have raised clinical attention increasingly. However, delirium is rarely reported in the SSRI discontinuation syndrome. We report a case of delirium developing after fluoxetine discontinuation in a 65-year-old female patient with major depressive disorder. She experienced psychotic depression with limited response to treatment of fluoxetine 40 mg/d and quetiapine 100 mg/d for 3 months. After admission, we tapered fluoxetine gradually in 5 days because of its limited effect. However, delirious pictures developed 2 days after we stopped fluoxetine. Three days later, we added back fluoxetine 10 mg/d. Her delirious features gradually improved, and the clinical presentation turned into previous psychotic depression state. We gradually increased the medication to fluoxetine 60 mg/d and olanzapine 20 mg/d in the following 3 weeks. Her psychotic symptoms decreased, and there has been no delirious picture noted thereafter. Delirium associated with fluoxetine discontinuation is a much rarer complication in SSRI discontinuation syndrome. The symptoms of SSRI discontinuation syndrome may be attributable to a rapid decrease in serotonin availability. In general, the shorter the half-life of any medication, the greater the likelihood patients will experience discontinuation symptoms. Genetic vulnerability might be a potential factor to explain that SSRI discontinuation syndrome also occurred rapidly in people taking long-half-life fluoxetine. The genetic polymorphisms of both pharmacokinetic and pharmacodynamic pathways might be potentially associated with SSRI discontinuation syndrome.
A unified approach to global and local beam position feedback
Chung, Y.
1994-01-01
The Advanced Photon Source (APS) will implement both global and local beam position feedback systems to stabilize the particle and X-ray beams for the storage ring. The global feedback system uses 40 BPMs and 40 correctors per plane. Singular value decomposition (SVD) of the response matrix is used for closed orbit correction. The local feedback system uses two X-ray BPMS, two rf BPMS, and the four-magnet local bump to control the angle and displacement of the X-ray beam from a bending magnet or an insertion device. Both the global and local feedback systems are based on digital signal processing (DSP) running at 4-kHz sampling rate with a proportional, integral, and derivative (PID) control algorithm. In this paper, we will discuss resolution of the conflict among multiple local feedback systems due to local bump closure error and decoupling of the global and local feedback systems to maximize correction efficiency. In this scheme, the global feedback system absorbs the local bump closure error and the local feedback systems compensate for the effect of global feedback on the local beamlines. The required data sharing between the global and local feedback systems is done through the fiber-optically networked reflective memory
Huang, Chih-Hsu; Lin, Chou-Ching K; Ju, Ming-Shaung
2015-02-01
Compared with the Monte Carlo method, the population density method is efficient for modeling collective dynamics of neuronal populations in human brain. In this method, a population density function describes the probabilistic distribution of states of all neurons in the population and it is governed by a hyperbolic partial differential equation. In the past, the problem was mainly solved by using the finite difference method. In a previous study, a continuous Galerkin finite element method was found better than the finite difference method for solving the hyperbolic partial differential equation; however, the population density function often has discontinuity and both methods suffer from a numerical stability problem. The goal of this study is to improve the numerical stability of the solution using discontinuous Galerkin finite element method. To test the performance of the new approach, interaction of a population of cortical pyramidal neurons and a population of thalamic neurons was simulated. The numerical results showed good agreement between results of discontinuous Galerkin finite element and Monte Carlo methods. The convergence and accuracy of the solutions are excellent. The numerical stability problem could be resolved using the discontinuous Galerkin finite element method which has total-variation-diminishing property. The efficient approach will be employed to simulate the electroencephalogram or dynamics of thalamocortical network which involves three populations, namely, thalamic reticular neurons, thalamocortical neurons and cortical pyramidal neurons. Copyright © 2014 Elsevier Ltd. All rights reserved.
Feedback Control of a Class of Nonholonomic Hamiltonian Systems
Sørensen, Mathias Jesper
Feedback control of nonholonomic systems has always been problematic due to the nonholonomic constraints that limit the space of possible system velocities. This property is very basic, and Brockett proved that a nonholonomic system cannot be asymptotically stabilized by a time-invariant smooth...... turns out to be useful when stabilizing the nonholonomic system. If the system is properly actuated it is possible to asymptotically stabilize the primary part of the configuration coordinates via a passive energy shaping and damping injecting feedback. The feedback is smooth and time......-invariant, but since it does not asymptotically stabilize the secondary part of the configuration coordinates, it does not violate Brockett’s obstruction. The results fromthe general class of nonholonomicHamiltonian systems with kinematic inputs are applied to a real implementation of a four wheel steered, four wheel...
Field investigation of keyblock stability
Yow, J.L. Jr.
1985-04-01
Discontinuities in a rock mass can intersect an excavation surface to form discrete blocks (keyblocks) which can be unstable. This engineering problem is divided into two parts: block identification, and evaluation of block stability. One stable keyblock and thirteen fallen keyblocks were observed in field investigations at the Nevada Test Site. Nine blocks were measured in detail sufficient to allow back-analysis of their stability. Measurements included block geometry, and discontinuity roughness and compressive strength. Back-analysis correctly predicted stability or failure in all but two cases. These two exceptions involved situations that violated the stress assumptions of the stability calculations. Keyblock faces correlated well with known joint set orientations. The effect of tunnel orientation on keyblock frequency was apparent. Back-analysis of physical models successfully predicted block pullout force for two-dimensional models of unit thickness. Two-dimensional (2D) and three-dimensional (3D) analytic models for the stability of simple pyramidal keyblocks were examined. Calculated stability is greater for 3D analyses than for 2D analyses. Calculated keyblock stability increases with larger in situ stress magnitudes, larger lateral stress ratios, and larger shear strengths. Discontinuity stiffness controls block displacement more strongly than it does stability itself. Large keyblocks are less stable than small ones, and stability increases as blocks become more slender. Rock mass temperature decreases reduce the confining stress magnitudes and can lead to failure. The pattern of stresses affecting each block face explains conceptually the occurrence of pyramidal keyblocks that are truncated near their apex
Roughness-dependent tribology effects on discontinuous shear thickening.
Hsu, Chiao-Peng; Ramakrishna, Shivaprakash N; Zanini, Michele; Spencer, Nicholas D; Isa, Lucio
2018-05-15
Surface roughness affects many properties of colloids, from depletion and capillary interactions to their dispersibility and use as emulsion stabilizers. It also impacts particle-particle frictional contacts, which have recently emerged as being responsible for the discontinuous shear thickening (DST) of dense suspensions. Tribological properties of these contacts have been rarely experimentally accessed, especially for nonspherical particles. Here, we systematically tackle the effect of nanoscale surface roughness by producing a library of all-silica, raspberry-like colloids and linking their rheology to their tribology. Rougher surfaces lead to a significant anticipation of DST onset, in terms of both shear rate and solid loading. Strikingly, they also eliminate continuous thickening. DST is here due to the interlocking of asperities, which we have identified as "stick-slip" frictional contacts by measuring the sliding of the same particles via lateral force microscopy (LFM). Direct measurements of particle-particle friction therefore highlight the value of an engineering-tribology approach to tuning the thickening of suspensions. Copyright © 2018 the Author(s). Published by PNAS.
Delayed feedback control in quantum transport.
Emary, Clive
2013-09-28
Feedback control in quantum transport has been predicted to give rise to several interesting effects, among them quantum state stabilization and the realization of a mesoscopic Maxwell's daemon. These results were derived under the assumption that control operations on the system are affected instantaneously after the measurement of electronic jumps through it. In this contribution, I describe how to include a delay between detection and control operation in the master equation theory of feedback-controlled quantum transport. I investigate the consequences of delay for the state stabilization and Maxwell's daemon schemes. Furthermore, I describe how delay can be used as a tool to probe coherent oscillations of electrons within a transport system and how this formalism can be used to model finite detector bandwidth.
Sensitivity of system stability to model structure
Hosack, G.R.; Li, H.W.; Rossignol, P.A.
2009-01-01
A community is stable, and resilient, if the levels of all community variables can return to the original steady state following a perturbation. The stability properties of a community depend on its structure, which is the network of direct effects (interactions) among the variables within the community. These direct effects form feedback cycles (loops) that determine community stability. Although feedback cycles have an intuitive interpretation, identifying how they form the feedback properties of a particular community can be intractable. Furthermore, determining the role that any specific direct effect plays in the stability of a system is even more daunting. Such information, however, would identify important direct effects for targeted experimental and management manipulation even in complex communities for which quantitative information is lacking. We therefore provide a method that determines the sensitivity of community stability to model structure, and identifies the relative role of particular direct effects, indirect effects, and feedback cycles in determining stability. Structural sensitivities summarize the degree to which each direct effect contributes to stabilizing feedback or destabilizing feedback or both. Structural sensitivities prove useful in identifying ecologically important feedback cycles within the community structure and for detecting direct effects that have strong, or weak, influences on community stability. The approach may guide the development of management intervention and research design. We demonstrate its value with two theoretical models and two empirical examples of different levels of complexity. ?? 2009 Elsevier B.V. All rights reserved.
Multibunch resistive wall instability damping with feedback
Zhabitskij, V.M.; Korenev, I.L.; Yudin, L.A.
1992-01-01
The theory of multibunch transverse resistive wall instability damping with feedback is development. The system of coupling equations is obtained for description of bunched beam motion. The general solution and eigen frequencies are found. But for two bunches or multi bunches the tune splitting is found. The band of the tune splitting is calculated. The influence of the tune splitting on the damper system stability is discussed. 14 refs
Feedback Linearized Aircraft Control Using Dynamic Cell Structure
Jorgensen, C. C.
1998-01-01
A Dynamic Cell Structure (DCS ) Neural Network was developed which learns a topology representing network (TRN) of F-15 aircraft aerodynamic stability and control derivatives. The network is combined with a feedback linearized tracking controller to produce a robust control architecture capable of handling multiple accident and off-nominal flight scenarios. This paper describes network and its performance for accident scenarios including differential stabilator lock, soft sensor failure, control, stability derivative variation, and turbulence.
Shahnazi, Reza; Haghani, Adel; Jeinsch, Torsten
2015-01-01
An observer-based output feedback adaptive fuzzy controller is proposed to stabilize a class of uncertain chaotic systems with unknown time-varying time delays, unknown actuator nonlinearities and unknown external disturbances. The actuator nonlinearity can be backlash-like hysteresis or dead-zone. Based on universal approximation property of fuzzy systems the unknown nonlinear functions are approximated by fuzzy systems, where the consequent parts of fuzzy rules are tuned with adaptive schemes. The proposed method does not need the availability of the states and an observer based output feedback approach is proposed to estimate the states. To have more robustness and at the same time to alleviate chattering an adaptive discontinuous structure is suggested. Semi-global asymptotic stability of the overall system is ensured by proposing a suitable Lyapunov–Krasovskii functional candidate. The approach is applied to stabilize the time-delayed Lorenz chaotic system with uncertain dynamics amid significant disturbances. Analysis of simulations reveals the effectiveness of the proposed method in terms of coping well with the modeling uncertainties, nonlinearities in actuators, unknown time-varying time-delays and unknown external disturbances while maintaining asymptotic convergence
39 CFR 241.3 - Discontinuance of post offices.
2010-07-01
... CLASSIFICATION, AND DISCONTINUANCE § 241.3 Discontinuance of post offices. (a) Introduction—(1) Coverage. This... justify in sufficient detail to Postal Service management and affected customers the proposed service... inspection during normal business hours at each post office where the Final Determination is posted for 30...
Discontinuous Galerkin finite element methods for hyperbolic differential equations
van der Vegt, Jacobus J.W.; van der Ven, H.; Boelens, O.J.; Boelens, O.J.; Toro, E.F.
2002-01-01
In this paper a suryey is given of the important steps in the development of discontinuous Galerkin finite element methods for hyperbolic partial differential equations. Special attention is paid to the application of the discontinuous Galerkin method to the solution of the Euler equations of gas
Discontinuities in Early Development of the Understanding of Physical Causality
Aschersleben, Gisa; Henning, Anne; Daum, Moritz M.
2013-01-01
Research on early physical reasoning has shown surprising discontinuities in developmental trajectories. Infants possess some skills that seem to disappear and then re-emerge in childhood. It has been suggested that prediction skills required in search tasks might cause these discontinuities (Keen, 2003). We tested 3.5- to 5-year-olds'…
Airline loyalty (programs) across borders : A geographic discontinuity approach
de Jong, Gerben; Behrens, Christiaan; van Ommeren, Jos
2018-01-01
We analyze brand loyalty advantages of national airlines in their domestic countries using geocoded data from a major international frequent flier program. We employ a geographic discontinuity design that estimates discontinuities in program activity at the national borders of the program's
Manowitz, B.
1990-10-01
The important physical, chemical, and biological events that affect global climate change occur on a mesoscale -- requiring high spatial resolution for their analysis. The Department of Energy has formulated two major initiatives under the US Global Change Program: ARM (Atmospheric Radiation Measurements), and CHAMMP (Computer Hardware Advanced Mathematics and Model Physics). ARM is designed to use ground and air-craft based observations to document profiles of atmospheric composition, clouds, and radiative fluxes. With research and models of important physical processes, ARM will delineate the relationships between trace gases, aerosol and cloud structure, and radiative transfer in the atmosphere, and will improve the parameterization of global circulation models. The present GCMs do not model important feedbacks, including those from clouds, oceans, and land processes. The purpose of this workshop is to identify such potential feedbacks, to evaluate the uncertainties in the feedback processes (and, if possible, to parameterize the feedback processes so that they can be treated in a GCM), and to recommend research programs that will reduce the uncertainties in important feedback processes. Individual reports are processed separately for the data bases.
Delayed feedback control of fractional-order chaotic systems
Gjurchinovski, A; Urumov, V; Sandev, T
2010-01-01
We study the possibility to stabilize unstable steady states and unstable periodic orbits in chaotic fractional-order dynamical systems by the time-delayed feedback method. By performing a linear stability analysis, we establish the parameter ranges for successful stabilization of unstable equilibria in the plane parameterized by the feedback gain and the time delay. An insight into the control mechanism is gained by analyzing the characteristic equation of the controlled system, showing that the control scheme fails to control unstable equilibria having an odd number of positive real eigenvalues. We demonstrate that the method can also stabilize unstable periodic orbits for a suitable choice of the feedback gain, providing that the time delay is chosen to coincide with the period of the target orbit. In addition, it is shown numerically that delayed feedback control with a sinusoidally modulated time delay significantly enlarges the stability region of steady states in comparison to the classical time-delayed feedback scheme with a constant delay.
Sampled-Data Control of Spacecraft Rendezvous with Discontinuous Lyapunov Approach
Zhuoshi Li
2013-01-01
Full Text Available This paper investigates the sampled-data stabilization problem of spacecraft relative positional holding with improved Lyapunov function approach. The classical Clohessy-Wiltshire equation is adopted to describe the relative dynamic model. The relative position holding problem is converted into an output tracking control problem using sampling signals. A time-dependent discontinuous Lyapunov functionals approach is developed, which will lead to essentially less conservative results for the stability analysis and controller design of the corresponding closed-loop system. Sufficient conditions for the exponential stability analysis and the existence of the proposed controller are provided, respectively. Finally, a simulation result is established to illustrate the effectiveness of the proposed control scheme.
Variational functionals which admit discontinuous trial functions
Nelson, P. Jr.
1975-01-01
It is argued that variational synthesis with discontinuous trial functions requires variational principles applicable to equations involving operators acting between distinct Hilbert spaces. A description is given of a Roussopoulos-type variational principle generalized to cover this situation. This principle is suggested as the basis for a unified approach to the derivation of variational functionals. In addition to esthetics, this approach has the advantage that the mathematical details increase the understanding of the derived functional, particularly the sense in which a synthesized solution should be regarded as an approximation to the true solution. By way of illustration, the generalized Roussopoulos principle is applied to derive a class of first-order diffusion functionals which admit trial functions containing approximations at an interface. These ''asymptotic'' interface quantities are independent of the limiting approximations from either side and permit use of different trial spectra at and on either side of an interface. The class of functionals derived contains as special cases both the Lagrange multiplier method of Buslik and two functionals of Lambropoulos and Luco. Some numerical results for a simple two-group model confirm that the ''multipliers'' can closely approximate the appropriate quantity in the region near an interface. (U.S.)
Thermal classification of lithospheric discontinuities beneath USArray
Hansen, Steven M.; Dueker, Ken; Schmandt, Brandon
2015-12-01
Broadband seismic data from the United States were processed into Ps and Sp receiver function image volumes for the purpose of constraining negative velocity gradients (NVG) at depths between the Moho and 200 km. Moho depth picks from the two independent datasets are in good agreement, however, large discrepancies in NVG picks occur and are attributed to free-surface multiples which obscure deep NVG arrivals in the Ps data. From the Sp data, shallow NVG are found west of the Rockies and in the central US while deep and sporadic NVG are observed beneath the Great Plains and northern Rockies. To aid the interpretation of the observed NVG arrivals, the mantle thermal field is estimated by mapping surface wave tomography velocities to temperature assuming an anelastic olivine model. The distribution of temperature versus NVG depth is bi-modal and displays two distinct thermal populations that are interpreted to represent both the lithosphere-asthenosphere boundary (LAB) and mid-lithosphere discontinuities (MLD). LAB arrivals occur in the western US at 60-85 km and 1200-1400 °C depth suggesting that they manifest partial melt near the base of the thermal plate. MLD arrivals primarily occur at 70-110 km depth and 700-900 °C and we hypothesize that these arrivals are caused by a low-velocity metasomatic layer containing phlogopite resulting from magma crystallization products that accumulate within long-lived thick lithosphere.
Stability of bumps in piecewise smooth neural fields with nonlinear adaptation
Kilpatrick, Zachary P.
2010-06-01
We study the linear stability of stationary bumps in piecewise smooth neural fields with local negative feedback in the form of synaptic depression or spike frequency adaptation. The continuum dynamics is described in terms of a nonlocal integrodifferential equation, in which the integral kernel represents the spatial distribution of synaptic weights between populations of neurons whose mean firing rate is taken to be a Heaviside function of local activity. Discontinuities in the adaptation variable associated with a bump solution means that bump stability cannot be analyzed by constructing the Evans function for a network with a sigmoidal gain function and then taking the high-gain limit. In the case of synaptic depression, we show that linear stability can be formulated in terms of solutions to a system of pseudo-linear equations. We thus establish that sufficiently strong synaptic depression can destabilize a bump that is stable in the absence of depression. These instabilities are dominated by shift perturbations that evolve into traveling pulses. In the case of spike frequency adaptation, we show that for a wide class of perturbations the activity and adaptation variables decouple in the linear regime, thus allowing us to explicitly determine stability in terms of the spectrum of a smooth linear operator. We find that bumps are always unstable with respect to this class of perturbations, and destabilization of a bump can result in either a traveling pulse or a spatially localized breather. © 2010 Elsevier B.V. All rights reserved.
Laser frequency stabilization using a transfer interferometer
Jackson, Shira; Sawaoka, Hiromitsu; Bhatt, Nishant; Potnis, Shreyas; Vutha, Amar C.
2018-03-01
We present a laser frequency stabilization system that uses a transfer interferometer to stabilize slave lasers to a reference laser. Our implementation uses off-the-shelf optical components along with microcontroller-based digital feedback, and offers a simple, flexible, and robust way to stabilize multiple laser frequencies to better than 1 MHz.
Funk, Mathias; van Diggelen, Migchiel
2017-01-01
In this paper, the authors describe how a study of a large database of written university teacher feedback in the department of Industrial Design led to the development of a new conceptual framework for feedback and the design of a new feedback tool. This paper focuses on the translation of related work in the area of feedback mechanisms for…
Lukassen, Niels Bech; Wahl, Christian; Sorensen, Elsebeth Korsgaard
refer to this type of feedback as, Situated Formative Feedback (SFF). As a basis for exploring, identifying and discussing relevant aspects of SFF the paper analyses qualitative data from a Moodle dialogue. Data are embedded in the qualitative analytic program Nvivo and are analysed with a system...... theoretical textual analysis method. Asynchronous written dialogue from an online master’s course at Aalborg University forms the empirical basis of the study. The findings suggests in general that students play an essential role in SFF and that students and educators are equal in the COP, but holds different...
Feedback control of nonlinear quantum systems: a rule of thumb.
Jacobs, Kurt; Lund, Austin P
2007-07-13
We show that in the regime in which feedback control is most effective - when measurements are relatively efficient, and feedback is relatively strong - then, in the absence of any sharp inhomogeneity in the noise, it is always best to measure in a basis that does not commute with the system density matrix than one that does. That is, it is optimal to make measurements that disturb the state one is attempting to stabilize.
RF feedback simulation for the PEP-II B Factory
Tighe, R.
1994-06-01
A model, of the beam and RF system for PEP-11 has been developed to allow both time-domain simulation and frequency-domain analysis of the complete system. The model includes the full set of feedback loops and nonlinear elements such as the beam and klystron. The model may be used to predict beam and feedback stability in the presence of nonlinearities through time-domain simulation as well as system frequency response about a given operating point
Temperature feedback control for long-term carrier-envelope phase locking
Chang, Zenghu [Manhattan, KS; Yun, Chenxia [Manhattan, KS; Chen, Shouyuan [Manhattan, KS; Wang, He [Manhattan, KS; Chini, Michael [Manhattan, KS
2012-07-24
A feedback control module for stabilizing a carrier-envelope phase of an output of a laser oscillator system comprises a first photodetector, a second photodetector, a phase stabilizer, an optical modulator, and a thermal control element. The first photodetector may generate a first feedback signal corresponding to a first portion of a laser beam from an oscillator. The second photodetector may generate a second feedback signal corresponding to a second portion of the laser beam filtered by a low-pass filter. The phase stabilizer may divide the frequency of the first feedback signal by a factor and generate an error signal corresponding to the difference between the frequency-divided first feedback signal and the second feedback signal. The optical modulator may modulate the laser beam within the oscillator corresponding to the error signal. The thermal control unit may change the temperature of the oscillator corresponding to a signal operable to control the optical modulator.
Exponential Stabilization of Underactuated Vehicles
Pettersen, K.Y.
1996-12-31
Underactuated vehicles are vehicles with fewer independent control actuators than degrees of freedom to be controlled. Such vehicles may be used in inspection of sub-sea cables, inspection and maintenance of offshore oil drilling platforms, and similar. This doctoral thesis discusses feedback stabilization of underactuated vehicles. The main objective has been to further develop methods from stabilization of nonholonomic systems to arrive at methods that are applicable to underactuated vehicles. A nonlinear model including both dynamics and kinematics is used to describe the vehicles, which may be surface vessels, spacecraft or autonomous underwater vehicles (AUVs). It is shown that for a certain class of underactuated vehicles the stabilization problem is not solvable by linear control theory. A new stability result for a class of homogeneous time-varying systems is derived and shown to be an important tool for developing continuous periodic time-varying feedback laws that stabilize underactuated vehicles without involving cancellation of dynamics. For position and orientation control of a surface vessel without side thruster a new continuous periodic feedback law is proposed that does not cancel any dynamics, and that exponentially stabilizes the origin of the underactuated surface vessel. A further issue considered is the stabilization of the attitude of an AUV. Finally, the thesis discusses stabilization of both position and attitude of an underactuated AUV. 55 refs., 28 figs.
New Sufficient LMI Conditions for Static Output Stabilization
Adegas, Fabiano Daher
2014-01-01
This paper presents new linear matrix inequality conditions to the static output feedback stabilization problem. Although the conditions are only sufficient, numerical experiments show excellent success rates in finding a stabilizing controller....
Feedback control of thermal instability by compression and decompression
Okamoto, M.; Hirano, K.; Amano, T.; Ohnishi, M.
1983-01-01
Active feedback control of the fusion output power by means of plasma compression-decompression is considered with the purpose of achieving steady-state plasma ignition in a tokamak. A simple but realistic feedback control system is modelled and zero-dimensional energy balance equations are solved numerically by taking into account the errors in the measurements, a procedure that is necessary for the feedback control. It is shown that the control can stabilize the thermal runaway completely and maintain steady-state operation without any significant change in major radius or thermal output power. Linear stability is analysed for a general type of scaling law, and the dependence of the stability conditions on the scaling law is studied. The possibility of load-following operation is considered. Finally, a one-dimensional analysis is applied to the large-aspect-ratio case. (author)
Credit Market Information Feedback
Balasubramanyan, Lakshmi; Craig, Ben R.; Thomson, James B.; Zaman, Saeed
2015-01-01
We examine how a combination of credit market and asset quality information can jointly be used in assessing bank franchise value. We find that expectations of future credit demand and future asset quality explain contemporaneous bank franchise value, indicative of the feedback in credit market information and its consequent impact on bank franchise value.
Continuous feedback fluid queues
Scheinhardt, Willem R.W.; van Foreest, N.D.; Mandjes, M.R.H.
2003-01-01
We investigate a fluid buffer which is modulated by a stochastic background process, while the momentary behavior of the background process depends on the current buffer level in a continuous way. Loosely speaking the feedback is such that the background process behaves `as a Markov process' with
Kirkegaard, Preben Olund
2015-01-01
undervisningsdifferentiering, feedback på læreprocesser, formativ og summativ evaluering, observationer og analyse af undervisning samt lærernes teamsamarbejde herom. Praktikken udgør et særligt læringsrum i læreruddannelsen. Samspillet mellem studerende, praktiklærere og undervisere giver den studerende en unik mulighed...
Portfolio, refleksion og feedback
Hansen, Jens Jørgen; Qvortrup, Ane; Christensen, Inger-Marie F.
2017-01-01
Denne leder definerer indledningsvist begrebet portfolio og gør rede for anvendelsesmuligheder i en uddannelseskontekst. Dernæst behandles portfoliometodens kvalitet og effekt for læring og undervisning og de centrale begreber refleksion, progression og feedback præsenteres og diskuteres. Herefter...
Laser cooling in a feedback-controlled optical shaker
Vilensky, Mark Y.; Averbukh, Ilya Sh.; Prior, Yehiam
2006-01-01
We explore the prospects of optical shaking, a recently suggested generic approach to laser cooling of neutral atoms and molecules. Optical shaking combines elements of Sisyphus cooling and of stochastic cooling techniques and is based on feedback-controlled interaction of particles with strong nonresonant laser fields. The feedback loop guarantees a monotonous energy decrease without a loss of particles. We discuss two types of feedback algorithms and provide an analytical estimation of their cooling rate. We study the robustness of optical shaking against noise and establish minimal stability requirements for the lasers. The analytical predictions are in a good agreement with the results of detailed numerical simulations
Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients
Bonito, Andrea; DeVore, Ronald A.; Nochetto, Ricardo H.
2013-01-01
Elliptic PDEs with discontinuous diffusion coefficients occur in application domains such as diffusions through porous media, electromagnetic field propagation on heterogeneous media, and diffusion processes on rough surfaces. The standard approach to numerically treating such problems using finite element methods is to assume that the discontinuities lie on the boundaries of the cells in the initial triangulation. However, this does not match applications where discontinuities occur on curves, surfaces, or manifolds, and could even be unknown beforehand. One of the obstacles to treating such discontinuity problems is that the usual perturbation theory for elliptic PDEs assumes bounds for the distortion of the coefficients in the L∞ norm and this in turn requires that the discontinuities are matched exactly when the coefficients are approximated. We present a new approach based on distortion of the coefficients in an Lq norm with q < ∞ which therefore does not require the exact matching of the discontinuities. We then use this new distortion theory to formulate new adaptive finite element methods (AFEMs) for such discontinuity problems. We show that such AFEMs are optimal in the sense of distortion versus number of computations, and report insightful numerical results supporting our analysis. © 2013 Societ y for Industrial and Applied Mathematics.
Effect of overall feedback inhibition in unbranched biosynthetic pathways.
Alves, R; Savageau, M A
2000-11-01
We have determined the effects of control by overall feedback inhibition on the systemic behavior of unbranched metabolic pathways with an arbitrary pattern of other feedback inhibitions by using a recently developed numerical generalization of Mathematically Controlled Comparisons, a method for comparing the function of alternative molecular designs. This method allows the rigorous determination of the changes in systemic properties that can be exclusively attributed to overall feedback inhibition. Analytical results show that the unbranched pathway can achieve the same steady-state flux, concentrations, and logarithmic gains with respect to changes in substrate, with or without overall feedback inhibition. The analytical approach also shows that control by overall feedback inhibition amplifies the regulation of flux by the demand for end product while attenuating the sensitivity of the concentrations to the same demand. This approach does not provide a clear answer regarding the effect of overall feedback inhibition on the robustness, stability, and transient time of the pathway. However, the generalized numerical method we have used does clarify the answers to these questions. On average, an unbranched pathway with control by overall feedback inhibition is less sensitive to perturbations in the values of the parameters that define the system. The difference in robustness can range from a few percent to fifty percent or more, depending on the length of the pathway and on the metabolite one considers. On average, overall feedback inhibition decreases the stability margins by a minimal amount (typically less than 5%). Finally, and again on average, stable systems with overall feedback inhibition respond faster to fluctuations in the metabolite concentrations. Taken together, these results show that control by overall feedback inhibition confers several functional advantages upon unbranched pathways. These advantages provide a rationale for the prevalence of this
Discontinuous diffusion synthetic acceleration for Sn transport on 2D arbitrary polygonal meshes
Turcksin, Bruno; Ragusa, Jean C.
2014-01-01
In this paper, a Diffusion Synthetic Acceleration (DSA) technique applied to the S n radiation transport equation is developed using Piece-Wise Linear Discontinuous (PWLD) finite elements on arbitrary polygonal grids. The discretization of the DSA equations employs an Interior Penalty technique, as is classically done for the stabilization of the diffusion equation using discontinuous finite element approximations. The penalty method yields a system of linear equations that is Symmetric Positive Definite (SPD). Thus, solution techniques such as Preconditioned Conjugate Gradient (PCG) can be effectively employed. Algebraic MultiGrid (AMG) and Symmetric Gauss–Seidel (SGS) are employed as conjugate gradient preconditioners for the DSA system. AMG is shown to be significantly more efficient than SGS. Fourier analyses are carried out and we show that this discontinuous finite element DSA scheme is always stable and effective at reducing the spectral radius for iterative transport solves, even for grids with high-aspect ratio cells. Numerical results are presented for different grid types: quadrilateral, hexagonal, and polygonal grids as well as grids with local mesh adaptivity
Lambertson, G.
1995-09-01
When the electromagnetic fields that are excited by the passage of a bundle of charged particles persist to act upon bunches that follow, then the motions of the bunches are coupled. This action between bunches circulating on a closed orbit can generate growing patterns of bunch excursions. Such growth can often be suppressed by feedback systems that detect the excursion and apply corrective forces to the bunches. To be addressed herein is feedback that acts on motions of the bunch body centers. In addition to being useful for suppressing the spontaneous growth of coupled-bunch motions, such feedback can be used to damp transients in bunches injected into an accelerator or storage ring; for hadrons which lack strong radiation damping, feedback is needed to avoid emittance growth through decoherence. Motions excited by noise in magnetic fields or accelerating rf can also be reduced by using this feedback. Whether the action is on motions that are transverse to the closed orbit or longitudinal, the arrangement is the same. Bunch position is detected by a pickup and that signal is processed and directed to a kicker that may act upon the same bunch or some other portion of the collective beam pattern. Transverse motion is an oscillation with angular frequency ν perpendicular ω o where ω o is the orbital frequency 2π line-integral o. Longitudinal synchrotron oscillation occurs at frequency ω s = ν s ω o . The former is much more rapid, ν perpendicular being on the order of 10 while ν s is typically about 10 minus 1 to 10 minus 2
Discontinuity of maximum entropy inference and quantum phase transitions
Chen, Jianxin; Ji, Zhengfeng; Yu, Nengkun; Zeng, Bei; Li, Chi-Kwong; Poon, Yiu-Tung; Shen, Yi; Zhou, Duanlu
2015-01-01
In this paper, we discuss the connection between two genuinely quantum phenomena—the discontinuity of quantum maximum entropy inference and quantum phase transitions at zero temperature. It is shown that the discontinuity of the maximum entropy inference of local observable measurements signals the non-local type of transitions, where local density matrices of the ground state change smoothly at the transition point. We then propose to use the quantum conditional mutual information of the ground state as an indicator to detect the discontinuity and the non-local type of quantum phase transitions in the thermodynamic limit. (paper)
Accountability Accentuates Interindividual-Intergroup Discontinuity by Enforcing Parochialism.
Wildschut, Tim; van Horen, Femke; Hart, Claire
2015-01-01
Interindividual-intergroup discontinuity is the tendency for relations between groups to be more competitive than relations between individuals. We examined whether the discontinuity effect arises in part because group members experience normative pressure to favor the ingroup (parochialism). Building on the notion that accountability enhances normative pressure, we hypothesized that the discontinuity effect would be larger when accountability is present (compared to absent). A prisoner's dilemma game experiment supported this prediction. Specifically, intergroup (compared to interindividual) interaction activated an injunctive ingroup-favoring norm, and accountability enhanced the influence of this norm on competitive behavior.
Accountability Accentuates Interindividual—Intergroup Discontinuity by Enforcing Parochialism
Tim eWildschut
2015-11-01
Full Text Available Interindividual-intergroup discontinuity is the tendency for relations between groups to be more competitive than relations between individuals. We examined whether the discontinuity effect arises in part because group members experience normative pressure to favor the ingroup (parochialism. Building on the notion that accountability enhances normative pressure, we hypothesized that the discontinuity effect would be larger when accountability is present (compared to absent. A prisoner’s dilemma game experiment supported this prediction. Specifically, intergroup (compared to interindividual interaction activated an injunctive ingroup-favoring norm, and accountability enhanced the influence of this norm on competitive behavior.
Early Discontinuation of Montelukast Treatment; A Danish Nationwide Utilization Study
Farah, Rahmo I; Damkier, Per; Christiansen, Anders
2018-01-01
Montelukast, a leukotriene receptor antagonist, was marketed in 1998 as an oral supplementary treatment to patients with mild to moderate asthma. The aim of this study was to describe the early discontinuation pattern among montelukast users in Denmark in the period of 1 March 1998 to 31 December....... Early discontinuation was defined as failing to fill a second prescription for montelukast within at least a year after the initial montelukast prescription. Among 135,271 included montelukast users, 47,480 (35%) discontinued the use of montelukast after a single redeemed prescription. The trend...
Actor Bonds in Situations of Discontinuous Business Activities
Skaates, Maria Anne
2000-01-01
Demand in many industrial buying situations, e.g. project purchases or procurement related to virtual organizations, is discontinuous. In situations of discontinuity, networks are often more of an ad hos informational and social nature, as strong activity and resource links are not present....... Furthermore the governance structure of markets characterized by discontinuous business activities is either that of the "socially constructed market" (Skaates, 2000) or that of the (socially constructed) network (Håkansson and Johanson, 1993). Additionally relationships and actor bonds vary substantially...
A Simple Stochastic Differential Equation with Discontinuous Drift
Simonsen, Maria; Leth, John-Josef; Schiøler, Henrik
2013-01-01
In this paper we study solutions to stochastic differential equations (SDEs) with discontinuous drift. We apply two approaches: The Euler-Maruyama method and the Fokker-Planck equation and show that a candidate density function based on the Euler-Maruyama method approximates a candidate density...... function based on the stationary Fokker-Planck equation. Furthermore, we introduce a smooth function which approximates the discontinuous drift and apply the Euler-Maruyama method and the Fokker-Planck equation with this input. The point of departure for this work is a particular SDE with discontinuous...
Stacking by electroinjection with discontinuous buffers in capillary zone electrophoresis.
Shihabi, Zak K
2002-08-01
The work presented here demonstrates that electroinjection can be performed using discontinuous buffers, which can result in better stacking than that obtained by hydrodynamic injection. The sample can be concentrated at the tip of the capillary leaving practically the whole capillary for sample separation. This results in several advantages, such as better sample concentration, higher plate number and shorter time of stacking. However, sample introduction by electromigration is suited for samples free or low in salt content. Samples, which are high in salt content, are better introduced by the hydrodynamic injection for stacking by the discontinuous buffers. Different simple methods to introduce the discontinuity in the buffer for electroinjection are discussed.
Risk of discontinuation of Advanced Therapy Medicinal Products clinical trials.
Hanna, Eve; Rémuzat, Cecile; Auquier, Pascal; Toumi, Mondher
2016-01-01
Advanced therapy medicinal products (ATMPs) constitute a class of innovative products that encompasses gene therapy, somatic cell therapy, and tissue-engineered products (TEP). There is an increased investment of commercial and non-commercial sponsors in this field and a growing number of ATMPs randomized clinical trials (RCT) and patients enrolled in such trials. RCT generate data to prove the efficacy of a new therapy, but the discontinuation of RCTs wastes scarce resources. Our objective is to identify the number and characteristics of discontinued ATMPs trials in order to evaluate the rate of discontinuation. We searched for ATMPs trials conducted between 1999 to June 2015 using three databases, which are Clinicaltrials.gov, the International Clinical Trials Registry Platform (ICTRP), and the EU Drug Regulating Authorities Clinical Trials (EudraCT). We selected the ATMPs trials after elimination of the duplicates. We identified the disease areas and the sponsors as commercial or non-commercial organizations. We classified ATMPs by type and trial status, that is, ongoing, completed, terminated, discontinued, and prematurely ended. Then, we calculated the rate of discontinuation. Between 1999 and June 2015, 143 withdrawn, terminated, or prematurely ended ATMPs clinical trials were identified. Between 1999 and June 2013, 474 ongoing and completed clinical trials were identified. Therefore, the rate of discontinuation of ATMPs trials is 23.18%, similar to that for non-ATMPs drugs in development. The probability of discontinuation is, respectively, 27.35, 16.28, and 16.34% for cell therapies, gene therapies, and TEP. The highest discontinuation rate is for oncology (43%), followed by cardiology (19.2%). It is almost the same for commercial and non-commercial sponsors; therefore, the discontinuation reason may not be financially driven. No failure risk rate per development phase is available for ATMPs. The discontinuation rate may prove helpful when assessing the
Stabilization of synchrotron radiation x-ray beam by MOSTAB
Kudo, T P; Tanida, H; Furukawa, Y; Hirono, T; Ishikawa, T; Nishino, Y
2003-01-01
Monochromator stabilization (MOSTAB) is a feedback control system to stabilize an x-ray beam of synchrotron radiation. It applies a feedback voltage to a piezo electric transducer attached to a double-crystal monochromator. We developed MOSTAB modules and examined their performances using SPring-8 beamlines. The x-ray beam position stabilization using MOSTAB was realized simultaneously with the x-ray beam intensity stabilization. As an example of its application, we performed EXAFS measurement with MOSTAB. (author)
Magnet stability and reproducibility
Marks, N
2010-01-01
Magnet stability and reproducibility have become increasingly important as greater precision and beams with smaller dimension are required for research, medical and other purpose. The observed causes of mechanical and electrical instability are introduced and the engineering arrangements needed to minimize these problems discussed; the resulting performance of a state-of-the-art synchrotron source (Diamond) is then presented. The need for orbit feedback to obtain best possible beam stability is briefly introduced, but omitting any details of the necessary technical equipment, which is outside the scope of the presentation.
Uchino, Shigehiko; Bellomo, Rinaldo; Morimatsu, Hiroshi; Morgera, Stanislao; Schetz, Miet; Tan, Ian; Bouman, Catherine; Macedo, Ettiene; Gibney, Noel; Tolwani, Ashita; Oudemans-van Straaten, Heleen; Ronco, Claudio; Kellum, John A.
2009-01-01
Objectives: To describe current practice for the discontinuation of continuous renal replacement therapy in a multinational setting and to identify variables associated with successful discontinuation. The approach to discontinue continuous renal replacement therapy may affect patient outcomes.
Characteristics of a reactor with power reactivity feedback
Li Fengyu; Zhang Yusheng; Zhang Guangfu; Liu Ying
2008-01-01
The point-reactor model with power reactivity feedback becomes a nonlinear system. Its dynamic characteristic shows great complexity. According to the mathematic definition of stability in differential equation qualitative theory, the model of a reactor with power reactivity feedback is judged unstable. The equilibrium point is a saddle-node point. A portion of the trajectory in the neighborhood of the equilibrium point is parabolic fan curve, and the other is hyperbolic fan curve. Based on phase locus near the equilibrium point, it is pointed out that the model is still stable within physical limits. The difference between stabilities in the mathematical sense and in the physical sense is indicated. (authors)
DNA Chemical discontinuities and their biological consequences
Meneghini, R.
1978-01-01
The stability of genetic material is a relative concept since under several conditions there are structural changes in cellular DNA which unchain enzimatic processes leading to their own repair. Under certain circunstances the replication mechanism may arrive to a lesion before it be eliminated. It is known that most cells can replicate the injured DNA, but it is not known how this occurs. This mechanism is of great importance because there is strong evidence that mutations can be introduced in this process. Data are reviewed and discussed relating to the present stage of knowledge of this mechanism in bacteria and in mammal cells kept in culture. (M.A.) [pt
On the Issue of Labor Relations Discontinuance by Staff Reduction
Sheveleva A. A.
2012-11-01
Full Text Available This article is devoted to consideration of issues related to the procedure of labor law contract termination by staff reduction. The author, analyzing the judicial practice, gives practical recommendations on the procedure of employment relationships discontinuance
On cell entropy inequality for discontinuous Galerkin methods
Jiang, Guangshan; Shu, Chi-Wang
1993-01-01
We prove a cell entropy inequality for a class of high order discontinuous Galerkin finite element methods approximating conservation laws, which implies convergence for the one dimensional scalar convex case.
14 CFR 170.25 - LORAN-C discontinuance criteria.
2010-01-01
... nonprecision approach may be subject to discontinuance when the present value of the continued maintenance costs (PVCM) of the LORAN-C approach exceed the present value of its remaining life-cycle benefits (PVB...
On the relativistic transport equation for a multiple discontinuity wave
Giambo, Sebastiano
1980-01-01
The theory of singular hypersurfaces is combined with the ray theory to study propagation of weak discontinuities of solutions of quasi-linear hyperbolic system in the context of special relativity. The case of a multiple wave is considered [fr
Rotational discontinuities and the structure of the magnetopause
Swift, D.W.; Lee, L.C.
1983-01-01
Symmetric and asymmetric rotational discontinuities are studied by means of a one-dimensional computer simulation and by single-particle trajectory calculations. The numerical simulations show the symmetric rotation to be stable for both ion and electron senses of rotation with a thickness of the order of a few ion gyroradii when the rotation angle of the tangential field is 180 0 or less. Larger rotation angles tend to be unstable. In an expansive discontinuity, when the magnetic field on the downstream side of the discontinuity is larger, an expanding transition layer separating the high-field from a low-field region develops on the downstream side, and a symmetric rotational discontinuity forms at the upstream edge. The implication of these results for magnetopause structure and energy flow through the magnetopause is described
Discontinuous conduction mode analysis of phase-modulated series ...
modulated dc–dc series resonant converter (SRC) operating in discontinuous conduction mode (DCM). The conventional fundamental harmonic approximation technique is extended for a non-ideal series resonant tank to clarify the limitations of ...
Relativistic transport equation for a discontinuity wave of multiplicity one
Giambo, S; Palumbo, A [Istituto di Matematica, Universita degli Studi, Messina (Italy)
1980-04-14
In the framework of the theory of the singular hypersurfaces, the transport equation for the amplitude of a discontinuity wave, corresponding to a simple characteristic of a quasi-linear hyperbolic system, is established in the context of special relativity.
Relativistic transport equation for a multiple discontinuity wave
Giambo, S [Istituto di Matematica, Universita degli Studi, Messina (Italy)
1980-09-29
The theory of singular hypersurfaces is combined with the ray theory to study propagation of weak discontinuities of solutions of a quasi-linear hyperbolic system in the context of special relativity. The case of a multiple wave is considered.
Reasons for Discontinuation of Implanon among Users in Buffalo ...
USER
African Journal of Reproductive Health March 2018; 22(1):113 ... other medical treatments: 24 participants on the anti-retroviral drugs, one on antipsychotic and anti- ... The side effects of implanon were the reason for early discontinuation of.
Modelling discontinuous well log signal to identify lithological ...
1Indian School of Mines (ISM), Dhanbad 826 004, India. ... new wavelet transform-based algorithm to model the abrupt discontinuous changes from well log data by taking care of ...... the 11th ACM International Conference on Multimedia,.
Father's Labour Migration and Children's School Discontinuation in Rural Mozambique.
Yabiku, Scott T; Agadjanian, Victor
2017-08-01
We examine how the discontinuation of schooling among left-behind children is related to multiple dimensions of male labor migration: the accumulation of migration experience, the timing of these migration experiences in the child's life course, and the economic success of the migration. Our setting is rural southern Mozambique, an impoverished area with massive male labor out-migration. Results show that fathers' economically successful labor migration is more beneficial for children's schooling than unsuccessful migration or non-migration. There are large differences, however, by gender: compared to sons of non-migrants, sons of migrant fathers (regardless of migration success) have lower rates of school discontinuation, while daughters of migrant fathers have rates of school discontinuation no different than daughters of non-migrants. Furthermore, accumulated labor migration across the child's life course is beneficial for boys' schooling, but not girls'. Remittances sent in the past year reduce the rate of discontinuation for sons, but not daughters.
Reasons for discontinuation of implanon among users in Buffalo City ...
Reasons for discontinuation of implanon among users in Buffalo City Metropolitan Municipality, South Africa: a cross-sectional study. Khungelwa Patricia Mrwebi, Daniel Ter Goon, Eyitayo Omolara Owolabi, Oladele Vincent Adeniyi, Eunice Seekoe, Anthony Idowu Ajayi ...
What happens when people discontinue taking medications? Lessons from COMBINE.
Stout, Robert L; Braciszewski, Jordan M; Subbaraman, Meenakshi Sabina; Kranzler, Henry R; O'Malley, Stephanie S; Falk, Daniel
2014-12-01
We use intensive longitudinal data methods to illuminate processes affecting patients' drinking in relation to the discontinuation of medications within an alcohol treatment study. Although previous work has focused on broad measures of medication adherence, we focus on dynamic changes in drinking both before and after patients discontinue. We conducted secondary data analyses using the COMBINE (Combined Pharmacotherapies and Behavioral Interventions for Alcohol Dependence) study, focused on participants who discontinued medications prior to the planned end of treatment. Using an interrupted time-series analysis, we analysed drinking in the weeks before and after discontinuation and also studied outcomes at the end of the COMBINE follow-up. Unites States of America. We describe the subsample of COMBINE participants who discontinued medications (n = 450), and compare them with those who were medication-adherent (n = 559) and with those who discontinued but had substantial missing data (n = 217). The primary outcomes were percentage of days abstinent (PDA) and percentage of heavy drinking days (PHDD). Medication adherence data were used to approximate the date of discontinuation. For many patients, an increase in drinking began weeks before discontinuation (PDA: F(1,4803) = 19.07, P < 0.001; PHDD: F(1,4804) = 8.58, P = 0.003) then escalated at discontinuation (PDA: F(1,446) = 5.05, P = 0.025; PHDD: F(1,446) = 4.52, P = 0.034). Among other effects, the amount of change was moderated by the reason for discontinuation (e.g. adverse event; PDA: F(2,4803) = 3.85, P = 0.021; PHDD: F(2,4804) = 5.36, P = 0.005) and also whether it occurred in the first or second half of treatment (PDA: F(1,4803) = 5.23, P = 0.022; PHDD: F(1,4804) = 8.79, P = 0.003). A patient's decision to stop taking medications during alcohol treatment appears to take place during a weeks-long process of disengagement from treatment. Patients who discontinue medications early in treatment or without
Hudson, J.G.
1992-01-01
Cloud microphysics affects cloud albedo precipitation efficiency and the extent of cloud feedback in response to global warming. Compared to other cloud parameters, microphysics is unique in its large range of variability and the fact that much of the variability is anthropogenic. Probably the most important determinant of cloud microphysics is the spectra of cloud condensation nuclei (CCN) which display considerable variability and have a large anthropogenic component. When analyzed in combination three field observation projects display the interrelationship between CCN and cloud microphysics. CCN were measured with the Desert Research Institute (DRI) instantaneous CCN spectrometer. Cloud microphysical measurements were obtained with the National Center for Atmospheric Research Lockheed Electra. Since CCN and cloud microphysics each affect the other a positive feedback mechanism can result
Determining the Locations and Discontinuities in the Derivatives of Functions
Archibald, Richard K.; Gelb, Anne; Yoon, Jungho
2007-01-01
We introduce a method for detecting discontinuities in piecewise smooth functions and in their derivatives. The method is constructed from a local stencil of grid point values and is based on a polynomial annihilation technique. By varying the order of the method and the arrangement of the corresponding stencils, the jump discontinuities of a function and its derivatives can be identified with high order accuracy. The method is efficient and robust and can be applied to non-uniform distributions in one dimension
Reactive oxygen species production and discontinuous gas exchange in insects
Boardman, Leigh; Terblanche, John S.; Hetz, Stefan K.; Marais, Elrike; Chown, Steven L.
2011-01-01
While biochemical mechanisms are typically used by animals to reduce oxidative damage, insects are suspected to employ a higher organizational level, discontinuous gas exchange mechanism to do so. Using a combination of real-time, flow-through respirometry and live-cell fluorescence microscopy, we show that spiracular control associated with the discontinuous gas exchange cycle (DGC) in Samia cynthia pupae is related to reactive oxygen species (ROS). Hyperoxia fails to increase mean ROS produ...
A simple model of discontinuous firm’s growth
D'Elia, Enrico
2011-01-01
Typically, firms change their size through a row of discrete leaps over time. Sunk costs, regulatory, financial and organizational constraints, talent distribution and other factors may explain this fact. However, firms tend to grow or fall discontinuously even if those inertial factors were removed. For instance, a very essential model of discontinuous growth can be based on a couple of assumptions concerning only technology and entrepreneurs’ strategy, that is: (a) in the short run, the...
Discrete modeling of multiple discontinuities in rock mass using XFEM
Das, Kamal C.; Ausas, Roberto Federico; Carol, Ignacio; Rodrigues, Eduardo; Sandeep, Sandra; Vargas, P. E.; Gonzalez, Nubia Aurora; Segura, Josep María; Lakshmikantha, Ramasesha Mookanahallipatna; Mello,, U.
2017-01-01
Modeling of discontinuities (fractures and fault surfaces) is of major importance to assess the geomechanical behavior of oil and gas reservoirs, especially for tight and unconventional reservoirs. Numerical analysis of discrete discontinuities traditionally has been studied using interface element concepts, however more recently there are attempts to use extended finite element method (XFEM). The development of an XFEM tool for geo-mechanical fractures/faults modeling has significant industr...
Classroom observation and feedback
Ana GOREA
2016-12-01
Full Text Available Classroom observation is a didactic activity from which both the observer and the observed teacher are to win. The present article comments on and discusses the aims of observation, the stages of observation, the methodological recommendations of offering feedback and the need to introduce a system of classroom observation at institutional or even national level, which would contribute to improving the teaching/learning process.
Regenerative feedback resonant circuit
Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.
2014-09-02
A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.
Engaging Students with Audio Feedback
Cann, Alan
2014-01-01
Students express widespread dissatisfaction with academic feedback. Teaching staff perceive a frequent lack of student engagement with written feedback, much of which goes uncollected or unread. Published evidence shows that audio feedback is highly acceptable to students but is underused. This paper explores methods to produce and deliver audio…
Feedback, Incentives and Peer Effects
Eriksson, Tor Viking; Poulsen, Anders; Villeval, Marie Claire
This paper experimentally investigates the impact of different pay and relative performance information policies on employee effort. We explore three information policies: No feedback, feedback given halfway through the production period, and continuously updated feedback about relative performan...... behind, and frontrunners do not slack off....
Bunch by bunch feedback systems
Tobiyama, Makoto
2006-01-01
Outlines of bunch-by-bunch feedback systems for suppressing multibunch instabilities in electron/positron storage rings are presented. The design principles and functions of the feedback components are reviewed. Recent topics of applying very fast and dense FPGA as feedback signal processor are also shown. (author)
Christensen, Vibeke; Bærenholdt, Jørgen
Præsentation af forskningsviden om feedback i forskellige personkonstellationer i undervisningen: Feedback fra lærer til elev, fra elever til lærer, fra elev til elev og elevens eget arbejde med feedback til sig selv. De præsenterede forskningsresultater er udvalgt dels inden for en kognitivistisk...
A Journey towards Sustainable Feedback
Mutch, Allyson; Young, Charlotte; Davey, Tamzyn; Fitzgerald, Lisa
2018-01-01
Meeting students' expectations associated with the provision of feedback is a perennial challenge for tertiary education. Efforts to provide comprehensive, timely feedback within our own first year undergraduate public health courses have not always met students' expectations. In response, we sought to develop peer feedback activities to support…
Dynamic aspects of the tubuloglomerular feedback mechanism
Holstein-Rathlou, N H
1992-01-01
Tubuloglomerular feedback (TGF) is an important intrarenal regulatory mechanism, which acts to stabilize renal blood flow, GFR, and the tubular flow rate. The anatomical basis for this negative feedback system is the Juxtaglomerular Apparatus (JGA). This is located at the point of contact between...... of the TGF, and to use this knowledge in elucidating the role of the TGF system in the autoregulation of renal blood flow. Further, by comparing the dynamic characteristics of TGF between hypertensive and normotensive rats, to identify possible alterations in renal function that could play a role...... in the etiology and pathogenesis of hypertension. Anesthesia and surgery are unavoidable complications in experimental work in animals. It is shown that the anesthetics commonly used in micropuncture experiments in rats have different effects on various aspects of renal function, e.g. GFR, sodium excretion...
PLS beam position measurement and feedback system
Huang, J.Y.; Lee, J.; Park, M.K.; Kim, J.H.; Won, S.C.
1992-01-01
A real-time orbit correction system is proposed for the stabilization of beam orbit and photon beam positions in Pohang Light Source. PLS beam position monitoring system is designed to be VMEbus compatible to fit the real-time digital orbit feedback system. A VMEbus based subsystem control computer, Mil-1553B communication network and 12 BPM/PS machine interface units constitute digital part of the feedback system. With the super-stable PLS correction magnet power supply, power line frequency noise is almost filtered out and the dominant spectra of beam obtit fluctuations are expected to appear below 15 Hz. Using DSP board in SCC for the computation and using an appropriate compensation circuit for the phase delay by the vacuum chamber, PLS real-time orbit correction system is realizable without changing the basic structure of PLS computer control system. (author)
Class of reconstructed discontinuous Galerkin methods in computational fluid dynamics
Luo, Hong; Xia, Yidong; Nourgaliev, Robert
2011-01-01
A class of reconstructed discontinuous Galerkin (DG) methods is presented to solve compressible flow problems on arbitrary grids. The idea is to combine the efficiency of the reconstruction methods in finite volume methods and the accuracy of the DG methods to obtain a better numerical algorithm in computational fluid dynamics. The beauty of the resulting reconstructed discontinuous Galerkin (RDG) methods is that they provide a unified formulation for both finite volume and DG methods, and contain both classical finite volume and standard DG methods as two special cases of the RDG methods, and thus allow for a direct efficiency comparison. Both Green-Gauss and least-squares reconstruction methods and a least-squares recovery method are presented to obtain a quadratic polynomial representation of the underlying linear discontinuous Galerkin solution on each cell via a so-called in-cell reconstruction process. The devised in-cell reconstruction is aimed to augment the accuracy of the discontinuous Galerkin method by increasing the order of the underlying polynomial solution. These three reconstructed discontinuous Galerkin methods are used to compute a variety of compressible flow problems on arbitrary meshes to assess their accuracy. The numerical experiments demonstrate that all three reconstructed discontinuous Galerkin methods can significantly improve the accuracy of the underlying second-order DG method, although the least-squares reconstructed DG method provides the best performance in terms of both accuracy, efficiency, and robustness. (author)
Minimizers with discontinuous velocities for the electromagnetic variational method
De Luca, Jayme
2010-01-01
The electromagnetic two-body problem has neutral differential delay equations of motion that, for generic boundary data, can have solutions with discontinuous derivatives. If one wants to use these neutral differential delay equations with arbitrary boundary data, solutions with discontinuous derivatives must be expected and allowed. Surprisingly, Wheeler-Feynman electrodynamics has a boundary value variational method for which minimizer trajectories with discontinuous derivatives are also expected, as we show here. The variational method defines continuous trajectories with piecewise defined velocities and accelerations, and electromagnetic fields defined by the Euler-Lagrange equations on trajectory points. Here we use the piecewise defined minimizers with the Lienard-Wierchert formulas to define generalized electromagnetic fields almost everywhere (but on sets of points of zero measure where the advanced/retarded velocities and/or accelerations are discontinuous). Along with this generalization we formulate the generalized absorber hypothesis that the far fields vanish asymptotically almost everywhere and show that localized orbits with far fields vanishing almost everywhere must have discontinuous velocities on sewing chains of breaking points. We give the general solution for localized orbits with vanishing far fields by solving a (linear) neutral differential delay equation for these far fields. We discuss the physics of orbits with discontinuous derivatives stressing the differences to the variational methods of classical mechanics and the existence of a spinorial four-current associated with the generalized variational electrodynamics.
Research progress on criteria for discontinuation of EGFR inhibitor therapy
Zhuang HQ
2012-10-01
Full Text Available Hong-qing Zhuang, Zhi-yong Yuan, Jun Wang, Ping Wang, Lu-jun Zhao, Bai-lin ZhangDepartment of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Lung Cancer Center, Tianjin, People's Republic of ChinaAbstract: The clinical success of the epidermal growth factor receptor (EGFR tyrosine kinase inhibitors (TKI as therapeutic agents has prompted great interest in their further development and clinical testing for a wide variety of malignancies. However, most studies have focused on the efficacy of TKI, and few studies have been done on the criteria for their discontinuation. The current standard for drug discontinuation is “until progression”, based on change in tumor size. However, tumor size is not related to the gene expression which determines the efficacy of TKI in the final analysis, and it is also difficult to make a thorough and correct prediction based on tumor size when the TKI is discontinued. Nevertheless, clinical evaluation of the criteria for TKI discontinuation is still in its early days. Some promising findings have started to emerge. With the improving knowledge of EGFR and its inhibitors, it is expected that the criteria for discontinuation of EGFR inhibitor therapy will become clearer.Keywords: epidermal growth factor receptor, drug discontinuation, acquired drug-resistance
Fernández-Toro, María; Furnborough, Concha
2014-01-01
Despite the potential benefits of assignment feedback, learners often fail to use it effectively. This study examines the ways in which adult distance learners engage with written feedback on one of their assignments. Participants were 10 undergraduates studying Spanish at the Open University, UK. Their responses to feedback were elicited by means…
Huang Yu-Jiao; Hu Hai-Gen
2015-01-01
In this paper, the multistability issue is discussed for delayed complex-valued recurrent neural networks with discontinuous real-imaginary-type activation functions. Based on a fixed theorem and stability definition, sufficient criteria are established for the existence and stability of multiple equilibria of complex-valued recurrent neural networks. The number of stable equilibria is larger than that of real-valued recurrent neural networks, which can be used to achieve high-capacity associative memories. One numerical example is provided to show the effectiveness and superiority of the presented results. (paper)
Voluntarily controlled but not merely observed visual feedback affects postural sway
Asai, Tomohisa; Hiromitsu, Kentaro; Imamizu, Hiroshi
2018-01-01
Online stabilization of human standing posture utilizes multisensory afferences (e.g., vision). Whereas visual feedback of spontaneous postural sway can stabilize postural control especially when observers concentrate on their body and intend to minimize postural sway, the effect of intentional control of visual feedback on postural sway itself remains unclear. This study assessed quiet standing posture in healthy adults voluntarily controlling or merely observing visual feedback. The visual feedback (moving square) had either low or high gain and was either horizontally flipped or not. Participants in the voluntary-control group were instructed to minimize their postural sway while voluntarily controlling visual feedback, whereas those in the observation group were instructed to minimize their postural sway while merely observing visual feedback. As a result, magnified and flipped visual feedback increased postural sway only in the voluntary-control group. Furthermore, regardless of the instructions and feedback manipulations, the experienced sense of control over visual feedback positively correlated with the magnitude of postural sway. We suggest that voluntarily controlled, but not merely observed, visual feedback is incorporated into the feedback control system for posture and begins to affect postural sway. PMID:29682421
Feedback-type giant magneto-impedance sensor based on longitudinal excitation
Zhao Wen; Bu Xiongzhu; Yu Geliang; Xiang Chao
2012-01-01
In this paper, the characteristics of Fe-based amorphous ribbon based on the longitudinal excitation are investigated with assistance of the theory of the giant magneto-impedance (GMI) effect. A feedback-type GMI micro-magnetic sensor is designed with regard to the design of the sensing element, the excitation circuit, the conditional circuit and the feedback circuit. With the analysis of the dynamic and static characteristics of the feedback-type GMI sensor, it is concluded that the designed feedback-type GMI sensor has higher linearity, stability and dynamic characteristics than non-feedback-type GMI sensor in −2.5 to +2.5 Oe. - Highlights: ► A feedback-type GMI micro-magnetic sensor is designed. ► Excitation coil and feedback coil of the sensor is designed to be in one. ► The feedback-type sensor has higher linearity and stability than non-feedback type. ► The feedback-type sensor has better dynamic characteristics than non-feedback type.
Holdt Christensen, Peter
Feedback på arbejdspladser er vigtig. Men feedback er også et populært begreb mange taler med om uden dog at vide sig helt sikker på hvad det er. Formålet med denne bog er at bidrage til en bedre forståelse af hvad feedback er, hvordan det fungerer og dermed hvordan arbejdspladser bedst muligt bør...... understøtte feedback. Med udgangspunkt i forskningen identificeres centrale udfordringer ved feedback, bl.a. hvorfor det kan være svært at give præcis feedback, hvordan forholdet mellem lederen og den ansatte påvirker den feedback der gives, og hvad der kendetegner en feedback kultur. Bogen er skrevet til...... undervisere og studerende på videregående uddannelser samt praktikere der ønsker en systematisk og forskningsbaseret forståelse af feedback på arbejdspladser. Bogen er således ikke en kogebog til bedre feedback, men en analyse og diskussion af hvad forskningen ved om feedback, og bidrager med inspiration og...
On the Stability of Strange Dwarf Hybrid Stars
Alford, Mark G.; Harris, Steven P. [Physics Department, Washington University, St. Louis, MO 63130 (United States); Sachdeva, Pratik S., E-mail: harrissp@wustl.edu [Department of Physics, University of California, Berkeley, CA 94720 (United States)
2017-10-01
We investigate the stability of “strange dwarfs”: white-dwarf-sized stars with a density discontinuity between a small dense core of quark matter and a thick low-density mantle of degenerate electrons. Previous work on strange dwarfs suggested that such a discontinuity could stabilize stars that would have been classified as unstable by the conventional criteria based on extrema in the mass–radius relation. We investigate the stability of such stars by numerically solving the Sturm–Liouville equations for the lowest-energy modes of the star. We find that the conventional criteria are correct, and strange dwarfs are not stable.
Socio-Economic Differentials in Contraceptive Discontinuation in India
Kiran Agrahari
2016-05-01
Full Text Available Fertility divergence amid declining in use of modern contraception in many states of India needs urgent research and programmatic attention. Although utilization of antenatal, natal, and post-natal care has shown spectacular increase in post National Rural Health Mission (NRHM period, the contraceptive use had shown a declining trend. Using the calendar data from the National Family Health Survey–3, this article examines the reasons of contraceptive discontinuation among spacing method users by socio-economic groups in India. Bivariate and multivariate analyses and life table discontinuation rates are used in the analyses. Results suggest that about half of the pill users, two fifths of the condom users, one third of traditional method users, and one fifth of IUD users discontinue a method in first 12 months of use. However, the discontinuation of all three modern spacing methods declines in subsequent period (within 12-36 months. The probability of method failure was highest among traditional method users and higher among poor and less educated that may lead to unwanted/mistimed birth. Although discontinuation of condom declines with economic status, it does not show any large variation for pill users. The contraceptive discontinuation was significantly associated with duration of use, age, parity, contraceptive method, religion, and contraceptive intention. Based on these findings, it is suggested that follow-up services to modern spacing method users, increasing counseling for spacing method users, motivating the traditional method user to use modern spacing method, and improving the overall quality of family planning services can reduce the discontinuation of spacing method.
Status of Digital Orbit Feedback for SPEAR
Hettel, Robert
2003-01-01
The present global orbit feedback system for SPEAR can adjust the electron beam position with a cycle time of 5 s. In addition, 50 Hz analog local servos stabilize the vertical photon beam position at monitors situated in the ten SSRL beamlines. The global and local systems will soon be merged into a single unified system operating from a dedicated DSP board. The goal is to acquire orbits, process the data, and correct beam position in a 1-2 ms interval to achieve a 30-50 Hz closed-loop bandwidth
Soriguera Marti, F.; Miralles Miquel, E.
2016-07-01
This paper faces the human factor in driving and its consequences for road safety. It presents the concepts behind the development of a smartphone app capable of evaluating drivers’ performance. The app provides feedback to the driver in terms of a grade (between 0 and 10) depending on the aggressiveness and risks taken while driving. These are computed from the cumulative probability distribution function of the jerks (i.e. the time derivative of acceleration), which are measured using the smartphones’ accelerometer. Different driving contexts (e.g. urban, freeway, congestion, etc.) are identified applying cluster analysis to the measurements, and treated independently. Using regression analysis, the aggressiveness indicator is related to the drivers' safety records and to the probability of having an accident, through the standard DBQ - Driving Behavior Questionnaire. Results from a very limited pilot test show a strong correlation between the 99th percentile of the jerk measurements and the DBQ results. A linear model is fitted. This allows quantifying the safe driving behavior only from smartphone measurements. Finally, this indicator is translated into a normalized grade and feedback to the driver. This feedback will challenge the driver to train and to improve his performance. The phone will be blocked while driving and will incorporate mechanisms to prevent bad practices, like competition in aggressive driving. The app is intended to contribute to the improvement of road safety, one of the major public health problems, by tackling the human factor which is the trigger of the vast majority of traffic accidents. Making explicit and quantifying risky behaviors is the first step towards a safer driving. (Author)
Biotic and Biogeochemical Feedbacks to Climate Change
Torn, M. S.; Harte, J.
2002-12-01
Feedbacks to paleoclimate change are evident in ice core records showing correlations of temperature with carbon dioxide, nitrous oxide, and methane. Such feedbacks may be explained by plant and microbial responses to climate change, and are likely to occur under impending climate warming, as evidenced by results of ecosystem climate manipulation experiments and biometeorological observations along ecological and climate gradients. Ecosystems exert considerable influence on climate, by controlling the energy and water balance of the land surface as well as being sinks and sources of greenhouse gases. This presentation will focus on biotic and biogeochemical climate feedbacks on decadal to century time scales, emphasizing carbon storage and energy exchange. In addition to the direct effects of climate on decomposition rates and of climate and CO2 on plant productivity, climate change can alter species composition; because plant species differ in their surface properties, productivity, phenology, and chemistry, climate-induced changes in plant species composition can exert a large influence on the magnitude and sign of climate feedbacks. We discuss the effects of plant species on ecosystem carbon storage that result from characteristic differences in plant biomass and lifetime, allocation to roots vs. leaves, litter quality, microclimate for decomposition and the ultimate stabilization of soil organic matter. We compare the effect of species transitions on transpiration, albedo, and other surface properties, with the effect of elevated CO2 and warming on single species' surface exchange. Global change models and experiments that investigate the effect of climate only on existing vegetation may miss the biggest impacts of climate change on biogeochemical cycling and feedbacks. Quantification of feedbacks will require understanding how species composition and long-term soil processes will change under global warming. Although no single approach, be it experimental
The Endogenous Feedback Network
Augustenborg, Claudia Carrara
2010-01-01
proposals, it will first be considered the extents of their reciprocal compatibility, tentatively shaping an integrated, theoretical profile of consciousness. A new theory, the Endogenous Feedback Network (EFN) will consequently be introduced which, beside being able to accommodate the main tenets...... of the reviewed theories, appears able to compensate for the explanatory gaps they leave behind. The EFN proposes consciousness as the phenomenon emerging from a distinct network of neural paths broadcasting the neural changes associated to any mental process. It additionally argues for the need to include a 5th...
Stability of Functional Differential Equations
Lemm, Jeffrey M
1986-01-01
This book provides an introduction to the structure and stability properties of solutions of functional differential equations. Numerous examples of applications (such as feedback systrems with aftereffect, two-reflector antennae, nuclear reactors, mathematical models in immunology, viscoelastic bodies, aeroautoelastic phenomena and so on) are considered in detail. The development is illustrated by numerous figures and tables.
A transimpedance amplifier using a novel current mode feedback loop
Anghinolfi, Francis; Delagnes, E; Jarron, Pierre; Scharfetter, L H H
1995-01-01
We present a transimpedance amplifier stage based on a novel current mode feedback topology. This circuit employs NMOS and PMOS transistors exclusively and requires neither capacitor for stabilizing the transimpedance loop nor resistor for the transresistance feedback and transistor loading. This amplifier circuit is fully compatible with submicron digital CMOS processes. The active feedback network consists of two grounded-gate MOS devices which split the output current in both the feedback and output branches. The transresistance and the phase margin are adjustable through external DC signals. The measured rise time of the impulse response of the amplifier implemented in an industrial 0,7µm CMOS process is 18 ns for a transresistance of 180 k and 30 ns for a transresistance of 560 k. The measured Equivalent Noise Charge (ENC) is 800 rms e¯ for an input capacitance of 20 pF with the transresistance adjusted to 560 k.
Dynamical control of chaos by slave-master feedback
Behnia, S.; Akhshani, A.
2009-01-01
Techniques for stabilizing unstable state in nonlinear dynamical systems using small perturbations fall into three general categories: feedback, non-feedback schemes, and a combination of feedback and non-feedback. However, the general problem of finding conditions for creation or suppression of chaos still remains open. We describe a method for dynamical control of chaos. This method is based on a definition of the hierarchy of solvable chaotic maps with dynamical parameter as a control parameter. In order to study the new mechanism of control of chaotic process, Kolmogorov-Sinai entropy of the chaotic map with dynamical parameter based on discussion the properties of invariant measure have been calculated and confirmed by calculation of Lyapunov exponents. The introduced chaotic maps can be used as dynamical control.
On a new time-delayed feedback control of chaotic systems
Tian Lixin; Xu Jun; Sun Mei; Li Xiuming
2009-01-01
In this paper, using the idea of the successive dislocation feedback method, a new time-delayed feedback control method called the successive dislocation time-delayed feedback control (SDTDFC) is designed. Firstly, the idea of SDTDFC is introduced. Then some analytic sufficient conditions of the chaos control from the SDTDFC approach are derived for stabilization. Finally, some established results are further clarified via a case study of the Lorenz system with the numerical simulations.
The Microphone Feedback Analogy for Chatter in Machining
Tony Schmitz
2015-01-01
Full Text Available This paper provides experimental evidence for the analogy between the time-delay feedback in public address systems and chatter in machining. Machining stability theory derived using the Nyquist criterion is applied to predict the squeal frequency in a microphone/speaker setup. Comparisons between predictions and measurements are presented.
Feedback control for magnetic island suppression in tokamaks
Hennen, B.A.
2011-01-01
A real-time feedback control system has been developed that finds, tracks, suppresses and/or stabilizes resistive magnetic instabilities in a nuclear fusion plasma. In a tokamak, magnetic fields confine a fusion plasma in a topology of toroidally nested magnetic surfaces. The power produced by the
Stability analysis of jointed rock slope by the block theory
Yoshinaka, Ryunoshin; Yamabe, Tadashi; Fujita, Tomoo.
1990-01-01
The block theory to analyze three dimensional stability problems of discontinuous rock masses is applied to the actual discontinuous rock slope. Taking into consideration that the geometrical information about discontinuities generally increases according to progressive steps of rock investigation in field, the method adopted for analysis is divided into following two steps; 1) the statistical/probabilitical analysis using information from the primary investigation stage which mainly consists of that of natural rock outcrops, and 2) the deterministic analysis correspond to the secondary stage using exploration adits. (author)
The Interplay between Feedback and Buffering in Cellular Homeostasis.
Hancock, Edward J; Ang, Jordan; Papachristodoulou, Antonis; Stan, Guy-Bart
2017-11-22
Buffering, the use of reservoirs of molecules to maintain concentrations of key molecular species, and negative feedback are the primary known mechanisms for robust homeostatic regulation. To our knowledge, however, the fundamental principles behind their combined effect have not been elucidated. Here, we study the interplay between buffering and negative feedback in the context of cellular homeostasis. We show that negative feedback counteracts slow-changing disturbances, whereas buffering counteracts fast-changing disturbances. Furthermore, feedback and buffering have limitations that create trade-offs for regulation: instability in the case of feedback and molecular noise in the case of buffering. However, because buffering stabilizes feedback and feedback attenuates noise from slower-acting buffering, their combined effect on homeostasis can be synergistic. These effects can be explained within a traditional control theory framework and are consistent with experimental observations of both ATP homeostasis and pH regulation in vivo. These principles are critical for studying robustness and homeostasis in biology and biotechnology. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Discontinuation of nicotine replacement therapy among smoking-cessation attempters.
Burns, Emily K; Levinson, Arnold H
2008-03-01
Nicotine replacement therapy (NRT) doubles successful quitting, but more than half of NRT users do not comply with optimal treatment regimens. From the 2005 Colorado state tobacco survey, quit attempters who utilized NRT (N=366) were analyzed in spring 2007. Descriptive and regression analyses were used to examine reasons for discontinuing NRT, length of time on NRT, and quit intentions. The reasons for discontinuing NRT were resuming smoking (34%), side effects (17%), NRT not helping with quitting (14%), quitting smoking (10%), and cost (5%). Poverty, age, and non-Latino minority status were associated with reasons for discontinuation other than quitting smoking. Having side effects was associated with a short duration of NRT use and 95% lower odds of intending to quit in the next month. In the first population-level study examining reasons for discontinuing NRT, general-population smokers who initiate NRT use when attempting to quit are highly likely to discontinue NRT prematurely. Age and culturally-appropriate medication management interventions may increase NRT compliance and improve cessation outcomes.
Solutions of the Wheeler-Feynman equations with discontinuous velocities.
de Souza, Daniel Câmara; De Luca, Jayme
2015-01-01
We generalize Wheeler-Feynman electrodynamics with a variational boundary value problem for continuous boundary segments that might include velocity discontinuity points. Critical-point orbits must satisfy the Euler-Lagrange equations of the action functional at most points, which are neutral differential delay equations (the Wheeler-Feynman equations of motion). At velocity discontinuity points, critical-point orbits must satisfy the Weierstrass-Erdmann continuity conditions for the partial momenta and the partial energies. We study a special setup having the shortest time-separation between the (infinite-dimensional) boundary segments, for which case the critical-point orbit can be found using a two-point boundary problem for an ordinary differential equation. For this simplest setup, we prove that orbits can have discontinuous velocities. We construct a numerical method to solve the Wheeler-Feynman equations together with the Weierstrass-Erdmann conditions and calculate some numerical orbits with discontinuous velocities. We also prove that the variational boundary value problem has a unique solution depending continuously on boundary data, if the continuous boundary segments have velocity discontinuities along a reduced local space.
The optimal time of discontinuing methimazole before radioiodine therapy
Moosavi, Z.; Zakavi, R.
2001-01-01
Hyperthyroidism is a common disease and one of the best methods for its treatment is radioiodine therapy with Treatment with antithyroid drugs brings patients to euthyroidism before radioiodine therapy. Antithyroid drugs should be discontinued before radioiodine therapy to increase thyroid uptake. The purpose of this study was to determine the optimal time of methimazole discontinuation. One hundred eighty four patients, who were referred for radioiodine therapy were classified in 3 groups according to the duration of methimazole discontinuation before thyroid uptake (RAIU) measurement. Group 1,2 and 3 were patients who discontinued methimazole (48-72 h rs), (72-120 h rs) and more than 120 h rs before RAIU measurement, respectively. Mean thyroid uptake in group 1, 2 and 3 was (64±151.1%), (60.1±14.1%) and (59.3±12.8), respectively. No significant difference was noted in thyroid uptake between these groups (F= 1.83, P<0.16). This study shows that 48-72 h rs of methimazole discontinuation before radioiodine therapy is enough and longer term abstention is not associated with higher uptake
Feedback reliability calculation for an iterative block decision feedback equalizer
Huang, G; Nix, AR; Armour, SMD
2009-01-01
A new class of iterative block decision feedback equalizer (IB-DFE) was pioneered by Chan and Benvenuto. Unlike the conventional DFE, the IB-DFE is optimized according to the reliability of the feedback (FB) symbols. Since the use of the training sequence (TS) for feedback reliability (FBR) estimation lowers the bandwidth efficiency, FBR estimation without the need for additional TS is of considerable interest. However, prior FBR estimation is limited in the literature to uncoded M-ary phases...
2010-04-01
... discontinues business or professional practice. Any registrant who ceases legal existence or discontinues... registration; distribution upon discontinuance of business. 1301.52 Section 1301.52 Food and Drugs DRUG... of registration; transfer of registration; distribution upon discontinuance of business. (a) Except...
Using periodic modulation to control coexisting attractors induced by delayed feedback
Martinez-Zerega, B.E.; Pisarchik, A.N.; Tsimring, L.S.
2003-01-01
A delay in feedback can stabilize simultaneously several unstable periodic orbits embedded in a chaotic attractor. We show that by modulating the feedback variable it is possible to lock one of these states and eliminate other coexisting periodic attractors. The method is demonstrated with both a logistic map and a CO 2 laser model
Roig, F.; Dusseau, L.; Privat, A.; Vaille, J.R.; Boch, J.; Saigne, F.; Ribeiro, P.; Auriel, G.; Roche, N.J.H.; Marec, R.; Calvel, P.; Bezerra, F.; Ecoffet, R.; Azais, B.
2014-01-01
The influence of external circuit designs on ASET shapes in a high speed current feedback amplifier (CFA) (AD844) is investigated by means of the pulsed laser single event effect (PLSEE) simulation technique. Changes of the feedback resistors modify circuit's electrical parameters such as closed-loop gain and bandwidth, affecting amplifier stability and so ASET shapes. Qualitative explanations based on general electronic rules and feedback theories enable the understanding of a CFA operation establishing a correlation between the evolution of external feedback resistor values and ASET parameters. TID effects on the ASET sensitivity in AD844 CFA are also investigated in this work highlighting different behaviors according to the impacted bipolar transistor in the integrated circuit. (authors)
Greenhouse gas balance over thaw-freeze cycles in discontinuous zone permafrost
Wilson, R. M.; Fitzhugh, L.; Whiting, G. J.; Frolking, S.; Harrison, M. D.; Dimova, N.; Burnett, W. C.; Chanton, J. P.
2017-02-01
Peat in the discontinuous permafrost zone contains a globally significant reservoir of carbon that has undergone multiple permafrost-thaw cycles since the end of the mid-Holocene ( 3700 years before present). Periods of thaw increase C decomposition rates which leads to the release of CO2 and CH4 to the atmosphere creating potential climate feedback. To determine the magnitude and direction of such feedback, we measured CO2 and CH4 emissions and modeled C accumulation rates and radiative fluxes from measurements of two radioactive tracers with differing lifetimes to describe the C balance of the peatland over multiple permafrost-thaw cycles since the initiation of permafrost at the site. At thaw features, the balance between increased primary production and higher CH4 emission stimulated by warmer temperatures and wetter conditions favors C sequestration and enhanced peat accumulation. Flux measurements suggest that frozen plateaus may intermittently (order of years to decades) act as CO2 sources depending on temperature and net ecosystem respiration rates, but modeling results suggest that—despite brief periods of net C loss to the atmosphere at the initiation of thaw—integrated over millennia, these sites have acted as net C sinks via peat accumulation. In greenhouse gas terms, the transition from frozen permafrost to thawed wetland is accompanied by increasing CO2 uptake that is partially offset by increasing CH4 emissions. In the short-term (decadal time scale) the net effect of this transition is likely enhanced warming via increased radiative C emissions, while in the long-term (centuries) net C deposition provides a negative feedback to climate warming.
Lectures in feedback design for multivariable systems
Isidori, Alberto
2017-01-01
This book focuses on methods that relate, in one form or another, to the “small-gain theorem”. It is aimed at readers who are interested in learning methods for the design of feedback laws for linear and nonlinear multivariable systems in the presence of model uncertainties. With worked examples throughout, it includes both introductory material and more advanced topics. Divided into two parts, the first covers relevant aspects of linear-systems theory, the second, nonlinear theory. In order to deepen readers’ understanding, simpler single-input–single-output systems generally precede treatment of more complex multi-input–multi-output (MIMO) systems and linear systems precede nonlinear systems. This approach is used throughout, including in the final chapters, which explain the latest advanced ideas governing the stabilization, regulation, and tracking of nonlinear MIMO systems. Two major design problems are considered, both in the presence of model uncertainties: asymptotic stabilization with a “...
On the application of frequency selective common mode feedback for multifrequency EIT.
Langlois, Peter J; Wu, Yu; Bayford, Richard H; Demosthenous, Andreas
2015-06-01
Common mode voltages are frequently a problem in electrical impedance tomography (EIT) and other bioimpedance applications. To reduce their amplitude common mode feedback is employed. Formalised analyses of both current and voltage feedback is presented in this paper for current drives. Common mode effects due to imbalances caused by the current drives, the electrode connections to the body load and the introduction of the body impedance to ground are considered. Frequency selective narrowband common mode feedback previously proposed to provide feedback stability is examined. As a step towards multifrequency applications the use of narrowband feedback is experimentally demonstrated for two simultaneous current drives. Measured results using standard available components show a reduction of 62 dB for current feedback and 31 dB for voltage feedback. Frequencies ranged from 50 kHz to 1 MHz.
New stability and stabilization for switched neutral control systems
Xiong Lianglin; Zhong Shouming; Ye Mao; Wu Shiliang
2009-01-01
This paper concerns stability and stabilization issues for switched neutral systems and presents new classes of piecewise Lyapunov functionals and multiple Lyapunov functionals, based on which, two new switching rules are introduced to stabilize the neutral systems. One switching rule is designed from the solution of the so-called Lyapunov-Metzler linear matrix inequalities. The other is based on the determination of average dwell time computed from a new class of linear matrix inequalities (LMIs). And then, state-feedback control is derived for the switched neutral control system mainly based on the state switching rules. Finally, three examples are given to demonstrate the effectiveness of the proposed method.
GIVING AND RECEIVING CONSTRUCTIVE FEEDBACK
Ірина Олійник
2015-05-01
Full Text Available The article scrutinizes the notion of feedback applicable in classrooms where team teaching is provided. The experience of giving and receiving feedback has been a good practice in cooperation between a U.S. Peace Corps volunteer and a Ukrainian counterpart. Giving and receiving feedback is an effective means of classroom observation that provides better insight into the process of teaching a foreign language. The article discusses the stages of feedback and explicates the notion of sharing experience between two teachers working simultaneously in the same classroom. The guidelines for giving and receiving feedback have been provided as well as the most commonly used vocabulary items have been listed. It has been proved that mutual feedback leads to improving teaching methods and using various teaching styles and techniques.
Emotional feedback for mobile devices
Seebode, Julia
2015-01-01
This book investigates the functional adequacy as well as the affective impression made by feedback messages on mobile devices. It presents an easily adoptable experimental setup to examine context effects on various feedback messages, and applies it to auditory, tactile and auditory-tactile feedback messages. This approach provides insights into the relationship between the affective impression and functional applicability of these messages as well as an understanding of the influence of unimodal components on the perception of multimodal feedback messages. The developed paradigm can also be extended to investigate other aspects of context and used to investigate feedback messages in modalities other than those presented. The book uses questionnaires implemented on a Smartphone, which can easily be adopted for field studies to broaden the scope even wider. Finally, the book offers guidelines for the design of system feedback.
Hvad siger forskningen om feedback?
Holdt Christensen, Peter
2016-01-01
”Feedback skal serveres ligesom en gammeldags sandwich. Først lidt brød, så det lidt sejere kød og til sidst igen til lidt brød”. Sådan nogenlunde lyder en pragmatisk løsning på udfordringerne ved at give feedback. Når medarbejdere skal have negativ feedback, skal denne altså pakkes ind, så...... feedbacken indledes med let fordøjeligt positiv feedback, derefter kommer den negative – og noget sværere fordøjelige – feedback, og til sidst afrundes feedbacken med en god udgangsreplik, nemlig den positive feedback....
Modeling shallow water flows using the discontinuous Galerkin method
Khan, Abdul A
2014-01-01
Replacing the Traditional Physical Model Approach Computational models offer promise in improving the modeling of shallow water flows. As new techniques are considered, the process continues to change and evolve. Modeling Shallow Water Flows Using the Discontinuous Galerkin Method examines a technique that focuses on hyperbolic conservation laws and includes one-dimensional and two-dimensional shallow water flows and pollutant transports. Combines the Advantages of Finite Volume and Finite Element Methods This book explores the discontinuous Galerkin (DG) method, also known as the discontinuous finite element method, in depth. It introduces the DG method and its application to shallow water flows, as well as background information for implementing and applying this method for natural rivers. It considers dam-break problems, shock wave problems, and flows in different regimes (subcritical, supercritical, and transcritical). Readily Adaptable to the Real World While the DG method has been widely used in the fie...
A non-conventional discontinuous Lagrangian for viscous flow
Marner, F.
2017-01-01
Drawing an analogy with quantum mechanics, a new Lagrangian is proposed for a variational formulation of the Navier–Stokes equations which to-date has remained elusive. A key feature is that the resulting Lagrangian is discontinuous in nature, posing additional challenges apropos the mathematical treatment of the related variational problem, all of which are resolvable. In addition to extending Lagrange's formalism to problems involving discontinuous behaviour, it is demonstrated that the associated equations of motion can self-consistently be interpreted within the framework of thermodynamics beyond local equilibrium, with the limiting case recovering the classical Navier–Stokes equations. Perspectives for applying the new formalism to discontinuous physical phenomena such as phase and grain boundaries, shock waves and flame fronts are provided. PMID:28386415
Stacking and discontinuous buffers in capillary zone electrophoresis.
Shihabi, Z K
2000-08-01
Discontinuous buffers for capillary zone electrophoresis (CZE) can be used under less rigid conditions compared to those for isotachophoresis for stacking. They can be prepared simply by modifying the sample itself, either by addition of small inorganic ions, low conductivity diluents, or both, and also by adjusting its pH, meanwhile injecting a large volume on the capillary. Zwitterionic and organic-based buffers such as triethanolamine and tris(hydroxymethyl)aminomethane (Tris) are well suited for stacking due to their low conductivity, provided the buffer is discontinuous as demonstrated here. A simple mechanism based on discontinuous buffers is described to explain many of the observed stacking types in CZE, pointing out the many similarities to transient isotachophoresis.
The structure of rotational discontinuities. [in solar wind
Neugebauer, M.
1989-01-01
This study examines the structures of a set of rotational discontinuities detected in the solar wind by the ISEE-3 spacecraft. It is found that the complexity of the structure increases as the angle theta between the propagation vector k and the magnetic field decreases. For rotational discontinuities that propagate at a large angle to the field with an ion (left-hand) sense of rotation, the magnetic hodograms tend to be flattened, in agreement with prior numerical simulations. When theta is large, angular 'overshoots' are often observed at one or both ends of the discontinuity. When the propagation is nearly parallel to the field (when theta is small), many different types of structure are seen, ranging from straight lines, to S-shaped curves, to complex, disorganized shapes.
Occupy the Financial Niche – Saturation and Crisis (discontinuous decisions
Ionut PURICA
2014-09-01
Full Text Available The model presented is proposing an approach that could verify the nonlinear behaviour during a crisis, such that to quantify and predict potential discontinuous behaviour. In this case, the crisis behaviour associated with financial funds reallocation among various credit instruments, described as memes with the sense of Dawkins, is shown to be of discontinuous nature stemming from a logistic penetration in the financial behaviour niche. Actually the logistic penetration is typical in creating cyclic behaviour of economic structures as shown by Marchetti and others from IIASA. A Fokker-Planck equation description results in a stationary solution having a bifurcation like solution with evolution trajectories on a ‘cusp’ type catastrophe that may describe discontinuous decision behaviour
Continued versus discontinued oxytocin stimulation, protocol of an rct
Boie, Sidsel; Glavind, Julie; Uldbjerg, Niels
Dutch Centres: AMC, Tergooi Hospital, and AMPHIA Hospital (inclusion expected late 2016) Intervention When the active phase of labour is established (defined as 6 cm dilated orificium), the women will be randomised to either: Continued Syntocinon® or Discontinued Syntocinon® (saline infusion) Primary......Problem Statement: Previous studies on induced labour suggest that, continued stimulation with Syntocinon® in the active phase of labour increases the risk of fetal distress and caesarean delivery whereas discontinued stimulation with Syntocinon® increases the risk of caesarean delivery due to lack...... of progression. No double-blind trial with a study population large enough to show differences in maternal and neonatal outcomes has ever been conducted. The purpose of the study is to investigate how the caesarean delivery rate is affected if Syntocinon® is discontinued at the onset of active phase of labour...
Dynamics of nonlinear feedback control
Snippe, H.P.; Hateren, J.H. van
2007-01-01
Feedback control in neural systems is ubiquitous. Here we study the mathematics of nonlinear feedback control. We compare models in which the input is multiplied by a dynamic gain (multiplicative control) with models in which the input is divided by a dynamic attenuation (divisive control). The gain signal (resp. the attenuation signal) is obtained through a concatenation of an instantaneous nonlinearity and a linear low-pass filter operating on the output of the feedback loop. For input step...
Lonza, M.; Schmickler, H.
2016-01-01
Coupled-bunch instabilities excited by the interaction of the particle beam with its surroundings can seriously limit the performance of circular particle accelerators. These instabilities can be cured by the use of active feedback systems based on sensors capable of detecting the unwanted beam motion and actuators that apply the feedback correction to the beam. Advances in electronic technology now allow the implementation of feedback loops using programmable digital systems. Besides importa...
Fatigue analysis of a structure with welds considering metallurgical discontinuities
Cabrillat, M.T.; Lejeail, Y.
1995-01-01
Within the frameworks of a creep-fatigue experimental program, called EVASION, thermo-mechanical tests were conducted on two mock-ups, the first one was fully machined and the second one welded and then machined (in order to eliminate geometrical discontinuities, thus only leaving metallurgical discontinuities). These two mock-ups were submitted to exactly the same loading history. Plastic analyses with a correct description of mechanical properties and fatigue strength of materials are conducted and compared with experimental results in order to highlight the influence of the weld. (author). 3 refs., 4 figs., 3 tabs
Quantitative Estimation of Transmitted and Reflected Lamb Waves at Discontinuity
Lim, Hyung Jin; Sohn, Hoon
2010-01-01
For the application of Lamb wave to structural health monitoring(SHM), understanding its physical characteristic and interaction between Lamb wave and defect of the host structure is an important issue. In this study, reflected, transmitted and mode converted Lamb waves at discontinuity of a plate structure were simulated and the amplitude ratios are calculated theoretically using Modal decomposition method. The predicted results were verified comparing with finite element method(FEM) and experimental results simulating attached PZTs. The result shows that the theoretical prediction is close to the FEM and the experimental verification. Moreover, quantitative estimation method was suggested using amplitude ratio of Lamb wave at discontinuity
Strong discontinuity with cam clay under large deformations
Katic, Natasa; Hededal, Ole
2008-01-01
The work shows simultaneous implementation of Strong discontinuity approach (SDA) by means of Enhanced Assumed Strain (EAS) and Critical State Soil Mechanics CSSM) in large strain regime. The numerical model is based on an additive decomposition of the displacement gradient into a conforming and ...... and an enhanced part. The localized deformations are approximated by means of a discontinuous displacement field. The applied algorithm leads to a predictor/corrector procedure which is formally identical to the returnmapping algorithm of classical (local and continuous) Cam clay model....
NUMERICAL SIMULATION OF SHOCK WAVE REFRACTION ON INCLINED CONTACT DISCONTINUITY
P. V. Bulat
2016-05-01
Full Text Available We consider numerical simulation of shock wave refraction on plane contact discontinuity, separating two gases with different density. Discretization of Euler equations is based on finite volume method and WENO finite difference schemes, implemented on unstructured meshes. Integration over time is performed with the use of the third-order Runge–Kutta stepping procedure. The procedure of identification and classification of gas dynamic discontinuities based on conditions of dynamic consistency and image processing methods is applied to visualize and interpret the results of numerical calculations. The flow structure and its quantitative characteristics are defined. The results of numerical and experimental visualization (shadowgraphs, schlieren images, and interferograms are compared.
Novel matched amplifiers with low noise positive feedback. Part II: Resistive-capacitive feedback
Bruck, Y.; Zakharenko, V.
2010-02-01
This article is a continuation of consideration for an amplifier with resistive positive feedback (RPF) (Bruck (2008), 'Novel Matched LNA with Low Noise Positive Feedback. Part 1: General Features and Resistive Feedback', International Journal of Electronics, 95, 441-456). We propose here new configuration schematics of a transformer-less selective LNA with resistive-capacitive positive feedback (RCPF). A circuit of an amplifier with a transistor connected into a circuit with a common base (CB) configuration is analysed in detail. RCPF and RPF circuits are compared. It is shown that the LNA RCPF provides any pass-band, a good level of input and output matching, a minimum noise temperature which is significantly lower than that of the LNA RPF, a rather high linearity, and stability of amplification. The simulation results and some experimental data for the amplifiers intended for use in the LOFAR radiotelescope (Konovalenko et al. (2003), 'Thirty Element Array Antenna as a Prototype of a Huge Low-Frequency Radio Telescope,' Experimental Astronomy, 16, 149-164; Konovalenko (2007), 'Ukrainian Contribution to LOFAR', A scientific workshop, organised by LOFAR/ASTRON' Emmen, Netherlands, 23-27. http://www.lofar.org/workshop) are given. It is assumed that such devices are of a special interest for high-frequency integral circuits (IC).
Wiklind, T.
1987-01-01
A simple phenomenological model of the regulatory coupling between the star formation rate and the molecular gas fraction is presented. The model can in a qualitative way explain both the constant star formation rate observed in most galaxies and the starbursting behaviour seen in some systems. Formation of massive stars are thought to have both a positive and a negative feedback on further stellar formation. A sudden increase in the gas available for star formation will cause a strong increase in the star formation rate lasting for ∼ 3.10 7 yrs. Both the star formation rate and the molecular gas friction will then perform damped oscillations over a period of a few x 10 8 yrs. This general behaviour is valid for a large range of parameter values
Tobiyama, M; Kikutani, E [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)
1996-08-01
Design and the present status of the bunch by bunch feedback systems for KEKB rings are shown. The detection of the bunch oscillation are made with the phase detection for longitudinal plane, the AM/PM method for transverse plane. Two GHz component of the bunch signal which is extracted with an analog FIR filter is used for the detection. Hardware two-tap FIR filter systems to shift the phase of the oscillation by 90deg will be used for the longitudinal signal processing. The same system will be used with no filtering but with only digital delay for transverse system. The candidate for the kicker and the required maximum power are also estimated. (author)
Reviewing operational experience feedback
1991-04-01
The purpose of this document is to provide detailed supplementary guidance to OSART experts to aid in the evaluation of operational experience feedback (OEF) programmes at nuclear power plants. The document begins by describing the objectives of an OEF programme. It goes on to indicate preparatory work and investigatory guidance for the expert. Section 5 describes attributes of an excellent OEF programme. Appended to these guidelines are examples of OEF documents from various plants. These are intended to help the expert by demonstrating the actual implementation of OEF in practice. These guidelines are in no way intended to conflict with existing national regulations and rules. A comprehensive OEF programme, as described in Section 2, would be impossible to evaluated in detail in the amount of time typically allocated for assessing OEF in an OSART review. The expert must use his or her time wisely by concentrating on those areas that appear to be the weakest
FEEDBACK AND LOGISTICS CONTROLLING
Mehesne Berek Szilvia
2015-07-01
Full Text Available The following things led to that the feedback, the supervision and improvement of the processes have become more pronounced: continuous rise in the importance of logistics; increase in complexity of its content; its activity becoming more complex. These activities are necessary for the optimum information supply. The intensification of market competition requires the corporations to possess exact and up-to-date information about their activities. Complexity of the logistics system presumes a parallel application of an effective feedback, supervision and management system simultaneously with the given logistics system. The indispensability of logistics is also proved by the fact that it can be found sporadically (in the form of logistics departments or in a complex way in case of each organization. The logistical approach means a huge support in the management since it contains the complexity, the handling as a unit in order to ensure a harmony of the different corporate departments and part activities. In addition to the professional application of a logistics system, there is an opportunity to coordinate the relations inside an organization as well as between the organizations and to handle them as a unit. The sine qua non of the success of logistical processes is a harmony of the devices applied. The controlling system is a device for feeding back the processes of a corporate system. By means of the checkpoints intercalated into the processes, the logistics controlling provides information for the leadership which contributes even more to the complex approach of logistics system. By dint of the logistics controlling, the monitoring and coordination of every logistical part activity become possible with the help of information supply ensured by the logistics controlling. The logistics controlling reviews, assesses and coordinates; these activities have an effect on the cost and income management. Its reason is to be searched in the built
Feedback control of vertical instability in TNS
Frantz, E.R.
1978-05-01
Due to the unfavorable curvature of the vertical vacuum magnetic field, elongated plasmas are vertically unstable when the elongation, epsilon, becomes too large. The TNS (The Next Step) tokamak, as evolved in the Westinghouse-ORNL studies has an inside-D configuration (epsilon = 1.6, A = 5/1.25 = 4) characterized by an average decay index n approximately equal -0.75 at the plasma flux surface near the magnetic axis and is vertically unstable with a growth rate γ 0 approximately 10 5 sec -1 . Eddy currents produced in the vacuum vessel wall will slow this instability to growth rates γ 0 approximately 10 2 sec -1 provided there are no transverse insulating gaps in the vessel wall. A matrix equation has been developed for calculating the eddy currents induced in the EF coils and their stabilizing effect. Control theory for feedback systems with and without delay time is presented and possible plasma position detectors are discussed. For a plasma current of 6.1 MA, the controller peak power requirements using separate controller circuits are approximately 1 MW depending upon EF coil configurations and time delay. This feedback system is designed to stabilize a maximum plasma excursion of 10 cm from the midplane with delay times up to 2 sec
Feedback matters current feedback practices in the EFL classroom
Reitbauer, Margit; Mercer, Sarah; Schumm-Fauster, Jennifer
2013-01-01
This varied collection of papers is concerned with feedback in the language learning context. With its blend of theoretical overviews, action research-based empirical studies and practical implications, this will be a valuable resource for all academics and practitioners concerned with generating feedback that matters.
What higher education students do with teacher feedback: Feedback ...
Writing pedagogy research has constantly maintained that feedback is 'an essential component of virtually every model of the writing process' (Hall, 1990: 43) as it motivates writers to improve their next draft. Feedback during the writing process improves not only student attitude to writing but writing performance if students ...
Modal analysis of temperature feedback in oscillations induced by xenon
Passos, E.M. dos.
1976-01-01
The flux oscillations induced by Xenon distribution in homogeneous thermal reactors are studied treating the space dependence through the modal expansion technique and the stability limits against power oscillations and spatial oscillations are determined. The effect of the feedbacks due to Xenon and temperature coefficient on the linear stability of the free system is investigated employing several number of terms in the transient expansion, considering the various sizes of the reactor. The heat transfer model considered includes one term due to cooling proportional to the temperature. A PWR model reactor is utilized for numerical calculations. It is found that a slightly higher temperature feedback coefficient is necessary for stability against power oscillations when larger number of terms in the transient modal expansion is maintained. (author)
Niemi, Antti; Collier, Nathan; Calo, Victor M.
2013-01-01
We revisit the finite element analysis of convection-dominated flow problems within the recently developed Discontinuous Petrov-Galerkin (DPG) variational framework. We demonstrate how test function spaces that guarantee numerical stability can be computed automatically with respect to the optimal test space norm. This makes the DPG method not only stable but also robust, that is, uniformly stable with respect to the Péclet number in the current application. We employ discontinuous piecewise Bernstein polynomials as trial functions and construct a subgrid discretization that accounts for the singular perturbation character of the problem to resolve the corresponding optimal test functions. We also show that a smooth B-spline basis has certain computational advantages in the subgrid discretization. The overall effectiveness of the algorithm is demonstrated on two problems for the linear advection-diffusion equation. © 2011 Elsevier B.V.
Niemi, Antti
2013-05-01
We revisit the finite element analysis of convection-dominated flow problems within the recently developed Discontinuous Petrov-Galerkin (DPG) variational framework. We demonstrate how test function spaces that guarantee numerical stability can be computed automatically with respect to the optimal test space norm. This makes the DPG method not only stable but also robust, that is, uniformly stable with respect to the Péclet number in the current application. We employ discontinuous piecewise Bernstein polynomials as trial functions and construct a subgrid discretization that accounts for the singular perturbation character of the problem to resolve the corresponding optimal test functions. We also show that a smooth B-spline basis has certain computational advantages in the subgrid discretization. The overall effectiveness of the algorithm is demonstrated on two problems for the linear advection-diffusion equation. © 2011 Elsevier B.V.
Bottura, L [European Organization for Nuclear Research, Geneva (Switzerland)
2014-07-01
Superconductor stability is at the core of the design of any successful cable and magnet application. This chapter reviews the initial understanding of the stability mechanism, and reviews matters of importance for stability such as the nature and magnitude of the perturbation spectrum and the cooling mechanisms. Various stability strategies are studied, providing criteria that depend on the desired design and operating conditions.
Real-time orbit feedback at the APS
Carwardine, J.A.; Lenkszus, F.R.
1998-01-01
A real-time orbit feedback system has been implemented at the Advanced Photon Source in order to meet the stringent orbit stability requirements. The system reduces global orbit motion below 30 Hz by a factor of four to below 5 μm rms horizontally and 2 μm rms vertically. This paper focuses on dynamic orbit stability and describes the all-digital orbit feedback system that has been implemented at the APS. Implementation of the global orbit feedback system is described and its latest performance is presented. Ultimately, the system will provide local feedback at each x-ray source point using installed photon BPMs to measure x-ray beam position and angle directly. Technical challenges associated with local feedback and with dynamics of the associated corrector magnets are described. The unique diagnostic capabilities provided by the APS system are discussed with reference to their use in identifying sources of the underlying orbit motion. copyright 1998 American Institute of Physics
Complementarity and stability conditions
Howard Georgi
2017-08-01
Full Text Available We discuss the issue of complementarity between the confining phase and the Higgs phase for gauge theories in which there are no light particles below the scale of confinement or spontaneous symmetry breaking. We show with a number of examples that even though the low energy effective theories are the same (and trivial, discontinuous changes in the structure of heavy stable particles can signal a phase transition and thus we can sometimes argue that two phases which have different structures of heavy particles that cannot be continuously connected and thus the phases cannot be complementary. We discuss what this means and suggest that such “stability conditions” can be a useful physical check for complementarity.
Botti, L.; Colombo, A.; Bassi, F.
2017-10-01
In this work we exploit agglomeration based h-multigrid preconditioners to speed-up the iterative solution of discontinuous Galerkin discretizations of the Stokes and Navier-Stokes equations. As a distinctive feature h-coarsened mesh sequences are generated by recursive agglomeration of a fine grid, admitting arbitrarily unstructured grids of complex domains, and agglomeration based discontinuous Galerkin discretizations are employed to deal with agglomerated elements of coarse levels. Both the expense of building coarse grid operators and the performance of the resulting multigrid iteration are investigated. For the sake of efficiency coarse grid operators are inherited through element-by-element L2 projections, avoiding the cost of numerical integration over agglomerated elements. Specific care is devoted to the projection of viscous terms discretized by means of the BR2 dG method. We demonstrate that enforcing the correct amount of stabilization on coarse grids levels is mandatory for achieving uniform convergence with respect to the number of levels. The numerical solution of steady and unsteady, linear and non-linear problems is considered tackling challenging 2D test cases and 3D real life computations on parallel architectures. Significant execution time gains are documented.
Application of Discontinuous PWM Modulation in Active Power Filters
Blaabjerg, Frede; Asiminoaei, Lucian; Rodriguez, Pedro
2008-01-01
Classical discontinuous pulsewidth modulations (DPWMs) may not be efficiently applied in active power filters (APFs), because it is hard to predict the peak values of the inverter current, and consequently it is difficult to calculate the position of the clamped interval, that minimizes...
A Bayesian Nonparametric Causal Model for Regression Discontinuity Designs
Karabatsos, George; Walker, Stephen G.
2013-01-01
The regression discontinuity (RD) design (Thistlewaite & Campbell, 1960; Cook, 2008) provides a framework to identify and estimate causal effects from a non-randomized design. Each subject of a RD design is assigned to the treatment (versus assignment to a non-treatment) whenever her/his observed value of the assignment variable equals or…
A Level Set Discontinuous Galerkin Method for Free Surface Flows
Grooss, Jesper; Hesthaven, Jan
2006-01-01
We present a discontinuous Galerkin method on a fully unstructured grid for the modeling of unsteady incompressible fluid flows with free surfaces. The surface is modeled by embedding and represented by a levelset. We discuss the discretization of the flow equations and the level set equation...
Dialogic Reverberations: Police, Domestic Abuse, and the Discontinuance of Cases
Lea, Susan J.; Lynn, Nick
2012-01-01
This study investigated the social construction of domestic abuse by police officers, specifically in the context of arguments presented to the prosecutor for a decision on whether to proceed with or discontinue the case. Nineteen police files were examined with a particular focus on the MG3, the "Report to Crown Prosecutors for Charging…
Grades, Gender, and Encouragement: A Regression Discontinuity Analysis
Owen, Ann L.
2010-01-01
The author employs a regression discontinuity design to provide direct evidence on the effects of grades earned in economics principles classes on the decision to major in economics and finds a differential effect for male and female students. Specifically, for female students, receiving an A for a final grade in the first economics class is…
Discontinuous Sturm-Liouville Problems with Eigenvalue Dependent Boundary Condition
Amirov, R. Kh., E-mail: emirov@cumhuriyet.edu.tr; Ozkan, A. S., E-mail: sozkan@cumhuriyet.edu.tr [Cumhuriyet University, Department of Mathematics Faculty of Art and Science (Turkey)
2014-12-15
In this study, an inverse problem for Sturm-Liouville differential operators with discontinuities is studied when an eigenparameter appears not only in the differential equation but it also appears in the boundary condition. Uniqueness theorems of inverse problems according to the Prüfer angle, the Weyl function and two different eigenvalues sets are proved.
Factors associated with use and discontinuation of Implanon ...
Factors associated with use and discontinuation of Implanon contraceptive in ... The low CPR is the direct cause of the high total fertility of 5.7 in Nigeria. ... This is especially more true with the use of long acting reversible contraceptive methods like implanon which ... Their mean age was 31 years with a range of 16 to 53.
Clearance gap flow: Simulations by discontinuous Galerkin method and experiments
Hála, Jindřich; Luxa, Martin; Bublík, O.; Prausová, H.; Vimmr, J.
2016-01-01
Roč. 92, May (2016), 02073-02073 ISSN 2100-014X. [EFM14 – Experimental Fluid Mechanics 2014. Český Krumlov, 18.11.2014-21.11.2014] Institutional support: RVO:61388998 Keywords : compressible fluid flow * narrow channel flow * discontinuous Galerkin finite element method Subject RIV: BK - Fluid Dynamics
How Can Comparison Groups Strengthen Regression Discontinuity Designs?
Wing, Coady; Cook, Thomas D.
2011-01-01
In this paper, the authors examine some of the ways that different types of non-equivalent comparison groups can be used to strengthen causal inferences based on regression discontinuity design (RDD). First, they consider a design that incorporates pre-test data on assignment scores and outcomes that were collected either before the treatment…