WorldWideScience

Sample records for discontinuous fiber reinforced

  1. Performance Assessment of Discontinuous Fibers in Fiber Reinforced Concrete: Current State-of-the-Art

    Science.gov (United States)

    2017-07-01

    strength between 190 to 240 MPa and is broadly characterized as a reactive powder concrete (RPC). RPCs have fine aggregates and powders but do not...ER D C/ G SL T R- 17 -1 9 Performance Assessment of Discontinuous Fibers in Fiber-Reinforced Concrete : Current State-of-the-Art G eo te...Discontinuous Fibers in Ultra-High Performance Fiber-Reinforced Concrete : Current State-of-the-Art Charles A. Burchfield Geotechnical and

  2. High-temperature discontinuously reinforced aluminum

    Science.gov (United States)

    Zedalis, M. S.; Bryant, J. D.; Gilman, P. S.; Das, S. K.

    1991-08-01

    High-temperature discontinuously reinforced aluminum (HTDRA) composites have been developed for elevated-temperature applications by incorporating SiC particulate reinforcement into a rapidly solidified, high-temperature Al-Fe-V-Si (alloy 8009) matrix. HTDRA combines the superior elevated-temperature strength, stability and corrosion resistance of the 8009 matrix with the excellent specific stiffness and abrasion resistance of the discontinuous SiC particulate reinforcement. On a specific stiffness basis, HTDRA is competitive with Ti-6-Al-4V and 17-4 PH stainless steel to temperatures approaching 480°C. Potential aerospace applications being considered for HTDRA include aircraft wing skins, missile bodies, and miscellaneous engine, spacecraft and hypersonic vehicle components.

  3. Fiber-reinforced ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Belcheva, D. [Technological University `Prof. A. Zlatarov`, Bourgas (Bulgaria); Lubchev, L.; Jelezkov, G.; Georgiev, W.

    1995-03-01

    The possibilities for preparation of reinforced composite materials were studied. Test specimens based on different types of alumina matrices, plasticized with formaldehyde oligomer and polyvinyl alcohol, and reinforced with carbon and mullite fibers were prepared and investigated. The results confirmed that reinforced composite materials with valuable properties such as high thermal shock resistance, chemical resistance and mechanical strength can be produced. The density of technical alumina materials is lower, compared with that of pure alumina. The density can also be influenced by the type and quantity of the plasticizers used. By increasing the fiber content, the density of the material decreases. The shrinkage is influcenced by the type and the quantity of the reinforcing material. (orig.)

  4. Short fiber reinforced thermoplastic blends

    NARCIS (Netherlands)

    Malchev, P.G.

    2008-01-01

    The present thesis investigates the potential of short fiber reinforced thermoplastic blends, a combination of an immiscible polymer blend and a short fiber reinforced composite, to integrate the easy processing solutions available for short fiber reinforced composites with the high mechanical perfo

  5. Short fiber reinforced thermoplastic blends

    NARCIS (Netherlands)

    Malchev, P.G.

    2008-01-01

    The present thesis investigates the potential of short fiber reinforced thermoplastic blends, a combination of an immiscible polymer blend and a short fiber reinforced composite, to integrate the easy processing solutions available for short fiber reinforced composites with the high mechanical perfo

  6. Fiber reinforced polypropylene nanocomposites

    OpenAIRE

    2007-01-01

    The aim of this thesis is to assess the feasibility of integrating nanoparticles into glass fiber (GF) reinforced isotactic polypropylene (iPP) composites via existing thermoplastic processing routes, and to investigate whether this results in significant improvements in the mechanical properties of the final composites. A longer term aim will be to extend the approach to the preparation of hybrid composites with added non-structural functionality. However, the nanoparticles that have provide...

  7. Fiber reinforced polypropylene nanocomposites

    OpenAIRE

    2008-01-01

    The aim of this thesis is to assess the feasibility of integrating nanoparticles into glass fiber (GF) reinforced isotactic polypropylene (iPP) composites via existing thermoplastic processing routes, and to investigate whether this results in significant improvements in the mechanical properties of the final composites. A longer term aim will be to extend the approach to the preparation of hybrid composites with added non-structural functionality. However, the nanoparticles that have provide...

  8. Machining of fiber reinforced composites

    Science.gov (United States)

    Komanduri, Ranga; Zhang, Bi; Vissa, Chandra M.

    Factors involved in machining of fiber-reinforced composites are reviewed. Consideration is given to properties of composites reinforced with boron filaments, glass fibers, aramid fibers, carbon fibers, and silicon carbide fibers and to polymer (organic) matrix composites, metal matrix composites, and ceramic matrix composites, as well as to the processes used in conventional machining of boron-titanium composites and of composites reinforced by each of these fibers. Particular attention is given to the methods of nonconventional machining, such as laser machining, water jet cutting, electrical discharge machining, and ultrasonic assisted machining. Also discussed are safety precautions which must be taken during machining of fiber-containing composites.

  9. Sensored fiber reinforced polymer grate

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Michael P.; Mack, Thomas Kimball

    2017-08-01

    Various technologies described herein pertain to a sensored grate that can be utilized for various security fencing applications. The sensored grate includes a grate framework and an embedded optical fiber. The grate framework is formed of a molded polymer such as, for instance, molded fiber reinforced polymer. Further, the grate framework includes a set of elongated elements, where the elongated elements are spaced to define apertures through the grate framework. The optical fiber is embedded in the elongated elements of the grate framework. Moreover, bending or breaking of one or more of the elongated elements can be detected based on a change in a characteristic of input light provided to the optical fiber compared to output light received from the optical fiber.

  10. Engineering Design Handbook. Discontinuous Fiberglass Reinforced Thermoplastics

    Science.gov (United States)

    1981-04-01

    Thermoplastics 3-16 3-5.1 Tensile Strength Loss and Weight Change 3-16 3-5.2 Chemical Resistance 3-17 3-6 Bacterial and Weather Resistance of Glass...82173 Dielectric constant at 72°F, 106Hz, dimensionless Dielectric constant at72°F, 10loHz, dimensionless Loss tangent at72°F, 106Hz, dimensionless... polyurethane . The unnotched Izod impact strengths of thermoplastic resins are generally reduced by the addition of glass fibers. Also, the addition of

  11. CONSTITUTIVE RELATION OF DISCONTINUOUS REINFORCED METAL-MATRIX COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    季葆华; 王自强

    2001-01-01

    A micromechanical model is developed to simulate the mechanical behaviors of discontinuous reinforced composites. The analysis for a representative unit cell is based on the assumption of a periodic array of aligned reinforcements.The minimum energy principle is used to determine the unknown coefficients of the displacement field of the unit cell. The constitutive behavior of composites is studied to obtain the relationship between the main variables of matrix and reinforcements.It is concluded that the flow strength of composites is strongly influenced by volume fraction, aspect ratio of reinforcement, and the strain hardening exponent of matrix.An analytical constitutive relation of composites is obtained. The predicted results are in agreement with the existing experimental and numerical results.

  12. Fracture and fatigue of discontinuously reinforced copper/tungsten composites

    Science.gov (United States)

    Harris, B.; Ramani, S. V.

    1975-01-01

    The strength, toughness and resistance to cyclic crack propagation of composites consisting of copper reinforced with short tungsten wires of various lengths have been studied and the results compared with the behavior of continuously reinforced composites manufactured by the same method, i.e., by vacuum hot-pressing. It has been found that whereas the resistance to fatigue crack growth of continuously reinforced composites is very similar to that of continuous Al/stainless steel composites reported elsewhere, the addition of short fibers completely changes the mode of fracture, and no direct comparisons are possible. In effect, short fibers inhibit single crack growth by causing plastic flow to be distributed rather than localized, and although these composites are much less strong than continuous fiber composites, they nevertheless have much greater fatigue resistance.

  13. Discontinuously reinforced intermetallic matrix composites via XD synthesis. [exothermal dispersion

    Science.gov (United States)

    Kumar, K. S.; Whittenberger, J. D.

    1992-01-01

    A review is given of recent results obtained for discontinuously reinforced intermetallic matrix composites produced using the XD process. Intermetallic matrices investigated include NiAl, multiphase NiAl + Ni2AlTi, CoAl, near-gamma titanium aluminides, and Ll2 trialuminides containing minor amounts of second phase. Such mechanical properties as low and high temperature strength, compressive and tensile creep, elastic modulus, ambient ductility, and fracture toughness are discussed as functions of reinforcement size, shape, and volume fraction. Microstructures before and after deformation are examined and correlated with measured properties. An observation of interest in many of the systems examined is 'dispersion weakening' at high temperatures and high strain rates. This behavior is not specific to the XD process; rather similar observations have been reported in other discontinuous composites. Proposed mechanisms for this behavior are presented.

  14. Mechanical characterization of fiber reinforced Polymer Concrete

    Directory of Open Access Journals (Sweden)

    João Marciano Laredo dos Reis

    2005-09-01

    Full Text Available A comparative study between epoxy Polymer Concrete plain, reinforced with carbon and glass fibers and commercial concrete mixes was made. The fibers are 6 mm long and the fiber content was 2% and 1%, respectively, in mass. Compressive tests were performed at room temperature and load vs. displacement curves were plotted up to failure. The carbon and glass fibers reinforcement were randomly dispersed into the matrix of polymer concrete. An increase in compressive properties was observed as function of reinforcement. The comparison also showed that Polymer Concrete, plain and reinforced, has a better performance than regular market concrete, suggesting that PC is a reliable alternative for construction industry.

  15. Lignocellulosic fiber reinforced rubber composites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2009-04-01

    Full Text Available stream_source_info John_d1_2009.pdf.txt stream_content_type text/plain stream_size 43167 Content-Encoding UTF-8 stream_name John_d1_2009.pdf.txt Content-Type text/plain; charset=UTF-8 -252- CHAPTER 10: LIGNOCELLULOSIC... FIBER REINFORCED RUBBER COMPOSITES Maya JACOB JOHN1 Rajesh D. ANANDJIWALA2 (1)CSIR Materials Science and Manufacturing, Fibres and Textiles Competence Area, P.O. Box 1124, Port Elizabeth 6000, South Africa, E-mail: mjohn@csir.co.za (2) Department...

  16. Machining fiber-reinforced composites

    Science.gov (United States)

    Komanduri, Ranga

    1993-04-01

    Compared to high tool wear and high costs of tooling of fiber-reinforced composites (FRCs), noncontact material-removal processes offer attractive alternative. Noncontact machining methods can also minimize dust, noise, and extensive plastic deformation and consequent heat generation associated with conventional machining of FRCs, espacially those with an epoxy matrix. The paper describes the principles involved in and the details of machining of FRCs by laser machining, water jet-cutting and abrasive water jet-cutting, and electrical discharge machining of composites, as well as the limitations of each method.

  17. Nanoclay Reinforced Fibers and Nonwovens

    Directory of Open Access Journals (Sweden)

    Gajanan Bhat, Ph.D.

    2008-10-01

    Full Text Available In this research, polypropylene fibers and nonwoven samples were produced with the commercial samples of nanoclay additives in semi-commercial processing machinery. Influence of two different types of nanoclay additives, at different add on levels on processing, structure and morphology of nonwovens is studied. The WAXD and DSC data showed some change in crystallinity and melting behavior indicating changes in the fiber morphology towards improved mechanical properties. Presence and extent of exfoliation of nanoclay in the polymer was verified using transmission electron microscopy (TEM. TEM image reveals intercalated and exfoliated morphology of nanocomposites. About 10 to 20 % increase in tensile strength and modulus in both machine and cross directions is observed. This increase in strength is not accompanied by a decrease in breaking elongation as is the case for most of the fibers. Similarly 10 to 25 % increase in web stiffness and 20 to 80 % increase in web burst strength was observed. Furthermore there is improvement in other performance properties of the spunbond nonwovens. SEM images showed improved thermal bonding in the presence of nanoclay additives. The main advantage of this process is that these fabrics can be produced without any need for change in the processing equipment. This study has shown that by using a suitable compounding method, nanoparticle reinforced fibers and fibrous products with improved performance properties can be produced using conventional production machinery.

  18. DUCTILITY BEHAVIOR FIBER REINFORCED CONCRETE BEAMS STRENGTHENED WITH EXTERNALLY BONDED GLASS FIBER REINFORCED POLYMER LAMINATES

    Directory of Open Access Journals (Sweden)

    Mariappan Mahalingam

    2013-01-01

    Full Text Available The study presents the results of an experimental investigation conducted on Steel Fiber Reinforced Concrete (SFRC beams with externally bonded Glass Fiber Reinforced Polymer (GFRP laminates with a view to study their strength and ductility. A total of ten beams, 150×250 mm in cross-section were tested in the laboratory over an effective span of 2800 mm. Three fiber reinforced concrete beams were used as reference beams. Six fiber reinforced concrete beams were provided with externally bonded GFRP laminates. One concrete beam was left virgin without any fiber reinforcement and external GFRP laminates. All the beams were tested until failure. The variables considered included volume fraction of fiber reinforcement and stiffness of GFRP laminates. The static responses of all the beams were evaluated in terms of strength, stiffness and ductility. The test results show that the beams provided with externally bonded GFRP laminates exhibit improved performance over the beams with internal fiber reinforcement.

  19. Fatigue Performance of Fiber Reinforced Concrete

    DEFF Research Database (Denmark)

    Jun, Zhang; Stang, Henrik

    1996-01-01

    The objective of the present study is to obtain basic data of fibre reinforced concrete under fatigue load and to set up a theoretical model based on micromechanics. In this study, the bridging stress in fiber reinforced concrete under cyclic tensile load was investigted in details. The damage...... mechanism of the interface between fiber and matrix was proposed and a rational model given. Finally, the response of a steel fiber reinforced concrete beam under fatigue loading was predicted based on this model and compared with experimental results....

  20. High Strength Discontinuously Reinforced Aluminum For Rocket Applications

    Science.gov (United States)

    Pandey, A. B.; Shah, S. R.; Shadoan, M.

    2003-01-01

    This study presents results on the development of a new aluminum alloy with very high strength and ductility. Five compositions of Al-Mg-Sc-Gd-Zr alloy were selected for this purpose. These alloys were also reinforced with 15 volume percent silicon-carbide and boron-carbide particles to produce Discontinuously Reinforced Aluminum (DRA) materials. Matrix alloys and DRA were processed using a powder metallurgy process. The helium gas atomization produced very fine powder with cellular-dentritic microstructure. The microstructure of matrix alloys showed fine Al3Sc based precipitate which provides significant strengthening in these alloys. DRA showed uniform distribution of reinforcement in aluminum matrix. DRA materials were tested at -320 F, 75 F in air and 7S F in gaseous hydrogen environments and matrix alloys were tested at 75 F in air. DRA showed high strengths in the range of 89-111 ksi (614-697 MPa) depending on alloy compositions and test environments. Matrix alloys had a good combination of strength, 84-89 ksi (579-621 MPa) and ductility, 4.5-6.5%. The properties of these materials can further be improved by proper control of processing parameters.

  1. Single fiber pullout from hybrid fiber reinforced concrete

    NARCIS (Netherlands)

    Markovich, I.; Van Mier, J.G.M.; Walraven, J.C.

    2001-01-01

    Hybrid fiber reinforcement can be very efficient for improving the tensile response of the composite. In such materials, fibers of different geometries can act as bridging mechanisms over cracks of different widths. The fiber bridging efficiency depends on the interface properties, which makes inter

  2. Fracture Toughness of Fiber Reinforced Concrete.

    Science.gov (United States)

    1983-06-01

    14, 1979, pp. 443-449. 5 Mindess , S., Lawrence, F. V., and Kesler, C. E., "The J-Integral as a Fracture Criterion for Fiber Reinforced Concrete...34 Cement and Con- crete Research, Vol. 7, 1977 , pp. 731-742. 6 Velazco, G., Visalvanich, K., and Shah, S. P., "Fracture Behavior and Analysis of Fiber

  3. Micromechanical failure in fiber-reinforced composites

    DEFF Research Database (Denmark)

    Ashouri Vajari, Danial

    Micromechanical failure mechanisms occurring in unidirectional fiber-reinforced composites are studied by means of the finite element method as well as experimental testing. This study highlights the effect of micro-scale features such as fiber/matrix interfacial debonding, matrix cracking and mi...

  4. Homogenization of long fiber reinforced composites including fiber bending effects

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Niordson, Christian Frithiof

    2016-01-01

    This paper presents a homogenization method, which accounts for intrinsic size effects related to the fiber diameter in long fiber reinforced composite materials with two independent constitutive models for the matrix and fiber materials. A new choice of internal kinematic variables allows...... of the reinforcing fibers is captured by higher order strain terms, resulting in an accurate representation of the micro-mechanical behavior of the composite. Numerical examples show that the accuracy of the proposed model is very close to a non-homogenized finite-element model with an explicit discretization...

  5. Effect of hybrid fiber reinforcement on the cracking process in fiber reinforced cementitious composites

    DEFF Research Database (Denmark)

    Pereira, Eduardo B.; Fischer, Gregor; Barros, Joaquim A.O.

    2012-01-01

    The simultaneous use of different types of fibers as reinforcement in cementitious matrix composites is typically motivated by the underlying principle of a multi-scale nature of the cracking processes in fiber reinforced cementitious composites. It has been hypothesized that while undergoing...... tensile deformations in the composite, the fibers with different geometrical and mechanical properties restrain the propagation and further development of cracking at different scales from the micro- to the macro-scale. The optimized design of the fiber reinforcing systems requires the objective...... assessment of the contribution of each type of fiber to the overall tensile response. Possible synergistic effects resulting from particular combinations of fibers need to be clearly identified. In the present study, the evaluation of the response of different fiber reinforced cementitious composite...

  6. Reinforcement of RC structure by carbon fibers

    Directory of Open Access Journals (Sweden)

    Kissi B.

    2016-01-01

    Full Text Available In recent years, rehabilitation has been the subject of extensive research due to the increased spending on building maintenance work and restoration of built works. In all cases, it is essential to carry out methods of reinforcement or maintenance of structural elements, following an inspection analysis and methodology of a correct diagnosis. This research focuses on the calculation of the necessary reinforcement sections of carbon fiber for structural elements with reinforced concrete in order to improve their load bearing capacity and rigidity. The different results obtained reveal a considerable gain in resistance and deformation capacity of reinforced sections without significant increase in the weight of the rehabilitated elements.

  7. Homogenization of long fiber reinforced composites including fiber bending effects

    Science.gov (United States)

    Poulios, Konstantinos; Niordson, Christian F.

    2016-09-01

    This paper presents a homogenization method, which accounts for intrinsic size effects related to the fiber diameter in long fiber reinforced composite materials with two independent constitutive models for the matrix and fiber materials. A new choice of internal kinematic variables allows to maintain the kinematics of the two material phases independent from the assumed constitutive models, so that stress-deformation relationships, can be expressed in the framework of hyper-elasticity and hyper-elastoplasticity for the fiber and the matrix materials respectively. The bending stiffness of the reinforcing fibers is captured by higher order strain terms, resulting in an accurate representation of the micro-mechanical behavior of the composite. Numerical examples show that the accuracy of the proposed model is very close to a non-homogenized finite-element model with an explicit discretization of the matrix and the fibers.

  8. External reinforcing of fiber concrete constructions by carbon fiber tapes

    OpenAIRE

    S.V. Klyuyev; Yu.V. Guryanov

    2013-01-01

    Strengthening the concrete and reinforced concrete structures with carbon fiber tapes is very actively applied in Europe nowadays. In Russia composites based on carbon fiber have also widely spread recently. The main advantages of these materials for strengthening structures are its high specific strength (strength-weight ratio) and strength-to-density ratio.Experimental studies on strengthening and restoration of the constructions were held. Flexible fiber concrete constructions based on man...

  9. Fiber-reinforced cementitious materials

    Energy Technology Data Exchange (ETDEWEB)

    Mindess, S. (Univ. of British Columbia, Vancouver, British Columbia (CA)); Skalny, J. (W.R. Grace and Co., Columbia, MD (US))

    1991-01-01

    There were five main themes: toughening mechanisms; synthetic and glass fibers; cracking under static and impact loading; new fibers and processing techniques; and applications. The lively exchange of ideas that occurred during the discussions made it clear that the development of high-performance, durable fiber cements and concretes is well advanced. Most of the papers presented at the symposium are included in this volume.

  10. Natural Kenaf Fiber Reinforced Composites as Engineered Structural Materials

    Science.gov (United States)

    Dittenber, David B.

    The objective of this work was to provide a comprehensive evaluation of natural fiber reinforced polymer (NFRP)'s ability to act as a structural material. As a chemical treatment, aligned kenaf fibers were treated with sodium hydroxide (alkalization) in different concentrations and durations and then manufactured into kenaf fiber / vinyl ester composite plates. Single fiber tensile properties and composite flexural properties, both in dry and saturated environments, were assessed. Based on ASTM standard testing, a comparison of flexural, tensile, compressive, and shear mechanical properties was also made between an untreated kenaf fiber reinforced composite, a chemically treated kenaf fiber reinforced composite, a glass fiber reinforced composite, and oriented strand board (OSB). The mechanical properties were evaluated for dry samples, samples immersed in water for 50 hours, and samples immersed in water until saturation (~2700 hours). Since NFRPs are more vulnerable to environmental effects than synthetic fiber composites, a series of weathering and environmental tests were conducted on the kenaf fiber composites. The environmental conditions studied include real-time outdoor weathering, elevated temperatures, immersion in different pH solutions, and UV exposure. In all of these tests, degradation was found to be more pronounced in the NFRPs than in the glass FRPs; however, in nearly every case the degradation was less than 50% of the flexural strength or stiffness. Using a method of overlapping and meshing discontinuous fiber ends, large mats of fiber bundles were manufactured into composite facesheets for structural insulated panels (SIPs). The polyisocyanurate foam cores proved to be poorly matched to the strength and stiffness of the NFRP facesheets, leading to premature core shear or delamination failures in both flexure and compressive testing. The NFRPs were found to match well with the theoretical stiffness prediction methods of classical lamination

  11. Polypropylene matrix composites reinforced with coconut fibers

    Directory of Open Access Journals (Sweden)

    Maria Virginia Gelfuso

    2011-09-01

    Full Text Available Polypropylene matrix composites reinforced with treated coconut fibers were produced. Fibers chemically treated (alkalization-CCUV samples or mechanically treated (ultrasonic shockwave-CMUV samples were dried using UV radiation. The goal was to combine low cost and eco-friendly treatments to improve fiber-matrix adhesion. Composite samples containing up to 20 vol. (% of untreated and treated coconut fibers were taken from boxes fabricated by injection molding. Water absorption and mechanical properties were investigated according to ASTM D570-98 and ASTM D638-03, respectively. Electrical characterizations were carried out to identify applications of these composites in the electrical sector. NBR 10296-Electrical Tracking Standard (specific to industry applications and conductivity measurements were obtained applying 5 kV DC to the samples. CMUV samples containing 5 vol. (% fiber presented superior tensile strength values (σ~28 MPa compared to the untreated fibers composite (σ~22 MPa or alkali treatment (σ~24 MPa. However, CMUV composites containing 10 vol. (% fiber presented best results for the electrical tracking test and electrical resistivity (3 × 10(7 Ω.m. The results suggest that composites reinforced with mechanically treated coconut fibers are suitable for electrical applications.

  12. Nano polypeptide particles reinforced polymer composite fibers.

    Science.gov (United States)

    Li, Jiashen; Li, Yi; Zhang, Jing; Li, Gang; Liu, Xuan; Li, Zhi; Liu, Xuqing; Han, Yanxia; Zhao, Zheng

    2015-02-25

    Because of the intensified competition of land resources for growing food and natural textile fibers, there is an urgent need to reuse and recycle the consumed/wasted natural fibers as regenerated green materials. Although polypeptide was extracted from wool by alkaline hydrolysis, the size of the polypeptide fragments could be reduced to nanoscale. The wool polypeptide particles were fragile and could be crushed down to nano size again and dispersed evenly among polymer matrix under melt extrusion condition. The nano polypeptide particles could reinforce antiultraviolet capability, moisture regain, and mechanical properties of the polymer-polypeptide composite fibers.

  13. Hybrid Effect Evaluation of Steel Fiber and Carbon Fiber on the Performance of the Fiber Reinforced Concrete

    OpenAIRE

    Weimin Song; Jian Yin

    2016-01-01

    Fiber reinforcement is an important method to enhance the performance of concrete. In this study, the compressive test and impact test were conducted, and then the hybrid effect between steel fiber (SF) and carbon fiber (CF) was evaluated by employing the hybrid effect index. Compressive toughness and impact toughness of steel fiber reinforced concrete (SFRC), carbon fiber reinforced concrete (CFRC) and hybrid fiber reinforced concrete (HFRC) were explored at steel fiber volume fraction 0.5%,...

  14. FLEXURAL TOUGHNESS OF STEEL FIBER REINFORCED CONCRETE

    Directory of Open Access Journals (Sweden)

    Fehmi ÇİVİCİ

    2006-02-01

    Full Text Available Fiber concrete is a composite material which has mechanical and physical characteristics unlike plain concrete. One of the important mechanical characteristics of fiber concrete is its energy absorbing capability. This characteristics which is also called toughness, is defined as the total area under the load-deflection curve. A number of composite characteristics such as crack resistance, ductility and impact resistance are related to the energy absorbtion capacity. According to ASTM C 1018 and JSCE SF-4 the calculation of toughness is determined by uniaxial flexural testing. Fiber concrete is often used in plates such as bridge decks, airport pavements, parking areas, subjected to cavitation and erosion. In this paper, toughness has been determined according to ASTM C 1018 and JSCE SF-4 methods by testing beam specimens. Energy absorbing capacities of plain and steel fiber reinforced concrete has been compared by evaluating the results of two methods. Also plain and steel fiber reinforced plate specimens behaviors subjected to biaxial flexure are compared by the loaddeflection curves of each specimen.

  15. Performance of steel-making slag concrete reinforced with fibers

    OpenAIRE

    Ortega-López Vanesa; Fuente-Alonso José Antonio; Skaf Marta; Santamaría Amaia; Aragón Ángel; Manso Juan Manuel

    2017-01-01

    In this research, the possibility of making concrete reinforced with fibers and manufactured with recycled aggregates from carbon steel production was explored. Electric arc furnace slag (EAFS) was used as coarse and medium aggregate, and part of the sand sizes. Metallic and synthetic fibers were added in different amounts. Initially, the properties of EAFS and their suitability to be used in the manufacture fiber reinforced concrete were analysed. Then, a series of fiber reinforced concrete ...

  16. Design and analysis of reinforced fiber composites

    CERN Document Server

    Yamagata, Nobuki

    2016-01-01

    The papers in this volume present a broad range of applications for reinforced fiber composites - from thin shell structures to tires. Linear and nonlinear structural behavior (from linear buckling to nonlinear yelding and fracture) are discussed as well as different materials are presented. Latest developments in computational methods for constructíons are presented which will help to save money and time. This is an edited collection of papers presented at a symposium at the WCCM, Barcelona, 2014.

  17. Fiber-reinforced sand strength and dilation characteristics

    Directory of Open Access Journals (Sweden)

    Hesham M. Eldesouky

    2016-06-01

    Full Text Available Randomly distributed fiber reinforcement is used to provide an isotropic increase in the sand shear strength. The previous studies were not consistent regarding the fibers effect on the volumetric change behavior of fiber-reinforced sand. In this paper, direct shear tests are conducted on 108 specimens to investigate the effects of the fibers content, relative density, normal stress and moisture content on the shear strength and volumetric change behaviors of fiber-reinforced sand. The study investigates also the possibility of using dry fiber-reinforced sand as an alternative to heavily compacted unreinforced moist sand. The results indicate that the fibers inclusion increases the shear strength and dilation of sand. Moisture suppresses the fibers effect on the peak and post-peak shear strengths, and dilation. Dry loose fiber-reinforced sand achieves the same shear strength of heavily compacted unreinforced moist sand, yet at more than double the horizontal displacement.

  18. Fiber reinforced polymer composites for bridge structures

    Directory of Open Access Journals (Sweden)

    Alexandra CANTORIU

    2013-12-01

    Full Text Available Rapid advances in construction materials technology have led to the emergence of new materials with special properties, aiming at safety, economy and functionality of bridges structures. A class of structural materials which was originally developed many years ago, but recently caught the attention of engineers involved in the construction of bridges is fiber reinforced polymer composites. This paper provides an overview of fiber reinforced polymer composites used in bridge structures including types, properties, applications and future trends. The results of this study have revealed that this class of materials presents outstanding properties such as high specific strength, high fatigue and environmental resistance, lightweight, stiffness, magnetic transparency, highly cost-effective, and quick assembly, but in the same time high initial costs, lack of data on long-term field performance, low fire resistance. Fiber reinforced polymer composites were widely used in construction of different bridge structures such as: deck and tower, I-beams, tendons, cable stands and proved to be materials for future in this field.

  19. Effect of Fiber Reinforcement on the Response of Structural Members

    DEFF Research Database (Denmark)

    Fischer, Gregor; Li, Victor

    2007-01-01

    This paper describes a series of investigations on the effect of fiber reinforcement on the response of structural members in direct tension and flexure under reversed cyclic loading conditions. The design approach of the fiber reinforced cementitious composite is based on fracture mechanics prin...... to conventional reinforced concrete include improved composite integrity, energy dissipation, ductility, and damage tolerance....

  20. Asphalt mix reinforced with vegetable fibers

    Science.gov (United States)

    Gallo, Peter

    2017-09-01

    The use of a larger share of renewable materials in road construction is a trend that in the long term cannot be avoided. In some cases, due to this pressure, new innovative opportunities are generated. This article attempts to outline and bring one of such opportunity. The article describes selection and the use of special natural fibers from renewable natural resources adapted for use in various types of asphalt mixtures to improve the range of properties. Experimental results showed an improvement in stiffness modulus, indirect tensile strength (ITS) and good resistance to permanent deformation of blends containing vegetable fibers. This is a new topic in the road construction. But the results have so far proven that the used type of fibers can be a perspective way, as simple and in line with the policy of sustainable development, to improve the properties (reinforce) of the asphalt mixtures.

  1. Continuous fiber-reinforced titanium aluminide composites

    Science.gov (United States)

    Mackay, R. A.; Brindley, P. K.; Froes, F. H.

    1991-01-01

    An account is given of the fabrication techniques, microstructural characteristics, and mechanical behavior of a lightweight, high service temperature SiC-reinforced alpha-2 Ti-14Al-21Nb intermetallic-matrix composite. Fabrication techniques under investigation to improve the low-temperature ductility and environmental resistance of this material system, while reducing manufacturing costs to competitive levels, encompass powder-cloth processing, foil-fiber-foil processing, and thermal-spray processing. Attention is given to composite microstructure problems associated with fiber distribution and fiber-matrix interfaces, as well as with mismatches of thermal-expansion coefficient; major improvements are noted to be required in tensile properties, thermal cycling effects, mechanical damage, creep, and environmental effects.

  2. Influence of different glass fiber reinforcements on denture base polymer strength (Fiber reinforcements of dental polymer)

    OpenAIRE

    Ketij Mehulić,; Asja Čelebić,; Zdravko Schauperl,; Dragutin Komar,; Denis Vojvodić,; Domagoj Žabarović

    2009-01-01

    Aim Assessment of flexural strength values of dental base polymersreinforced with different glass fibers (“dental” and “industrial”origin) after performed artificial ageing procedures.Methods Three hundred specimens (dimensions 18 x 10 x 3 mm)were produced of denture base polymers reinforced with differentglass fibers. The “short beam” testing method was used to determinethe flexural strength of the specimens after polymerization,immersion in water of temperature 37oC for 28 days, and thermoc...

  3. SOVIET TRENDS IN ORIENTED GLASS-FIBER REINFORCED PLASTICS

    Science.gov (United States)

    GLASS TEXTILES, *PLASTICS, *REINFORCING MATERIALS, ADHESION, BINDERS, DEFORMATION, ELASTIC PROPERTIES, EPOXY RESINS , FIBERS, PHYSICAL PROPERTIES, POLYMERS, PROCESSING, SILICATES, STYRENES, TEXTILES, VISCOSITY

  4. Friction and wear behavior of carbon fiber reinforced brake materials

    Institute of Scientific and Technical Information of China (English)

    Du-qing CHENG; Xue-tao WANG; Jian ZHU; Dong-bua QIU; Xiu-wei CHENG; Qing-feng GUAN

    2009-01-01

    A new composite brake material was fabri-cated with metallic powders, barium sulphate and modified phenolic resin as the matrix and carbon fiber as the reinforced material. The friction, wear and fade character-istics of this composite were determined using a D-MS friction material testing machine. The surface structure of carbon fiber reinforced friction materials was analyzed by scanning electronic microscopy (SEM). Glass fiber-reinforced and asbestos fiber-reinforced composites with the same matrix were also fabricated for comparison. The carbon fiber-reinforced friction materials (CFRFM) shows lower wear rate than those of glass fiber- and asbestos fiber-reinforced composites in the temperature range of 100℃-300℃. It is interesting that the frictional coefficient of the carbon fiber-reinforced friction materials increases as frictional temperature increases from 100℃ to 300℃, while the frictional coefficients of the other two composites decrease during the increasing temperatures. Based on the SEM observation, the wear mechanism of CFRFM at low temperatures included fiber thinning and pull-out. At high temperature, the phenolic matrix was degraded and more pull-out enhanced fiber was demonstrated. The properties of carbon fiber may be the main reason that the CFRFM possess excellent tribological performances.

  5. Resurgence of alcohol seeking produced by discontinuing non-drug reinforcement as an animal model of drug relapse.

    Science.gov (United States)

    Podlesnik, Christopher A; Jimenez-Gomez, Corina; Shahan, Timothy A

    2006-06-01

    Findings from basic behavioral research suggest that simply discontinuing reinforcement for a recently reinforced operant response can cause the recurrence (i.e. resurgence) of a different previously reinforced response. The present experiment examined resurgence as an animal model of drug relapse. Initially, rats pressed levers to self-administer alcohol during baseline conditions. Next, alcohol self-administration was discontinued and non-drug reinforcers (food pellets) were presented contingent on an alternative response (chain pulling). Finally, when the non-drug reinforcer was discontinued, alcohol seeking recurred even though alcohol was still unavailable for lever pressing. These results suggest that simply discontinuing non-drug reinforcement for a behavior may be sufficient to produce relapse to drug seeking. The resurgence procedure could provide a method to examine environmental, pharmacological, and neurobiological factors that lead to relapse following the loss of a non-drug source of reinforcement.

  6. Electromagnetic Shielding and Absorption Properties of Fiber Reinforced Cementitious Composites

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiuzhi; SUN Wei

    2012-01-01

    In order to investigate the electromagnetic shielding effectiveness (SE) and absorbing properties of fiber reinforced concrete,steel fiber,carbon fiber and synthetic polyvinyl alcohol (PVA) fiber reinforced concrete were researched.The results show that with the increase of fiber volume fraction,the SE and trend of frequency change of corresponding fiber reinforced concrete are enhanced.When the volume content of steel fiber is 3%,the SE of concrete is above 50 dB and its frequency is above 1.8 GHz.Moreover,in the range of 8-18 GHz,steel fiber,carbon fiber and PVA fiber all can improve the microwave absorption properties of concrete.The concrete with 0.5% carbon fiber can achieve the best absorbing property,the minimum reflectivity is about -7 dB; while steel fiber optimal volume fraction is 2%.The reflectivity curve of PVA fiber reinforced concrete fluctuates with the frequency,and the minimum value of the reflectivity is below -10 dB.The results show that fiber reinforced concrete could be used as EMI(electromagnetic interference) prevention buildings by attenuating and reflecting electromagnetic wave energy.

  7. Nano-Aramid Fiber Reinforced Polyurethane Foam

    Science.gov (United States)

    Semmes, Edmund B.; Frances, Arnold

    2008-01-01

    Closed cell polyurethane and, particularly, polyisocyanurate foams are a large family of flexible and rigid products the result of a reactive two part process wherein a urethane based polyol is combined with a foaming or "blowing" agent to create a cellular solid at room temperature. The ratio of reactive components, the constituency of the base materials, temperature, humidity, molding, pouring, spraying and many other processing techniques vary greatly. However, there is no known process for incorporating reinforcing fibers small enough to be integrally dispersed within the cell walls resulting in superior final products. The key differentiating aspect from the current state of art resides in the many processing technologies to be fully developed from the novel concept of milled nano pulp aramid fibers and their enabling entanglement capability fully enclosed within the cell walls of these closed cell urethane foams. The authors present the results of research and development of reinforced foam processing, equipment development, strength characteristics and the evolution of its many applications.

  8. Experimental analysis of reinforced concrete beams strengthened in bending with carbon fiber reinforced polymer

    Directory of Open Access Journals (Sweden)

    M. M. VIEIRA

    Full Text Available The use of carbon fiber reinforced polymer (CFRP has been widely used for the reinforcement of concrete structures due to its practicality and versatility in application, low weight, high tensile strength and corrosion resistance. Some construction companies use CFRP in flexural strengthening of reinforced concrete beams, but without anchor systems. Therefore, the aim of this study is analyze, through an experimental program, the structural behavior of reinforced concrete beams flexural strengthened by CFRP without anchor fibers, varying steel reinforcement and the amount of carbon fibers reinforcement layers. Thus, two groups of reinforced concrete beams were produced with the same geometric feature but with different steel reinforcement. Each group had five beams: one that is not reinforced with CFRP (reference and other reinforced with two, three, four and five layers of carbon fibers. Beams were designed using a computational routine developed in MAPLE software and subsequently tested in 4-point points flexural test up to collapse. Experimental tests have confirmed the effectiveness of the reinforcement, ratifying that beams collapse at higher loads and lower deformation as the amount of fibers in the reinforcing layers increased. However, the increase in the number of layers did not provide a significant increase in the performance of strengthened beams, indicating that it was not possible to take full advantage of strengthening applied due to the occurrence of premature failure mode in the strengthened beams for pullout of the cover that could have been avoided through the use of a suitable anchoring system for CFRP.

  9. Intracanal reinforcement fiber in pediatric dentistry: a case report.

    Science.gov (United States)

    Rocha, Rachel de Oliveira; das Neves, Lucimara Teixeira; Marotti, Noely Regina; Wanderley, Marcia Turolla; Corrêa, Maria Salete Nahás Pires

    2004-04-01

    A technique for the restoration of carious primary maxillary incisors using indirect resin composite crowns and intracanal reinforcement fiber is described. Endodontic treatment was previously performed on each tooth. The advantages of using an intracanal reinforcement fiber include resin composite crown reinforcement, translucency, and relative manipulation facility. In addition, the use of indirect resin composite crowns provides good shape and esthetics, as well as reduced chair time for the child. The technique is illustrated in a case report in which indirect resin composite crowns and an intracanal reinforcement fiber are placed in a 3-year-old girl.

  10. Hybrid fiber and nanopowder reinforced composites for wind turbine blades

    Directory of Open Access Journals (Sweden)

    Nikoloz M. Chikhradze

    2015-01-01

    Full Text Available The results of an investigation into the production of wind turbine blades manufactured using polymer composites reinforced by hybrid (carbon, basalt, glass fibers and strengthened by various nanopowders (oxides, carbides, borides are presented. The hybrid fiber-reinforced composites (HFRC were manufactured with prepreg technology by molding pre-saturated epoxy-strengthened matrix-reinforced fabric. Performance of the manufactured composites was estimated with values of the coefficient of operating condition (COC at a moderate and elevated temperature.

  11. Recycling and Utilization of Waste Glass Fiber Reinforced Plastics

    Directory of Open Access Journals (Sweden)

    Feng Yan-chao

    2016-01-01

    Full Text Available This paper mainly introduced the recovery method, classification and comprehensive utilization process of waste glass fiber reinforced plastics (GFRP. Among the current methods of utilization, the physical method is most promising. After pre-processing of waste GFRP, the short glass fiber can be used in gypsum block to improve the anti-cracking and operation performance of the material; waste GFRP powder can be used in plastic fiber reinforced manhole covers to increase the mechanical strength, and the products conformed to JC 1009-2006. Based on these studies, we also point out some problems concerning the utilization of waste glass fiber reinforced plastics.

  12. LYOCELL AND COTTON FIBERS AS REINFORCEMENTS FOR A THERMOSET POLYMER

    Directory of Open Access Journals (Sweden)

    Elisabete Frollini

    2011-11-01

    Full Text Available Cellulose fibers obtained from the textile industry (lyocell were investigated as a potential reinforcement for thermoset phenolic matrices, to improve their mechanical properties. Textile cotton fibers were also considered. The fibers were characterized in terms of their chemical composition and analyzed using TGA, SEM, and X-ray. The thermoset (non-reinforced and composites (phenolic matrices reinforced with randomly dispersed fibers were characterized using TG, DSC, SEM, DMTA, the Izod impact strength test, and water absorption capacity analysis. The composites that were reinforced with lyocell fibers exhibited impact strengths of nearly 240 Jm-1, whereas those reinforced with cotton fibers exhibited impact strengths of up to 773 Jm-1. In addition to the aspect ratio, the higher crystallinity of cotton fibers compared to lyocell likely plays a role in the impact strength of the composite reinforced by the fibers. The SEM images showed that the porosity of the textile fibers allowed good bulk diffusion of the phenolic resin, which, in turn, led to both good adhesion of fiber to matrix and fewer microvoids at the interface.

  13. Effects of Fiber Reinforcement on Clay Aerogel Composites

    Directory of Open Access Journals (Sweden)

    Katherine A. Finlay

    2015-08-01

    Full Text Available Novel, low density structures which combine biologically-based fibers with clay aerogels are produced in an environmentally benign manner using water as solvent, and no additional processing chemicals. Three different reinforcing fibers, silk, soy silk, and hemp, are evaluated in combination with poly(vinyl alcohol matrix polymer combined with montmorillonite clay. The mechanical properties of the aerogels are demonstrated to increase with reinforcing fiber length, in each case limited by a critical fiber length, beyond which mechanical properties decline due to maldistribution of filler, and disruption of the aerogel structure. Rather than the classical model for reinforced composite properties, the chemical compatibility of reinforcing fibers with the polymer/clay matrix dominated mechanical performance, along with the tendencies of the fibers to kink under compression.

  14. Dynamic Properties of Fiber Reinforced Cement Mortar

    Institute of Scientific and Technical Information of China (English)

    唐志平; 徐松林; 胡晓军; 廖香丽; 蔡建

    2004-01-01

    Based on the shear wave tracing(SWT) technique proposed by Tang Z P, particle velocity gauge and the dual internal measurement for pressure and shear waves (IMPS) system are applied to investigate the responses of fiber reinforced cement subjected to impact loading. Series of experiments are conducted. The results show that there exist four critical points, A, B, C, D, in p-V Hugoniot curves. They correspond to the Hugoniot elastic limit (HEL) of the material, the critical point for shear strength limit and transition from damage state to failure state, void collapse, and solid compression, respectively. The critical point B is difficult to be aware of and never reported. However, it can be clearly disclosed with SWT method. Based on the analyses of shear strength, it can be concluded that the transversal wave, especially the unloading transversal wave, is especially important for the dynamic damage investigation of brittle materials.

  15. Interface study of fiber reinforced concrete

    Directory of Open Access Journals (Sweden)

    Pacios, A.

    1997-12-01

    Full Text Available In a composite material that uses fibers as reinforcement, the breakage of the matrix is produced jointly with the separation of the fiber from the matrix. The mechanical behavior of the interface describes how fibers can work stabilizing the cracking process. The interface is the medium that puts the fiber on load, being the mechanical behavior of the interface and the strength of the fiber two important parameters to consider to characterize the general behavior of the composite. The present work studies the effect of several parameters on the behavior of the interface. Those parameters are the type of fiber, its geometry and dimension and the modified matrix and loading rate. An experimental technique was designed to allow testing the same set-up for pull-out tests in a quasistatic machine and Charpy pendulum. Modifications of the matrix by adding a mineral admixture improve the behavior of the interface as much as a 100%. It has been observed that combining the two actions, an improved matrix with crimped fibers, the type of failure can be modified. In this new type of failure, the fiber breaks consequently toughness decreases. Other parameters, as the loading rate and inclination of the fiber also affect the behavior of the interface.

    En un material compuesto que utiliza fibras como refuerzo, la rotura de la matriz se produce conjuntamente con la separación de la fibra de la matriz, por lo que el comportamiento mecánico de la interfase describe hasta que punto las fibras pueden trabajar como estabilizadores en el proceso defisuración. La interfase es el medio que pone en carga a la fibra y, por ello, la resistencia mecánica de la interfase y de la fibra son dos parámetros importantes a considerar para caracterizar el comportamiento general del composite. Este trabajo investiga el efecto de la variación del tipo de fibra, geometría y dimensión de las mismas y las modificaciones de la matriz y la velocidad de desplazamiento

  16. CREATION OF MUSIC WITH FIBER REINFORCED CONCRETE

    Science.gov (United States)

    Kato, Hayato; Takeuchi, Masaki; Ogura, Naoyuki; Kitahara, Yukiko; Okamoto, Takahisa

    This research focuses on the Fiber Reinforcement Concrete(FRC) and its performance on musical tones. Thepossibility of future musical instruments made of this concrete is discussed. Recently, the technical properties of FRC had been improved and the different production styles, such as unit weight of binding material and volume of fiber in the structure, hardly affects the results of the acoustics. However, the board thickness in the FRC instruments is directly related with the variety of musical tone. The FRC musical effects were compared with those produced with wood on wind instruments. The sounds were compared with those produced with woodwind instruments. The sound pressure level was affected by the material and it becomes remarkably notorious in the high frequency levels. These differences had great influence on the spectrum analysis of the tone in the wind instruments and the sensory test. The results from the sensory test show dominant performances of brightness, beauty and power in the FRC instruments compared with those made of wood.

  17. Normal Strength Steel Fiber Reinforced Concrete Subjected to Explosive Loading

    Directory of Open Access Journals (Sweden)

    Mohammed Alias Yusof

    2011-07-01

    Full Text Available This paper presents the results of an experimental investigation on the behavior of plain reinforced concrete and Normal strength steel fiber reinforced concrete panels (SFRC subjected to explosive loading. The experiment were performed by the Blast Research Unit Faculty of Engineering, University Pertahanan Nasional Malaysia A total of 8 reinforced concrete panels of 600mm x 600mm x 100mm were tested. The steel fiber reinforced concrete panels incorporated three different volume fraction, 0.5%, 1.0%, and 1.5% of hooked end steel fibers. The panels were subjected to explosive loading generated by the detonation of 1kg of explosive charge located at a 0.6m standoff. This investigation indicates that the steel fiber reinforced concrete panel containing of 1.5% volume fraction gave the best performance under explosive loading.

  18. Conifer fibers as reinforcing materials for polypropylene-based composites

    DEFF Research Database (Denmark)

    Plackett, David; Chengzhi, Chuai; Almdal, Kristoffer

    2001-01-01

    Conifer fibers were used to reinforce polypropylene (PP). To improve the compatibility between the conifer fibers and the PP matrix, the fibers were either grafted with maleated PP (MAPP), treated by adding MAPP, or mixed with ethylene/propylene/diene terpolymer (EPDM). The treatments resulted in...

  19. Single Fibre Pullout from Hybrid Fiber Reinforced Concrete

    NARCIS (Netherlands)

    Markovich, I.; Van Mier, J.G.M.; Walraven, J.C.

    2001-01-01

    Hybrid fiber reinforcement can be very efficient for improving the tensile response of the composite. In such materials, fibers of different geometries can act as bridging mechanisms over cracks of different widths. The fiber bridging efficiency depends on the interface properties, which makes inter

  20. Modeling of properties of fiber reinforced cement composites

    Directory of Open Access Journals (Sweden)

    Jevtić Dragica

    2008-01-01

    Full Text Available This paper presents the results of authors' laboratory testing of the influence of steel fibers as fiber reinforcement on the change of properties of cement composite mortar and concrete type materials. Mixtures adopted - compositions of mortars had identical amounts of components: cement, sand and silica fume. The second type of mortar contained 60 kg/m3 of fiber reinforcement, as well as the addition of the latest generation of superplasticizer. Physical and mechanical properties of fiber reinforced mortars and etalon mixtures (density, flexural strength, compressive strength were compared. Tests on concrete type cement composites included: density, mechanical strengths and the deformation properties. The tests showed an improvement in the properties of fiber reinforced composites.

  1. Hybrid fiber reinforcement and crack formation in Cementitious Composite Materials

    DEFF Research Database (Denmark)

    Pereira, E.B.; Fischer, Gregor; Barros, J.A.O.

    2011-01-01

    reinforcement systems. The research described in this paper shows that the multi-scale conception of cracking and the use of hybrid fiber reinforcements do not necessarily result in an improved tensile behavior of the composite. Particular material design requirements may nevertheless justify the use of hybrid......The use of different types of fibers simultaneously for reinforcing cementitious matrices is motivated by the concept of a multi-scale nature of the crack propagation process. Fibers with different geometrical and mechanical properties are used to bridge cracks of different sizes from the micro......- to the macroscale. In this study, the performance of different fiber reinforced cementitious composites is assessed in terms of their tensile stress-crack opening behavior. The results obtained from this investigation allow a direct quantitative comparison of the behavior obtained from the different fiber...

  2. Tensile Strength of Natural Fiber Reinforced Polyester Composite

    Science.gov (United States)

    Ismail, Al Emran; Awang, Muhd. Khairudin; Sa'at, Mohd Hisham

    2007-05-01

    Nowadays, increasing awareness of replacing synthetic fiber such as glass fiber has emerged due to environmental problems and pollutions. Automotive manufacturers also seek new material especially biodegradable material to be non-load bearing application parts. This present work discussed on the effect of silane treatment on coir fiber reinforced composites. From the results of tensile tests, fibers treated with silane have attained maximum material stiffness. However, to achieve maximum ultimate tensile strength and strain at failure performances, untreated fibers work very well through fiber bridging and internal friction between fiber and polymeric matrix. Scanning electron microscope (SEM) observations have coincided with these results.

  3. Hybrid fiber reinforcement and crack formation in Cementitious Composite Materials

    DEFF Research Database (Denmark)

    Pereira, E.B.; Fischer, Gregor; Barros, J.A.O.

    2011-01-01

    reinforcement systems. The research described in this paper shows that the multi-scale conception of cracking and the use of hybrid fiber reinforcements do not necessarily result in an improved tensile behavior of the composite. Particular material design requirements may nevertheless justify the use of hybrid......- to the macroscale. In this study, the performance of different fiber reinforced cementitious composites is assessed in terms of their tensile stress-crack opening behavior. The results obtained from this investigation allow a direct quantitative comparison of the behavior obtained from the different fiber...

  4. Carbon fiber reinforced thermoplastic composites for future automotive applications

    Science.gov (United States)

    Friedrich, K.

    2016-05-01

    After a brief introduction to polymer composite properties and markets, the state of the art activities in the field of manufacturing of advanced composites for automotive applications are elucidated. These include (a) long fiber reinforced thermoplastics (LFT) for secondary automotive components, and (b) continuous carbon fiber reinforced thermosetting composites for car body applications. It is followed by future possibilities of carbon fiber reinforced thermoplastic composites for e.g. (i) crash elements, (ii) racing car seats, and (iii) production and recycling of automotive fenders.

  5. Bond of reinforcing bars in self-compacting steel fiber reinforced concrete

    NARCIS (Netherlands)

    Schumacher, P.; Bigaj-van Vliet, A.J.; Braam, C.R.; Uijl, J.A. den; Walraven, J.C.

    2002-01-01

    Pull-out tests were performed on 10 mm diameter ribbed bars embedded along three times the bar diameter in 200 mm cubes made of plain and steel fiber reinforced concrete (SFRC) of normal strength (B45). The fiber content was 60 and 120 kg/m3, respectively, the aspect ratio of the fibers was 45 and 8

  6. The Mechanical Properties of Polypropylene Fiber Reinforced Concrete

    Institute of Scientific and Technical Information of China (English)

    LI Bei-xing; CHEN Ming-xiang; CHENG Fang; LIU Lu-ping

    2004-01-01

    The compressive, shear strengths and abrasion-erosion resistance as well as flexural properties of two polypropylene fiber reinforced concretes and the comparison with a steel fiber reinforced concrete were reported.The exprimental results show that a low content of polypropylene fiber (0.91kg/m3 of concrete) slightly decreases the compressive and shear strengths, and appreciably increased the flexural strength, but obviously enhances the toughness index and fracture energy for the concrete with the same mix proportion, consequently it plays a role of anti-cracking and improving toughness in concrete. Moreover, the polypropylene mesh fiber is better than the polypropylene monofilament fiber in improving flexural strength and toughness of concrete, but the two types of polypropylene fibers are inferior to steel fiber. All the polypropylene and steel fibers have no great beneficial effect on the abrasion-erosion resistance of concrete.

  7. Mechanical recycling of continuous fiber-reinforced thermoplastic sheets

    Science.gov (United States)

    Moritzer, Elmar; Heiderich, Gilmar

    2016-03-01

    This contribution examines possible material recycling of offcuts generated during the production of continuous-fiber-reinforced composite sheets. These sheets consist of a polyamide 6 matrix and glass fiber fabric. In the initial step, the offcut is shredded to obtain particles; following that, the particles are processed in a twin-screw process to produce fiber-reinforced plastic pellets with varying fiber contents. These pellets are intended for use in injection molding processes as a substitution for new raw materials. This investigation centers on the mechanical properties which can be achieved with the recycled material after both the twin-screw process and injection molding.

  8. Structural Behavior of Concrete Beams Reinforced with Basalt Fiber Reinforced Polymer (BFRP) Bars

    Science.gov (United States)

    Ovitigala, Thilan

    The main challenge for civil engineers is to provide sustainable, environmentally friendly and financially feasible structures to the society. Finding new materials such as fiber reinforced polymer (FRP) material that can fulfill the above requirements is a must. FRP material was expensive and it was limited to niche markets such as space shuttles and air industry in the 1960s. Over the time, it became cheaper and spread to other industries such as sporting goods in the 1980-1990, and then towards the infrastructure industry. Design and construction guidelines are available for carbon fiber reinforced polymer (CFRP), aramid fiber reinforced polymer (AFRP) and glass fiber reinforced polymer (GFRP) and they are currently used in structural applications. Since FRP is linear elastic brittle material, design guidelines for the steel reinforcement are not valid for FRP materials. Corrosion of steel reinforcement affects the durability of the concrete structures. FRP reinforcement is identified as an alternative to steel reinforcement in corrosive environments. Although basalt fiber reinforced polymer (BFRP) has many advantages over other FRP materials, but limited studies have been done. These studies didn't include larger BFRP bar diameters that are mostly used in practice. Therefore, larger beam sizes with larger BFRP reinforcement bar diameters are needed to investigate the flexural and shear behavior of BFRP reinforced concrete beams. Also, shear behavior of BFRP reinforced concrete beams was not yet studied. Experimental testing of mechanical properties and bond strength of BFRP bars and flexural and shear behavior of BFRP reinforced concrete beams are needed to include BFRP reinforcement bars in the design codes. This study mainly focuses on the use of BFRP bars as internal reinforcement. The test results of the mechanical properties of BFRP reinforcement bars, the bond strength of BFRP reinforcement bars, and the flexural and shear behavior of concrete beams

  9. Bond characteristics of steel fiber and deformed reinforcing steel bar embedded in steel fiber reinforced self-compacting concrete (SFRSCC)

    Science.gov (United States)

    Aslani, Farhad; Nejadi, Shami

    2012-09-01

    Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of the self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, ductility, toughness, energy absorption capacity, fracture toughness and cracking. Although the available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates the bond characteristics between steel fiber and SCC firstly. Based on the available experimental results, the current analytical steel fiber pullout model (Dubey 1999) is modified by considering the different SCC properties and different fiber types (smooth, hooked) and inclination. In order to take into account the effect of fiber inclination in the pullout model, apparent shear strengths (τ (app)) and slip coefficient (β) are incorporated to express the variation of pullout peak load and the augmentation of peak slip as the inclined angle increases. These variables are expressed as functions of the inclined angle (ϕ). Furthurmore, steel-concrete composite floors, reinforced concrete floors supported by columns or walls and floors on an elastic foundations belong to the category of structural elements in which the conventional steel reinforcement can be partially replaced by the use of steel fibers. When discussing deformation capacity of structural elements or civil engineering structures manufactured using SFRSCC, one must be able to describe thoroughly both the behavior of the concrete matrix reinforced with steel fibers and the interaction between this composite matrix and discrete steel reinforcement of the conventional type. However, even though the knowledge on bond behavior is essential for evaluating the overall behavior of structural components containing reinforcement and steel fibers

  10. All-round joining method with carbon fiber reinforced interface

    Science.gov (United States)

    Miwa, Noriyoshi; Tanaka, Kazunori; Kamiya, Yoshiko; Nishi, Yoshitake

    2008-08-01

    Carbon fiber reinforced polymer (CFRP) has been recently applied to not only wing, but also fan blades of turbo fan engines. To prevent impact force, leading edge of titanium was often mounted on the CFRP fan blades with adhesive force. In order to enhance the joining strength, a joining method with carbon fiber reinforced interface has been developed. By using nickel-coated carbon fibers, a joining sample with carbon fiber-reinforced interface between CFRP and CFRM has been successfully developed. The joining sample with nickel-coated carbon fiber interface exhibits the high tensile strength, which was about 10 times higher than that with conventional adhesion. On the other hand, Al-welding methods to steel, Cu and Ti with carbon fiber reinforced interface have been successfully developed to lighten the parts of machines of racing car and airplane. Carbon fibers in felt are covered with metals to protect the interfacial reaction. The first step of the welding method is that the Al coated felt is contacted and wrapped with molten aluminum solidified under gravity pressure, whereas the second step is that the felt with double layer of Ni and Al is contacted and wrapped with molten steel (Cu or Ti) solidified under gravity pressure. Tensile strength of Al-Fe (Cu or Ti) welded sample with carbon fiber reinforced interface is higher than those of Al-Fe (Cu or Ti) welded sample.

  11. Experimental Study on Electric Properties of Carbon Fiber Reinforced Concrete

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    According to the phenomenon that the physical properties have a great effect on the electric capability of carbon fiber reinforced concrete, the author researched the relationship between DC resistance of carbon fiber reinforced concrete and curing age using the two-probe method. Then the effect of insulative area,location and quantity on DC resistance of carbon fiber reinforced concrete was investigated at different curing age with analysis of hydration. The results suggest that DC resistance increases greatly with its curing age, which illustrates the relationship like Gaussian curve. In every curing ages the electric capability of carbon fiber reinforced concrete weakenes with the increase of insulative area. In same curing ages, section and insulative area, the more the quantity of insulation, the stronger the conductibility. The insulative location in optimal position can only result in optimal conductibility.

  12. Drastic Improvements in Bonding of Fiber Reinforced Multifunctional Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Achievement of a dramatic increase in the bond strength in the adhesive and composite/adhesive interfaces of existing fiber reinforced composite material joints and...

  13. Drastic Improvements in Bonding of Fiber Reinforced Multifunctional Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Achievement of a dramatic increase in the bond strength in the composite/adhesive interfaces of existing fiber reinforced polymer (FRP) composite material joints and...

  14. High Performance Fiber Reinforced Cement Composites 6 HPFRCC 6

    CERN Document Server

    Reinhardt, Hans; Naaman, A

    2012-01-01

    High Performance Fiber Reinforced Cement Composites (HPFRCC) represent a class of cement composites whose stress-strain response in tension undergoes strain hardening behaviour accompanied by multiple cracking, leading to a high strain prior to failure. The primary objective of this International Workshop was to provide a compendium of up-to-date information on the most recent developments and research advances in the field of High Performance Fiber Reinforced Cement Composites. Approximately 65 contributions from leading world experts are assembled in these proceedings and provide an authoritative perspective on the subject. Special topics include fresh and hardening state properties; self-compacting mixtures; mechanical behavior under compressive, tensile, and shear loading; structural applications; impact, earthquake and fire resistance; durability issues; ultra-high performance fiber reinforced concrete; and textile reinforced concrete. Target readers: graduate students, researchers, fiber producers, desi...

  15. Machining of glass fiber reinforced polyamide

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available The machinability of a 30 wt% glass fiber reinforced polyamide (PA was investigated by means of drilling tests. A disk was cut from an extruded rod and drilled on the flat surface: thrust was acquired during drilling at different drilling speed, feed rate and drill diameter. Differential scanning calorimetry (DSC and indentation were used to characterize PA so as to evaluate the intrinsic lack of homogeneity of the extruded material. In conclusion, it was observed that the chip formation mechanism affects the thrust dependence on the machining parameters. A traditional modeling approach is able to predict thrust only in presence of a continuous chip. In some conditions, thrust increases as drilling speed increases and feed rate decreases; this evidence suggests not to consider the general scientific approach which deals the machining of plastics in analogy with metals. Moreover, the thrust can be significantly affected by the workpiece fabrication effect, as well as by the machining parameters; therefore, the fabrication effect is not negligible in the definition of an optimum for the machining process.

  16. CODIFICATION OF FIBER REINFORCED COMPOSITE PIPING

    Energy Technology Data Exchange (ETDEWEB)

    Rawls, G.

    2012-10-10

    The goal of the overall project is to successfully adapt spoolable FRP currently used in the oil industry for use in hydrogen pipelines. The use of FRP materials for hydrogen service will rely on the demonstrated compatibility of these materials for pipeline service environments and operating conditions. The ability of the polymer piping to withstand degradation while in service, and development of the tools and data required for life management are imperative for successful implementation of these materials for hydrogen pipeline. The information and data provided in this report provides the technical basis for the codification for fiber reinforced piping (FRP) for hydrogen service. The DOE has invested in the evaluation of FRP for the delivery for gaseous hydrogen to support the development of a hydrogen infrastructure. The codification plan calls for detailed investigation of the following areas: System design and applicable codes and standards; Service degradation of FRP; Flaw tolerance and flaw detection; Integrity management plan; Leak detection and operational controls evaluation; Repair evaluation. The FRP codification process started with commercially available products that had extensive use in the oil and gas industry. These products have been evaluated to assure that sufficient structural integrity is available for a gaseous hydrogen environment.

  17. Micromechanical modeling of strength and damage of fiber reinforced composites

    Energy Technology Data Exchange (ETDEWEB)

    Mishnaevsky, L. Jr.; Broendsted, P.

    2007-03-15

    The report for the first year of the EU UpWind project includes three parts: overview of concepts and methods of modelling of mechanical behavior, deformation and damage of unidirectional fiber reinforced composites, development of computational tools for the automatic generation of 3D micromechanical models of fiber reinforced composites, and micromechanical modelling of damage in FRC, and phenomenological analysis of the effect of frequency of cyclic loading on the lifetime and damage evolution in materials. (au)

  18. Mechanical strength of additive manufactured carbon fiber reinforced polyetheretherketone

    Science.gov (United States)

    Chumaevskii, A. V.; Tarasov, S. Yu.; Filippov, A. V.; Kolubaev, E. A.; Rubtsov, V. E.; Eliseev, A. A.

    2016-11-01

    Mechanical properties of both pure and chopped carbon fiber reinforced polyetheretherketone samples have been carried out. It was shown that the reinforcement resulted in increasing the elasticity modulus, compression and tensile ultimate strength by a factor of 3.5, 2.9 and 2.8, respectively. The fracture surfaces have been examined using both optical and scanning electron microscopy.

  19. Fiber-reinforced composites in fixed partial dentures

    Directory of Open Access Journals (Sweden)

    Vallittu P

    2006-08-01

    Full Text Available Fiber-reinforced composite resin (FRC prostheses offer the advantages of good esthetics, minimal invasive treatment, and an ability to bond to the abutment teeth, thereby compensating for less-than-optimal abutment tooth retention and resistance form. These prostheses are composed of two types of composite materials: fiber composites to build the framework and hybrid or microfill particulate composites to create the external veneer surface. This review concentrates on the use of fiber reinforcement in the fabrication of laboratory or chairside-made composite-fixed partial dentures of conventional preparation. Other applications of FRC in dentistry are briefly mentioned. The possibilities fiber reinforcement technology offers must be emphasized to the dental community. Rather than limiting discussion to whether FRC prostheses will replace metal-ceramic or full-ceramic prostheses, attention should be focused on the additional treatment options brought by the use of fibers. However, more clinical experience is needed.

  20. Evaluation of statistical strength of bamboo fiber and mechanical properties of fiber reinforced green composites

    Institute of Scientific and Technical Information of China (English)

    曹勇; 吴义强

    2008-01-01

    Green composites made from bamboo fibers and biodegradable resins were fabricated with press molding.On the basis of the Weibull distribution and the weakest-link theory,the statistical strength and distribution of bamboo fiber were analyzed,and the tensile strength of green composites was also investigated.The result confirms that the tensile statistical strength of fiber fits well with two-parameter Weibull distribution.In addition,the tensile strength of bamboo fiber reinforced composites is about 330 MPa with the fiber volume fraction of 70%.This value is close to or higher than that of other natural fiber reinforced green composites.

  1. Carbon nanotube reinforced polyacrylonitrile and poly(etherketone) fibers

    Science.gov (United States)

    Jain, Rahul

    The graphitic nature, continuous structure, and high mechanical properties of carbon nanotubes (CNTs) make them good candidate for reinforcing polymer fiber. The different types of CNTs including single-wall carbon nanotubes (SWNTs), few-wall carbon nanotubes (FWNTs), and multi-wall carbon nanotubes (MWNTs), and carbon nanofibers (CNFs) differ in terms of their diameter and number of graphitic walls. The desire has been to increase the concentration of CNTs as much as possible to make next generation multi-functional materials. The work in this thesis is mainly focused on MWNT and CNF reinforced polyacrylonitrile (PAN) composite fibers, and SWNT, FWNT, and MWNT reinforced poly(etherketone) (PEK) composite fibers. To the best of our knowledge, this is the first study to report the spinning of 20% MWNT or 30% CNF reinforced polymer fiber spun using conventional fiber spinning. Also, this is the first study to report the PEK/CNT composite fibers. The fibers were characterized for their thermal, tensile, mechanical, and dynamic mechanical properties. The fiber structure and morphology was studied using WAXD and SEM. The effect of two-stage heat drawing, sonication time for CNF dispersion, fiber drying temperature, and molecular weight of PAN was also studied. Other challenges associated with processing high concentrations of solutions for making composite fibers have been identified and reported. The effect of CNT diameter and concentration on fiber spinnability and electrical conductivity of composite fiber have also been studied. This work suggests that CNT diameter controls the maximum possible concentration of CNTs in a composite fiber. The results show that by properly choosing the type of CNT, length of CNTs, dispersion of CNTs, fiber spinning method, fiber draw ratio, and type of polymer, one can get electrically conducting fibers with wide range of conductivities for different applications. The PEK based control and composite fibers possess high thermal

  2. Studies on natural fiber reinforced polymer matrix composites

    Science.gov (United States)

    Patel, R. H.; Kapatel, P. M.; Machchhar, A. D.; Kapatel, Y. A.

    2016-05-01

    Natural fiber reinforced composites show increasing importance in day to days applications because of their low cost, lightweight, easy availability, non-toxicity, biodegradability and environment friendly nature. But these fibers are hydrophilic in nature. Thus they have very low reactivity and poor compatibility with polymers. To overcome these limitations chemical modifications of the fibers have been carried out. Therefore, in the present work jute fibers have chemically modified by treating with sodium hydroxide (NaOH) solutions. These treated jute fibers have been used to fabricate jute fiber reinforced epoxy composites. Mechanical properties like tensile strength, flexural strength and impact strength have been found out. Alkali treated composites show better properties compare to untreated composites.

  3. Fused Deposition Technique for Continuous Fiber Reinforced Thermoplastic

    Science.gov (United States)

    Bettini, Paolo; Alitta, Gianluca; Sala, Giuseppe; Di Landro, Luca

    2017-02-01

    A simple technique for the production of continuous fiber reinforced thermoplastic by fused deposition modeling, which involves a common 3D printer with quite limited modifications, is presented. An adequate setting of processing parameters and deposition path allows to obtain components with well-enhanced mechanical characteristics compared to conventional 3D printed items. The most relevant problems related to the simultaneous feeding of fibers and polymer are discussed. The properties of obtained aramid fiber reinforced polylactic acid (PLA) in terms of impregnation quality and of mechanical response are measured.

  4. Fused Deposition Technique for Continuous Fiber Reinforced Thermoplastic

    Science.gov (United States)

    Bettini, Paolo; Alitta, Gianluca; Sala, Giuseppe; Di Landro, Luca

    2016-12-01

    A simple technique for the production of continuous fiber reinforced thermoplastic by fused deposition modeling, which involves a common 3D printer with quite limited modifications, is presented. An adequate setting of processing parameters and deposition path allows to obtain components with well-enhanced mechanical characteristics compared to conventional 3D printed items. The most relevant problems related to the simultaneous feeding of fibers and polymer are discussed. The properties of obtained aramid fiber reinforced polylactic acid (PLA) in terms of impregnation quality and of mechanical response are measured.

  5. Hybrid Effect Evaluation of Steel Fiber and Carbon Fiber on the Performance of the Fiber Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Weimin Song

    2016-08-01

    Full Text Available Fiber reinforcement is an important method to enhance the performance of concrete. In this study, the compressive test and impact test were conducted, and then the hybrid effect between steel fiber (SF and carbon fiber (CF was evaluated by employing the hybrid effect index. Compressive toughness and impact toughness of steel fiber reinforced concrete (SFRC, carbon fiber reinforced concrete (CFRC and hybrid fiber reinforced concrete (HFRC were explored at steel fiber volume fraction 0.5%, 1%, 1.5% and carbon fiber 0.1%, 0.2%, 0.3%. Results showed that the addition of steel fiber and carbon fiber can increase the compressive strength. SF, CF and the hybridization between them could increase the compressive toughness significantly. The impact test results showed that as the volume of fiber increased, the impact number of the first visible crack and the ultimate failure also increased. The improvement of toughness mainly lay in improving the crack resistance after the first crack. Based on the test results, the positive hybrid effect of steel fiber and carbon fiber existed in hybrid fiber reinforced concrete. The relationship between the compressive toughness and impact toughness was also explored.

  6. [Carbon fiber-reinforced plastics as implant materials].

    Science.gov (United States)

    Bader, R; Steinhauser, E; Rechl, H; Siebels, W; Mittelmeier, W; Gradinger, R

    2003-01-01

    Carbon fiber-reinforced plastics have been used clinically as an implant material for different applications for over 20 years.A review of technical basics of the composite materials (carbon fibers and matrix systems), fields of application,advantages (e.g., postoperative visualization without distortion in computed and magnetic resonance tomography), and disadvantages with use as an implant material is given. The question of the biocompatibility of carbon fiber-reinforced plastics is discussed on the basis of experimental and clinical studies. Selected implant systems made of carbon composite materials for treatments in orthopedic surgery such as joint replacement, tumor surgery, and spinal operations are presented and assessed. Present applications for carbon fiber reinforced plastics are seen in the field of spinal surgery, both as cages for interbody fusion and vertebral body replacement.

  7. Carbon Fiber Reinforced Polymer with Shredded Fibers: Quasi-Isotropic Material Properties and Antenna Performance

    OpenAIRE

    Gerald Artner; Philipp K. Gentner; Johann Nicolics; Mecklenbräuker, Christoph F.

    2017-01-01

    A carbon fiber reinforced polymer (CFRP) laminate, with the top layer consisting of shredded fibers, is proposed and manufactured. The shredded fibers are aligned randomly on the surface to achieve a more isotropic conductivity, as is desired in antenna applications. Moreover, fiber shreds can be recycled from carbon fiber composites. Conductivity, permittivity, and permeability are obtained with the Nicolson-Ross-Weir method from material samples measured inside rectangular waveguides in the...

  8. Stochastic Simulation of Progressive Fiber Breaking in Longitudinally Fiber-Reinforced Composites

    OpenAIRE

    Wu,Yi

    2012-01-01

    Statistics has a wide application in science and engineering fields. This research work is aim to study the progressive fiber breaking evolution in the longitudinally reinforced composites from a statistical perspective. First of all, the fiber breaking evolution in a single fiber composite is studied. The Kolmogorov-Smirnov goodness-of-fit test is performed on the experimental data to characterize the damage pattern of the fiber in a single fiber composite. The results indicate that the frag...

  9. Performance of steel-making slag concrete reinforced with fibers

    Directory of Open Access Journals (Sweden)

    Ortega-López Vanesa

    2017-01-01

    Full Text Available In this research, the possibility of making concrete reinforced with fibers and manufactured with recycled aggregates from carbon steel production was explored. Electric arc furnace slag (EAFS was used as coarse and medium aggregate, and part of the sand sizes. Metallic and synthetic fibers were added in different amounts. Initially, the properties of EAFS and their suitability to be used in the manufacture fiber reinforced concrete were analysed. Then, a series of fiber reinforced concrete mixtures were developed incorporating EAFS, and they were compared with the reference mixtures, made with conventional components plus fibers and made with EAFS without fibers. A series of tests were performed, including concepts such as consistency, compressive strength, flexural strength, splitting tensile strength, resistance to water penetration or toughness. The results show that it is possible to make a suitable steel-slag concrete reinforced with fibers, complying with the standard requirements for it use in pavements and slab, and improving their proprieties respect to the control mixtures.

  10. Nano-Fiber Reinforced Enhancements in Composite Polymer Matrices

    Science.gov (United States)

    Chamis, Christos C.

    2009-01-01

    Nano-fibers are used to reinforce polymer matrices to enhance the matrix dependent properties that are subsequently used in conventional structural composites. A quasi isotropic configuration is used in arranging like nano-fibers through the thickness to ascertain equiaxial enhanced matrix behavior. The nano-fiber volume ratios are used to obtain the enhanced matrix strength properties for 0.01,0.03, and 0.05 nano-fiber volume rates. These enhanced nano-fiber matrices are used with conventional fiber volume ratios of 0.3 and 0.5 to obtain the composite properties. Results show that nano-fiber enhanced matrices of higher than 0.3 nano-fiber volume ratio are degrading the composite properties.

  11. Effect of Sisal Fiber Surface Treatment on Properties of Sisal Fiber Reinforced Polylactide Composites

    Directory of Open Access Journals (Sweden)

    Zhaoqian Li

    2011-01-01

    Full Text Available Mechanical properties of composites are strongly influenced by the quality of the fiber/matrix interface. The objective of this study was to evaluate the mechanical properties of polylactide (PLA composites as a function of modification of sisal fiber with two different macromolecular coupling agents. Sisal fiber reinforced polylactide composites were prepared by injection molding, and the properties of composites were studied by static/dynamic mechanical analysis (DMA. The results from mechanical testing revealed that surface-treated sisal fiber reinforced composite offered superior mechanical properties compared to untreated fiber reinforced polylactide composite, which indicated that better adhesion between sisal fiber and PLA matrix was achieved. Scanning electron microscopy (SEM investigations also showed that surface modifications improved the adhesion of the sisal fiber/polylactide matrix.

  12. Properties of Fiber Reinforced Polymer Concrete

    Directory of Open Access Journals (Sweden)

    Marinela Bărbuţă

    2008-01-01

    Full Text Available Polymer concrete is a composite material realized with resin and aggregates. In the present study the epoxy resin was used for binding the aggregates. In the composition were introduced near the fly ash, used as filler, the cellulose fibers. The mechanical characteristics such as compressive strength, flexural strength and split tensile strength of polymer concrete with fibers were investigated. The fiber percentage was constant, the epoxy resin and the filler dosages were varied. The cellulose fiber had not improved the mechanical characteristics of the polymer concrete in comparison to that of polymer concrete without cellulose fibers.

  13. Effect of Fiber Layers on the Fracture Resistance of Fiber Reinforced Composite Bridges

    Directory of Open Access Journals (Sweden)

    A Fazel

    2011-08-01

    Full Text Available Introduction: The purpose of this in vitro study was to introduce the fiber reinforced composite bridges and evaluate the most suitable site and position for placement of fibers in order to get maximum strength. Methods: The study included 20 second premolars and 20 second molars selected for fabricating twenty fiber reinforced composite bridges. Twenty specimens were selected for one fiber layer and the remaining teeth for two fiber layers. In the first group, fibers were placed in the inferior third and in the second group, fibers were placed in both the middle and inferior third region. After tooth preparation, the restorations were fabricated, thermocycled and then loaded with universal testing machine in the middle of the pontics with crosshead speed of 1mm/min. Data was analyzed by Kolmogorov-Smirnov test, Independent sample t test and Kaplan-Meier test. Mode of failure was evaluated using stereomicroscope. Results: Mean fracture resistance for the first and second groups was 1416±467N and 1349±397N, respectively. No significant differences were observed between the groups (P>0.05.In the first group, 5 specimens had delamintation and 5 specimens had detachment between fibers and resin composite. In the second group, there were 4 and 6 delaminations and detachments, respectively. There was no fracture within the fiber. Conclusion: In the fiber reinforced fixed partial dentures, fibers reinforce the tensile side of the connectors but placement of additional fibers at other sites does not increase the fracture resistance of the restoration.

  14. Flexural Strength and Behavior of Polypropylene Fiber Reinforced Concrete Beams

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The strength and deformation characteristics of polypropylene fiber reinforced concrete (PFRC) beams were investigated by four-point bending procedures in this paper.Two kinds of polypropylene fibers with different fiber contents (0.2%, 0.5%, 1.0% and 1.5%) by volume were used in the beam, which measured 100×100 mm with a span of 300 mm.It was found that the strength of the reinforced concrete beams was significantly decreased,whereas the flexural toughness was improved,compared to those unreinforced concrete beams.Geometry properties and volume contents of polypropylene fiber were considered to be important factors for improving the flexural toughness.Moreover,the composite mechanism between polypropylene fiber and concrete was analyzed and discussed.

  15. Electromechanical behavior of fiber-reinforced dielectric elastomer membrane

    Directory of Open Access Journals (Sweden)

    Chi Li

    2015-04-01

    Full Text Available Based on its large deformation, light weight, and high energy density, dielectric elastomer (DE has been used as driven muscle in many areas. We design the fiber-reinforced DE membrane by adding fibers in the membrane. The deformation and driven force direction of the membrane can be tuned by changing the fiber arrangements. The actuation in the perpendicular direction of the DE membrane with long fibers first increases and then decreases by the increasing of the fiber spacing in the perpendicular direction. The horizontal actuation of the membrane decreases by decreasing the spacing of short fibers. In the membrane-inflating structure, the radially arranged fibers will break the axisymmetric behavior of the structure. The top area of the inflated balloon without fiber will buckle up when the voltage reaches a certain level. Finite element simulations based on nonlinear field theory are conducted to investigate the effects of fiber arrangement and verify the experimental results. This work can guide the design of fiber-reinforced DE.

  16. Formable woven preforms based on in situ reinforced thermoplastic fibers

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, C.G.; Souza, J.P. de; Baird, D.G. [Virginia Polytechnic Institute & State Univ., Blacksburg, VA (United States)

    1995-12-01

    Blends of Vectra B950 (VB) and polypropylene (PP) were spun into fibers utilizing a dual extrusion process for use in formable fabric prepregs. Fibers of 50/50 weight composition were processed up to fiber draw ratios of 106. The tensile modulus of these fibers showed positive deviation from the rule of mixtures for draw ratios greater than 40, and the tensile modulus and strength properties did not level off within the range of draw ratios investigated. The fibers, pre-wetted with polypropylene, were woven into fabrics that were subsequently impregnated with polypropylene sheet to form composites. The tensile mechanical properties of these composites were nearly equivalent to those of long glass fiber reinforced polypropylene. At temperatures between 240 and 280{degrees}C, composites of 6.3 wt.% VB proved formable with elongation to break values in excess of 20%. Impregnated fabric composites were successfully thermoformed without noticeable fiber damage, and a combined fabric impregnation / thermoforming process was developed.

  17. Suppression of electromechanical instability in fiber-reinforced dielectric elastomers

    Directory of Open Access Journals (Sweden)

    Rui Xiao

    2016-03-01

    Full Text Available The electromechanical instability of dielectric elastomers has been a major challenge for the application of this class of active materials. In this work, we demonstrate that dielectric elastomers filled with soft fiber can suppress the electromechanical instability and achieve large deformation. Specifically, we developed a constitutive model to describe the dielectric and mechanical behaviors of fiber-reinforced elastomers. The model was applied to study the influence of stiffness, nonlinearity properties and the distribution of fiber on the instability of dielectric membrane under an electric field. The results show that there exists an optimal fiber distribution condition to achieve the maximum deformation before failure.

  18. Bending Mechanical Behavior of Polyester Matrix Reinforced with Fique Fiber

    Science.gov (United States)

    Altoé, Giulio Rodrigues; Netto, Pedro Amoy; Barcelos, Mariana; Gomes, André; Margem, Frederico Muylaert; Monteiro, Sergio Neves

    Environmentally correct composites, made from natural fibers, are among the most investigated and applied today. In this paper, we investigate the mechanical behavior of polyester matrix composites reinforced with continuous fique fibers, through bending tensile tests. Specimens containing 0, 10, 20 and 30% in volume of fique fiber were aligned along the entire length of a mold to create plates of these composites, those plates were cut following the ASTM standard to obtained bending tests specimens. The test was conducted in a Instron Machine and the fractured specimens were analyzed by SEM, the results showed the increase in the materials tensile properties with the increase of fiber amount.

  19. Crack widths in concrete with fibers and main reinforcement

    DEFF Research Database (Denmark)

    Christensen, Frede; Ulfkjær, Jens Peder; Brincker, Rune

    the ductility of the fiber reinforced concrete (FRC) is set up and experimental work is conducted in order to verify the crack width model. The ductility of the FRC is taken into account by using the stress crack width relation. The constitutive model for the FRC is based on the idea that the initial part......The main object of the research work presented in this paper is to establish design tools for concrete structures where main reinforcement is combined with addition of short discrete steel fibers. The work is concerned with calculating and measuring crack widths in structural elements subjected...... to bending load. Thus, the aim of the work is to enable engineers to calculate crack widths for flexural concrete members and analyze how different combinations of amounts of fibers and amounts of main reinforcement can meet a given maximum crack width requirement. A mathematical model including...

  20. Carbon Fiber Reinforced, Zero CME Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Technical Abstract: This project proposes to develop moisture insensitive, high performance, carbon fiber laminates for future missions. Current space-qualified...

  1. Characterization of triboluminescent enhanced discontinuous glass–fiber composite beams for micro-damage detection and fracture assessment

    Energy Technology Data Exchange (ETDEWEB)

    Dickens, Tarik, E-mail: dickens@eng.fsu.edu [Department of Industrial & Manufacturing Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310-6046 (United States); Nanotechnology Patronas Group Inc., Tallahassee, FL 32311 (United States); Armbrister, Chelsea [Department of Industrial & Manufacturing Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310-6046 (United States); Olawale, David [Department of Industrial & Manufacturing Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310-6046 (United States); Nanotechnology Patronas Group Inc., Tallahassee, FL 32311 (United States); Okoli, Okenwa [Department of Industrial & Manufacturing Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310-6046 (United States)

    2015-07-15

    This work reports the micro-emissions of triboluminescent (TL) concentrated composites and their evaluation at the onset of damage and crack propagation. Unreinforced vinyl ester resin and discontinuous glass–fiber reinforced non-prismatic beams were fabricated incorporating 10 wt% concentration of a highly triboluminescent material (ZnS:Mn). Triboluminescent observations were seen in both two- and three-phase composite systems throughout the failure loading-cycle. Results indicate emissions occur at various intensities corresponding to initial notch-length and imminent micro-matrix fracture. The fracturing or deformation energy was estimated by an experimental method of the J-integral analysis [1], where a lower threshold for excitation was found to be approximately less than 0.5 J m{sup −2}, below its respective critical composite fracture energy (~3 and 7 J m{sup −2}). Initiation of micro-cracks was observed for reinforced samples and were subjected to three-point bend tests in lieu of the multiple signatures of the transient signal response. - Highlights: • We examined triboluminescence of reinforced and unreinforced beams. • The addition of J-integral fracture analysis indicates low energy excitation. • Excitation is related to matrix fracture in unreinforced samples. • Excitation is related to micro-matrix fracture and potential fiber failure.

  2. Automobile materials competition: energy implications of fiber-reinforced plastics

    Energy Technology Data Exchange (ETDEWEB)

    Cummings-Saxton, J.

    1981-10-01

    The embodied energy, structural weight, and transportation energy (fuel requirement) characteristics of steel, fiber-reinforced plastics, and aluminum were assessed to determine the overall energy savings of materials substitution in automobiles. In body panels, a 1.0-lb steel component with an associated 0.5 lb in secondary weight is structurally equivalent to a 0.6-lb fiber-reinforced plastic component with 0.3 lb in associated secondary weight or a 0.5-lb aluminum component with 0.25 lb of secondary weight. (Secondary weight refers to the combined weight of the vehicle's support structure, engine, braking system, and drive train, all of which can be reduced in response to a decrease in total vehicle weight.) The life cycle transportation energy requirements of structurally equivalent body panels (including their associated secondary weights) are 174.4 x 10/sup 3/ Btu for steel, 104.6 x 10/sup 3/ Btu for fiber-reinforced plastics, and 87.2 x 10/sup 3/ Btu for aluminum. The embodied energy requirements are 37.2 x 10/sup 3/ Btu for steel, 22.1 x 10/sup 3/ Btu for fiber-reinforced plastics, and 87.1 x 10/sup 3/ Btu for aluminum. These results can be combined to yield total energy requirements of 211.6 x 10/sup 3/ Btu for steel, 126.7 x 10/sup 3/ Btu for fiber-reinforced plastics, and 174.3 x 10/sup 3/ Btu for aluminum. Fiber-reinforced plastics offer the greatest improvements over steel in both embodied and total energy requirements. Aluminum achieves the greatest savings in transportation energy.

  3. Reusing recycled fibers in high-value fiber-reinforced polymer composites: Improving bending strength by surface cleaning

    OpenAIRE

    Shi, Jian; Bao, Limin; Kobayashi, Ryouhei; Kato, Jun; Kemmochi, Kiyoshi

    2012-01-01

    Glass fiber-reinforced polymer (GFRP) composites and carbon fiber-reinforced polymer (CFRP) composites were recycled using superheated steam. Recycled glass fibers (R-GFs) and recycled carbon fibers (R-CFs) were surface treated for reuse as fiber-reinforced polymer (FRP) composites. Treated R-GFs (TR-GFs) and treated R-CFs (TR-CFs) were characterized by scanning electron microscopy (SEM) and remanufactured by vacuum-assisted resin transfer molding (VARTM). Most residual resin impurities were ...

  4. Reusing recycled fibers in high-value fiber-reinforced polymer composites: Improving bending strength by surface cleaning

    OpenAIRE

    Shi, Jian; Bao, Limin; Kobayashi, Ryouhei; Kato, Jun; Kemmochi, Kiyoshi

    2012-01-01

    Glass fiber-reinforced polymer (GFRP) composites and carbon fiber-reinforced polymer (CFRP) composites were recycled using superheated steam. Recycled glass fibers (R-GFs) and recycled carbon fibers (R-CFs) were surface treated for reuse as fiber-reinforced polymer (FRP) composites. Treated R-GFs (TR-GFs) and treated R-CFs (TR-CFs) were characterized by scanning electron microscopy (SEM) and remanufactured by vacuum-assisted resin transfer molding (VARTM). Most residual resin impurities were ...

  5. Advance study of fiber-reinforced self-compacting concrete

    Energy Technology Data Exchange (ETDEWEB)

    Mironova, M., E-mail: mirona@imbm.bas.bg; Ivanova, M., E-mail: magdalena.ivanova@imbm.bas.bg; Naidenov, V., E-mail: valna53@mail.bg [Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 4, Sofia 1113 (Bulgaria); Georgiev, I., E-mail: ivan.georgiev@parallel.bas.bg [Institute of Information and Communication Technologies & Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., Sofia 1113 (Bulgaria); Stary, J., E-mail: stary@ugn.cas.cz [Institute of Geonics Czech Academy of Sciences, Studentska str., Ostrava 1768 (Czech Republic)

    2015-10-28

    Incorporation in concrete composition of steel macro- and micro – fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.

  6. Fiber-reinforced bioactive and bioabsorbable hybrid composites

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, Mikko; Godinho, Pedro; Kellomaeki, Minna [Tampere University of Technology, Institute of Biomaterials, Hermiankatu 12, PO Box 589, FIN-33101 Tampere (Finland); Toermaelae, Pertti [Bioretec Ltd, Hermiankatu 22, PO Box 135, FI-33721 Tampere (Finland)], E-mail: mikko.huttunen@tut.fi

    2008-09-01

    Bioabsorbable polymeric bone fracture fixation devices have been developed and used clinically in recent decades to replace metallic implants. An advantage of bioabsorbable polymeric devices is that these materials degrade in the body and the degradation products exit via metabolic routes. Additionally, the strength properties of the bioabsorbable polymeric devices decrease as the device degrades, which promotes bone regeneration (according to Wolff's law) as the remodeling bone tissue is progressively loaded. The most extensively studied bioabsorbable polymers are poly-{alpha}-hydroxy acids. The major limitation of the first generation of bioabsorbable materials and devices was their relatively low mechanical properties and brittle behavior. Therefore, several reinforcing techniques have been used to improve the mechanical properties. These include polymer chain orientation techniques and the use of fiber reinforcements. The latest innovation for bioactive and fiber-reinforced bioabsorbable composites is to use both bioactive and bioresorbable ceramic and bioabsorbable polymeric fiber reinforcement in the same composite structure. This solution of using bioactive and fiber-reinforced bioabsorbable hybrid composites is examined in this study.

  7. Advance study of fiber-reinforced self-compacting concrete

    Science.gov (United States)

    Mironova, M.; Ivanova, M.; Naidenov, V.; Georgiev, I.; Stary, J.

    2015-10-01

    Incorporation in concrete composition of steel macro- and micro - fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.

  8. Comparison between the preparation, structure and mechanical properties of long fiber reinforced thermoplastics and short fiber reinforced thermoplastic

    Institute of Scientific and Technical Information of China (English)

    Fang Kun; Yang Jie; Wu Sizhu; Li Mei; Ma Mingtu

    2012-01-01

    This article summarizes the comparison between the preparation, structure and mechanical properties of long fiber reinforced thermoplastics (LFT) and short fiber reinforced thermoplastics (SFT). Both of the experiment and theory results showed that the mechanical properties of long glass fiber reinforced thermoplastics pellets (LGFRT) have been enhanced better than that of short glass fiber reinforced thermoplastics pellets (SGFRT) manufactured by molding procession. After regulation of the relative humidity by 50 % , the mechanical properties of 30 % ( weight percent) short glass fiber content in SFT ( SFT-PA6-SGF30 ) are similar to that of 40 % long glass fiber content in LFT. Howev- er, the density of the latter is about 17 % lower than that of the former. Thus, the corresponding weight of products is reduced by 13 % ;output rate is increased by 21% , and the cost is therefore significantly lowered. And it has the fol- lowing advantages: impact strength is increased by 87 % ; the proportion is reduced by 20 % ; molding cycle is short- ened by 10 % ;materials cost is saved by 20 % -30 % and the final total cost is saved by 30 % -40 %. So LFT (LFT-PP-LGF40) can replace SFT (SFT-PA6-SGF30) with the similar basic mechanical properties under normal tem- perature or 160 ℃ lower.

  9. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; McLaughlin, J.C. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.; Probst, K.J.; Anderson, T.J. [Univ. of Florida, Gainesville, FL (United States). Dept. of Chemical Engineering; Starr, T.L. [Georgia Inst. of Tech., Atlanta, GA (United States). Dept. of Materials Science and Engineering

    1997-12-01

    Silicon carbide-based heat exchanger tubes are of interest to energy production and conversion systems due to their excellent high temperature properties. Fiber-reinforced SiC is of particular importance for these applications since it is substantially tougher than monolithic SiC, and therefore more damage and thermal shock tolerant. This paper reviews a program to develop a scaled-up system for the chemical vapor infiltration of tubular shapes of fiber-reinforced SiC. The efforts include producing a unique furnace design, extensive process and system modeling, and experimental efforts to demonstrate tube fabrication.

  10. Structural Analysis of Basalt Fiber Reinforced Plastic Wind Turbine Blade

    Directory of Open Access Journals (Sweden)

    Mengal Ali Nawaz

    2014-07-01

    Full Text Available In this study, Basalt fiber reinforced plastic (BFRP wind turbine blade was analyzed and compared with Glass fiber reinforced plastic blade (GFRP. Finite element analysis (FEA of blade was carried out using ANSYS. Data for FEA was obtained by using rule of mixture. The shell element in ANSYS was used to simulate the wind turbine blade and to conduct its strength analysis. The structural analysis and comparison of blade deformations proved that BFRP wind turbine blade has better strength compared to GFRP wind turbine blade.

  11. Fiber-reinforced technology in multidisciplinary chairside approaches

    Directory of Open Access Journals (Sweden)

    Arhun Neslihan

    2008-01-01

    Full Text Available There is an increasing demand to improve dentofacial esthetics in the adult population. This demand usually requires a close collaboration within the various disciplines of dentistry and the patient at every stage of the therapy. The materials and techniques used by these interdisciplinary clinicians must be conservative and minimally invasive. Fiber-reinforced composite technology offers such solutions for chairside applications. This case report presents two cases where fiber-reinforced ribbon and composite complex was used in a multidisciplinary approach to improve esthetics.

  12. Fracture of fiber-reinforced composites analyzed via acoustic emission.

    Science.gov (United States)

    Ereifej, Nadia S; Oweis, Yara G; Altarawneh, Sandra K

    2015-01-01

    This study investigated the fracture resistance of composite resins using a three-point bending test and acoustic emission (AE) analysis. Three groups of specimens (n=15) were prepared: non-reinforced BelleGlass HP composite (NRC), unidirectional (UFRC) and multidirectional (MFRC) fiber-reinforced groups which respectively incorporated unidirectional Stick and multidirectional StickNet fibers. Specimens were loaded to failure in a universal testing machine while an AE system was used to detect audible signals. Initial fracture strengths and AE amplitudes were significantly lower than those at final fracture in all groups (pcomposite resin materials and the monitoring of acoustic signals revealed significant information regarding the fracture process.

  13. Physical behaviors of fiber reinforcement as applied to tooth stabilization.

    Science.gov (United States)

    Rudo, D N; Karbhari, V M

    1999-01-01

    This article presents an understanding of the mechanical response of polymer matrix composite materials that are reinforced with fibers that have high levels of failure strain. Also discussed are the basic principles for the use of the materials and techniques to optimize the clinical success for the applications in which these fibers are used to restore and maintain form and function to the masticatory structures.

  14. Flexural retrofitting of reinforced concrete structures using Green Natural Fiber Reinforced Polymer plates

    Science.gov (United States)

    Cervantes, Ignacio

    An experimental study will be carried out to determine the suitability of Green Natural Fiber Reinforced Polymer plates (GNFRP) manufactured with hemp fibers, with the purpose of using them as structural materials for the flexural strengthening of reinforced concrete (RC) beams. Four identical RC beams, 96 inches long, are tested for the investigation, three control beams and one test beam. The first three beams are used as references; one unreinforced, one with one layer of Carbon Fiber Reinforced Polymer (CFRP), one with two layers of CFRP, and one with n layers of the proposed, environmental-friendly, GNFRP plates. The goal is to determine the number of GNFRP layers needed to match the strength reached with one layer of CFRP and once matched, assess if the system is less expensive than CFRP strengthening, if this is the case, this strengthening system could be an alternative to the currently used, expensive CFRP systems.

  15. Tensile strength of woven yarn kenaf fiber reinforced polyester composites

    Directory of Open Access Journals (Sweden)

    A.E. Ismail

    2015-12-01

    Full Text Available This paper presents the tensile strength of woven kenaf fiber reinforced polyester composites. The as-received yarn kenaf fiber is weaved and then aligned into specific fiber orientations before it is hardened with polyester resin. The composite plates are shaped according to the standard geometry and uni-axially loaded in order to investigate the tensile responses. Two important parameters are studied such as fiber orientations and number of layers. According to the results, it is shown that fiber orientations greatly affected the ultimate tensile strength but it is not for modulus of elasticity for both types of layers. It is estimated that the reductions of both ultimate tensile strength and Young’s modulus are in the range of 27.7-30.9% and 2.4-3.7% respectively, if the inclined fibers are used with respect to the principal axis.

  16. The assessment of metal fiber reinforced polymeric composites

    Science.gov (United States)

    Chung, Wenchiang R.

    1990-01-01

    Because of their low cost, excellent electrical conductivity, high specific strength (strength/density), and high specific modulus (modulus/density) short metal fiber reinforced composites have enjoyed a widespread use in many critical applications such as automotive industry, aircraft manufacturing, national defense, and space technology. However, little data has been found in the study of short metal fibrous composites. Optimum fiber concentration in a resin matrix and fiber aspect ratio (length-to-diameter ratio) are often not available to a user. Stress concentration at short fiber ends is the other concern when the composite is applied to a load-bearing application. Fracture in such composites where the damage will be initiated or accumulated is usually difficult to be determined. An experimental investigation is therefore carefully designed and undertaken to systematically evaluate the mechanical properties as well as electrical properties. Inconel 601 (nickel based) metal fiber with a diameter of eight microns is used to reinforce commercially available thermoset polyester resin. Mechanical testing such as tensile, impact, and flexure tests along with electrical conductivity measurements is conducted to study the feasibility of using such composites. The advantages and limitations of applying chopped metal fiber reinforced polymeric composites are also discussed.

  17. Investigation on Reinforced Mechanism of Fiber Reinforced Asphalt Concrete Based on Micromechanical Modeling

    Directory of Open Access Journals (Sweden)

    Ying Gao

    2017-01-01

    Full Text Available Short fibers have been widely used to prepare the fiber reinforced asphalt concrete (FRAC. However, internal interactions between fiber and other phases of asphalt concrete are unclear although experimental methods have been used to design the FRAC successfully. In this paper, numerical method was used to investigate the reinforced mechanism of FRAC from microperspective. 2D micromechanical model of FRAC was established based on Monte Carlo theory. Effects of fiber length and content on stress state of asphalt mortar, effective modulus, and viscoelastic deformation of asphalt concrete were investigated. Indirect tensile stiffness modulus (ITSM test and uniaxial creep test were carried out to verify the numerical results. Results show that maximum stress of asphalt mortar is lower compared to the control concrete when the fiber length is longer than 12 mm. Fiber reduces the stress level of asphalt mortar significantly. Fiber length has no significant influence on the effective modulus of asphalt concrete. Fiber length and content both have notable impacts on the viscoelastic performance of FRAC. Fiber length should be given more attention in the future design of FRAC except the content.

  18. STRAIN REGULARITY IN REINFORCERS OF SHORT-FIBER/ WHISKER REINFORCED COMPOSITE AND ITS APPLICATION

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Based on the study of strain distribution in short-fiber/whisker reinforced metal matrix composites, a deformation characteristic parameter λ is defined as the ratio of the root-mean-square strain of reinforcers to the macro-linear strain along the same direction. Quantitative relation between λ and microstructure parameters of the composite is obtained. As an example of applying and verifying λ, the stress-strain curve of [AlBO]w/Al composite under tensile loading is predicted and favorably compared with experiments. By using λ, the stiffness modulus of the composite with arbitrary reinforcer orientation under any loading condition is predicted from the microstructure parameters of material.

  19. Micromechanisms of damage in unidirectional fiber reinforced composites

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Brøndsted, Povl

    2009-01-01

    Numerical micromechanical investigations of the mechanical behavior and damage evolution of glass fiber reinforced composites are presented. A program code for the automatic generation of 3D micromechanical unit cell models of composites with damageable elements is developed, and used in the nume...

  20. An Assessment of Self-Healing Fiber Reinforced Composites

    Science.gov (United States)

    Smith, Joseph G., Jr.

    2012-01-01

    Several reviews and books have been written concerning self-healing polymers over the last few years. These have focused primarily on the types of self-healing materials being studied, with minor emphasis given to composite properties. The purpose of this review is to assess the self-healing ability of these materials when utilized in fiber reinforced composites

  1. Apatite bone cement reinforced with calcium silicate fibers.

    Science.gov (United States)

    Motisuke, Mariana; Santos, Verônica R; Bazanini, Naiana C; Bertran, Celso A

    2014-10-01

    Several research efforts have been made in the attempt to reinforce calcium phosphate cements (CPCs) with polymeric and carbon fibers. Due to their low compatibility with the cement matrix, results were not satisfactory. In this context, calcium silicate fibers (CaSiO3) may be an alternative material to overcome the main drawback of reinforced CPCs since, despite of their good mechanical properties, they may interact chemically with the CPC matrix. In this work CaSiO3 fibers, with aspect ratio of 9.6, were synthesized by a reactive molten salt synthesis and used as reinforcement in apatite cement. 5 wt.% of reinforcement addition has increased the compressive strength of the CPC by 250% (from 14.5 to 50.4 MPa) without preventing the cement to set. Ca and Si release in samples containing fibers could be explained by CaSiO3 partial hydrolysis which leads to a quick increase in Ca concentration and in silica gel precipitation. The latter may be responsible for apatite precipitation in needle like form during cement setting reaction. The material developed presents potential properties to be employed in bone repair treatment.

  2. Mechanical Properties of Layered Hybrid Fiber Reinforced Concrete

    Institute of Scientific and Technical Information of China (English)

    YUAN Hai-qing; CHEN Jing-tao; ZHU Ji-dong

    2003-01-01

    To improve the mechanical properties of concrete,Layered Hybrid Fiber Reinforced Concrete (LHFRC) was developed in this paper.Through comparative tests,the effects of layered hybrid fibers on a series of mechanical properties of concrete were discussed.The mechanical properties include compressive strength,tensile strength,flexural strength,compressive stress-strain relationship,flexural toughness and cracking resistance of concrete.The testing results and analysis demonstrate that layered hybrid fibers can significantly improve the flexural strength,toughness and cracking resistance of concrete while the cost of concrete increases slightly.

  3. Characteristics of Resistivity-temperature for Carbon Fiber Reinforced Concrete

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The resistance response to temperature change of carbon fiber reinforced cement-based composites (CFRC) is reported, which shows some outstanding phenomena of positive temperature coefficient (PTC) of resistance and negative temperature coefficient (NTC) of resistance during the temperature rising.The influences of carbon fiber, cement-based matrix and thermal cycles on the characteristics of temperature-resistivity for the system were also discussed.Because of the special characteristics for temperature resistivity, carbon fiber cement based composites can be useful in structure with the function of alarm for fire.

  4. Effects of moisture on glass fiber-reinforced polymer composites

    DEFF Research Database (Denmark)

    Alzamora Guzman, Vladimir Joel; Brøndsted, Povl

    2015-01-01

    performance of wind turbine blades over their lifetime. Here, environmental moisture conditions were simulated by immersing glass fiber-reinforced polymer specimens in salt water for a period of up to 8 years. The mechanical properties of specimens were analyzed before and after immersion to evaluate...... the degradation mechanisms. Single-fiber tensile testing was also performed at different moisture conditions. The water-diffusion mechanism was studied to quantify the diffusion coefficients as a function of salt concentration, sample geometry, and fiber direction. Three degradation mechanisms were observed...

  5. Evaluating plastic shrinkage and permeability of polypropylene fiber reinforced concrete

    Directory of Open Access Journals (Sweden)

    G.M. Sadiqul Islam

    2016-12-01

    Full Text Available Plastic concrete is susceptible to develop cracks due to shrinkage in dry and windy conditions. Addition of fibers could reduce propagation of this crack. On the other hand, permeability determines the durability properties of concrete. This study evaluated strength, plastic shrinkage and permeability (gas and water of concrete incorporating ‘polypropylene’ fiber (aspect ratio 300 in various proportions (viz. 0.10%, 0.15%, 0.2%, 0.25% and 0.3% by volume of concrete. Plane concrete samples were also prepared and tested for reference purpose. Inclusion of 0.1% fiber gave minor reduction (2% in compressive strength while the tensile strength increased by 39% with same fiber content compared to the plain concrete. A significant reduction in crack generation, appearance period of first crack and crack area between plane concrete and fiber reinforced concretes was found. The experimental result with inclusion of 0.1–0.3% fiber in concrete indicated that plastic shrinkage cracks were reduced by 50–99% compared to the plain concrete. For reference concrete (without fiber, test within the high temperature and controlled humidity chamber gave higher crack width than the acceptable limit (3 mm specified by the ACI 224. With the inclusion of 0.1% fiber reduced the crack width down to 1 mm and the trend was continued with the addition of more fibers. However, results showed that with the addition of polypropylene fiber both water and gas permeability coefficient was increased. Therefore, it is concluded that the fiber reinforced concrete would work better for plastic shrinkage susceptible structural elements (flat elements such as slab; however, it requires careful judgement while applying to a water retaining structures.

  6. Production of Banana Fiber Yarns for Technical Textile Reinforced Composites

    Directory of Open Access Journals (Sweden)

    Zaida Ortega

    2016-05-01

    Full Text Available Natural fibers have been used as an alternative to synthetic ones for their greener character; banana fibers have the advantage of coming from an agricultural residue. Fibers have been extracted by mechanical means from banana tree pseudostems, as a strategy to valorize banana crops residues. To increase the mechanical properties of the composite, technical textiles can be used as reinforcement, instead of short fibers. To do so, fibers must be spun and woven. The aim of this paper is to show the viability of using banana fibers to obtain a yarn suitable to be woven, after an enzymatic treatment, which is more environmentally friendly. Extracted long fibers are cut to 50 mm length and then immersed into an enzymatic bath for their refining. Conditions of enzymatic treatment have been optimized to produce a textile grade of banana fibers, which have then been characterized. The optimum treating conditions were found with the use of Biopectinase K (100% related to fiber weight at 45 °C, pH 4.5 for 6 h, with bath renewal after three hours. The first spinning trials show that these fibers are suitable to be used for the production of yarns. The next step is the weaving process to obtain a technical fabric for composites production.

  7. Production of Banana Fiber Yarns for Technical Textile Reinforced Composites

    Science.gov (United States)

    Ortega, Zaida; Morón, Moisés; Monzón, Mario D.; Badalló, Pere; Paz, Rubén

    2016-01-01

    Natural fibers have been used as an alternative to synthetic ones for their greener character; banana fibers have the advantage of coming from an agricultural residue. Fibers have been extracted by mechanical means from banana tree pseudostems, as a strategy to valorize banana crops residues. To increase the mechanical properties of the composite, technical textiles can be used as reinforcement, instead of short fibers. To do so, fibers must be spun and woven. The aim of this paper is to show the viability of using banana fibers to obtain a yarn suitable to be woven, after an enzymatic treatment, which is more environmentally friendly. Extracted long fibers are cut to 50 mm length and then immersed into an enzymatic bath for their refining. Conditions of enzymatic treatment have been optimized to produce a textile grade of banana fibers, which have then been characterized. The optimum treating conditions were found with the use of Biopectinase K (100% related to fiber weight) at 45 °C, pH 4.5 for 6 h, with bath renewal after three hours. The first spinning trials show that these fibers are suitable to be used for the production of yarns. The next step is the weaving process to obtain a technical fabric for composites production. PMID:28773490

  8. Preparation of SiC Fiber Reinforced Nickel Matrix Composite

    Institute of Scientific and Technical Information of China (English)

    Lu Zhang; Nanlin Shi; Jun Gong; Chao Sunt

    2012-01-01

    A method of preparing continuous(Al+Al2O3)-coated SiC fiber reinforced nickel matrix composite was presented,in which the diffusion between SiC fiber and nickel matrix could be prevented.Magnetron sputtering is used to deposit Ni coating on the surface of the(Al+Al2O3)-coated SiC fiber in preparation of the precursor wires.It is shown that the deposited Ni coating combines well with the(Al+Al2O3) coating and has little negative effect on the tensile strength of(Al+Al2O3)-coated SiC fiber.Solid-state diffusion bonding process is employed to prepare the(Al+Al2O3)-coated SiC fiber reinforced nickel matrix with 37% fibers in volume.The solid-state diffusion bonding process is optimized and the optimum parameters are temperature of 870,pressure of 50 MPa and holding time of 2 h.Under this condition,the precursor wires can diffuse well,composite of full density can be formed and the(Al+Al2O3) coating is effective to restrict the reaction between SiC fiber and nickel matrix.

  9. Glass Fiber Reinforced Polypropylene Mechanical Properties Enhancement by Adhesion Improvement

    Directory of Open Access Journals (Sweden)

    Mariana Etcheverry

    2012-06-01

    Full Text Available Glass fibers (GF are the reinforcement agent most used in polypropylene (PP based composites, as they have good balance between properties and costs. However, their final properties are mainly determined by the strength and stability of the polymer-fiber interphase. Fibers do not act as an effective reinforcing material when the adhesion is weak. Also, the adhesion between phases can be easily degraded in aggressive environmental conditions such as high temperatures and/or elevated moisture, and by the stress fields to which the material may be exposed. Many efforts have been done to improve polymer-glass fiber adhesion by compatibility enhancement. The most used techniques include modifications in glass surface, polymer matrix and/or both. However, the results obtained do not show a good costs/properties improvement relationship. The aim of this work is to perform an accurate analysis regarding methods for GF/PP adhesion improvement and to propose a new route based on PP in-situ polymerization onto fibers. This route involves the modification of fibers with an aluminum alkyl and hydroxy-α-olefin and from there to enable the growth of the PP chains using direct metallocenic copolymerization. The adhesion improvements were further proved by fragmentation test, as well as by mechanical properties measurements. The strength and toughness increases three times and the interfacial strength duplicates in PP/GF composites prepared with in-situ polymerized fibers.

  10. Banana fiber-reinforced biodegradable soy protein composites

    Institute of Scientific and Technical Information of China (English)

    Rakesh Kumar; Veena Choudhary; Saroj Mishra; Ik Varma

    2008-01-01

    Banana fiber,a waste product of banana cultivation,has been used to prepare banana fiber reinforced soy protein composites. Alkali modified banana fibers were characterized in terms of density,denier and crystallinity index. Fourier transformed infrared spectroscopy (FTIR),scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) were also performed on the fibers. Soy protein composites were prepared by incorporating different volume fractions of alkali,treated and untreated fibers into soy protein isolate (SPI) with different amounts of glycerol (25%,50%) as plasticizer.Composites thus prepared were characterized in terms of mechanical properties,SEM and water resistance.The results indicate that at 0.3 volume fraction,tensile strength and modulus of alkali treated fiber reinforced soy protein composites increased to 82% and 963%,respectively,compared to soy protein film without fibers.Water resistance of the composites increased significantly with the addition of glutaraldehyde which acts as crosslinking agent. Biodegradability of the composites has also been tested in the contaminated environment and the composites were found to be 100% biodegradable.

  11. Nondestructive testing of externally reinforced structures for seismic retrofitting using flax fiber reinforced polymer (FFRP) composites

    Science.gov (United States)

    Ibarra-Castanedo, C.; Sfarra, S.; Paoletti, D.; Bendada, A.; Maldague, X.

    2013-05-01

    Natural fibers constitute an interesting alternative to synthetic fibers, e.g. glass and carbon, for the production of composites due to their environmental and economic advantages. The strength of natural fiber composites is on average lower compared to their synthetic counterparts. Nevertheless, natural fibers such as flax, among other bast fibers (jute, kenaf, ramie and hemp), are serious candidates for seismic retrofitting applications given that their mechanical properties are more suitable for dynamic loads. Strengthening of structures is performed by impregnating flax fiber reinforced polymers (FFRP) fabrics with epoxy resin and applying them to the component of interest, increasing in this way the load and deformation capacities of the building, while preserving its stiffness and dynamic properties. The reinforced areas are however prompt to debonding if the fabrics are not mounted properly. Nondestructive testing is therefore required to verify that the fabric is uniformly installed and that there are no air gaps or foreign materials that could instigate debonding. In this work, the use of active infrared thermography was investigated for the assessment of (1) a laboratory specimen reinforced with FFRP and containing several artificial defects; and (2) an actual FFRP retrofitted masonry wall in the Faculty of Engineering of the University of L'Aquila (Italy) that was seriously affected by the 2009 earthquake. Thermographic data was processed by advanced signal processing techniques, and post-processed by computing the watershed lines to locate suspected areas. Results coming from the academic specimen were compared to digital speckle photography and holographic interferometry images.

  12. Thermoforming continuous fiber-reinforced thermoplastic composites

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiang.

    1990-01-01

    In this research the forming process was first decomposed into basic deformation elements with simple geometries, and models were then developed for these elements. A series-parallel model was developed for predicting the upper and lower bounds of composite shear modulus at forming temperature based on the fiber content, fiber distribution, and matrix shear modulus. A shear-flexure model was proposed to describe the initial load-deflection behavior of thermoplastic composites in bending. A ply buckling model was developed which included the contributions from both a surface tension term and a ply buckling term.

  13. Analysis of the strength and stiffness of timber beams reinforced with carbon fiber and glass fiber

    Directory of Open Access Journals (Sweden)

    Juliano Fiorelli

    2003-06-01

    Full Text Available An experimental analysis of pinewood beams (Pinus caribea var hondurensis reinforced with glass and/or carbon fibers is discussed. The theoretical model employed to calculate the beam's bending strength takes into account the timber's ultimate limit states of tensile strength and failure by compression, considering a model of fragile elastic tension and plastic elastic compression. The validity of the theoretical model is confirmed by a comparison of the theoretical and experimental results, while the efficiency of the fiber reinforcement is corroborated by the increased strength and stiffness of the reinforced timber beams.

  14. MICROWAVE INDUCED DEGRADATION OF GLASS FIBER REINFORCED POLYESTER FOR FIBER AND RESIN RECOVERY

    DEFF Research Database (Denmark)

    Ucar, Hülya; Nielsen, Rudi Pankratz; Søgaard, Erik Gydesen;

    A solvolysis process to depolymerize the resin in glass fiber reinforced composites and recover the glass fibers has been investigated using microwave induced irradiation. The depolymerization was carried out in HNO3 with concentrations in the range of 1M-7M and in KOH with concentrations ranging...

  15. Applications of Fiber-Reinforced Polymers in Additive Manufacturing

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pedersen, David Bue; Tosello, Guido

    2017-01-01

    and Young's modulus. Key challenges in the field, as of now, are proper fiber placement, fiber seizing, an increased knowledge in the used materials and how they are applied into engineering solutions through proper control of the additive manufacturing process. The aim of this research is the improved...... understanding of fiber-reinforcement in additive manufacturing in terms of production and application. Vat polymerization and material extrusion techniques for composite additive manufacturing were investigated with respect of increasing adhesion between the matrix material and the fibers. Process optimization......Additive manufacturing technologies are these years entering the market of functional final parts. Initial research has been performed targeting the integration of fibers into additive manufactured plastic composites. Major advantages, among others, are for example increased tensile strength...

  16. Modeling oxidation damage of continuous fiber reinforced ceramic matrix composites

    Institute of Scientific and Technical Information of China (English)

    Cheng-Peng Yang; Gui-Qiong Jiao; Bo Wang

    2011-01-01

    For fiber reinforced ceramic matrix composites (CMCs), oxidation of the constituents is a very important damage type for high temperature applications. During the oxidizing process, the pyrolytic carbon interphase gradually recesses from the crack site in the axial direction of the fiber into the interior of the material. Carbon fiber usually presents notch-like or local neck-shrink oxidation phenomenon, causing strength degradation. But, the reason for SiC fiber degradation is the flaw growth mechanism on its surface. A micromechanical model based on the above mechanisms was established to simulate the mechanical properties of CMCs after high temperature oxidation. The statistic and shearlag theory were applied and the calculation expressions for retained tensile modulus and strength were deduced, respectively. Meanwhile, the interphase recession and fiber strength degradation were considered. And then, the model was validated by application to a C/SiC composite.

  17. Fiber-reinforced composites materials, manufacturing, and design

    CERN Document Server

    Mallick, P K

    2007-01-01

    The newly expanded and revised edition of Fiber-Reinforced Composites: Materials, Manufacturing, and Design presents the most up-to-date resource available on state-of-the-art composite materials. This book is unique in that it not only offers a current analysis of mechanics and properties, but also examines the latest advances in test methods, applications, manufacturing processes, and design aspects involving composites. This third edition presents thorough coverage of newly developed materials including nanocomposites. It also adds more emphasis on underlying theories, practical methods, and problem-solving skills employed in real-world applications of composite materials. Each chapter contains new examples drawn from diverse applications and additional problems to reinforce the practical relevance of key concepts. New in The Third Edition: Contains new sections on material substitution, cost analysis, nano- and natural fibers, fiber architecture, and carbon-carbon composites Provides a new chapter on poly...

  18. Reinforced Sisal Fiber with Ferric Nitrate Composites

    Directory of Open Access Journals (Sweden)

    Asif Jehan

    2015-06-01

    Full Text Available Ferric oxide synthesized through annealing route. The present research work deals with ferrite composite prepared using chemical reactions. Ferric nitrates and ammonium chloride doped with sisal fiber has been prepared. The structural behavior of aluminum oxide was studied in XRD, SEM, TEM, FTIR & dielectric measurement. This behavior showed ferrite nature of the sample.

  19. Curaua fiber reinforced high-density polyethylene composites: effect of impact modifier and fiber loading

    OpenAIRE

    Jaqueline Albano de Morais; Renan Gadioli; Marco-Aurelio De Paoli

    2016-01-01

    Abstract Short fibers are used in thermoplastic composites to increase their tensile and flexural resistance; however, it often decreases impact resistance. Composites with short vegetal fibers are not an exception to this behavior. The purpose of this work is to produce a vegetal fiber reinforced composite with improved tensile and impact resistance in relation to the polymer matrix. We used poly(ethylene-co-vinyl acetate), EVA, to recover the impact resistance of high density polyethylene, ...

  20. Research on Flax Fiber Reinforced Polylactide Environmental Friendly Composite

    Institute of Scientific and Technical Information of China (English)

    WANG Chun-hong; WANG Rui; LIU Ming; SHEN Lu; BIAN Dong-cai

    2006-01-01

    Biodegradable polylactide acid (PLA) resin can be combined with flax fibers to produce biodegradable composite materials. In our study, commercial PLA fibers were mixed with flax fibers by a non-woven method so as to make nonwoven pre-forms, which can be generated into flax fiber reinforced PLA environmental friendly composites by heat pressing technology. The tensile, flexural and impact properties are tested in order to evaluate the basic physical properties of the composites, and the influenced factors listed as making technology of the pre-forms, weight ratio of flax fibers and heat pressing technology are discussed and optimized, which can be described as weight ratio of flax fibers and PLA fibers is 50/50, heating temperature, time and pressure are respectively 195℃, 20 min and 12.5 Mpa.Preliminary results show that mechanical properties of the flax/PLA composites are quite promising compared with flax/PP composites in common commercial automotive use.Scanning electron microscope (SEM) is used to analyze the tensile specimen fracture surfaces, which shows voids and gaps occurring between flax fibers and PLA matrix and sign of fiber pull-out, the strength of flax/PLA interface can be further improved.

  1. Moment redistribution in continuous reinforced concrete beams strengthened with carbon-fiber-reinforced polymer laminates

    Science.gov (United States)

    Aiello, M. A.; Valente, L.; Rizzo, A.

    2007-09-01

    The results of tests on continuous steel-fiber-reinforced concrete (RC) beams, with and without an external strengthening, are presented. The internal flexural steel reinforcement was designed so that to allow steel yielding before the collapse of the beams. To prevent the shear failure, steel stirrups were used. The tests also included two nonstrengthened control beams; the other specimens were strengthened with different configurations of externally bonded carbon-fiber-reinforced polymer (CFRP) laminates. In order to prevent the premature failure from delamination of the CFRP strengthening, a wrapping was also applied. The experimental results obtained show that it is possible to achieve a sufficient degree of moment redistribution if the strengthening configuration is chosen properly, confirming the results provided by two simple numerical models.

  2. Material and Flexural Properties of Fiber-reinforced Rubber Concrete

    Science.gov (United States)

    Helminger, Nicholas P.

    The purpose of this research is to determine the material properties of rubber concrete with the addition of fibers, and to determine optimal mixture dosages of rubber and fiber in concrete for structural applications. Fiber-reinforced concrete and rubberized concrete have been researched separately extensively, but this research intends to combine both rubber and fiber in a concrete matrix in order to create a composite material, fiber-reinforced rubber concrete (FRRC). Sustainability has long been important in engineering design, but much of the previous research performed on sustainable concrete does not result in a material that can be used for practical purposes. While still achieving a material that can be used for structural applications, economical considerations were given when choosing the proportions and types of constituents in the concrete mix. Concrete mixtures were designed, placed, and tested in accordance with common procedures and standards, with an emphasis on practicality. Properties that were investigated include compressive strength, tensile strength, modulus of elasticity, toughness, and ductility. The basis for determining the optimal concrete mixture is one that is economical, practical, and exhibits ductile properties with a significant strength. Results show that increasing percentages of rubber tend to decrease workability, unit weight, compressive strength, split tensile strength, and modulus of elasticity while the toughness is increased. The addition of steel needle fibers to rubber concrete increases unit weight, compressive strength, split tensile strength, modulus of elasticity, toughness, and ductility of the composite material.

  3. Tungsten fiber reinforced copper matrix composites: A review

    Science.gov (United States)

    Mcdanels, David L.

    1989-01-01

    Tungsten fiber reinforced copper matrix (W/Cu) composites have served as an ideal model system with which to analyze the properties of metal matrix composites. A series of research programs were conducted to investigate the stress-strain behavior of W/Cu composites; the effect of fiber content on the strength, modulus, and conductivity of W/Cu composites; and the effect of alloying elements on the behavior of tungsten wire and of W/Cu composites. Later programs investigated the stress-rupture, creep, and impact behavior of these composites at elevated temperatures. Analysis of the results of these programs as allows prediction of the effects of fiber properties, matrix properties, and fiber content on the properties of W/Cu composites. These analyses form the basis for the rule-of-mixtures prediction of composite properties which was universally adopted as the criteria for measuring composite efficiency. In addition, the analyses allows extrapolation of potential properties of other metal matrix composites and are used to select candidate fibers and matrices for development of tungsten fiber reinforced superalloy composite materials for high temperature aircraft and rocket engine turbine applications. The W/Cu composite efforts are summarized, some of the results obtained are described, and an update is provided on more recent work using W/Cu composites as high strength, high thermal conductivity composite materials for high heat flux, elevated temperature applications.

  4. STUDY THE CREEP OF TUBULAR SHAPED FIBER REINFORCED COMPOSITES

    Directory of Open Access Journals (Sweden)

    Najat J. Saleh

    2013-05-01

    Full Text Available Inpresent work tubular –shaped fiber reinforced composites were manufactured byusing two types of resins ( Epoxy and unsaturated polyester and separatelyreinforced with glass, carbon and kevlar-49 fibers (filament and woven roving,hybrid reinforcement composites of these fibers were also prepared. The fiberswere wet wound on a mandrel using a purposely designed winding machine,developed by modifying an ordinary lathe, in winding angle of 55° for filament. A creep test was made of either the fulltube or specimens taken from it. Creep was found to increase upon reinforcementin accordance to the rule of mixture and mainly decided by the type of singleor hybridized fibers. The creep behavior, showed that the observed strain tendsto appear much faster at higher temperature as compared with that exhibited atroom temperate. The creep rate also found to be depending on fiber type, matrixtype, and the fiber /matrix bonding. The creep energy calculated fromexperimental observations was found to exhibit highest value for hybridizedreinforcement.

  5. Reinforcement of Recycled Foamed Asphalt Using Short Polypropylene Fibers

    Directory of Open Access Journals (Sweden)

    Yongjoo Kim

    2013-01-01

    Full Text Available This paper presents the reinforcing effects of the inclusion of short polypropylene fibers on recycled foamed asphalt (RFA mixture. Short polypropylene fibers of 10 mm length with a 0.15% by weight mixing ratio of the fiber to the asphalt binder were used. The Marshall stability test, the indirect tensile strength test, the resilient modulus test, and wheel tracking test of the RFA mixtures were conducted. The test results were compared to find out the reinforcing effects of the inclusion of the fiber and the other mixtures, which included the conventional recycled foamed asphalt (RFA mixtures; the cement reinforced recycled foamed asphalt (CRFA mixtures; the semihot recycled foamed asphalt (SRFA mixtures; and recycled hot-mix asphalt (RHMA mixtures. It is found that the FRFA mixture shows higher Marshall stability than the RFA and SRFA mixtures, higher indirect tensile strength than the RFA mixture, and higher rut resistance than the RFA, SRFA, and RHMA mixtures as seen from the wheel tracking test.

  6. Correlations Between Mechanical Properties of Steel Fiber Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Carrillo Julián

    2013-06-01

    Full Text Available Tension strength and post-cracking deformation capacities that exhibits steel fiber reinforced concrete (SFRC stimulate its use in elements governed by shear deformations. Aimed at developing design aids that promote the use of SFRC as web shear reinforcement of concrete walls for low-rise economic housing (LEH, an experimental study for describing the mechanical properties of SFRC was carried out. The experimental program included testing of 128 cylinder- and beam-type specimens. According to requirements specified by ACI-318, to thickness of walls used in LEH, and to results of previous studies, three Dramix fibers with length-diameter ratios of 55, 64 and 80 were selected. Fiber dosage was expressed in terms of the minimum fiber dosage specified by ACI-318 for replacing the minimum area of conventional shear reinforcement in beams (60 kg/m3. Therefore, five dosages were used: 0, 40, 45, 60 and 75 kg/m3. Mechanical properties of SFRC under compressive, tensile and flexural stresses were evaluated in this study. Based on trends of experimental results, numerical correlations for estimating both basic mechanical properties and properties that describe flexural performance of SFRC are proposed.

  7. Cellulose fiber reinforced nylon 6 or nylon 66 composites

    Science.gov (United States)

    Xu, Xiaolin

    Cellulose fiber was used to reinforce higher melting temperature engineering thermoplastics, such as nylon 6 and nylon 66. The continuous extrusion - direct compression molding processing and extrusion-injection molding were chosen to make cellulose fiber/nylon 6 or 66 composites. Tensile, flexural and Izod impact tests were used to demonstrate the mechanical properties of the composites. The continuous extrusion-compression molding processing can decrease the thermal degradation of cellulose fiber, but fiber doesn't disperse well with this procedure. Injection molding gave samples with better fiber dispersion and less void content, and thus gave better mechanical properties than compression molding. Low temperature compounding was used to extrude cellulose fiber/nylon composites. Plasticizer and a ceramic powder were used to decrease the processing temperature. Low temperature extrusion gave better mechanical properties than high temperature extrusion. The tensile modulus of nylon 6 composite with 30% fiber can reach 5GPa; with a tensile strength of 68MPa; a flexural modulus of 4GPa, and a flexural strength of 100MPa. The tensile modulus of nylon 66 composites with 30% fiber can reach 5GPa; with a flexural modulus of 5GPa; a tensile strength of 70MPa; and a flexural strength of 147MPa. The effect of thermal degradation on fiber properties was estimated. The Halpin-Tsai model and the Cox model were used to estimate the composite modulus. The Kelly-Tyson model was used to estimate the composite strength. The result indicates that the change of fiber properties determines the final properties of composites. Fiber length has a minor affect on both modulus and strength as long as the fiber length is above the critical length.

  8. STRAIN REGULARITY IN REINFORCERS OFSHORT-FIBER/ WHISKER REINFORCED COMPOSITE AND ITS APPLICATION

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    If the reinforcers were spheroids or ellipsoids, and their volume fraction was no more than 10%, their interactions could be neglected so that the elastic modulus of the composites could be predicted accurately[1~4]. However, in practical short-fiber/whisker reinforced metal matrix composites, the volume fraction of reinforcers is as high as 15%~40%. Additionally, the shape of reinforcers is usually far much more complicated than that of spheroids or ellipsoids and their distribution is irregular. The distance between reinforcers is usually as small as their diameter, so that it is difficult to cut out a unit cell with only a singular reinforcer included. For this kind of engineering composites, accurate prediction of effective elastic moduli is still an open problem until now[5].  In Refs.[6, 7], based on the study of strain distribution in whisker reinforced composites, the ratio of the root-mean-square strain of reinforcers to the macro linear strain along the same direction is defined as deformation characteristic parameter λf. An explicit precise stiffness tensor is derived by introducing λf and distribution density function of reinforcers, which is able to predict the stiffness modulus of composites with arbitrary whisker orientation under any loading condition. However, accurate prediction of the present theory depends on the value of λf.  In the present paper, the relation between λf and the microstructure geometrical and physical parameters of the composite will be investigated with a shear lag model[8] and network model[9] in order to derive a regressive formula for λf. As an example of verification, the tensile stress-strain curve of a whisker reinforced metal matrix composite will be predicted and compared with experiments.

  9. STUDY ON THE EFFECTS OF BREAKAGE OF SINGLE FIBER ON CREEP BEHAVIOR OF FIBER REINFORCED COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    X.J. Shao; Y.P. Jiang; Z. F. Yue

    2004-01-01

    A 3-D micro cell model with multi-fibers has been presented to study the effects of breakage of single fiber on the whole creep behavior of fiber reinforced composites by finite element method (FEM). Before the fiber breakage, the stresses of all fibers are identical. With the creep time increasing, stress in fiber increases but stress in matrix decreases. It is assumed that the fiber breakage occurs when the stress in fiber reaches a critical value. The stress redistribution resulted from the breakage of fiber has been obtained. The influence on the axial stress of the broken fiber is local. The stress in the all fiber sections is not uniform. There is a local stress concentration in the matrix. And this stress concentration in the matrix is more and more serious with the creep deformation. The stress transference of the loading due to the fiber breakage has been studies numerically. It is found that the fibers near to the broken fiber will take over more loading.

  10. Seebeck effect in carbon fiber-reinforced cement

    Energy Technology Data Exchange (ETDEWEB)

    Wen, S.; Chung, D.D.L.

    1999-12-01

    The Seebeck effect in carbon fiber-reinforced cement paste was found to involve electrons from the cement matrix and holes from the biers. The two contributions were equal at the percolation threshold, with a fiber content between 0.5 and 1.0% by mass of cement. The hole contribution increased monotonically with increasing fiber content below and above the percolation threshold. The fiber addition increased the linearity and reversibility of the Seebeck effect. Silica fume and latex as admixtures had minor influence on the Seebeck effect. The Seebeck effect in concrete is of interest because it gives the concrete the ability to sense its own temperature. No attached or embedded sensor is needed since the concrete itself is the sensor. This means low cost, high durability, large sensing volume, and absence of mechanical property degradation due to embedded sensors. As the temperature affects the performance and reliability of concrete, its detection is valuable.

  11. Processing and Performance of Alumina Fiber Reinforced Alumina Composites

    Institute of Scientific and Technical Information of China (English)

    P.Y.Lee; T.Uchijima; T.Yano

    2003-01-01

    Processing of alumina fiber-reinforced alumina matrix composites by hot-pressing was described. The mechanical properties of the composites fabricated by different sintering conditions including temperature and pressure have been investigated. The results indicated that the higher sintering temperature and pressure corresponded to the higher bulk density and higher maximum strength of the composite, whereas the pseudo-ductility of the composite was lower. The preliminary results of the composite with monazite-coated fibers showed that maximum strength could be improved up to 35% compared with the noncoated fiber composite in the same sintering condition. Moreover, the fracture behavior of the composite changed from completely brittle fracture to non-brittle fracture under the suitable sintering conditions. SEM observation of the fracture surface indicated that the coating worked as a protective barrier and avoided sintering of the fibers together even at high temperature and pressure during densification process.

  12. Strength and Deformability of Fiber Reinforced Cement Paste on the Basis of Basalt Fiber

    Directory of Open Access Journals (Sweden)

    Yury Barabanshchikov

    2016-01-01

    Full Text Available The research object of the paper is cement paste with the particulate reinforcement of basalt fiber. Regardless of fibers’ length at the same fiber cement mix workability and cement consumption equality compressive solidity of the specimens is reduced with increasing fiber content. This is due to the necessity to increase the water-cement ratio to obtain a given workability. The flexural stability of the specimens with increasing fiber content increments in the same conditions. There is an optimum value of the fibers’ dosage. That is why stability has a maximum when crooking. The basaltic fiber particulate reinforcement usage can abruptly increase the cement paste level limiting extensibility, which is extremely important in terms of crack resistance.

  13. Axial shear modulus of a fiber-reinforced composite with random fiber cross-sections

    Directory of Open Access Journals (Sweden)

    S. K. Bose

    1982-01-01

    Full Text Available A study is made of the effective axial shear modulus of a fiber reinforced material with random fiber cross-sections so that the micromechanics is governed by stochastic differential equations. A coarse-graining procedure is adopted to investigate the macroscopic behavior of the material. This analysis leads to the formula for the effective axial shear modulus μ∗=μ1/{1−2c(μ2−μ1/(μ2+μ1},where μ1 and μ2 are the shear modulus of the matrix and fibers respectively and c is the concentration of the fibers less that 0.5. For c>0.5, the fiber and matrix moduli are to be interchanged and c is to be replaced by 1−c. The results of this study are compared with those of the theory of fibre reinforced materials. Finally, a numerical example is presented with graphical representation.

  14. Anomaly detection of microstructural defects in continuous fiber reinforced composites

    Science.gov (United States)

    Bricker, Stephen; Simmons, J. P.; Przybyla, Craig; Hardie, Russell

    2015-03-01

    Ceramic matrix composites (CMC) with continuous fiber reinforcements have the potential to enable the next generation of high speed hypersonic vehicles and/or significant improvements in gas turbine engine performance due to their exhibited toughness when subjected to high mechanical loads at extreme temperatures (2200F+). Reinforced fiber composites (RFC) provide increased fracture toughness, crack growth resistance, and strength, though little is known about how stochastic variation and imperfections in the material effect material properties. In this work, tools are developed for quantifying anomalies within the microstructure at several scales. The detection and characterization of anomalous microstructure is a critical step in linking production techniques to properties, as well as in accurate material simulation and property prediction for the integrated computation materials engineering (ICME) of RFC based components. It is desired to find statistical outliers for any number of material characteristics such as fibers, fiber coatings, and pores. Here, fiber orientation, or `velocity', and `velocity' gradient are developed and examined for anomalous behavior. Categorizing anomalous behavior in the CMC is approached by multivariate Gaussian mixture modeling. A Gaussian mixture is employed to estimate the probability density function (PDF) of the features in question, and anomalies are classified by their likelihood of belonging to the statistical normal behavior for that feature.

  15. Rigid Polyurethane Foam Reinforced Coconut Coir Fiber Properties

    Directory of Open Access Journals (Sweden)

    Mohd Azham Azmi

    2012-09-01

    Full Text Available This research work studied the properties of composite foam panels. Coconut coir fibers were used as reinforcement in polyurethane (PU foam in order to increase the properties of foam. This composite foam panels were fabricated by using polyurethane molded method. The polyurethane foam panels reinforced from 5 to 20wt% coconut coir were produced to investigate the physical and mechanical test via density test and three point bending test respectively. It was found that the density test results show the composite foam panel density decreases as fiber content increased. The composite foam panels with 15 wt% coconut coir fibers offered less density with average value of 76.78 kg/m3. Result from mechanical test shows that the flexural properties were increased at 5wt % of coconut coir fiber with average value of maximum force and shear stress at 88N and 60 KPa.  It was revealed that the coconut coir fibers at 5wt% significantly increased the physical and mechanical properties of composites foam panel.

  16. Fiber reinforced silicon-containing arylacetylene resin composites

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available A silicon-containing arylacetylene resin (SAR, a poly(dimethylsilyleneethynylene phenyleneethynylene (PMSEPE, was synthesized. The PMSEPE is a solid resin at ambient temperature with a softening temperature about 60°C and soluble in some solvents like tetrahydrofuran. The melt viscosity of the PMSEPE resin is less than 1 Pa•s. The resin could cure at the temperature of lower than 200°C. Fiber reinforced PMSEPE composites were prepared from prepregs which were made by the impregnation of fibers in PMSEPE resin solution. The composites exhibit good mechanical properties at room temperature and 250°C. The observation on fracture surfaces of the composites reinforced by glass fibers and carbon fibers demonstrates that the adhesion between the fibers and resin is good. The results from an oxyacetylene flame test show that the composites have good ablation performance and XRD analyses indicate that SiC forms in the residues during the ablation of the composites.

  17. Micro-Mechanical Modeling of Fiber Reinforced Concrete

    DEFF Research Database (Denmark)

    Stang, Henrik

    1999-01-01

    of Fiber Reinforced Concrete (FRC) on the micro- the meso- as well as the macro-level, i.e. modeling aspects of fiber-matrix interaction, overall constitutive modeling and structural modeling. Emphasis is placed on the micro- and meso-aspects, however, some basic results on the macro-level are also......The paper is a contribution to the course Cement-Based Composites for the Building Industry, organized by POA Foundation for Postgraduate Studies in Civil Engineering in cooperation with Priority Programme Material Research (PPM) in the Netherlands. The text deals with mechanical modeling aspects...

  18. SERIAL SECTIONS THROUGH A CONTINUOUS FIBER-REINFORCED POLYMER COMPOSITE

    Directory of Open Access Journals (Sweden)

    Laurent Bizet

    2011-05-01

    Full Text Available The microstructure of a unidirectional glass-fiber composite material is described seeking especially for the influence of the stitching perpendicular to the reinforcement. Serial cuts are performed through the composite and the microstructure is quantified using global parameters and linear morphological analysis. A key result is that the stitching induces variations in fibers spacing within the yarns and in the matrix volume between the yarns. This can affect noticeably the flow of the resin during the manufacturing process and also the mechanical properties of the composite.

  19. Design of Ultra High Performance Fiber Reinforced Concrete Shells

    DEFF Research Database (Denmark)

    Jepsen, Michael S.; Lambertsen, Søren Heide; Damkilde, Lars

    2013-01-01

    Fiber Reinforced Concrete shell. The major challenge in the design phase has been securing sufficient stiffness of the structure while keeping the weight at a minimum. The weight/stiffness issue has been investigated by means of the finite element method, to optimize the structure regarding overall......The paper treats the redesign of the float structure of the Wavestar wave energy converter. Previously it was designed as a glass fiber structure, but due to cost reduction requirements a redesign has been initiated. The new float structure will be designed as a double curved Ultra High Performance...

  20. Steel fiber reinforced concrete behavior, modelling and design

    CERN Document Server

    Singh, Harvinder

    2017-01-01

    This book discusses design aspects of steel fiber-reinforced concrete (SFRC) members, including the behavior of the SFRC and its modeling. It also examines the effect of various parameters governing the response of SFRC members in detail. Unlike other publications available in the form of guidelines, which mainly describe design methods based on experimental results, it describes the basic concepts and principles of designing structural members using SFRC as a structural material, predominantly subjected to flexure and shear. Although applications to special structures, such as bridges, retaining walls, tanks and silos are not specifically covered, the fundamental design concepts remain the same and can easily be extended to these elements. It introduces the principles and related theories for predicting the role of steel fibers in reinforcing concrete members concisely and logically, and presents various material models to predict the response of SFRC members in detail. These are then gradually extended to d...

  1. Basalt fiber reinforced porous aggregates-geopolymer based cellular material

    Science.gov (United States)

    Luo, Xin; Xu, Jin-Yu; Li, Weimin

    2015-09-01

    Basalt fiber reinforced porous aggregates-geopolymer based cellular material (BFRPGCM) was prepared. The stress-strain curve has been worked out. The ideal energy-absorbing efficiency has been analyzed and the application prospect has been explored. The results show the following: fiber reinforced cellular material has successively sized pore structures; the stress-strain curve has two stages: elastic stage and yielding plateau stage; the greatest value of the ideal energy-absorbing efficiency of BFRPGCM is 89.11%, which suggests BFRPGCM has excellent energy-absorbing property. Thus, it can be seen that BFRPGCM is easy and simple to make, has high plasticity, low density and excellent energy-absorbing features. So, BFRPGCM is a promising energy-absorbing material used especially in civil defense engineering.

  2. Experimental study on fire protection methods of reinforced concrete beams strengthened with carbon fiber reinforced polymer

    Institute of Scientific and Technical Information of China (English)

    HU Kexu; HE Guisheng; LU Fan

    2007-01-01

    In this paper,two reinforced concrete (RC) beams strengthened with carbon fiber reinforced polymer (CFRP)and attached with thick-painted fire resistant coating were tested for fire resistance following the standard fire testing procedures.The experimental results show that the specimen pasted with the insulated layer of 50 mm in thickness could resist fire for 2.5 h.It is also demonstrated that the steel wire mesh embedded in the insulated layer can effectively prevent it from cracking and eroding under firing.

  3. Reinforced by Kenaf and Caroà Fibers

    Directory of Open Access Journals (Sweden)

    P. Persico

    2011-01-01

    Full Text Available Two kinds of environmental friendly composites were prepared based on sustainable matrices, respectively, defatted cross-linked soy flour and thermoplastic polyhydroxybutyrate cohydroxyvalerate, reinforced by natural fibers from Caroà and Kenaf plants. The obtained composites were compared in terms of moisture tolerance, thermal and mechanical properties, and thermoregulation ability. It was found that this ecofriendly systems have suitable properties for indoor applications in housing and transportation.

  4. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; Stinton, D.P. [Oak Ridge National Lab., TN (United States); Matlin, W.M.; Liaw, P.K. [Univ. of Tennessee, Knoxville, TN (United States)

    1996-08-01

    Processing equipment for the infiltration of fiber-reinforced composite tubes is being designed that incorporates improvements over the equipment used to infiltrate disks. A computer-controlled machine-man interface is being developed to allow for total control of all processing variables. Additionally, several improvements are being made to the furnace that will reduce the complexity and cost of the process. These improvements include the incorporation of free standing preforms, cast mandrels, and simpler graphite heating elements.

  5. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; Matlin, W.M.; Stinton, D.P.; Liaw, P.K.

    1996-06-01

    Processing equipment for the infiltration of fiber-reinforced composite tubes is being designed that incorporates improvements over the equipment used to infiltrate disks. A computer-controlled machine-man interface is being developed to allow for total control of all processing variables. Additionally, several improvements are being made to the furnace that will reduce the complexity and cost of the process. These improvements include the incorporation of free standing preforms, cast mandrels, and simpler graphite heating elements.

  6. Basalt fiber reinforced polymer composites: Processing and properties

    Science.gov (United States)

    Liu, Qiang

    A high efficiency rig was designed and built for in-plane permeability measurement of fabric materials. A new data derivation procedure to acquire the flow fluid pattern in the experiment was developed. The measurement results of the in-plane permeability for basalt twill 31 fabric material showed that a high correlation exists between the two principal permeability values for this fabric at 35% fiber volume fraction. This may be the most important scientific contribution made in this thesis. The results from radial measurements corresponded quite well with those from Unidirectional (UD) measurements, which is a well-established technique. No significant differences in mechanical properties were found between basalt fabric reinforced polymer composites and glass composites reinforced by a fabric of similar weave pattern. Aging results indicate that the interfacial region in basalt composites may be more vulnerable to environmental damage than that in glass composites. However, the basalt/epoxy interface may have been more durable than the glass/epoxy interface in tension-tension fatigue because the basalt composites have significantly longer fatigue life. In this thesis, chapter I reviews the literature on fiber reinforced polymer composites, with concentration on permeability measurement, mechanical properties and durability. Chapter II discusses the design of the new rig for in-plane permeability measurement, the new derivation procedure for monitoring of the fluid flow pattern, and the permeability measurement results. Chapter III compares the mechanical properties and durability between basalt fiber and glass fiber reinforced polymer composites. Lastly, chapter IV gives some suggestions and recommendations for future work.

  7. Fracture morphology of carbon fiber reinforced plastic composite laminates

    OpenAIRE

    Vinod Srinivasa; Vinay Shivakumar; Vinay Nayaka; Sunil Jagadeeshaiaih; Murali Seethram; Raghavendra Shenoy; Abdelhakim Nafidi

    2010-01-01

    Carbon fiber reinforced plastic (CFRP) composites have been extensively used in fabrication of primary structures for aerospace, automobile and other engineering applications. With continuous and widespread use of these composites in several advanced technology, the frequency of failures is likely to increase. Therefore, to establish the reasons for failures, the fracture modes should be understood thoroughly and unambiguously. In this paper, CFRP composite have been tested in tension, compre...

  8. Chairside fabricated fiber-reinforced composite fixed partial denture

    OpenAIRE

    Garoushi, Sufyan; Vallittu, Pekka K

    2007-01-01

    The advances in the materials and techniques for adhesive dentistry have allowed the development of non-invasive or minimally invasive approaches for replacing a missing tooth in those clinical situations when conservation of adjacent teeth is needed. Good mechanical and cosmetic/aesthetic properties of fiber-reinforced composite (FRC), with good bonding properties with composite resin cement and veneering composite are needed in FRC devices. Some recent studies have shown that adhesives of c...

  9. Durability of Cement Composites Reinforced with Sisal Fiber

    Science.gov (United States)

    Wei, Jianqiang

    This dissertation focuses mainly on investigating the aging mechanisms and degradation kinetics of sisal fiber, as well as the approaches to mitigate its degradation in the matrix of cement composites. In contrast to previous works reported in the literature, a novel approach is proposed in this study to directly determine the fiber's degradation rate by separately studying the composition changes, mechanical and physical properties of the embedded sisal fibers. Cement hydration is presented to be a crucial factor in understanding fiber degradation behavior. The degradation mechanisms of natural fiber consist of mineralization of cell walls, alkali hydrolysis of lignin and hemicellulose, as well as the cellulose decomposition which includes stripping of cellulose microfibrils and alkaline hydrolysis of amorphous regions in cellulose chains. Two mineralization mechanisms, CH-mineralization and self-mineralization, are proposed. The degradation kinetics of sisal fiber in the cement matrix are also analyzed and a model to predict the degradation rate of cellulose for natural fiber embedded in cement is outlined. The results indicate that the time needed to completely degrade the cellulose in the matrix with cement replacement by 30wt.% metakaolin is 13 times longer than that in pure cement. A novel and scientific method is presented to determine accelerated aging conditions, and to evaluating sisal fiber's degradation rate and durability of natural fiber-reinforced cement composites. Among the static aggressive environments, the most effective approach for accelerating the degradation of natural fiber in cement composites is to soak the samples or change the humidity at 70 °C and higher temperature. However, the dynamic wetting and drying cycling treatment has a more accelerating effect on the alkali hydrolysis of fiber's amorphous components evidenced by the highest crystallinity indices, minimum content of holocellulose, and lowest tensile strength. Based on the

  10. Strain Sharing Assessment in Woven Fiber Reinforced Concrete Beams Using Fiber Bragg Grating Sensors.

    Science.gov (United States)

    Montanini, Roberto; Recupero, Antonino; De Domenico, Fabrizio; Freni, Fabrizio

    2016-09-22

    Embedded fiber Bragg grating sensors have been extensively used worldwide for health monitoring of smart structures. In civil engineering, they provide a powerful method for monitoring the performance of composite reinforcements used for concrete structure rehabilitation and retrofitting. This paper discusses the problem of investigating the strain transfer mechanism in composite strengthened concrete beams subjected to three-point bending tests. Fiber Bragg grating sensors were embedded both in the concrete tensioned surface and in the woven fiber reinforcement. It has been shown that, if interface decoupling occurs, strain in the concrete can be up to 3.8 times higher than that developed in the reinforcement. A zero friction slipping model was developed which fitted very well the experimental data.

  11. Development of Glass/Jute Fibers Reinforced Polyester Composite

    Directory of Open Access Journals (Sweden)

    Amit Bindal

    2013-01-01

    Full Text Available Composites play significant role as engineering material and their use has been increasing day by day due to their specific properties such as high strength to weight ratios, high modulus to weight ratio, corrosion resistance, and wear resistance. In present work, an attempt is made to hybridize the material using synthetic (glass as well as natural fibres (chemically treated jute, such that to reduce the overall use of synthetic reinforcement, to reduce the overall cost, and to enhance the mechanical properties. All composite specimens with different weight percentages of fibres were manufactured using hand lay-up process and testing was done by using ASTM standards. Experimental results revealed that hybridization of composite with natural and synthetic fibres shows enhanced tensile strength, flexural strength, and impact strength. The content of natural reinforcement was found to be in the range of 25–33.3% for best results. The effect of treated jute on flexural properties was more than that on tensile properties, which was due to greater stiffness of jute fibers. Chemical treatment of jute fibers lowers the water absorption and results were comparable to glass fiber reinforced polyester composites. The addition of jute also reduced the overall cost by 22.18%.

  12. Areca Fiber Reinforced Epoxy Composites: Effect of Chemical Treatments on Impact Strength

    Directory of Open Access Journals (Sweden)

    S. Dhanalakshmi

    2015-06-01

    Full Text Available In this research work, impact strength of untreated, alkali treated, potassium permanganate treated, benzoyl chloride treated and acrylic acid treated areca fiber reinforced epoxy composites were studied under 40%, 50%, 60% and 70% fiber loadings. Impact strength increased with increase in fiber loading up to 60% and then showed a decline for all untreated and chemically treated areca fiber reinforced epoxy composites. The acrylic acid treated areca fiber reinforced epoxy composites with 60% fiber loading showed highest impact strength of 28.28 J/mm2 amongst all untreated and chemically treated areca/epoxy composites with same 60% fiber loading.

  13. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers

    Directory of Open Access Journals (Sweden)

    Seong-Cheol Lee

    2015-03-01

    Full Text Available In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter. In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress–strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures.

  14. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers.

    Science.gov (United States)

    Lee, Seong-Cheol; Oh, Joung-Hwan; Cho, Jae-Yeol

    2015-03-27

    In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter). In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC) specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress-strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures.

  15. Development of Ceramic Fibers for Reinforcement in Composite Materials

    Science.gov (United States)

    Gates, L. E.; Lent, W. E.; Teague, W. T.

    1961-01-01

    the. testing apparatus for single fiber tensile strength increased the precision. of tests conducted on nine fibers. The highest mean tensile strength, a value of 295,000 pounds per square inch, was obtained with R-141 fibers. Treatment of R-74 fibers with anhydrous Linde A-1100 silane finish improved its mean fiber tensile strength by 25 percent. The lapse of time after fiber formation had no measurable effect on tensile strength. A static heating test conducted with various high melting fibers indicated that Fiberfrax and R-108 underwent no significant changes in bulk volume or resiliency on exposure to 2750 degrees Fahrenheit (1510 degrees Centigrade) in an oxidizing atmosphere. For fiber-resin composition fabrication, ten fiber materials were selected on the bases of high fiber yield, fusion temperature, and type of composition. Fiberfrax, a commercial ceramic fiber, was included for comparison. A new, more effective method of removing pellets from blown fibers was developed. The de-pelletized fibers were treated with a silane finish and felted into ten-inch diameter felts prior to resin impregnation. Composites containing 30 percent by weight of CTL 91-LD phenolic resin were molded under high pressure from the impregnated felts and post-cured to achieve optimum properties. Flexural strength, flexural modules of elasticity, and punch shear strength tests were conducted on the composite specimens. The highest average flexural strength obtained was 19,958 pounds per square inch with the R-74-fiber-resin composite. This compares very favorably with the military specification of 13,000 pounds per square inch flexural strength for randomly oriented fiber reinforced composites. The highest punch shear strength (11,509 pounds per square inch) was obtained with the R-89 fiber-resin composite. The effects of anhydrous fiber finishes on composite strength were not clearly indicated. Plasma arc tests at a heat flux of 550 British Thermal Units per square foot per second on

  16. Evaluation Study of Glass Fiber Reinforced Polyester and Kevlar Reinforced Polyester by Taguchi Method

    Directory of Open Access Journals (Sweden)

    Osama Sultan M.

    2012-01-01

    Full Text Available In the present investigation two different types of fiber reinforced polymer composites were prepared by hand lay-up method using three different parameters (curing temperature, pressing load and fiber volume fraction. These composites were prepared from the polyester resin as the matrix material reinforced with glass fibers as first group of samples and mat Kevlar fibers as the second group, both with different volume fractions (4%, 8%, and 12% of fibers. They were then tested by tensile strength and impact strength. The main objective in this study is to use Taguchi method for predicting the better parameters that give the better tensile and impact strength to the composites, and then preparing composites at these parameters and comparing them with the randomly used once. The experimental and analytical results showed that the Taguchi method was successful in optimizing the parameters that give the highest properties and it can find the most influential parameter regardless of the material used. Also it showed that the volume fraction was the most influential parameter on the tensile and impact strength. The difference between these composites was in the properties values and that the Kevlar composites have higher tensile and impact strength.

  17. Development Of A Novel Discontinuously-Reinforced Aluminum For Space Applications

    Science.gov (United States)

    Pandey, A. B.; Shah, S.; Shadoan, M.

    2002-01-01

    Discontinuously-reinforced aluminum (DRA) has been used in aerospace structures such as Ventral Fins and Fan Exit Guide Vanes owing to its superior specific stiffness, specific strength, wear resistance, and thermal resistance as compared to the unreinforced aluminum alloys. In order to reduce engine weight, DRA materials are now being considered for space applications. Higher specific strength at ambient and cryogenic temperatures is one of the main requirements in certain rocket applications. The commercial DRA materials use 6xxx and 2xxx precipitation hardened aluminum alloys as matrices which have limited strengths. Therefore, an aluminum alloy which can provide significantly higher ambient and cryogenic strengths is required. In this paper, a novel aluminum alloy based on Al-Sc-X composition with improved ambient and cryogenic temperature strengthening capability is proposed. In addition, this alloy showed promise for improved strength at elevated temperature. The monolithic alloy and the composite with 15 volume percent SiC and B4C particles were processed using a powder metallurgy approach. The influence of processing parameters on the microstructures and mechanical properties of the monolithic and composite materials is discussed. The alloy showed very high strength and moderate ductility. The influence of hydrogen on the properties of monolithic and composite materials is discussed. The thermal stability of these materials is also evaluated. The strength of the material is discussed in terms of solid solution strengthening, Orowan strengthening, and antiphase boundary strengthening models.

  18. New Polylactic Acid Composites Reinforced with Artichoke Fibers

    Directory of Open Access Journals (Sweden)

    Luigi Botta

    2015-11-01

    Full Text Available In this work, artichoke fibers were used for the first time to prepare poly(lactic acid (PLA-based biocomposites. In particular, two PLA/artichoke composites with the same fiber loading (10% w/w were prepared by the film-stacking method: the first one (UNID reinforced with unidirectional long artichoke fibers, the second one (RANDOM reinforced by randomly-oriented long artichoke fibers. Both composites were mechanically characterized in tensile mode by quasi-static and dynamic mechanical tests. The morphology of the fracture surfaces was analyzed through scanning electron microscopy (SEM. Moreover, a theoretical model, i.e., Hill’s method, was used to fit the experimental Young’s modulus of the biocomposites. The quasi-static tensile tests revealed that the modulus of UNID composites is significantly higher than that of the neat PLA (i.e., ~40%. Moreover, the tensile strength is slightly higher than that of the neat matrix. The other way around, the stiffness of RANDOM composites is not significantly improved, and the tensile strength decreases in comparison to the neat PLA.

  19. Fire resistance properties of ceramic wool fiber reinforced intumescent coatings

    Energy Technology Data Exchange (ETDEWEB)

    Amir, N., E-mail: norlailiamir@petronas.com.my; Othman, W. M. S. W., E-mail: wamosa@gmail.com; Ahmad, F., E-mail: faizahmad@petronas.com.my [Mechanical Engineering Department, Universiti Teknologi PETRONAS Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    This research studied the effects of varied weight percentage and length of ceramic wool fiber (CWF) reinforcement to fire retardant performance of epoxy-based intumescent coating. Ten formulations were developed using ammonium polyphosphate (APP), expandable graphite (EG), melamine (MEL) and boric acid (BA). The mixing was conducted in two stages; powdered materials were grinded in Rocklabs mortar grinder and epoxy-mixed using Caframo mixer at low speed mixing. The samples were applied on mild steel substrate and exposed to 500°C heat inside Carbolite electric furnace. The char expansion and its physical properties were observed. Scanning electron microscopy (SEM) analyses were conducted to inspect the fiber dispersion, fiber condition and the cell structure of both coatings and chars produced. Thermogravimetric analyses (TGA) were conducted to study the thermal properties of the coating such as degradation temperature and residual weight. Fire retardant performance was determined by measuring backside temperature of substrate in 1-hour, 1000°C Bunsen burner test according to UL 1709 fire regime. The results showed that intumescent coating reinforced with CWF produced better fire resistance performance. When compared to unreinforced coating, formulation S6-15 significantly reduced steel temperature at approximately 34.7% to around 175°C. However, higher fiber weight percentage had slightly decreased fire retardant performance of the coating.

  20. Mechanical Properties of Fiber Reinforced Lightweight Concrete Containing Surfactant

    Directory of Open Access Journals (Sweden)

    Yoo-Jae Kim

    2010-01-01

    Full Text Available Fiber reinforced aerated lightweight concrete (FALC was developed to reduce concrete's density and to improve its fire resistance, thermal conductivity, and energy absorption. Compression tests were performed to determine basic properties of FALC. The primary independent variables were the types and volume fraction of fibers, and the amount of air in the concrete. Polypropylene and carbon fibers were investigated at 0, 1, 2, 3, and 4% volume ratios. The lightweight aggregate used was made of expanded clay. A self-compaction agent was used to reduce the water-cement ratio and keep good workability. A surfactant was also added to introduce air into the concrete. This study provides basic information regarding the mechanical properties of FALC and compares FALC with fiber reinforced lightweight concrete. The properties investigated include the unit weight, uniaxial compressive strength, modulus of elasticity, and toughness index. Based on the properties, a stress-strain prediction model was proposed. It was demonstrated that the proposed model accurately predicts the stress-strain behavior of FALC.

  1. Puncture-Healing Thermoplastic Resin Carbon-Fiber-Reinforced Composites

    Science.gov (United States)

    Gordon, Keith L. (Inventor); Siochi, Emilie J. (Inventor); Grimsley, Brian W. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor)

    2015-01-01

    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.

  2. Smart Behavior of Carbon Fiber Reinforced Cement-based Composite

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The electrical characteristics of cement-based material can be remarkably improved by the addition of short carbon fibers.Carbon fiber reinforced cement composite (CFRC) is an intrinsically smart material that can sense not only the stress andstrain, but also the temperature. In this paper, variations of electrical resistivity with external applied load, and relationof thermoelectric force and temperature were investigated. Test results indicated that the electrical signal is related to theincrease in the material volume resistivity during crack generation or propagation and the decrease in the resistivity duringcrack closure. Moreover, it was found that the fiber addition increased the linearity and reversibility of the Seebeck effect inthe cement-based materials. The change of electrical characteristics reflects large amount of information of inner damage andtemperature differential of composite, which can be used for stress-strain or thermal self-monitoring by embedding it in theconcrete structures.

  3. Flexural analysis of palm fiber reinforced hybrid polymer matrix composite

    Science.gov (United States)

    Venkatachalam, G.; Gautham Shankar, A.; Raghav, Dasarath; Santhosh Kiran, R.; Mahesh, Bhargav; Kumar, Krishna

    2015-07-01

    Uncertainty in availability of fossil fuels in the future and global warming increased the need for more environment friendly materials. In this work, an attempt is made to fabricate a hybrid polymer matrix composite. The blend is a mixture of General Purpose Resin and Cashew Nut Shell Liquid, a natural resin extracted from cashew plant. Palm fiber, which has high strength, is used as reinforcement material. The fiber is treated with alkali (NaOH) solution to increase its strength and adhesiveness. Parametric study of flexure strength is carried out by varying alkali concentration, duration of alkali treatment and fiber volume. Taguchi L9 Orthogonal array is followed in the design of experiments procedure for simplification. With the help of ANOVA technique, regression equations are obtained which gives the level of influence of each parameter on the flexure strength of the composite.

  4. Flexural strengthening of Reinforced Concrete (RC) Beams Retrofitted with Corrugated Glass Fiber Reinforced Polymer (GFRP) Laminates

    Science.gov (United States)

    Aravind, N.; Samanta, Amiya K.; Roy, Dilip Kr. Singha; Thanikal, Joseph V.

    2015-01-01

    Strengthening the structural members of old buildings using advanced materials is a contemporary research in the field of repairs and rehabilitation. Many researchers used plain Glass Fiber Reinforced Polymer (GFRP) sheets for strengthening Reinforced Concrete (RC) beams. In this research work, rectangular corrugated GFRP laminates were used for strengthening RC beams to achieve higher flexural strength and load carrying capacity. Type and dimensions of corrugated profile were selected based on preliminary study using ANSYS software. A total of twenty one beams were tested to study the load carrying capacity of control specimens and beams strengthened with plain sheets and corrugated laminates using epoxy resin. This paper presents the experimental and theoretical study on flexural strengthening of Reinforced Concrete (RC) beams using corrugated GFRP laminates and the results are compared. Mathematical models were developed based on the experimental data and then the models were validated.

  5. Hybrid Composites Based on Carbon Fiber/Carbon Nanofilament Reinforcement

    Directory of Open Access Journals (Sweden)

    Mehran Tehrani

    2014-05-01

    Full Text Available Carbon nanofilament and nanotubes (CNTs have shown promise for enhancing the mechanical properties of fiber-reinforced composites (FRPs and imparting multi-functionalities to them. While direct mixing of carbon nanofilaments with the polymer matrix in FRPs has several drawbacks, a high volume of uniform nanofilaments can be directly grown on fiber surfaces prior to composite fabrication. This study demonstrates the ability to create carbon nanofilaments on the surface of carbon fibers employing a synthesis method, graphitic structures by design (GSD, in which carbon structures are grown from fuel mixtures using nickel particles as the catalyst. The synthesis technique is proven feasible to grow nanofilament structures—from ethylene mixtures at 550 °C—on commercial polyacrylonitrile (PAN-based carbon fibers. Raman spectroscopy and electron microscopy were employed to characterize the surface-grown carbon species. For comparison purposes, a catalytic chemical vapor deposition (CCVD technique was also utilized to grow multiwall CNTs (MWCNTs on carbon fiber yarns. The mechanical characterization showed that composites using the GSD-grown carbon nanofilaments outperform those using the CCVD-grown CNTs in terms of stiffness and tensile strength. The results suggest that further optimization of the GSD growth time, patterning and thermal shield coating of the carbon fibers is required to fully materialize the potential benefits of the GSD technique.

  6. Modeling and simulation of continuous fiber-reinforced ceramic composites

    Science.gov (United States)

    Bheemreddy, Venkata

    Finite element modeling framework based on cohesive damage modeling, constitutive material behavior using user-material subroutines, and extended finite element method (XFEM), are developed for studying the failure behavior of continuous fiber-reinforced ceramic matrix composites (CFCCs) by the example of a silicon carbide matrix reinforced with silicon carbide fiber (SiC/SiCf) composite. This work deals with developing comprehensive numerical models for three problems: (1) fiber/matrix interface debonding and fiber pull-out, (2) mechanical behavior of a CFCC using a representative volume element (RVE) approach, and (3) microstructure image-based modeling of a CFCC using object oriented finite element analysis (OOF). Load versus displacement behavior during a fiber pull-out event was investigated using a cohesive damage model and an artificial neural network model. Mechanical behavior of a CFCC was investigated using a statistically equivalent RVE. A three-step procedure was developed for generating a randomized fiber distribution. Elastic properties and damage behavior of a CFCC were analyzed using the developed RVE models. Scattering of strength distribution in CFCCs was taken into account using a Weibull probability law. A multi-scale modeling framework was developed for evaluating the fracture behavior of a CFCC as a function of microstructural attributes. A finite element mesh of the microstructure was generated using an OOF tool. XFEM was used to study crack propagation in the microstructure and the fracture behavior was analyzed. The work performed provides a valuable procedure for developing a multi-scale framework for comprehensive damage study of CFCCs.

  7. Self-healing in single and multiple fiber(s reinforced polymer composites

    Directory of Open Access Journals (Sweden)

    Woldesenbet E.

    2010-06-01

    Full Text Available You Polymer composites have been attractive medium to introduce the autonomic healing concept into modern day engineering materials. To date, there has been significant research in self-healing polymeric materials including several studies specifically in fiber reinforced polymers. Even though several methods have been suggested in autonomic healing materials, the concept of repair by bleeding of enclosed functional agents has garnered wide attention by the scientific community. A self-healing fiber reinforced polymer composite has been developed. Tensile tests are carried out on specimens that are fabricated by using the following components: hollow and solid glass fibers, healing agent, catalysts, multi-walled carbon nanotubes, and a polymer resin matrix. The test results have demonstrated that single fiber polymer composites and multiple fiber reinforced polymer matrix composites with healing agents and catalysts have provided 90.7% and 76.55% restoration of the original tensile strength, respectively. Incorporation of functionalized multi-walled carbon nanotubes in the healing medium of the single fiber polymer composite has provided additional efficiency. Healing is found to be localized, allowing multiple healing in the presence of several cracks.

  8. Self-healing in single and multiple fiber(s) reinforced polymer composites

    Science.gov (United States)

    Woldesenbet, E.

    2010-06-01

    You Polymer composites have been attractive medium to introduce the autonomic healing concept into modern day engineering materials. To date, there has been significant research in self-healing polymeric materials including several studies specifically in fiber reinforced polymers. Even though several methods have been suggested in autonomic healing materials, the concept of repair by bleeding of enclosed functional agents has garnered wide attention by the scientific community. A self-healing fiber reinforced polymer composite has been developed. Tensile tests are carried out on specimens that are fabricated by using the following components: hollow and solid glass fibers, healing agent, catalysts, multi-walled carbon nanotubes, and a polymer resin matrix. The test results have demonstrated that single fiber polymer composites and multiple fiber reinforced polymer matrix composites with healing agents and catalysts have provided 90.7% and 76.55% restoration of the original tensile strength, respectively. Incorporation of functionalized multi-walled carbon nanotubes in the healing medium of the single fiber polymer composite has provided additional efficiency. Healing is found to be localized, allowing multiple healing in the presence of several cracks.

  9. Lateral Response Comparison of Unbonded Elastomeric Bearings Reinforced with Carbon Fiber Mesh and Steel

    Directory of Open Access Journals (Sweden)

    Ali Karimzadeh Naghshineh

    2015-01-01

    Full Text Available The vertical and horizontal stiffness used in design of bearings have been established in the last few decades. At the meantime, applicability of the theoretical approach developed to estimate vertical stiffness of the fiber-reinforced bearings has been verified in different academic studies. The suitability of conventional horizontal stiffness equation developed for elastomeric material, mainly for steel-reinforced elastomeric bearings, has not been tested in detail for use of fiber-reinforced elastomeric bearings. In this research, lateral response of fiber mesh-reinforced elastomeric bearings has been determined through experimental tests and the results have been compared by corresponding values pertaining to the steel-reinforced bearings. Within the test program, eight pairs of fiber mesh-reinforced bearings and eight pairs of steel-reinforced bearings are subjected to different levels of compressive stress and cyclic shear strains. Fiber-reinforced elastomeric bearings may be more favorable to be used in seismic regions due to lower horizontal stiffness that can result in mitigation of seismic forces for levels of 100% shear strain. Damping properties of these types of fiber mesh-reinforced bearings depend mostly on the selection of elastomeric material compounds. Suggestions have been made for the lateral response of fiber-reinforced elastomeric bearings. It has also been determined that the classical equation for lateral stiffness based on linear elastic behavior assumptions developed for elastomeric bearings does not always apply to the fiber-reinforced ones.

  10. Investigations on Void Formation in Composite Molding Processes and Structural Damping in Fiber-Reinforced Composites with Nanoscale Reinforcements

    Science.gov (United States)

    DeValve, Caleb Joshua

    Fiber-reinforced composites (FRCs) offer a stronger and lighter weight alternative to traditional materials used in engineering components such as wind turbine blades and rotorcraft structures. Composites for these applications are often fabricated using liquid molding techniques, such as injection molding or resin transfer molding. One significant issue during these processing methods is void formation due to incomplete wet-out of the resin within the fiber preform, resulting in discontinuous material properties and localized failure zones in the material. A fundamental understanding of the resin evolution during processing is essential to designing processing conditions for void-free filling, which is the first objective of the dissertation. Secondly, FRCs used in rotorcraft experience severe vibrational loads during service, and improved damping characteristics of the composite structure are desirable. To this end, a second goal is to explore the use of matrix-embedded nanoscale reinforcements to augment the inherent damping capabilities in FRCs. The first objective is addressed through a computational modeling and simulation of the infiltrating dual-scale resin flow through the micro-architectures of woven fibrous preforms, accounting for the capillary effects within the fiber bundles. An analytical model is developed for the longitudinal permeability of flow through fibrous bundles and applied to simulations which provide detailed predictions of local air entrapment locations as the resin permeates the preform. Generalized design plots are presented for predicting the void content and processing time in terms of the Capillary and Reynolds Numbers governing the molding process. The second portion of the research investigates the damping enhancement provided to FRCs in static and rotational configurations by different types and weight fractions of matrix-embedded carbon nanotubes (CNTs) in high fiber volume fraction composites. The damping is measured using

  11. Glass fiber reinforcement in repaired acrylic resin removable dentures: preliminary results of a clinical study.

    Science.gov (United States)

    Vallittu, P K

    1997-01-01

    The clinical usefulness of continuous E-glass partial fiber reinforcement of acrylic resin removable dentures was evaluated an average 13 months after the insertion of the fibers. Twelve removable complete dentures and ten removable partial dentures with a history of recurrent fracture were selected for this study. The partial fiber reinforcement was incorporated into the denture at the time of repair. One complete denture and one removable partial denture fractured in the region of reinforcement during the examination period. These fractures were most likely caused by faulty placement of the fiber reinforcement in the denture in the dental laboratory. In six dentures, new fractures occurred in regions without partial fiber reinforcement. The results revealed the importance of both the correct positioning of the partial fiber reinforcement in the denture and the use of accurate laboratory techniques.

  12. Fatigue fracture of fiber reinforced polymer honeycomb composite sandwich structures for gas turbine engines

    Science.gov (United States)

    Nikhamkin, Mikhail; Sazhenkov, Nikolai; Samodurov, Danil

    2017-05-01

    Fiber reinforced polymer honeycomb composite sandwich structures are commonly used in different industries. In particular, they are used in the manufacture of gas turbine engines. However, fiber reinforced polymer honeycomb composite sandwich structures often have a manufacturing flaw. In theory, such flaws due to their rapid propagation reduce the durability of fiber reinforced polymer honeycomb composite sandwich structures. In this paper, bending fatigue tests of fiber reinforced polymer honeycomb composite sandwich structures with manufacturing flaws were conducted. Comparative analysis of fatigue fracture of fiber reinforced polymer honeycomb composite sandwich specimens was conducted before and after their bending fatigue tests. The analysis was based on the internal damage X-ray observation of fiber reinforced polymer honeycomb composite sandwich specimens.

  13. Solidification microstructures in a short fiber reinforced alloy composite containing different fiber fractions

    Directory of Open Access Journals (Sweden)

    JING Qing-xiu

    2006-02-01

    Full Text Available The solidification microstructures and micro-segregation of a fiber reinforced Al-9 Cu alloy, containing different volume fractions of Al2O3 short fibers about 6 μm diameter and made by squeeze casting have been studied. The results indicate that as volume fraction of fiber Vf increases, the size of final grains becomes finer in the matrix. If λf /λ>1, the fibers have almost no influence on the solidification behavior of the matrix, so the final grains grow coarse, where λf is the average inter-fiber spacing and λ is the secondary dendrite arm spacing. While if λf /λ<1, the growth of crystals in the matrix is affected significantly by the fibers and the grain size is reduced to the value of the inter-fiber spacing. The fibers influence the average length of a solidification volume element L of the matrix and also influence the solidification time θt of the matrix. As a result of fibers influencing L and θt, the micro-segregation in the matrix is improved when the composite contains more fibers, although the level of the improvement is slight. The Clyne-Kurz model can be used to semi-quantitatively analyze the relationship between Vf and the volume fraction fe of the micro-segregation eutectic structure.

  14. Solidification microstructures in a short fiber reinforced alloy composite containing different fiber fractions

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The solidification microstructures and micro-segregation of a fiber reinforced Al-9 Cu alloy, containing different volurne fractions of Al2O3 short fibers about 6μm diameter and made by squeeze casting have been studied. The results indicate that as volume fraction of fiber Vf increases, the size of final grains becomes finer in the matrix. If λf/λ> 1, the fibers have almost no influence on the solidification behavior of the matrix, so the final grains grow coarse, where λf is the average inter-fiber spacing and λ is the secondary dendrite arm spacing. While if λf/λ< 1, the growth of crystals in the matrix is affected significantly by the fibers and the grain size is reduced to the value of the inter-fiber spacing. The fibers influence the average length of a solidification volume element L of the matrix and also influence the solidification time θt of the matrix. As a result of fibers influencing L and θt, the micro-segregation in the matrix is improved when the composite contains more fibers, although the level of the improvement is slight. The Clyne-Kurz model can be used to semi-quantitatively analyze the relationship between Vf and the volume fraction fe of the micro-segregation eutectic structure.

  15. Strengthening reinforced concrete beams using prestressed glass fiber-reinforced polymer-Part Ⅰ: Experimental study

    Institute of Scientific and Technical Information of China (English)

    HUANG Yue-lin; WU Jong-hwei; YEN Tsong; HUNG Chien-hsing; LIN Yiching

    2005-01-01

    This work is aimed at studying the strengthening of reinforced concrete (R. C.) beams using prestressed glass fiber-reinforced polymer (PGFRP). Carbon fiber-reinforced polymer (CFRP) has recently become popular for use as repair or rehabilitation material for deteriorated R. C. structures, but because CFRP material is very stiff, the difference in CFRP sheet and concrete material properties is not favorable for transferring the prestress from CFRP sheets to R. C. members. Glass fiber-reinforced polymer (GFRP) sheets with Modulus of Elasticity quite close to that of concrete was chosen in this study. The load-carrying capacities (ultimate loads) and the deflections of strengthened R. C. beams using GFRP and PGFRP sheets were tested and compared. T- and ⊥-shaped beams were used as the under-strengthened and over-strengthened beams. The GFRP sheets were prestressed to one-half their tensile capacities before being bonded to the T- and l-shaped R. C. beams. The prestressed tension in the PGFRP sheets caused cambers in the R. C. beams without cracks on the tensile faces. The PGFRP sheets also enhanced the load-carrying capacity. The test results indicated that T-shaped beams with GFRP sheets increased in load-carrying capacity by 55% while the same beams with PGFRP sheets could increase load-carrying capacity by 100%. The ⊥-shaped beams with GFRP sheets could increase load-carrying capacity by 97% while the same beams with PGFRP sheets could increase the loading-carrying capacity by 117%. Under the same external loads, beams with GFRP sheets underwent larger deflections than beams with PGFRP sheets. While GFRP sheets strengthen R. C. beams, PGFRP sheets decrease the beams' ductility, especially for the over-strengthened beams (⊥-shaped beams).

  16. Micromechanical Modeling of Fiber-Reinforced Composites with Statistically Equivalent Random Fiber Distribution

    Directory of Open Access Journals (Sweden)

    Wenzhi Wang

    2016-07-01

    Full Text Available Modeling the random fiber distribution of a fiber-reinforced composite is of great importance for studying the progressive failure behavior of the material on the micro scale. In this paper, we develop a new algorithm for generating random representative volume elements (RVEs with statistical equivalent fiber distribution against the actual material microstructure. The realistic statistical data is utilized as inputs of the new method, which is archived through implementation of the probability equations. Extensive statistical analysis is conducted to examine the capability of the proposed method and to compare it with existing methods. It is found that the proposed method presents a good match with experimental results in all aspects including the nearest neighbor distance, nearest neighbor orientation, Ripley’s K function, and the radial distribution function. Finite element analysis is presented to predict the effective elastic properties of a carbon/epoxy composite, to validate the generated random representative volume elements, and to provide insights of the effect of fiber distribution on the elastic properties. The present algorithm is shown to be highly accurate and can be used to generate statistically equivalent RVEs for not only fiber-reinforced composites but also other materials such as foam materials and particle-reinforced composites.

  17. Containment performance evaluation of prestressed concrete containment vessels with fiber reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Young Sun; Park, Hyung Kui [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    Fibers in concrete resist the growth of cracks and enhance the postcracking behavior of structures. The addition of fibers into a conventional reinforced concrete can improve the structural and functional performance of safety-related concrete structures in nuclear power plants. The influence of fibers on the ultimate internal pressure capacity of a prestressed concrete containment vessel (PCCV) was investigated through a comparison of the ultimate pressure capacities between conventional and fiber-reinforced PCCVs. Steel and polyamide fibers were used. The tension behaviors of conventional concrete and fiber-reinforced concrete specimens were investigated through uniaxial tension tests and their tension-stiffening models were obtained. For a PCCV reinforced with 1% volume hooked-end steel fiber, the ultimate pressure capacity increased by approximately 12% in comparison with that for a conventional PCCV. For a PCCV reinforced with 1.5% volume polyamide fiber, an increase of approximately 3% was estimated for the ultimate pressure capacity. The ultimate pressure capacity can be greatly improved by introducing steel and polyamide fibers in a conventional reinforced concrete. Steel fibers are more effective at enhancing the containment performance of a PCCV than polyamide fibers. The fiber reinforcement was shown to be more effective at a high pressure loading and a low prestress level.

  18. Carbon Fiber Reinforced Polymer with Shredded Fibers: Quasi-Isotropic Material Properties and Antenna Performance

    Directory of Open Access Journals (Sweden)

    Gerald Artner

    2017-01-01

    Full Text Available A carbon fiber reinforced polymer (CFRP laminate, with the top layer consisting of shredded fibers, is proposed and manufactured. The shredded fibers are aligned randomly on the surface to achieve a more isotropic conductivity, as is desired in antenna applications. Moreover, fiber shreds can be recycled from carbon fiber composites. Conductivity, permittivity, and permeability are obtained with the Nicolson-Ross-Weir method from material samples measured inside rectangular waveguides in the frequency range of 4 to 6 GHz. The decrease in material anisotropy results in negligible influence on antennas. This is shown by measuring the proposed CFRP as ground plane material for both a narrowband wire monopole antenna for 5.9 GHz and an ultrawideband conical monopole antenna for 1–10 GHz. For comparison, all measurements are repeated with a twill-weave CFRP.

  19. Fiber-Reinforced-Foam (FRF) Core Composite Sandwich Panel Concept for Advanced Composites Technologi

    Science.gov (United States)

    2010-01-01

    Fiber-Reinforced-Foam (FRF) Core Composite Sandwich Panel Concept for Advanced Composites Technologies Project - Preliminary Manufacturing Demonstration Articles for Ares V Payload Shroud Barrel Acreage Structure

  20. Arrangement for connecting a fiber-reinforced plastic pipe to a stainless steel flange

    Science.gov (United States)

    Allais, Arnaud; Hoffmann, Ernst

    2008-02-05

    Arrangement for connecting a fiber-reinforced plastic pipe (18) to a stainless steel flange (12, 16), in which the end of the fiber-reinforced plastic pipe (18) is accommodated in a ring-shaped groove (12a, 16a) in the flange (12, 16), the groove conforming to the dimensions of the fiber-reinforced plastic pipe (18), where the gap remaining between the end of the fiber-reinforced plastic pipe (18) and the ring-shaped groove (12a, 16a) is filled with a sealant (19).

  1. Dynamic crack growth in a fiber-reinforced composite plate

    Institute of Scientific and Technical Information of China (English)

    LIU Kaixin; LIU Weifu; Zhang Jinxiang; LI Rong; ZHANG Guohua; FU Bin

    2005-01-01

    This paper reports an experiment on the failure of a precracked plate made of unidirectional glass-epoxy fiber-reinforced composites subjected to three-point bending impact load. In the experiment, the whole process of crack growth was recorded by using high-speed photographic technique, in which a transmitted light path was adopted. Moreover, a new phenomenon of dynamic fracture has been observed. Based on the results, some preliminary studies have been carried out on the rate and path of the crack growth, as well as the failure mode.

  2. Shear strengthening of pre-damaged reinforced concrete beams with carbon fiber reinforced polymer sheet strips

    Institute of Scientific and Technical Information of China (English)

    Feras ALZOUBI; ZHANG Qi; LI Zheng-liang

    2007-01-01

    This paper presents the results of an experimental investigation on the response of pre-damaged reinforced concrete (RC) beam strengthened in shear using applied-epoxy unidirectional carbon fiber reinforced polymer (CFRP) sheet. The reasearch included four test rectangular simply supported RC beams in shear capacity. One is the control beam, two RC beams are damaged to a predetermined degree from ultimate shear capacity of the control beam, and the last beam is left without pre-damaged and then strengthened with using externally bonded carbon fiber reinforced polymer to upgrade their shear capacity. We focused on the damage degree to beams during strengthening, therefore, only the beams with side-bonded CFRPs strips and horizontal anchored strips were used. The results show the feasibility of using CFRPs to restore or increase the load-carrying capacity in the shear of damaged RC beams. The failure mode of all the CFRP-strengthened beams is debonding of CFRP vertical strips. Two prediction available models in ACI-440 and fib European code were compared with the experimental results.

  3. Strengthening reinforced concrete beams using prestressed glass fiber-reinforced polymer-Part Ⅱ: Analytical study

    Institute of Scientific and Technical Information of China (English)

    HUANG Yue-lin; HUNG Chien-hsing; YEN Tsong; WU Jong-hwei; LIN Yiching

    2005-01-01

    Strengthening reinforced concrete (R. C.) beams using prestressed glass fiber-reinforced polymer (PGFRP) was studied experimentally as described in Part Ⅰ of this paper (Huang et al., 2005). In that paper, R. C. beams, R. C. beams with GFRP(glass fiber-reinforced polymer) sheets, and R. C. beams with PGFRP sheets were tested in both under-strengthened and over-strengthened cases. The test results showed that the load-carrying capacities (ultimate loads) of the beams with GFRP sheets were greater than those of the beams without polymer sheets. The load-carrying capacities of beams with PGFRP sheets were greater than those of beams with GFRP sheets. The objective of this work is to develop an analytical method to compute all of these load-carrying capacities. This analytical method is independent of the experiments and based only on the traditional R. C.and P. C. (prestressed concrete) theory. The analytical results accorded with the test results. It is suggested that this analytical method be used for analyzing and designing R. C. beams strengthened using GFRP or PGFRP sheets.

  4. CO2 Laser Cutting of Glass Fiber Reinforce Polymer Composite

    Science.gov (United States)

    Fatimah, S.; Ishak, M.; Aqida, S. N.

    2012-09-01

    The lamination, matrix properties, fiber orientation, and relative volume fraction of matrix of polymer structure make this polymer hard to process. The cutting of polymer composite using CO2 laser could involve in producing penetration energy in the process. Identification of the dominant factors that significantly affect the cut quality is important. The objective of this experiment is to evaluate the CO2 spot size of beam cutting for Glass Fiber Reinforce Polymer Composite (GFRP). The focal length selected 9.5mm which gave smallest focus spot size according to the cutting requirements. The effect of the focal length on the cut quality was investigated by monitoring the surface profile and focus spot size. The beam parameter has great effect on both the focused spot size and surface quality.

  5. Ballistic Impact Properties of Zr-Based Amorphous Alloy Composites Reinforced with Woven Continuous Fibers

    Science.gov (United States)

    Kim, Gyeong Su; Son, Chang-Young; Lee, Sang-Bok; Lee, Sang-Kwan; Song, Young Buem; Lee, Sunghak

    2012-03-01

    This study aims at investigating ballistic impact properties of Zr-based amorphous alloy (LM1 alloy) matrix composites reinforced with woven stainless steel or glass continuous fibers. The fiber-reinforced composites with excellent fiber/matrix interfaces were fabricated without pores and misinfiltration by liquid pressing process, and contained 35 to 41 vol pct of woven continuous fibers homogeneously distributed in the amorphous matrix. The woven-STS-continuous-fiber-reinforced composite consisted of the LM1 alloy layer of 1.0 mm in thickness in the upper region and the fiber-reinforced composite layer in the lower region. The hard LM1 alloy layer absorbed the ballistic impact energy by forming many cracks, and the fiber-reinforced composite layer interrupted the crack propagation and blocked the impact and traveling of the projectile, thereby resulting in the improvement of ballistic performance by about 20 pct over the LM1 alloy. According to the ballistic impact test data of the woven-glass-continuous-fiber-reinforced composite, glass fibers were preferentially fragmented to form a number of cracks, and the amorphous matrix accelerated the fragmentation of glass fibers and the initiation of cracks. Because of the absorption process of ballistic impact energy by forming very large amounts of cracks, fragments, and debris, the glass-fiber-reinforced composite showed better ballistic performance than the LM1 alloy.

  6. Evaluating the mechanical properties of E-Glass fiber/carbon fiber reinforced interpenetrating polymer networks

    Directory of Open Access Journals (Sweden)

    G. Suresh

    2015-02-01

    Full Text Available A series of vinyl ester and polyurethane interpenetrating polymer networks were prepared by changing the component ratios of VER (Vinyl ester and PU (Polyurethane and the polymerization process was confirmed with Fourier Transform infrared spectroscopy. IPN (Inter Penetrating Polymer Network - VER/PU reinforced Glass and carbon fiber composite laminates were made using the Hand lay up technique. The Mechanical properties of the E-glass and carbon fiber specimens were compared from tests including Tensile, Compressive, Flexural, ILSS (Inter Laminar Shear Strength, Impact & Head Deflection Test (HDT. The IPN Reinforced Carbon fiber specimen showed better results in all the tests than E-Glass fibre reinforced IPN laminate with same thickness of the specimen, according to ASTM standards. It was found that the combination of 60%VER and 40%PU IPN exhibits better impact strength and maximum elongation at break, but at the slight expense of mechanical properties such as tensile, compressive, flexural, ILSS properties. The morphology of the unreinforced and reinforced composites was analyzed with help of scanning electron microscopy.

  7. Carbon Fiber Reinforced Polymer for Cable Structures—A Review

    Directory of Open Access Journals (Sweden)

    Yue Liu

    2015-10-01

    Full Text Available Carbon Fiber Reinforced Polymer (CFRP is an advanced composite material with the advantages of high strength, lightweight, no corrosion and excellent fatigue resistance. Therefore, unidirectional CFRP has great potential for cables and to replace steel cables in cable structures. However, CFRP is a typical orthotropic material and its strength and modulus perpendicular to the fiber direction are much lower than those in the fiber direction, which brings a challenge for anchoring CFRP cables. This paper presents an overview of application of CFRP cables in cable structures, including historical review, state of the art and prospects for the future. After introducing properties of carbon fibers, mechanical characteristics and structural forms of CFRP cables, existing CFRP cable structures in the world (all of them are cable bridges are reviewed. Especially, their CFRP cable anchorages are presented in detail. New applications for CFRP cables, i.e., cable roofs and cable facades, are also presented, including the introduction of a prototype CFRP cable roof and the conceptual design of a novel structure—CFRP Continuous Band Winding System. In addition, other challenges that impede widespread application of CFRP cable structures are briefly introduced.

  8. Matrix cracking of fiber-reinforced ceramic composites in shear

    Science.gov (United States)

    Rajan, Varun P.; Zok, Frank W.

    2014-12-01

    The mechanics of cracking in fiber-reinforced ceramic matrix composites (CMCs) under general loadings remains incomplete. The present paper addresses one outstanding aspect of this problem: the development of matrix cracks in unidirectional plies under shear loading. To this end, we develop a model based on potential energy differences upstream and downstream of a fully bridged steady-state matrix crack. Through a combination of analytical solutions and finite element simulations of the constituent stresses before and after cracking, we identify the dominant stress components that drive crack growth. We show that, when the axial slip lengths are much larger than the fiber diameter and when interfacial slip precedes cracking, the shear stresses in the constituents are largely unaffected by the presence of the crack; the changes that do occur are confined to a 'core' region within a distance of about one fiber diameter from the crack plane. Instead, the driving force for crack growth derives mainly from the axial stresses-tensile in the fibers and compressive in the matrix-that arise upon cracking. These stresses are well-approximated by solutions based on shear-lag analysis. Combining these solutions with the governing equation for crack growth yields an analytical estimate of the critical shear stress for matrix cracking. An analogous approach is used in deriving the critical stresses needed for matrix cracking under arbitrary in-plane loadings. The applicability of these results to cross-ply CMC laminates is briefly discussed.

  9. Lyocell Fiber-Reinforced Cellulose Ester Composites-Manufacturing Considerations and Properties.

    OpenAIRE

    1999-01-01

    Biodegradable thermoplastic composites were prepared using high modulus lyocell fibers and cellulose acetate butyrate (CAB). Two reinforcement fiber types: fabric and continuous fiber tow were used. Fabric had advantages of uniform alignment and easier processing, but lacked the use as a unidirectional reinforcement and a continuous method of matrix application. Three different matrix application methods were screened for both fiber types. Matrix application by suspension of particles in wate...

  10. A comparison of tensile properties of polyester composites reinforced with pineapple leaf fiber and pineapple peduncle fiber

    Science.gov (United States)

    Juraidi, J. M.; Shuhairul, N.; Syed Azuan, S. A.; Intan Saffinaz Anuar, Noor

    2013-12-01

    Pineapple fiber which is rich in cellulose, relatively inexpensive, and abundantly available has the potential for polymer reinforcement. This research presents a study of the tensile properties of pineapple leaf fiber and pineapple peduncle fiber reinforced polyester composites. Composites were fabricated using leaf fiber and peduncle fiber with varying fiber length and fiber loading. Both fibers were mixed with polyester composites the various fiber volume fractions of 4, 8 and 12% and with three different fiber lengths of 10, 20 and 30 mm. The composites panels were fabricated using hand lay-out technique. The tensile test was carried out in accordance to ASTM D638. The result showed that pineapple peduncle fiber with 4% fiber volume fraction and fiber length of 30 mm give highest tensile properties. From the overall results, pineapple peduncle fiber shown the higher tensile properties compared to pineapple leaf fiber. It is found that by increasing the fiber volume fraction the tensile properties has significantly decreased but by increasing the fiber length, the tensile properties will be increased proportionally. Minitab software is used to perform the two-way ANOVA analysis to measure the significant. From the analysis done, there is a significant effect of fiber volume fraction and fiber length on the tensile properties.

  11. Measurement of defects in carbon fiber reinforced polymer drilled

    Directory of Open Access Journals (Sweden)

    Pascual Víctor

    2017-01-01

    Full Text Available Increasingly, fiber-reinforced materials are more widely used because of their good mechanical properties. It is usual to join pieces of these materials through screws and rivets, for which it is necessary to make a hole in the piece, usually by drilling. One of the problems of use CFRP resides in the appearance of defects due to the machining. The main defect to be taken into account is the delamination. Delamination implies poor tolerance when assembling parts, reducing the structural integrity of the part, and areas with high wear, as a series of stresses arise when mounting the screws. Much has been published about delamination and the factors that influence its appearance, so we are not going to focus on it. The present study aims to quantify and measure the defects associated with the drilling of compounds reinforced with carbon fibers, in relation to the cutting parameters used in each case. For this purpose, an optical measurement system and a posterior digital image processing will be used through Deltec Vision software.

  12. Biodegradation of flax fiber reinforced poly lactic acid

    Directory of Open Access Journals (Sweden)

    2010-07-01

    Full Text Available Woven and nonwoven flax fiber reinforced poly lactic acid (PLA biocomposites were prepared with amphiphilic additives as accelerator for biodegradation. The prepared composites were buried in farmland soil for biodegradability studies. Loss in weight of the biodegraded composite samples was determined at different time intervals. The surface morphology of the biodegraded composites was studied with scanning electron microscope (SEM. Results indicated that in presence of mandelic acid, the composites showed accelerated biodegradation with 20–25% loss in weight after 50–60 days. On the other hand, in presence of dicumyl peroxide (as additive, biodegradation of the composites was relatively slow as confirmed by only 5–10% loss in weight even after 80–90 days. This was further confirmed by surface morphology of the biodegraded composites. We have attempted to show that depending on the end uses, we can add different amphiphilic additives for delayed or accelerated biodegradability. This work gives us the idea of biodegradation of materials from natural fiber reinforced PLA composites when discarded carelessly in the environment instead of proper waste disposal site.

  13. Asymptotic Analysis of Fiber-Reinforced Composites of Hexagonal Structure

    Science.gov (United States)

    Kalamkarov, Alexander L.; Andrianov, Igor V.; Pacheco, Pedro M. C. L.; Savi, Marcelo A.; Starushenko, Galina A.

    2016-08-01

    The fiber-reinforced composite materials with periodic cylindrical inclusions of a circular cross-section arranged in a hexagonal array are analyzed. The governing analytical relations of the thermal conductivity problem for such composites are obtained using the asymptotic homogenization method. The lubrication theory is applied for the asymptotic solution of the unit cell problems in the cases of inclusions of large and close to limit diameters, and for inclusions with high conductivity. The lubrication method is further generalized to the cases of finite values of the physical properties of inclusions, as well as for the cases of medium-sized inclusions. The analytical formulas for the effective coefficient of thermal conductivity of the fiber-reinforced composite materials of a hexagonal structure are derived in the cases of small conductivity of inclusions, as well as in the cases of extremely low conductivity of inclusions. The three-phase composite model (TPhM) is applied for solving the unit cell problems in the cases of the inclusions with small diameters, and the asymptotic analysis of the obtained solutions is performed for inclusions of small sizes. The obtained results are analyzed and illustrated graphically, and the limits of their applicability are evaluated. They are compared with the known numerical and asymptotic data in some particular cases, and very good agreement is demonstrated.

  14. Stabilized fiber-reinforced pavement base course with recycled aggregate

    Science.gov (United States)

    Sobhan, Khaled

    This study evaluates the benefits to be gained by using a composite highway base course material consisting of recycled crushed concrete aggregate, portland cement, fly ash, and a modest amount of reinforcing fibers. The primary objectives of this research were to (a) quantify the improvement that is obtained by adding fibers to a lean concrete composite (made from recycled aggregate and low quantities of Portland cement and/or fly ash), (b) evaluate the mechanical behavior of such a composite base course material under both static and repeated loads, and (c) utilize the laboratory-determined properties with a mechanistic design method to assess the potential advantages. The split tensile strength of a stabilized recycled aggregate base course material was found to be exponentially related to the compacted dry density of the mix. A lean mix containing 4% cement and 4% fly ash (by weight) develops sufficient unconfined compressive, split tensile, and flexural strengths to be used as a high quality stabilized base course. The addition of 4% (by weight) of hooked-end steel fibers significantly enhances the post-peak load-deformation response of the composite in both indirect tension and static flexure. The flexural fatigue behavior of the 4% cement-4% fly ash mix is comparable to all commonly used stabilized materials, including regular concrete; the inclusion of 4% hooked-end fibers to this mix significantly improves its resistance to fatigue failure. The resilient moduli of stabilized recycled aggregate in flexure are comparable to the values obtained for traditional soil-cement mixes. In general, the fibers are effective in retarding the rate of fatigue damage accumulation, which is quantified in terms of a damage index defined by an energy-based approach. The thickness design curves for a stabilized recycled aggregate base course, as developed by using an elastic layer approach, is shown to be in close agreement with a theoretical model (based on Westergaard

  15. New generation fiber reinforced polymer composites incorporating carbon nanotubes

    Science.gov (United States)

    Soliman, Eslam

    The last five decades observed an increasing use of fiber reinforced polymer (FRP) composites as alternative construction materials for aerospace and infrastructure. The high specific strength of FRP attracted its use as non-corrosive reinforcement. However, FRP materials were characterized with a relatively low ductility and low shear strength compared with steel reinforcement. On the other hand, carbon nanotubes (CNTs) have been introduced in the last decade as a material with minimal defect that is capable of increasing the mechanical properties of polymer matrices. This dissertation reports experimental investigations on the use of multi-walled carbon nanotubes (MWCNTs) to produce a new generation of FRP composites. The experiments showed significant improvements in the flexure properties of the nanocomposite when functionalized MWCNTs were used. In addition, MWCNTs were used to produce FRP composites in order to examine static, dynamic, and creep behavior. The MWCNTs improved the off-axis tension, off-axis flexure, FRP lap shear joint responses. In addition, they reduced the creep of FRP-concrete interface, enhanced the fracture toughness, and altered the impact resistance significantly. In general, the MWCNTs are found to affect the behaviour of the FRP composites when matrix failure dominates the behaviour. The improvement in the mechanical response with the addition of low contents of MWCNTs would benefit many industrial and military applications such as strengthening structures using FRP composites, composite pipelines, aircrafts, and armoured vehicles.

  16. Mechanical Properties of Coir Rope-Glass Fibers Reinforced Polymer Hybrid Composites

    Directory of Open Access Journals (Sweden)

    B.Bakri

    2015-10-01

    Full Text Available Natural fiber composites have been developed and taken more attention in the last decades. Coir fiber is the natural fiber which has been used as reinforcement of composites. This fiber is hybridized with glass fiber for reinforcement composite. In this paper, coir rope and glass fibers were combined as reinforcement into hybrid composites with unsaturated polyester resin as matrix. The composition of fibers and matrix into hybrid composites are used 30:70 (volume fraction with unsaturated polyester. Volume fractions of coir rope mat and glass fiber mat in hybrid composites are 10:20, 15:15 and 20:10 respectively. The mechanical properties of the coir rope-glass fiber composite hybrid were described in this paper. Their properties include tensile strength, tensile modulus, flexural strength, flexural modulus, impact energy and impact strength. Fractography of tensile composite hybrid is also analyzed using Scanning Electron Microscope.

  17. Curaua fiber reinforced high-density polyethylene composites: effect of impact modifier and fiber loading

    Directory of Open Access Journals (Sweden)

    Jaqueline Albano de Morais

    2016-01-01

    Full Text Available Abstract Short fibers are used in thermoplastic composites to increase their tensile and flexural resistance; however, it often decreases impact resistance. Composites with short vegetal fibers are not an exception to this behavior. The purpose of this work is to produce a vegetal fiber reinforced composite with improved tensile and impact resistance in relation to the polymer matrix. We used poly(ethylene-co-vinyl acetate, EVA, to recover the impact resistance of high density polyethylene, HDPE, reinforced with Curauá fibers, CF. Blends and composites were processed in a corotating twin screw extruder. The pure polymers, blends and composites were characterized by differential scanning calorimetry, thermogravimetry, infrared spectroscopy, scanning electron microscopy, tensile mechanical properties and Izod impact resistance. EVA used as impact modifier in the HDPE matrix exhibited a co-continuous phase and in the composites the fibers were homogeneously dispersed. The best combination of mechanical properties, tensile, flexural and impact, were obtained for the formulations of composites with 20 wt. % of CF and 20 to 40 wt. % of EVA. The composite prepared with 20 wt. % EVA and containing 30 wt. % of CF showed impact resistance comparable to pure HDPE and improved tensile and flexural mechanical properties.

  18. Curaua fiber reinforced high-density polyethylene composites: effect of impact modifier and fiber loading

    Directory of Open Access Journals (Sweden)

    Jaqueline Albano de Morais

    Full Text Available Abstract Short fibers are used in thermoplastic composites to increase their tensile and flexural resistance; however, it often decreases impact resistance. Composites with short vegetal fibers are not an exception to this behavior. The purpose of this work is to produce a vegetal fiber reinforced composite with improved tensile and impact resistance in relation to the polymer matrix. We used poly(ethylene-co-vinyl acetate, EVA, to recover the impact resistance of high density polyethylene, HDPE, reinforced with Curauá fibers, CF. Blends and composites were processed in a corotating twin screw extruder. The pure polymers, blends and composites were characterized by differential scanning calorimetry, thermogravimetry, infrared spectroscopy, scanning electron microscopy, tensile mechanical properties and Izod impact resistance. EVA used as impact modifier in the HDPE matrix exhibited a co-continuous phase and in the composites the fibers were homogeneously dispersed. The best combination of mechanical properties, tensile, flexural and impact, were obtained for the formulations of composites with 20 wt. % of CF and 20 to 40 wt. % of EVA. The composite prepared with 20 wt. % EVA and containing 30 wt. % of CF showed impact resistance comparable to pure HDPE and improved tensile and flexural mechanical properties.

  19. Investigations of sewn preform characteristics and quality aspects for the manufacturing of fiber reinforced polymer composites

    OpenAIRE

    Ogale, Amol

    2017-01-01

    Sewn net-shape preform based composite manufacturing technology is widely accepted in combination with liquid composite molding technologies for the manufacturing of fiber reinforced polymer composites. The development of threedimensional dry fibrous reinforcement structures containing desired fiber orientation and volume fraction before the resin infusion is based on the predefined preforming processes. Various preform manufacturing aspects influence the overall composite m...

  20. Thermo-oxidative stability studies of PMR-15 polymer matrix composites reinforced with various fibers

    Science.gov (United States)

    Bowles, Kenneth J.

    1990-01-01

    An experimental study was conducted to measure the thermo-oxidative stability of PMR-15 polymer matrix composites reinforced with various fibers and to observe differences in the way they degrade in air. The fibers that were studied included graphite and the thermally stable Nicalon and Nextel ceramic fibers. Weight loss rates for the different composites were assessed as a function of mechanical properties, specimen geometry, fiber sizing, and interfacial bond strength. Differences were observed in rates of weight loss, matrix cracking, geometry dependency, and fiber-sizing effects. It was shown that Celion 6000 fiber-reinforced composites do not exhibit a straight-line Arrhenius relationship at temperatures above 316 C.

  1. Thermo-oxidative stability studies of PMR-15 polymer matrix composites reinforced with various continuous fibers

    Science.gov (United States)

    Bowles, Kenneth J.

    1990-01-01

    An experimental study was conducted to measure the thermooxidative stability of PMR-15 composites reinforced with various fibers and to observe differences in the way they degrade in air. The fibers studied include graphite and the thermally stable Nicalon and Nextel ceramic fibers. Weight-loss rates for the different composites were assessed as a function of mechanical properties, specimen geometry, fiber sizing, and interfacial bond strength. Differences were observed in rates of weight loss, matrix cracking, geometry dependency, and fiber sizing effects. It was shown that Celion 6000 fiber-reinforced composites do not exhibit a straight-line Arrhenius relationship at temperatures above 316 C.

  2. Impact properties of aluminium - glass fiber reinforced plastics sandwich panels

    Directory of Open Access Journals (Sweden)

    Mathivanan Periasamy

    2012-06-01

    Full Text Available Aluminium - glass fiber reinforced plastics (GFRP sandwich panels are hybrid laminates consisting of GFRP bonded with thin aluminum sheets on either side. Such sandwich materials are increasingly used in airplane and automobile structures. Laminates with varying aluminium thickness fractions, fiber volume fractions and orientation in the layers of GFRP were fabricated by hand lay up method and evaluated for their impact performance by conducting drop weight tests under low velocity impacts. The impact energy required for initiating a crack in the outer aluminium layer as well as the energy required for perforation was recorded. The impact load-time history was also recorded to understand the failure behavior. The damage depth and the damage area were measured to evaluate the impact resistance. Optical photography and scanning electron micrographs were taken to visualize the crack and the damage zone. The bidirectional cross-ply hybrid laminate (CPHL has been found to exhibit better impact performance and damage resistance than the unidirectional hybrid laminate (UDHL. Increase in aluminium thickness fraction (Al tf and fiber volume fraction (Vf resulted in an increase in the impact energy required for cracking and perforation. On an overall basis, the sandwich panels exhibited better impact performance than the monolithic aluminium.

  3. Mechanical Behavior of Electrospun Palmfruit Bunch Reinforced Polylactide Composite Fibers

    Science.gov (United States)

    Adeosun, S. O.; Akpan, E. I.; Gbenebor, O. P.; Peter, A. A.; Olaleye, Samuel Adebayo

    2016-01-01

    In this study, the mechanical characteristics of electrospun palm fruit bunch reinforced poly lactic acid (PLA) nanofiber composites using treated and untreated filler was examined. Poly lactic acid-palm fruit bunch-dichloromethane blends were electrospun by varying the concentration of the palm fruit bunch between 0 wt.% and 8 wt.%. A constant voltage of 26 kV was applied, the tip-to-collector distance was maintained at 27.5 cm and PLA-palm fruit bunch-dichloromethane (DCM) concentration of 12.5% (w/v) was used. The results revealed that the presence of untreated palm fruit bunch fillers in the electrospun PLA matrix significantly reduces the average diameters of the fibers, causing the formation of beads. As a result there are reductions in tensile strengths of the fibers. The presence of treated palm fruit bunch fillers in the electrospun PLA matrix increases the average diameters of the fibers with improvements in the mechanical properties. The optimal mechanical responses were obtained at 3 wt.% of the treated palm fruit bunch fillers in the PLA matrix. However, increase in the palm fruit fillers (treated and untreated) in the PLA matrix promoted the formation of beads in the nanofiber composites.

  4. Self-healing in single and multiple fiber(s) reinforced polymer composites

    OpenAIRE

    2010-01-01

    You Polymer composites have been attractive medium to introduce the autonomic healing concept into modern day engineering materials. To date, there has been significant research in self-healing polymeric materials including several studies specifically in fiber reinforced polymers. Even though several methods have been suggested in autonomic healing materials, the concept of repair by bleeding of enclosed functional agents has garnered wide attention by the scientific community. A self-...

  5. Relationship between fiber degradation and residence time distribution in the processing of long fiber reinforced thermoplastics

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Long fiber reinforced thermoplastics (LFT were processed by in-line compounding equipment with a modified single screw extruder. A pulse stimulus response technique using PET spheres as the tracer was adopted to obtain residence time distribution (RTD of extrusion compounding. RTD curves were fitted by the model based on the supposition that extrusion compounding was the combination of plug flow and mixed flow. Characteristic parameters of RTD model including P the fraction of plug flow reactor (PFR and d the fraction of dead volume of continuous stirred tank reactor (CSTR were used to associate with fiber degradation presented by fiber length and dispersion. The effects of screw speed, mixing length and channel depth on RTD curves, and characteristic parameters of RTD models as well as their effects on the fiber degradation were investigated. The influence of shear force with different screw speeds and variable channel depth on fiber degradation was studied and the main impetus of fiber degradation was also presented. The optimal process for obtaining the balance of fiber length and dispersion was presented.

  6. Evaluation of seismic shear capacity of prestressed concrete containment vessels with fiber reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Young Sun; Park, Jun Hee [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Fibers have been used in cement mixture to improve its toughness, ductility, and tensile strength, and to enhance the cracking and deformation characteristics of concrete structural members. The addition of fibers into conventional reinforced concrete can enhance the structural and functional performances of safety-related concrete structures in nuclear power plants. The effects of steel and polyamide fibers on the shear resisting capacity of a prestressed concrete containment vessel (PCCV) were investigated in this study. For a comparative evaluation between the shear performances of structural walls constructed with conventional concrete, steel fiber reinforced concrete, and polyamide fiber reinforced concrete, cyclic tests for wall specimens were conducted and hysteretic models were derived. The shear resisting capacity of a PCCV constructed with fiber reinforced concrete can be improved considerably. When steel fiber reinforced concrete contains hooked steel fibers in a volume fraction of 1.0%, the maximum lateral displacement of a PCCV can be improved by > 50%, in comparison with that of a conventional PCCV. When polyamide fiber reinforced concrete contains polyamide fibers in a volume fraction of 1.5%, the maximum lateral displacement of a PCCV can be enhanced by ∼40%. In particular, the energy dissipation capacity in a fiber reinforced PCCV can be enhanced by > 200%. The addition of fibers into conventional concrete increases the ductility and energy dissipation of wall structures significantly. Fibers can be effectively used to improve the structural performance of a PCCV subjected to strong ground motions. Steel fibers are more effective in enhancing the shear performance of a PCCV than polyamide fibers.

  7. Strengthening of Corrosion-Damaged Reinforced Concrete Beams with Glass Fiber Reinforced Polymer Laminates

    Directory of Open Access Journals (Sweden)

    A. L. Rose

    2009-01-01

    Full Text Available Problem statement: This study showed the results of an experimental investigation on the strengthening of corrosion damaged reinforced concrete beams with unidirectional cloth glass fiber reinforced polymer (UDCGFRP laminates. Approach: All the beam specimens 150×250×3000 mm were cast and tested for the present investigation. One beam specimen was neither corroded nor strengthened to serve as a reference. Two beams were corroded to serve as a corroded control. A reinforcement mass loss of approximately 10 and 25% were used to define medium and severe degrees of corrosion. The remaining two beams corroded and strengthened with GFRP. Results: The test parameters included first crack load, first crack deflection, yield load, yield deflection, service load, service deflection, ultimate load and ultimate deflection. Based on the results it was found that GFRP Laminates had beneficial effects even at the corrosion-damaged stage. Conclusion/Recommendations: The UDCGFRP laminated beams showed distinct enhancement in ultimate strength and ductility by 72.37 and 49.49% respectively.

  8. Bending strength and fracture surface topography of natural fiber-reinforced shell for investment casting process

    Directory of Open Access Journals (Sweden)

    Kai Lu

    2016-05-01

    Full Text Available In order to improve the properties of silica sol shell for investment casting process, various contents of cattail fibers were added into the slurry to prepare a fiber-reinforced shell in the present study. The bending strength of fiber-reinforced shell was investigated and the fracture surfaces of shell specimens were observed using SEM. It is found that the bending strength increases with the increase of fiber content, and the bending strength of a green shell with 1.0 wt.% fiber addition increases by 44% compared to the fiber-free shell. The failure of specimens of the fiber-reinforced green shell results from fiber rupture and debonding between the interface of fibers and adhesive under the bending load. The micro-crack propagation in the matrix is inhibited by the micro-holes for ablation of fibers in specimens of the fiber-reinforced shell during the stage of being fired. As a result, the bending strength of specimens of the fired shell had no significant drop. Particularly, the bending strength of specimens of the fired shell reinforced with 0.6wt.% fiber reached the maximum value of 4.6 MPa.

  9. Development of natural fiber reinforced polylactide-based biocomposites

    Science.gov (United States)

    Arias Herrera, Andrea Marcela

    Polylactide or PLA is a biodegradable polymer that can be produced from renewable resources. This aliphatic polyester exhibits good mechanical properties similar to those of polyethylene terephthalate (PET). Since 2003, bio-based high molecular weight PLA is produced on an industrial scale and commercialized under amorphous and semicrystalline grades for various applications. Enhancement of PLA crystallization kinetics is crucial for the competitiveness of this biopolymer as a commodity material able to replace petroleum-based plastics. On the other hand, the combination of natural fibers with polymer matrices made from renewable resources, to produce fully biobased and biodegradable polymer composite materials, has been a strong trend in research activities during the last decade. Nevertheless, the differences related to the chemical structure, clearly observed in the marked hydrophilic/hydrophobic character of the fibers and the thermoplastic matrix, respectively, represent a major drawback for promoting strong fiber/matrix interactions. The aim of the present study was to investigate the intrinsic fiber/matrix interactions of PLAbased natural fiber composites prepared by melt-compounding. Short flax fibers presenting a nominal length of ˜1 mm were selected as reinforcement and biocomposites containing low to moderate fiber loading were processed by melt-mixing. Fiber bundle breakage during processing led to important reductions in length and diameter. The mean aspect ratio was decreased by about 50%. Quiescent crystallization kinetics of PLA and biocomposite systems was examined under isothermal and non-isothermal conditions. The nucleating nature of the flax fibers was demonstrated and PLA crystallization was effectively accelerated as the natural reinforcement content increased. Such improvement was controlled by the temperature at which crystallization took place, the liquid-to-solid transition being thermodynamically promoted by the degree of supercooling

  10. Influence of the Initial Fiber Orientation on the Weld Strength in Welding of Glass Fiber Reinforced Thermoplastics

    Directory of Open Access Journals (Sweden)

    Isabel Fiebig

    2016-01-01

    Full Text Available The welding factors are significantly lower in welding of fiber reinforced thermoplastics than in welding of unreinforced thermoplastics due to the fiber orientation in the weld. This paper presents results from investigations on the influence of the initial fiber orientation on the weld strength in hot plate and vibration welding for glass fiber reinforced polypropylene and polyamide 6. Injection molded specimens are compared to specimens with main initial fiber orientation being longitudinal and transverse to the joining direction. The results of CT analysis of the fiber orientation in the weld show the opportunity to achieve a higher weld strength by using specimens with fibers being initially oriented longitudinally to the joining direction. The influence of the initial fiber orientation in the parts to be welded on the weld strength in hot plate welding is more distinct than in vibration welding.

  11. Review of Carbon Fiber Reinforced Polymer Reinforced Material in Concrete Structure

    Directory of Open Access Journals (Sweden)

    Ayuddin Ayuddin

    2016-05-01

    Full Text Available Carbon Fiber Reinforced Polymer (FRP is a material that is lightweight, strong, anti-magnetic and corrosion resistant. This material can be used as an option to replace the steel material in concrete construction or as material to improve the strength of existing construction. CFRP is quite easy to be attached to the concrete structure and proved economically used as a material for repairing damaged structures and increase the resilience of structural beams, columns, bridges and other parts of the structure against earthquakes. CFRP materials can be shaped sheet to be attached to the concrete surface. Another reason is due to the use of CFRP has a higher ultimate strength and lower weight compared to steel reinforcement so that the handling is significantly easier. Through this paper suggests that CFRP materials can be applied to concrete structures, especially on concrete columns. Through the results of experiments conducted proved that the concrete columns externally wrapped with CFRP materials can increase the strength. This treatment is obtained after testing experiments on 130 mm diameter column with a height of 700 mm with concentric loading method to collapse. The experimental results indicate that a column is wrapped externally with CFRP materials can achieve a load capacity of 250 kN compared to the concrete columns externally without CFRP material which only reached 150 kN. If the column is given internally reinforcing steel and given externally CFRP materials can reach 270 kN. It shows that CFRP materials can be used for concrete structures can even replace reinforcing steel that has been widely used in building construction in Indonesia.

  12. Durability Studies on Confined Concrete using Fiber Reinforced Polymer

    Science.gov (United States)

    Ponmalar, V.; Gettu, R.

    2014-06-01

    In this study, 24 concrete cylinders with a notch at the centre were prepared. Among them six cylinders were wrapped using single and double layers of fiber reinforced polymer; six cylinders were coated with epoxy resin; the remaining cylinders were used as a control. The cylinders were exposed to wet and dry cycling and acid (3 % H2SO4) solution for the period of 120 days. Two different concrete strengths M30 and M50 were considered for the study. It is found that the strength, ductility and failure mode of wrapped cylinders depend on number of layers and the nature of exposure conditions. It was noticed that the damage due to wet and dry cycling and acid attack was severe in control specimen than the epoxy coated and wrapped cylinders.

  13. Tapered Polymer Fiber Sensors for Reinforced Concrete Beam Vibration Detection

    Directory of Open Access Journals (Sweden)

    Dong Luo

    2016-12-01

    Full Text Available In this study, tapered polymer fiber sensors (TPFSs have been employed to detect the vibration of a reinforced concrete beam (RC beam. The sensing principle was based on transmission modes theory. The natural frequency of an RC beam was theoretically analyzed. Experiments were carried out with sensors mounted on the surface or embedded in the RC beam. Vibration detection results agreed well with Kistler accelerometers. The experimental results found that both the accelerometer and TPFS detected the natural frequency function of a vibrated RC beam well. The mode shapes of the RC beam were also found by using the TPFSs. The proposed vibration detection method provides a cost-comparable solution for a structural health monitoring (SHM system in civil engineering.

  14. Reinfiltration processes for polymer derived fiber reinforced ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Duran, A. [CSIC, Madrid (Spain). Inst. de Ceramica y Vidrio; Aparicio, M. [CSIC, Madrid (Spain). Inst. de Ceramica y Vidrio; Rebstock, K. [Daimler-Benz Aerospace AG, Friedrichshafen (Germany). Dornier Forschung; Vogel, W.D. [Daimler-Benz Aerospace AG, Friedrichshafen (Germany). Dornier Forschung

    1997-06-01

    Ceramic matrix composites (CMCs) are candidate materials for applications like reentry heat-shields for spacecrafts or turbine parts for aircrafts. Taylored mechanical properties, improved oxidation resistance and environmental stability are very important for these materials. To improve the performance of liquid polymer derived ceramic matrix composites (LPI-CMCs), different techniques for reducing porosity by reinfiltration are discussed. Reinfiltration processes have been performed on a carbon fiber reinforced SiC ceramic, using injection of suitable polymers and sol-gel sols. It has been demonstrated that both methods can reduce the porosity and increase the mechanical properties. Different parameters have been controlled including impregnation pressures and times, heat curing and initial porosity of the substrates as well as composition, viscosity and concentration of the infiltrating solution. The infiltrated samples were characterized by Hg porosimetry, interlaminar shear strength and SEM as well as by oxidation tests. (orig.)

  15. Fatigue Defect of Layer Steel Fiber Reinforced Concrete

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    An experimental study is carried out on fatigue defect of layer steel fiber reinforced concrete (LSFRC). Based on experimental data,the various relation curves are given corresponding to different stress levels 0.9, 0.85, and 0.8. Furthermore, the fatigue defect degree is defined, and the strain-cycle ratio equations and defect-cycle ratio equations with the correlation coefficients very close to 1, are regressed in terms of the cubic polynomial,of which the fittings are preferable.In addition,the results show that the fatigue defect of LSFRC presents three-phase development regularity too.And in comparison with the plain concrete,the third phase of the fatigue defect of LSFRC is longer, therefore the fatigue failure of LSFRC is more ductile.The mechanism of the fatigue defect is discussed too.

  16. Robotic inspection of fiber reinforced composites using phased array UT

    Science.gov (United States)

    Stetson, Jeffrey T.; De Odorico, Walter

    2014-02-01

    Ultrasound is the current NDE method of choice to inspect large fiber reinforced airframe structures. Over the last 15 years Cartesian based scanning machines using conventional ultrasound techniques have been employed by all airframe OEMs and their top tier suppliers to perform these inspections. Technical advances in both computing power and commercially available, multi-axis robots now facilitate a new generation of scanning machines. These machines use multiple end effector tools taking full advantage of phased array ultrasound technologies yielding substantial improvements in inspection quality and productivity. This paper outlines the general architecture for these new robotic scanning systems as well as details the variety of ultrasonic techniques available for use with them including advances such as wide area phased array scanning and sound field adaptation for non-flat, non-parallel surfaces.

  17. Tapered Polymer Fiber Sensors for Reinforced Concrete Beam Vibration Detection.

    Science.gov (United States)

    Luo, Dong; Ibrahim, Zainah; Ma, Jianxun; Ismail, Zubaidah; Iseley, David Thomas

    2016-12-16

    In this study, tapered polymer fiber sensors (TPFSs) have been employed to detect the vibration of a reinforced concrete beam (RC beam). The sensing principle was based on transmission modes theory. The natural frequency of an RC beam was theoretically analyzed. Experiments were carried out with sensors mounted on the surface or embedded in the RC beam. Vibration detection results agreed well with Kistler accelerometers. The experimental results found that both the accelerometer and TPFS detected the natural frequency function of a vibrated RC beam well. The mode shapes of the RC beam were also found by using the TPFSs. The proposed vibration detection method provides a cost-comparable solution for a structural health monitoring (SHM) system in civil engineering.

  18. Fiber-reinforced polymer concrete: Property improvement by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Martinez B, G. [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados, Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Km. 12 Carretera Toluca-Atlacomulco, San Cayetano 50200, Estado de Mexico (Mexico); Brostow, W. [Laboratory of Advanced Polymers and Optimized Materials, Department of Materials Science and Engineering, University of North Texas, Denton TX 76203-5310 (United States)], e-mail: gonzomartinez02@yahoo.com.mx

    2009-07-01

    Polymer concrete (PC) is a particulate composite in which a thermoset resin forms a polymeric matrix and binds inorganic aggregates (dispersed particles of strengthening phases). This in contrast to Portland cement concrete (PCC) in which the binding is a result of interaction of cement with water. Adding polymeric materials to the concrete one can obtain high compressive and flexural strength, high impact and abrasion resistance, lower weight and lower costs. Moreover, PC is a very good repair material for structure elements damaged by trapping water inside the structure and by acid attacks which take place in the PCC. In the present chapter we discuss uses of polymer concrete and the importance of using gamma radiation as a novel technology for manufacturing fiber-reinforced polymer concrete. Our technology is different from the costly and time consuming current procedures such as chemical attack or thermal treatment. (Author)

  19. Fracture morphology of carbon fiber reinforced plastic composite laminates

    Directory of Open Access Journals (Sweden)

    Vinod Srinivasa

    2010-09-01

    Full Text Available Carbon fiber reinforced plastic (CFRP composites have been extensively used in fabrication of primary structures for aerospace, automobile and other engineering applications. With continuous and widespread use of these composites in several advanced technology, the frequency of failures is likely to increase. Therefore, to establish the reasons for failures, the fracture modes should be understood thoroughly and unambiguously. In this paper, CFRP composite have been tested in tension, compression and flexural loadings; and microscopic study with the aid of Scanning Electron Microscope (SEM has been performed on failed (fractured composite surfaces to identify the principle features of failure. Efforts have been made in correlating the fracture surface characteristics to the failure mode. The micro-mechanics analysis of failure serves as a useful guide in selecting constituent materials and designing composites from the failure behavior point of view. Also, the local failure initiation results obtained here has been reliably extended to global failure prediction.

  20. Neutron stress measurement of W-fiber reinforced Cu composite

    CERN Document Server

    Nishida, M; Ikeuchi, Y; Minakawa, N

    2003-01-01

    Stress measurement methods using neutron and X-ray diffraction were examined by comparing the surface stresses with internal stresses in the continuous tungsten-fiber reinforced copper-matrix composite. Surface stresses were measured by X-ray stress measurement with the sin sup 2 psi method. Furthermore, the sin sup 2 psi method and the most common triaxal measurement method using Hooke's equation were employed for internal stress measurement by neutron diffraction. On the other hand, microstress distributions developed by the difference in the thermal expansion coefficients between these two phases were calculated by FEM. The weighted average strains and stresses were compared with the experimental results. The FEM results agreed with the experimental results qualitatively and confirmed the importance of the triaxial stress analysis in the neutron stress measurement. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  1. Objective Surface Evaluation of Fiber Reinforced Polymer Composites

    Science.gov (United States)

    Palmer, Stuart; Hall, Wayne

    2013-08-01

    The mechanical properties of advanced composites are essential for their structural performance, but the surface finish on exterior composite panels is of critical importance for customer satisfaction. This paper describes the application of wavelet texture analysis (WTA) to the task of automatically classifying the surface finish properties of two fiber reinforced polymer (FRP) composite construction types (clear resin and gel-coat) into three quality grades. Samples were imaged and wavelet multi-scale decomposition was used to create a visual texture representation of the sample, capturing image features at different scales and orientations. Principal components analysis was used to reduce the dimensionality of the texture feature vector, permitting successful classification of the samples using only the first principal component. This work extends and further validates the feasibility of this approach as the basis for automated non-contact classification of composite surface finish using image analysis.

  2. Chairside fabricated fiber-reinforced composite fixed partial denture

    Directory of Open Access Journals (Sweden)

    Sufyan Garoushi

    2007-01-01

    Full Text Available The advances in the materials and techniques for adhesive dentistry have allowed the development of non-invasive or minimally invasive approaches for replacing a missing tooth in those clinical situations when conservation of adjacent teeth is needed. Good mechanical and cosmetic/aesthetic properties of fiber-reinforced composite (FRC, with good bonding properties with composite resin cement and veneering composite are needed in FRC devices. Some recent studies have shown that adhesives of composite resins and luting cements allow diffusion of the adhesives to the FRC framework of the bridges. By this so-called interdiffusion bonding is formed [1]. FRC bridges can be made in dental laboratories or chairside. This article describes a clinical case of chairside (directly made FRC Bridge, which was used according to the principles of minimal invasive approach. Treatment was performed by Professor Vallittu from the University of Turku, Finland.

  3. Performance of Sprayed Fiber Reinforced Polymer Strengthened Timber Beams

    Directory of Open Access Journals (Sweden)

    S. Talukdar

    2010-01-01

    Full Text Available A study was carried out to investigate the use of Sprayed Fiber Reinforced Polymer (SFRP for retrofit of timber beams. A total of 10-full scale specimens were tested. Two different timber preservatives and two different bonding agents were investigated. Strengthening was characterized using load deflection diagrams. Results indicate that it is possible to enhance load-carrying capacity and energy absorption characteristics using the technique of SFRP. Of the two types of preservatives investigated, the technique appears to be more effective for the case of creosote-treated specimens, where up to a 51% improvement in load-carrying capacity and a 460% increase in the energy absorption capacity were noted. Effectiveness of the bonding agent used was dependent on the type of preservative the specimen had been treated with.

  4. Abrasive waterjet machining of fiber reinforced composites: A review

    Science.gov (United States)

    Kalla, D. K.; Dhanasekaran, P. S.; Zhang, B.; Asmatulu, R.

    2012-04-01

    Machining of fiber reinforced polymer (FRP) composites is a major secondary manufacturing activity in the aircraft and automotive industries. Traditional machining of these composites is difficult due to the high abrasiveness nature of their reinforcing constituents. Almost all the traditional machining processes involve in the dissipation of heat into the workpiece which can be resulted in damage to workpiece and rapid wear of the cutting tool. This serious issue has been overcome by water jetting technologies. Abrasive waterjet machining (AWJM) is a nontraditional method and one of the best options for machining FRPs. This paper presents a review of the ongoing research and development in AWJM of FRPs, with a critical review of the physics of the machining process, surface characterization, modeling and the newer application to the basic research. Variable cutting parameters, limitations and safety aspects of AWJM and the noise related issues due to high flow rate of water jet will be addressed. Further challenges and scope of the future development in AWJM are also presented in detail.

  5. Acoustic emission characteristics on microscopic damage behavior of carbon fiber sheet reinforced concrete

    Science.gov (United States)

    Lee, Jin Kyung; Lee, Joon Hyun

    2002-05-01

    In this study, a three-point bend test has been carried out to understand the damage progress and the micro-failure mechanism of carbon fiber sheet (CFS) reinforced concretes. For these purposes, four kinds of specimens were used; unreinforced concrete, steel bar reinforced concrete, CFS reinforced concrete, and concrete reinforced by both steel bar and CFS. Acoustic Emission (AE) technique was used to evaluate the characteristics of damage progress and the failure mechanism of the specimens.

  6. Design aid for shear strengthening of reinforced concrete T-joints using carbon fiber reinforced plastic composites

    Science.gov (United States)

    Gergely, Ioan

    The research presented in the present work focuses on the shear strengthening of beam column joints using carbon fiber composites, a material considered in seismic retrofit in recent years more than any other new material. These composites, or fiber reinforced polymers, offer huge advantages over structural steel reinforced concrete or timber. A few of these advantages are the superior resistance to corrosion, high stiffness to weight and strength to weight ratios, and the ability to control the material's behavior by selecting the orientation of the fibers. The design and field application research on reinforced concrete cap beam-column joints includes analytical investigations using pushover analysis; design of carbon fiber layout, experimental tests and field applications. Several beam column joints have been tested recently with design variables as the type of composite system, fiber orientation and the width of carbon fiber sheets. The surface preparation has been found to be critical for the bond between concrete and composite material, which is the most important factor in joint shear strengthening. The final goal of this thesis is to develop design aids for retrofitting reinforced concrete beam column joints. Two bridge bents were tested on the Interstate-15 corridor. One bent was tested in the as-is condition. Carbon fiber reinforced plastic composite sheets were used to externally reinforce the second bridge bent. By applying the composite, the displacement ductility has been doubled, and the bent overall lateral load capacity has been increased as well. The finite element model (using DRAIN-2DX) was calibrated to model the actual stiffness of the supports. The results were similar to the experimental findings.

  7. Optimizing the delamination failure in bamboo fiber reinforced polyester composite

    Directory of Open Access Journals (Sweden)

    N. Abilash

    2016-01-01

    Full Text Available Delamination is represented to be the most prevalent failure in composite structures. The use of composites in the manufacturing sector plays a very important role in the industry in general. Moreover these materials have unique characteristics when analyzed separately from constituents which are a part of them. In this paper, a partially ecological composite was made, using natural fibers as reinforcement (bamboo fiber, in the polyester resin matrix to form a composite, seeking to improve the mechanical behavior among its class of materials. The characteristics of a composite material are determined by how it behaves while machining, Drilling is the most predominant machining process because of its cost effectiveness when compared with other processes. Obviously delamination is the major problem that is focused by many researchers while selecting drilling as the machining process in polymeric composites. This research mainly emphasizes on the critical parameters by varying its speed, feed, and diameter of the cutting tool, their contribution to delamination was analyzed. Reduced delaminations were identified by varying the speed and feed rate.

  8. Unsaturated and Saturated Permeabilities of Fiber Reinforcement: Critics and Suggestions

    Directory of Open Access Journals (Sweden)

    Chung Hae ePARK

    2015-04-01

    Full Text Available In general, permeability measurement results show a strong scattering according to the measurement method, the type of test fluid and the fluid injection condition, even though permeability is regarded as a unique property of porous medium. In particular, the discrepancy between the unsaturated and saturated permeabilities for the same fabric has been widely reported. In the literature, relative permeability has been adopted to model the unsaturated flow. This approach has some limits in the modeling of double-scale porosity medium. We address this issue of permeability measurement by rigorously examining the mass conservation condition. Finally, we identify that the pressure gradient is non-linear with positive curvature in the unsaturated flow and a misinterpretation of pressure gradient is the main reason for the difference between the saturated and unsaturated permeabilities of the same fiber reinforcement. We propose to use a fixed value of permeability and to modify the mass conservation equation if there are air voids which are entrapped inside the fiber tow. Finally, we also suggest some guidelines and future perspectives to obtain more consistent permeability measurement results.

  9. Unsaturated and Saturated Permeabilities of Fiber Reinforcement: Critics and Suggestions

    Science.gov (United States)

    Park, Chung Hae; Krawczak, Patricia

    2015-04-01

    In general, permeability measurement results show a strong scattering according to the measurement method, the type of test fluid and the fluid injection condition, even though permeability is regarded as a unique property of porous medium. In particular, the discrepancy between the unsaturated and saturated permeabilities for the same fabric has been widely reported. In the literature, relative permeability has been adopted to model the unsaturated flow. This approach has some limits in the modeling of double-scale porosity medium. We address this issue of permeability measurement by rigorously examining the mass conservation condition. Finally, we identify that the pressure gradient is non-linear with positive curvature in the unsaturated flow and a misinterpretation of pressure gradient is the main reason for the difference between the saturated and unsaturated permeabilities of the same fiber reinforcement. We propose to use a fixed value of permeability and to modify the mass conservation equation if there are air voids which are entrapped inside the fiber tow. Finally, we also suggest some guidelines and future perspectives to obtain more consistent permeability measurement results.

  10. Performance of carbon fiber reinforced rubber composite armour against shaped charge jet penetration

    Directory of Open Access Journals (Sweden)

    Yue Lian-yong

    2016-01-01

    Full Text Available Natural rubber is reinforced with carbon fiber; the protective performances of the carbonfiber reinforced rubber composite armour to shaped charge jet have been studied based on the depth of penetration experiments. The craters on the witness blocks, the nature rubber based composite plates’ deformation and the Scanning Electron Microscopy for the hybrid fiber reinforced rubber plate also is analyzed. The results showed that the composite armour can affect the stability of the jet and made part of the jet fracture. The carbon fiber reinforced rubber composite armour has good defence ablity especially when the nature rubber plate hybrid 15% volume percentage carbonfiber and the obliquity angle is 68°. The hybrid fiber reinforced rubber composite armour can be used as a new kind of light protective armour.

  11. [Preparation of carbon fiber reinforced fluid type resin denture (author's transl)].

    Science.gov (United States)

    Kasuga, H; Sato, H; Nakabayashi, N

    1980-01-01

    Transverse strength of cured fluid resins is weaker than that of the heat cured. We have studied to improve the mechanical strength of self-cured acrylic resin by application of carbon fibers as reinforcement and simple methods which must be acceptable for technicians are proposed. A cloth type carbon fiber was the best reinforcement among studied carbon fibers such as chopped or mat. The chopped fibers were difficult to mix homogeneously with fluid resins and effectiveness of the reinforcement was low. Breaking often occurred at the interface between the reinforcement and resin in the cases of mat which gave defects to the test specimens. To prepare reinforced denture, the cloth was trimmed on the master cast after removal of wax and the prepreg was formed with the alginate impression on the cast by Palapress and the cloth. Other steps were same as the usual fluid resin.

  12. Oxidation of carbon fiber surfaces for use as reinforcement in high-temperature cementitious material systems

    Science.gov (United States)

    Sugama, Toshifumi

    1990-01-01

    The interfacial bond characteristics between carbon fiber and a cement matrix, in high temperature fiber-reinforced cementitious composite systems, can be improved by the oxidative treatment of the fiber surfaces. Compositions and the process for producing the compositions are disclosed.

  13. Evaluating cover depth of steel fiber reinforced concrete using impact-echo testing

    Science.gov (United States)

    Lin, Yu-Feng

    2014-04-01

    The purpose of this research is to estimate of the cover depth of steel fiber reinforced concrete using the impact-echo testing. In order to evaluate the security of the construction, usually need to estimate the cover depth of the reinforced concrete. At present, the examination technique of the cover depth of the reinforced concrete without the steel fiber is mainly applied in the magnetic and electrical methods, its rapid detection and good results. But the research of the reactive powder concrete be gradually progress, with the steel fiber concrete structure will be increased, if should still operate the examination with the magnetic and electrical methods, theoretically the steel fiber will have the interference to its electromagnetism field. Therefore, this research designs four kinds of reinforced concrete plate that include different steel fiber contents, to evaluate test results of estimate of the cover depth of the reinforcing bar. The results showed that: estimate of the cover depth of steel fiber reinforced concrete reinforcing bar using the impact-echo testing, the variety of the steel fiber content does not have much influence, the test measurement error within ± 10%, and the most important source of uncertainty is the velocity of concrete.

  14. Fiber-coatings for fiber-reinforced mullite/mullite composites

    Energy Technology Data Exchange (ETDEWEB)

    Nubian, K.; Wahl, G. [Technische Univ. Braunschweig (Germany). Inst. fuer Oberflaechentechnik und Plasmatechnische Werkstoffentwicklung; Saruhan, B.; Schneider, H. [Technische Univ. Braunschweig (Germany). Inst. fuer Oberflaechentechnik und Plasmatechnische Werkstoffentwicklung; DLR, Deutsches Zentrum fuer Luft- und Raumfahrt e.v., Koeln (Germany)

    2001-08-01

    Mullite-based fiber-reinforced composites are favorite candidates for the application in combustion chambers of gas turbines. The application requires damage tolerance, temperature and oxidation-resistance at high temperatures (> 1200 C) over long terms. In order to realize crack deflection and fiber pull-out, an interphase coating of the mullite fibers (Nextel{sup TM} 720) is necessary to obtain a weak bonding between fibers and matrix. Two systems of interphases produced by CVD were described. The first system is a carbon/metal-oxide double layer (C/ZrO{sub 2}, C/Al{sub 2}O{sub 3}). Properties of the resulting composites after heat-treatment (1300 C, 1000 h) under cyclic and continuous heating conditions were described. The second system is the codeposition of La{sub 2}O{sub 3} and Al{sub 2}O{sub 3} on the fibers. After heat-treatment at 1300 C lanthanum hexaluminate (LaAl{sub 11}O{sub 18}) with a magneto plumbite structure containing sliding planes should be formed. (orig.)

  15. Behavior of tungsten fiber-reinforced tungsten based on single fiber push-out study

    Directory of Open Access Journals (Sweden)

    B. Jasper

    2016-12-01

    Full Text Available To overcome the intrinsic brittleness of tungsten (W, a tungsten fiber-reinforced tungsten-composite material (Wf/W is under development. The composite addresses the brittleness of W by extrinsic toughening through the introduction of energy dissipation mechanisms. These mechanisms allow the reduction of stress peaks and thus improve the materials resistance against crack growth. They do not rely on the intrinsinc material properties such as ductility. By utilizing powder metallurgy (PM one could benefit from available industrialized approaches for composite production and alloying routes. In this contribution the PM method of hot isostatic pressing (HIP is used to produce Wf/W samples containing W fibers coated with an Er2O3 interface. Analysis of the matrix material demonstrates a dense tungsten bulk, a deformed fiber and a deformed, but still intact interface layer. Metallographic analysis reveals indentations of powder particles in the interface, forming a complex 3D structure. Special emphasis is placed on push-out tests of single fiber HIP samples, where a load is applied via a small indenter on the fiber, to test the debonding and frictional properties of the Er2O3 interface region enabling the energy dissipation mechanisms. Together with the obtained experimental results, an axisymmetric finite element model is discussed and compared to existing work. In the HIP Wf/W composites the matrix adhesion is rather large and can dominate the push-out behavior. This is in contrast to the previously tested CVD produced samples.

  16. Use of Fiber-Reinforced Cements in Masonry Construction and Structural Rehabilitation

    Directory of Open Access Journals (Sweden)

    Ece Erdogmus

    2015-02-01

    Full Text Available The use of fiber reinforcement in traditional concrete mixes has been extensively studied and has been slowly finding its regular use in practice. In contrast, opportunities for the use of fibers in masonry applications and structural rehabilitation projects (masonry and concrete structures have not been as deeply investigated, where the base matrix may be a weaker cementitious mixture. This paper will summarize the findings of the author’s research over the past 10 years in these particular applications of fiber reinforced cements (FRC. For masonry, considering both mortar and mortar-unit bond characteristics, a 0.5% volume fraction of micro fibers in type N Portland cement lime mortar appear to be a viable recipe for most masonry joint applications both for clay and concrete units. In general, clay units perform better with high water content fiber reinforced mortar (FRM while concrete masonry units (CMUs perform better with drier mixtures, so 130% and 110% flow rates should be targeted, respectively. For earth block masonry applications, fibers’ benefits are observed in improving local damage and water pressure resistance. The FRC retrofit technique proposed for the rehabilitation of reinforced concrete two-way slabs has exceeded expectations in terms of capacity increase for a relatively low cost in comparison to the common but expensive fiber reinforced polymer applications. For all of these applications of fiber-reinforced cements, further research with larger data pools would lead to further optimization of fiber type, size, and amount.

  17. Assessment of the Mechanical Properties of Sisal Fiber-Reinforced Silty Clay Using Triaxial Shear Tests

    Directory of Open Access Journals (Sweden)

    Yankai Wu

    2014-01-01

    Full Text Available Fiber reinforcement is widely used in construction engineering to improve the mechanical properties of soil because it increases the soil’s strength and improves the soil’s mechanical properties. However, the mechanical properties of fiber-reinforced soils remain controversial. The present study investigated the mechanical properties of silty clay reinforced with discrete, randomly distributed sisal fibers using triaxial shear tests. The sisal fibers were cut to different lengths, randomly mixed with silty clay in varying percentages, and compacted to the maximum dry density at the optimum moisture content. The results indicate that with a fiber length of 10 mm and content of 1.0%, sisal fiber-reinforced silty clay is 20% stronger than nonreinforced silty clay. The fiber-reinforced silty clay exhibited crack fracture and surface shear fracture failure modes, implying that sisal fiber is a good earth reinforcement material with potential applications in civil engineering, dam foundation, roadbed engineering, and ground treatment.

  18. Performance Analysis of a Fiber Reinforced Plastic Oil Cooler Cover Considering the Anisotropic Behavior of the Fiber Reinforced PA66

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2016-09-01

    Full Text Available In this paper, a simulation method based on an orthogonal anisotropic material is proposed. A numerical example using a simple plate is presented to show the difference in the static performance between the orthogonal anisotropic and the isotropic models. Comparing with the tested modal data of a diesel engine oil cooler cover made by glass fiber reinforced polyamide 66 (PA66, the proposed simulation method was confirmed to be much closer to reality than the general isotropic model. After that, a comprehensive performance comparison between the plastic oil cooler covers with the orthogonal anisotropic and the isotropic fiber orientations was carried out including a static deformation and stress analysis under a pressure-temperature coupled load, a forced response analysis, and an acoustic analysis under real operating conditions. The results show that the stress, the deformation, the peak vibration velocity, and the overall sound power level of the orthogonal anisotropic model are different from that obtained with the isotropic model. More importantly, the proposed method can provide a much more detailed frequency content compared to the isotropic model.

  19. Modification of polyester resins during molding of glass-fiber-reinforced plastics

    Science.gov (United States)

    Yakushin, V.; Jansons, J.; Bulmanis, V.; Cabulis, U.; Bulmanis, A.

    2013-11-01

    The effect of addition of two new urethane prepolymers on the mechanical properties of unsaturated polyester resins and glass-fiber-reinforced plastics based on them is investigated. The effect of concentration of these additives on the elastic modulus, elongation at break, and flexural strength of hardened orthophthalic resins is evaluated. A significant increase in the strength of the binders and glass-fiber-reinforced plastics (GFRPs) based on them is observed upon adding urethane prepolymers to the resins. The properties of laminated and randomly reinforced glass-fiber plastics with the modified orthophthalic resins are compared with those of similar GFRPs based on popular brands of industrial resins.

  20. Experimental Study on Unconfined Compressive Strength of Basalt Fiber Reinforced Clay Soil

    Directory of Open Access Journals (Sweden)

    Lei Gao

    2015-01-01

    Full Text Available In order to study the mechanism and effect of basalt fiber reinforced clay soil, a series of unconfined compressive strength tests conducted on clay soil reinforced with basalt fiber have been performed under the condition of optimum water content and maximum dry density. Both the content and length of basalt fiber are considered in this paper. When the effect of content is studied, the 12 mm long fibers are dispersed into clay soil at different contents of 0.05%, 0.1%, 0.15%, 0.20%, 0.25%, 0.30%, and 0.35%. When the effect of length is researched, different lengths of basalt fibers with 4 mm, 8 mm, 12 mm, and 15 mm are put into soil at the same content of 0.05%. Experimental results show that basalt fiber can effectively improve the UCS of clay soil. And the best content and length are 0.25% and 12 mm, respectively. The results also show that the basalt fiber reinforced clay soil has the “poststrong” characteristic. About the reinforcement mechanism, the fiber and soil column-net model is proposed in this paper. Based on this model and SEM images, the effect of fiber content and length is related to the change of fiber-soil column and formation of effective fiber-soil net.

  1. Al2O3/GdAlO3 fiber for dental porcelain reinforcement.

    Science.gov (United States)

    Medeiros, Igor S; Luz, Luciana A; Yoshimura, Humberto N; Cesar, Paulo F; Hernandes, Antonio C

    2009-10-01

    The aim of this study was to test the hypothesis that the addition of continuous or milled GdAlO3/Al2O3 fibers to a dental porcelain increases its mechanical properties. Porcelain bars without reinforcement (control) were compared to those reinforced with long fibers (30 vol%). Also, disk specimens reinforced with milled fibers were produced by adding 0 (control), 5 or 10 vol% of particles. The reinforcement with continuous fibers resulted in significant increase in the uniaxial flexural strength from 91.5 to 217.4 MPa. The addition of varied amounts of milled fibers to the porcelain did not significantly affect its biaxial flexural strength compared to the control group. SEM analysis showed that the interface between the continuous fiber and the porcelain was free of defects. On the other hand, it was possible to note the presence of cracks surrounding the milled fiber/porcelain interface. In conclusion, the reinforcement of the porcelain with continuous fibers resulted in an efficient mechanism to increase its mechanical properties; however the addition of milled fibers had no significant effect on the material because the porcelain was not able to wet the ceramic particles during the firing cycle.

  2. Development of high performance fiber reinforced cement composites (HPFRCC for application as a transition layer of reinforced beams

    Directory of Open Access Journals (Sweden)

    V. J. Ferrari

    Full Text Available This study presents the development and behavior analysis of high performance fiber reinforced cement composites (HPFRCC. The describedmaterials were specifically developed for application as a transition layer: a repair layer that constitutes the stressed chord of reinforcedconcrete beams strengthened in flexure with carbon fiber reinforced polymers (CFRP. Nineteen different composites were produced by thehybridization process, varying the conventional short steel fiber and steel microfiber (manufactured exclusively for this research contentsto modify the microstructure of the material, thus enhancing the stress transfer process from the cement matrix to the fibers. To analyze theresponse to flexural loading, the composites underwent three point bending tests in notched prism specimens. The response of the materialwas obtained considering strength and tenacity parameters (flexural and fracture. There was evidence of high performance by the composites with a pseudo-hardening behavior.

  3. Microstructure of a cement matrix composite reinforced with polypropylene fibers

    Directory of Open Access Journals (Sweden)

    Rincón, J. M.

    2004-06-01

    Full Text Available The present investigation deals with the microstructural characterization of a composite material, which is comprised of polypropylene fibers in an cement matrix, by means of environmental scanning electron microscopy (ESEM and field emission scanning electron microscopy (FESEM. The microstructure of the different phases that compose the matrix is very heterogeneous, though there is a uniform distribution of the fibers inside it. The surface of this composite is different after setting, cured and hardening depending if the zone is or not in touch with the walls of the mould. The interface between the different crystalline regions of the cement matrix and the dispersed fibers shows compatibility between the matrix and the polymeric fibers. The mechanical properties (compression and bending strength have also been evaluated. The use of melamine formaldehyde as additive leads to a reinforcement of the cement matrix and to the improvement of the mechanical properties.

    Se ha llevado a cabo una observacíón microestructural detallada de un material compuesto de fibras de polipropileno embebidas en una matriz de cemento usando los nuevos tipos de microscopía electrónica de barrido, tales como: un microscopio electrónico medioambiental (acrónimo en inglés: ESEM y uno de emisión de campo (acrónimo en inglés: FESEM. La microestructura de las diferentes fases que componen la matriz es muy heterogénea, aunque hay una distribución uniforme de las fibras dentro de ellas. La superficie de este material compuesto es diferente después del fraguado, curado y endurecimiento según qué zonas estén o no en contacto con las paredes del molde. La interfase entre las diferentes fases cristalinas de la matriz de cemento y las fibras dispersadas se ha observado a diferentes aumentos, comprobándose compatibilidad entre la matriz y las fibras poliméricas. Las propiedades de resistencia mecánica (tanto a flexión como a compresión han sido tambi

  4. Improving the mechanical performance of wood fiber reinforced bio-based polyurethane foam

    Science.gov (United States)

    Chang, Li-Chi

    Because of the environmental impact of fossil fuel consumption, soybean-based polyurethane (PU) foam has been developed as an alternative to be used as the core in structural insulated panels (SIPs). Wood fibers can be added to enhance the resistance of foam against bending and buckling in compression. The goal of this work is to study the effect of three modifications: fiber surface treatment, catalyst choice, and mixing method on the compression performance of wood fiber-reinforced PU foam. Foams were made with a free-rising process. The compression performance of the foams was measured and the foams were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray computed tomography (CT). The foam reinforced with alkali-treated fibers had improved compression performance. The foams made with various catalysts shared similar performance. The foam made using a mechanical stirrer contained well-dispersed fibers but the reinforcing capability of the fibers was reduced.

  5. Investigation into hemp fiber-and whisker-reinforced soy protein composites

    Institute of Scientific and Technical Information of China (English)

    Linxiang WANG; Rakesh KUMAR; Lina ZHANG

    2009-01-01

    Whiskers, designated as W, were prepared from hemp fibers. Both fibers and whiskers were characterized by Fourier transform infrared spectroscopy, thermogravi-metric analysis. Scanning electron microscopy and transmission electron microscopy were used to evaluate the dimensions of the fibers and whiskers, respectively.By incorporating different weight fraction of the fibers and whiskers into soy protein isolate, we prepared two different composites designated as SC and SC-W,respectively. Thiodiglycol was used as a plasticizer for the preparation of composites. The SC and SC-W composites were characterized and compared in terms of mechanical properties, volume fraction of porosity,and water uptake. The results indicated that there was not much significant difference in the properties of the composites. In fact, mechanical properties of fiber-reinforced composites were higher than whisker-reinforced composites at optimum weight fractions.This study can give us the idea about the judicious use of fibers or whiskers as reinforcement materials.

  6. Reinforcing and Toughening Effects of Bamboo Pulp Fiber on Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Fiber Composites.

    Science.gov (United States)

    Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/bamboo pulp fiber composites were melt-compounded and injection-molded. Tensile, impact and dynamic mechanical properties of the composites were studied. In contrast to many other short natural fiber reinforced biocomposites which demonstrate decre...

  7. Mechanical Properties Optimization of Fiber Reinforced Foam Concrete

    Directory of Open Access Journals (Sweden)

    Yu Lei

    2016-01-01

    Full Text Available 3 factors including fiber kind, fiber content and fiber mix-ability are selected to optimizing mechanical properties of foam concrete. By orthogonal experiment design, compression and flexural stress and strain of specimens from different fiber added ways were test. Range analysis and factor levels analysis show the best fiber added way. Test shows that fiber content is the most important factor to flexural stress. Next one is fiber kind and the third is fiber mix-ability. Fiber kind is the most important factor to stress curves. Fiber is not good for compression strength but good for flexural strength.

  8. Biocomposites reinforced by fibers or tubes as scaffolds for tissue engineering or regenerative medicine.

    Science.gov (United States)

    Li, Xiaoming; Yang, Yu; Fan, Yubo; Feng, Qingling; Cui, Fu-zhai; Watari, Fumio

    2014-05-01

    As a dynamic and hierarchically organized composite, native extracellular matrix (ECM) not only supplies mechanical support, which the embedded cells need, but also regulates various cellular activities through interaction with them. On the basis of the ECM-mimetic principle, good biocompatibility and appropriate mechanical properties are the two basic requirements that the ideal scaffolds for the tissue engineering or regenerative medicine need. Some fibers and tubes have been shown effective to reinforce scaffolds for tissue engineering or regenerative medicine. In this review, three parts, namely properties affected by the addition of fibers or tubes, scaffolds reinforced by fibers or tubes for soft tissue repair, and scaffolds reinforced by fibers or tubes for hard tissue repair are stated, which shows that tissue repair or regeneration efficacy was enhanced significantly by fiber or tube reinforcement. In addition, it indicates that these reinforcing agents can improve the biocompatibility and biodegradation of the scaffolds in most cases. However, there are still some concerns, such as the homogeneousness in structure or composition throughout the reinforced scaffolds, the adhesive strength between the matrix and the fibers or tubes, cytotoxicity of nanoscaled reinforcing agents, etc., which were also discussed in the conclusion and perspectives part. Copyright © 2013 Wiley Periodicals, Inc.

  9. Effect of fiber loading on the mechanical properties of bagasse fiber–reinforced polypropylene composites

    OpenAIRE

    2016-01-01

    It is evident that sugarcane/bagasse is a highly potential natural composite fiber. In this study, the correlation of composition fiber amount to the mechanical strength was presented. Bagasse was treated with alkali and then reinforced in polypropylene by means of hot pressing. Fiber loading was set to be varied from 10 to 20 wt%. Composite samples were subjected to tensile, hardness, and flexural characterization. Composites with 30 wt% of fiber loading registered maximum tensile strength w...

  10. Natural Fiber-Reinforced Hybrid Polymer Nanocomposites: Effect of Fiber Mixing and Nanoclay on Physical, Mechanical, and Biodegradable Properties

    Directory of Open Access Journals (Sweden)

    Md. Saiful Islam

    2015-01-01

    Full Text Available Combining two kinds of fibers is a potential way to improve the essential properties of natural fiber-reinforced hybrid polymer composites. Biocomposites produced from natural resources are experiencing an increase in interest due to their high demand in the market for manufacturing, in addition to environmental and sustainability issues. In this study, natural fiber-reinforced hybrid polymer nanocomposites were prepared from coir fiber, wood fiber, polypropylene, and montmorillonite nanoclay using a hot press technique. The effects of fiber mixing and montmorillonite on their physico-mechanical and biodegradable properties were subsequently investigated. Before being used, both the wood and the coir fibers were alkali-treated to reduce their hydrophilicity. The mechanical properties of the fabricated composites were measured using a universal tensile testing machine and found to be enhanced after fiber mixing and nanoclay incorporation. Fourier transform infrared spectra indicated that the characteristic peaks of the composites shifted after fiber mixing. A new peak around 470 cm-1 was observed in the case of the nanocomposites, which confirmed the interaction between the fiber, polymer, and montmorillonite (MMT. Scanning electron microscopic analysis revealed that MMT strongly improved the adhesion and compatibility between the fiber and polymer matrix. The combining of fibers improved the biodegradability and water absorption properties, while MMT addition had the reverse effect on the same properties of the composites.

  11. Strain Measurement Using Embedded Fiber Bragg Grating Sensors Inside an Anchored Carbon Fiber Polymer Reinforcement Prestressing Rod for Structural Monitoring

    DEFF Research Database (Denmark)

    Kerrouche, Abdelfateh; Boyle, William J.O.; Sun, Tong

    2009-01-01

    Results are reported from a study carried out using a series of Bragg grating based optical fiber sensors written into a very short length (60mm) optical fiber net work and integrated into carbon fiber polymer reinforcement (CFPR) rod. Such rods are used as reinforcements in concrete structures...... from the calibrated force applied by the pulling machine and from a conventional resistive strain gauge mounted on the rod itself is obtained. Calculations from strain to shear stress show a relatively uniform stress distribution along the bar anchor used. The results give confidence to results from...... various methods of insitu monitoring of strains on such CFRP rods when used in different engineering structures....

  12. Failure mode interaction in fiber reinforced laminated composites

    Science.gov (United States)

    Prabhakar, Pavana

    A novel computational modeling framework to predict the compressive strength of fiber reinforced polymer matrix composite (FRPC) laminates has been presented. The model development has been motivated by a set of experimental results on the compression response of two different FRPCs. The model accounts for failure mode interaction between kink-banding and interface fracture (or delamination), which are observed in the experimental results. To reduce the size of the computational model, those interfaces that are most susceptible to delamination are first determined through a free-edge stress analysis. Furthermore, 0-axis layers, which are passive in the failure process are represented through an equivalent homogenized model, but the microstructural features of the on-axis layers (zero plies) are retained in the computational model. The predictions of the model matched well with the experimental observations, and they were found to accurately account for failure mechanism interactions. Therefore, this model has the potential to replace the need to carry out large numbers of tests to obtain the compressive strength allowable for FRPC laminates, the latter allowable being an essential element in the design of lightweight FRPC aerostructures. Furthermore, the thesis presents a new computational model to predict fiber/matrix splitting failure, a failure mode that is frequently observed in in-plane tensile failure of FRPC's. By considering a single lamina, this failure mechanism was seamlessly modeled through the development of a continuum-decohesive nite element (CDFE). The CDFE was motivated by the variational multiscale cohesive method (VMCM) presented earlier by Rudraraju et al. (2010) at the University of Michigan. In the CDFE, the transition from a continuum to a non-continuum is modeled directly (physically) without resorting to enrichment of the shape functions of the element. Thus, the CDFE is a natural merger between cohesive elements and continuum elements. The

  13. Compression Molding of Chemical/Thermal Resistant Composite Materials Using Wastes of Glass Fiber Reinforced PTFE and Carbon Fiber

    OpenAIRE

    Kimura, Teruo

    2013-01-01

    This report proposed the compression molding method of chemical/thermal resistant composite materials reinforced by the carbon fiber extracted from CFRP waste and the waste of glass fiber coated by PTFE. The FEP resin was used for the matrix material. The contents of carbon fiber and FEP resin were varied in the experiments, and the machanical properties of composite materials were discussed in detail. As a result, the bending strength and modulus increased with increasing the content of carb...

  14. Laser cutting of carbon fiber reinforced thermo-plastics (CFRTP) by single-mode fiber laser irradiation

    Science.gov (United States)

    Niino, Hiroyuki; Kawaguchi, Yoshizo; Sato, Tadatake; Narazaki, Aiko; Kurosaki, Ryozo; Muramatsu, Mayu; Harada, Yoshihisa; Anzai, Kenji; Aoyama, Mitsuaki; Matsushita, Masafumi; Furukawa, Koichi; Nishino, Michiteru; Fujisaki, Akira; Miyato, Taizo; Kayahara, Takashi

    2014-03-01

    We report on the laser cutting of carbon fiber reinforced thermo-plastics (CFRTP) with a cw IR fiber laser (single-mode fiber laser, average power: 350 W). CFRTP is a high strength composite material with a lightweight, and is increasingly being used various applications. A well-defined cutting of CFRTP which were free of debris and thermal-damages around the grooves, were performed by the laser irradiation with a fast beam galvanometer scanning on a multiple-scanpass method.

  15. Energy absorption at high strain rate of glass fiber reinforced mortars

    Directory of Open Access Journals (Sweden)

    Fenu Luigi

    2015-01-01

    Full Text Available In this paper, the dynamic behaviour of cement mortars reinforced with glass fibers was studied. The influence of the addition of glass fibers on energy absorption and tensile strength at high strain-rate was investigated. Static tests in compression, in tension and in bending were first performed. Dynamic tests by means of a Modified Hopkinson Bar were then carried out in order to investigate how glass fibers affected energy absorption and tensile strength at high strain-rate of the fiber reinforced mortar. The Dynamic Increase Factor (DIF was finally evaluated.

  16. MICROWAVE INDUCED DEGRADATION OF GLASS FIBER REINFORCED POLYESTER FOR FIBER AND RESIN RECOVERY

    DEFF Research Database (Denmark)

    Ucar, Hülya; Nielsen, Rudi Pankratz; Søgaard, Erik Gydesen

    A solvolysis process to depolymerize the resin in glass fiber reinforced composites and recover the glass fibers has been investigated using microwave induced irradiation. The depolymerization was carried out in HNO3 with concentrations in the range of 1M-7M and in KOH with concentrations ranging...... from 1M-3.5M. With HNO3 concentrations of 3.5 M, 100 % resin removal was achieved at 208°C and recovery of pristine glass fibers without damage on the surface. Furthermore, it was possible to recover the monomer phthalic acid most efficiently at HNO3 concentrations ≤ 3.5M. Decreased level...... of depolymerization was achieved using KOH at concentrations ranging from 1-3.5M. Maximum 63 % resin removal was achieved using 1 M KOH and the resin removal efficiency decreased at higher KOH concentrations (3.5M). The glass fiber surfaces were damaged at both concentrations with more pronounced damages using 3.5M...

  17. Thermal degradation of fiber coatings in mullite-fiber-reinforced mullite composites

    Energy Technology Data Exchange (ETDEWEB)

    Schmuecker, M.; Schneider, H. [German Aerospace Research Establishment, Koeln (Germany). Inst. for Materials Research; Chawla, K.K.; Xu, Z.R. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Dept. of Materials and Metallurgical Engineering

    1997-08-01

    The thermal degradation behavior of single-layer BN and of double-layer BN/SiC chemically vapor-deposited fiber coatings in mullite-fiber-reinforced mullite composites was investigated by means of transmission electron microscopy after processing and heat treatment of the composites at 1000, 1200, and 1300 C for 6 h in air. The single-layer BN coatings were {approximately}0.7 {micro}m thick and consisted of turbostratic BN with (0001) basal planes lying parallel to the surfaces of the fibers plus nanosized areas that had no preferential orientation. This microstructure remained unchanged up to 1000 C; however, distinct coarsening of the randomly oriented BN crystallites occurred in the temperature range of 1000--1200 C. The single-layer BN coatings were stable against oxidation, up to 1200 C. At higher temperatures, degradation of the coatings via oxidation occurred. Double-layer BN/SiC coating systems consisted of BN that was 0.08 {micro}m thick and SiC layers that were 0.16 {micro}m thick and deposited onto the mullite fibers. The turbostratic BN was highly anisotropic and did not undergo any microstructural change, up to 1300 C. The outer SiC layer of the double-layer coating system improved the oxidation resistance of BN in the 1200--1300 C temperature range, despite a partial oxidation of SiC to SiO{sub 2}.

  18. Effect of Fiber Waviness on Tensile Strength of a Flax-Sliver-Reinforced Composite Material

    Directory of Open Access Journals (Sweden)

    Taweesak Piyatuchsananon

    2015-01-01

    Full Text Available Recently, a composite material made from natural fibers and biodegradable resin, “green composite,” is attracting attention as an alternative composite material for the replacement of glass fiber-reinforced plastics. Plant-based natural fibers such as kenaf and flax have already been used as composite reinforcement materials because they are more environmentally friendly and costless fibers than artificial fibers. A problem of using natural fibers is the fiber waviness, which affects the tensile properties. Fiber waviness is fluctuation in the fiber orientation that is inherent in the sliver morphology of plant-based natural fibers. This study was conducted to clarify the relation between quantified parameters of fiber waviness and a composite’s tensile strength. First, the fiber orientation angles on a flax-sliver-reinforced composite were measured. Then the angle distribution was quantified through spatial autocorrelation analysis methods: Local Moran’s I and Local Geary’s c. Finally, the relation between the resultant tensile strength and quantified parameters was discussed.

  19. Carbon fiber/carbon nanotube reinforced hierarchical composites: Effect of CNT distribution on shearing strength

    DEFF Research Database (Denmark)

    Zhou, H. W.; Mishnaevsky, Leon; Yi, H. Y.;

    2016-01-01

    The strength and fracture behavior of carbon fiber reinforced polymer composites with carbon nanotube (CNT) secondary reinforcement are investigated experimentally and numerically. Short Beam Shearing tests have been carried out, with SEM observations of the damage evolution in the composites. 3D...... multiscale computational (FE) models of the carbon/polymer composite with varied CNT distributions have been developed and employed to study the effect of the secondary CNT reinforcement, its distribution and content on the strength and fracture behavior of the composites. It is shown that adding secondary...... CNT nanoreinforcement into the matrix and/or the sizing of carbon fiber/reinforced composites ensures strong increase of the composite strength. The effect of secondary CNTs reinforcement is strongest when some small addition of CNTs in the polymer matrix is complemented by the fiber sizing with high...

  20. Carbon Nanotube (CNT) and Carbon Fiber Reinforced SiC Optical Components Project

    Data.gov (United States)

    National Aeronautics and Space Administration — M Cubed has developed and patented technology to make carbon fiber reinforced SiC composites and components. In addition, the feasibility of doubling the toughness...

  1. Evaluation of Tensile Strength of Unresin Continuous Carbon Fiber Cables as Tensile Reinforcement for Concrete Structures

    OpenAIRE

    Ohta, Toshiaki; Djamaluddin, rudy; Seo, SungTag; Sajima, Takao; Harada, Koji

    2002-01-01

    As a tensile reinforcement of a concrete structure member, tensile strength of Unresin Continuous Carbon Fiber (UCCF) cables should be stated clearly. It has been reported that, through direct tensile test, tensile capacity of UCCF cables ranged from 30%

  2. Effect of polyester fiber reinforcement on the mechanical properties of interim fixed partial dentures

    Directory of Open Access Journals (Sweden)

    N. Gopichander

    2015-10-01

    Conclusion: Within the limitations of this study, polyester fiber reinforcements improved the mechanical properties of heat-polymerized PMMA, cold-polymerized PMMA, and bis-acrylic provisional FPD materials.

  3. Piezoresistivity in Carbon Fiber Reinforced Cement Based Composites

    Institute of Scientific and Technical Information of China (English)

    Bing CHEN; Keru WU; Wu YAO

    2004-01-01

    The resu lts of some i nteresti ng investigation on the piezoresistivity of ca rbon fi ber reinforced cement based com posites (CFRC) are presented with the prospect of developing a new nondestructive testing method to assess the integrity of the composite. The addition of short carbon fibers to cement-based mortar or concrete improves the structural performance and at the same time significantly decreases the bulk electrical resistivity. This makes CFRC responsive to the smart behavior by measuring the resistance change with uniaxial pressure. The piezoresistivity of CFRC under different stress was studied, at the same time the damage occurring inner specimens was detected by acoustic emission as well. Test results show that there exists a marking pressure dependence of the conductivity in CFRC, in which the so-called negative pressure coefficient of resistive (NPCR) and positive pressure coefficient of resistive (PPCR) are observed under low and high pressure. Under constant pressures, time-dependent resistivity is an outstanding characteristic for the composites, which is defined as resistance creep. The breakdown and rebuild-up process of conductive network under pressure may be responsible for the pressure dependence of resistivity.

  4. Thermal diffusivity measurements on porous carbon fiber reinforced polymer tubes

    Science.gov (United States)

    Gruber, Jürgen; Gresslehner, Karl Heinz; Mayr, Günther; Hendorfer, Günther

    2017-02-01

    This work presents the application of methods for the determination of the thermal diffusivity well suited for flat bodies adapted to cylindrical bodies. Green's functions were used to get the temperature time history for small and large times, for the approach of intersecting these two straight lines. To verify the theoretical considerations noise free data are generated by finite element simulations. Furthermore effects of inhomogeneous excitation and the anisotropic heat conduction of carbon fiber reinforced polymers were taken into account in these numerical simulations. It could be shown that the intersection of the two straight lines is suitable for the determination of the thermal diffusivity, although the results have to be corrected depending on the ratio of the cylinders inner and outer radii. Inhomogeneous excitation affects the results of this approach as it lead to multidimensional heat flux. However, based on the numerical simulations a range of the azimuthal angle exists, where the thermal diffusivity is nearly independent of the angle. The method to determine the thermal diffusivity for curved geometries by the well suited Thermographic Signal Reconstruction method and taking into account deviations from the slab by a single correction factor has great advantages from an industrial point of view, just like an easy implementation into evaluation software and the Thermographic Signal Reconstruction methods rather short processing time.

  5. Guided wave propagation in porous unidirectional carbon fiber reinforced plastic

    Science.gov (United States)

    Dobmann, Nicolas; Bach, Martin

    2017-02-01

    Networks of piezoelectric transducers mounted on aircraft structures for Acousto Ultrasonics (AU) purposes are designed to be applied during the service life of the aircraft. The approach to integrate these sensor networks already during the manufacture of carbon fiber reinforced plastic (CFRP) host structures prompts ideas to achieve an additional benefit by their application for cure monitoring, thus extending their use to the manufacturing chain. This benefit could be extended even further if guided waves generated by AU sensor networks could be used for porosity testing extensively applied for CFRP aircraft structures. In light of this, an experimental study was conducted to investigate effects of porosity on the propagation of guided waves in a basic configuration of unidirectional CFRP. Several samples were manufactured at different porosity levels by variation of the processing pressure. Wave fields were acquired using an ultrasonic scanning device. In the present work, phase velocities are chosen as best measurable and quantifiable propagation feature and the approach for the analysis of phase velocities in porosity samples is outlined. First results are presented and discussed regarding the influence of porosity on guided wave phase velocity and basic applicability for porosity testing of aircraft structures.

  6. Mechanical Reinforcement of Wool Fiber through Polyelectrolyte Complexation with Chitosan and Gellan Gum

    Directory of Open Access Journals (Sweden)

    Khairul Anuar Mat Amin

    2013-10-01

    Full Text Available The formation of polyelectrolyte complex (PEC wool fibers formed by dipping chitosan or gellan gum-treated wool fibers into biopolymer solutions of opposite charge is reported. Treating wool fibers with chitosan (CH and gellan gum (GG solutions containing food dyes resulted in improved mechanical characteristics compared to wool fibers. In contrast, pH modification of the solutions resulted in the opposite effect. The mechanical characteristics of PEC-treated fibers were affected by the order of addition, i.e., dipping GG-treated fibers into chitosan resulted in mechanical reinforcement, whereas the reverse-order process did not.

  7. Properties of glass/carbon fiber reinforced epoxy hybrid polymer composites

    Science.gov (United States)

    Patel, R. H.; Sevkani, V. R.; Patel, B. R.; Patel, V. B.

    2016-05-01

    Composite Materials are well known for their tailor-made properties. For the fabrication of composites different types of reinforcements are used for different applications. Sometimes for a particular application, one type of reinforcement may not fulfill the requirements. Therefore, more than one type of reinforcements may be used. Thus, the idea of hybrid composites arises. Hybrid composites are made by joining two or more different reinforcements with suitable matrix system. It helps to improve the properties of composite materials. In the present work glass/carbon fiber reinforcement have been used with a matrix triglycidyl ether of tris(m-hydroxy phenyl) phosphate epoxy resin using amine curing agent. Different physical and mechanical properties of the glass, carbon and glass/carbon fiber reinforced polymeric systems have been found out.

  8. State-of-the-art of fiber-reinforced polymers in additive manufacturing technologies

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pedersen, David Bue; Tosello, Guido

    2017-01-01

    Additive manufacturing technologies have received a lot of attention in recent years for their use in multiple materials such as metals, ceramics, and polymers. The aim of this review article is to analyze the technology of fiber-reinforced polymers and its implementation with additive...... manufacturing. This article reviews recent developments, ideas, and state-of-the-art technologies in this field. Moreover, it gives an overview of the materials currently available for fiber-reinforced material technology....

  9. Mechanical behavior of Fiber Reinforced SiC/RBSN Ceramic Matrix Composites: Theory and Experiment

    Science.gov (United States)

    1991-01-01

    AD-A235 926 NASA AVSCOM Technical Memorandum 103688 Technical Report 91-C-004 Mechanical Behavior of Fiber Reinforced SiC/RBSN Ceramic Matrix Composites : Theory... CERAMIC MATRIX COMPOSITES : THEORY AND EXPERIMENT Abhisak Chulya* Department of Civil Engineering Cleveland State University Cleveland, Ohio 44115...tough and sufficiently stable continuous fiber- reinforced ceramic matrix composites (CMC) which can survive in oxidizing environ- ments at temperatures

  10. The Effects of Weathering on Mechanical Properties of Glass Fiber Reinforced Plastics (Grp) Materials

    OpenAIRE

    Abdullah, H.; S. Al Araimi and R. A. Siddiqui

    2012-01-01

    Glass fiber reinforced plastics composite is extensively used as a structural material for pools, oil pipes and tanks because it has good corrosion resistance properties.  The effects of weathering on the mechanical properties of glass fiber reinforced plastics (GRP) in the Sultanate of Oman have been studied.  The tensile and three point bend specimens were exposed to outdoor conditions (open atmosphere) in sunlight and tested for various intervals of time.  It was observed th...

  11. Proposed Methodology for Design of Carbon Fiber Reinforced Polymer Spike Anchors into Reinforced Concrete

    Energy Technology Data Exchange (ETDEWEB)

    MacFarlane, Eric Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-26

    The included methodology, calculations, and drawings support design of Carbon Fiber Reinforced Polymer (CFRP) spike anchors for securing U-wrap CFRP onto reinforced concrete Tbeams. This content pertains to an installation in one of Los Alamos National Laboratory’s facilities. The anchors are part of a seismic rehabilitation to the subject facility. The information contained here is for information purposes only. The reader is encouraged to verify all equations, details, and methodology prior to usage in future projects. However, development of the content contained here complied with Los Alamos National Laboratory’s NQA-1 quality assurance program for nuclear structures. Furthermore, the formulations and details came from the referenced published literature. This literature represents the current state of the art for FRP anchor design. Construction personnel tested the subject anchor design to the required demand level demonstrated in the calculation. The testing demonstrated the ability of the anchors noted to carry loads in excess of 15 kips in direct tension. The anchors were not tested to failure in part because of the hazards associated with testing large-capacity tensile systems to failure. The calculation, methodology, and drawing originator was Eric MacFarlane of Los Alamos National Laboratory’s (LANL) Office of Seismic Hazards and Risk Mitigation (OSHRM). The checker for all components was Mike Salmon of the LANL OSHRM. The independent reviewers of all components were Insung Kim and Loring Wyllie of Degenkolb Engineers. Note that Insung Kim contributed to the initial formulations in the calculations that pertained directly to his Doctoral research.

  12. A study on the crushing behavior of basalt fiber reinforced composite structures

    Science.gov (United States)

    Pandian, A.; Veerasimman, A. P.; Vairavan, M.; Francisco, C.; Sultan, M. T. H.

    2016-10-01

    The crushing behavior and energy absorption capacity of basalt fiber reinforced hollow square structure composites are studied under axial compression. Using the hand layup technique, basalt fiber reinforced composites were fabricated using general purpose (GP) polyester resin with the help of wooden square shaped mould of varying height (100 mm, 150 mm and 200 mm). For comparison, similar specimens of glass fiber reinforced polymer composites were also fabricated and tested. Axial compression load is applied over the top end of the specimen with cross head speed as 2 mm/min using Universal Testing Machine (UTM). From the experimental results, the load-deformation characteristics of both glass fiber and basalt fiber composites were investigated. Crashworthiness and mode of collapse for the composites were determined from load-deformation curve, and they were then compared to each other in terms of their crushing behaviors.

  13. Mechanical behavior and properties of fiber reinforced ceramic matrix composites for high temperature use

    Institute of Scientific and Technical Information of China (English)

    Chongdu Cho; Qiang Pan; Sangkyo Lee

    2007-01-01

    Ceramics can keep their mechanical characteristics up to 2 000℃ or higher.In this paper,A model to predict ultimate strength of continuous fiber-reinforced brittle matrix composites is developed.A statistical theory for the strength of a uni-axially fiber-reinforced brittle matrix composite is presented.Also a semi-empirical frictional heating method for estimating in-situ interfacial shear in fiber-reinforced ceramic matrix composites was improved.Local uneven fiber packing variation as well as uneven micro-damage during fatigue can be expected to have effects on the composites:generation of frictional heating,thermal gradients,and residual stresses around local fiber breaks.This study examined those engineering interests by the finite element method.

  14. INVESTIGATION OF BONDING IN OXIDE-FIBER (WHISKER) REINFORCED METALS.

    Science.gov (United States)

    CERAMIC FIBERS , BONDING), (*COMPOSITE MATERIALS, BONDING), (*BONDING, CERAMIC FIBERS ), ALUMINUM COMPOUNDS, OXIDES, ZIRCONIUM, NICKEL, TITANIUM, CHROMIUM, SINGLE CRYSTALS, VACUUM, SHEAR STRESSES, SURFACE PROPERTIES, ADDITIVES.

  15. Review of Japanese recommendations on design and construction of different classes of fiber reinforced concrete and application examples

    DEFF Research Database (Denmark)

    Uchida, Yuichi; Fischer, Gregor; Hishiki, Yoshihiro

    2008-01-01

    Reinforced Cement Composites (HPFRCC) with strain hardening and multiple cracking behavior, and Ultra High-strength Fiber Reinforced concrete (UFC) with increased tensile strength. The recommendations on the design, production, and application of these classes of fiber reinforced concrete have been...

  16. Influence of Hybridizing Flax and Hemp-Agave Fibers with Glass Fiber as Reinforcement in a Polyurethane Composite

    Directory of Open Access Journals (Sweden)

    Pankaj Pandey

    2016-05-01

    Full Text Available In this study, six combinations of flax, hemp, and glass fiber were investigated for a hybrid reinforcement system in a polyurethane (PU composite. The natural fibers were combined with glass fibers in a PU composite in order to achieve a better mechanical reinforcement in the composite material. The effect of fiber hybridization in PU composites was evaluated through physical and mechanical properties such as water absorption (WA, specific gravity (SG, coefficient of linear thermal expansion (CLTE, flexural and compression properties, and hardness. The mechanical properties of hybridized samples showed mixed trends compared to the unhybridized samples, but hybridization with glass fiber reduced water absorption by 37% and 43% for flax and hemp-agave PU composites respectively.

  17. The recycling of comminuted glass-fiber-reinforced resin from electronic waste.

    Science.gov (United States)

    Duan, Huabo; Jia, Weifeng; Li, Jinhui

    2010-05-01

    The reuse of comminuted glass-fiber-reinforced resin with various granularities gathered from printed circuit manufacturing residues was investigated. As fillers, these residues were converted into polymeric composite board by an extrusion and injection process using polypropylene as a bonding agent. The mechanical properties of the reproduced composite board were examined by considering the effects of mass fraction and glass-fiber distribution. Interfacial-layer micrograph analysis of the composite material fracture surface was used to study the fiber reinforcement mechanism. Results showed that using comminuted glass-fiber-reinforced resin as a filler material greatly enhanced the performance properties of the composite board. Although the length and diameter of filler varied, these variations had no appreciable effect on the mechanical properties of the processed board. Maximum values of 48.30 MPa for flexural strength, 31.34 MPa for tensile strength, and 31.34 J/m for impact strength were achieved from a composite board containing mass fractions of 30, 10, and 20% glass-fiber-reinforced resin waste, respectively. It was found that the maximum amount of recyclate that could be added to a composite board was 30% of weight. Beyond these percentages, the materials blend became unmanageable and the mixture less amenable to impregnation with fiber. Presented studies indicated that comminuted glass-fiber-reinforced resin waste-filled polypropylene composites are promising candidates for structural applications where high stiffness and fracture resistance are required.

  18. Experimental Investigation and Analysis of Mercerized and Citric Acid Surface Treated Bamboo Fiber Reinforced Composite

    Science.gov (United States)

    De, Jyotiraman; Baxi, R. N., Dr.

    2017-08-01

    Mercerization or NaOH fiber surface treatment is one of the most popular surface treatment processes to make the natural fibers such as bamboo fibers compatible for use as reinforcing material in composites. But NaOH being a chemical is hazardous and polluting to the nature. This paper explores the possibility of use of naturally derived citric acid for bamboo fiber surface treatment and its comparison with NaOH treated Bamboo Fiber Composites. Untreated, 2.5 wt% NaOH treated and 5 wt% citric acid treated Bamboo Fiber Composites with 5 wt% fiber content were developed by Hand Lay process. Bamboo mats made of bamboo slivers were used as reinforcing material. Mechanical and physical characterization was done to compare the effects of NaOH and citric acid bamboo fiber surface treatment on mechanical and physical properties of Bamboo Fiber Composite. The experiment data reveals that the tensile and flexural strength was found to be highest for citric acid and NaOH treated Bamboo Fiber Composite respectively. Water absorption tendency was found more than the NaOH treated Bamboo Fiber Composites. SEM micrographs used to analyze the morphology of fracture surface of tensile test specimens confirm improvement in fiber-matrix interface bonding due to surface treatment of bamboo fibers.

  19. Hysteretic Behavior of Tubular Steel Braces Having Carbon Fiber Reinforced Polymer Reinforcement Around End Net Sections

    Directory of Open Access Journals (Sweden)

    Cem Haydaroğlu

    2015-12-01

    Full Text Available This study presents an experimental investigation into the seismic retrofit of tubular steel braces using carbon fiber reinforced polymer (CFRP members. CFRP retrofitting of net sections for compact tubes are proposed for delaying potential local net section failure. A total of almost full-scale three (TB-1, TB-2, and TB-3 compact steel tubular specimens were designed per AISC specifications, constructed, and cyclically tested to fracture. Retrofitted braces, when compared to the reference specimen, developed fuller hysteretic curves. Increase in cumulative hysteretic energy dissipation and the elongation in fracture life in the specimen retrofitted with CFRP plates and CFRP sheet wraps at net sections are observed during testing. This resulted in a maximum of 82.5% more dissipated energy for compact tube specimens. Also, this retrofit provided a longer experimental fracture life (maximum 59% more. Due to fracture initiation during the last cycles, significant reductions in strength and stiffness have been obtained. No significant change (maximum 10% in the brace stiffness was observed, which could be desirable in seismic retrofit applications. Pushover analysis per FEMA 356 for the bare specimen shows that FEMA does not represent actual brace behavior in the compression side although pushover and experimental results are in good agreement in the tension side.

  20. Evaluation of Shear Resisting Capacity of a Prestressed Concrete Containment Building with Steel or Polyamide Fiber Reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Youngsun; Park, Junhee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Conventional reinforced concrete (RC) members generally show a rapid deterioration in shear resisting mechanisms under a reversed cyclic load. However, the use of high-performance fiber-reinforced cement composites provides excellent damage tolerance under large displacement reversals compared with regular concrete. Previous experimental studies have indicated that the use of fibers in conventional RC can enhance the structural and functional performance of prestressed concrete containment buildings (PCCBs) in nuclear power plants. This study evaluates the shear resisting capacity for a PCCB constructed using steel fiber reinforced concrete (SFRC) or polyamide fiber reinforced concrete (PFRC). The effects of steel and polyamide fibers on the shear performance of a PCCB were investigated. It was revealed that steel fibers are more effective to enhance the shear resisting capacity of a PCCB than polyamide fibers. The ductility and energy dissipation increase significantly in fiber reinforced PCCBs.

  1. Application of cold plasma technology in fiber-reinforced composite materials

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A study is presented concerning a cold plasma technique for improving the bondability of highstrength high-modulus multi-filament polyethylene fibers to polymer matrices and the fibers impregnation with the objective to fabricate composite materials (CMs). Strong bonding between the matrixes and reinforcing fibers during the production of composites appears in the case if interaction is chemical. The value of the activation energy of the chemical interaction for very high performance polyethylene fiber was estimated. It was 1.14 eV. This allows using the cold plasma technique for producing CMs. In order to understand the effect of cold plasma treatment treated and untreated fibers were used to fabricate CMs. The strong bond between the matrix and plasma-activated fibers affects both the properties and failure mode of composite. The properties and failure modes were compared to those of CMs reinforced with untreated fibers. After plasma treatment the properties of CMs are increased. CMs are broken as a unit whole under tension. The ideas of the activating the fibers by cold plasma treatment above the activation energy of the chemical interaction may be extended over other types of the fibers and matrices to produce new types of fiber-reinforced composite materials with high physicomechanical indices.

  2. Micromechanical modeling of damage and fracture of unidirectional fiber reinforced composites

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Brøndsted, Povl

    2009-01-01

    An overview of methods of the mathematical modeling of deformation, damage and fracture in fiber reinforced composites is presented. The models are classified into five main groups: shear lag-based, analytical models, fiber bundle model and its generalizations, fracture mechanics based and contin...

  3. How Properties of Kenaf Fibers from Burkina Faso Contribute to the Reinforcement of Earth Blocks

    Directory of Open Access Journals (Sweden)

    Younoussa Millogo

    2015-04-01

    Full Text Available Physicochemical characteristics of Hibiscus cannabinus (kenaf fibers from Burkina Faso were studied using X-ray diffraction (XRD, infrared spectroscopy, thermal gravimetric analysis (TGA, chemical analysis and video microscopy. Kenaf fibers (3 cm long were used to reinforce earth blocks, and the mechanical properties of reinforced blocks, with fiber contents ranging from 0.2 to 0.8 wt%, were investigated. The fibers were mainly composed of cellulose type I (70.4 wt%, hemicelluloses (18.9 wt% and lignin (3 wt% and were characterized by high tensile strength (1 ± 0.25 GPa and Young’s modulus (136 ± 25 GPa, linked to their high cellulose content. The incorporation of short fibers of kenaf reduced the propagation of cracks in the blocks, through the good adherence of fibers to the clay matrix, and therefore improved their mechanical properties. Fiber incorporation was particularly beneficial for the bending strength of earth blocks because it reinforces these blocks after the failure of soil matrix observed for unreinforced blocks. Blocks reinforced with such fibers had a ductile tensile behavior that made them better building materials for masonry structures than unreinforced blocks.

  4. Jute fiber reinforced polypropylene produced by continuous extrusion compounding. Part 1. Processing and ageing properties

    NARCIS (Netherlands)

    Oever, van den M.J.A.; Snijder, M.H.B.

    2008-01-01

    This article addresses the processing and ageing properties of jute fiber reinforced polypropylene (PP) composites. The composite has been manufactured by a continuous extrusion process and results in free flowing composite granules, comprising up to 50 weight percent (wt %) jute fiber in PP. These

  5. Jute fiber reinforced polypropylene produced by continuous extrusion compounding. Part 1. Processing and ageing properties

    NARCIS (Netherlands)

    Oever, van den M.J.A.; Snijder, M.H.B.

    2008-01-01

    This article addresses the processing and ageing properties of jute fiber reinforced polypropylene (PP) composites. The composite has been manufactured by a continuous extrusion process and results in free flowing composite granules, comprising up to 50 weight percent (wt %) jute fiber in PP. These

  6. Residual stress measurements in an SiC continuous fiber reinforced Ti matrix composite

    NARCIS (Netherlands)

    Willemse, P.F.; Mulder, F.M.; Wei, W.; Rekveldt, M.Th.; Knight, K.S.

    2000-01-01

    During the fabrication of ceramic fiber reinforced metal matrix composites mismatch stresses will be introduced due to differences in thermal expansion coefficients between the matrix and the fibers. Calculations, based on a coaxial cylinder model, [1 and 2] predict that, for a Ti matrix SiC

  7. Micro-mechanical Analysis of Fiber Reinforced Cementitious Composites using Cohesive Crack Modeling

    DEFF Research Database (Denmark)

    Dick-Nielsen, Lars; Stang, Henrik; Poulsen, Peter Noe

    2006-01-01

    This paper discusses the mechanism appearing during fiber debonding in fiber reinforced cementitious composite. The investigation is performed on the micro scale by use of a Finite Element Model. The model is 3 dimensional and the fictitious crack model and a mixed mode stress formulation...

  8. Reinforcement of polypropylene by annual plant fibers: optimisation of the coupling agent efficiency

    NARCIS (Netherlands)

    Snijder, M.H.B.; Bos, H.L.

    2000-01-01

    Annual growth agrofibers like flax and jute can compete with glass fibers, considering their intrinsic mechanical properties. This paper discusses reinforcement of polypropylene (PP) homopolymer with flax bast fibers. Maleic Anhydride modified PP (MAPP) grades are screened on coupling efficiency. Th

  9. Strength and deformability of concrete beams reinforced by non-metallic fiber and composite rebar

    Science.gov (United States)

    Kudyakov, K. L.; Plevkov, V. S.; Nevskii, A. V.

    2015-01-01

    Production of durable and high-strength concrete structures with unique properties has always been crucial. Therefore special attention has been paid to non-metallic composite and fiber reinforcement. This article describes the experimental research of strength and deformability of concrete beams with dispersed and core fiber-based reinforcement. As composite reinforcement fiberglass reinforced plastic rods with diameters 6 mm and 10 mm are used. Carbon and basalt fibers are used as dispersed reinforcement. The developed experimental program includes designing and production of flexural structures with different parameters of dispersed fiber and composite rebar reinforcement. The preliminary testing of mechanical properties of these materials has shown their effectiveness. Structures underwent bending testing on a special bench by applying flexural static load up to complete destruction. During the tests vertical displacements were recorded, as well as value of actual load, slippage of rebars in concrete, crack formation. As a result of research were obtained structural failure and crack formation graphs, value of fracture load and maximum displacements of the beams at midspan. Analysis of experimental data showed the effectiveness of using dispersed reinforcement of concrete and the need for prestressing of fiberglass composite rebar.

  10. Evaluation of tensile strength of hybrid fiber (jute/gongura) reinforced hybrid polymer matrix composites

    Science.gov (United States)

    Venkatachalam, G.; Gautham Shankar, A.; Vijay, Kumar V.; Chandan, Byral R.; Prabaharan, G. P.; Raghav, Dasarath

    2015-07-01

    The polymer matrix composites attract many industrial applications due to its light weight, less cost and easy for manufacturing. In this paper, an attempt is made to prepare and study of the tensile strength of hybrid (two natural) fibers reinforced hybrid (Natural + Synthetic) polymer matrix composites. The samples were prepared with hybrid reinforcement consists of two different fibers such as jute and Gongura and hybrid polymer consists of polyester and cashew nut shell resins. The hybrid composites tensile strength is evaluated to study the influence of various fiber parameters on mechanical strength. The parameters considered here are the duration of fiber treatment, the concentration of alkali in fiber treatment and nature of fiber content in the composites.

  11. Microstructure and phase stress partition of Mo fiber reinforced CuZnAl composite

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Feng [State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249 (China); Department of Materials Science and Engineering, China University of Petroleum-Beijing, Beijing 102249 (China); Ni, Dingrui [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Hao, Shijie [State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249 (China); Department of Materials Science and Engineering, China University of Petroleum-Beijing, Beijing 102249 (China); Li, Sirui [Department of Materials Science and Engineering, China University of Petroleum-Beijing, Beijing 102249 (China); Ma, Zongyi [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Liu, Yinong [School of Mechanical and Chemical Engineering, The University of Western Australia, Crawley, WA 6009 (Australia); Feng, Chun [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Cui, Lishan, E-mail: andor_20@sina.com [State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249 (China); Department of Materials Science and Engineering, China University of Petroleum-Beijing, Beijing 102249 (China)

    2015-03-25

    A Mo fiber reinforced CuZnAl composite was prepared by means of friction stir processing and wire drawing. Reinforcing effect of the Mo fiber and phase stress partition in the composite were investigated by means of in-situ synchrotron X-ray diffraction. The maximum elastic strain of the Mo fiber achieved was 1.8%, implying a component stress of 550 MPa on the fibers. The Mo fibers, with a volume fraction of 10%, carried 80% of stress fraction during tensile deformation. The change of modulus caused by stress-induced martensitic transformation strain resulted in redistribution of the phase stress partition between Mo fibers and CuZnAl matrix.

  12. Tensile strength and its scatter of unidirectional carbon fiber reinforced composites

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, H.; Oya, N.; Yamashita, K.; Maekawa, Z.I. [Kyoto Inst. of Technology (Japan)

    1995-12-31

    0 (along the fiber direction) and 90 degree (transverse to the fiber direction) tension tests of Carbon Fiber Reinforced Plastics (CFRP) using a great number of specimens were conducted. Tensile properties and their scatter were evaluated by means of the data base. Materials used in this study were seven kinds of carbon fibers and three kinds of epoxy resins. Reinforcing fiber and matrix resin properties strongly affected on 0 and 90 degree properties of CFRP respectively. In 0 degree tension tests, fracture mode of specimen vaned in each material, and a relationship between the scatter of strength and the fracture mode existed. From the results of 9 degree tension tests, some differences of interfacial properties between each laminate were` also detected. According to some considerations on fracture mechanism in 0 degree tension test, it was deduced that the fracture mode depended on the balance of fiber, matrix and interface properties.

  13. Optimizing the Flexural Strength of Beams Reinforced with Fiber Reinforced Polymer Bars Using Back-Propagation Neural Networks

    Directory of Open Access Journals (Sweden)

    Bahman O. Taha

    2015-06-01

    Full Text Available The reinforced concrete with fiber reinforced polymer (FRP bars (carbon, aramid, basalt and glass is used in places where a high ratio of strength to weight is required and corrosion is not acceptable. Behavior of structural members using (FRP bars is hard to be modeled using traditional methods because of the high non-linearity relationship among factors influencing the strength of structural members. Back-propagation neural network is a very effective method for modeling such complicated relationships. In this paper, back-propagation neural network is used for modeling the flexural behavior of beams reinforced with (FRP bars. 101 samples of beams reinforced with fiber bars were collected from literatures. Five important factors are taken in consideration for predicting the strength of beams. Two models of Multilayer Perceptron (MLP are created, first with single-hidden layer and the second with two-hidden layers. The two-hidden layer model showed better accuracy ratio than the single-hidden layer model. Parametric study has been done for two-hidden layer model only. Equations are derived to be used instead of the model and the importance of input factors is determined. Results showed that the neural network is successful in modeling the behavior of concrete beams reinforced with different types of (FRP bars.

  14. On the Theory and Numerical Simulation of Cohesive Crack Propagation with Application to Fiber-Reinforced Composites

    Science.gov (United States)

    Rudraraju, Siva Shankar; Garikipati, Krishna; Waas, Anthony M.; Bednarcyk, Brett A.

    2013-01-01

    The phenomenon of crack propagation is among the predominant modes of failure in many natural and engineering structures, often leading to severe loss of structural integrity and catastrophic failure. Thus, the ability to understand and a priori simulate the evolution of this failure mode has been one of the cornerstones of applied mechanics and structural engineering and is broadly referred to as "fracture mechanics." The work reported herein focuses on extending this understanding, in the context of through-thickness crack propagation in cohesive materials, through the development of a continuum-level multiscale numerical framework, which represents cracks as displacement discontinuities across a surface of zero measure. This report presents the relevant theory, mathematical framework, numerical modeling, and experimental investigations of through-thickness crack propagation in fiber-reinforced composites using the Variational Multiscale Cohesive Method (VMCM) developed by the authors.

  15. Experimental determination of optimum dielectric strength of Turmeric fiber reinforced polyester composites using flexural properties

    Directory of Open Access Journals (Sweden)

    K. Murali Mohan Rao

    2009-10-01

    Full Text Available The present investigation puts forward new natural fiber turmeric to be used in the preparation of turmeric fiber reinforced polyester (FRP composites. The dielectric strength of the composites shown decrease in trend with increase in volume fraction of fiber with appreciable reduction in their weight. There was clear fall in the density of the composites with increase in fiber volume fraction. The optimum value of dielectric strength was determined with flexural strength, flexural modulus and specific flexural strength, specific flexural modulus against percentage volume fraction of fiber from the graphs.

  16. Statistical modelling of compression and fatigue damage of unidirectional fiber reinforced composites

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Brøndsted, Povl

    2009-01-01

    A statistical computational model of strength and damage of unidirectional carbon fiber reinforced composites under compressive and cyclic compressive loading is presented in this paper. The model is developed on the basis of the Budiansky–Fleck fiber kinking condition, continuum damage mechanics...... concept and the Monte-Carlo method. The effects of fiber misalignment variability, fiber clustering, load sharing rules on the damage in composite are studied numerically. It is demonstrated that the clustering of fibers has a negative effect of the damage resistance of a composite. Further, the static...

  17. X-ray determination of thermal stresses in compositions reinforced by fibers

    Energy Technology Data Exchange (ETDEWEB)

    Samoilov, A.I.; Krivko, A.I.; Ignatova, I.A.

    1981-01-01

    The direct sin2 phi X-ray method for determining the stresses in fiber-reinforced composites is discussed. The diffraction on a stressed fibrous composite is examined in detail, and the integral (X-ray) deformation of the matrix is determined in an arbitrary direction lying in a plane including the axis of the fiber and normal to the plane of the sample. It is found that the sin2 phi method can be advantageously used to estimate the degree of the bond at the boundary between the reinforcement fiber and the matrix.

  18. Research on the melt impregnation of continuous carbon fiber reinforced nylon 66 composites

    Science.gov (United States)

    Jia, M. Y.; Li, C. X.; Xue, P.; Chen, K.; Chen, T. H.

    2016-07-01

    Impregnation mold of continuous carbon fiber reinforced thermoplastic composites was designed and built in the article. Based on the theory of fluid mechanics and Darcy's law, a model of the melt impregnation was also established. The influences of fiber bundle width and impregnation pins’ diameter on the impregnation degree were studied by numerical simulation. Continuous carbon fiber reinforced nylon 66 composites were prepared. The effects of coated angle and impregnation mold temperature on the mechanical properties of the composites were also described.The agreement between the experimental data and prediction by the model was found to be satisfactory.

  19. Engineering of fiber-reinforced tissues with anisotropic biodegradable nanofibrous scaffolds.

    Science.gov (United States)

    Nerurkar, Nandan L; Baker, Brendon M; Chen, Chiu-Yu; Elliott, Dawn M; Mauck, Robert L

    2006-01-01

    The repair of dense fiber-reinforced tissues poses a significant challenge for the tissue engineering community. The function of these structures is largely dependent on their architectural form, and as such, scaffold organization is an important design parameter in generating tissue analogues. To address this issue, we have recently utilized electrospinning to instill controllable fiber anisotropy in nanofibrous scaffolds. This abstract details the mechanical characterization of the bulk and local properties of these scaffolds, and points to their potential application in the repair and/or generation of fiber-reinforced tissues that recapitulate the native form.

  20. Modeling and mesoscopic damage constitutive relation of brittle short-fiber-reinforced composites

    Institute of Scientific and Technical Information of China (English)

    刘洪秋; 梁乃刚; 夏蒙棼

    1999-01-01

    Aimed at brittle composites reinforced by randomly distributed short-fibers with a relatively large aspect ratio, stiffness modulus and strength, a mesoscopic material model was proposed. Based on the statistical description,damage mechanisms, damage-induced anisotropy, damage rate effect and stress redistribution, the constitutive relation were derived. By taking glass fiber reinforced polypropylene polymers as an example, the effect of initial orientation distribution of fibers, damage-induced anisotropy, and damage-rate effect on macro-behaviors of composites were quantitatively analyzed. The theoretical predictions compared favorably with the experimental results.

  1. Monitoring ageing of alkali resistant glass fiber reinforced cement (GRC) using guided ultrasonic waves

    Science.gov (United States)

    Eiras, J. N.; Amjad, U.; Mahmoudabadi, E.; Payá, J.; Bonilla, M.; Kundu, T.

    2013-04-01

    Glass fiber reinforced cement (GRC) is a Portland cement based composite with alkali resistant (AR) glass fibers. The main drawback of this material is the ageing of the reinforcing fibers with time and especially in presence of humidity in the environment. Until now only destructive methods have been used to evaluate the durability of GRC. In this study ultrasonic guided wave inspection of plate shaped specimens has been carried out. The results obtained here show that acoustic signatures are capable of discerning ageing in GRC. Therefore, the ultrasonic guided wave based inspection technique is a promising method for the nondestructive evaluation of the durability of the GRC.

  2. Effect of fiber content on flexural properties of glass fiber-reinforced polyamide-6 prepared by injection molding.

    Science.gov (United States)

    Nagakura, Manamu; Tanimoto, Yasuhiro; Nishiyama, Norihiro

    2017-07-26

    The use of non-metal clasp denture (NMCD) materials may seriously affect the remaining tissues because of the low rigidity of NMCD materials such as polyamides. The purpose of this study was to develop a high-rigidity glass fiber-reinforced thermoplastic (GFRTP) composed of E-glass fiber and polyamide-6 for NMCDs using an injection molding. The reinforcing effects of fiber on the flexural properties of GFRTPs were investigated using glass fiber content ranging from 0 to 50 mass%. Three-point bending tests indicated that the flexural strength and elastic modulus of a GFRTP with a fiber content of 50 mass% were 5.4 and 4.7 times higher than those of unreinforced polyamide-6, respectively. The result showed that the physical characteristics of GFRTPs were greatly improved by increasing the fiber content, and the beneficial effects of fiber reinforcement were evident. The findings suggest that the injection-molded GFRTPs are adaptable to NMCDs because of their excellent mechanical properties.

  3. A note on the effect of the fiber curvature on the micromechanical behavior of natural fiber reinforced thermoplastic composites

    Directory of Open Access Journals (Sweden)

    M. A. Escalante-Solis

    2015-12-01

    Full Text Available To better understand the role of the fiber curvature on the tensile properties of short-natural-fiber reinforced composites, a photoelastic model and a finite element analysis were performed in a well characterized henequen fiber-high density polyethylene composite material. It was hypothesized that the angle of orientation of the inclusion and the principal material orientation with respect to the applied load was very important in the reinforcement mechanics. From the photoelastic and finite element analysis it was found that the stress distribution around the fiber inclusion was different on the concave side from that observed on the convex side and an efficient length of stress transfer was estimated to be approximately equal to one third the average fiber length. This approach was used to predict the short-natural-fiber reinforced composite mechanical properties using probabilistic functions modifications of the rule of mixtures models developed by Fukuda-Chow and the Fukuda-Kawata. Recognizing the inherent flexibility that curves the natural fibers during processing, the consideration of a length of one third of the average length l should improve the accuracy of the calculations of the mechanical properties using theoretical models.

  4. Enhanced mechanical properties of a novel, injectable, fiber-reinforced brushite cement.

    Science.gov (United States)

    Maenz, Stefan; Kunisch, Elke; Mühlstädt, Mike; Böhm, Anne; Kopsch, Victoria; Bossert, Jörg; Kinne, Raimund W; Jandt, Klaus D

    2014-11-01

    Injectable, brushite-forming calcium phosphate cements (CPCs) have great potential as bone replacement materials due to enhanced degradability and long-term inclusion in bone remodeling. However, the use of such brushite-forming CPCs in load-bearing areas is limited by their low mechanical strength. One approach to overcome this limitation is the use of reinforcing fibers. Thus, an injectable, biodegradable, brushite-forming CPC based on beta-tricalcium phosphate/phosphoric acid with fiber reinforcement was developed for minimally invasive surgery. The fibers (diameter 25 µm; length 0.25, 1 or 2mm) were extruded from poly(l-lactide-co-glycolide) acid (PLGA) and added to the CPC (2.5, 5 or 7.5% (w/w)). Independent of the fiber content, injectability of the CPC was retained up to a fiber length of 1mm. The addition of all PLGA fiber types increased diametral tensile strength, biaxial flexural strength, and flexural strength by up to 25% (p ≤ 0.05 for the diametral tensile strength for the CPC with 5% (w/w) 1mm fibers and the biaxial flexural strength of the CPC with 5% (w/w) 0.25 mm fibers). In contrast, the work of fracture strongly and significantly increased (pfiber content, the mechanical properties of the fiber-reinforced CPC were mostly augmented with increasing fiber length. Also, the addition of PLGA fibers to the brushite-forming CPC (up to 7.5% (w/w)) only transiently delayed cell growth and did not decrease cell viability. Fiber reinforcement of CPCs thus augments their mechanical strength while preserving the injectability and biocompatibility required for their application in modern surgery.

  5. Mechanical interaction of Engineered Cementitious Composite (ECC) reinforced with Fiber Reinforced Polymer (FRP) rebar in tensile loading

    DEFF Research Database (Denmark)

    Lárusson, Lárus Helgi; Fischer, Gregor; Jönsson, Jeppe

    2010-01-01

    This paper introduces a preliminary study of the composite interaction of Engineered Cementitious Composite (ECC), reinforced with Glass Fiber Reinforced Polymer (GFRP) rebar. The main topic of this paper will focus on the interaction of the two materials (ECC and GFRP) during axial loading......, particularly in post cracking phase of the concrete matrix. The experimental program carried out in this study examined composite behavior under monotonic and cyclic loading of the specimens in the elastic and inelastic deformation phases. The stiffness development of the composite during loading was evaluated...

  6. Fiber-Reinforced Epoxy Composites and Methods of Making Same Without the Use of Oven or Autoclave

    Science.gov (United States)

    Barnell, Thomas J. (Inventor); Rauscher, Michael D. (Inventor); Stienecker, Rick D. (Inventor); Nickerson, David M. (Inventor); Tong, Tat H. (Inventor)

    2016-01-01

    Method embodiments for producing a fiber-reinforced epoxy composite comprise providing a mold defining a shape for a composite, applying a fiber reinforcement over the mold, covering the mold and fiber reinforcement thereon in a vacuum enclosure, performing a vacuum on the vacuum enclosure to produce a pressure gradient, insulating at least a portion of the vacuum enclosure with thermal insulation, infusing the fiber reinforcement with a reactive mixture of uncured epoxy resin and curing agent under vacuum conditions, wherein the reactive mixture of uncured epoxy resin and curing agent generates exothermic heat, and producing the fiber-reinforced epoxy composite having a glass transition temperature of at least about 100.degree. C. by curing the fiber reinforcement infused with the reactive mixture of uncured epoxy resin and curing agent by utilizing the exothermically generated heat, wherein the curing is conducted inside the thermally insulated vacuum enclosure without utilization of an external heat source or an external radiation source.

  7. Electromagnetic Interference Shielding Properties of Electroless Nickel-coated Carbon Fiber Paper Reinforced Epoxy Composites

    Institute of Scientific and Technical Information of China (English)

    CHEN Wei; WANG Jun; WANG Tao; WANG Junpeng; XU Renxin; YANG Xiaoli

    2014-01-01

    Carbon fibers (CFs) were coated with a nickel-phosphorus (Ni-P) film using an electroless plating process. The morphology, elemental composition and phases in the coating layer of the CFs were investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. Wet paper-making method was used to prepare nickle coated carbon fiber paper (NCFP). Vacuum assisted infusion molding process (VAIMP) was employed to manufacture the NCFP reinforced epoxy composites, and carbon fiber paper (CFP) reinforced epoxy composites were also produced as a comparison. Electromagnetic interference (EMI) shielding properties of the composites were measured in the 3.22-4.9 GHz frequency range using waveguide method. Both NCFP and CFP reinforced epoxy composites of 0.5 mm thickness exhibited high EMI shielding effectiveness (SE) at 8wt%fiber content, 35 dB and 30 dB, respectively, and reflection was the dominant shielding mechanism.

  8. Behavior of Fiber-Reinforced Smart Soft Composite Actuators According to Material Composition

    Energy Technology Data Exchange (ETDEWEB)

    Han, Min-Woo; Kim, Hyung-Il; Song, Sung-Hyuk; Ahn, Sung-Hoon [Seoul Nat’l Univ., Seoul (Korea, Republic of)

    2017-02-15

    Fiber-reinforced polymer composites, which are made by combining a continuous fiber that acts as reinforcement and a homogeneous polymeric material that acts as a host, are engineering materials with high strength and stiffness and a lightweight structure. In this study, a shape memory alloy(SMA) reinforced composite actuator is presented. This actuator is used to generate large deformations in single lightweight structures and can be used in applications requiring a high degree of adaptability to various external conditions. The proposed actuator consists of numerous individual laminas of the glass-fiber fabric that are embedded in a polymeric matrix. To characterize its deformation behavior, the composition of the actuator was changed by changing the matrix material and the number of the glass-fiber fabric layers. In addition, current of various magnitudes were applied to each actuator to study the effect of the heating of SMA wires on applying current.

  9. Effect of Different Parameters on Mechanical and Erosion Wear Behavior of Bamboo Fiber Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    Anu Gupta

    2011-01-01

    Full Text Available The application of natural fibers as reinforcement in polymer composites has been continuously growing during the last few decades. These composites find diverse applications in hostile environment where they are exposed to external attacks such as solid particle erosion. Also, in many respects, the mechanical properties of different polymer composites are their most important characteristics. Therefore, improvement of the erosion resistance and mechanical behavior of polymer composites are the prime requirements in their applications. Bamboo fiber which is rich in cellulose, relatively inexpensive, and abundantly available has the potential for reinforcement in polymers. To this end, an attempt has been made in this paper not only to study the utilization potential of bamboo fiber in polymer composites but also to study the effect of various parameters on mechanical and erosion wear performance of bamboo fiber reinforced epoxy composites.

  10. Influence of the curing cycles on the fatigue performance of unidirectional glass fiber reinforced epoxy composites

    DEFF Research Database (Denmark)

    Hüther, Jonas; Brøndsted, Povl

    2016-01-01

    stresses are built up and frozen, as residual stresses occur. In the present work, a glass fiber reinforced epoxy composite laminate with an unidirectional architecture based on non-crimp fabrics with backing fibers is investigated. Three different curing cycles (time-temperature cycles) are used, leading...... demonstrated that the resulting residual stresses barely influences the quasi-static mechanical properties of reinforced glass-fiber composites. It is found that the fatigue performance in the 0° direction is significantly influenced by the internal stresses, whereas the fatigue performance in the off axes......During the manufacturing process of fiber reinforced polymers the curing reaction of the resin results in shrinkage of the resin and introduces internal stresses in the composites. When curing at higher temperatures in order to shorten up the processing time, higher curing stresses and thermal...

  11. Perawatan Satu Kunjungan Restorasi Pasak Fiber Reinforced Composite Pada Gigi Insisivus Atas

    Directory of Open Access Journals (Sweden)

    Ria Ariani

    2013-06-01

    Full Text Available Perawatan saluran akar satu kali kunjungan memberikan keuntungan antara lain memperkecil resiko kontaminasi mikroorganisme dan menghemat waktu perawatan. Pasak fiber reinforced composite memiliki ikatan yang baik dengan dentin menggunakan semen resin dan inti dari resin. Penggunaan pasak bisa mengurangi risiko fraktur. Tujuan penulisan laporan kasus ini adalah untuk mengevaluasi hasil restorasi gigi 11 nekrosis pulpa pasca perawatan saluran akar disertai restorasi dengan pasak fiber reinforced composite. Pasien wanita, 22 tahun datang ke Klinik Konservasi RSGM FKG UGM untuk merawat gigi depan atas kanan yang berlubang. Berdasarkan pemeriksaan subjektif, objektif dan radiografis diperoleh diagnosis gigi 11 nekrosis pulpa. pasca perawatan saluran akar gigi Gigi direstorasi dengan resin komposit dan pasak fiber reinforced composite. Kesimpula dari hasil evaluasi klinis saat kontrol tidak ada keluhan rasa sakit dan pasien merasa puas. One Visit Treatment of Fiber Reinforced Compositerestoration in Maxillary Right First Incisivus. One visit root canal treatment is advantageous to minimize the risk of microorganism contamination. It saves time and more tolerable for the patients. Fiber reinforced composite post is fabricated, and it has been known to have a good bond with dentinal wall of root space, resin cement and composite resin core. The use of this post could decrease the risk of fracture. The purpose of this paper is to report the results of dental restoration 11 pulp necrosis after root canal treatment with resin composite restorations and post fiber reinforced composite. A 22 year-old female patient who came to Faculty of Dentistry UGM complained about her maxillary right incisor teeth which decayed and needed a treatment. Based on the subjective, objective and radiograph examinations, it was diagnosed that the pulp was necrotic. After one visit root canal treatment and based on clinical evaluation, it is concluded that the right upper

  12. Optical and mechanical properties of glass fiber and ribbon reinforced poly(methyl methacrylate) composites

    Science.gov (United States)

    Barr, John Matthew

    Composites with excellent optical clarity have been fabricated by matching the refractive index of the glass fiber reinforcement to that of the polymer matrix. Refractive index mismatch, resulting from temperature changes, leads to degradation of optical clarity in fiber composites due to light impinging upon the fiber/matrix interface at oblique angles of incidence. The plane parallel surfaces of glass ribbon reinforcement minimize incidence at oblique angles, thereby reducing the sensitivity to refractive index mismatch. Optical data show that the use of ribbons in place of fibers increases the temperature range over which these composites retain good optical clarity by more than five times. A Monte Carlo type simulation of optical transmission of fiber reinforced composites has been developed. Temperature dependent optical transmission of glass fiber and ribbon reinforced composites was measured using a He/Ne laser and a detection assembly with an acceptance angle of 0.15sp°. Good agreement was observed between the measured transmission data and the calculations from the computer model. The computer model was used to predict achievable optical transmission in hypothetical fiber and ribbon composites with varying dn/dT and glass content. Results indicate that ribbon reinforced composites have the potential for nearly temperature independent optical clarity. Flexural strength of glass fiber and ribbon reinforced composites was calculated from 3-point bend data on specimens with a neat PMMA core and composite veneer on the surfaces. Veneer strength was 40 to 50% higher than that of neat PMMA. A hypothetical quasi-isotropic veneered composite was designed using lamination theory. For equivalent load bearing capacity beams, the mass of the composite is 16 and 70% less than neat PMMA and fused silica, respectively.

  13. Design and analysis of a novel latch system implementing fiber-reinforced composite materials

    Science.gov (United States)

    Guevara Arreola, Francisco Javier

    The use of fiber-reinforced composite materials have increased in the last four decades in high technology applications due to their exceptional mechanical properties and low weight. In the automotive industry carbon fiber have become popular exclusively in luxury cars because of its high cost. However, Carbon-glass hybrid composites offer an effective alternative to designers to implement fiber-reinforced composites into several conventional applications without a considerable price increase maintaining most of their mechanical properties. A door latch system is a complex mechanism that is under high loading conditions during car accidents such as side impacts and rollovers. Therefore, the Department of Transportation in The United States developed a series of tests that every door latch system comply in order to be installed in a vehicle. The implementation of fiber-reinforced composite materials in a door latch system was studied by analyzing the material behavior during the FMVSS No. 206 transverse test using computational efforts and experimental testing. Firstly, a computational model of the current forkbolt and detent structure was developed. Several efforts were conducted in order to create an effective and time efficient model. Two simplified models were implemented with two different contact interaction approaches. 9 composite materials were studied in forkbolt and 5 in detent including woven carbon fiber, unidirectional carbon fiber, woven carbon-glass fiber hybrid composites and unidirectional carbon-glass fiber hybrid composites. The computational model results showed that woven fiber-reinforced composite materials were stiffer than the unidirectional fiber-reinforced composite materials. For instance, a forkbolt made of woven carbon fibers was 20% stiffer than a forkbolt made of unidirectional fibers symmetrically stacked in 0° and 90° alternating directions. Furthermore, Hybrid composite materials behaved as expected in forkbolt noticing a decline

  14. Tensile Properties of Unsaturated Polyester and Epoxy Resin Reinforced with Recycled Carbon-Fiber-Reinforced Plastic

    Science.gov (United States)

    Okayasu, Mitsuhiro; Kondo, Yuta

    2017-08-01

    To better understand the mechanical properties of recycled carbon-fiber-reinforced plastic (rCFRP), CFRP crushed into small pieces was mixed randomly in different proportions (0-30 wt%) with two different resins: unsaturated polyester and epoxy resin. Two different sizes of crushed CFRP were used: 0.1 mm × 0.007 mm (milled CFRP) and 30 mm × 2 mm (chopped CFRP). The tensile strength of rCFRP was found to depend on both the proportion and the size of the CFRP pieces. It increased with increasing proportion of chopped CFRP, but decreased with increasing proportion of milled CFRP. There was no clear dependence of the tensile strength on the resin that was used. A low fracture strain was found for rCFRP samples made with chopped CFRP, in contrast to those made with milled CFRP. The fracture strain was found to increase with increasing content of milled CFRP up to 20 wt%, at which point, coalescence of existing microvoids occurred. However, there was a reduction in fracture strain for rCFRP with 30 wt% of milled CFRP, owing to the formation of defects (blow holes). Overall, the fracture strain was higher for rCFRPs based on epoxy resin than for those based on unsaturated polyester with the same CFRP content, because of the high ductility of the epoxy resin. The different tensile properties reflected different failure characteristics, with the use of chopped CFRP leading to a complicated rough fracture surface and with milled CFRP causing ductile failure through the presence of tiny dimple-like fractures. However, for a high content of milled CFRP (30 wt%), large blow holes were observed, leading to low ductility.

  15. A new constitutive theory for fiber-reinforced incompressible nonlinearly elastic solids

    Science.gov (United States)

    Horgan, Cornelius O.; Saccomandi, Giuseppe

    2005-09-01

    We consider an incompressible nonlinearly elastic material in which a matrix is reinforced by strong fibers, for example fibers of nylon or carbon aligned in one family of curves in a rubber matrix. Rather than adopting the constraint of fiber inextensibility as has been previously assumed in the literature, here we develop a theory of fiber-reinforced materials based on the less restrictive idea of limiting fiber extensibility. The motivation for such an approach is provided by recent research on limiting chain extensibility models for rubber. Thus the basic idea of the present paper is simple: we adapt the limiting chain extensibility concept to limiting fiber extensibility so that the usual inextensibility constraint traditionally used is replaced by a unilateral constraint. We use a strain-energy density composed with two terms, the first being associated with the isotropic matrix or base material and the second reflecting the transversely isotropic character of the material due to the uniaxial reinforcement introduced by the fibers. We consider a base neo-Hookean model plus a special term that takes into account the limiting extensibility in the fiber direction. Thus our model introduces an additional parameter, namely that associated with limiting extensibility in the fiber direction, over previously investigated models. The aim of this paper is to investigate the mathematical and mechanical feasibility of this new model and to examine the role played by the extensibility parameter. We examine the response of the proposed models in some basic homogeneous deformations and compare this response to those of standard models for fiber reinforced rubber materials. The role of the strain-stiffening of the fibers in the new models is examined. The enhanced stability of the new models is then illustrated by investigation of cavitation instabilities. One of the motivations for the work is to apply the model to the biomechanics of soft tissues and the potential merits

  16. Provisional anterior tooth replacement using nonimpregnated fiber and fiber-reinforced composite resin materials: a clinical report.

    Science.gov (United States)

    Chan, Daniel C N; Giannini, Marcelo; De Goes, Mario Fernando

    2006-05-01

    The loss of anterior teeth is often a serious esthetic concern. While conventional fixed partial dentures and implant-supported restorations may be the treatments of choice, nonimpregnated fibers (NFs) and fiber-reinforced composite (FRC) resins offer a conservative alternative for improving esthetics. This article describes 2 clinical situations in which NF glass ribbon and FRC were successfully used to provisionally restore anterior edentulous areas in an esthetic, functional, and timely manner.

  17. Fatigue Life Prediction of Fiber-Reinforced Ceramic-Matrix Composites with Different Fiber Preforms at Room and Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Longbiao Li

    2016-03-01

    Full Text Available In this paper, the fatigue life of fiber-reinforced ceramic-matrix composites (CMCs with different fiber preforms, i.e., unidirectional, cross-ply, 2D (two dimensional, 2.5D and 3D CMCs at room and elevated temperatures in air and oxidative environments, has been predicted using the micromechanics approach. An effective coefficient of the fiber volume fraction along the loading direction (ECFL was introduced to describe the fiber architecture of preforms. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. Under cyclic fatigue loading, the fiber broken fraction was determined by combining the interface wear model and fiber statistical failure model at room temperature, and interface/fiber oxidation model, interface wear model and fiber statistical failure model at elevated temperatures, based on the assumption that the fiber strength is subjected to two-parameter Weibull distribution and the load carried by broken and intact fibers satisfies the Global Load Sharing (GLS criterion. When the broken fiber fraction approaches the critical value, the composites fatigue fracture.

  18. Determination of Water Diffusion Coefficients and Dynamics in Adhesive/ Carbon Fiber Reinforced Epoxy Resin Composite Joints

    Institute of Scientific and Technical Information of China (English)

    WANG Chao; WANG Zhi; WANG Jing; SU Tao

    2007-01-01

    To determinate the water diffusion coefficients and dynamics in adhesive/carbon fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content change of oxygen in the adhesive in adhesive/carbon fiber reinforced epoxy resin composite joints. As water is made up of oxygen and hydrogen, the water diffusion coefficients and dynamics in adhesive/carbon fiber reinforced epoxy resin composite joints can be obtained from the change in the content of oxygen in the adhesive during humidity aging, via EDX analysis. The authors have calculated the water diffusion coefficients and dynamics in the adhesive/carbon fiber reinforced epoxy resin composite joints with the aid of both energy dispersive X-ray spectroscopy and elemental analysis. The determined results with EDX analysis are almost the same as those determined with elemental analysis and the results also show that the durability of the adhesive/carbon fiber reinforced epoxy resin composite joints subjected to silane coupling agent treatment is better than those subjected to sand paper burnishing treatment and chemical oxidation treatment.

  19. Impact strength of denture polymethyl methacrylate reinforced with continuous glass fibers or metal wire.

    Science.gov (United States)

    Vallittu, P K; Vojtkova, H; Lassila, V P

    1995-12-01

    The impact strength of heat-cured acrylic resin test specimens that had been reinforced in various ways was compared in this study. Ten rectangular test specimens were fabricated for each test group. The strengtheners included 1.0-mm-diameter steel wire and continuous E-glass fibers. Both notched and unnotched test specimens were tested in a Charpy-type impact test. In a further analysis the concentration of glass fibers in the test specimens was determined and plotted against the impact strength of the test specimens. The results showed that, compared with the unreinforced specimens, both types of reinforcement increased the impact strength of the test specimens considerably (p < 0.001). There was no clear difference between the mean impact strength value of the test specimens reinforced with metal wire and that of the specimens reinforced with glass fiber. The correlation coefficient between the fiber concentration of the test specimens and their impact strength was 0.818 (p < 0.005). Specimens with fiber concentrations greater than 25 wt% yielded to the higher impact strength more readily than those with metal wire reinforcement did.

  20. Screening of matrices and fibers for reinforced thermoplastics intended for dental applications.

    Science.gov (United States)

    Goldberg, A J; Burstone, C J; Hadjinikolaou, I; Jancar, J

    1994-02-01

    Plastics reinforced with continuous fibers (FRC) are being developed for dental applications, such as prosthodontic frameworks and orthodontic retainers. Flexure properties, stress relaxation and hydrolytic stability of FRC based on six thermoplastic matrices, three types of fibers, and three fiber volume fractions were evaluated. Samples with clinically relevant dimensions were tested. Polycarbonate was the preferred matrix material. Polycarbonate reinforced with 42 volume percent glass fibers exhibited the highest combination of flexure modulus (17.9 +/- 2.6 GPa), flexure strength (426 +/- 40 MPa), reinforcing efficiency (0.79), and resistance to stress relaxation. No statistically significant difference was observed between E and S2 glass reinforced composites under the experimental conditions used. Kevlar reinforced materials exhibited a low flexure modulus and strength. The apparent flexure moduli of all composites decreased with span length in the range of clinical interest. Generally, the prevalent mode of failure for all FRC investigated was brittle failure under flexure loading. Relatively large sample-to-sample variation in both composition and properties indicated that improved fabrication methods will be needed in future studies. The combination of good flexure properties, formability, and translucency suggests that novel appliance designs for dentistry are feasible with FRC, but further studies of its properties and particularly the effects of fiber/matrix interfacial quality are needed.

  1. The Young's moduli prediction of random distributed short-fiber-reinforced polypropylene foams using finite element method

    Institute of Scientific and Technical Information of China (English)

    WANG Bo; WANG RongXiu; WU Yong

    2009-01-01

    The elastic moduli of short-fiber-reinforced foams depend critically on the fiber content and fiber length, as well as on the fiber orientation distribution. Based on periodic tetrakaidecahedrons, the finite ele-ment models with short-fiber reinforcement were proposed in this paper to examine the effects of the fiber content and fiber length on Young's modulus. The fiber length distribution and fiber orientation distribution were also considered. The proposed models featured in a three-dimensional diorama with random short-fiber distribution within or on the surfaces of the walls and edges of the closed-cells of polypropylene (PP) foams. The fiber length/orientation distributions were modeled by Gaussian prob-ability density functions. Different fiber volume fractions, different lengths, and different distributions were investigated. The predicted Young's moduli of the PP foams with short-glass-fiber or short-carbon-fiber reinforcement were compared with other theoretic and experimental results, and the agreement was found to be satisfactory. The proposed finite element models were proved to be ac-ceptable to predict the Young's moduli of the grafted closed-cell PP foams with short-fiber reinforce-ment.

  2. Approach to microstructure-behavior relationships for ceramic matrix composites reinforced by continuous fibers

    Directory of Open Access Journals (Sweden)

    Lamon Jacques

    2015-01-01

    Full Text Available Ceramic matrix composites (CMCs reinforced with continuous fibers exhibit several features that differentiate them from homogeneous unreinforced materials. The microstructure consists of various distinct constituents: fibres, matrix, and fiber/matrix interfaces or interphases. Several entities at micro- and mesoscopic length scales can be defined depending on fiber arrangement. Furthermore, the CMCs contain flaw populations that govern matrix cracking and fiber failures. The paper describes the microstructure-behavior relations for ceramic matrix composites reinforced with continuous fibers. It focuses on matrix damage by multiple cracking, on ultimate fracture, on delayed fracture at high temperatures, and on stochastic features induced by flaw populations. Models of damage and ultimate failure are based on micromechanics and fracture probabilities. They provide a basis for a multiscale approach to composite and component design.

  3. Flexural, Impact Properties and Sem Analysis of Bamboo and Glass Fiber Reinforced Polyester Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Raghavendra Rao. H

    2014-08-01

    Full Text Available The Flexural, Impact properties and Scanning electron microscope analysis of Bamboo/glass fibers Reinforced polyester Hybrid composites were studied. The effect of alkali treatment of the bamboo fibers on these properties was also studied. It was observed that the Flexural, impact properties of the hybrid composite increase with glass fiber content. These properties found to be higher when alkali treated bamboo fibers were used in the hybrid composites. The elimination of amorphous hemi-cellulose with alkali treated leading to higher crystallinity of the bamboo fibers with alkali treatment may be responsible for these observations. The author investigated the interfacial bonding between Glass/Bamboo reinforced polyester composites. The effect of alkali treatment on the bonding between Glass/Bamboo composites was also studied.

  4. Fiber Reinforcement in Injection Molded Nylon 6/6 Spur Gears

    Science.gov (United States)

    Senthilvelan, S.; Gnanamoorthy, R.

    2006-07-01

    Injection molded polymer composite gears are being used in many power and or motion transmission applications. In order to widen the utilization of reinforced polymers for precision motion transmission and noise less applications, the accuracy of molded gears should be increased. Since the injection molded gear accuracy is significantly influenced by the material shrinkage behaviour, there is a need to understand the influence of fiber orientation and gate location on part shrinkage behaviour and hence the gear accuracy. Unreinforced and 20% short glass fiber reinforced Nylon 6/6 spur gears were injection molded in the laboratory and computer aided simulations of gear manufacturing was also carried out. Results of the mold flow simulation of gear manufacturing were correlated with the actual fiber orientation and measured major geometrical parameters of the molded gears. Actual orientation of the fibers near the tooth profile, weld line region and injection points of molded gears were observed using optical microscope and correlated with predicted fiber orientation.

  5. Mechanical Behavior of Hybrid Glass/Steel Fiber Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    Amanda K. McBride

    2017-04-01

    Full Text Available While conventional fiber-reinforced polymer composites offer high strength and stiffness, they lack ductility and the ability to absorb energy before failure. This work investigates hybrid fiber composites for structural applications comprised of polymer, steel fiber, and glass fibers to address this shortcoming. Varying volume fractions of thin, ductile steel fibers were introduced into glass fiber reinforced epoxy composites. Non-hybrid and hybrid composite specimens were prepared and subjected to monolithic and half-cyclic tensile testing to obtain stress-strain relationships, hysteresis behavior, and insight into failure mechanisms. Open-hole testing was used to assess the vulnerability of the composites to stress concentration. Incorporating steel fibers into glass/epoxy composites offered a significant improvement in energy absorption prior to failure and material re-centering capabilities. It was found that a lower percentage of steel fibers (8.2% in the hybrid composite outperformed those with higher percentages (15.7% and 22.8% in terms of energy absorption and re-centering, as the glass reinforcement distributed the plasticity over a larger area. A bilinear hysteresis model was developed to predict cyclic behavior of the hybrid composite.

  6. Microstructural effects on the dynamic fracture toughness of cellulose-fiber-reinforced polypropylene

    Science.gov (United States)

    Clemons, Craig Merrill

    Natural fiber reinforced thermoplastics are a rapidly growing, commercially interesting area. Unlike their glass reinforced counterparts, microstructure and dynamic fracture behavior of natural fiber reinforced thermoplastics have hardly been investigated. We characterized the microstructure of cellulose fiber reinforced polypropylene and determined its effect on dynamic fracture toughness. Scanning electron microscopy of the fracture surfaces and x-ray diffraction were used to investigate fiber orientation in injection molded composites. The polypropylene matrix was removed by solvent extraction, and the lengths of the residual fibers were optically determined. Fiber lengths were reduced by one-half when compounded in a high-intensity thermokinetic mixer and then injection molded. At low fiber contents, there was little fiber orientation; at high fiber contents, a layered structure arose exhibiting differing fiber orientations through the thickness of the injection molded specimen. Scanning electron microscopy of acid etched specimens revealed spherulitic structure emanating from cellulose fibers (i.e. transcrystallinity) in injection molded composites containing less than 5% fibers. The etching procedure failed to provide any matrix surface relief in high fiber content composites. To better understand fracture under impact loading, dynamic fracture analysis was performed based on linear elastic fracture mechanics. Dynamic critical energy release rates and dynamic critical stress intensity factors were deduced from instrumented Charpy impact test measurements. Dynamic fracture toughness increased with cellulose content and with orientation of fibers perpendicular to the crack plane. To better control composite microstructure, model laminates of highly aligned plies were produced and tested. Dynamic fracture toughness decreased with fiber alignment angle. A simple model successfully related the microstructure to the dynamic fracture toughness. Increasing test

  7. Development and Properties of Glass Fiber Reinforced Plastics Geogrid

    Institute of Scientific and Technical Information of China (English)

    WANG Qingbiao; ZHANG Cong; WEN Xiaokang; L Rongshan; LIANG Xunmei; LU Shide

    2015-01-01

    Glassfi ber reinforced plastics geogrid has a wide application in thefi eld of soil reinforcement because of its high strength, good toughness, and resistance to environmental stress, creep resistance and strong stability. In order to get high-powered glassfi ber reinforced plastics geogrid and its mechanical characteristics, the properties and physical mechanical index of geogrid have been got through the study of its raw material, production process and important quality index. The analysis and study have been made to the geogrid’s mechanical properties with loading speed, three-axial compression, temperature tensile test and FLAC3D numerical simulation, thus obtain the mechanical parameters of its displacement time curve, breaking strength and elongation at break. Some conclusions can be drawn as follows: (a) Using glassfi ber materials, knurling and coated projection process, the fracture strength and corrosion resistance of geogrid are greatly improved and the interlocking bite capability of soil is enhanced. (b) The fracture strength of geogrid is related to temperature and loading rate. When the surrounding rock pressure is fixed, the strength and anti-deformation ability of reinforced soil are significantly enhanced with increasing reinforced layers. (c) The pullout test shows the positive correlation between geogrid displacement and action time. (d) As a new reinforced material, the glass fi ber reinforced plastics geogrid is not mature enough in theoretical research and practical experience, so it has become an urgent problem both in theoretical study and practical innovation.

  8. In vitro evaluation of veneering composites and fibers on the color of fiber-reinforced composite restorations.

    Directory of Open Access Journals (Sweden)

    Masoomeh Hasani Tabatabaei

    2014-08-01

    Full Text Available Color match between fiber-reinforced composite (FRC restorations and teeth is an imperative factor in esthetic dentistry. The purpose of this study is to evaluate the influence of veneering composites and fibers on the color change of FRC restorations.Glass and polyethylene fibers were used to reinforce a direct microhybrid composite (Z250, 3M ESPE and a microfilled composite (Gradia Indirect, GC. There were eight experimental groups (n=5 disks per group. Four groups were used as the controls (non-FRC control and the others were used as experimental groups. CIELAB parameters (L*, a* and b* of specimens were evaluated against a white background using a spectrophotometer to assess the color change. The color difference (ΔE* and color coordinates were (L*, a* and b* analyzed by two-way ANOVA and Tukey's test.Both types of composite and fiber influenced the color parameters (ΔL*, Δa*. The incorporation of fibers into the composite in the experimental groups made them darker than the control groups, except in the Gradia Indirect+ glass fibers group. Δb* is affected by types of fibers only in direct fiber reinforced composite. No statistically significant differences were recognized in ΔE* among the groups (p>0.05.The findings of the present study suggest that the tested FRC restorations exhibited no difference in color in comparison with non-FRC restoration. Hence, the types of veneering composites and fibers did not influence the color change (ΔE* of FRC restorations.

  9. Investigating the influence of alkalization on the mechanical and water absorption properties of coconut and sponge fibers reinforced polypropylene composites

    Directory of Open Access Journals (Sweden)

    Okikiola Ganiu AGBABIAKA

    2014-11-01

    Full Text Available Natural fibers are products made from renewable agricultural and forestry feedstock, which can include wood, grasses, and crops, as well as wastes and residues. There are two primary ways these fibers are used: to create polymers or as reinforcement and filler. Thermoplastic polymer may be reinforced or filled using natural fibers such as coir, sponge, hemp, flax, or sisal. This paper focused on the influence of alkalization (NaOH treatment on the mechanical and water absorption properties of selected natural fibers (coconut and sponge fibers reinforced polypropylene composites. In this study, coconut and sponge fiber were extracted from its husk by soaking them in water and was dried before it was cut into 10mm length. Those fibers were chemically treated with sodium hydroxide (NaOH in a shaking water bath before it was used as reinforcement in polypropylene composite. The reinforced polypropylene composite was produced by dispersing the coconut fibers randomly in the polypropylene before it was fabricated in a compression molding machine where the composite was produced. The fiber content used were; 2%wt, 4%wt, 6%wt, 8%wt and 10%wt. Tensile and flexural properties was observed from universal testing machine while water absorption test was carried out on the samples for seven (7 days. It was observed that the influence of NaOH treatment highly enhanced the Flexural and water absorption properties of sponge fiber reinforced polypropylene composites than coconut fiber reinforced composite samples.

  10. Feasibility study of prestressed natural fiber-reinforced polylactic acid (pla) composite materials

    Science.gov (United States)

    Hinchcliffe, Sean A.

    The feasibility of manufacturing prestressed natural-fiber reinforced biopolymer composites is demonstrated in this work. The objective of this study was to illustrate that the specific mechanical properties of biopolymers can be enhanced by leveraging a combination of additive manufacturing (3D printing) and post-tensioning of continuous natural fiber reinforcement. Tensile and flexural PLA specimens were 3D-printed with and without post-tensioning ducts. The mechanical properties of reinforcing fibers jute and flax were characterized prior to post-tensioning. The effect of matrix cross-sectional geometry and post-tensioning on the specific mechanical properties of PLA were investigated using mechanical testing. Numerical and analytical models were developed to predict the experimental results, which confirm that 3D-printed matrices improve the specific mechanical properties of PLA composites and are further improved via initial fiber prestressing. The results suggest that both additive manufacturing and fiber prestressing represent viable new methods for improving the mechanical performance of natural fiber-reinforced polymeric composites.

  11. Durability Characteristics Analysis of Plastic Worm Wheel with Glass Fiber Reinforced Polyamide

    Directory of Open Access Journals (Sweden)

    Tae-Il Seo

    2013-05-01

    Full Text Available Plastic worm wheel is widely used in the vehicle manufacturing field because it is favorable for weight lightening, vibration and noise reduction, as well as corrosion resistance. However, it is very difficult for general plastics to secure the mechanical properties that are required for vehicle gears. If the plastic resin is reinforced by glass fiber in the fabrication process of plastic worm wheel, it is possible to achieve the mechanical properties of metallic material levels. In this study, the mechanical characteristic analysis of the glass-reinforced plastic worm wheel, according to the contents of glass fiber, is performed by analytic and experimental methods. In the case of the glass fiber-reinforced resin, the orientation and contents of glass fibers can influence the mechanical properties. For the characteristic prediction of plastic worm wheel, computer-aided engineering (CAE analysis processes such as structural and injection molding analysis were executed with the polyamide resin reinforcement glass fiber (25 wt %, 50 wt %. The injection mold for fabricating the prototype plastic worm wheel was designed and made to reflect the CAE analysis results. Finally, the durability of prototype plastic worm wheel fabricated by the injection molding process was evaluated by the experimental method and the characteristics according to the glass fiber contents.

  12. Effects of glass fiber modified with calcium silicate hydrate (C-S-H(I)) reinforced cement

    Science.gov (United States)

    Xin, M.; Zhang, L.; Ge, S.; Cheng, X.

    2017-03-01

    In this paper, calcium silicate hydrate (C-S-H(I)) and glass fiber modified with C-S-H(I) (SiF) at ambient temperature were synthesized. SiF and untreated fiber (OF) were incorporated into cement paste. Phase composition of C-S-H(I), SiF and OF was characterized by XRD. The surface morphologies were characterized by SEM. Flexural performance of fiber reinforced cement (FRC) at different curing ages was investigated. Results indicated that both SiF and OF could reinforce cement paste. SiF had a more positive effect on improving the flexural performance of FRC than OF. The strength of SiF reinforced cement was 11.48MPa after 28 days curing when fiber volume was 1.0%, 12.55% higher than that of OF reinforced cement. The flexural strength increased with the addition of fiber volume. However, the large dosage of fiber might cause a decrease in flexural strength of FRC.

  13. Fabrication and evaluation of mechanical properties of alkaline treated sisal/hemp fiber reinforced hybrid composite

    Science.gov (United States)

    Venkatesha Gupta, N. S.; Akash; Sreenivasa Rao, K. V.; kumar, D. S. Arun

    2016-09-01

    Fiber reinforced polymer composite have acquired a dominant place in variety of applications because of higher specific strength and modulus, the plant based natural fiber are partially replacing currently used synthetic fiber as reinforcement for polymer composites. In this research work going to develop a new material which posses a strength to weight ratio that for exceed any of the present material. The hybrid composite sisal/hemp reinforced with epoxy matrix has been developed by compression moulding technique according to ASTM standards. Sodium hydroxide (NAOH) was used as alkali for treating the fibers. The amount of reinforcement was varied from 10% to 50% in steps of 10%. Prepared specimens were examined for mechanical properties such as tensile strength, flexural strength, and hardness. Hybrid composite with 40wt% sisal/hemp fiber were found to posses higher strength (tensile strength = 53.13Mpa and flexural strength = 82.07Mpa) among the fabricated hybrid composite specimens. Hardness value increases with increasing the fiber volume. Morphological examinations are carried out to analyze the interfacial characteristics, internal structure and fractured surfaces by using scanning electron microscope.

  14. Fiber reinforced concrete: Characterization of flexural toughness and some studies on fiber-matrix bond-slip interaction

    Science.gov (United States)

    Dubey, Ashish

    One major problem associated with the testing of fiber reinforced concrete specimens under flexural loading is that the measured post-cracking response is severely affected by the stiffness of the testing machine. As a consequence, misleading results are obtained when such a flexural response is used for the characterization of composite toughness. An assessment of a new toughness characterization technique termed the Residual Strength Test Method (RSTM) has been made. In this technique, a stable narrow crack is first created in the specimen by applying a flexural load in parallel with a steel plate under controlled conditions. The plate is then removed, and the specimen is tested in a routine manner in flexure to obtain the post-crack load versus displacement response. Flexural response for a variety of fiber reinforced cementitious composites obtained using the Residual Strength Test Method has been found to correlate very well with those obtained with relatively stiffer test configurations such as closed-loop test machines. The Residual Strength Test Method is found to be effective in differentiating between different fiber types, fiber lengths, fiber configurations, fiber volume fractions, fiber geometries and fiber moduli. In particular, the technique has been found to be extremely useful for testing cement-based composites containing fibers at very low dosages (shear lag theory is introduced to study the problem of fiber pullout in fiber reinforced composites. The proposed model eliminates limitations of many earlier models and captures essential features of pullout process, including progressive interfacial debonding, Poisson's effect, and variation in interfacial properties during the fiber pullout process. Interfacial debonding is modeled using an interfacial shear strength criterion. Influence of normal contact stress at the fiber-matrix interface is considered using shrink-fit theory, and the interfacial frictional shear stress over the debonded

  15. Influence of fiber type and coating on the composite properties of EPDM compounds reinforced with short aramid fibers

    NARCIS (Netherlands)

    Hintze, C.; Sadatshirazi, S.; Wiessner, S.; Talma, Auke; Heinrich, G.; Noordermeer, Jacobus W.M.

    2013-01-01

    There is a renewed interest in the application of short aramid fibers in elastomers because of the considerable improvement in mechanical and dynamic properties of the corresponding rubber composites. Possible applications of short aramid fiber–reinforced elastomers are tires, dynamically loaded

  16. Influence of fiber type and coating on the composite properties of EPDM compounds reinforced with short aramid fibers

    NARCIS (Netherlands)

    Hintze, C.; Shirazi, S.; Wiessner, S.; Talma, A.G.; Heinrich, G.; Noordermeer, J.W.M.

    2013-01-01

    There is a renewed interest in the application of short aramid fibers in elastomers because of the considerable improvement in mechanical and dynamic properties of the corresponding rubber composites. Possible applications of short aramid fiber–reinforced elastomers are tires, dynamically loaded rub

  17. Fabrication of continuous fiber-reinforced ceramics with a nanosized mullite precursor

    Energy Technology Data Exchange (ETDEWEB)

    Reese, O.; Saruhan, B.; Kanka, B.; Schneider, H. [Institute of Materials Research, Cologne (Germany)

    1995-12-01

    Chemically synthesized mullite precursor powders which are suitable materials for the production of continuous fiber-reinforced mullite composites, owing to their high sintering activity at relatively low processing temperatures were used as a matrix material. Since commercially available polycrystalline mullite fibers become instable at high temperatures, optimized slip-casting and sintering conditions were used which allowed hot-pressing of the composites at temperatures lower than 1250{degrees}C. A strong interfacial bonding between fiber and matrix has been observed due to the preferential grain growth which starts on the fiber surfaces and extends into the matrix.

  18. Effect of surface modification on carbon fiber and its reinforced phenolic matrix composite

    Science.gov (United States)

    Yuan, Hua; Wang, Chengguo; Zhang, Shan; Lin, Xue

    2012-10-01

    In this work, polyacrylonitrile (PAN)-based carbon fiber were chemically modified with H2SO4, KClO3 and silane coupling agent (γ-aminopropyltriethoxysilane, APS), and carbon fiber reinforced phenolic matrix composites were prepared. The structural and surface characteristics of the carbon fiber were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), laser Raman scattering (LRS) and Fourier transform infrared spectroscopy (FTIR). Single fiber mechanical properties, specific surface area, composite impact properties and interfacial shear strength (ILSS) were researched to indicate the effects of surface modification on fibers and the interaction between modified fiber surface and phenolic matrix. The results showed that carbon fiber surface modification by oxidation and APS can strengthen fiber surface chemical activity and enlarge the fiber surface area as well as its roughness. When carbon fiber (CF) is oxidized treatment, the oxygen content as well as the O/C ratio will be obviously increased. Oxygen functional groups increase with oxidation time increasing. Carbon fiber treated with APS will make Csbnd Osbnd R content increase and Osbnd Cdbnd O content decrease due to surface reaction. Proper treatment of carbon fiber with acid and silane coupling agent prove an effective way to increase the interfacial adhesion and improve the mechanical and outdoor performance of the resulting fiber/resin composites.

  19. Experimental evaluation and simulation of volumetric shrinkage and warpage on polymeric composite reinforced with short natural fibers

    Science.gov (United States)

    Santos, Jonnathan D.; Fajardo, Jorge I.; Cuji, Alvaro R.; García, Jaime A.; Garzón, Luis E.; López, Luis M.

    2015-09-01

    A polymeric natural fiber-reinforced composite is developed by extrusion and injection molding process. The shrinkage and warpage of high-density polyethylene reinforced with short natural fibers of Guadua angustifolia Kunth are analyzed by experimental measurements and computer simulations. Autodesk Moldflow® and Solid Works® are employed to simulate both volumetric shrinkage and warpage of injected parts at different configurations: 0 wt.%, 20 wt.%, 30 wt.% and 40 wt.% reinforcing on shrinkage and warpage behavior of polymer composite. Become evident the restrictive effect of reinforcing on the volumetric shrinkage and warpage of injected parts. The results indicate that volumetric shrinkage of natural composite is reduced up to 58% with fiber increasing, whereas the warpage shows a reduction form 79% to 86% with major fiber content. These results suggest that it is a highly beneficial use of natural fibers to improve the assembly properties of polymeric natural fiber-reinforced composites.

  20. Microstructure/Property Relationships for Carbon Fiber Reinforced Aluminum Alloys.

    Science.gov (United States)

    1985-07-25

    hypodermic syringe and blunted needle . After mounting the fiber, the card containing the fiber is inserted into the test fixture (figure 2). The edges... theory suggesting that this may not necessarily be the case [211. They showed that a weak interface may, 14 in fact, lead to improved composite properties...agree, at least in principle , with Ochai and Murakami’s theory and composites produced from Cornie’s fibers proved to be quite strong longitudinally

  1. Efficiency of fiber reinforced concrete application in structures subjected to dynamic effects

    Directory of Open Access Journals (Sweden)

    Morozov Valeriy Ivanovich

    2014-03-01

    Full Text Available Fiber reinforced concretes possess high strength under dynamic loadings, which include impact loads, thanks to their high structural viscosity. This is the reason for using them in difficult operating conditions, where increasing the performance characteristics and the structure durability is of prime importance, and the issues of the cost become less significant. Applying methods of disperse reinforcement is most challenging in case of subtle high-porous materials on mineral binders, for example foamed concrete. At the same time, the experiments conducted in Russia and abroad show, that also in other cases the concrete strength resistance several times increases as a result of disperse reinforcement. This doesn't depend on average density of the concrete and type of fiber used. In the article the fibre reinforced concrete impact resistance is analysed. Recommendations are given in regard to fibre concrete application in manufacture of monolithic floor units for industrial buildings and precast piles.

  2. Experimental Study on Common and Steel Fiber Reinforced Concrete Under Dynamic Tensile Stress

    Institute of Scientific and Technical Information of China (English)

    董新龙; 陈江瑛; 高培正; 祁振林; 王永忠; 王永刚; 王礼立

    2004-01-01

    Split Hopkinson technique has been developed to test the strength of common concrete and steel fiber reinforced concrete under dynamic tensile stress. Two types of test methods are considered, the splitting tensile test and a modified spalling test in which a specimen is loaded under uniaxial stress. The result shows that the dynamic strength enhancement of concrete is remarkable by using the reinforcing fiber. But for the common concrete, the base of compressive strength seems to show little effect on the tensile strength under dynamic loading. The experimental results also show that the resistance to tensile fracture of the steel fiber reinforced concrete for C100-mix is higher than those of C40-mix.

  3. Processing and damage recovery of intrinsic self-healing glass fiber reinforced composites

    Science.gov (United States)

    Sordo, Federica; Michaud, Véronique

    2016-08-01

    Glass fiber reinforced composites with a self-healing, supramolecular hybrid network matrix were produced using a modified vacuum assisted resin infusion moulding process adapted to high temperature processing. The quality and fiber volume fraction (50%) of the obtained materials were assessed through microscopy and matrix burn-off methods. The thermo-mechanical properties were quantified by means of dynamic mechanical analysis, revealing very high damping properties compared to traditional epoxy-based glass fiber reinforced composites. Self-healing properties were assessed by three-point bending tests. A high recovery of the flexural properties, around 72% for the elastic modulus and 65% of the maximum flexural stress, was achieved after a resting period of 24 h at room temperature. Recovery after low velocity impact events was also visually observed. Applications for this intrinsic and autonomic self-healing highly reinforced composite material point towards semi-structural applications where high damping and/or integrity recovery after impact are required.

  4. Finite-Element Analysis of Jute- and Coir-Fiber-Reinforced Hybrid Composite Multipanel Plates

    Science.gov (United States)

    Nirbhay, M.; Misra, R. K.; Dixit, A.

    2015-09-01

    Natural-fiber-reinforced polymer composite materials are rapidly gaining interest worldwide both in terms of research and industrial applications. The present work includes the characterization and modeling of jute- and coir-fiber-reinforced hybrid composite materials. The mechanical behavior of a two-panel plate and a sixpanel box structure is analyzed under various loading regimes by using the finite-element software ABAQUS®. Exhaustive parametric studies are also performed to obtain a clear insight into the relationships between various parameters and deflections of the panels and stress distributions in them. Deflections of both the structures are compared and found to be in good agreement with published results. To determine the mechanical behavior of natural-fiber-reinforced composite panels, a finite-element analysis is performed.

  5. Clinical evaluation of carbon fiber reinforced carbon endodontic post, glass fiber reinforced post with cast post and core: A one year comparative clinical study

    Directory of Open Access Journals (Sweden)

    Preethi G

    2008-01-01

    Full Text Available Aim: Restoring endodontically treated teeth is one of the major treatments provided by the dental practitioner. Selection and proper use of restorative materials continues to be a source of frustration for many clinicians. There is controversy surrounding the most suitable choice of restorative material and the placement method that will result in the highest probability of successful treatment. This clinical study compares two different varieties of fiber posts and one cast post and core in terms of mobility of crown margin under finger pressure, recurrent caries detected at the crown margin, fracture of the restoration, fracture of the root and periapical and periodontal pathology requiring crown removal over the period of 12months as evaluated by clinical and radiographical examination. Materials and Methods: 30 root canal treated, single rooted maxillary anterior teeth of 25 patients in the age range of 18-60 years where a post retained crown was indicated were selected for the study between January 2007 and August 2007; and prepared in a standard clinical manner. It was divided into 3 groups of 10 teeth in each group. After post space preparation, the Carbon fiber and Glass fiber reinforced posts were cemented with Scotch bond multipurpose plus bonding agent and RelyX adhesive resin cement in the first and second groups respectively. The Cast post and cores were cemented with Zinc Phosphate cement in the third group. Following post- cementation, the preparation was further refined and a rubber base impression was taken for metal-ceramic crowns which was cemented with Zinc Phosphate cement. A baseline periapical radiograph was taken once each crown was cemented. All patients were evaluated after one week (baseline, 3 months, 6 months and one year for following characteristics mobility of crown margin under finger pressure, recurrent caries detected at the crown margin, fracture of the restoration, fracture of the root and periapical and

  6. The Effect of Two Different E Glass Fiber Reinforcements on Mechanical Properties of Polymethyl Metacrylate Denture Base Resins

    OpenAIRE

    Sinmazisik, G.; Ozyegin, LS.; Akesi, S.

    2002-01-01

    Denture base polymers were reinforced with various types of fibers, such as glass, carbon/graphite and ultrahigh-modulus polyethylene fibers. These procedures were performed to take advantage of the good esthetic qualities of glass fibers and good bonding of glass fibers to polymers via silane coupling agents. The most common type of glass used in fiber production is the so-called E glass (electrical glass). This study investigated the effect of chopped fibers with two different silane coupli...

  7. Understanding the Reinforcing Mechanisms in Kenaf Fiber/PLA and Kenaf Fiber/PP Composites: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Seong Ok Han

    2012-01-01

    Full Text Available This study focused on exploring the feasibility of green composites made from biodegradable and renewable materials as potential alternatives to petroleum polymer composites and understanding the reinforcing mechanisms in composites containing kenaf fibers (KF. KF-reinforced poly(lactide acid (PLA composites were made using melt compounding and injection molding, and their properties were compared to that of KF-reinforced polypropylene (PP composites. The flexural properties and thermomechanical behavior were determined as a function of the fiber content, the crystallization of PLA and PP was studied using X-ray diffraction and differential scanning calorimetry, and the composites’ morphology was investigated using scanning electron microscopy. It was concluded that PLA exhibits higher modulus and Tg compared to those of neat PP. The modulus of the composites at 40 wt% fibers is 6.64 GPa and 2.96 GPa for PLA and PP, respectively. In general, addition of kenaf results in larger property enhancement in PP due to better wetting of the fibers by the low melt viscosity PP and the crystallization behavior of PP that is significantly altered by the fibers. The novelty of this work is that it provides one-to-one comparison of PLA and PP composites, and it explores the feasibility of fabricating green composites with enhanced properties using a simple scalable process.

  8. Aligned Carbon Nanotube Reinforcement of Aerospace Carbon Fiber Composites: Substructural Strength Evaluation for Aerostructure Applications

    OpenAIRE

    Guzman de Villoria, Roberto; Ydrefors, L.; Hallander, P.; Ishiguro, Kyoko; Nordin, P.; Wardle, Brian L.

    2012-01-01

    Vertically aligned carbon nanotubes (VACNTs) are placed between all plies in an aerospace carbon fiber reinforced plastic laminate (unidirectional plies, [(0/90/±45)2]s) to reinforce the interlaminar region in the z-direction. Significant improvement in Mode I and II interlaminar toughness have been observed previously. In this work, several substructural in-plane strength tests relevant to aerostructures were undertaken: bolt/tension-bearing, open hole compression, and L-shape laminate be...

  9. Mallow Fiber-Reinforced Epoxy Composites in Multilayered Armor for Personal Ballistic Protection

    Science.gov (United States)

    Nascimento, Lucio Fábio Cassiano; Louro, Luis Henrique Leme; Monteiro, Sergio Neves; Lima, Édio Pereira; da Luz, Fernanda Santos

    2017-08-01

    Lighter and less expensive polymer composites reinforced with natural fibers have been investigated as possible components of a multilayered armor system (MAS) for personal protection against high-velocity ammunition. Their ballistic performance was consistently found comparable with that of conventional Kevlar® synthetic aramid fiber. Among the numerous existing natural fibers with the potential for reinforcing polymer composites to replace Kevlar® in MAS, mallow fiber has not been fully investigated. Thus, the objective of this work is to evaluate the ballistic performance of epoxy composites reinforced with 30 vol.% of aligned mallow fibers as a second MAS layer backing a front ceramic plate. The results using high-velocity 7.62 ammunition show a similar indentation to a Kevlar® layer with the same thickness. An impedance matching calculation supports the similar ballistic performance of mallow fiber composite and Kevlar®. Reduced MAS costs associated with the mallow fiber composite are practical advantages over Kevlar®.

  10. Mallow Fiber-Reinforced Epoxy Composites in Multilayered Armor for Personal Ballistic Protection

    Science.gov (United States)

    Nascimento, Lucio Fábio Cassiano; Louro, Luis Henrique Leme; Monteiro, Sergio Neves; Lima, Édio Pereira; da Luz, Fernanda Santos

    2017-10-01

    Lighter and less expensive polymer composites reinforced with natural fibers have been investigated as possible components of a multilayered armor system (MAS) for personal protection against high-velocity ammunition. Their ballistic performance was consistently found comparable with that of conventional Kevlar® synthetic aramid fiber. Among the numerous existing natural fibers with the potential for reinforcing polymer composites to replace Kevlar® in MAS, mallow fiber has not been fully investigated. Thus, the objective of this work is to evaluate the ballistic performance of epoxy composites reinforced with 30 vol.% of aligned mallow fibers as a second MAS layer backing a front ceramic plate. The results using high-velocity 7.62 ammunition show a similar indentation to a Kevlar® layer with the same thickness. An impedance matching calculation supports the similar ballistic performance of mallow fiber composite and Kevlar®. Reduced MAS costs associated with the mallow fiber composite are practical advantages over Kevlar®.

  11. Electromagnetic modeling of periodically-structured fiber-reinforced single-layer laminate with multiple fibers missing

    Science.gov (United States)

    Liu, Z.-C.; Li, C.-Y.; Lesselier, D.; Zhong, Y.

    2016-12-01

    Modeling of periodically-structured, fiber-reinforced laminates with fibers missing is investigated, this applying as well to similarly disorganized photonic crystals at optical frequencies. Parallel cylindrical fibers are periodically embedded within a layer sandwiched between two half-spaces. Absent fibers destroy the periodicity. The supercell concept involving an auxiliary periodic structure provides subsidiary solutions, wherein plane-wave illumination can be analyzed with the help of the Floquet theorem, while the field response due to a line source can be calculated from the pertinent plane-wave expansion. Accuracy, computational efficacy and versatility of the above approaches are illustrated by comprehensive numerical simulations with in particular comparisons to results provided by a finite-element code, all-purpose but computationally demanding, this work seen as the first step to the localization of missing fibers in a damaged laminate and imaging thereof.

  12. Characterization and Effects of Fiber Pull-Outs in Hole Quality of Carbon Fiber Reinforced Plastics Composite

    Directory of Open Access Journals (Sweden)

    Sina Alizadeh Ashrafi

    2016-10-01

    Full Text Available Hole quality plays a crucial role in the production of close-tolerance holes utilized in aircraft assembly. Through drilling experiments of carbon fiber-reinforced plastic composites (CFRP, this study investigates the impact of varying drilling feed and speed conditions on fiber pull-out geometries and resulting hole quality parameters. For this study, hole quality parameters include hole size variance, hole roundness, and surface roughness. Fiber pull-out geometries are quantified by using scanning electron microscope (SEM images of the mechanically-sectioned CFRP-machined holes, to measure pull-out length and depth. Fiber pull-out geometries and the hole quality parameter results are dependent on the drilling feed and spindle speed condition, which determines the forces and undeformed chip thickness during the process. Fiber pull-out geometries influence surface roughness parameters from a surface profilometer, while their effect on other hole quality parameters obtained from a coordinate measuring machine is minimal.

  13. Recovery of microfields in fiber-reinforced composite materials: Principles and limitations

    Science.gov (United States)

    Ritchey, Andrew J.

    A detailed investigation of the limitations and errors induced by modeling a composite layer composed of straight carbon fibers embedded in an epoxy matrix as an homogenous layer with Cauchy effective moduli is performed. Specifically, the material system studied has IM7 carbon fibers arranged in a square array and bonded together with 8552 epoxy resin (IM7/8552). The finite element method is used to study the effect of free surfaces on the local elastic fields in 0°, 45° and 90° laminae, in which as many as 256 individual fibers are modeled. Through these analyses, it is shown that a micro-boundary layer, analogous to the macro-boundary layer observed in composite laminates, is developed at the microlevel. Additionally, [0/90]s and [90/0]s laminates are studied to investigate the joint action of the macro- and micro-boundary layers. Unless otherwise noted, fiber volume fractions of Vƒ=0.20 and Vƒ=0.65 are selected and the domains are subjected to uniform axial extension. Although this study is done for a highly idealized geometry (i.e. with a single material system and under a simple loading condition) the principles of periodicity, symmetry and antisymmetry used to efficiently perform a direct numerical simulation with a large number of fiber inclusions is general, and can be applied to more complicated geometries and boundary conditions. The purpose of the current work is to be the first step in a building block approach to understanding the interaction of multiple scales in fiber-reinforced composites through direct numerical simulations. The main part of the current manuscript focuses on the characterization of a micro-boundary layer that develops in fiber reinforced composite layers. This phenomena results from the changing constraints on the constituent phases as a result of discontinuities, such as free surfaces or ply interfaces. The effect is most pronounced in laminae that have a fiber termination intersecting a free surface, and appears to be

  14. Reinforcement of conventional glass-ionomer restorative material with short glass fibers.

    Science.gov (United States)

    Hammouda, Ibrahim M

    2009-01-01

    This study investigated the strengthening effect of glass fibers when added to conventional glass-ionomer restorative material. Glass fibers were incorporated into glass-ionomer powder in 3 wt% and 5 wt%. The fibers used had 1 mm length and 10 microm thickness. These criteria of fiber length, diameter, and concentration represent a new approach for reinforcing conventional glass-ionomer [Medifill, conventional restorative glass-ionomer]. The mechanical properties tested were diametral tensile strength, hardness, flexural strength, flexural modulus and fracture toughness after 24-h and 7-days of storage in deionized water. Glass short fibers were mixed thoroughly into the glass-ionomer powder before mixing with the cement liquid. Samples of specific dimensions were prepared for each time interval and fiber loading according to the manufacturer's instructions and international standards. Hardness was measured using a micro-hardness tester at 100 gram applied load for 15 s. The other mechanical properties were measured using a Lloyd universal testing machine. The results showed increased diametral tensile strength, flexural strength, flexural modulus, and fracture toughness by the addition of glass fibers. There was an appreciable increase of the tested mechanical properties of glass-ionomer restorative material as a result of increasing fiber loading and water storage for 1 week. It was concluded that conventional glass-ionomer can be reinforced by the addition of short glass fibers.

  15. A Review on Natural Fiber Reinforced Polymer Composite and Its Applications

    Directory of Open Access Journals (Sweden)

    Layth Mohammed

    2015-01-01

    Full Text Available Natural fibers are getting attention from researchers and academician to utilize in polymer composites due to their ecofriendly nature and sustainability. The aim of this review article is to provide a comprehensive review of the foremost appropriate as well as widely used natural fiber reinforced polymer composites (NFPCs and their applications. In addition, it presents summary of various surface treatments applied to natural fibers and their effect on NFPCs properties. The properties of NFPCs vary with fiber type and fiber source as well as fiber structure. The effects of various chemical treatments on the mechanical and thermal properties of natural fibers reinforcements thermosetting and thermoplastics composites were studied. A number of drawbacks of NFPCs like higher water absorption, inferior fire resistance, and lower mechanical properties limited its applications. Impacts of chemical treatment on the water absorption, tribology, viscoelastic behavior, relaxation behavior, energy absorption flames retardancy, and biodegradability properties of NFPCs were also highlighted. The applications of NFPCs in automobile and construction industry and other applications are demonstrated. It concluded that chemical treatment of the natural fiber improved adhesion between the fiber surface and the polymer matrix which ultimately enhanced physicomechanical and thermochemical properties of the NFPCs.

  16. TENSILE STRENGTH CHARACTERISTICS OF POLYPROPYLENE COMPOSITES REINFORCED WITH STONE GROUNDWOOD FIBERS FROM SOFTWOOD

    Directory of Open Access Journals (Sweden)

    Joan P. López,

    2012-06-01

    Full Text Available The behavior of stone groundwood / polypropylene injection-molded composites was evaluated with and without coupling agent. Stone groundwood (SGW is a fibrous material commonly prepared in a high yield process and mainly used for papermaking applications. In this work, the use of SGW fibers was explored as a reinforcing element of polypropylene (PP composites. The surface charge density of the composite components was evaluated, as well as the fiber’s length and diameter inside the composite material. Two mixing extrusion processes were evaluated, and the use of a kinetic mixer, instead of an internal mixer, resulted in longer mean fiber lengths of the reinforcing fibers. On the other hand, the accessibility of surface hydroxyl groups of stone groundwood fibers was improved by treating the fibers with 5% of sodium hydroxide, resulting in a noticeable increase of the tensile strength of the composites, for a similar percentage of coupling agent. A new parameter called Fiber Tensile Strength Factor is defined and used as a baseline for the comparison of the properties of the different composite materials. Finally the competitiveness of stone groundwood / polypropylene / polypropylene-co-maleic anhydride system, which compared favorably to sized glass-fiber / polypropylene GF/PP and glass-fiber / polypropylene / polypropylene-co-maleic anhydride composite formulations, was quantified by means of the fiber tensile strength factor.

  17. Study of the Effect of Reinforced Glass Fibers on Fatigue Properties for Composite Materials

    Directory of Open Access Journals (Sweden)

    Mohamed G. Hamad

    2013-05-01

    Full Text Available This  research  included  the  study of  the effect  of  reinforced  glass fibers  on  fatigue  properties  for composite materials. Polyester  resin  is used  as  connective  material(matrix in two types  of  glass  fibers  for reinforced. The  first  type  is regular  glass fibers  (woven  roving with the  directional(0-90, the second  is  glass  fibers  with  the  random  direction. The first type is the panels with regular reinforced (0-90, and with number of layer (1,2.The  second  type  is  the  panels with random  reinforced  and  with  number  of  layers (1,2. The  results  and  the  laboratory  examinations  for  the samples  reinforce  with  fibers  have  manifested (0-90  that there  is  a decrease  in the number  of  cycles  to the  fatigue  limit  when  the  number  of  reinforce  layers  have  increased . And  an elasticity of this  type  of  samples  are decreased  by  increasing  the number  of  reinforced  layers  with  fiber  .We  find  the  random  reinforced  number  of  fatigue  cycles  for the samples  with  two  layers  of  random  reinforced  are  decreased  more  than the samples  with  one  layer of random  reinforced .

  18. Long fiber reinforcement of polypropylene/polystyrene blends

    NARCIS (Netherlands)

    Inberg, J.P.F.; Hunse, P.H.; Gaymans, R.J.

    1999-01-01

    The recycling of inseparable polymer mixtures usually results in blends with poor mechanical properties. A mixture of PP and PS was taken as a model compound for a recyclate. The effect of adding glass fibers to a mixture of PP/PS (70/30) was studied, with special attention to long glass fiber reinf

  19. Behavior of Concrete Panels Reinforced with Synthetic Fibers, Mild Steel, and GFRP Composites Subjected to Blasts

    Energy Technology Data Exchange (ETDEWEB)

    C. P. Pantelides; T. T. Garfield; W. D. Richins; T. K. Larson; J. E. Blakeley

    2012-03-01

    The paper presents experimental data generated for calibrating finite element models to predict the performance of reinforced concrete panels with a wide range of construction details under blast loading. The specimens were 1.2 m square panels constructed using Normal Weight Concrete (NWC) or Fiber Reinforced Concrete (FRC). FRC consisted of macro-synthetic fibers dispersed in NWC. Five types of panels were tested: NWC panels with steel bars; FRC panels without additional reinforcement; FRC panels with steel bars; NWC panels with glass fiber reinforced polymer (GFRP) bars; and NWC panels reinforced with steel bars and external GFRP laminates on both faces. Each panel type was constructed with three thicknesses: 152 mm, 254 mm, and 356 mm. FRC panels with steel bars had the best performance for new construction. NWC panels reinforced with steel bars and external GFRP laminates on both faces had the best performance for strengthening or rehabilitation of existing structures. The performance of NWC panels with GFRP bars was strongly influenced by the bar spacing. The behavior of the panels is classified in terms of damage using immediate occupancy, life safety, and near collapse performance levels. Preliminary dynamic simulations are compared to the experimental results.

  20. Fabrication and Testing of Carbon Fiber Reinforced Truss Core Sandwich Panels

    Institute of Scientific and Technical Information of China (English)

    Bing Wang; Linzhi Wu; Li Ma; Qiang Wang; Shanyi Du

    2009-01-01

    Truss core sandwich panels reinforced by carbon fibers were assembled with bonded laminate facesheets and carbon fiber reinforced truss cores. The top and bottom facesheets were interconnected with truss cores. Both ends of the truss cores were embedded into four layers of top and bottom facesheets. The mechanical properties of truss core sandwich panels were then investigated under out-of-plane and in-plane compression loadings to reveal the failure mechanisms of sandwich panels. Experimental results indicated that the mechanical behavior of sandwich structure under in-plane loading is dominated by the buckling and debonding of facesheets.

  1. PREPARATION AND CHARACTERIZATION OF MODIFIED STARCH-BASED BIODEGRADABLE MATERIALS REINFORCED WITH PULP FIBER

    Institute of Scientific and Technical Information of China (English)

    LingfangJi; ShucaiLi

    2004-01-01

    Native corn starch and hydroxypropyl starch (HPS) based plastic films were prepared using the short pulp fiber as reinforcement and the glycerol as the plasticizer. The results of tensile test showed that the tensile strength and the elongation at break increased with the pulp contents. With the glycerol contents, the elongation at break increased considerably, but the tensile strength decreased. The water uptake of the films decreased with the pulp contents and hydroxypropylation, but increased with the glycerol contents. So it is concluded that the films was reinforced by pulp fiber and hydroxypropylation.

  2. NDE of Fiber Reinforced Foam Composite Structures for Future Aerospace Vehicles

    Science.gov (United States)

    Walker, james; Roth, Don; Hopkins, Dale

    2010-01-01

    This slide presentation reviews the complexities of non-destructive evaluation (NDE) of fiber reinforced foam composite structures to be used for aerospace vehicles in the future.Various views of fiber reinforced foam materials are shown and described. Conventional methods of NDE for composites are reviewed such as Micro-computed X-Ray Tomography, Thermography, Shearography, and Phased Array Ultrasonics (PAUT). These meth0ods appear to work well on the face sheet and face sheet ot core bond, they do not provide adequate coverage for the webs. There is a need for additional methods that will examine the webs and web to foam core bond.

  3. Influence of Carbon & Glass Fiber Reinforcements on Flexural Strength of Epoxy Matrix Polymer Hybrid Composites

    Directory of Open Access Journals (Sweden)

    T.D. Jagannatha

    2015-04-01

    Full Text Available Hybrid composite materials are more attracted by the engineers because of their properties like stiffness and high specific strength which leads to the potential application in the area of aerospace, marine and automobile sectors. In the present investigation, the flexural strength and flexural modulus of carbon and glass fibers reinforced epoxy hybrid composites were studied. The vacuum bagging technique was adopted for the fabrication of polymer hybrid composite materials. The hardness, flexural strength and flexural modulus of the hybrid composites were determined as per ASTM standards. The hardness, flexural strength and flexural modulus were improved as the fiber reinforcement contents increased in the epoxy matrix material.

  4. Steel fiber reinforced concrete pipes: part 1: technological analysis of the mechanical behavior

    Directory of Open Access Journals (Sweden)

    A. D. de Figueiredo

    Full Text Available This paper is the first part of an extensive work focusing the technological development of steel fiber reinforced concrete pipes (FRCP. Here is presented and discussed the experimental campaign focusing the test procedure and the mechanical behavior obtained for each of the dosages of fiber used. In the second part ("Steel fiber reinforced concrete pipes. Part 2: Numerical model to simulate the crushing test", the aspects of FRCP numerical modeling are presented and analyzed using the same experimental results in order to be validated. This study was carried out trying to reduce some uncertainties related to FRCP performance and provide a better condition to the use of these components. In this respect, an experimental study was carried out using sewage concrete pipes in full scale as specimens. The diameter of the specimens was 600 mm, and they had a length of 2500 mm. The pipes were reinforced with traditional bars and different contents of steel fibers in order to compare their performance through the crushing test. Two test procedures were used in that sense. In the 1st Series, the diameter displacement was monitored by the use of two LVDTs positioned at both extremities of the pipes. In the 2nd Series, just one LVDT is positioned at the spigot. The results shown a more rigidity response of the pipe during tests when the displacements were measured at the enlarged section of the socket. The fiber reinforcement was very effective, especially when low level of displacement was imposed to the FRCP. At this condition, the steel fibers showed an equivalent performance to superior class pipes made with traditional reinforced. The fiber content of 40 kg/m3 provided a hardening behavior for the FRCP, and could be considered as equivalent to the critical volume in this condition.

  5. Properties of Hooked Steel Fibers Reinforced Alkali Activated Material Concrete

    Directory of Open Access Journals (Sweden)

    Faris M. A.

    2016-01-01

    Full Text Available In this study, alkali activated material was produced by using Class F fly ash from Manjung power station, Lumut, Perak, Malaysia. Fly ash then was activated by alkaline activator which is consisting of sodium silicate (Na2SiO3 and sodium hydroxide (NaOH. Hooked end steel fibers were added into the alkali activated material system with percentage vary from 0 % – 5 %. Chemical compositions of fly ash were first analyzed by using x-ray fluorescence (XRF. All hardened alkali activated material samples were tested for density, workability, and compression after 28 days. Results show a slight increase of density with the addition of steel fibers. However, the workability was reduced with the addition of steel fibers content. Meanwhile, the addition of steel fibers shows the improvement of compressive strength which is about 19 % obtained at 3 % of steel fibers addition.

  6. Kenaf-glass fiber reinforced unsaturated polyester hybrid composites: Tensile properties

    Science.gov (United States)

    Zhafer, S. F.; Rozyanty, A. R.; Shahnaz, S. B. S.; Musa, L.; Zuliahani, A.

    2016-07-01

    The use of natural fibers in composite is rising in recent years due their lightweight, non-abrasive, combustible, non-toxic, low cost and biodegradable properties. However, in comparison with synthetic fibers, the mechanical properties of natural fibers are lower. Therefore, the inclusion of synthetic fibers could improve the mechanical performance of natural fiber based composites. In this study, kenaf bast fiber and glass fiber at different weight percentage loading were used as reinforcement to produce hybrid composites. Unsaturated polyester (UP) resin was used as matrix and hand lay-up process was performed to apply the UP resin on the hybrid kenaf bast/glass fiber composite. Effect of different fiber loading on tensile strength, tensile modulus and elongation at break of the hybrid composite was studied. It has been found that the highest value of tensile strength and modulus was achieved at 10 wt.% kenaf/10 wt.% glass fiber loading. It was concluded that addition of glass fiber has improved the tensile properties of kenaf bast fiber based UP composites.

  7. The Young’s moduli prediction of random distributed short-fiber-reinforced polypropylene foams using finite element method

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The elastic moduli of short-fiber-reinforced foams depend critically on the fiber content and fiber length, as well as on the fiber orientation distribution. Based on periodic tetrakaidecahedrons, the finite element models with short-fiber reinforcement were proposed in this paper to examine the effects of the fiber content and fiber length on Young’s modulus. The fiber length distribution and fiber orientation distribution were also considered. The proposed models featured in a three-dimensional diorama with random short-fiber distribution within or on the surfaces of the walls and edges of the closed-cells of polypropylene (PP) foams. The fiber length/orientation distributions were modeled by Gaussian prob-ability density functions. Different fiber volume fractions, different lengths, and different distributions were investigated. The predicted Young’s moduli of the PP foams with short-glass-fiber or short-carbon-fiber reinforcement were compared with other theoretic and experimental results, and the agreement was found to be satisfactory. The proposed finite element models were proved to be acceptable to predict the Young’s moduli of the grafted closed-cell PP foams with short-fiber reinforcement.

  8. Numerically design the injection process parameters of parts fabricated with ramie fiber reinforced green composites

    Science.gov (United States)

    Chen, L. P.; He, L. P.; Chen, D. C.; Lu, G.; Li, W. J.; Yuan, J. M.

    2017-01-01

    The warpage deformation plays an important role on the performance of automobile interior components fabricated with natural fiber reinforced composites. The present work investigated the influence of process parameters on the warpage behavior of A pillar trim made of ramie fiber (RF) reinforced polypropylene (PP) composites (RF/PP) via numerical simulation with orthogonal experiment method and range analysis. The results indicated that fiber addition and packing pressure were the most important factors affecting warpage. The A pillar trim can achieved the minimum warpage value as of 2.124 mm under the optimum parameters. The optimal process parameters are: 70% percent of the default value of injection pressure for the packing pressure, 20 wt% for the fiber addition, 185 °C for the melt °C for the mold temperature, 7 s for the filling time and 17 s for the packing time.

  9. In vitro Study on Biodegradable AZ31 Magnesium Alloy Fibers Reinforced PLGA Composite

    Institute of Scientific and Technical Information of China (English)

    Y.H.Wu; N.Li; Y.Cheng; Y.F.Zheng; Y.Han

    2013-01-01

    AZ31 magnesium alloy fibers reinforced poly(lactic-co-glycolic acid) (PLGA) composites were prepared and their mechanical property,immersion corrosion behavior and biocompatibility were studied.The tensile test showed that with the addition of AZ31 fibers,the composites had a significant increment in tensile strength and elongation.For the direct cell attachment test,all the cells showed a healthy morphology and spread well on the experimental sample surfaces.The immersion results indicated that pH values of the immersion medium increased with increasing AZ31 fiber contents.All the in vitro experimental results indicated that this new kind of magnesium alloy fibers reinforced PLGA composites show a potential for future biomedical applications.

  10. Analysis of the Behaviour of Composite Steel and Steel Fiber Reinforced Concrete Slabs

    Directory of Open Access Journals (Sweden)

    Mindaugas Petkevičius

    2011-04-01

    Full Text Available There was a pending influence of steel fiber on the strength and stiffness of composite steel–concrete slabs under statical short–time load. Steel profiled sheeting and steel fiber reinforced concrete were used for specimens. Four composite slabs were made. Experimental investigations into the behaviour and influence of steel fiber reinforced concrete in composite slabs were conducted. Transverse, longitudinal, shear deformation and deflection of the slab were measured. The results indicated that the use of steel fiber in composite slabs was effective: strength was 20–24 % higher and the meanings of deflections under the action of the bending moment were 0,6MR (where MR is the bending moment at failure of the slabs and were 16–18 % lower for slabs with usual concrete. Article in Lithuanian

  11. MECHANICAL AND THERMO–MECHANICAL PROPERTIES OF BI-DIRECTIONAL AND SHORT CARBON FIBER REINFORCED EPOXY COMPOSITES

    Directory of Open Access Journals (Sweden)

    G. AGARWAL

    2014-10-01

    Full Text Available This paper based on bidirectional and short carbon fiber reinforced epoxy composites reports the effect of fiber loading on physical, mechanical and thermo-mechanical properties respectively. The five different fiber loading, i.e., 10wt. %, 20wt. %, 30wt. %, 40wt. % and 50wt. % were taken for evaluating the above said properties. The physical and mechanical properties, i.e., hardness, tensile strength, flexural strength, inter-laminar shear strength and impact strength are determined to represent the behaviour of composite structures with that of fiber loading. Thermo-mechanical properties of the material are measured with the help of Dynamic Mechanical Analyser to measure the damping capacity of the material that is used to reduce the vibrations. The effect of storage modulus, loss modulus and tan delta with temperature are determined. Finally, Cole–Cole analysis is performed on both bidirectional and short carbon fiber reinforced epoxy composites to distinguish the material properties of either homogeneous or heterogeneous materials. The results show that with the increase in fiber loading the mechanical properties of bidirectional carbon fiber reinforced epoxy composites increases as compared to short carbon fiber reinforced epoxy composites except in case of hardness, short carbon fiber reinforced composites shows better results. Similarly, as far as Loss modulus, storage modulus is concerned bidirectional carbon fiber shows better damping behaviour than short carbon fiber reinforced composites.

  12. Three-dimensional finite element analysis of posterior fiber-reinforced composite fixed partial denture Part 2: influence of fiber reinforcement on mesial and distal connectors.

    Science.gov (United States)

    Aida, Nobuhisa; Shinya, Akikazu; Yokoyama, Daiichiro; Lassila, Lippo V J; Gomi, Harunori; Vallittu, Pekka K; Shinya, Akiyoshi

    2011-01-01

    The aim of this study was to evaluate the influence of connectors under two different loading conditions on displacement and stress distribution generated in isotropic hybrid composite fixed partial denture (C-FPD) and partially anisotropic fiber-reinforced hybrid composite fixed partial denture (FRC-FPD). To this end, two three-dimensional finite element (FE) models of three-unit FPD from mandibular second premolar to mandibular second molar - intended to replace the mandibular first molar - were developed. The two loading conditions employed were a vertical load of 629 N (applied to eight points on the occlusal surface) and a lateral load of 250 N (applied to three points of the pontic). The results suggested that the reinforcing fibers in FRC framework significantly improved the rigidity of the connectors against any twisting and bending moments induced by loading. Consequently, maximum principal stress and displacement generated in the connectors of FRC-FPD were significantly reduced because stresses generated by vertical and lateral loading were transferred to the reinforcing fibers.

  13. Reinforcing Wooden Composite with Glass Fiber Fabric - Manufacturing Technology as a Factor Limiting Mechanical Properties and Reliability

    Directory of Open Access Journals (Sweden)

    Deskiewicz Adam

    2016-07-01

    Full Text Available This paper investigates the strength and reliability of the wooden composites reinforced with glass fiber for the skateboard application. Three different methods of glass-fiber reinforcement have been used to prepare totally 94 samples, including control trial. Two lamination methods have been utilized: vacuum and HPL (High Pressure Lamination. Conducted analysis allowed to determine preferred production technique.

  14. Fiber-Reinforced Reactive Nano-Epoxy Composites

    Science.gov (United States)

    Zhong, Wei-Hong

    2011-01-01

    An ultra-high-molecular-weight polyethylene/ matrix interface based on the fabrication of a reactive nano-epoxy matrix with lower surface energy has been improved. Enhanced mechanical properties versus pure epoxy on a three-point bend test include: strength (25 percent), modulus (20 percent), and toughness (30 percent). Increased thermal properties include higher Tg (glass transition temperature) and stable CTE (coefficient of thermal expansion). Improved processability for manufacturing composites includes faster wetting rates on macro-fiber surfaces, lower viscosity, better resin infusion rates, and improved rheological properties. Improved interfacial adhesion properties with Spectra fibers by pullout tests include initial debonding force of 35 percent, a maximum pullout force of 25 percent, and energy to debond at 65 percent. Improved mechanical properties of Spectra fiber composites (tensile) aging resistance properties include hygrothermal effects. With this innovation, high-performance composites have been created, including carbon fibers/nano-epoxy, glass fibers/nano-epoxy, aramid fibers/ nano-epoxy, and ultra-high-molecularweight polyethylene fiber (UHMWPE).

  15. Mechanical Properties of a Unidirectional Basalt-Fiber-Reinforced Plastic Under a Loading Simulating Operation Conditions

    Science.gov (United States)

    Lobanov, D. S.; Slovikov, S. V.

    2017-01-01

    The results of experimental investigations of unidirectional composites based on basalt fibers and different marks of epoxy resins are presented. Uniaxial tensile tests were carried out using a specimen fixation technique simulating the operation conditions of structures. The mechanical properties of the basalt-fiber-reinforced plastics (BFRPs) were determined. The diagrams of loading and deformation of BFRP specimens were obtain. The formulations of the composites with the highest mechanical properties were revealed.

  16. Mechanical properties of short carbon/glass fiber reinforced high mechanical performance epoxy resins

    Institute of Scientific and Technical Information of China (English)

    张竞; 黄培

    2009-01-01

    To research the relationship between epoxy and fiber inherent property and mechanical properties of composite,we prepared a series of composites using three kinds of high mechanical performance epoxy resins as matrices and reinforced by the same volume fraction(5%)of short carbon and glass fiber.Their mechanical properties were investigated from the perspective of chemical structure and volume shrinkage ratio of epoxy.We analyzed their tensile strength and modulus based on the mixing rule and Halpin-Tsai eq...

  17. Behavior of Low Grade Steel Fiber Reinforced Concrete Made with Fresh and Recycled Brick Aggregates

    Directory of Open Access Journals (Sweden)

    Md. Shariful Islam

    2017-01-01

    Full Text Available In recent years, recycled aggregates from construction and demolition waste (CDW have been widely accepted in construction sectors as the replacement of coarse aggregate in order to minimize the excessive use of natural resources. In this paper, an experimental investigation is carried out to observe the influence of low grade steel fiber reinforcements on the stress-strain behavior of concrete made with recycled and fresh brick aggregates. In addition, compressive strength by destructive and nondestructive tests, splitting tensile strength, and Young’s modulus are determined. Hooked end steel wires with 50 mm of length and an aspect ratio of 55.6 are used as fiber reinforcements in a volume fraction of 0% (control case, 0.50%, and 1.00% in concrete mixes. The same gradation of aggregates and water-cement ratio (w/c=0.44 were used to assess the effect of steel fiber in all these concrete mixes. All tests were conducted at 7, 14, and 28 days to perceive the effect of age on different mechanical properties. The experimental results show that around 10%~15% and 40%~60% increase in 28 days compressive strength and tensile strength of steel fiber reinforced concrete, respectively, compared to those of the control case. It is observed that the effect of addition of 1% fiber on the concrete compressive strength is little compared to that of 0.5% steel fiber addition. On the other hand, strain of concrete at failure of steel fiber reinforced concrete has increased almost twice compared to the control case. A simple analytical model is also proposed to generate the ascending portions of the stress-strain curve of concrete. There exists a good correlation between the experimental results and the analytical model. A relatively ductile failure is observed for the concrete made with low grade steel fibers.

  18. Effect of random/aligned nylon-6/MWCNT fibers on dental resin composite reinforcement.

    Science.gov (United States)

    Borges, Alexandre L S; Münchow, Eliseu A; de Oliveira Souza, Ana Carolina; Yoshida, Takamitsu; Vallittu, Pekka K; Bottino, Marco C

    2015-08-01

    The aims of this study were (1) to synthesize and characterize random and aligned nanocomposite fibers of multi-walled carbon nanotubes (MWCNT)/nylon-6 and (2) to determine their reinforcing effects on the flexural strength of a dental resin composite. Nylon-6 was dissolved in hexafluoropropanol (10 wt%), followed by the addition of MWCNT (hereafter referred to as nanotubes) at two distinct concentrations (i.e., 0.5 or 1.5 wt%). Neat nylon-6 fibers (without nanotubes) were also prepared. The solutions were electrospun using parameters under low- (120 rpm) or high-speed (6000 rpm) mandrel rotation to collect random and aligned fibers, respectively. The processed fiber mats were characterized by scanning (SEM) and transmission (TEM) electron microscopies, as well as by uni-axial tensile testing. To determine the reinforcing effects on the flexural strength of a dental resin composite, bar-shaped (20×2×2 mm(3)) resin composite specimens were prepared by first placing one increment of the composite, followed by one strip of the mat, and one last increment of composite. Non-reinforced composite specimens were used as the control. The specimens were then evaluated using flexural strength testing. SEM was done on the fractured surfaces. The data were analyzed using ANOVA and the Tukey׳s test (α=5%). Nanotubes were successfully incorporated into the nylon-6 fibers. Aligned and random fibers were obtained using high- and low-speed electrospinning, respectively, where the former were significantly (presin composite tested was significantly reinforced when combined with nylon-6 fibrous mats composed of aligned fibers (with or without nanotubes) or random fibers incorporated with nanotubes at 0.5 wt%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Post-cracking behavior of blocks, prisms, and small concrete walls reinforced with plant fiber

    Directory of Open Access Journals (Sweden)

    I. I. Soto

    Full Text Available Structural masonry using concrete blocks promotes the rationalization of construction projects, lowering the final cost of a building through the elimination of forms and the reduction of the consumption of reinforcement bars. Moreover, production of a block containing a combination of concrete and vegetable fiber sisal results in a unit with properties such as mechanical strength, stiffness, flexibility, ability to absorb energy, and post-cracking behavior that are comparable to those of a block produced with plain concrete. Herein are reported the results of a study on the post-cracking behavior of blocks, prisms, and small walls reinforced with sisal fibers (lengths of 20 mm and 40 mm added at volume fractions of 0.5% and 1%. Tests were performed to characterize the fibers and blocks and to determine the compressive strength of the units, prisms, and small walls. The deformation modulus of the elements was calculated and the stress-strain curves were plotted to gain a better understanding of the values obtained. The compression test results for the small walls reinforced with fibers were similar to those of the reference walls and better than the blocks and prisms with added fibers, which had resistances lower than those of the corresponding conventional materials. All elements prepared with the addition of sisal exhibited an increase in the deformation capacity (conferred by the fibers, which was observed in the stress-strain curves. The failure mode of the reference elements was characterized by an abrupt fracture, whereas the reinforced elements underwent ductile breakage. This result was because of the presence of the fibers, which remained attached to the faces of the cracks via adhesion to the cement matrix, thus preventing loss of continuity in the material. Therefore, the cement/plant fiber composites are advantageous in terms of their ductility and ability to resist further damage after cracking.

  20. Corrosion detection of steel reinforced concrete using combined carbon fiber and fiber Bragg grating active thermal probe

    Science.gov (United States)

    Li, Weijie; Ho, Siu Chun Michael; Song, Gangbing

    2016-04-01

    Steel reinforcement corrosion is one of the dominant causes for structural deterioration for reinforced concrete structures. This paper presents a novel corrosion detection technique using an active thermal probe. The technique takes advantage of the fact that corrosion products have poor thermal conductivity, which will impede heat propagation generated from the active thermal probe. At the same time, the active thermal probe records the temperature response. The presence of corrosion products can thus be detected by analyzing the temperature response after the injection of heat at the reinforcement-concrete interface. The feasibility of the proposed technique was firstly analyzed through analytical modeling and finite element simulation. The active thermal probe consisted of carbon fiber strands to generate heat and a fiber optic Bragg grating (FBG) temperature sensor. Carbon fiber strands are used due to their corrosion resistance. Wet-dry cycle accelerated corrosion experiments were performed to study the effect of corrosion products on the temperature response of the reinforced concrete sample. Results suggest a high correlation between corrosion severity and magnitude of the temperature response. The technique has the merits of high accuracy, high efficiency in measurement and excellent embeddability.

  1. Effect of fiber loading on the mechanical properties of bagasse fiber–reinforced polypropylene composites

    Directory of Open Access Journals (Sweden)

    Sivarao Subramonian

    2016-08-01

    Full Text Available It is evident that sugarcane/bagasse is a highly potential natural composite fiber. In this study, the correlation of composition fiber amount to the mechanical strength was presented. Bagasse was treated with alkali and then reinforced in polypropylene by means of hot pressing. Fiber loading was set to be varied from 10 to 20 wt%. Composite samples were subjected to tensile, hardness, and flexural characterization. Composites with 30 wt% of fiber loading registered maximum tensile strength while with 10 wt% fiber loading registered the minimum. Hardness increases with the amount of fiber. Flexural strength and flexural modulus were found to be greater than original polypropylene. Scanning electron microscopy examination revealed the mechanisms of the strength gain in morphological point of view. The findings give manufactures and engineers a sound basis decision whether to apply the use of this composite for weight reduction especially in automotive applications or not.

  2. Mechanical and Chemical Properties of Bamboo/Glass Fibers Reinforced Polyester Composites

    Directory of Open Access Journals (Sweden)

    K.Sudha Madhuri,

    2016-01-01

    Full Text Available The chemical resistance of Bamboo/Glass reinforced Polyester hybrid composites to acetic acid, Nitric acid, Hydrochloric acid, Sodium hydroxide, Sodium carbonate, Benzene, Toluene, Carbon tetrachloride and Water was studied. The tensile and impact properties of these composites were also studied. The effect of alkali treatment of bamboo fibers on these properties was studied. It was observed that the tensile and impact properties of the hybrid composites increase with glass fiber content. The author investigated the interfacial bonding between Glsss/Bamboo fiber composites by SEM. These properties found to be higher when alkali treated bamboo fibers were used in hybrid composites. The hybrid fiber composites showed better resistance to the chemicals mentioned above. The elimination of amorphous hemi-cellulose with alkali treatment leading to higher crystallinity of the bamboo fibers with alkali treatment may be responsible for these observations.

  3. Rate dependent response and failure of a ductile epoxy and carbon fiber reinforced epoxy composite

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Eric N [Los Alamos National Laboratory; Rae, Philip J [Los Alamos National Laboratory; Dattelbaum, Dana M [Los Alamos National Laboratory; Stahl, David B [Los Alamos National Laboratory

    2010-01-01

    An extensive characterization suite has been performed on the response and failure of a ductile epoxy 55A and uniaxial carbon fiber reinforced epoxy composite of IM7 fibers in 55A resin from the quasistatic to shock regime. The quasistatic and intermediate strain rate response, including elastic modulus, yield and failure have are characterized by quasistatic, SHPB, and DMA measurements as a function of fiber orientation and temperature. The high strain rate shock effect of fiber orientation in the composite and response of the pure resin are presented for plate impact experiments. It has previously been shown that at lower impact velocities the shock velocity is strongly dependent on fiber orientation but at higher impact velocity the in-plane and through thickness Hugoniots converge. The current results are compared with previous studies of the shock response of carbon fiber composites with more conventional brittle epoxy matrices. The spall response of the composite is measured and compared with quasistatic fracture toughness measurements.

  4. Development of Flexible Link Slabs using Ductile Fiber Reinforced Concrete

    DEFF Research Database (Denmark)

    Lárusson, Lárus Helgi

    emphasis oncrack formation and development at the rebar-matrix interface during direct tensile loading. Utilizing a high definition DIC technique in a novel approach, detailed measurements of the crack formation and debonding process are obtained. It is found that ductile ECC, in contrast to conventional...... two adjacent bridge deck segments. The link slab element, composed of GFRP reinforced ECC,exhibited the same tension stiffening and tension strengthening behavior with limited crack widths as was observed in the reinforced prisms under monotonic and cyclic loading. The combination of ductile ECC...

  5. Mechanical Properties of Natural Jute Fabric/Jute Mat Fiber Reinforced Polymer Matrix Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Elsayed A. Elbadry

    2012-01-01

    Full Text Available Recycled needle punched jute fiber mats as a first natural fiber reinforcement system and these jute mats used as a core needle punched with recycled jute fabric cloths as skin layers as a second natural fiber reinforcement system were used for unsaturated polyester matrix composites via modifying the hand lay-up technique with resin preimpregnation into the jute fiber in vacuum. The effect of skin jute fabric on the tensile and bending properties of jute mat composites was investigated for different fiber weight contents. Moreover, the notch sensitivity of these composites was also compared by using the characteristic distance do calculated by Finite Element Method (FEM. The results showed that the tensile and flexural properties of jute mat composites increased by increasing the fiber weight content and by adding the jute fabric as skin layers. On the other hand, by adding the skins, the characteristic distance decreased and, therefore, the notch sensitivity of the composites increased. The fracture behavior investigated by SEM showed that extensive fiber pull-out mechanism was revealed at the tension side of jute mat composites under the bending load and by adding the jute cloth, the failure mode of jute mat was changed to fiber bridge mechanism.

  6. Investigation on The Mechanical Properties of Banana Fiber Reinforced Polyester Composites

    Directory of Open Access Journals (Sweden)

    A.K.Chaitanya

    2016-09-01

    Full Text Available the interest in natural fiber-reinforced polymer composite materials is rapidly growing both in terms of their industrial applications and fundamental research. The natural fiber composites are more environmentally friendly, and their availability, renewability, low density, and price as well as satisfactory mechanical properties make them an attractive ecological alternative to glass, carbon and man-made fibers used for the manufacturing of composites. The main objective of this project is to investigate the effect of NaOH solution on the mechanical properties of Banana fiber in polyester composites. The composites have been made by with and without treatment of NaOH solution using polymer matrix using Banana fiber. Mechanical properties such as tensile, impact and bending strengths were Studied by Carrying out respective tests with varying weights of fiber (0.5, 1, 1.5 and 2 gm’s. The tensile, impact and bending Strength of Banana fiber reinforced composites with NaOH solution was found to be increased when compared with without NaOH solution by varying fiber content. The concentrated of NaOH solution (5% to water (for 1lit.

  7. Natural-fiber-reinforced polymer composites in automotive applications

    Science.gov (United States)

    Holbery, James; Houston, Dan

    2006-11-01

    In the past decade, natural-fiber composites with thermoplastic and thermoset matrices have been embraced by European car manufacturers and suppliers for door panels, seat backs, headliners, package trays, dashboards, and interior parts. Natural fibers such as kenaf, hemp, flax, jute, and sisal offer such benefits as reductions in weight, cost, and CO2, less reliance on foreign oil sources, and recyclability. However, several major technical considerations must be addressed before the engineering, scientific, and commercial communities gain the confidence to enable wide-scale acceptance, particularly in exterior parts where a Class A surface finish is required. Challenges include the homogenization of the fiber's properties and a full understanding of the degree of polymerization and crystallization, adhesion between the fiber and matrix, moisture repellence, and flame-retardant properties, to name but a few.

  8. Evaluation of Mechanical Properties of Injection Molding Composites Reinforced by Bagasse Fiber

    Science.gov (United States)

    Cao, Yong; Fukumoto, Isao

    BMC (Bulk Molding Compound) is composed of UP (Unsaturated Polyester) resin, glass fibers, and bagasse fibers which have been obtained after squeezing sugar cane. Our purpose is to use the bagasse fibers as reinforcement and filler in BMC to fabricate composites by injection molding and injection compression molding. The mechanical properties of injection molding composites were improved after adding the bagasse fibers. Observing the fracture surface of the tensile test specimen through SEM, we could notice the glass fibers were penetrated into the bagasse fibers longitudinally. Along with UP resin solidifying, the glass fibers were firmly fixed in the bagasse fibers and finally united with them. This phenomenon could bring on the same effect as the glass fibers length was prolonged, so that the adhesion interface between fiber and matrix resin became larger, which leads to the increase in the mechanical properties. Otherwise, it was observed that UP resin sufficiently permeated the bagasse fibers and solidified. This also contributes to enhancing the mechanical properties drastically.

  9. Tailoring of fiber-reinforced cementitious composites (FRCC) for flexural strength and reliability

    Science.gov (United States)

    Obla, Karthikeyan Hariya

    Bending is the most common form of loading for many construction elements. The bending strength or Modulus of Rupture (MOR) and flexural ductility are therefore critical properties particularly for those elements which are not reinforced by rebars. Such elements include highway barriers, certain wall panels, thin sheet elements and small diameter pipes. The tensile and bending strengths of concrete are very low. In addition, as a brittle material, concrete also demonstrates a large variability in bending strength. A large variability in MOR leads to inefficient use of the material since the design strength has to be close to the lower bound of the material's strength distribution. The potential of fiber in improving MOR is well recognized in fiber reinforced concrete. The use of fiber to enhance material reliability is much less studied. This thesis addresses both aspects employing a combination of theoretical and experimental treatments. Research findings are reported as Part I and Part II of this thesis. Carbon fibers are increasingly attractive for reinforcing cementitious composites. They can be manufactured to yield a wide range in modulus and strength. Carbon fibers are non-corrosive, and fire and alkali. In addition, the price of pitch based carbon fibers are dropping rapidly to make them economically viable for the building and construction industries. In Part I of the thesis, a study on the optimization of the bending strength of carbon FRCC using a fracture based flexural model that links the fiber, interface, and matrix micro-parameters to composite bending strength is presented. Carbon fiber, interface and matrix parameters were tailored to yield optimal properties such as high MOR and ductility. Four point bend tests were conducted on CFRCCs to confirm the findings. Some problems specially affecting carbon FRCCs such as fiber breakage during mixing were also studied and its effects on composite uniaxial tensile properties analyzed by developing new

  10. Reactive processing of textile-natural fiber reinforced anionic polyamide-6 composites

    Energy Technology Data Exchange (ETDEWEB)

    Kan, Ze; Chen, Peng; Liu, Zhengying; Feng, Jianmin; Yang, Mingbo [College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan (China)

    2015-05-22

    Nowadays natural fiber, used in reinforced composites, is widely concerned. However, no natural fiber reinforced reactive thermoplastic polymer grades had been prepared so far. Through our studies, it was demonstrated that there was a severe retardation and discoloration occurred in the reactive processing between anionic polyamide-6 (APA-6) and natural fiber, which result in incomplete polymerization when put together. In order to solve the problem, two methods were adopted in this paper, which are fiber pretreatment and usage of a new-style initiator called caprolactam magnesium bromide. The former is to remove sizing agent and impurities on the surface of fiber, and the latter is to weaken the side reactions between APA-6 and natural fiber by the nature of its lower reactivity and weaker alkaline. In cooperation with both methods, the severe retardation and discoloration had been improved significantly, so that the polymerization of APA-6 in natural fiber was occurred smoothly. Following textile-natural fiber reinforced APA-6 composites with an average thickness of 2.5 mm and a fiber volume content of 50% was prepared by vacuum assisted resin transfer molding (VARTM). The soxhlet extraction, dilute solution viscometry and differential scanning calorimeter (DSC) measurements respectively suggested the degree of conversion, viscosity-average molar mass and crystallization of composites was up to 94%, 11.3×104 and 50%. Remarkable improvement of mechanical properties were achieved through dynamic mechanical analysis (DMA), tensile and three-point bending test. Favorable interfacial adhesion and wettability were revealed by scanning electron microscopy (SEM) observation. Therefore, all of the above good performance make this new-style and environmentally friendly composites have broad application prospects.

  11. Fatigue resistance, debonding force, and failure type of fiber-reinforced composite, polyethylene ribbon-reinforced, and braided stainless steel wire lingual retainers in vitro

    NARCIS (Netherlands)

    Foek, Dave Lie Sam; Yetkiner, Enver; Ozcan, Mutlu

    2013-01-01

    Objective: To analyze the fatigue resistance, debonding force, and failure type of fiber-reinforced composite, polyethylene ribbon-reinforced, and braided stainless steel wire lingual retainers in vitro. Methods: Roots of human mandibular central incisors were covered with silicone, mimicking the pe

  12. Preparation and characterization of glass fibers - polymers (epoxy) bars (GFRP) reinforced concrete for structural applications

    Science.gov (United States)

    Alkjk, Saeed; Jabra, Rafee; Alkhater, Salem

    2016-06-01

    The paper presents some of the results from a large experimental program undertaken at the Department of Civil Engineering of Damascus University. The project aims to study the ability to reinforce and strengthen the concrete by bars from Epoxy polymer reinforced with glass fibers (GFRP) and compared with reinforce concrete by steel bars in terms of mechanical properties. Five diameters of GFRP bars, and steel bars (4mm, 6mm, 8mm, 10mm, 12mm) tested on tensile strength tests. The test shown that GFRP bars need tensile strength more than steel bars. The concrete beams measuring (15cm wide × 15cm deep × and 70cm long) reinforced by GFRP with 0.5 vol.% ratio, then the concrete beams reinforced by steel with 0.89 vol.% ratio. The concrete beams tested on deflection test. The test shown that beams which reinforced by GFRP has higher deflection resistance, than beams which reinforced by steel. Which give more advantage to reinforced concrete by GFRP.

  13. Preparation and characterization of glass fibers – polymers (epoxy bars (GFRP reinforced concrete for structural applications

    Directory of Open Access Journals (Sweden)

    Alkjk Saeed

    2016-06-01

    Full Text Available The paper presents some of the results from a large experimental program undertaken at the Department of Civil Engineering of Damascus University. The project aims to study the ability to reinforce and strengthen the concrete by bars from Epoxy polymer reinforced with glass fibers (GFRP and compared with reinforce concrete by steel bars in terms of mechanical properties. Five diameters of GFRP bars, and steel bars (4mm, 6mm, 8mm, 10mm, 12mm tested on tensile strength tests. The test shown that GFRP bars need tensile strength more than steel bars. The concrete beams measuring (15cm wide × 15cm deep × and 70cm long reinforced by GFRP with 0.5 vol.% ratio, then the concrete beams reinforced by steel with 0.89 vol.% ratio. The concrete beams tested on deflection test. The test shown that beams which reinforced by GFRP has higher deflection resistance, than beams which reinforced by steel. Which give more advantage to reinforced concrete by GFRP.

  14. Flax fiber reinforced PLA composites: studies on types of PLA and different methods of fabrication

    CSIR Research Space (South Africa)

    Kumar, R

    2011-05-01

    Full Text Available hand, injection molded flax fiber reinforced PLA specimens showed higher tensile modulus (TM) (3.0 GPa) than solution cast cum compression molded specimens (1.9 GPa). In addition, the properties of the composites depend on the nature of PLA used...

  15. Modeling of Self-Healing Polymer Composites Reinforced with Nanoporous Glass Fibers

    OpenAIRE

    Privman, Vladimir; Dementsov, Alexander; Sokolov, Igor

    2006-01-01

    We report on our progress towards continuum rate equation modeling, as well as numerical simulations, of self-healing of fatigue in composites reinforced with glue carrying nanoporous fibers. We conclude that with the proper choice of the material parameters, effects of fatigue can be partially overcome and degradation of mechanical properties can be delayed.

  16. Microhardness of resin composite materials light-cured through fiber reinforced composite.

    NARCIS (Netherlands)

    Fennis, W.M.M.; Ray, N.J.; Creugers, N.H.J.; Kreulen, C.M.

    2009-01-01

    OBJECTIVES: To compare polymerization efficiency of resin composite basing materials when light-cured through resin composite and fiber reinforced composite (FRC) by testing microhardness. METHODS: Simulated indirect restorations were prepared by application of resin composite (Clearfil AP-X) or FRC

  17. INTERFACIAL DEBONDING OF COATED-FIBER-REINFORCED COMPOSITES UNDER TENSION-TENSION CYCLIC LOADING

    Institute of Scientific and Technical Information of China (English)

    Shi Zhifei; Zhou Limin

    2000-01-01

    A new degradation function of the friction coefficient is used. Based on the double shear-lag model and Paris formula, the interfacial damage of coated fiber-reinforced composites under tension-tension cyclic loading is studied. The effects of strength and thickness of the coating materials on the debond stress, debond rate as well as debond length are simulated.

  18. In vitro fracture resistance of fiber reinforced cusp-replacing composite restorations.

    NARCIS (Netherlands)

    Fennis, W.M.M.; Tezvergil, A.; Kuijs, R.H.; Lassila, L.V.; Kreulen, C.M.; Creugers, N.H.J.; Vallittu, P.K.

    2005-01-01

    OBJECTIVES: To assess the fracture resistance and failure mode of fiber reinforced composite (FRC) cusp-replacing restorations in premolars. METHODS: Forty-five extracted sound upper premolars were randomly divided into three groups. Identical MOD cavities with simulated buccal cusp fracture and hei

  19. Adhesive Properties of Bonded Orthodontic Retainers to Enamel : Stainless Steel Wire vs Fiber-reinforced Composites

    NARCIS (Netherlands)

    Foek, Dave Lie Sam; Krebs, Eliza; Sandham, John; Ozcan, Mutlu

    2009-01-01

    Purpose: The objectives of this study were to compare the bond strength of a stainless steel orthodontic wire vs various fiber-reinforced composites (FRC) used as orthodontic retainers on enamel, analyze the failure types after debonding, and investigate the influence of different application proced

  20. In vitro fracture resistance of fiber reinforced cusp-replacing composite restorations.

    NARCIS (Netherlands)

    Fennis, W.M.M.; Tezvergil, A.; Kuijs, R.H.; Lassila, L.V.; Kreulen, C.M.; Creugers, N.H.J.; Vallittu, P.K.

    2005-01-01

    OBJECTIVES: To assess the fracture resistance and failure mode of fiber reinforced composite (FRC) cusp-replacing restorations in premolars. METHODS: Forty-five extracted sound upper premolars were randomly divided into three groups. Identical MOD cavities with simulated buccal cusp fracture and hei

  1. Microhardness of resin composite materials light-cured through fiber reinforced composite.

    NARCIS (Netherlands)

    Fennis, W.M.M.; Ray, N.J.; Creugers, N.H.J.; Kreulen, C.M.

    2009-01-01

    OBJECTIVES: To compare polymerization efficiency of resin composite basing materials when light-cured through resin composite and fiber reinforced composite (FRC) by testing microhardness. METHODS: Simulated indirect restorations were prepared by application of resin composite (Clearfil AP-X) or FRC

  2. Seamless metal-clad fiber-reinforced organic matrix composite structures and process for their manufacture

    Science.gov (United States)

    Bluck, Raymond M. (Inventor); Bush, Harold G. (Inventor); Johnson, Robert R. (Inventor)

    1990-01-01

    A metallic outer sleeve is provided which is capable of enveloping a hollow metallic inner member having continuous reinforcing fibers attached to the distal end thereof. The inner member is then introduced into outer sleeve until inner member is completely enveloped by outer sleeve. A liquid matrix member is then injected into space between inner member and outer sleeve. A pressurized heat transfer medium is flowed through the inside of inner member, thereby forming a fiber reinforced matrix composite material. The wall thicknesses of both inner member and outer sleeve are then reduced to the appropriate size by chemical etching, to adjust the thermal expansion coefficient of the metal-clad composite structure to the desired value. thereby forming a fiber reinforced matrix composite material. The wall thicknesses of both inner member and outer sleeve are then reduced to the appropriate size by chemical etching, to adjust the thermal expansion coefficient of the metal-clad composite structure to the desired value. The novelty of this invention resides in the development of a efficient method of producing seamless metal clad fiber reinforced organic matrix composite structures.

  3. A Comprehensive Study of the Polypropylene Fiber Reinforced Fly Ash Based Geopolymer

    DEFF Research Database (Denmark)

    Ranjbar, Navid; Mehrali, Mehdi; Behnia, Arash

    2016-01-01

    and long term impacts of different volume percentages of polypropylene fiber (PPF) reinforcement on fly ash based geopolymer composites. Different characteristics of the composite were compared at fresh state by flow measurement and hardened state by variation of shrinkage over time to assess the response...

  4. Fracture Behavior and Properties of Functionally Graded Fiber-Reinforced Concrete

    Science.gov (United States)

    Roesler, Jeffery; Bordelon, Amanda; Gaedicke, Cristian; Park, Kyoungsoo; Paulino, Glaucio

    2008-02-01

    In concrete pavements, a single concrete mixture design is selected to resist mechanical loading without attempting to adversely affect the concrete pavement shrinkage, ride quality, or noise attenuation. An alternative approach is to design distinct layers within the concrete pavement surface which have specific functions thus achieving higher performance at a lower cost. The objective of this research was to address the structural benefits of functionally graded concrete materials (FGCM) for rigid pavements by testing and modeling the fracture behavior of different combinations of layered plain and synthetic fiber-reinforced concrete materials. Fracture parameters and the post-peak softening behavior were obtained for each FGCM beam configuration by the three point bending beam test. The peak loads and initial fracture energy between the plain, fiber-reinforced, and FGCM signified similar crack initiation. The total fracture energy indicated improvements in fracture behavior of FGCM relative to full-depth plain concrete. The fracture behavior of FGCM depended on the position of the fiber-reinforced layer relative to the starter notch. The fracture parameters of both fiber-reinforced and plain concrete were embedded into a finite element-based cohesive zone model. The model successfully captured the experimental behavior of the FGCMs and predicted the fracture behavior of proposed FGCM configurations and structures. This integrated approach (testing and modeling) demonstrates the viability of FGCM for designing layered concrete pavements system.

  5. Determination of Material Parameters for Microbuckling Analysis of Fiber Reinforced Polymer Matrix Composites

    Directory of Open Access Journals (Sweden)

    Romanowicz M.

    2015-05-01

    Full Text Available This research focuses on studying the effect of the constitutive law adopted for a matrix material on the compressive response of a unidirectional fiber reinforced polymer matrix composite. To investigate this effect, a periodic unit cell model of a unidirectional composite with an initial fiber waviness and inelastic behavior of the matrix was used. The sensitivity of the compressive strength to the hydrostatic pressure, the flow rule and the fiber misalignment angle were presented. The model was verified against an analytical solution and experimental data. Results of this study indicate that a micromechanical model with correctly identified material parameters provides a useful alternative to theoretical models and experimentation.

  6. Determination of Material Parameters for Microbuckling Analysis of Fiber Reinforced Polymer Matrix Composites

    Science.gov (United States)

    Romanowicz, M.

    2015-05-01

    This research focuses on studying the effect of the constitutive law adopted for a matrix material on the compressive response of a unidirectional fiber reinforced polymer matrix composite. To investigate this effect, a periodic unit cell model of a unidirectional composite with an initial fiber waviness and inelastic behavior of the matrix was used. The sensitivity of the compressive strength to the hydrostatic pressure, the flow rule and the fiber misalignment angle were presented. The model was verified against an analytical solution and experimental data. Results of this study indicate that a micromechanical model with correctly identified material parameters provides a useful alternative to theoretical models and experimentation.

  7. FACTORS AFFECTING FATIGUE CRACK GROWTH RATES OF FIBER REINFORCED METAL LAMINATES

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Based upon an analytical model for predicting the crack growth in fiber reinforced metal laminates (FRMLs), some factors affecting the fatigue crack growth rates of FRMLs were analyzed, including the lay-up of FRMLs, the modulus of the fibers, the residual stresses in FRMLs, the bonding strength and the shear modulus of the adhesive, etc.It was shown from the present analysis that the interface number of the laminates, the modulus of the fibers and the residual stresses in FRMLs have very great effects on the fatigue lives of FRMLs, but the effects of the bonding strength and the shear modulus of the adhesive are relatively small.

  8. Fiber-reinforced Composite Resin Prosthesis to Restore Missing Posterior Teeth: A Case Report

    Directory of Open Access Journals (Sweden)

    Pekka Vallittu

    2007-01-01

    Full Text Available A fiber-reinforced composite inlay-onlay FPD was used for a single posterior tooth replacement in a patient refusing implant for psychological reasons. The FRC-FPD was made of pre-impregnated E-glass fibers (everStick, StickTeck, Turku, Finland embedded in a resin matrix (Stick Resin, StickTeck, Turku, Finland. The unidirectional glass fibers were used to make a framework structure with high volume design placed in the pontic (edentulous region. To reproduce the morphology of natural teeth, the framework structure was then veneered with Gradia (GC, Tokyo, Japan.

  9. An Inverse method of elastic constants for unidirectional fiber-reinforced composite plate

    Institute of Scientific and Technical Information of China (English)

    YANG Jing; CUI Lian-jun; XU Jian; CHENG Jian-chun

    2006-01-01

    An inverse method is presented to determine the elastic constants of an experimental sample,a titanium graphite unidirectional fiber-reinforced composite plate,using wavelet transform and neural networks.Optimal algorithms of wavelet transform and neural networks are given here in order to improve the accuracy of inversion results.Coherent results were shown in both fiber direction and cross fiber direction,proving the feasibility of this method.Neither the group velocity of the Lamb wave modes are needed,as in the conventional method,and no direct least-square fitting of the experimental waveforms is necessary.

  10. Fabrication of novel fiber reinforced aluminum composites by friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Arab, Seyyed Mohammad; Karimi, Saeed; Jahromi, Seyyed Ahmad Jenabali, E-mail: jahromi@shirazu.ac.ir; Javadpour, Sirus; Zebarjad, Seyyed Mojtaba

    2015-04-24

    In this study, chopped and attrition milled high strength carbon, E-glass, and S-glass fibers have been used as the reinforcing agents in an aluminum alloy (Al1100) considered as the matrix. The Surface Metal Matrix Composites (SMMCs) then are produced by Friction Stir Processing (FSP). Tensile and micro-hardness examinations represent a magnificent improvement in the hardness, strength, ductility and toughness for all of the processed samples. Scanning Electron Micrographs reveal a proper distribution of the reinforcements in the matrix and a change in the fracture behavior of the FSPed specimens. The synergetic effects of reinforcing by fibers and Severe Plastic Deformation (SPD) lead to an extra ordinary improvement in the mechanical properties.

  11. Analytical solution of magnetothermoelastic interaction in a fiber-reinforced anisotropic material

    Science.gov (United States)

    Hobiny, Aatef D.; Abbas, Ibrahim A.

    2016-12-01

    The present paper is concerned with the investigation of the analytical solution of a fiber-reinforced anisotropic material under generalized magnetothermoelastic theory using the eigenvalue approach. Based on the Lord-Shulman theory, the formulation is applied to generalized magnetothermoelasticity with one relaxation time. Based on eigenvalue approach, exponential Fourier transform and Laplace techniques, the analytical solutions has been obtained. The inverses of Fourier transforms are obtained analytically. Numerical computations for a fiber-reinforced-like material have been performed and the results are presented graphically. The results of the temperature, displacement components and stress components have been verified numerically and are represented graphically. Comparisons are made with the results predicted by the presence and absence of reinforcement.

  12. Processing of thermo-structural carbon-fiber reinforced carbon composites

    Directory of Open Access Journals (Sweden)

    Luiz Cláudio Pardini

    2009-06-01

    Full Text Available The present work describes the processes used to obtain thermostructural Carbon/Carbon composites. The processing of these materials begins with the definition of the architecture of the carbon fiber reinforcement, in the form of stacked plies or in the form of fabrics or multidirectional reinforcement. Incorporating fiber reinforcement into the carbon matrix, by filling the voids and interstices, leads to the densification of the material and a continuous increase in density. There are two principal processing routes for obtaining these materials: liquid phase processing and gas phase processing. In both cases, thermal processes lead to the formation of a carbon matrix with specific properties related to their precursor. These processes also differ in terms of yield. With liquid phase impregnation the yield is around 45 per cent, while gas phase processing yields around 15 per cent.

  13. Effect of silane activation on shear bond strength of fiber-reinforced composite post to resin cement

    OpenAIRE

    Kim, Hyun-Dong; Lee, Joo-Hee; Ahn, Kang-Min; Kim, Hee-Sun; Cha, Hyun-Suk

    2013-01-01

    PURPOSE Among the surface treatment methods suggested to enhance the adhesion of resin cement to fiber-reinforced composite posts, conflicting results have been obtained with silanization. In this study, the effects of silanization, heat activation after silanization, on the bond strength between fiber-reinforced composite post and resin cement were determined. MATERIALS AND METHODS Six groups (n=7) were established to evaluate two types of fiber post (FRC Postec Plus, D.T. Light Post) and th...

  14. Effects of Interface Modification on Mechanical Behavior of Hi-Nicalon Fiber-Reinforced Celsian Matrix Composites

    Science.gov (United States)

    Bansal, Narottam P.; Eldridge, Jeffrey I.

    1997-01-01

    Unidirectional celsian matrix composites having approx. 42 volume percent of uncoated or BN/SiC-coated Hi-Nicalon fibers were tested in three-point bend at room temperature. The uncoated fiber-reinforced composites showed catastrophic failure with strength of 210 +/- 35 MPa and a flat fracture surface. In contrast, composites reinforced with BN/SiC-coated fibers exhibited graceful failure with extensive fiber pullout. Values of first matrix cracking stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 %, respectively, with ultimate strength as high as 960 MPa. The elastic Young's modulus of the uncoated and BN/SiC-coated fiber-reinforced composites were measured as 184 q 4 GPa and 165 +/- 5 GPa, respectively. Fiber push-through tests and microscopic examination indicated no chemical reaction at the uncoated or coated fiber-matrix interface. The low strength of the uncoated fiber-reinforced composite is probably due to degradation of the fibers from mechanical surface damage during processing. Because both the coated and uncoated fiber reinforced composites exhibited weak interfaces, the beneficial effect of the BN-SiC dual layer is primarily the protection of fibers from mechanical damage during processing.

  15. Polypropylene Fibers as Reinforcements of Polyester-Based Composites

    Directory of Open Access Journals (Sweden)

    Gonzalo Martínez-Barrera

    2013-01-01

    Full Text Available Effects of gamma radiation and the polypropylene fibers on compressive properties of polymer concrete composites (PC were studied. The PCs had a composition of 30 wt% of unsaturated polyester resin and 70 wt% of marble particles which have three different sizes (small, medium, and large. The PCs were submitted to 200, 250, and 300 kGy of radiation doses. The results show that the compressive properties depend on the combination of the polypropylene fiber concentration and the applied radiation dose. The compressive strength value is highest when using medium particle size, 0.1 vol% of polypropylene fibers and 250 kGy of dose; moreover, the compressive modulus decreases when increasing the particle size.

  16. A novel basalt fiber-reinforced polylactic acid composite for hard tissue repair.

    Science.gov (United States)

    Chen, Xi; Li, Yan; Gu, Ning

    2010-08-01

    A basalt fiber (BF) was, for the first time, introduced into a poly(l-lactic acid) (PLLA) matrix as innovative reinforcement to fabricate composite materials for hard tissue repair. Firstly, BF/PLLA composites and pure PLLA were produced by the methods of solution blending and freeze drying. The results showed that basalt fibers can be uniformly dispersed in the PLLA matrix and significantly improve the mechanical properties and hydrophilicity of the PLLA matrix. The presence of basalt fibers may retard the polymer degradation rate and neutralize the acid degradation from PLLA. Osteoblasts were cultured in vitro to evaluate the cytocompatibility of the composite. An MTT assay revealed that osteoblasts proliferated well for 7 days and there was little difference found in their viability on both PLLA and BF/PLLA films, which was consistent with the alkaline phosphatase (ALP) activity results. A fluorescent staining observation showed that osteoblasts grew well on the composites. SEM images displayed that osteoblasts tended to grow along the fiber axis. The formation of mineralized nodules was observed on the films by Alizarin red S staining. These results suggest that the presence of basalt fibers does not noticeably affect osteoblastic behavior and the designed composites are osteoblast compatible. It is concluded that basalt fibers, as reinforcing fibers, may have promising applications in hard tissue repair.

  17. Carbon Fiber Reinforced Glass Matrix Composites for Space Based Applications.

    Science.gov (United States)

    1987-08-31

    composite plates were prepared using standard i, c-pressing procedures. The plates were cut into tensile specimens which were then subsequently notched...reinforced HMU composites were prepared using the matrix compositions and hot-pressing parameters shown in Table VI-1. The compositions are identical...shown in Figure VI-6. Traces of a- cristobalite are present in all three composites, with a noticeably larger amount present in the Nb20 5 composite. All

  18. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Matlin, W.M. [Univ. of Tennessee, Knoxville, TN (United States); Stinton, D.P.; Besmann, T.M. [Oak Ridge National Lab., TN (United States)

    1995-08-01

    A two-step forced chemical vapor infiltration process was developed that reduced infiltration times for 4.45 cm dia. by 1.27 cm thick Nicalon{sup +} fiber preforms by two thirds while maintaining final densities near 90 %. In the first stage of the process, micro-voids within fiber bundles in the cloth were uniformly infiltrated throughout the preform. In the second stage, the deposition rate was increased to more rapidly fill the macro-voids between bundles within the cloth and between layers of cloth. By varying the thermal gradient across the preform uniform infiltration rates were maintained and high final densities achieved.

  19. Effect of nanoparticle dispersion on mechanical behavior of polymer matrix and their fiber reinforced composites

    Science.gov (United States)

    Uddin, Mohammed Farid

    Fiber reinforced composites are widely used to achieve weight savings in different construction. However, their used are restricted as their matrix-dominant properties are much weaker than their fiber-dominated properties. The recent advent of nanoparticles has attracted much attention in improving the matrix properties by using various nanoparticles as reinforcements. Due to the lack of well-developed and consistent processing method, experimental results on nanocomposites show a broad spectrum of anomalies in their properties. Dispersion of nanoparticles in the polymeric precursor is often blamed for these inconsistencies in their properties which becomes even worse with high particle loading. In this research, a processing technique has been developed to fabricate very well-dispersed nanocomposite even with high particle loading in order to fully utilize the advantages of nanoparticle reinforcement. An attempt has also been made to modify the conventional sonication method to improve the dispersion by combining the sol-gel and sonication methods to fabricate hybrid nanocomposites. Transmission electronic microscopy has been employed to investigate dispersion quality of nanoparticles. Finally, mechanical characterization has been performed to evaluate the effect of different state of particle dispersion. Once the effect of dispersion is identified, a micromechanical model has been proposed to estimate the strength of particle reinforced composites based on particle/matrix interfacial crack growth. Finite element analyses were performed to validate the experimental results for microparticle reinforced composites. Using the model, effect of particle size has also been validated with experimental results. The model is then further extended to reveal the failure modes in nanocomposite with the support of some experimental evidences. Finally, an effort has been made to evaluate the potential application of the nanoparticle modified resin by fabricating unidirectional

  20. Use of fiber-reinforced composites to improve the durability of bridge elements

    Science.gov (United States)

    Garon, Ronald; Balaguru, P. N.; Cao, Yong; Lee, K. Wayne

    2000-04-01

    Fiber composites made of carbon fibers and organic polymers are being used to strengthen plain, reinforced, and prestressed concrete structures. The composites are becoming more popular as compared to traditional strengthening with steel plates and jackets because they do not corrode and also have a very high strength to weight ratio. Organic polymers have been used as protective coatings for more than thirty years. The impermeable membrane of the polymer seals the concrete surface of the structures preventing the ingress of salts. Their main drawback is their inability to release vapor pressure buildup that causes damage in the concrete and delamination of the bonded fiber reinforced plastic. As a result of this and other weaknesses in the organic polymers, a new generation of breathable coating materials is being developed. These compositions range from epoxy modified portland cement coatings to completely inorganic silicate systems. The durability of five of the most promising compositions was evaluated under freeze-thaw, wet-dry, and scaling conditions. The silicate matrix was also used to bond carbon tows and fabrics to unreinforced concrete members. These beams were tested after exposure to wet-dry and scaling conditions. The results indicate that the inorganic matrix can be effectively used for repairs. The carbon tows can be used to replace the existing corroded reinforcing bars. The possibility of embedding optical fibers with the carbon fibers to monitor the field performance is being studied.

  1. Smart damping of laminated fuzzy fiber reinforced composite shells using 1-3 piezoelectric composites

    Science.gov (United States)

    Kundalwal, S. I.; Kumar, R. Suresh; Ray, M. C.

    2013-10-01

    This paper deals with the investigation of active constrained layer damping (ACLD) of smart laminated continuous fuzzy fiber reinforced composite (FFRC) shells. The distinct constructional feature of a novel FFRC is that the uniformly spaced short carbon nanotubes (CNTs) are radially grown on the circumferential surfaces of the continuous carbon fiber reinforcements. The constraining layer of the ACLD treatment is considered to be made of vertically/obliquely reinforced 1-3 piezoelectric composite materials. A finite element (FE) model is developed for the laminated FFRC shells integrated with the two patches of the ACLD treatment to investigate the damping characteristics of the laminated FFRC shells. The effect of variation of the orientation angle of the piezoelectric fibers on the damping characteristics of the laminated FFRC shells has been studied when the piezoelectric fibers are coplanar with either of the two mutually orthogonal vertical planes of the piezoelectric composite layer. It is revealed that radial growth of CNTs on the circumferential surfaces of the carbon fibers enhances the attenuation of the amplitude of vibrations and the natural frequencies of the laminated FFRC shells over those of laminated base composite shells without CNTs.

  2. Considerations regarding the volume fraction influence on the wear behavior of the fiber reinforced composite systems

    Science.gov (United States)

    Caliman, R.

    2017-08-01

    This paper contains an analysis of the factors that have an influence on the tribological characteristics of the composite material sintered with metal matrix reinforced with carbon fibers. These composites are used generally if it’s needed the wear resistant materials, whereas these composites have high specific strength in conjunction with a good corrosion resistance at low densities and some self-lubricating properties. Through the knowledge of the better tribological properties of the materials and their behavior to wear, can be generated by dry and the wet friction. Thus, where necessary the use of high temperature resistant material with low friction between the elements, carbon fiber composite materials are very suitable because they have: mechanical strength and good ductility, melting temperature on the higher values, higher electrical and thermal conductivity, lower wear speed and lower friction forces. For this purpose, this paper also contains an experimental program based on the evidence of formaldehyde resin made from fiber reinforced Cu-carbon with the aim to specifically determine the volume of fibers fraction for the consolidation of the composite material. In order to determine the friction coefficient and the wear rates of the various fiber reinforced polymer mixtures of carbon have been used special devices with needle-type with steel disc. These tests were conducted in the atmosphere at the room temperature without external lubrication study taking into consideration the sliding different speeds with constant loading task.

  3. Poly(ɛ-caprolactone) composites reinforced by biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fiber.

    Science.gov (United States)

    Ju, Dandan; Han, Lijing; Li, Fan; Chen, Shan; Dong, Lisong

    2014-06-01

    Biodegradable and biosourced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) fiber was used as a reinforcing agent, and environment friendly poly(ɛ-caprolactone) (PCL) composites were prepared by melt compounding. The mechanical properties, rheological properties, and enzymatic degradation of the PCL composites were investigated in detail. With the addition of PHBV fibers, the PCL composites showed increased tensile yielding strength and modulus. Especially, the storage modulus from the results of dynamic mechanical analysis was increased significantly, suggesting that PCL was obviously reinforced by adding PHBV fibers. With increasing the PHBV fiber content, the complex viscosity and modulus of PCL increased, especially at low frequencies, indicating that a network structure was formed in the composites. The network structure resulted in evident solid-like response due to the restriction of the chain mobility of PCL matrix, which was further confirmed by the Han and Cole-Cole plots. The morphology, evaluated by scanning electron microscopy, indicated PCL and PHBV fiber were not highly incompatible and the interfacial adhesion was good, which was beneficial to the reinforcement effect. The biodegradability of the PCL was significantly promoted after composites preparation. Such studies are of great interest in the development of environment friendly composites from biodegradable polymers.

  4. Deformation behavior of FRP-metal composites locally reinforced with carbon fibers

    Science.gov (United States)

    Scholze, M.; Kolonko, A.; Lindner, T.; Lampke, T.; Helbig, F.

    2016-03-01

    This study investigates variations of hybrid laminates, consisting of one aluminum sheet and a unidirectional glass fiber (GF) reinforced polyamide 6 (PA6) basic structure with partial carbon fiber (CF) reinforcement. To create these heterogeneous FRP laminates, it is necessary to design and produce semi-finished textile-based products. Moreover, a warp knitting machine in conjunction with a warp thread offset unit was used to generate bionic inspired compounds. By the variation of stacking prior to the consolidation process of the hybrid laminate, an oriented CF reinforcement at the top and middle layer of the FRP is realized. In both cases the GFRP layer prevents contact between the aluminum and carbon fibers. In so doing, the high strength of carbon fibers can be transferred to the hybrid laminate in load directions with an active prevention of contact corrosion. The interface strength between thermoplastic and metal component was improved by a thermal spray coating on the aluminum sheet. Because of the high surface roughness and porosity, mechanical interlock was used to provide high interface strength without bonding agents between both components. The resulting mechanical properties of the hybrid laminates are evaluated by three point bending tests in different load directions. The effect of local fiber orientation and layer positioning on failure and deformation mechanism is additionally investigated by digital image correlation (DIC).

  5. Effect of fiber-reinforced composites on the failure load and failure mode of composite veneers.

    Science.gov (United States)

    Turkaslan, Suha; Tezvergil-Mutluay, Arzu; Bagis, Bora; Vallittu, Pekka k; Lassila, Lippo V J

    2009-09-01

    This study compared the initial and final failure loads and failure modes of indirect resin composite laminate veneers with and without fiber reinforcement. Forty intact lower canines received standard laminate preparations and were randomly assigned into four test groups (n=10). In Group 1, indirect resin composite veneers were repaired with two layers of preimpregnated bidirectional glass fiber weave and a restorative composite; in Group 2, with a layer of preimpregnated unidirectional glass fibers and a restorative composite; and in Group 3, with an experimental semi-IPN matrix composed of multidirectional short glass fibers. Indirect resin composite veneers without any fiber reinforcement were used as control (Group 4). All specimens were thermocycled and tested with a universal testing machine. On the final failure load, there were no statistically significant differences (p>0.05) among the test groups. Within each group, pairwise comparison of initial and final failure loads revealed statistically significant differences (p0.05). On failure mode, unreinforced specimens showed instantaneous failure, whereas reinforced specimens mostly demonstrated elongated failure.

  6. Exposure Assessment of a High-energy Tensile Test With Large Carbon Fiber Reinforced Polymer Cables.

    Science.gov (United States)

    Schlagenhauf, Lukas; Kuo, Yu-Ying; Michel, Silvain; Terrasi, Giovanni; Wang, Jing

    2015-01-01

    This study investigated the particle and fiber release from two carbon fiber reinforced polymer cables that underwent high-energy tensile tests until rupture. The failing event was the source of a large amount of dust whereof a part was suspected to be containing possibly respirable fibers that could cause adverse health effects. The released fibers were suspected to migrate through small openings to the experiment control room and also to an adjacent machine hall where workers were active. To investigate the fiber release and exposure risk of the affected workers, the generated particles were measured with aerosol devices to obtain the particle size and particle concentrations. Furthermore, particles were collected on filter samples to investigate the particle shape and the fiber concentration. Three situations were monitored for the control room and the machine hall: the background concentrations, the impact of the cable failure, and the venting of the exposed rooms afterward. The results showed four important findings: The cable failure caused the release of respirable fibers with diameters below 3 μm and an average length of 13.9 μm; the released particles did migrate to the control room and to the machine hall; the measured peak fiber concentration of 0.76 fibers/cm(3) and the overall fiber concentration of 0.07 fibers/cm(3) in the control room were below the Permissible Exposure Limit (PEL) for fibers without indication of carcinogenicity; and the venting of the rooms was fast and effective. Even though respirable fibers were released, the low fiber concentration and effective venting indicated that the suspected health risks from the experiment on the affected workers was low. However, the effect of long-term exposure is not known therefore additional control measures are recommended.

  7. The effect of silanated and impregnated fiber on the tensile strength of E-glass fiber reinforced composite retainer

    Directory of Open Access Journals (Sweden)

    Niswati Fathmah Rosyida

    2015-12-01

    Full Text Available Background: Fiber reinforced composite (FRC is can be used in dentistry as an orthodontic retainer. FRC  still has a limitations because of to  a weak bonding between fibers and matrix. Purpose: This research was aimed to evaluate the effect of silane as coupling agent and fiber impregnation on the tensile strength of E-glass FRC. Methods: The samples of this research were classified into two groups each of which consisted of three subgroups, namely the impregnated fiber group (original, 1x addition of silane, 2x addition of silane and the non-impregnated fiber group (original, 1x addition of silane, 2x addition of silane. The tensile strength was measured by a universal testing machine. The averages of the tensile strength in all groups then were compared by using Kruskal Wallis and Mann Whitney post hoc tests. Results: The averages of the tensile strength (MPa in the impregnated fiber group can be known as follow; original impregnated fiber (26.60±0.51, 1x addition of silane (43.38±4.42, and 2x addition of silane (36.22±7.23. The averages of tensile strength (MPa in the non-impregnated fiber group can also be known as follow; original non-impregnated fiber (29.38±1.08, 1x addition of silane (29.38±1.08, 2x addition of silane (12.48±2.37. Kruskal Wallis test showed that there was a significant difference between the impregnated fiber group and the non-impregnated fiber group (p<0.05. Based on the results of post hoc test, it is also known that the addition of silane in the impregnated fiber group had a significant effect on the increasing of the tensile strength of E-glass FRC (p<0.05, while the addition of silane in the non-impregnated fiber group had a significant effect on the decreasing of the tensile strength of E-glass FRC. Conclusion: It can be concluded that the addition of silane in the non-silanated fiber group can increase the tensile strength of E-glass FRC, but the addition of silane in the silanated fiber group can

  8. The importance of material structure in the laser cutting of glass fiber reinforced plastic composites

    Energy Technology Data Exchange (ETDEWEB)

    Caprino, G. (Univ. di Napoli (Italy). Dipt. di Ingegneria dei Materiali e della Produzione); Tagliaferri, V. (Univ. di Salerno (Italy). Istituto di Ingegneria Meccanica); Covelli, L. (IMU-Consiglio Nazionale delle Ricerche, Milano (Italy))

    1995-01-01

    A previously proposed micromechanical formula, aiming to predict the vaporization energy Q[sub v] of composite materials as a function of fiber and matrix properties and fiber volume ratio, was assessed. The experimental data, obtained on glass fiber reinforced plastic panels with different fiber contents cut by a medium power CO[sub 2] cw laser, were treated according to a procedure previously suggested, in order to evaluate Q[sub v]. An excellent agreement was found between experimental and theoretical Q[sub v] values. Theory was then used to predict the response to laser cutting of a composite material with a fiber content varying along the thickness. The theoretical predictions indicated that, in this case, the interpretation of the experimental results may be misleading, bringing to errors in the evaluation of the material thermal properties, or in the prediction of the kerf depth. Some experimental data were obtained, confirming the theoretical findings.

  9. Modeling of the mechanical behavior of fiber-reinforced ceramic composites using finite element method (FEM

    Directory of Open Access Journals (Sweden)

    Dimitrijević M.M.

    2014-01-01

    Full Text Available Modeling of the mechanical behavior of fiber-reinforced ceramic matrix composites (CMC is presented by the example of Al2O3 fibers in an alumina based matrix. The starting point of the modeling is a substructure (elementary cell which includes on a micromechanical scale the statistical properties of the fiber, matrix and fiber-matrix interface and their interactions. The numerical evaluation of the model is accomplished by means of the finite element method. The numerical results of calculating the elastic modulus of the composite dependance on the quantity of the fibers added and porosity was compared to experimental values of specimens having the same composition. [Projekat Ministarstva nauke Republike Srbije, br. ON174004 i TVH to project III45012

  10. A study on biocomposite from local balinese areca catechu l. husk fibers as reinforced material

    Science.gov (United States)

    Kencanawati, C. I. P. K.; Suardana, N. P. G.; Sugita, I. K. G.; Suyasa, I. W. B.

    2017-05-01

    Untapped areca catechu l. husk fibers optimally can cause pollution to the environment. Therefore it is necessary to learn the characteristics of local balinese areca catechu l. husk fibers, such as physical, chemical, morphological, and mechanical. AHF testing the tensile strength with a single pull fiber test in accordance with ASTM D 3379 in the amount of 146-152 MPa. While the observation of the physical properties, of local balinese areca catechu l. husk fibers have a diameter and length variations of each 250-540 μm and 9.24 to 55.20 mm, with an aspect ratio of between 31.43 to 102.22, density ranges between 0:48 - 0.74 kg / cm3, absorption lower water (90-150%) when compared to AHF grows in other areas. From this study it appears that local Bali AHF can be used as reinforcement in composite replacement for synthetic fibers.

  11. Mechanical Properties of Wood Flour Reinforced High Density Polyethylene Composites with Basalt Fibers

    Directory of Open Access Journals (Sweden)

    Guojun LU

    2014-12-01

    Full Text Available Basalt fibers (BFs were surface-treated with a vinyl triethoxy silane coupling agent to improve the mechanical properties of wood fiber-reinforced high density polyethylene (HDPE composites. Basalt fibers were characterized with SEM and FT-IR. The effects of the basalt fiber content and apparent morphology on the mechanical properties of the hybrid composites were investigated in this paper. The results show that the BF coated with the vinyl triethoxy silane coupling agent resulted in an improvement in mechanical properties due to the increased interfacial compatibility between the BF and HDPE. The flexural strength and impact properties significantly increased with 4 wt.% modified basalt fibers. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6441

  12. TPS/LDPE blends reinforced with lignocellulose fibers; Compositos TPS/LDPE reforcados com fibras lignocelulosicas

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, G.K.; Andrade, C.T., E-mail: kloc@ima.ufrj.b [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas Eloisa Mano

    2010-07-01

    Because of their abundance, availability, low abrasiveness and mechanical properties, cellulose fibers have been frequently chosen as reinforcing fillers in composites. Castor bean cake, the residue from biodiesel production, is rich in lignocellulose fibers and proteins. One of these proteins is ricin, a toxin protein. In this work, ricin was denatured by heat treatment in water at 90 deg C for 4 h. Thermoplastic starch (TPS), low density polyethylene (LDPE), maleated polyethylene (used as the compatibilizing agent), and an organophilic clay were processed in the presence of different contents of heat treated castor bean cake. Processing was carried out in a single-screw extruder, at 400 rpm, with heat zones at 130 deg C, 135 deg C, 135 deg C and 130 deg C (from feed zone to die end). The structural and mechanical properties of the resulting polymeric composites were investigated, and revealed the reinforcing effect of the partially purified cellulose fibers. (author)

  13. Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites.

    Science.gov (United States)

    Bekyarova, E; Thostenson, E T; Yu, A; Kim, H; Gao, J; Tang, J; Hahn, H T; Chou, T-W; Itkis, M E; Haddon, R C

    2007-03-27

    We report an approach to the development of advanced structural composites based on engineered multiscale carbon nanotube-carbon fiber reinforcement. Electrophoresis was utilized for the selective deposition of multi- and single-walled carbon nanotubes (CNTs) on woven carbon fabric. The CNT-coated carbon fabric panels were subsequently infiltrated with epoxy resin using vacuum-assisted resin transfer molding (VARTM) to fabricate multiscale hybrid composites in which the nanotubes were completely integrated into the fiber bundles and reinforced the matrix-rich regions. The carbon nanotube/carbon fabric/epoxy composites showed approximately 30% enhancement of the interlaminar shear strength as compared to that of carbon fiber/epoxy composites without carbon nanotubes and demonstrate significantly improved out-of-plane electrical conductivity.

  14. Design and realization a skiff racing boat hull made of natural fibers reinforced composite

    Science.gov (United States)

    Collotta, M.; Solazzi, L.; Pandini, S.; Tomasoni, G.; Alberti, M.; Donzella, G.

    2016-05-01

    This paper discusses the development of a racing boat with an hull made of a composite material reinforced by natural fibers. In particular, we report here the design and realization of the boat hull, the assessment of its mechanical performance by means of a computer assisted simulation, and the cost analysis to assess the economic sustainability of the new composite developed. The results have shown that the new composite has a performance comparable with conventional glass fiber reinforced composites employed for the realization of this type of boat, accordingly to the technology employed and the lamination sequence adopted. Moreover, the FEM analysis performed over the skiff of the designed and constructed boat has demonstrated a successful choice of the material for real application, as it was later confirmed by the good performance of the boat in water. Finally, the cost analysis highlighted the economic sustainability of the new composite, allowing a cost saving of over 28% with respect to carbon fiber composites.

  15. Fracture mechanics in fiber reinforced composite materials, taking as examples B/A1 and CRFP

    Science.gov (United States)

    Peters, P. W. M.

    1982-01-01

    The validity of linear elastic fracture mechanics and other fracture criteria was investigated with laminates of boron fiber reinforced aluminum (R/A1) and of carbon fiber reinforced epoxide (CFRP). Cracks are assessed by fracture strength Kc or Kmax (critical or maximum value of the stress intensity factor). The Whitney and Nuismer point stress criterion and average stress criterion often show that Kmax of fiber composite materials increases with increasing crack length; however, for R/A1 and CFRP the curve showing fracture strength as a function of crack length is only applicable in a small domain. For R/A1, the reason is clearly the extension of the plastic zone (or the damage zone n the case of CFRP) which cannot be described with a stress intensity factor.

  16. Bootstrap Method for Detecting Damage in Carbon Fiber Reinforced Plastic Using a Macro Fiber Composite Sensor

    OpenAIRE

    DJANSENA, Alradix; 田中, 宏明; 工藤, 亮

    2015-01-01

    CFRP has been used in aircraft structures for decades. Although CFRP is light, its laminationis its main weakness. We have developed a new method to increase the probability of detectingdelamination in carbon fiber reinforced plastic (CFRP) by narrowing the confidence interval ofthe changes in natural frequency. The changes in the natural frequency in delaminated CFRPare tiny compared with measurement errors. We use the bootstrap method, a statisticaltechnique that increases the estimation ac...

  17. Identification of Damage Types in Carbon Fiber Reinforced Plastic Laminates by a Novel Optical Fiber Acoustic Emission Sensor

    OpenAIRE

    Yu, Fengming; Wu, Qi; Okabe, Yoji; Kobayashi, Satoshi; Saito, Kazuya

    2014-01-01

    International audience; In this research, phase-shifted FBG (PS-FBG) sensor was employed to practical AE detection for carbon fiber reinforced plastic (CFRP) composite laminate. Firstly, we evaluated the characteristics of AE signals detected by this kind of sensor. Secondly, through the experiment and simulation concerning AE source orientation, quantitative information about the standard for discriminating the AE signals due to transverse cracks and delaminations was obtained. Finally, acco...

  18. Mycelium reinforced agricultural fiber bio-composites: Summary of research

    Science.gov (United States)

    Industry and the public sector have a growing interest in utilizing natural fibers, such as agricultural substrates, in the manufacture of components and products currently manufactured from fossil fuels. A patented process, developed by Ecovative Design, LLC (Ecovative), for growing fungal species ...

  19. Characteristics and applications of high-performance fiber reinforced asphalt concrete

    Science.gov (United States)

    Park, Philip

    Steel fiber reinforced asphalt concrete (SFRAC) is suggested in this research as a multifunctional high performance material that can potentially lead to a breakthrough in developing a sustainable transportation system. The innovative use of steel fibers in asphalt concrete is expected to improve mechanical performance and electrical conductivity of asphalt concrete that is used for paving 94% of U. S. roadways. In an effort to understand the fiber reinforcing mechanisms in SFRAC, the interaction between a single straight steel fiber and the surrounding asphalt matrix is investigated through single fiber pull-out tests and detailed numerical simulations. It is shown that pull-out failure modes can be classified into three types: matrix, interface, and mixed failure modes and that there is a critical shear stress, independent of temperature and loading rate, beyond which interfacial debonding will occur. The reinforcing effects of SFRAC with various fiber sizes and shapes are investigated through indirect tension tests at low temperature. Compared to unreinforced specimens, fiber reinforced specimens exhibit up to 62.5% increase in indirect tensile strength and 895% improvements in toughness. The documented improvements are the highest attributed to fiber reinforcement in asphalt concrete to date. The use of steel fibers and other conductive additives provides an opportunity to make asphalt pavement electrically conductive, which opens up the possibility for multifunctional applications. Various asphalt mixtures and mastics are tested and the results indicate that the electrical resistivity of asphaltic materials can be manipulated over a wide range by replacing a part of traditional fillers with a specific type of graphite powder. Another important achievement of this study is development and validation of a three dimensional nonlinear viscoelastic constitutive model that is capable of simulating both linear and nonlinear viscoelasticity of asphaltic materials. The

  20. Mechanical and Electrochemical Performance of Carbon Fiber Reinforced Polymer in Oxygen Evolution Environment

    Directory of Open Access Journals (Sweden)

    Ji-Hua Zhu

    2016-11-01

    Full Text Available Carbon fiber-reinforced polymer (CFRP is recognized as a promising anode material to prevent steel corrosion in reinforced concrete. However, the electrochemical performance of CFRP itself is unclear. This paper focuses on the understanding of electrochemical and mechanical properties of CFRP in an oxygen evolution environment by conducting accelerated polarization tests. Different amounts of current density were applied in polarization tests with various test durations, and feeding voltage and potential were measured. Afterwards, tensile tests were carried out to investigate the failure modes for the post-polarization CFRP specimens. Results show that CFRP specimens had two typical tensile-failure modes and had a stable anodic performance in an oxygen evolution environment. As such, CFRP can be potentially used as an anode material for impressed current cathodic protection (ICCP of reinforced concrete structures, besides the fact that CFRP can strengthen the structural properties of reinforced concrete.

  1. Simulation of a Novel Joining Process for Fiber-Reinforced Thermoplastic Composites and Metallic Components

    Science.gov (United States)

    Gude, M.; Freund, A.; Vogel, C.; Kupfer, R.

    2017-01-01

    In this study, a new joining technology to produce hybrid structures with continuous-fiber-reinforced thermoplastics and metallic components is presented adapting the concept of classical clinching for thermoplastic composites. To demonstrate the capability of the thermoclinching process, prototypic joints were manufactured using an experimental joining installation developed. Nondestructive and destructive analyses of the thermoclinched joints showed that a relocation of the reinforcement into the neck and head area of the joining zone could be achieved. For a first estimation of the maximum load-carrying capacity of the joints, single-lap specimens with both reinforced and nonreinforced thermoplastics were manufactured and tested, revealing up to 50% higher failure loads of the reinforced joints. To understand the local material configuration and to achieve a defined and adjustable fabric structure in the head area of the joint, further analyses with regard to material- and tool-side conditions of the joining zone are necessary.

  2. Micro-mechanical analysis of damage growth and fracture in discontinuous fiber reinforced metal matrix composites

    Science.gov (United States)

    Goree, James G.; Richardson, David E.

    1990-01-01

    The near-crack-tip stresses in any planar coupon of arbitrary geometry subjected to mode 1 loading may be equated to those in an infinite center-cracked panel subjected to the appropriate equivalent remote biaxial stresses (ERBS). Since this process can be done for all such mode 1 coupons, attention may be focused on the behavior of the equivalent infinite cracked panel. To calculate the ERBS, the constant term in the series expansion of the crack-tip stress must be retained. It is proposed that the ERBS may be used quantitatively to explain different fracture phenomena such as crack branching.

  3. Mechanical and tribological properties of short discontinuous UHMWPE fiber reinforced UHMWPE

    NARCIS (Netherlands)

    Hofste, JM; vanVoorn, B; Pennings, AJ

    1997-01-01

    The tribological properties of Ultra-High Molecular Weight Polyethylene have generated new concern regarding the long-term clinical performance of total joint replacements. To extend the lifetime of artificial joints, it is necessary to decrease the wear rate of UHMWPE. One possible solution is the

  4. Mechanical characterization and structural analysis of recycled fiber-reinforced-polymer resin-transfer-molded beams

    Science.gov (United States)

    Tan, Eugene Wie Loon

    1999-09-01

    The present investigation was focussed on the mechanical characterization and structural analysis of resin-transfer-molded beams containing recycled fiber-reinforced polymers. The beams were structurally reinforced with continuous unidirectional glass fibers. The reinforcing filler materials consisted entirely of recycled fiber-reinforced polymer wastes (trim and overspray). The principal resin was a 100-percent dicyclo-pentadiene unsaturated polyester specially formulated with very low viscosity for resin transfer molding. Variations of the resin transfer molding technique were employed to produce specimens for material characterization. The basic materials that constituted the structural beams, continuous-glass-fiber-reinforced, recycled-trim-filled and recycled-overspray-filled unsaturated polyesters, were fully characterized in axial and transverse compression and tension, and inplane and interlaminar shear, to ascertain their strengths, ultimate strains, elastic moduli and Poisson's ratios. Experimentally determined mechanical properties of the recycled-trim-filled and recycled-overspray-filled materials from the present investigation were superior to those of unsaturated polyester polymer concretes and Portland cement concretes. Mechanical testing and finite element analyses of flexure (1 x 1 x 20 in) and beam (2 x 4 x 40 in) specimens were conducted. These structurally-reinforced specimens were tested and analyzed in four-point, third-point flexure to determine their ultimate loads, maximum fiber stresses and mid-span deflections. The experimentally determined load capacities of these specimens were compared to those of equivalent steel-reinforced Portland cement concrete beams computed using reinforced concrete theory. Mechanics of materials beam theory was utilized to predict the ultimate loads and mid-span deflections of the flexure and beam specimens. However, these predictions proved to be severely inadequate. Finite element (fracture propagation

  5. Recycled newspaper fibers as reinforcing fillers in thermoplastics. Part I, Analysis of tensile and impact properties in polypropylene

    Science.gov (United States)

    A. R. Sanadi; R. A. Young; C. Clemons; R. M. Rowell

    1994-01-01

    Recycled newspaper fibers (ONP) are potentially outstanding nonabrasive reinforcing fibers with high specific properties. In this study, a high energy thermokinetic mixer was used to mix these fibers in a polypropylene (PP) matrix, and the blends were then injection molded in order to observe the tensile and impact strengths of the composites. A 40% (weight) of ONP in...

  6. Numerical approach of the injection molding process of fiber-reinforced composite with considering fiber orientation

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Thi, T. B., E-mail: thanhbinh.skku@gmail.com, E-mail: yokoyama@kit.ac.jp; Yokoyama, A., E-mail: thanhbinh.skku@gmail.com, E-mail: yokoyama@kit.ac.jp [Department of Advanced Fibro-Science, Kyoto Institute of Technology (Japan); Ota, K., E-mail: kei-ota@toyobo.jp, E-mail: katsuhiro-kodama@toyobo.jp, E-mail: katsuhisa-yamashita@toyobo.jp, E-mail: yumiko-isogai@toyobo.jp, E-mail: kenji-furuichi@toyobo.jp, E-mail: chisato-nonomura@toyobo.jp; Kodama, K., E-mail: kei-ota@toyobo.jp, E-mail: katsuhiro-kodama@toyobo.jp, E-mail: katsuhisa-yamashita@toyobo.jp, E-mail: yumiko-isogai@toyobo.jp, E-mail: kenji-furuichi@toyobo.jp, E-mail: chisato-nonomura@toyobo.jp; Yamashita, K., E-mail: kei-ota@toyobo.jp, E-mail: katsuhiro-kodama@toyobo.jp, E-mail: katsuhisa-yamashita@toyobo.jp, E-mail: yumiko-isogai@toyobo.jp, E-mail: kenji-furuichi@toyobo.jp, E-mail: chisato-nonomura@toyobo.jp; Isogai, Y., E-mail: kei-ota@toyobo.jp, E-mail: katsuhiro-kodama@toyobo.jp, E-mail: katsuhisa-yamashita@toyobo.jp, E-mail: yumiko-isogai@toyobo.jp, E-mail: kenji-furuichi@toyobo.jp, E-mail: chisato-nonomura@toyobo.jp; Furuichi, K., E-mail: kei-ota@toyobo.jp, E-mail: katsuhiro-kodama@toyobo.jp, E-mail: katsuhisa-yamashita@toyobo.jp, E-mail: yumiko-isogai@toyobo.jp, E-mail: kenji-furuichi@toyobo.jp, E-mail: chisato-nonomura@toyobo.jp; Nonomura, C., E-mail: kei-ota@toyobo.jp, E-mail: katsuhiro-kodama@toyobo.jp, E-mail: katsuhisa-yamashita@toyobo.jp, E-mail: yumiko-isogai@toyobo.jp, E-mail: kenji-furuichi@toyobo.jp, E-mail: chisato-nonomura@toyobo.jp [Toyobo Co., LTD. Research Center (Japan)

    2014-05-15

    One of the most important challenges in the injection molding process of the short-glass fiber/thermoplastic composite parts is being able to predict the fiber orientation, since it controls the mechanical and the physical properties of the final parts. Folgar and Tucker included into the Jeffery equation a diffusive type of term, which introduces a phenomenological coefficient for modeling the randomizing effect of the mechanical interactions between the fibers, to predict the fiber orientation in concentrated suspensions. Their experiments indicated that this coefficient depends on the fiber volume fraction and aspect ratio. However, a definition of the fiber interaction coefficient, which is very necessary in the fiber orientation simulations, hasn't still been proven yet. Consequently, this study proposed a developed fiber interaction model that has been introduced a fiber dynamics simulation in order to obtain a global fiber interaction coefficient. This supposed that the coefficient is a sum function of the fiber concentration, aspect ratio, and angular velocity. The proposed model was incorporated into a computer aided engineering simulation package C-Mold. Short-glass fiber/polyamide-6 composites were produced in the injection molding with the fiber weight concentration of 30 wt.%, 50 wt.%, and 70 wt.%. The physical properties of these composites were examined, and their fiber orientation distributions were measured by micro-computed-tomography equipment μ-CT. The simulation results showed a good agreement with experiment results.

  7. Simulation of Glass Fiber Forming Processes

    DEFF Research Database (Denmark)

    Von der Ohe, Renate

    Two glass fiber forming processes have been simulated using FEM, which are the drawing of continuous glass fibers for reinforcement purposes and the spinning of discontinuous glass fibers - stone wool for insulation. The aim of this work was to set up a numerical model for each process, and to use...

  8. Crystallization kinetics and thermal resistance of bamboo fiber reinforced biodegradable polymer composites

    Science.gov (United States)

    Thumsorn, S.; Srisawat, N.; On, J. Wong; Pivsa-Art, S.; Hamada, H.

    2014-05-01

    Bamboo fiber reinforced biodegradable polymer composites were prepared in this study. Biodegradable poly(butylene succinate) (PBS) was blended with bamboo fiber in a twin screw extruder with varied bamboo content from 20-0wt%. PBS/bamboo fiber composites were fabricated by compression molding process. The effect of bamboo fiber contents on properties of the composites was investigated. Non-isothermal crystallization kinetic study of the composites was investigated based on Avrami equation. The kinetic parameters indicated that bamboo fiber acted as heterogeneous nucleation and enhanced crystallinity of the composites. Bamboo fiber was well dispersed on PBS matrix and good adhered with the matrix. Tensile strength of the composites slightly deceased with adding bamboo fiber. However, tensile modulus and impact strength of the composites increased when increasing bamboo fiber contents. It can be noted that bamboo fiber promoted crystallization and crystallinity of PBS in the composites. Therefore, the composites were better in impact load transferring than neat PBS, which exhibited improving on impact performance of the composites.

  9. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites.

    Science.gov (United States)

    Wang, Z; Georgarakis, K; Nakayama, K S; Li, Y; Tsarkov, A A; Xie, G; Dudina, D; Louzguine-Luzgin, D V; Yavari, A R

    2016-04-12

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses.

  10. Glass-Fiber-Reinforced Metallic Tanks for Cryogenic Service

    Science.gov (United States)

    1967-06-01

    Scnd. /8i.-i GF c1,0X-50/6A 3 2 1-,hL -1 D CRIPTlON A I -~m G F 𔄃 ZL / -- -3.83 C -- 4 ic ,-Z4-17- P4 T B. COOj i - PARTO A I IO .O. ,<T 01000 a NAS H...for the winding shaft to a vertical position. E. Secure the metal-shell/shaft assembly in the threaded mount. Thread the shaft into the mount until...B. Crank the machine mount for the winding shaft to a vertical position. C. Select four prefabricated head reinforcements and weigh each. Record

  11. In situ cure monitoring of advanced fiber reinforced composites

    Science.gov (United States)

    Powell, Graham R.; Crosby, Peter A.; Fernando, Gerard F.; France, Chris M.; Spooncer, Ronald C.; Waters, David N.

    1995-04-01

    This paper describes a comparative study of in-situ cure monitoring and cure modelling by three methods: (a) evanescent wave spectroscopy, (b) refractive index change, (c) near- infrared spectroscopy. Optical fibers were embedded into aerospace epoxy resins during the manufacturing process of the composite. The cure characteristics were then tracked in real- time during the processing of the material via evanescent wave interaction. This technique is based upon monitoring of characteristic infrared absorption bands of the resin system to find the concentration of the epoxy and amine hardener as a function of cure time. Hence this technique is suitable for on-line process monitoring and optimization. Results obtained from the optical fiber sensors were used to model the curing behavior of the resin system. The results were compared with near-infrared spectroscopy and differential scanning calorimetry experiments carried out under similar conditions. The feasibility of utilizing refractive index changes to monitor the extent of cure has also been demonstrated.

  12. Aspects regarding wearing behaviour in case of aluminium composite materials reinforced with carbon fibers

    Science.gov (United States)

    Caliman, R.

    2016-08-01

    This paper presents a study regarding wear comportment of sintered composite materials obtained by mixture of aluminium with short carbon fibers. The necessity to satisfying more and more the specific functions during design of high performance structures leads to perform multi-materials such as reinforced composite parts. The wear tests were made on three different orientations of fibers on a standard machine of tribology, pin disk type. Counter-disk was made of cast iron with a superficial hardness of 92 HB. The wear rate and friction coefficient decreased exponentially with time of friction and reached a stationary value. This behaviour was attributed to the development of a lubricating film on the friction surface. To conduct this work was performed measurements on samples from the Al matrix composites and carbon fiber 43%, wear mechanism was investigated by scanning electron microscopy. In addition to fiber orientation, the tribological behaviour of metal matrix composites reinforced with fiber is influenced by the interfacial reaction of fiber-matrix. The characteristics and the dimensions of the interface depend on the cycle of temperature and time at which the material has been subjected during the manufacturing process and thereafter.

  13. Manufacturing and Structural Feasibility of Natural Fiber Reinforced Polymeric Structural Insulated Panels for Panelized Construction

    Directory of Open Access Journals (Sweden)

    Nasim Uddin

    2011-01-01

    Full Text Available Natural fibers are emerging in the fields of automobile and aerospace industries to replace the parts such as body panels, seats, and other parts subjected to higher bending strength. In the construction industries, they have the potential to replace the wood and oriented strand boards (OSB laminates in the structural insulated panels (SIPs. They possess numerous advantages over traditional OSB SIPs such as being environmental friendly, recyclable, energy efficient, inherently flood resistant, and having higher strength and wind resistance. This paper mainly focuses on the manufacturing feasibility and structural characterization of natural fiber reinforced structural insulated panels (NSIPs using natural fiber reinforced polymeric (NFRP laminates as skin. To account for the use of natural fibers, the pretreatments are required on natural fibers prior to use in NFRP laminates, and, to address this issue properly, the natural fibers were given bleaching pretreatments. To this end, flexure test and low-velocity impact (LVI tests were carried out on NSIPs in order to evaluate the response of NSIPs under sudden impact loading and uniform bending conditions typical of residential construction. The paper also includes a comparison of mechanical properties of NSIPs with OSB SIPs and G/PP SIPs. The results showed significant increase in the mechanical properties of resulting NSIP panels mainly a 53% increase in load-carrying capacity compared to OSB SIPs. The bending modulus of NSIPs is 190% higher than OSB SIPs and 70% weight reduction compared to OSB SIPs.

  14. DETERMINATION OF EFFECTIVE PROPERTIES OF FIBER-REINFORCED COMPOSITE LAMINATES

    Directory of Open Access Journals (Sweden)

    Andrzej Skrzat

    2014-06-01

    Full Text Available The determination of effective mechanical properties of multi-layer composite is presented in this paper. Computations based on finite element method predicting properties of inhomogeneous materials require solving huge tasks. More effective is Mori-Tanaka approach, typical for micromechanics problems. For regularly distributed fibers closed-forms for effective composite material properties are possible to derive. The results of homogenization are used in strength analysis of the composite pressure vessel.

  15. Use of Fiber Reinforced Plastics in the Marine Industry

    Science.gov (United States)

    1990-09-06

    applications. * More high-heat polyethylene terephthalate PET materials. • A polyphenylene sulfide sulfone grade for underhood use. • Long-steel-fiber...phenolics, melamines , silicones, dallyl phtalate, some epoxies. Molds Single- or multiple-cavity hardened and chrome plated molds, usually cored for steam or...aldehyde, particularly of non-volatile material Portion remaining as phenol with formaldehyde . Used in high- solid under specific conditions short of decom

  16. Mullite fiber reinforced reaction bonded Si{sub 3}N{sub 4} composites

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, T.; Lightfoot, A.; Haggerty, J. [Massachusetts Institute of Technology, Cambridge, MA (United States); Sayir, A. [NASA Lewis Research Center, Cleveland, OH (United States)

    1996-12-31

    Fracture toughnesses of brittle ceramic materials have been improved by introducing reinforcements and carefully tailored interface layers. Silicon carbide and Si{sub 3}N{sub 4} have been emphasized as matrices of structural composites intended for high temperature service because they combine excellent mechanical, chemical, thermal and physical properties. Both matrices have been successfully toughened with SiC fibers, whiskers and particles for ceramic matrix composite (CMC) parts made by sintering, hot pressing or reaction forming processes. These SiC reinforced CMCs have exhibited significantly improved toughnesses at low and intermediate temperature levels, as well as retention of properties at high temperatures for selected exposures; however, they are vulnerable to attack from elevated temperature dry and wet oxidizing atmospheres after the matrix has cracked. Property degradation results from oxidation of interface layers and/or reinforcements. The problem is particularly acute for small diameter ({approximately}20 {mu}m) polymer derived SiC fibers used for weavable toes. This research explored opportunities for reinforcing Si{sub 3}N{sub 4} matrices with fibers having improved environmental stability; the finding should also be applicable to SiC matrix CMCs.

  17. Evaluation of Hybrid Reinforcement (Fiber-Reinforced-Plastic Rod with Steel Core)

    Science.gov (United States)

    1993-08-01

    Kaci, S. (1992), "Cables Composites pour la Precontrainte : Etude de la Relaxation," Advanced Composite Materials in Bridges and Structures, 1st...Nishizaki, I., Sasaki, I. (1992), "Evaluation of the Durability of Advanced Composites for Applications to Prestressed Concrete Bridges ," Advanced...7:4 z ... ýs (*AA4 - 2-0 4 Theodor Krauthammer Professor of Civil Engineering ABSTRACT The corrosion of concrete reinforcement is a problem that

  18. Simultaneous thermal analysis and thermodilatometry of hybrid fiber reinforced UHPC

    Science.gov (United States)

    Scheinherrová, Lenka; Fořt, Jan; Pavlík, Zbyšek; Černý, Robert

    2017-07-01

    Development of concrete technology and the availability of variety of materials such as silica fume, mineral microfillers and high-range water-reducing admixtures make possible to produce Ultra-High Performance Concrete (UHPC) with compressive strength higher than 160 MPa. However, UHPC is prone to spall under high temperatures what limits its use for special applications only, such as offshore and marine structures, industrial floors, security barriers etc. The spalling is caused by the thermal stresses due to the temperature gradient during heating, and by the splitting force owing to the release of water vapour. Hybrid fibre reinforcement based on combination of steel and polymer fibres is generally accepted by concrete community as a functional solution preventing spalling. In this way, Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) is produced possessing high mechanical strength, durability and resistance to water and salt ingress. Since UHPFRC find use in construction industry in tunnel linings, precast tunnel segments, and high-rise buildings, its behaviour during the high-temperature exposure and its residual parameters are of the particular importance. On this account, Simultaneous Thermal Analysis (STA) and Thermodilatometry Analysis (TDA) were done in the paper to identify the structural and chemical changes in UHPFRC during its high-temperature load. Based on the experimental results, several physical and chemical processes that studied material underwent at high-temperatures were recognized. The obtained data revealed changes in the composition of the studied material and allowed identification of critical temperatures for material damage.

  19. Impact Resistance Behaviour of Banana Fiber Reinforced Slabs

    Science.gov (United States)

    Che Muda, Zakaria; Syamsir, Agusril; Nasharuddin Mustapha, Kamal; Rifdy Samsudin, Muhamad; Thiruchelvam, Sivadass; Usman, Fathoni; Beddu, Salmia; Liyana Mohd Kamal, Nur; Ashraful Alam, Md; Birima, Ahmed H.; Zaroog, O. S.

    2016-03-01

    This paper investigate the performance of banana fibre reinforced slabs 300mm × 300mm size with varied thickness subjected to low impact projectile test. A self-fabricated drop-weight impact test rig with a steel ball weight of 1.25 kg drop at 1 m height has been used in this research work. The main variables for the study is to find the relationship of the impact resistance against the BF contents and slab thickness. A linear relationship has been established between first and ultimate crack resistance against BF contents and slab thickness by the experiment. The linear relationship has also been established between the service (first) crack and ultimate crack resistance against the BF contents for a constant spacing for various banana fibre reinforced slab thickness. The increment in BF content has more effect on the first crack resistance than the ultimate crack resistance. The linear relationship has also been established between the service (first) crack and ultimate crack resistance against the various slab thickness. Overall 1.5% BF content with slab thickness of 40 mm exhibit better first and ultimate crack resistance up to 16 times and up to 17 times respectively against control slab (without BF)

  20. Ice Abrasion on Fiber Reinforced Concrete : A Study on the Effects of Various Types of Fiber and the Reliability of the Laboratory Measurements

    OpenAIRE

    Sætre, Kristian

    2014-01-01

    The purpose of this study has been to compare how fiber reinforced concretes, using different amounts and types of fiber, behave compared to standard offshore concretes without fiber in regard to ice abrasion. The effect of fiber addition on the freeze-thaw resistance has also been studied. Due to various observations during testing, a large part of this study has gradually come to deal with the accuracy and the reliability of the measurement equipment and methods used during these ice abrasi...

  1. Fiber-reinforced composite analysis using optical coherence tomography after mechanical and thermal cycling

    Science.gov (United States)

    Kyotoku, B. B. C.; Braz, A. K. S.; Braz, R.; Gomes, A. S. L.

    2007-02-01

    Fiber-reinforced composites are new materials which have been used for a variety of dental applications, including tooth splinting, replacement of missing teeth, treatment of dental emergencies, reinforcement of resin provisional fixed prosthodontic restorations, orthodontic retention, and other clinical applications. Different fiber types are available, but little clinical information has been disseminated. The traditional microscopy investigation, most commonly used to study this material, is a destructive technique, which requires specimen sectioning and are essentially surface measurements. On the basis of these considerations, the aim of this research is to analyze the interior of a dental sample reinforced with fiber after a mechanical and thermal cycling to emulate oral conditions using optical coherence tomography (OCT). The device we are using is a home built Fourier domain OCT working at 800 nm with 6 μm resolution. The results are compared with microscopy images to validate OCT as a working method. In long term, fractures allow bacterial invasion provoking plaque and calculus formation that can cause caries and periodontal disease. Therefore, non invasive imaging of the bridge fiber enables the possibility of periodic clinical evaluation to ensure the patient health. Furthermore, OCT images can provide a powerful method for quantitative analysis of crack propagation, and can potentially be used for in vivo assessment.

  2. Bond of reinforcing bars in self-compacting steel fiber reinforced concrete

    NARCIS (Netherlands)

    Schumacher, P.; Bigaj-van Vliet, A.J.; Braam, C.R.; Walraven, J.C.

    2002-01-01

    Plain concrete demonstrates a rather brittle behavior both under compression and tension. By adding steel fibers, the post-cracking behavior becomes more ductile and an increase of the strain capacity under tension and compression is found. The research project currently being carried out aims at th

  3. Effect of Fiber Geometry and Representative Volume Element on Elastic and Thermal Properties of Unidirectional Fiber-Reinforced Composites

    Directory of Open Access Journals (Sweden)

    Siva Bhaskara Rao Devireddy

    2014-01-01

    Full Text Available The aim of present work is focused on the evaluation of elastic and thermal properties of unidirectional fiber-reinforced polymer composites with different volume fractions of fiber up to 0.7 using micromechanical approach. Two ways for calculating the material properties, that is, analytical and numerical approaches, were presented. In numerical approach, finite element analysis was used to evaluate the elastic modulus and thermal conductivity of composite from the constituent material properties. The finite element model based on three-dimensional micromechanical representative volume element (RVE with a square and hexagonal packing geometry was implemented by using finite element code ANSYS. Circular cross section of fiber and square cross section of fiber were considered to develop RVE. The periodic boundary conditions are applied to the RVE to calculate elastic modulus of composite. The steady state heat transfer simulations were performed in thermal analysis to calculate thermal conductivity of composite. In analytical approach, the elastic modulus is calculated by rule of mixture, Halpin-Tsai model, and periodic microstructure. Thermal conductivity is calculated analytically by using rule of mixture, the Chawla model, and the Hashin model. The material properties obtained using finite element techniques were compared with different analytical methods and good agreement was achieved. The results are affected by a number of parameters such as volume fraction of the fibers, geometry of fiber, and RVE.

  4. Effect of Chopped Basalt Fibers on the Mechanical Properties and Microstructure of High Performance Fiber Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Tehmina Ayub

    2014-01-01

    Full Text Available This paper presents the mechanical properties and the microstructure of the high performance fiber reinforced concrete (HPFRC containing up to 3% volume fraction of chopped Basalt fibers. Three types of the concrete were prepared, out of which, the first type was prepared by utilizing 100% cement content. The other two types of the concrete were prepared by replacing 10% cement content with silica fume and the locally produced metakaolin. Using each concrete type, four mixes were prepared in which Basalt fibers were added in the range of 0–3%; that is, total twelve mixes of the HPFRC concrete were prepared. From each of the twelve concrete mixes, total twelve specimens were cast to determine the mechanical properties of the HPFRC including compressive strength (cube and cylinder, splitting tensile strength, and the flexural strength. In this way, a total of 108 specimens were cast and tested in this study. Test results showed that the addition of the Basalt fibers significantly increased the tensile splitting strength and the flexural strength of the HPFRC, while there was slight improvement in the compressive strength with the addition of Basalt fibers. The microstructure of HPFRC was examined to determine the interfacial transition zone (ITZ between the aggregates and the paste by using field emission scanning electron microscope (FESEM, which showed the improvement of the ITZ due to the addition of the Basalt fibers.

  5. Discrete fiber-reinforced polyurea systems for infrastructure strengthening and blast mitigation

    Science.gov (United States)

    Carey, Natalia L.

    The research presented in this dissertation focused on evaluating the effectiveness of various blast mitigation materials and coating technologies to be used for enhancing blast resistance of structural members. Mechanical properties and blast mitigation performance of different discrete fiber-reinforced polyurea (DFRP) systems were investigated through experimental and analytical work. Four technical papers discuss the research efforts conducted within this dissertation. The first paper examined the development and characterization of different DFRP systems for infrastructure strengthening and blast retrofit. The behavior of various systems which consisted of chopped E-glass fibers discretely integrated in with the polyurea matrix was evaluated through coupon tensile testing. The addition of glass fiber to a polymer coating provided improved stiffness and strength to the composite system while the polyurea base material provided ductility. The second paper evaluated the behavior of hybrid, plain, and steel fiber-reinforced concrete panels coated with various polyurea and DFRP systems under blast loading. Hybrid panels demonstrated higher blast mitigation performance compared to plain and steel fiber-reinforced concrete panels due to sacrificial hybrid layer. The addition of plain polyurea or DFRP systems on the tension side improved panel performance by containing fragmentation during a blast event. The third paper presents an analytical investigation conducted using the explicit finite element program LS-DYNA to model panel and coating response under blast loading. Several modeling solutions were undertaken and compared for concrete formulation. Modeling results were analyzed and compared to the experimental work to validate the conclusions. The final paper describes an internal equilibrium mechanics based model developed to predict the flexural capacity of reinforced concrete beams strengthened with various DFRP systems. The developed model was validated using

  6. Radiation-assisted PET recycling using glass fiber reinforcement and reactive additives

    Science.gov (United States)

    Tóth, K.; Czvikovszky, T.; Abd-Elhamid, M.

    2004-02-01

    Post-consumer poly(ethylene terephtalate) (PET) material has been recycled in an upgrading procedure. Radiation treatment of modest dose (10 kGy) has been applied to activate a reactive additive (epoxy-acrylate, 2% to the PET) to bond together the matrix (recycled PET) and the reinforcement (chopped glass fiber, 10-20% to the PET). Tensile-, bending- and impact-resistance of the treated, recycled PET has been improved significantly. A new composite engineering material has been manufactured this way of reactive reinforcing recycling, surpassing the original, virgin PET especially in impact properties. The new thermoplastic is well suitable for injection molding of technical parts.

  7. Selected Bibliography on Fiber-Reinforced Cement and Concrete. Supplement Number 4.

    Science.gov (United States)

    1982-08-01

    Building Industry," L’Industria Italiana del Cemento , Vol 50, No. 12, Dec 1980, pp 1135-1144. 19. Bartos, P., "Pullout Failure of Fibres Embedded in Cement...Vol 43, No. 11, Nov 1977, pp 561-564. 21. Bassan, M., "Model of Behavior of Fiber-Reinforced Concretes Under Impact Stresses," il Cemento , Vol 74, No...Pastes," il Cemento , Vol 75, No. 3, Jul-Sep 1978, pp 277-284. 210. Mills, R. H., "Age-Embrittlement of Glass-Reinforced Concrete Containing Blastfurance

  8. Fiber-content dependency of the optical transparency and thermal expansion of bacterial nanofiber reinforced composites

    Science.gov (United States)

    Nogi, Masaya; Ifuku, Shinsuke; Abe, Kentaro; Handa, Keishin; Nakagaito, Antonio Norio; Yano, Hiroyuki

    2006-03-01

    We produced transparent nanocomposite reinforced with bacterial cellulose having a wide range of fiber contents, from 7.4to66.1wt%, by the combination of heat drying and organic solvent exchange methods. The addition of only 7.4wt% of bacterial cellulose nanofibers, which deteriorated light transmittance by only 2.4%, was able to reduce the coefficient of thermal expansion of acrylic resin from 86×10-6to38×10-6K-1. As such, the nanofiber network of bacterial cellulose has an extraordinary potential as a reinforcement to obtain optically transparent and low thermal expansion materials.

  9. Lagged strain of laminates in RC beams strengthened with fiber-reinforced polymer

    Institute of Scientific and Technical Information of China (English)

    HE Xue-jun; ZHOU Chao-yang; LI Yi-hui; XU Ling

    2007-01-01

    Based on the theory of concrete structure, a new expression was derived for lagged strain of fiber-reinforced polymer(FRP) laminates in reinforced concrete (RC) beams strengthened with FRP. The influence of different preloaded states and nonlinear stress-strain relationship of compressed concrete were both taken into account in this approach. Then a simplified expression was given by ignoring tensile resistance of concrete. Comparison of analytical predictions with experimental results indicates satisfactory accuracy of the procedures. The errors are less than 8% and 10% respectively when the tensile resistance of concrete is or not considered. While the maximum error of existing procedures is up to 60%.

  10. Matrix free fiber reinforced polymeric composites via high-temperature high-pressure sintering

    Science.gov (United States)

    Xu, Tao

    2004-11-01

    A novel manufacturing process called high-temperature high-pressure sintering was studied and explored. Solid fiber reinforced composites are produced by consolidating and compacting layers of polymeric fabrics near their melting temperature under high pressure. There is no need to use an additional matrix as a bonding material. Partial melting and recrystallization of the fibers effectively fuse the material together. The product is called a "matrix free" fiber reinforced composite and essentially a one-polymer composite in which the fiber and the matrix have the same chemical composition. Since the matrix is eliminated in the process, it is possible to achieve a high fiber volume fraction and light weight composite. Interfacial adhesion between fibers and matrix is very good due to the molecular continuity throughout the system and the material is thermally shapeable. Plain woven Spectra RTM cloth made of SpectraRTM fiber was used to comprehensively study the process. The intrinsic properties of the material demonstrate that matrix free SpectraRTM fiber reinforced composites have the potential to make ballistic shields such as body armor and helmets. The properties and structure of the original fiber and the cloth were carefully examined. Optimization of the processing conditions started with the probing of sintering temperatures by Differential Scanning Calorimetry. Coupled with the information from structural, morphological and mechanical investigations on the samples sintered at different processing conditions, the optimal processing windows were determined to ensure that the outstanding original properties of the fibers translate into high ballistic performance of the composites. Matrix free SpectraRTM composites exhibit excellent ballistic resistance in the V50 tests conducted by the US Army. In the research, process-structure-property relationship is established and correlations between various properties and structures are understood. Thorough knowledge is

  11. Mechanical properties related to the microstructure of seven different fiber reinforced composite posts

    Science.gov (United States)

    Alonso de la Peña, Víctor; Caserío Valea, Martín; Guitián Rivera, Francisco

    2016-01-01

    PURPOSE The aim of this in vitro study was to evaluate the mechanical properties (bending strength and hardness) of seven different fiber reinforced composite posts, in relation to their microstructural characteristics. MATERIALS AND METHODS Two hundred eighty posts were divided into seven groups of 40, one group for each type of post analyzed. Within each group, 15 posts were subjected to three-point bending strength test, 15 to a microhardess meter for the Knoop hardness, and 10 to Scanning Electron Microscope in order to determine the diameter of the fibers and the percentage of fibers embedded in the matrix. To compare the flexural strength in relation to the type of fiber, matrix, and the hardness of the posts, a Kruskal-Wallis H test was used. The Jonckheere-Terpstra test was used to determine if the volume percent of fibers in the post influenced the bending strength. RESULTS The flexural strength and the hardness depended on the type of fibers that formed the post. The lower flexural strength of a post could be due to deficient bonding between the fiber and the resin matrix. CONCLUSION According to the results, other factors, besides the microstructural characteristics, may also influence the mechanical properties of the post. The feature that has more influence on the mechanical properties of the posts is the type of fiber. PMID:28018560

  12. Impact test on natural fiber reinforced polymer composite materials

    Directory of Open Access Journals (Sweden)

    D. Chandramohan

    2013-06-01

    Full Text Available In this research, natural fibers like Sisal (Agave sisalana, Banana (Musa sepientum & Roselle (Hibiscus sabdariffa , Sisal and banana (hybrid , Roselle and banana (hybrid and Roselle and sisal (hybrid are fabricated with bio epoxy resin using molding method. In this work, impact strength of Sisal and banana (hybrid, Roselle and banana (hybridand Roselle and sisal (hybrid composite at dry and wet conditions were studied. Impact test were conducted izod impact testing machine. In this work micro structure of the specimens are scanned by the Scanning Electron Microscope.

  13. Temperature Dependence of Sound Velocity in High-Strength Fiber-Reinforced Plastics

    Science.gov (United States)

    Nomura, Ryuji; Yoneyama, Keiichi; Ogasawara, Futoshi; Ueno, Masashi; Okuda, Yuichi; Yamanaka, Atsuhiko

    2003-08-01

    Longitudinal sound velocity in unidirectional hybrid composites or high-strength fiber-reinforced plastics (FRPs) was measured along the fiber axis over a wide temperature range (from 77 K to 420 K). We investigated two kinds of high-strength crystalline polymer fibers, polyethylene (Dyneema) and polybenzobisoxazole (Zylon), which are known to have negative thermal expansion coefficients and high thermal conductivities along the fiber axis. Both FRPs had very high sound velocities of about 9000 m/s at low temperatures and their temperature dependences were very strong. Sound velocity monotonically decreased with increasing temperature. The temperature dependence of sound velocity was much stronger in Dyneema-FRP than in Zylon-FRP.

  14. Basic failure mechanisms in advanced composites. [composed of epoxy resins reinforced with carbon fibers

    Science.gov (United States)

    Mazzio, V. F.; Mehan, R. L.; Mullin, J. V.

    1973-01-01

    The fundamental failure mechanisms which result from the interaction of thermal cycling and mechanical loading of carbon-epoxy composites were studied. This work was confined to epoxy resin uniderictionally reinforced with HTS carbon fibers, and consists of first identifying local fiber, matrix and interface failure mechanisms using the model composite specimen containing a small number of fibers so that optical techniques can be used for characterization. After the local fracture process has been established for both mechanical loading and thermal cycling, engineering composite properties and gross fracture modes are then examined to determine how the local events contribute to real composite performance. Flexural strength in high fiber content specimens shows an increase in strength with increased thermal cycling. Similar behavior is noted for 25 v/o material up to 200 cycles; however, there is a drastic reduction after 200 cycles indicating a major loss of integrity probably through the accumulation of local cleavage cracks in the tensile region.

  15. Advanced in situ multi-scale characterization of hardness of carbon-fiber-reinforced plastic

    Science.gov (United States)

    Wang, Hongxin; Masuda, Hideki; Kitazawa, Hideaki; Onishi, Keiko; Kawai, Masamichi; Fujita, Daisuke

    2016-10-01

    In situ multi-scale characterization of hardness of carbon-fiber-reinforced plastic (CFRP) is demonstrated by a traditional hardness tester, instrumented indentation tester and atomic-force-microscope (AFM)-based nanoindentation. In particular, due to the large residual indentation and nonuniform distribution of the microscale carbon fibers, the Vickers hardness could not be calculated by the traditional hardness tester. In addition, the clear residual microindentation could not be formed on the CFRP by instrumented indentation tester because of the large tip half angle of the Berkovich indenter. Therefore, an efficient technique for characterizing the true nanoscale hardness of CFRP was proposed and evaluated. The local hardness of the carbon fibers or plastic matrix on the nanoscale did not vary with nanoindentation location. The Vickers hardnesses of the carbon fiber and plastic matrix determined by AFM-based nanoindentation were 340 ± 30 and 40 ± 2 kgf/mm2, respectively.

  16. Structural Behavior of Continuous Prestressed Steel Fiber Reinforced High Strength Concrete Beam

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestress ratio (PPR) are considered, and three pairs of two-span continuous beams with box sections varying in size are designed. The major parameters involved in the study include the PPR and the fiber location. It is concluded that the prestressed high strength concrete beam exhibits satisfactory ductility; the influences of steel fiber on the crack behaviors for partially prestressed beams are not as obvious as those for fully prestressed ones; steel fibers can improve the structural stiffness after cracking for fully prestressed high strength concrete beams; the moment redistribution from mid-span to intermediate support in the first stage should be mainly considered in practical design.

  17. Study of stinging nettle (urtica dioica l.) Fibers reinforced green composite materials : a review

    Science.gov (United States)

    Agus Suryawan, I. G. P.; Suardana, N. P. G.; Suprapta Winaya, I. N.; Budiarsa Suyasa, I. W.; Tirta Nindhia, T. G.

    2017-05-01

    Stinging Nettle (Urtica dioica L., latin) is a wild plant that grows in Indonesia, Asia, and Europe. Nettle in Bali, Indonesia is called as Lateng, Jelatang. Nettle plant has a very strong fiber and high fixed carbon. Nettle plants are covered with fine hairs, especially in the leaves and stems. When it is touched, it will release chemicals, sting and trigger inflammation that causes redness, itching, bumps and irritation to the skin. Nettle plants grow in the wild, regarded as a weed in the agricultural industry, easy to grow and snatch food from the parent plant. The main objective of this paper is to review of the potential nettle fibers and then explain about the potential of local nettle plant in Indonesia. Nettle is a plant group at the end of bast. Its plant fibers taken from the bark, as reinforcement in composite materials. Nettle fibers have three main advantages such as strong, lightweight and low environmental impact.

  18. Drop Weight Impact Studies of Woven Fibers Reinforced Modified Polyester Composites

    Directory of Open Access Journals (Sweden)

    Muhammed Tijani ISA

    2014-02-01

    Full Text Available Low velocity impact tests were conducted on modified unsaturated polyester reinforced with four different woven fabrics using hand-layup method to investigate the effect of fiber type and fiber combinations. The time-load curves were analysed and scanning electron microscopy was used to observe the surface of the impacted composite laminates. The results indicated that all the composites had ductility index (DI of above two for the test conducted at impact energy of 27J with the monolithic composite of Kevlar having the highest DI. The damage modes observed were mainly matrix cracks and fiber breakages. Hybridization of the fibers in the matrix was observed to minimize these damages.

  19. Statistics of Microstructure, Peak Stress and Interface Damage in Fiber Reinforced Composites

    DEFF Research Database (Denmark)

    Kushch, Volodymyr I.; Shmegera, Sergii V.; Mishnaevsky, Leon

    2009-01-01

    This paper addresses an effect of the fiber arrangement and interactions on the peak interface stress statistics in a fiber reinforced composite material (FRC). The method we apply combines the multipole expansion technique with the representative unit cell model of composite bulk, which is able...... to simulate both the uniform and clustered random fiber arrangements. By averaging over a number of numerical tests, the empirical probability functions have been obtained for the nearest neighbor distance and the peak interface stress. It is shown that the considered statistical parameters are rather...... sensitive to the fiber arrangement, particularly cluster formation. An explicit correspondence between them has been established and an analytical formula linking the microstructure and peak stress statistics in FRCs has been suggested. Application of the statistical theory of extreme values to the local...

  20. Natural Mallow Fiber-Reinforced Epoxy Composite for Ballistic Armor Against Class III-A Ammunition

    Science.gov (United States)

    Nascimento, Lucio Fabio Cassiano; Holanda, Luane Isquerdo Ferreira; Louro, Luis Henrique Leme; Monteiro, Sergio Neves; Gomes, Alaelson Vieira; Lima, Édio Pereira

    2017-10-01

    Epoxy matrix composites reinforced with up to 30 vol pct of continuous and aligned natural mallow fibers were for the first time ballistic tested as personal armor against class III-A 9 mm FMJ ammunition. The ballistic efficiency of these composites was assessed by measuring the dissipated energy and residual velocity after the bullet perforation. The results were compared to those in similar tests of aramid fabric (Kevlar™) commonly used in vests for personal protections. Visual inspection and scanning electron microscopy analysis of impact-fractured samples revealed failure mechanisms associated with fiber pullout and rupture as well as epoxy cracking. As compared to Kevlar™, the mallow fiber composite displayed practically the same ballistic efficiency. However, there is a reduction in both weight and cost, which makes the mallow fiber composites a promising material for personal ballistic protection.