WorldWideScience

Sample records for discharge machining process

  1. Machinability of nickel based alloys using electrical discharge machining process

    Science.gov (United States)

    Khan, M. Adam; Gokul, A. K.; Bharani Dharan, M. P.; Jeevakarthikeyan, R. V. S.; Uthayakumar, M.; Thirumalai Kumaran, S.; Duraiselvam, M.

    2018-04-01

    The high temperature materials such as nickel based alloys and austenitic steel are frequently used for manufacturing critical aero engine turbine components. Literature on conventional and unconventional machining of steel materials is abundant over the past three decades. However the machining studies on superalloy is still a challenging task due to its inherent property and quality. Thus this material is difficult to be cut in conventional processes. Study on unconventional machining process for nickel alloys is focused in this proposed research. Inconel718 and Monel 400 are the two different candidate materials used for electrical discharge machining (EDM) process. Investigation is to prepare a blind hole using copper electrode of 6mm diameter. Electrical parameters are varied to produce plasma spark for diffusion process and machining time is made constant to calculate the experimental results of both the material. Influence of process parameters on tool wear mechanism and material removal are considered from the proposed experimental design. While machining the tool has prone to discharge more materials due to production of high energy plasma spark and eddy current effect. The surface morphology of the machined surface were observed with high resolution FE SEM. Fused electrode found to be a spherical structure over the machined surface as clumps. Surface roughness were also measured with surface profile using profilometer. It is confirmed that there is no deviation and precise roundness of drilling is maintained.

  2. Effect of machining fluid on the process performance of wire electrical discharge machining of nanocomposite ceramic

    Directory of Open Access Journals (Sweden)

    Zhang Chengmao

    2015-01-01

    Full Text Available Wire electric discharge machining (WEDM promise to be effective and economical techniques for the production of tools and parts from conducting ceramic blanks. However, the manufacturing of nanocomposite ceramics blanks with these processes is a long and costly process. This paper presents a new process of machining nanocomposite ceramics using WEDM. WEDM uses water based emulsion, polyvinyl alcohol and distilled water as the machining fluid. Machining fluid is a primary factor that affects the material removal rate and surface quality of WEDM. The effects of emulsion concentration, polyvinyl alcohol concentration and distilled water of the machining fluid on the process performance have been investigated.

  3. High-speed micro-electro-discharge machining.

    Energy Technology Data Exchange (ETDEWEB)

    Chandrasekar, Srinivasan Dr. (.School of Industrial Engineering, West Lafayette, IN); Moylan, Shawn P. (School of Industrial Engineering, West Lafayette, IN); Benavides, Gilbert Lawrence

    2005-09-01

    When two electrodes are in close proximity in a dielectric liquid, application of a voltage pulse can produce a spark discharge between them, resulting in a small amount of material removal from both electrodes. Pulsed application of the voltage at discharge energies in the range of micro-Joules results in the continuous material removal process known as micro-electro-discharge machining (micro-EDM). Spark erosion by micro-EDM provides significant opportunities for producing small features and micro-components such as nozzle holes, slots, shafts and gears in virtually any conductive material. If the speed and precision of micro-EDM processes can be significantly enhanced, then they have the potential to be used for a wide variety of micro-machining applications including fabrication of microelectromechanical system (MEMS) components. Toward this end, a better understanding of the impacts the various machining parameters have on material removal has been established through a single discharge study of micro-EDM and a parametric study of small hole making by micro-EDM. The main avenues for improving the speed and efficiency of the micro-EDM process are in the areas of more controlled pulse generation in the power supply and more controlled positioning of the tool electrode during the machining process. Further investigation of the micro-EDM process in three dimensions leads to important design rules, specifically the smallest feature size attainable by the process.

  4. Development of new metal matrix composite electrodes for electrical discharge machining through powder metallurgy process

    Directory of Open Access Journals (Sweden)

    C. Mathalai Sundaram

    2014-12-01

    Full Text Available Electrical discharge machining (EDM is one of the widely used nontraditional machining methods to produce die cavities by the erosive effect of electrical discharges. This method is popular due to the fact that a relatively soft electrically conductive tool electrode can machine hard work piece. Copper electrode is normally used for machining process. Electrode wear rate is the major drawback for EDM researchers. This research focus on fabrication of metal matrix composite (MMC electrode by mixing copper powder with titanium carbide (TiC and Tungsten carbide (WC powder through powder metallurgy process, Copper powder is the major amount of mixing proportion with TiC and WC. However, this paper focus on the early stage of the project where powder metallurgy route was used to determine suitable mixing time, compaction pressure and sintering and compacting process in producing EDM electrode. The newly prepared composite electrodes in different composition are tested in EDM for OHNS steel.

  5. Experimental Investigation – Magnetic Assisted Electro Discharge Machining

    Science.gov (United States)

    Kesava Reddy, Chirra; Manzoor Hussain, M.; Satyanarayana, S.; Krishna, M. V. S. Murali

    2018-04-01

    Emerging technology needs advanced machined parts with high strength and temperature resistance, high fatigue life at low production cost with good surface quality to fit into various industrial applications. Electro discharge machine is one of the extensively used machines to manufacture advanced machined parts which cannot be machined by other traditional machine with high precision and accuracy. Machining of DIN 17350-1.2080 (High Carbon High Chromium steel), using electro discharge machining has been discussed in this paper. In the present investigation an effort is made to use permanent magnet at various positions near the spark zone to improve surface quality of the machined surface. Taguchi methodology is used to obtain optimal choice for each machining parameter such as peak current, pulse duration, gap voltage and Servo reference voltage etc. Process parameters have significant influence on machining characteristics and surface finish. Improvement in surface finish is observed when process parameters are set at optimum condition under the influence of magnetic field at various positions.

  6. Wire electric-discharge machining and other fabrication techniques

    Science.gov (United States)

    Morgan, W. H.

    1983-01-01

    Wire electric discharge machining and extrude honing were used to fabricate a two dimensional wing for cryogenic wind tunnel testing. Electric-discharge cutting is done with a moving wire electrode. The cut track is controlled by means of a punched-tape program and the cutting feed is regulated according to the progress of the work. Electric-discharge machining involves no contact with the work piece, and no mechanical force is exerted. Extrude hone is a process for honing finish-machined surfaces by the extrusion of an abrasive material (silly putty), which is forced through a restrictive fixture. The fabrication steps are described and production times are given.

  7. Magnetic field-assisted electrochemical discharge machining

    International Nuclear Information System (INIS)

    Cheng, Chih-Ping; Mai, Chao-Chuang; Wu, Kun-Ling; Hsu, Yu-Shan; Yan, Biing-Hwa

    2010-01-01

    Electrochemical discharge machining (ECDM) is an effective unconventional method for micromachining in non-conducting materials, such as glass, quartz and some ceramics. However, since the spark discharge performance becomes unpredictable as the machining depth increases, it is hard to achieve precision geometry and efficient machining rate in ECDM drilling. One of the main factors for this is the lack of sufficient electrolyte flow in the narrow gap between the tool and the workpiece. In this study a magnetohydrodynamic (MHD) convection, which enhances electrolyte circulation has been applied to the ECDM process in order to upgrade the machining accuracy and efficiency. During electrolysis in the presence of a magnetic field, the Lorenz force induces the charged ions to form a MHD convection. The MHD convection then forces the electrolyte into movement, thus enhancing circulation of electrolyte. Experimental results show that the MHD convection induced by the magnetic field can effectively enhance electrolyte circulation in the micro-hole, which contributes to higher machining efficiency. Micro-holes in glass with a depth of 450 µm are drilled in less than 20 s. At the same time, better electrolyte circulation can prevent deterioration of gas film quality with increasing machining depth, while ensuring stable electrochemical discharge. The improvement in the entrance diameter thus achieved was 23.8% while that in machining time reached 57.4%. The magnetic field-assisted approach proposed in the research does not require changes in the machining setup or electrolyte but has proved to achieve significant enhancement in both accuracy and efficiency of ECDM.

  8. Electrical Discharge Machining (EDM: A Review

    Directory of Open Access Journals (Sweden)

    Asfana Banu

    2016-09-01

    Full Text Available Electro discharge machining (EDM process is a non-conventional and non-contact machining operation which is used in industry for high precision products. EDM is known for machining hard and brittle conductivematerials since it can melt any electrically conductive material regardless of its hardness. The workpiece machined by EDM depends on thermal conductivity, electrical resistivity, and melting points of the materials. The tool and the workpiece are adequately both immersed in a dielectric medium, such as, kerosene, deionised water or any other suitable fluid. This paper is reviewed comprehensively on types of EDM operation. A brief discussion is also done on the machining responses and mathematical modelling.

  9. Influence of Wire Electrical Discharge Machining (WEDM) process parameters on surface roughness

    Science.gov (United States)

    Yeakub Ali, Mohammad; Banu, Asfana; Abu Bakar, Mazilah

    2018-01-01

    In obtaining the best quality of engineering components, the quality of machined parts surface plays an important role. It improves the fatigue strength, wear resistance, and corrosion of workpiece. This paper investigates the effects of wire electrical discharge machining (WEDM) process parameters on surface roughness of stainless steel using distilled water as dielectric fluid and brass wire as tool electrode. The parameters selected are voltage open, wire speed, wire tension, voltage gap, and off time. Empirical model was developed for the estimation of surface roughness. The analysis revealed that off time has a major influence on surface roughness. The optimum machining parameters for minimum surface roughness were found to be at a 10 V open voltage, 2.84 μs off time, 12 m/min wire speed, 6.3 N wire tension, and 54.91 V voltage gap.

  10. Micro Electro Discharge Machining of Electrically Nonconductive Ceramics

    International Nuclear Information System (INIS)

    Schubert, A.; Zeidler, H.; Hackert, M.; Wolf, N.

    2011-01-01

    EDM is a known process for machining of hard and brittle materials. Due to its noncontact and nearly forceless behaviour, it has been introduced into micro manufacturing and through constant development it is now an important means for producing high-precision micro geometries. One restriction of EDM is its limitation to electrically conducting materials.Today many applications, especially in the biomedical field, make use of the benefits of ceramic materials, such as high strength, very low wear and biocompatibility. Common ceramic materials such as Zirconium dioxide are, due to their hardness in the sintered state, difficult to machine with conventional cutting techniques. A demand for the introduction of EDM to these materials could so far not be satisfied because of their nonconductive nature.At the Chemnitz University of Technology and the Fraunhofer IWU, investigations in the applicability of micro-EDM for the machining of nonconductive ceramics are being conducted. Tests are undertaken using micro-EDM drilling with Tungsten carbide tool electrodes and ZrO 2 ceramic workpieces. A starting layer, in literature often referred to as 'assisting electrode' is used to set up a closed electric circuit to start the EDM process. Combining carbon hydride based dielectric and a specially designed low-frequency vibration setup to excite the workpiece, the process environment can be held within parameters to allow for a constant EDM process even after the starting layer is machined. In the experiments a cylindrical 120 μm diameter Tungsten carbide tool electrode and Y 2 O 3 - and MgO- stabilized ZrO 2 worpieces are used. The current and voltage signals of the discharges within the different stages of the process (machining of the starting layer, machining of the base material, transition stage) are recorded and their characteristics compared to discharges in metallic material. Additionally, the electrode feed is monitored. The influences of the process parameters are

  11. Machinability of a Stainless Steel by Electrochemical Discharge Microdrilling

    International Nuclear Information System (INIS)

    Coteata, Margareta; Pop, Nicolae; Slatineanu, Laurentiu; Schulze, Hans-Peter; Besliu, Irina

    2011-01-01

    Due to the chemical elements included in their structure for ensuring an increased resistance to the environment action, the stainless steels are characterized by a low machinability when classical machining methods are applied. For this reason, sometimes non-traditional machining methods are applied, one of these being the electrochemical discharge machining. To obtain microholes and to evaluate the machinability by electrochemical discharge microdrilling, test pieces of stainless steel were used for experimental research. The electrolyte was an aqueous solution of sodium silicate with different densities. A complete factorial plan was designed to highlight the influence of some input variables on the sizes of the considered machinability indexes (electrode tool wear, material removal rate, depth of the machined hole). By mathematically processing of experimental data, empirical functions were established both for stainless steel and carbon steel. Graphical representations were used to obtain more suggestive vision concerning the influence exerted by the considered input variables on the size of the machinability indexes.

  12. An on-line monitoring system for a micro electrical discharge machining (micro-EDM) process

    International Nuclear Information System (INIS)

    Liao, Y S; Chang, T Y; Chuang, T J

    2008-01-01

    A pulse-type discriminating system to monitor the process of micro electrical discharge machining (micro-EDM) is developed and implemented. The specific features are extracted and the pulses from a RC-type power source are classified into normal, effective arc, transient short circuit and complex types. An approach to discriminate the pulse type according to three durations measured at three pre-determined voltage levels of a pulse is proposed. The developed system is verified by using simulated signals. Discrimination of the pulse trains in actual machining processes shows that the pulses are mainly the normal type for micro wire-EDM and micro-EDM milling. The pulse-type distribution varies during the micro-EDM drilling process. The percentage of complex-type pulse increases monotonically with the drilling depth. It starts to drop when the gap condition is seriously deteriorated. Accordingly, an on-line monitoring strategy for the micro-EDM drilling process is proposed

  13. Surface structuring of boron doped CVD diamond by micro electrical discharge machining

    Science.gov (United States)

    Schubert, A.; Berger, T.; Martin, A.; Hackert-Oschätzchen, M.; Treffkorn, N.; Kühn, R.

    2018-05-01

    Boron doped diamond materials, which are generated by Chemical Vapor Deposition (CVD), offer a great potential for the application on highly stressed tools, e. g. in cutting or forming processes. As a result of the CVD process rough surfaces arise, which require a finishing treatment in particular for the application in forming tools. Cutting techniques such as milling and grinding are hardly applicable for the finish machining because of the high strength of diamond. Due to its process principle of ablating material by melting and evaporating, Electrical Discharge Machining (EDM) is independent of hardness, brittleness or toughness of the workpiece material. EDM is a suitable technology for machining and structuring CVD diamond, since boron doped CVD diamond is electrically conductive. In this study the ablation characteristics of boron doped CVD diamond by micro electrical discharge machining are investigated. Experiments were carried out to investigate the influence of different process parameters on the machining result. The impact of tool-polarity, voltage and discharge energy on the resulting erosion geometry and the tool wear was analyzed. A variation in path overlapping during the erosion of planar areas leads to different microstructures. The results show that micro EDM is a suitable technology for finishing of boron doped CVD diamond.

  14. Electrical discharge machining of carbon nanomaterials in air: machining characteristics and the advanced field emission applications

    International Nuclear Information System (INIS)

    Ok, Jong Girl; Kim, Bo Hyun; Chung, Do Kwan; Sung, Woo Yong; Lee, Seung Min; Lee, Se Won; Kim, Wal Jun; Park, Jin Woo; Chu, Chong Nam; Kim, Yong Hyup

    2008-01-01

    A reliable and precise machining process, electrical discharge machining (EDM), was investigated in depth as a novel method for the engineering of carbon nanomaterials. The machining characteristics of EDM applied to carbon nanomaterials 'in air' were systematically examined using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), energy-dispersive x-ray spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The EDM process turned out to 'melt' carbon nanomaterials with the thermal energy generated by electrical discharge, which makes both the materially and geometrically unrestricted machining of nanomaterials possible. Since the EDM process conducted in air requires neither direct contact nor chemical agents, it protects the carbon nanomaterial workpieces against physical damage and unnecessary contamination. From this EDM method, several advanced field emission applications including 'top-down' patterning and the creative lateral comb-type triode device were derived, while our previously reported study on emission uniformity enhancement by the EDM method was also referenced. The EDM method has great potential as a clean, effective and practical way to utilize carbon nanomaterials for various uses

  15. Surface quality analysis of die steels in powder-mixed electrical discharge machining using titan powder in fine machining

    Directory of Open Access Journals (Sweden)

    Banh Tien Long

    2016-06-01

    Full Text Available Improving the quality of surface molds after electrical discharge machining is still being considered by many researchers. Powder-mixed dielectric in electrical discharge machining showed that it is one of the processing methods with high efficiency. This article reports on the results of surface quality of mold steels after powder-mixed electrical discharge machining using titanium powder in fine machining. The process parameters such as electrode material, workpiece material, electrode polarity, pulse on-time, pulse off-time, current, and titanium powder concentration were considered in the research. These materials are most commonly used with die-sinking electrical discharge machining in the manufacture of molds and has been selected as the subject of research: workpiece materials were SKD61, SKT4, and SKD11 mold steels, and electrode materials were copper and graphite. Taguchi’s method is used to design experiments. The influence of the parameters on surface roughness was evaluated through the average value and ratio (S/N. Results showed that the parameters such as electrical current, electrode material, pulse on-time, electrode polarity, and interaction between the electrode materials with concentration powder mostly influence surface roughness and surface roughness at optimal parameters SRopt = 1.73 ± 0.39 µm. Analysis of the surface layer after powder-mixed electrical discharge machining using titanium powder in optimal conditions has shown that the white layer with more uniform thickness and increased hardness (≈861.0 HV, and amount and size of microscopic cracks, is reduced. This significantly leads to the increase in the quality of the surface layer.

  16. Evaluating the electrical discharge machining (EDM) parameters with using carbon nanotubes

    Science.gov (United States)

    Sari, M. M.; Noordin, M. Y.; Brusa, E.

    2012-09-01

    Electrical discharge machining (EDM) is one of the most accurate non traditional manufacturing processes available for creating tiny apertures, complex or simple shapes and geometries within parts and assemblies. Performance of the EDM process is usually evaluated in terms of surface roughness, existence of cracks, voids and recast layer on the surface of product, after machining. Unfortunately, the high heat generated on the electrically discharged material during the EDM process decreases the quality of products. Carbon nanotubes display unexpected strength and unique electrical and thermal properties. Multi-wall carbon nanotubes are therefore on purpose added to the dielectric used in the EDM process to improve its performance when machining the AISI H13 tool steel, by means of copper electrodes. Some EDM parameters such as material removal rate, electrode wear rate, surface roughness and recast layer are here first evaluated, then compared to the outcome of EDM performed without using nanotubes mixed to the dielectric. Independent variables investigated are pulse on time, peak current and interval time. Experimental evidences show that EDM process operated by mixing multi-wall carbon nanotubes within the dielectric looks more efficient, particularly if machining parameters are set at low pulse of energy.

  17. Evaluating the electrical discharge machining (EDM) parameters with using carbon nanotubes

    International Nuclear Information System (INIS)

    Sari, M M; Brusa, E; Noordin, M Y

    2012-01-01

    Electrical discharge machining (EDM) is one of the most accurate non traditional manufacturing processes available for creating tiny apertures, complex or simple shapes and geometries within parts and assemblies. Performance of the EDM process is usually evaluated in terms of surface roughness, existence of cracks, voids and recast layer on the surface of product, after machining. Unfortunately, the high heat generated on the electrically discharged material during the EDM process decreases the quality of products. Carbon nanotubes display unexpected strength and unique electrical and thermal properties. Multi-wall carbon nanotubes are therefore on purpose added to the dielectric used in the EDM process to improve its performance when machining the AISI H13 tool steel, by means of copper electrodes. Some EDM parameters such as material removal rate, electrode wear rate, surface roughness and recast layer are here first evaluated, then compared to the outcome of EDM performed without using nanotubes mixed to the dielectric. Independent variables investigated are pulse on time, peak current and interval time. Experimental evidences show that EDM process operated by mixing multi-wall carbon nanotubes within the dielectric looks more efficient, particularly if machining parameters are set at low pulse of energy.

  18. Design of a 10 MJ fast discharging homopolar machine

    International Nuclear Information System (INIS)

    Stillwagon, R.E.; Thullen, P.

    1977-01-01

    The design of a fast discharging homopolar machine is described. The machine capacity is 10 MJ with a 30 ms energy delivery time. The salient features of the machine are relatively high terminal voltage, fast discharge time, high power density and high efficiency. The machine integrates several new technologies including high surface speeds, large superconducting magnets and current collection at high density

  19. Effect of Micro Electrical Discharge Machining Process Conditions on Tool Wear Characteristics: Results of an Analytic Study

    DEFF Research Database (Denmark)

    Puthumana, Govindan; P., Rajeev

    2016-01-01

    Micro electrical discharge machining is one of the established techniques to manufacture high aspect ratio features on electrically conductive materials. This paper presents the results and inferences of an analytical study for estimating theeffect of process conditions on tool electrode wear...... characteristicsin micro-EDM process. A new approach with two novel factors anticipated to directly control the material removal mechanism from the tool electrode are proposed; using discharge energyfactor (DEf) and dielectric flushing factor (DFf). The results showed that the correlation between the tool wear rate...... (TWR) and the factors is poor. Thus, individual effects of each factor on TWR are analyzed. The factors selected for the study of individual effects are pulse on-time, discharge peak current, gap voltage and gap flushing pressure. The tool wear rate decreases linearly with an increase in the pulse on...

  20. Achieving precision in high density batch mode micro-electro-discharge machining

    International Nuclear Information System (INIS)

    Richardson, Mark T; Gianchandani, Yogesh B

    2008-01-01

    This paper reports a parametric study of batch mode micro-electro-discharge machining (µEDM) of high density features in stainless steel. Lithographically fabricated copper tools with single cross, parallel line and 8 × 8 circle/square array features of 5–100 µm width and 5–75 µm spacing were used to quantify trends in machining tolerance and the impact of debris accumulation. As the tool feature density is increased, debris accumulation effects begin to dominate, eventually degrading both tool and workpiece. Two independent techniques for mitigating this debris buildup are separately investigated. The first is a passivation coating which suppresses spurious discharges triggered from the sidewalls of the machining tool. By this method, the mean tool wear rate decreases from a typical of about 34% to 1.7% and machining non-uniformity reduces from 4.9 µm to 1.1 µm across the workpiece. The second technique involves a two-step machining process that enhances the hydrodynamic removal of machining debris compared to standard methods. This improves surface and edge finish, machining time and tool wear

  1. Machining of AISI D2 Tool Steel with Multiple Hole Electrodes by EDM Process

    Science.gov (United States)

    Prasad Prathipati, R.; Devuri, Venkateswarlu; Cheepu, Muralimohan; Gudimetla, Kondaiah; Uzwal Kiran, R.

    2018-03-01

    In recent years, with the increasing of technology the demand for machining processes is increasing for the newly developed materials. The conventional machining processes are not adequate to meet the accuracy of the machining of these materials. The non-conventional machining processes of electrical discharge machining is one of the most efficient machining processes is being widely used to machining of high accuracy products of various industries. The optimum selection of process parameters is very important in machining processes as that of an electrical discharge machining as they determine surface quality and dimensional precision of the obtained parts, even though time consumption rate is higher for machining of large dimension features. In this work, D2 high carbon and chromium tool steel has been machined using electrical discharge machining with the multiple hole electrode technique. The D2 steel has several applications such as forming dies, extrusion dies and thread rolling. But the machining of this tool steel is very hard because of it shard alloyed elements of V, Cr and Mo which enhance its strength and wear properties. However, the machining is possible by using electrical discharge machining process and the present study implemented a new technique to reduce the machining time using a multiple hole copper electrode. In this technique, while machining with multiple holes electrode, fin like projections are obtained, which can be removed easily by chipping. Then the finishing is done by using solid electrode. The machining time is reduced to around 50% while using multiple hole electrode technique for electrical discharge machining.

  2. Feasibility Study for Electrical Discharge Machining of Large DU-Mo Castings

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Mary Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). SIGMA Division; Dombrowski, David E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). SIGMA Division; Clarke, Kester Diederik [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). SIGMA Division; Forsyth, Robert Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). SIGMA Division; Aikin, Robert M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). SIGMA Division; Alexander, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). SIGMA Division; Tegtmeier, Eric Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). SIGMA Division; Robison, Jeffrey Curt [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). SIGMA Division; Beard, Timothy Vance [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). SIGMA Division; Edwards, Randall Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). SIGMA Division; Mauro, Michael Ernest [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). SIGMA Division; Scott, Jeffrey E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). SIGMA Division; Strandy, Matthew Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). SIGMA Division

    2016-10-31

    U-10 wt. % Mo (U-10Mo) alloys are being developed as low enrichment monolithic fuel for the CONVERT program. Optimization of processing for the monolithic fuel is being pursued with the use of electrical discharge machining (EDM) under CONVERT HPRR WBS 1.2.4.5 Optimization of Coupon Preparation. The process is applicable to manufacturing experimental fuel plate specimens for the Mini-Plate-1 (MP-1) irradiation campaign. The benefits of EDM are reduced machining costs, ability to achieve higher tolerances, stress-free, burr-free surfaces eliminating the need for milling, and the ability to machine complex shapes. Kerf losses are much smaller with EDM (tenths of mm) compared to conventional machining (mm). Reliable repeatability is achievable with EDM due to its computer-generated machining programs.

  3. Feasibility Study for Electrical Discharge Machining of Large DU-Mo Castings

    International Nuclear Information System (INIS)

    Hill, Mary Ann; Dombrowski, David E.; Clarke, Kester Diederik; Forsyth, Robert Thomas; Aikin, Robert M.; Alexander, David John; Tegtmeier, Eric Lee; Robison, Jeffrey Curt; Beard, Timothy Vance; Edwards, Randall Lynn; Mauro, Michael Ernest; Scott, Jeffrey E.; Strandy, Matthew Thomas

    2016-01-01

    U-10 wt. % Mo (U-10Mo) alloys are being developed as low enrichment monolithic fuel for the CONVERT program. Optimization of processing for the monolithic fuel is being pursued with the use of electrical discharge machining (EDM) under CONVERT HPRR WBS 1.2.4.5 Optimization of Coupon Preparation. The process is applicable to manufacturing experimental fuel plate specimens for the Mini-Plate-1 (MP-1) irradiation campaign. The benefits of EDM are reduced machining costs, ability to achieve higher tolerances, stress-free, burr-free surfaces eliminating the need for milling, and the ability to machine complex shapes. Kerf losses are much smaller with EDM (tenths of mm) compared to conventional machining (mm). Reliable repeatability is achievable with EDM due to its computer-generated machining programs.

  4. The development on electric discharge machine for hot cell usage

    International Nuclear Information System (INIS)

    Ahn, Sang Bok; Kim, Young Suk; Park, Dae Kyu; Choo, Yong Sun; Oh, Wan Ho

    1998-06-01

    The electric discharge machine(EDM) was developed for hot cell usages in IMEF. This machine will be used to fabricate specimen directly from irradiated components from NPP's. The detailed contents are as follows; 1. Outline of electric discharge machine 2. Specimen shape to be fabricated by EDM 3. Technical specification to manufacture EDM 4. Installation EDM in hot cell 5. Optimum discharge conditions to fabricate specimens from CANDU tube. (author). 4 tabs., 20 figs

  5. Development of a perpendicular vibration-induced electrical discharge machining process for fabrication of partially wavy inner structures

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Chul; Park, Sang Hu; Min, June Kee; Ha, Man Yeong; Shin, Bo Sung [Pusan National University, Busan (Korea, Republic of); Cho, Jong Rae [Korea Maritime University, Busan (Korea, Republic of)

    2016-05-15

    Heat transfer enhancement is an important issue in energy systems. To improve the efficiency of a cooling channel used inside injection molds, turbine blades, and high-temperature devices, channels with various shapes, such as wavy, elliptical, and twisted, have been studied. A cooling channel with a partially wavy inner structure has shown outstanding cooling performance despite a small increase in friction factor. However, generating a partially wavy inner structure inside a channel through conventional machining processes is not easy. To address this problem, we developed a new process called Perpendicular vibration-induced electrical discharge machining (PV-EDM). A specific electrode and one- and random-directional vibrating devices controlled by a pneumatic load were designed for the PV-EDM process. Experimental results showed that local shaping on the inner wall of a channel is possible, which confirmed the possibility of application of this process to actual industrial problems.

  6. Fundamental Study on Electrical Discharge Machining

    OpenAIRE

    Uno, Yoshiyuki; Nakajima, Toshikatsu; Endo, Osamu

    1989-01-01

    The generation mechanism of crater in electrical discharge machining is analyzed with a single pulse discharge device for alloy tool steel, black alumina ceramics, cermet and cemented carbide, investigating the gap voltage, the discharge current, the shape of crater, the wear of electrode and so on. The experimental analysis makes it clear that the shape of crater has a characteristic feature for the kind of workpiece. The shape of electrode, which changes with the wear by an electric spark, ...

  7. Study on effect of tool electrodes on surface finish during electrical discharge machining of Nitinol

    Science.gov (United States)

    Sahu, Anshuman Kumar; Chatterjee, Suman; Nayak, Praveen Kumar; Sankar Mahapatra, Siba

    2018-03-01

    Electrical discharge machining (EDM) is a non-traditional machining process which is widely used in machining of difficult-to-machine materials. EDM process can produce complex and intrinsic shaped component made of difficult-to-machine materials, largely applied in aerospace, biomedical, die and mold making industries. To meet the required applications, the EDMed components need to possess high accuracy and excellent surface finish. In this work, EDM process is performed using Nitinol as work piece material and AlSiMg prepared by selective laser sintering (SLS) as tool electrode along with conventional copper and graphite electrodes. The SLS is a rapid prototyping (RP) method to produce complex metallic parts by additive manufacturing (AM) process. Experiments have been carried out varying different process parameters like open circuit voltage (V), discharge current (Ip), duty cycle (τ), pulse-on-time (Ton) and tool material. The surface roughness parameter like average roughness (Ra), maximum height of the profile (Rt) and average height of the profile (Rz) are measured using surface roughness measuring instrument (Talysurf). To reduce the number of experiments, design of experiment (DOE) approach like Taguchi’s L27 orthogonal array has been chosen. The surface properties of the EDM specimen are optimized by desirability function approach and the best parametric setting is reported for the EDM process. Type of tool happens to be the most significant parameter followed by interaction of tool type and duty cycle, duty cycle, discharge current and voltage. Better surface finish of EDMed specimen can be obtained with low value of voltage (V), discharge current (Ip), duty cycle (τ) and pulse on time (Ton) along with the use of AlSiMg RP electrode.

  8. Geometry and surface damage in micro electrical discharge machining of micro-holes

    Science.gov (United States)

    Ekmekci, Bülent; Sayar, Atakan; Tecelli Öpöz, Tahsin; Erden, Abdulkadir

    2009-10-01

    Geometry and subsurface damage of blind micro-holes produced by micro electrical discharge machining (micro-EDM) is investigated experimentally to explore the relational dependence with respect to pulse energy. For this purpose, micro-holes are machined with various pulse energies on plastic mold steel samples using a tungsten carbide tool electrode and a hydrocarbon-based dielectric liquid. Variations in the micro-hole geometry, micro-hole depth and over-cut in micro-hole diameter are measured. Then, unconventional etching agents are applied on the cross sections to examine micro structural alterations within the substrate. It is observed that the heat-damaged segment is composed of three distinctive layers, which have relatively high thicknesses and vary noticeably with respect to the drilling depth. Crack formation is identified on some sections of the micro-holes even by utilizing low pulse energies during machining. It is concluded that the cracking mechanism is different from cracks encountered on the surfaces when machining is performed by using the conventional EDM process. Moreover, an electrically conductive bridge between work material and debris particles is possible at the end tip during machining which leads to electric discharges between the piled segments of debris particles and the tool electrode during discharging.

  9. Geometry and surface damage in micro electrical discharge machining of micro-holes

    International Nuclear Information System (INIS)

    Ekmekci, Bülent; Sayar, Atakan; Öpöz, Tahsin Tecelli; Erden, Abdulkadir

    2009-01-01

    Geometry and subsurface damage of blind micro-holes produced by micro electrical discharge machining (micro-EDM) is investigated experimentally to explore the relational dependence with respect to pulse energy. For this purpose, micro-holes are machined with various pulse energies on plastic mold steel samples using a tungsten carbide tool electrode and a hydrocarbon-based dielectric liquid. Variations in the micro-hole geometry, micro-hole depth and over-cut in micro-hole diameter are measured. Then, unconventional etching agents are applied on the cross sections to examine micro structural alterations within the substrate. It is observed that the heat-damaged segment is composed of three distinctive layers, which have relatively high thicknesses and vary noticeably with respect to the drilling depth. Crack formation is identified on some sections of the micro-holes even by utilizing low pulse energies during machining. It is concluded that the cracking mechanism is different from cracks encountered on the surfaces when machining is performed by using the conventional EDM process. Moreover, an electrically conductive bridge between work material and debris particles is possible at the end tip during machining which leads to electric discharges between the piled segments of debris particles and the tool electrode during discharging

  10. Significant improvements of electrical discharge machining performance by step-by-step updated adaptive control laws

    Science.gov (United States)

    Zhou, Ming; Wu, Jianyang; Xu, Xiaoyi; Mu, Xin; Dou, Yunping

    2018-02-01

    In order to obtain improved electrical discharge machining (EDM) performance, we have dedicated more than a decade to correcting one essential EDM defect, the weak stability of the machining, by developing adaptive control systems. The instabilities of machining are mainly caused by complicated disturbances in discharging. To counteract the effects from the disturbances on machining, we theoretically developed three control laws from minimum variance (MV) control law to minimum variance and pole placements coupled (MVPPC) control law and then to a two-step-ahead prediction (TP) control law. Based on real-time estimation of EDM process model parameters and measured ratio of arcing pulses which is also called gap state, electrode discharging cycle was directly and adaptively tuned so that a stable machining could be achieved. To this end, we not only theoretically provide three proved control laws for a developed EDM adaptive control system, but also practically proved the TP control law to be the best in dealing with machining instability and machining efficiency though the MVPPC control law provided much better EDM performance than the MV control law. It was also shown that the TP control law also provided a burn free machining.

  11. Electric-Discharge Machining Techniques for Evaluating Tritium Effects on Materials

    International Nuclear Information System (INIS)

    Morgan, M.J.

    2003-01-01

    In this investigation, new ways to evaluate the long-term effects of tritium on the structural properties of components were developed. Electric-discharge machining (EDM) techniques for cutting tensile and fracture toughness samples from tritium exposed regions of returned reservoirs were demonstrated. An existing electric discharge machine was used to cut sub-size tensile and fracture toughness samples from the inside surfaces of reservoir mockups. Tensile properties from the EDM tensile samples were similar to those measured using full-size samples cut from similar stock. Although the existing equipment could not be used for machining tritium-exposed hardware, off-the shelf EDM units are available that could. With the right equipment and the required radiological controls in place, similar machining and testing techniques could be used to directly measure the effects of tritium on the properties of material cut from reservoir returns. Stress-strain properties from tritium-exposed reservoirs would improve finite element modeling of reservoir performance because the data would be representative of the true state of the reservoir material in the field. Tensile data from samples cut directly from reservoirs would also complement existing shelf storage and burst test data of the Life Storage Program and help answer questions about a specific reservoir's processing history and properties

  12. Fabrication of high-aspect-ratio microgrooves using an electrochemical discharge micromilling process

    International Nuclear Information System (INIS)

    Han, Min-Seop; Chae, Ki Woon; Min, Byung-Kwon

    2017-01-01

    In this study, we created high-aspect-ratio microgrooves in hard, brittle materials using an electrochemical discharge machining (ECDM) process by introducing microtextured machining tool. To enhance the electrical discharge activity, the morphology of the tool side surface was treated via micro-electrical discharge machining to produce fine microprotrusive patterns. The resulting microtextured surface morphology enhanced the electric field and played a key role in improving the step milling depth in the ECDM process. Using the FEM analysis, the evaluation of the field enhancement factor is also addressed. Our experimental investigation revealed microgrooves having an aspect ratio of 1:4, with high geometric accuracy and crack-free surfaces, using one-step ECDM. (paper)

  13. Effect of dielectric fluid with surfactant and graphite powder on Electrical Discharge Machining of titanium alloy using Taguchi method

    Directory of Open Access Journals (Sweden)

    Murahari Kolli

    2015-12-01

    Full Text Available In this paper, Taguchi method was employed to optimize the surfactant and graphite powder concentration in dielectric fluid for the machining of Ti-6Al-4V using Electrical Discharge Machining (EDM. The process parameters such as discharge current, surfactant concentration and powder concentration were changed to explore their effects on Material Removal Rate (MRR, Surface Roughness (SR, Tool wear rate (TWR and Recast Layer Thickness (RLT. Detailed analysis of structural features of machined surface was carried out using Scanning Electron Microscope (SEM to observe the influence of surfactant and graphite powder on the machining process. It was observed from the experimental results that the graphite powder and surfactant added dielectric fluid significantly improved the MRR, reduces the SR, TWR and RLT at various conditions. Analysis of Variance (ANOVA and F-test of experimental data values related to the important process parameters of EDM revealed that discharge current and surfactant concentration has more percentage of contribution on the MRR and TWR whereas the SR, and RLT were found to be affected greatly by the discharge current and graphite powder concentration.

  14. Machining a glass rod with a lathe-type electro-chemical discharge machine

    International Nuclear Information System (INIS)

    Furutani, Katsushi; Maeda, Hideaki

    2008-01-01

    This paper deals with the performance of electro-chemical discharge machining (ECDM) of a revolving glass rod. ECDM has been studied for machining insulating materials such as glass and ceramics. In conventional ECDM, an insulating workpiece is dipped in an electrolyte as a working fluid and a tool electrode is pressed on the surface with a small load. In the experiments, a workpiece was revolved to provide fresh working fluid into a gap between the tool electrode and the workpiece. A soda lime grass rod was machined with a thin tungsten rod in NaCl solution. The applied voltage was changed up to 40 V. The rotation speed was set to 0, 0.3, 3 and 30 min −1 . Discharge was observed over an applied voltage of 30 V. The width and depth of the machined grooves and the surface roughness of their bottom were increased with increase of the applied voltage. Although the depth of machining at 3 min −1 was the same as that at 30 min −1 , the width and roughness at 30 min −1 were smaller than those at 3 min −1 . Moreover, because the thickness of vaporization around the tool electrode was decreased with increase of the rotation speed, the width of the machined groove became smaller

  15. Micro Electro Discharge Machining for Nonconductive Ceramic Materials

    Directory of Open Access Journals (Sweden)

    Mohammad Yeakub Ali

    2018-03-01

    Full Text Available In micro-electro discharge machining (micro-EDM of nonconductive ceramics, material is removed mainly by spalling due to the dominance of alternating thermal load. The established micro-EDM models established for single spark erosion are not applicable for nonconductive ceramics because of random spalling. Moreover, it is difficult to create single spark on a nonconductive ceramic workpiece when the spark is initiated by the assisting electrode. In this paper, theoretical model of material removal rate (MRR as the function of capacitance and voltage is developed for micro-EDM of nonconductive zirconium oxide (ZrO2. It is shown that the charging and discharging duration depend on the capacitance and resistances of the circuit. The number of sparks per unit time is estimated from the single spark duration s derived from heat transfer fundamentals. The model showed that both the capacitance and voltage are significant process parameters where any increase of capacitance and voltage increases the MRR. However, capacitance was found to be the dominating parameter over voltage. As in case of higher capacitances, the creation of a conductive carbonic layer on the machined surface was not stable; the effective window of machining 101 - 103 pF capacitance and 80 - 100 V gap voltage or 10 - 470 pF capacitance and 80 - 110 V gap voltage. This fact was confirmed EDX analysis where the presence of high carbon content was evident. Conversely, the spark was found to be inconsistent using parameters beyond these ranges and consequently insignificant MRR. Nevertheless, the effective number of sparks per second were close to the predicted numbers when machining conductive copper material. In addition, higher percentage of ineffective pulses was observed during the machining which eventually reduced the MRR. In case of validation, average deviations between the predicted and experimental values were found to be around 10%. Finally, micro-channels were machined on

  16. Effect of Electrical Discharge Machining on Stress Concentration in Titanium Alloy Holes.

    Science.gov (United States)

    Hsu, Wei-Hsuan; Chien, Wan-Ting

    2016-11-24

    Titanium alloys have several advantages, such as a high strength-to-weight ratio. However, the machinability of titanium alloys is not as good as its mechanical properties. Many machining processes have been used to fabricate titanium alloys. Among these machining processes, electrical discharge machining (EDM) has the advantage of processing efficiency. EDM is based on thermoelectric energy between a workpiece and an electrode. A pulse discharge occurs in a small gap between the workpiece and electrode. Then, the material from the workpiece is removed through melting and vaporization. However, defects such as cracks and notches are often detected at the boundary of holes fabricated using EDM and the irregular profile of EDM holes reduces product quality. In this study, an innovative method was proposed to estimate the effect of EDM parameters on the surface quality of the holes. The method combining the finite element method and image processing can rapidly evaluate the stress concentration factor of a workpiece. The stress concentration factor was assumed as an index of EDM process performance for estimating the surface quality of EDM holes. In EDM manufacturing processes, Ti-6Al-4V was used as an experimental material and, as process parameters, pulse current and pulse on-time were taken into account. The results showed that finite element simulations can effectively analyze stress concentration in EDM holes. Using high energy during EDM leads to poor hole quality, and the stress concentration factor of a workpiece is correlated to hole quality. The maximum stress concentration factor for an EDM hole was more than four times that for the same diameter of the undamaged hole.

  17. Analysis of aerosol emission and hazard evaluation of electrical discharge machining (EDM) process.

    Science.gov (United States)

    Jose, Mathew; Sivapirakasam, S P; Surianarayanan, M

    2010-01-01

    The safety and environmental aspects of a manufacturing process are important due to increased environmental regulations and life quality. In this paper, the concentration of aerosols in the breathing zone of the operator of Electrical Discharge Machining (EDM), a commonly used non traditional manufacturing process is presented. The pattern of aerosol emissions from this process with varying process parameters such as peak current, pulse duration, dielectric flushing pressure and the level of dielectric was evaluated. Further, the HAZOP technique was employed to identify the inherent safety aspects and fire risk of the EDM process under different working conditions. The analysis of aerosol exposure showed that the concentration of aerosol was increased with increase in the peak current, pulse duration and dielectric level and was decreased with increase in the flushing pressure. It was also found that at higher values of peak current (7A) and pulse duration (520 micros), the concentration of aerosols at breathing zone of the operator was above the permissible exposure limit value for respirable particulates (5 mg/m(3)). HAZOP study of the EDM process showed that this process is vulnerable to fire and explosion hazards. A detailed discussion on preventing the fire and explosion hazard is presented in this paper. The emission and risk of fire of the EDM process can be minimized by selecting proper process parameters and employing appropriate control strategy.

  18. Effect of electrical discharge machining on surface characteristics and machining damage of AISI D2 tool steel

    International Nuclear Information System (INIS)

    Guu, Y.H.; Hocheng, H.; Chou, C.Y.; Deng, C.S.

    2003-01-01

    In this work the electrical discharge machining (EDM) of AISI D2 tool steel was investigated. The surface characteristics and machining damage caused by EDM were studied in terms of machining parameters. Based on the experimental data, an empirical model of the tool steel was also proposed. A new damage variable was used to study the EDM damage. The workpiece surface and re-solidified layers were examined by a scanning electron microscopy. Surface roughness was determined with a surface profilometer. The residual stress acting on the EDM specimen was measured by the X-ray diffraction technique. Experimental results indicate that the thickness of the recast layer, and surface roughness are proportional to the power input. The EDM process introduces tensile residual stress on the machined surface. The EDM damage leads to strength degradation

  19. Multi-Parameter Analysis of Surface Finish in Electro-Discharge Machining of Tool Steels

    Directory of Open Access Journals (Sweden)

    Cornelia Victoria Anghel

    2006-10-01

    Full Text Available The paper presents a multi- parameter analysis of surface finish imparted to tool-steel plates by electro-discharge machining (EDM is presented. The interrelationship between surface texture parameters and process parameters is emphasized. An increased number of parameters is studied including amplitude, spacing, hybrid and fractal parameters,, as well. The correlation of these parameters with the machining conditions is investigated. Observed characteristics become more pronounced, when intensifying machining conditions. Close correlation exists between certain surface finish parameters and EDM input variables and single and multiple statistical regression models are developed.

  20. Effect of machining parameters on surface integrity of silicon carbide ceramic using end electric discharge milling and mechanical grinding hybrid machining

    International Nuclear Information System (INIS)

    Ji, Renjie; Liu, Yonghong; Zhang, Yanzhen; Cai, Baoping; Li, Xiaopeng; Zheng, Chao

    2013-01-01

    A novel hybrid process that integrates end electric discharge (ED) milling and mechanical grinding is proposed. The process is able to effectively machine a large surface area on SiC ceramic with good surface quality and fine working environmental practice. The polarity, pulse on-time, and peak current are varied to explore their effects on the surface integrity, such as surface morphology, surface roughness, micro-cracks, and composition on the machined surface. The results show that positive tool polarity, short pulse on-time, and low peak current cause a fine surface finish. During the hybrid machining of SiC ceramic, the material is mainly removed by end ED milling at rough machining mode, whereas it is mainly removed by mechanical grinding at finish machining mode. Moreover, the material from the tool can transfer to the workpiece, and a combination reaction takes place during machining.

  1. Influence of electrical resistivity and machining parameters on electrical discharge machining performance of engineering ceramics.

    Science.gov (United States)

    Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen

    2014-01-01

    Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge

  2. Machining of Molybdenum by EDM-EP and EDC Processes

    Science.gov (United States)

    Wu, K. L.; Chen, H. J.; Lee, H. M.; Lo, J. S.

    2017-12-01

    Molybdenum metal (Mo) can be machined with conventional tools and equipment, however, its refractory propertytends to chip when being machined. In this study, the nonconventional processes of electrical discharge machining (EDM) and electro-polishing (EP) have been conducted to investigate the machining of Mo metal and fabrication of Mo grid. Satisfactory surface quality was obtained using appropriate EDM parameters of Ip ≦ 3A and Ton EDMed Mo metal. Experimental results proved that the appropriate parameters of Ip = 5A and Ton = 50μs at Toff = 10μs can obtain the deposit with about 60μm thickness. The major phase of deposit on machined Mo surface was SiC ceramic, while the minor phases included MoSi2 and/or SiO2 with the presence of free Si due to improper discharging parameters and the use of silicone oil as the dielectric fluid.

  3. Testing and analysis of a fast discharge homopolar machine (FDX)

    International Nuclear Information System (INIS)

    Bullion, T.M.; Zowarka, R.; Driga, M.D.; Gully, J.H.; Rylander, H.G.; Tolk, K.M.; Weldon, W.F.; Woodson, H.H.

    1979-01-01

    The Fast Discharge Experiment (FDX) is a 0.36 MJ, 200 V homopolar machine designed to discharge in one millisecond. This experiment is intended to establish the fundamental limitations involved in extracting energy in the shortest time from a flywheel using homopolar conversion. After initial testing of FDX was completed and data was analyzed, problems limiting performance were identified. Various components of the machine were redesigned and modified to correct these problems. A second set of tests, including short circuit discharges from various speeds, has recently been conducted. Results and analysis of these tests will be presented. New problems encountered as well as recommendations for additional work will also be given

  4. A hybrid Taguchi-artificial neural network approach to predict surface roughness during electric discharge machining of titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sanjeev; Batish, Ajay [Thapar University, Patiala (India); Singh, Rupinder [GNDEC, Ludhiana (India); Singh, T. P. [Symbiosis Institute of Technology, Pune (India)

    2014-07-15

    In the present study, electric discharge machining process was used for machining of titanium alloys. Eight process parameters were varied during the process. Experimental results showed that current and pulse-on-time significantly affected the performance characteristics. Artificial neural network coupled with Taguchi approach was applied for optimization and prediction of surface roughness. The experimental results and the predicted results showed good agreement. SEM was used to investigate the surface integrity. Analysis for migration of different chemical elements and formation of compounds on the surface was performed using EDS and XRD pattern. The results showed that high discharge energy caused surface defects such as cracks, craters, thick recast layer, micro pores, pin holes, residual stresses and debris. Also, migration of chemical elements both from electrode and dielectric media were observed during EDS analysis. Presence of carbon was seen on the machined surface. XRD results showed formation of titanium carbide compound which precipitated on the machined surface.

  5. Electrical Discharge Platinum Machining Optimization Using Stefan Problem Solutions

    Directory of Open Access Journals (Sweden)

    I. B. Stavitskiy

    2015-01-01

    Full Text Available The article presents the theoretical study results of platinum workability by electrical discharge machining (EDM, based on the solution of the thermal problem of moving the boundary of material change phase, i.e. Stefan problem. The problem solution enables defining the surface melt penetration of the material under the heat flow proceeding from the time of its action and the physical properties of the processed material. To determine the rational EDM operating conditions of platinum the article suggests relating its workability with machinability of materials, for which the rational EDM operating conditions are, currently, defined. It is shown that at low densities of the heat flow corresponding to the finishing EDM operating conditions, the processing conditions used for steel 45 are appropriate for platinum machining; with EDM at higher heat flow densities (e.g. 50 GW / m2 for this purpose copper processing conditions are used; at the high heat flow densities corresponding to heavy roughing EDM it is reasonable to use tungsten processing conditions. The article also represents how the minimum width of the current pulses, at which platinum starts melting and, accordingly, the EDM process becomes possible, depends on the heat flow density. It is shown that the processing of platinum is expedient at a pulse width corresponding to the values, called the effective pulse width. Exceeding these values does not lead to a substantial increase in removal of material per pulse, but considerably reduces the maximum repetition rate and therefore, the EDM capacity. The paper shows the effective pulse width versus the heat flow density. It also presents the dependences of the maximum platinum surface melt penetration and the corresponding pulse width on the heat flow density. Results obtained using solutions of the Stephen heat problem can be used to optimize EDM operating conditions of platinum machining.

  6. AFM surface imaging of AISI D2 tool steel machined by the EDM process

    International Nuclear Information System (INIS)

    Guu, Y.H.

    2005-01-01

    The surface morphology, surface roughness and micro-crack of AISI D2 tool steel machined by the electrical discharge machining (EDM) process were analyzed by means of the atomic force microscopy (AFM) technique. Experimental results indicate that the surface texture after EDM is determined by the discharge energy during processing. An excellent machined finish can be obtained by setting the machine parameters at a low pulse energy. The surface roughness and the depth of the micro-cracks were proportional to the power input. Furthermore, the AFM application yielded information about the depth of the micro-cracks is particularly important in the post treatment of AISI D2 tool steel machined by EDM

  7. AFM surface imaging of AISI D2 tool steel machined by the EDM process

    Science.gov (United States)

    Guu, Y. H.

    2005-04-01

    The surface morphology, surface roughness and micro-crack of AISI D2 tool steel machined by the electrical discharge machining (EDM) process were analyzed by means of the atomic force microscopy (AFM) technique. Experimental results indicate that the surface texture after EDM is determined by the discharge energy during processing. An excellent machined finish can be obtained by setting the machine parameters at a low pulse energy. The surface roughness and the depth of the micro-cracks were proportional to the power input. Furthermore, the AFM application yielded information about the depth of the micro-cracks is particularly important in the post treatment of AISI D2 tool steel machined by EDM.

  8. Multi criteria decision making of machining parameters for Die Sinking EDM Process

    Directory of Open Access Journals (Sweden)

    G. K. Bose

    2015-04-01

    Full Text Available Electrical Discharge Machining (EDM is one of the most basic non-conventional machining processes for production of complex geometries and process of hard materials, which are difficult to machine by conventional process. It is capable of machining geometrically complex or hard material components, that are precise and difficult-to-machine such as heat-treated tool steels, composites, super alloys, ceramics, carbides, heat resistant steels etc. The present study is focusing on the die sinking electric discharge machining (EDM of AISI H 13, W.-Nr. 1.2344 Grade: Ovar Supreme for finding out the effect of machining parameters such as discharge current (GI, pulse on time (POT, pulse off time (POF and spark gap (SG on performance response like Material removal rate (MRR, Surface Roughness (Ra & Overcut (OC using Square-shaped Cu tool with Lateral flushing. A well-designed experimental scheme is used to reduce the total number of experiments. Parts of the experiment are conducted with the L9 orthogonal array based on the Taguchi methodology and significant process parameters are identified using Analysis of Variance (ANOVA. It is found that MRR is affected by gap current & Ra is affected by pulse on time. Moreover, the signal-to-noise ratios associated with the observed values in the experiments are determined by which factor is most affected by the responses of MRR, Ra and OC. These experimental data are further investigated using Grey Relational Analysis to optimize multiple performances in which different levels combination of the factors are ranked based on grey relational grade. The analysis reveals that substantial improvement in machining performance takes place following this technique.

  9. Catalytic aided electrical discharge machining of polycrystalline diamond - parameter analysis of finishing condition

    Science.gov (United States)

    Haikal Ahmad, M. A.; Zulafif Rahim, M.; Fauzi, M. F. Mohd; Abdullah, Aslam; Omar, Z.; Ding, Songlin; Ismail, A. E.; Rasidi Ibrahim, M.

    2018-01-01

    Polycrystalline diamond (PCD) is regarded as among the hardest material in the world. Electrical Discharge Machining (EDM) typically used to machine this material because of its non-contact process nature. This investigation was purposely done to compare the EDM performances of PCD when using normal electrode of copper (Cu) and newly proposed graphitization catalyst electrode of copper nickel (CuNi). Two level full factorial design of experiment with 4 center points technique was used to study the influence of main and interaction effects of the machining parameter namely; pulse-on, pulse-off, sparking current, and electrode materials (categorical factor). The paper shows interesting discovery in which the newly proposed electrode presented positive impact to the machining performance. With the same machining parameters of finishing, CuNi delivered more than 100% better in Ra and MRR than ordinary Cu electrode.

  10. Electric discharge machining device for laboratories and workshops

    International Nuclear Information System (INIS)

    Lanxner, M.; Berko, A.; Ron, N.

    1976-11-01

    A simple low power electric discharge machining (EDM) device for special uses in laboratories and workshops is presented. The device includes an RC generator, an electromechanical servo 3-axis work-tool alignment system and a closed dielectric fluid circulation loop

  11. Deposition and micro electrical discharge machining of CVD-diamond layers incorporated with silicon

    Science.gov (United States)

    Kühn, R.; Berger, T.; Prieske, M.; Börner, R.; Hackert-Oschätzchen, M.; Zeidler, H.; Schubert, A.

    2017-10-01

    In metal forming, lubricants have to be used to prevent corrosion or to reduce friction and tool wear. From an economical and ecological point of view, the aim is to avoid the usage of lubricants. For dry deep drawing of aluminum sheets it is intended to apply locally micro-structured wear-resistant carbon based coatings onto steel tools. One type of these coatings are diamond layers prepared by chemical vapor deposition (CVD). Due to the high strength of diamond, milling processes are unsuitable for micro-structuring of these layers. In contrast to this, micro electrical discharge machining (micro EDM) is a suitable process for micro-structuring CVD-diamond layers. Due to its non-contact nature and its process principle of ablating material by melting and evaporating, it is independent of the hardness, brittleness or toughness of the workpiece material. In this study the deposition and micro electrical discharge machining of silicon incorporated CVD-diamond (Si-CVD-diamond) layers were presented. For this, 10 µm thick layers were deposited on molybdenum plates by a laser-induced plasma CVD process (LaPlas-CVD). For the characterization of the coatings RAMAN- and EDX-analyses were conducted. Experiments in EDM were carried out with a tungsten carbide tool electrode with a diameter of 90 µm to investigate the micro-structuring of Si-CVD-diamond. The impact of voltage, discharge energy and tool polarity on process speed and resulting erosion geometry were analyzed. The results show that micro EDM is a suitable technology for micro-structuring of silicon incorporated CVD-diamond layers.

  12. Control processes and machine protection on ASDEX Upgrade

    International Nuclear Information System (INIS)

    Raupp, G.; Treutterer, W.; Mertens, V.; Neu, G.; Sips, A.; Zasche, D.; Zehetbauer, Th.

    2007-01-01

    Safe operation of ASDEX Upgrade is guaranteed by a conventional hierarchy of simple and robust hard-wired systems for personnel and machine protection featuring standardized switch-off procedures. Machine protection and handling of off-normal events is further enhanced and peak and lifetime stress minimized through the plasma control system. Based on a real-time process model supporting safety critical applications with data quality tagging, process self-monitoring, watchdog monitoring and alarm propagation, processes detect complex and critical failures and reliably perform case-sensitive counter measures. Intelligent real-time failure handling is done with hardware or software redundancy and performance degradation, or modification of reference values to continue or terminate discharges with reduced machine stress. Examples implemented so far on ASDEX Upgrade are given, such as recovery from measurement failures, switch-over of redundant actuators, handling of actuator limitations, detection of plasma instabilities, plasma state dependent soft landing, or handling of failed switch-off procedures through breakers disconnecting the machine from grid

  13. Electrical discharge machining for vessel sample removal

    International Nuclear Information System (INIS)

    Litka, T.J.

    1993-01-01

    Due to aging-related problems or essential metallurgy information (plant-life extension or decommissioning) of nuclear plants, sample removal from vessels may be required as part of an examination. Vessel or cladding samples with cracks may be removed to determine the cause of cracking. Vessel weld samples may be removed to determine the weld metallurgy. In all cases, an engineering analysis must be done prior to sample removal to determine the vessel's integrity upon sample removal. Electrical discharge machining (EDM) is being used for in-vessel nuclear power plant vessel sampling. Machining operations in reactor coolant system (RCS) components must be accomplished while collecting machining chips that could cause damage if they become part of the flow stream. The debris from EDM is a fine talclike particulate (no chips), which can be collected by flushing and filtration

  14. Modeling of thermal spalling during electrical discharge machining of titanium diboride

    International Nuclear Information System (INIS)

    Gadalla, A.M.; Bozkurt, B.; Faulk, N.M.

    1991-01-01

    Erosion in electrical discharge machining has been described as occurring by melting and flushing the liquid formed. Recently, however, thermal spalling was reported as the mechanism for machining refractory materials with low thermal conductivity and high thermal expansion. The process is described in this paper by a model based on a ceramic surface exposed to a constant circular heating source which supplied a constant flux over the pulse duration. The calculations were based on TiB 2 mechanical properties along a and c directions. Theoretical predictions were verified by machining hexagonal TiB 2 . Large flakes of TiB 2 with sizes close to grain size and maximum thickness close to the predicted values were collected, together with spherical particles of Cu and Zn eroded from cutting wire. The cutting surfaces consist of cleavage planes sometimes contaminated with Cu, Zn, and impurities from the dielectric fluid

  15. An overview of technology and research in electrode design and manufacturing in sinking electrical discharge machining

    Directory of Open Access Journals (Sweden)

    Bhola Jha

    2014-06-01

    Full Text Available Electrical discharge machining (EDM is one of the earliest non-traditional machining processes, based on thermoelectric energy between the workpiece and an electrode. In this process, the material is removed electro thermally by a series of successive discrete discharges between two electrically conductive objects, i.e., the electrode and the workpiece. The performance of the process, to a large extent, depends on the material, design and manufacturing method of the electrodes. Electrode design and method of its manufacturing also affect on the cost of electrode. Researchers have explored a number of ways to improve electrode design and devised various ways of manufacturing. The paper reports a review on the research relating to EDM electrode design and its manufacturing for improving and optimizing performance measures and reducing time and cost of manufacturing. The final part of the paper discusses these developments and outlines the trends for future research work.

  16. Evaluation of Fatigue Behavior and Surface Characteristics of Aluminum Alloy 2024 T6 After Electric Discharge Machining

    Science.gov (United States)

    Mehmood, Shahid; Shah, Masood; Pasha, Riffat Asim; Sultan, Amir

    2017-10-01

    The effect of electric discharge machining (EDM) on surface quality and consequently on the fatigue performance of Al 2024 T6 is investigated. Five levels of discharge current are analyzed, while all other electrical and nonelectrical parameters are kept constant. At each discharge current level, dog-bone specimens are machined by generating a peripheral notch at the center. The fatigue tests are performed on four-point rotating bending machine at room temperature. For comparison purposes, fatigue tests are also performed on the conventionally machined specimens. Linearized SN curves for 95% failure probability and with four different confidence levels (75, 90, 95 and 99%) are plotted for each discharge current level as well as for conventionally machined specimens. These plots show that the electric discharge machined (EDMed) specimens give inferior fatigue behavior as compared to conventionally machined specimen. Moreover, discharge current inversely affects the fatigue life, and this influence is highly pronounced at lower stresses. The EDMed surfaces are characterized by surface properties that could be responsible for change in fatigue life such as surface morphology, surface roughness, white layer thickness, microhardness and residual stresses. It is found that all these surface properties are affected by changing discharge current level. However, change in fatigue life by discharge current could not be associated independently to any single surface property.

  17. Design, fabrication, and testing of a fast discharge homopolar machine (FDX)

    International Nuclear Information System (INIS)

    Gully, J.H.; Driga, M.D.; Grant, B.; Rylander, H.G.; Tolk, K.M.; Weldon, W.F.; Woodson, H.H.

    1977-01-01

    The Fast Discharge Experiment (FDX) is a 0.36 MJ, 200 V homopolar machine designed to discharge in one millisecond. All components, including dual brush actuation systems, a room-temperature 2 x 10 6 A-t pulsed copper coil, two aluminum rotors with copper slip rings, low inductance return conductors, coaxial transmission line, four fast closing (30 μsec), megamp switches, hydrostatic journal bearings, squeeze film thrust bearings and a fiberglass reinforced epoxy structure have been fabricated and assembled. The detail design of machine components is presented. Preliminary testing, including rotor spin-ups, brush actuation, switch making, and pulsed field coil tests have been concluded. A low speed, short-circuit discharge of FDX has recently been conducted. Experimental data from these tests are compared with theoretical predictions

  18. Modeling and optimization of process variables of wire-cut electric discharge machining of super alloy Udimet-L605

    Directory of Open Access Journals (Sweden)

    Somvir Singh Nain

    2017-02-01

    Full Text Available This paper presents the behavior of Udimet-L605 after wire electric discharge machining and evaluating the WEDM process using sophisticated machine learning approaches. The experimental work is depicted on the basis of Taguchi orthogonal L27 array, considering six input variables and three interactions. Three models such as support vector machine algorithms based on PUK kernel, non-linear regression and multi-linear regression have been proposed to examine the variance between experimental and predicted outcome and preferred the preeminent model based on its evaluation parameters performance and graph analysis. The grey relational analysis is the relevant approach to obtain the best grouping of input variables for maximum material removal rate and minimum surface roughness. Based on statistical analysis, it has been concluded that pulse-on time, interaction between pulse-on time x pulse-off time, spark-gap voltage and wire tension are the momentous variable for surface roughness while the pulse-on time, spark-gap voltage and pulse-off time are the momentous variables for material removal rate. The micro structural and compositional changes on the surface of work material were examined by means of SEM and EDX analysis. The thickness of the white layer and the recast layer formation increases with increases in the pulse-on time duration.

  19. Experimental Investigation of Surface Layer Properties of High Thermal Conductivity Tool Steel after Electrical Discharge Machining

    Directory of Open Access Journals (Sweden)

    Rafał Świercz

    2017-12-01

    Full Text Available New materials require the use of advanced technology in manufacturing complex shape parts. One of the modern materials widely used in the tool industry for injection molds or hot stamping dies is high conductivity tool steel (HTCS 150. Due to its hardness (55 HRC and thermal conductivity at 66 W/mK, this material is difficult to machine by conventional treatment and is being increasingly manufactured by nonconventional technology such as electrical discharge machining (EDM. In the EDM process, material is removed from the workpiece by a series of electrical discharges that cause changes to the surface layers properties. The final state of the surface layer directly influences the durability of the produced elements. This paper presents the influence of EDM process parameters: discharge current Ic and the pulse time ton on surface layer properties. The experimental investigation was carried out with an experimental methodology design. Surface layers properties including roughness 3D parameters, the thickness of the white layer, heat affected zone, tempered layer and occurring micro cracks were investigated and described. The influence of the response surface methodology (RSM of discharge current Ic and the pulse time ton on the thickness of the white layer and roughness parameters Sa, Sds and Ssc were described and established.

  20. Wear analysis and cyclic fatigue resistance of electro discharge machined NiTi rotary instruments

    Directory of Open Access Journals (Sweden)

    F. Iacono

    2016-06-01

    Conclusions: The typical irregular surface of HyFlex EDM remained unaffected after multiple uses, confirming a high wear resistance. The new manufacturing process of electrical discharge machining had a substantial impact on fatigue lifetime of EDM files when compared with HyFlex CM. Within limitations of the present in vitro results, EDM files appeared suitable in shaping severely curved canals.

  1. Effect of electric discharge machining on the fatigue life of Inconel 718

    Science.gov (United States)

    Jeelani, S.; Collins, M. R.

    1988-01-01

    The effect of electric discharge machining on the fatigue life of Inconel 718 alloy at room temperature was investigated. Data were generated in the uniaxial tension fatigue mode at ambient temperature using flat 3.175 mm thick specimens. The specimens were machined on a wire-cut electric discharge machine at cutting speeds ranging from 0.5 to 2 mm per minute. The specimens were fatigued at a selected stress, and the resulting fatigue lives compared with that of the virgin material. The surfaces of the fatigued specimens were examined under optical and scanning electron microscopes, and the roughness of the surfaces was measured using a standard profilometer. From the results of the investigation, it was concluded that the fatigue life of the specimens machined using EDM decreased slightly as compared with that of the virgin material, but remained unchanged as the cutting speed was changed. The results are explained using data produced employing microhardness measurements, profilometry, and optical and scanning microscopy.

  2. Synergistic responses of superficial chemistry and micro topography of titanium created by wire-type electric discharge machining.

    Science.gov (United States)

    Kataoka, Yu; Tamaki, Yukimichi; Miyazaki, Takashi

    2011-01-01

    Wire-type electric discharge machining has been applied to the manufacture of endosseous titanium implants as this computer associated technique allows extremely accurate complex sample shaping with an optimal micro textured surface during the processing. Since the titanium oxide layer is sensitively altered by each processing, the authors hypothesized that this technique also up-regulates biological responses through the synergistic effects of the superficial chemistry and micro topography. To evaluate the respective in vitro cellular responses on the superficial chemistry and micro topography of titanium surface processed by wire-type electric discharge, we used titanium-coated epoxy resin replica of the surface. An oxide layer on the titanium surface processed by wire-type electric discharge activated the initial responses of osteoblastic cells through an integrin-mediated mechanism. Since the mRNA expression of ALP on those replicas was up-regulated compared to smooth titanium samples, the micro topography of a titanium surface processed by wire-type electric discharge promotes the osteogenic potential of cells. The synergistic response of the superficial chemistry and micro topography of titanium processed by wire-type electric discharge was demonstrated in this study.

  3. Sample preparation of metal alloys by electric discharge machining

    Science.gov (United States)

    Chapman, G. B., II; Gordon, W. A.

    1976-01-01

    Electric discharge machining was investigated as a noncontaminating method of comminuting alloys for subsequent chemical analysis. Particulate dispersions in water were produced from bulk alloys at a rate of about 5 mg/min by using a commercially available machining instrument. The utility of this approach was demonstrated by results obtained when acidified dispersions were substituted for true acid solutions in an established spectrochemical method. The analysis results were not significantly different for the two sample forms. Particle size measurements and preliminary results from other spectrochemical methods which require direct aspiration of liquid into flame or plasma sources are reported.

  4. Effect of different machining processes on the tool surface integrity and fatigue life

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Chuan Liang [College of Mechanical and Electrical Engineering, Nanchang University, Nanchang (China); Zhang, Xianglin [School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan (China)

    2016-08-15

    Ultra-precision grinding, wire-cut electro discharge machining and lapping are often used to machine the tools in fine blanking industry. And the surface integrity from these machining processes causes great concerns in the research field. To study the effect of processing surface integrity on the fine blanking tool life, the surface integrity of different tool materials under different processing conditions and its influence on fatigue life were thoroughly analyzed in the present study. The result shows that the surface integrity of different materials was quite different on the same processing condition. For the same tool material, the surface integrity on varying processing conditions was quite different too and deeply influenced the fatigue life.

  5. Controlling corrosion rate of Magnesium alloy using powder mixed electrical discharge machining

    Science.gov (United States)

    Razak, M. A.; Rani, A. M. A.; Saad, N. M.; Littlefair, G.; Aliyu, A. A.

    2018-04-01

    Biomedical implant can be divided into permanent and temporary employment. The duration of a temporary implant applied to children and adult is different due to different bone healing rate among the children and adult. Magnesium and its alloys are compatible for the biodegradable implanting application. Nevertheless, it is difficult to control the degradation rate of magnesium alloy to suit the application on both the children and adult. Powder mixed electrical discharge machining (PM-EDM) method, a modified EDM process, has high capability to improve the EDM process efficiency and machined surface quality. The objective of this paper is to establish a formula to control the degradation rate of magnesium alloy using the PM-EDM method. The different corrosion rate of machined surface is hypothesized to be obtained by having different combinations of PM-EDM operation inputs. PM-EDM experiments are conducted using an opened-loop PM-EDM system and the in-vitro corrosion tests are carried out on the machined surface of each specimen. There are four operation inputs investigated in this study which are zinc powder concentration, peak current, pulse on-time and pulse off-time. The results indicate that zinc powder concentration is significantly affecting the response with 2 g/l of zinc powder concentration obtaining the lowest corrosion rate. The high localized temperature at the cutting zone in spark erosion process causes some of the zinc particles get deposited on the machined surface, hence improving the surface characteristics. The suspended zinc particles in the dielectric fluid have also improve the sparking efficiency and the uniformity of sparks distribution. From the statistical analysis, a formula was developed to control the corrosion rate of magnesium alloy within the range from 0.000183 mm/year to 0.001528 mm/year.

  6. Selection of parameters for advanced machining processes using firefly algorithm

    Directory of Open Access Journals (Sweden)

    Rajkamal Shukla

    2017-02-01

    Full Text Available Advanced machining processes (AMPs are widely utilized in industries for machining complex geometries and intricate profiles. In this paper, two significant processes such as electric discharge machining (EDM and abrasive water jet machining (AWJM are considered to get the optimum values of responses for the given range of process parameters. The firefly algorithm (FA is attempted to the considered processes to obtain optimized parameters and the results obtained are compared with the results given by previous researchers. The variation of process parameters with respect to the responses are plotted to confirm the optimum results obtained using FA. In EDM process, the performance parameter “MRR” is increased from 159.70 gm/min to 181.6723 gm/min, while “Ra” and “REWR” are decreased from 6.21 μm to 3.6767 μm and 6.21% to 6.324 × 10−5% respectively. In AWJM process, the value of the “kerf” and “Ra” are decreased from 0.858 mm to 0.3704 mm and 5.41 mm to 4.443 mm respectively. In both the processes, the obtained results show a significant improvement in the responses.

  7. Drilling of Hybrid Titanium Composite Laminate (HTCL) with Electrical Discharge Machining.

    Science.gov (United States)

    Ramulu, M; Spaulding, Mathew

    2016-09-01

    An experimental investigation was conducted to determine the application of die sinker electrical discharge machining (EDM) as it applies to a hybrid titanium thermoplastic composite laminate material. Holes were drilled using a die sinker EDM. The effects of peak current, pulse time, and percent on-time on machinability of hybrid titanium composite material were evaluated in terms of material removal rate (MRR), tool wear rate, and cut quality. Experimental models relating each process response to the input parameters were developed and optimum operating conditions with a short cutting time, achieving the highest workpiece MRR, with very little tool wear were determined to occur at a peak current value of 8.60 A, a percent on-time of 36.12%, and a pulse time of 258 microseconds. After observing data acquired from experimentation, it was determined that while use of EDM is possible, for desirable quality it is not fast enough for industrial application.

  8. Drilling of Hybrid Titanium Composite Laminate (HTCL with Electrical Discharge Machining

    Directory of Open Access Journals (Sweden)

    M. Ramulu

    2016-09-01

    Full Text Available An experimental investigation was conducted to determine the application of die sinker electrical discharge machining (EDM as it applies to a hybrid titanium thermoplastic composite laminate material. Holes were drilled using a die sinker EDM. The effects of peak current, pulse time, and percent on-time on machinability of hybrid titanium composite material were evaluated in terms of material removal rate (MRR, tool wear rate, and cut quality. Experimental models relating each process response to the input parameters were developed and optimum operating conditions with a short cutting time, achieving the highest workpiece MRR, with very little tool wear were determined to occur at a peak current value of 8.60 A, a percent on-time of 36.12%, and a pulse time of 258 microseconds. After observing data acquired from experimentation, it was determined that while use of EDM is possible, for desirable quality it is not fast enough for industrial application.

  9. Hybrid machining processes perspectives on machining and finishing

    CERN Document Server

    Gupta, Kapil; Laubscher, R F

    2016-01-01

    This book describes various hybrid machining and finishing processes. It gives a critical review of the past work based on them as well as the current trends and research directions. For each hybrid machining process presented, the authors list the method of material removal, machining system, process variables and applications. This book provides a deep understanding of the need, application and mechanism of hybrid machining processes.

  10. Parametric optimization of ultrasonic machining process using gravitational search and fireworks algorithms

    Directory of Open Access Journals (Sweden)

    Debkalpa Goswami

    2015-03-01

    Full Text Available Ultrasonic machining (USM is a mechanical material removal process used to erode holes and cavities in hard or brittle workpieces by using shaped tools, high-frequency mechanical motion and an abrasive slurry. Unlike other non-traditional machining processes, such as laser beam and electrical discharge machining, USM process does not thermally damage the workpiece or introduce significant levels of residual stress, which is important for survival of materials in service. For having enhanced machining performance and better machined job characteristics, it is often required to determine the optimal control parameter settings of an USM process. The earlier mathematical approaches for parametric optimization of USM processes have mostly yielded near optimal or sub-optimal solutions. In this paper, two almost unexplored non-conventional optimization techniques, i.e. gravitational search algorithm (GSA and fireworks algorithm (FWA are applied for parametric optimization of USM processes. The optimization performance of these two algorithms is compared with that of other popular population-based algorithms, and the effects of their algorithm parameters on the derived optimal solutions and computational speed are also investigated. It is observed that FWA provides the best optimal results for the considered USM processes.

  11. Performance Optimization of Electrical Discharge Machining (Die Sinker for Al-6061 via Taguchi Approach

    Directory of Open Access Journals (Sweden)

    Muhammad Qaiser Saleem

    2015-04-01

    Full Text Available This paper parametrically optimizes the EDM (Electrical Discharge Machining process in die sinking mode for material removal rate, surface roughness and edge quality of aluminum alloy Al-6061. The effect of eight parameters namely discharge current, pulse on-time, pulse off-time, auxiliary current, working time, jump time distance, servo speed and work piece hardness are investigated. Taguchi's orthogonal array L18 is employed herein for experimentation. ANOVA (Analysis of Variance with F-ratio criterion at 95% confidence level is used for identification of significant parameters whereas SNR (Signal to Noise Ratio is used for determination of optimum levels. Optimization obtained for Al-6061 with parametric combination investigated herein is validated by the confirmation run.

  12. Effect of some types of machining processes on beryllium fatigue strength properties

    International Nuclear Information System (INIS)

    Armbruster, M.

    1977-01-01

    The aim of this work, which is sponsored by the French D.G.R.S.T., is to determine a machining process giving both the highest tensile strength and the highest fatigue limit to beryllium parts. A comparison is made of the effects of : mechanical machining, electro discharge machining, electro-chemical machining, electrolytical and chemical polishing, glass shot peening, on the mechanical strength and fatigue limits of samples taken from hot pressed and extruded rods and from cast ingot sheets, either notched or not as required. Complementary examinations are performed principally by fractographic study. The results show that for beryllium, electrochemical machining followed by glass shot peening gives the best results; however mechanical machining with electrolytical polishing followed by glass shot peening are also satisfactory. (author)

  13. Statistical investigations into the erosion of material from the tool in micro-electrical discharge machining

    DEFF Research Database (Denmark)

    Puthumana, Govindan

    2018-01-01

    This paper presents a statistical study of the erosion of material from the tool electrode in a micro-electrical discharge machining process. The work involves analysis of variance and analysis of means approaches on the results of the tool electrode wear rate obtained based on design...... current (Id) and discharge frequency (fd) control the erosion of material from the tool electrode. The material erosion from the tool electrode (Me) increases linearly with the discharge frequency. As the current index increases from 20 to 35, the Me decreases linearly by 29%, and then increases by of 36......%. The current index of 35 gives the minimum material erosion from the tool. It is observed that none of the two-factor interactions are significant in controlling the erosion of the material from the tool....

  14. Analysis of machining and machine tools

    CERN Document Server

    Liang, Steven Y

    2016-01-01

    This book delivers the fundamental science and mechanics of machining and machine tools by presenting systematic and quantitative knowledge in the form of process mechanics and physics. It gives readers a solid command of machining science and engineering, and familiarizes them with the geometry and functionality requirements of creating parts and components in today’s markets. The authors address traditional machining topics, such as: single and multiple point cutting processes grinding components accuracy and metrology shear stress in cutting cutting temperature and analysis chatter They also address non-traditional machining, such as: electrical discharge machining electrochemical machining laser and electron beam machining A chapter on biomedical machining is also included. This book is appropriate for advanced undergraduate and graduate mechani cal engineering students, manufacturing engineers, and researchers. Each chapter contains examples, exercises and their solutions, and homework problems that re...

  15. Hardness and structure changes at surface in electrical discharge machined steel C 3840

    International Nuclear Information System (INIS)

    Karastojkovic, Z.; Janjusevic, Z.

    2003-01-01

    The electrical discharge machining (EDM) of both hard and soft materials became an important technique in industrial applications. This technique has an advantage in producing of structural/tool parts of complex geometry. The EDM is based on electrical phenomena, when the treated surface undergoes to erosion. The first step in EDM, the melting of thin surface layer, frequently is neglected. In this paper the changes of hardness and structure at surface layer, after EDM is applied on steel C 3840, will be discussed. The steel C- 3840 was quenched and tempered to hardness of 63 HRC, at surface, and than machined by electrical discharging. The changed, white, layer is just a product of melting and decarburization processes. The white layer is registered at surface by using a metallographic investigation. Hardness profile is measured from surface to the interior of material. The achievement of local high temperatures during EDM is resulting on melt and erosion of material. Besides of these effects, during EDM were happened some minor but not a neglectible effects, primary on structure changes on treated surface. It would be expected that melting, even an evaporation of melted metal, and further the phase transformation have an important influence on the starting structure. (Original)

  16. Sustainable Micro-Manufacturing of Micro-Components via Micro Electrical Discharge Machining

    Directory of Open Access Journals (Sweden)

    Valeria Marrocco

    2011-12-01

    Full Text Available Micro-manufacturing emerged in the last years as a new engineering area with the potential of increasing peoples’ quality of life through the production of innovative micro-devices to be used, for example, in the biomedical, micro-electronics or telecommunication sectors. The possibility to decrease the energy consumption makes the micro-manufacturing extremely appealing in terms of environmental protection. However, despite this common belief that the micro-scale implies a higher sustainability compared to traditional manufacturing processes, recent research shows that some factors can make micro-manufacturing processes not as sustainable as expected. In particular, the use of rare raw materials and the need of higher purity of processes, to preserve product quality and manufacturing equipment, can be a source for additional environmental burden and process costs. Consequently, research is needed to optimize micro-manufacturing processes in order to guarantee the minimum consumption of raw materials, consumables and energy. In this paper, the experimental results obtained by the micro-electrical discharge machining (micro-EDM of micro-channels made on Ni–Cr–Mo steel is reported. The aim of such investigation is to shed a light on the relation and dependence between the material removal process, identified in the evaluation of material removal rate (MRR and tool wear ratio (TWR, and some of the most important technological parameters (i.e., open voltage, discharge current, pulse width and frequency, in order to experimentally quantify the material waste produced and optimize the technological process in order to decrease it.

  17. The ASDEX upgrade digital video processing system for real-time machine protection

    Energy Technology Data Exchange (ETDEWEB)

    Drube, Reinhard, E-mail: reinhard.drube@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Neu, Gregor [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Cole, Richard H.; Lüddecke, Klaus [Unlimited Computer Systems GmbH, Seeshaupterstr. 15, 82393 Iffeldorf (Germany); Lunt, Tilmann; Herrmann, Albrecht [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany)

    2013-11-15

    Highlights: • We present the Real-Time Video diagnostic system of ASDEX Upgrade. • We show the implemented image processing algorithms for machine protection. • The way to achieve a robust operating multi-threading Real-Time system is described. -- Abstract: This paper describes the design, implementation, and operation of the Video Real-Time (VRT) diagnostic system of the ASDEX Upgrade plasma experiment and its integration with the ASDEX Upgrade Discharge Control System (DCS). Hot spots produced by heating systems erroneously or accidentally hitting the vessel walls, or from objects in the vessel reaching into the plasma outer border, show up as bright areas in the videos during and after the reaction. A system to prevent damage to the machine by allowing for intervention in a running discharge of the experiment was proposed and implemented. The VRT was implemented on a multi-core real-time Linux system. Up to 16 analog video channels (color and b/w) are acquired and multiple regions of interest (ROI) are processed on each video frame. Detected critical states can be used to initiate appropriate reactions – e.g. gracefully terminate the discharge. The system has been in routine operation since 2007.

  18. Investigation of surface roughness in micro-electro discharge machining of nonconductive ZrO2 for MEMS application

    International Nuclear Information System (INIS)

    Sabur, A; Moudood, A; Ali, M Y; Maleque, M A

    2013-01-01

    Micro-electro discharge machining technique, a noncontact machining process, is applied for drilling blind hole on nonconductive ZrO 2 ceramic for MEMS application. A conductive layer of adhesive copper is applied on the workpiece surface to initiate the sparks. Kerosene is used as dielectric for creation of continuous conductive pyrolytic carbon layer on the machined surface. Experiments are conducted by varying the voltage (V), capacitance (C) and rotational speed (N). Correlating these variables a mathematical model for surface roughness (SR) is developed using Taguchi method. The results showed that the V and C are the significant parameters of SR in micro-EDM for nonconductive ZrO 2 ceramic. The model also showed that SR increases with the increase of V and C

  19. Application of grey-fuzzy approach in parametric optimization of EDM process in machining of MDN 300 steel

    Science.gov (United States)

    Protim Das, Partha; Gupta, P.; Das, S.; Pradhan, B. B.; Chakraborty, S.

    2018-01-01

    Maraging steel (MDN 300) find its application in many industries as it exhibits high hardness which are very difficult to machine material. Electro discharge machining (EDM) is an extensively popular machining process which can be used in machining of such materials. Optimization of response parameters are essential for effective machining of these materials. Past researchers have already used Taguchi for obtaining the optimal responses of EDM process for this material with responses such as material removal rate (MRR), tool wear rate (TWR), relative wear ratio (RWR), and surface roughness (SR) considering discharge current, pulse on time, pulse off time, arc gap, and duty cycle as process parameters. In this paper, grey relation analysis (GRA) with fuzzy logic is applied to this multi objective optimization problem to check the responses by an implementation of the derived parametric setting. It was found that the parametric setting derived by the proposed method results in better a response than those reported by the past researchers. Obtained results are also verified using the technique for order of preference by similarity to ideal solution (TOPSIS). The predicted result also shows that there is a significant improvement in comparison to the results of past researchers.

  20. Morphology and Phase Composition of Particles Produced by Electro-Discharge-Machining of Iron

    International Nuclear Information System (INIS)

    Cabanillas, E. D.; Pasqualini, E. E.; Lopez, M.; Cirilo, D.; Desimoni, J.; Mercader, R. C.

    2001-01-01

    Towards producing metallic particles of controlled size and spherical shape, which are of technological importance, we have collected in the filters of an electro-discharge-machine (EDM) the material ejected from the surface of EDM iron pieces. The conditions of machining were varied for kerosene and water as dielectrics, using a discharge current of 25 A and duration times of 16 and 3072 μs for kerosene and of 32, 384 and 768 μs for water, respectively. Scanning electron microscopy was used to assess the effect of the time of discharge on the size of the particles. Moessbauer spectroscopy and X-ray diffraction revealed that for kerosene EDM particles only cementite-like carbides of diverse stoichiometry were formed. While no oxide was found for kerosene spheres, the analyses showed that besides the main fraction of α-Fe, a small percentage of wuestite (and traces of hematite for the 384 μs sample) formed on the water EDM ones

  1. Morphology and Phase Composition of Particles Produced by Electro-Discharge-Machining of Iron

    Energy Technology Data Exchange (ETDEWEB)

    Cabanillas, E. D.; Pasqualini, E. E.; Lopez, M.; Cirilo, D. [Comision Nacional de Energia Atomica, Centro Atomico Constituyentes (Argentina); Desimoni, J.; Mercader, R. C. [Universidad Nacional de La Plata, Departamento de Fisica, IFLP, Facultad de Ciencias Exactas (Argentina)

    2001-05-15

    Towards producing metallic particles of controlled size and spherical shape, which are of technological importance, we have collected in the filters of an electro-discharge-machine (EDM) the material ejected from the surface of EDM iron pieces. The conditions of machining were varied for kerosene and water as dielectrics, using a discharge current of 25 A and duration times of 16 and 3072 {mu}s for kerosene and of 32, 384 and 768 {mu}s for water, respectively. Scanning electron microscopy was used to assess the effect of the time of discharge on the size of the particles. Moessbauer spectroscopy and X-ray diffraction revealed that for kerosene EDM particles only cementite-like carbides of diverse stoichiometry were formed. While no oxide was found for kerosene spheres, the analyses showed that besides the main fraction of {alpha}-Fe, a small percentage of wuestite (and traces of hematite for the 384 {mu}s sample) formed on the water EDM ones.

  2. Analysis of Material Removal and Surface Characteristics in Machining Multi Walled Carbon Nanotubes Filled Alumina Composites by WEDM Process

    Directory of Open Access Journals (Sweden)

    Annebushan Singh Meinam

    2017-01-01

    Full Text Available The reinforcement of ceramic materials with electrically conductive particles increases the overall conductivity of the ceramic material. This allows the ceramic material to be more readily machined using wire electrical discharge machining process. The current work is an approach to identify the machinability of multi walled carbon nanotubes filled alumina composites in wire electrical discharge machining process. Alumina samples of 5 vol. % and 10 vol. % multi walled carbon nanotubes are machined and analysed for material removal rate and the surface characteristics. An increase in material removal rate is observed with increase in filler concentrations. At the same time, better surface roughness is observed. The surface characteristics of composite alumina are further compared with Monel 400 alloy. It has been observed that spalling action is the dominating material removal mechanism for alumina composites, while melting and evaporation is for the Monel 400 alloy.

  3. Analysis of Effects of Cutting Parameters of Wire Electrical Discharge Machining on Material Removal Rate and Surface Integrity

    Science.gov (United States)

    Tonday, H. R.; Tigga, A. M.

    2016-02-01

    As wire electrical discharge machining is pioneered as a vigorous, efficient and precise and complex nontraditional machining technique, research is needed in this area for efficient machining. In this paper, the influence of various input factors of wire electrical discharge machining (WEDM) on output variable has been analyzed by using Taguchi technique and analysis of variance. The design of experiments has been done and by applying L8 orthogonal arrays method and experiments have been conducted and collected required data. The objectives of the research are to maximize the material removal rate and to minimize the surface roughness value (Ra). Surface morphology of machined workpiece has been obtained and examined by employing scanning electron microscopy (SEM) technique.

  4. Analysis of Effects of Cutting Parameters of Wire Electrical Discharge Machining on Material Removal Rate and Surface Integrity

    International Nuclear Information System (INIS)

    Tonday, H. R.; Tigga, A. M.

    2016-01-01

    As wire electrical discharge machining is pioneered as a vigorous, efficient and precise and complex nontraditional machining technique, research is needed in this area for efficient machining. In this paper, the influence of various input factors of wire electrical discharge machining (WEDM) on output variable has been analyzed by using Taguchi technique and analysis of variance. The design of experiments has been done and by applying L8 orthogonal arrays method and experiments have been conducted and collected required data. The objectives of the research are to maximize the material removal rate and to minimize the surface roughness value (Ra). Surface morphology of machined workpiece has been obtained and examined by employing scanning electron microscopy (SEM) technique. (paper)

  5. EXPERIMENTAL EVALUATION OF WEDM MACHINED SURFACE WAVINESS

    Directory of Open Access Journals (Sweden)

    Katerina Mouralova

    2016-10-01

    Full Text Available Wire Electrical Discharge Machining (WEDM an unconventional machining technology which has become indispensable in many industries. The typical morphology of a surface machined using the electrical discharge technology is characterized with a large number of craters caused by electro-spark discharges produced during the machining process. The study deals with an evaluation of the machine parameter setting on the profile parameters of surface waviness on samples made of two metal materials Al 99.5 and Ti-6Al-4V. Attention was also paid to an evaluation of the surface morphology using 3D colour filtered and non-filtered images.

  6. Traveling wire electrode increases productivity of Electrical Discharge Machining /EDM/ equipment

    Science.gov (United States)

    Kotora, J., Jr.; Smith, S. V.

    1967-01-01

    Traveling wire electrode on electrical discharge machining /EDM/ equipment reduces the time requirements for precision cutting. This device enables cutting with a minimum of lost material and without inducing stress beyond that inherent in the material. The use of wire increases accuracy and enables tighter tolerances to be maintained.

  7. Rapid and Efficient Synthesis of Silver Nanofluid Using Electrical Discharge Machining

    Directory of Open Access Journals (Sweden)

    Kuo-Hsiung Tseng

    2013-01-01

    Full Text Available The electrical discharge machining (EDM system has been proven feasible as a rapid and efficient method for silver nanofluid preparation. This study prepared the silver nano-fluid via EDM and investigated the relationship between its process parameters and product characteristics. The prior study had found that the silver nano-fluid prepared by EDM contained both silver nanoparticles and silver ions. Silver ions had revealed the cause of the high suspension of the silver nanoparticles. To examine the relationship between the stability of silver nanofluid and the process parameters, this study quantified the relationship of process parameters to the material removal rate (MRR of silver electrode and silver ion output rate (IOR in the fluid, in order to achieve the most effective process parameter condition. Furthermore, the stability of silver nano-fluid was analyzed by various devices, including UV-Vis spectroscopy, size-distribution, and Zeta-potential analyzer. The effects of MRR, IOR, particle size, Zeta-potential, and optical properties of silver nanofluid under different process parameters are also discussed.

  8. A study on the effect of tool electrode thickness on MRR, and TWR in electrical discharge turning process

    Science.gov (United States)

    Gohil, Vikas; Puri, YM

    2018-04-01

    Turning by electrical discharge machining (EDM) is an emerging area of research. Generally, wire-EDM is used in EDM turning because it is not concerned with electrode tooling cost. In EDM turning wire electrode leaves cusps on the machined surface because of its small diameters and wire breakage which greatly affect the surface finish of the machined part. Moreover, one of the limitations of the process is low machining speed as compared to constituent processes. In this study, conventional EDM was employed for turning purpose in order to generate free-form cylindrical geometries on difficult-to-cut materials. Therefore, a specially designed turning spindle was mounted on a conventional die-sinking EDM machine to rotate the work piece. A conductive preshaped strip of copper as a forming tool is fed (reciprocate) continuously against the rotating work piece; thus, a mirror image of the tool is formed on the circumference of the work piece. In this way, an axisymmetric work piece can be made with small tools. The developed process is termed as the electrical discharge turning (EDT). In the experiments, the effect of machining parameters, such as pulse-on time, peak current, gap voltage and tool thickness on the MRR, and TWR were investigated and practical machining was carried out by turning of SS-304 stainless steel work piece.

  9. Study of discharge in quiescent plasma machine of the INPE

    International Nuclear Information System (INIS)

    Ferreira, J.G.; Ferreira, J.L.; Ludwig, G.O.; Maciel, H.S.

    1988-12-01

    Measurements of principal plasma parameters produced by quiescent plasma machine of the Instituto de Pesquisas Espaciais (INPE) for current of 500 mA and several values of pressure and discharge power are presented. A qualitative interpretation for obtained results is done and a simple model for plasma density is compared with experimental values. The conditions of cathode operation are also investigated. (M.C.K.)

  10. Nontraditional machining processes research advances

    CERN Document Server

    2013-01-01

    Nontraditional machining employs processes that remove material by various methods involving thermal, electrical, chemical and mechanical energy or even combinations of these. Nontraditional Machining Processes covers recent research and development in techniques and processes which focus on achieving high accuracies and good surface finishes, parts machined without burrs or residual stresses especially with materials that cannot be machined by conventional methods. With applications to the automotive, aircraft and mould and die industries, Nontraditional Machining Processes explores different aspects and processes through dedicated chapters. The seven chapters explore recent research into a range of topics including laser assisted manufacturing, abrasive water jet milling and hybrid processes. Students and researchers will find the practical examples and new processes useful for both reference and for developing further processes. Industry professionals and materials engineers will also find Nontraditional M...

  11. Plasma Discharge Process in a Pulsed Diaphragm Discharge System

    Science.gov (United States)

    Duan, Jianjin; Hu, Jue; Zhang, Chao; Wen, Yuanbin; Meng, Yuedong; Zhang, Chengxu

    2014-12-01

    As one of the most important steps in wastewater treatment, limited study on plasma discharge process is a key challenge in the development of plasma applications. In this study, we focus on the plasma discharge process of a pulsed diaphragm discharge system. According to the analysis, the pulsed diaphragm discharge proceeds in seven stages: (1) Joule heating and heat exchange stage; (2) nucleated site formation; (3) plasma generation (initiation of the breakdown stage); (4) avalanche growth and plasma expansion; (5) plasma contraction; (6) termination of the plasma discharge; and (7) heat exchange stage. From this analysis, a critical voltage criterion for breakdown is obtained. We anticipate this finding will provide guidance for a better application of plasma discharges, especially diaphragm plasma discharges.

  12. Machine intelligence and signal processing

    CERN Document Server

    Vatsa, Mayank; Majumdar, Angshul; Kumar, Ajay

    2016-01-01

    This book comprises chapters on key problems in machine learning and signal processing arenas. The contents of the book are a result of a 2014 Workshop on Machine Intelligence and Signal Processing held at the Indraprastha Institute of Information Technology. Traditionally, signal processing and machine learning were considered to be separate areas of research. However in recent times the two communities are getting closer. In a very abstract fashion, signal processing is the study of operator design. The contributions of signal processing had been to device operators for restoration, compression, etc. Applied Mathematicians were more interested in operator analysis. Nowadays signal processing research is gravitating towards operator learning – instead of designing operators based on heuristics (for example wavelets), the trend is to learn these operators (for example dictionary learning). And thus, the gap between signal processing and machine learning is fast converging. The 2014 Workshop on Machine Intel...

  13. Surface integrity and fatigue behaviour of electric discharged machined and milled austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, Mattias, E-mail: mattias.lundberg@liu.se; Saarimäki, Jonas; Moverare, Johan J.; Calmunger, Mattias

    2017-02-15

    Machining of austenitic stainless steels can result in different surface integrities and different machining process parameters will have a great impact on the component fatigue life. Understanding how machining processes affect the cyclic behaviour and microstructure are of outmost importance in order to improve existing and new life estimation models. Milling and electrical discharge machining (EDM) have been used to manufacture rectangular four-point bend fatigue test samples; subjected to high cycle fatigue. Before fatigue testing, surface integrity characterisation of the two surface conditions was conducted using scanning electron microscopy, surface roughness, residual stress profiles, and hardness profiles. Differences in cyclic behaviour were observed between the two surface conditions by the fatigue testing. The milled samples exhibited a fatigue limit. EDM samples did not show the same behaviour due to ratcheting. Recrystallized nano sized grains were identified at the severely plastically deformed surface of the milled samples. Large amounts of bent mechanical twins were observed ~ 5 μm below the surface. Grain shearing and subsequent grain rotation from milling bent the mechanical twins. EDM samples showed much less plastic deformation at the surface. Surface tensile residual stresses of ~ 500 MPa and ~ 200 MPa for the milled and EDM samples respectively were measured. - Highlights: •Milled samples exhibit fatigue behaviour, but not EDM samples. •Four-point bending is not suitable for materials exhibiting pronounced ratcheting. •LAGB density can be used to quantitatively measure plastic deformation. •Grain shearing and rotation result in bent mechanical twins. •Nano sized grains evolve due to the heat of the operation.

  14. Study of wire electrical discharge machined folded-up corner cube retroreflector with a tunable cantilever beam

    Science.gov (United States)

    Chen, Yu-Fan; Wang, Yen-Hung; Tsai, Jui-che

    2018-03-01

    This work has developed an approach to construct a corner cube retroreflector (CCR). A two-dimensional cutout pattern is first fabricated with wire electrical discharge machining process. It is then folded up into a three-dimensional CCR suspended on a cantilever beam. The folded-up CCR may be driven through external actuators for optical modulation; it can also mechanically respond to perturbation, acceleration, etc., to function as a sensor. Mechanical (static and dynamic modeling) and optical (ray tracing) analyses are also performed.

  15. A mathematical model for surface roughness of fluidic channels produced by grinding aided electrochemical discharge machining (G-ECDM

    Directory of Open Access Journals (Sweden)

    Ladeesh V. G.

    2017-01-01

    Full Text Available Grinding aided electrochemical discharge machining is a hybrid technique, which combines the grinding action of an abrasive tool and thermal effects of electrochemical discharges to remove material from the workpiece for producing complex contours. The present study focuses on developing fluidic channels on borosilicate glass using G-ECDM and attempts to develop a mathematical model for surface roughness of the machined channel. Preliminary experiments are conducted to study the effect of machining parameters on surface roughness. Voltage, duty factor, frequency and tool feed rate are identified as the significant factors for controlling surface roughness of the channels produced by G-ECDM. A mathematical model was developed for surface roughness by considering the grinding action and thermal effects of electrochemical discharges in material removal. Experiments are conducted to validate the model and the results obtained are in good agreement with that predicted by the model.

  16. Performance optimization in electro- discharge machining using a suitable multiresponse optimization technique

    Directory of Open Access Journals (Sweden)

    I. Nayak

    2017-06-01

    Full Text Available In the present research work, four different multi response optimization techniques, viz. multiple response signal-to-noise (MRSN ratio, weighted signal-to-noise (WSN ratio, Grey relational analysis (GRA and VIKOR (VlseKriterijumska Optimizacija I Kompromisno Resenje in Serbian methods have been used to optimize the electro-discharge machining (EDM performance characteristics such as material removal rate (MRR, tool wear rate (TWR and surface roughness (SR simultaneously. Experiments have been planned on a D2 steel specimen based on L9 orthogonal array. Experimental results are analyzed using the standard procedure. The optimum level combinations of input process parameters such as voltage, current, pulse-on-time and pulse-off-time, and percentage contributions of each process parameter using ANOVA technique have been determined. Different correlations have been developed between the various input process parameters and output performance characteristics. Finally, the optimum performances of these four methods are compared and the results show that WSN ratio method is the best multiresponse optimization technique for this process. From the analysis, it is also found that the current has the maximum effect on the overall performance of EDM operation as compared to other process parameters.

  17. Finite Element Method in Machining Processes

    CERN Document Server

    Markopoulos, Angelos P

    2013-01-01

    Finite Element Method in Machining Processes provides a concise study on the way the Finite Element Method (FEM) is used in the case of manufacturing processes, primarily in machining. The basics of this kind of modeling are detailed to create a reference that will provide guidelines for those who start to study this method now, but also for scientists already involved in FEM and want to expand their research. A discussion on FEM, formulations and techniques currently in use is followed up by machining case studies. Orthogonal cutting, oblique cutting, 3D simulations for turning and milling, grinding, and state-of-the-art topics such as high speed machining and micromachining are explained with relevant examples. This is all supported by a literature review and a reference list for further study. As FEM is a key method for researchers in the manufacturing and especially in the machining sector, Finite Element Method in Machining Processes is a key reference for students studying manufacturing processes but al...

  18. The Engineering Of PCB Processing Machine

    International Nuclear Information System (INIS)

    Handoyo, Demon; Satmoko, Ari; T, Sapta; Heru, G. B.

    2001-01-01

    The engineering of PCB processing machine had been done. Purposes of the engineering of PCB processing machine are used to process PCB and to get the data's of characteristic of PCB processing. Further, these data's will be used as setting point when processing of PCB is done with manual and automatic control. The method of processing of PCB are inserting and pulling of the PCB rack to and from Ferro chlorite using electrical motor to corrosive Cu shield parts witch is not used. The experiment have result that the characteristic of operation of PCB processing machine as we hope when designing

  19. Comparative Study of White Layer Characteristics for Static and Rotating Workpiece during Electric Discharge Machining

    Directory of Open Access Journals (Sweden)

    SHAHID MEHMOOD

    2017-10-01

    Full Text Available EDMed (Electric Discharge Machined surfaces are unique in their appearance and metallurgical characteristics, which depend on different parameter such as electric parameters, flushing method, and dielectric type. Conventionally, in static workpiece method the EDM (Electric Discharge Machining is performed by submerging both of the tool and workpiece in dielectric liquid and side flushing is provided by impinging pressurized dielectric liquid into the gap. Another flushing method has been investigated in this study, in which, instead of side flushing the rotation motion is provided to the workpiece. Surface characteristics for both flushing methods are determined and compared in this study. The investigated surface characteristics are: surface roughness, crater size, surface morphology, white layer thickness and composition. These investigations are performed using optical and SEM (Scanning Electron Microscope. Statistical confidence limits are determined for scattered data of surface roughness. It is found that the white layer thickness and surface roughness are directly proportional to discharge current for both flushing methods. The comparison has shown that the side flushing of statics workpiece gives thicker white layer and lower surface finish as compared to the flushing caused by the rotation of workpiece

  20. Comparative study of white layer characteristics for static and rotating workpiece during electric discharge machining

    International Nuclear Information System (INIS)

    Mehmood, S.; Shah, M.; Anjum, N.A.

    2017-01-01

    EDMed (Electric Discharge Machined) surfaces are unique in their appearance and metallurgical characteristics, which depend on different parameter such as electric parameters, flushing method, and dielectric type. Conventionally, in static workpiece method the EDM (Electric Discharge Machining) is performed by submerging both of the tool and workpiece in dielectric liquid and side flushing is provided by impinging pressurized dielectric liquid into the gap. Another flushing method has been investigated in this study, in which, instead of side flushing the rotation motion is provided to the workpiece. Surface characteristics for both flushing methods are determined and compared in this study. The investigated surface characteristics are: surface roughness, crater size, surface morphology, white layer thickness and composition. These investigations are performed using optical and SEM (Scanning Electron Microscope). Statistical confidence limits are determined for scattered data of surface roughness. It is found that the white layer thickness and surface roughness are directly proportional to discharge current for both flushing methods. The comparison has shown that the side flushing of statics workpiece gives thicker white layer and lower surface finish as compared to the flushing caused by the rotation of workpiece. (author)

  1. Electrical machining method of insulating ceramics

    International Nuclear Information System (INIS)

    Fukuzawa, Y.; Mohri, N.; Tani, T.

    1999-01-01

    This paper describes a new electrical discharge machining method for insulating ceramics using an assisting electrode with either a sinking electrical discharge machine or a wire electrical discharge machine. In this method, the metal sheet or mesh is attached to the ceramic surface as an assisting material for the discharge generation around the insulator surface. When the machining condition changes from the attached material to the workpiece, a cracked carbon layer is formed on the workpiece surface. As this layer has an electrical conductivity, electrical discharge occurs in working oil between the tool electrode and the surface of the workpiece. The carbon is formed from the working oil during this electrical discharge. Even after the material is machined, an electrical discharge occurs in the gap region between the tool electrode and the ceramic because an electrically conductive layer is generated continuously. Insulating ceramics can be machined by the electrical discharge machining method using the above mentioned surface modification phenomenon. In this paper the authors show a machined example demonstrating that the proposed method is available for machining a complex shape on insulating ceramics. Copyright (1999) AD-TECH - International Foundation for the Advancement of Technology Ltd

  2. A novel thermo-hydraulic coupling model to investigate the crater formation in electrical discharge machining

    Science.gov (United States)

    Tang, Jiajing; Yang, Xiaodong

    2017-09-01

    A novel thermo-hydraulic coupling model was proposed in this study to investigate the crater formation in electrical discharge machining (EDM). The temperature distribution of workpiece materials was included, and the crater formation process was explained from the perspective of hydrodynamic characteristics of the molten region. To better track the morphology of the crater and the movement of debris, the level-set method was introduced in this study. Simulation results showed that the crater appears shortly after the ignition of the discharge, and the molten material is removed by vaporizing in the initial stage, then by splashing at the following time. The driving force for the detachment of debris in the splashing removal stage comes from the extremely large pressure difference in the upper part of the molten region, and the morphology of the crater is also influenced by the shearing flow of molten material. It was found that the removal ratio of molten material is only about 7.63% under the studied conditions, leaving most to form the re-solidification layer on the surface of the crater. The size of the crater reaches the maximum at the end of discharge duration then experiences a slight reduction because of the reflux of molten material after the discharge. The results of single pulse discharge experiments showed that the morphologies and sizes between the simulation crater and actual crater are good at agreement, verifying the feasibility of the proposed thermo-hydraulic coupling model in explaining the mechanisms of crater formation in EDM.

  3. Partial Discharge Measurements in HV Rotating Machines in Dependence on Pressure of Coolant

    Directory of Open Access Journals (Sweden)

    I. Kršňák

    2002-01-01

    Full Text Available The influence of the pressure of the coolant used in high voltage rotating machines on partial discharges occurring in stator insulation is discussed in this paper. The first part deals with a theoretical analysis of the topic. The second part deals with the results obtained on a real generator in industrial conditions. Finally, theoretical assumptions and obtained results are compared.

  4. An Investigation of the Micro-Electrical Discharge Machining of Nickel-Titanium Shape Memory Alloy Using Grey Relations Coupled with Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Mustufa Haider Abidi

    2017-11-01

    Full Text Available Shape memory alloys (SMAs are advanced engineering materials which possess shape memory effects and super-elastic properties. Their high strength, high wear-resistance, pseudo plasticity, etc., makes the machining of Ni-Ti based SMAs difficult using traditional techniques. Among all non-conventional processes, micro-electric discharge machining (micro-EDM is considered one of the leading processes for micro-machining, owing to its high aspect ratio and capability to machine hard-to-cut materials with good surface finish.The selection of the most appropriate input parameter combination to provide the optimum values for various responses is very important in micro-EDM. This article demonstrates the methodology for optimizing multiple quality characteristics (overcut, taper angle and surface roughness to enhance the quality of micro-holes in Ni-Ti based alloy, using the Grey–Taguchi method. A Taguchi-based grey relational analysis coupled with principal component analysis (Grey-PCA methodology was implemented to investigate the effect of three important micro-EDM process parameters, namely capacitance, voltage and electrode material.The analysis of the individual responses established the importance of multi-response optimization. The main effects plots for the micro-EDM parameters and Analysis of Variance (ANOVA indicate that every parameter does not produce same effect on individual responses, and also that the percent contribution of each parameter to individual response is highly varied. As a result, multi-response optimization was implemented using Grey-PCA. Further, this study revealed that the electrode material had the strongest effect on the multi-response parameter, followed by the voltage and capacitance. The main effects plot for the Grey-PCA shows that the micro-EDM parameters “capacitance” at level-2 (i.e., 475 pF, “discharge voltage” at level-1 (i.e., 80 V and the “electrode material” Cu provided the best multi-response.

  5. Effect of Electric Discharge Machining on Material Removal Rate and White Layer Composition

    Directory of Open Access Journals (Sweden)

    SHAHID MEHMOOD

    2017-01-01

    Full Text Available In this study the MRR (Material Removal Rate of the aerospace grade (2024 T6 aluminum alloy 2024 T6 has been determined with copper electrode and kerosene oil is used as dielectric liquid. Discharge energy is controlled by electric current while keeping Pulse-ON time and Pulse-OFF time as constant. The characteristics of the EDMed (Electric Discharge Machined surface are discussed. The sub-surface defect due to arcing has been explained. As the surface material of tool electrode and workpiece melts simultaneously and there are chances of the contamination of both surfaces by the contents of each other. Therefore, the EDS (Energy Dispersive Spectroscopy of the white layer and base material of the workpiece was performed by SEM (Scanning Electron Microscope at the discharge currents of 3, 6 and 12 amperes. It was conformed that the contamination of the surface of the workpiece material occurred by carbon, copper and oxygen contents. The quantitative analysis of these contents with respect to the discharge current has been presented in this paper.

  6. Response surface modelling of tool electrode wear rate and material removal rate in micro electrical discharge machining of Inconel 718

    DEFF Research Database (Denmark)

    Puthumana, Govindan

    2017-01-01

    conductivity and high strength causing it extremely difficult tomachine. Micro-Electrical Discharge Machining (Micro-EDM) is a non-conventional method that has a potential toovercome these restrictions for machining of Inconel 718. Response Surface Method (RSM) was used for modelling thetool Electrode Wear...

  7. Wire Electrical Discharge Machining of a Hybrid Composite: Evaluation of Kerf Width and Surface Roughness

    Directory of Open Access Journals (Sweden)

    Abdil KUŞ

    2016-06-01

    Full Text Available In this study, the machinability characteristics of Al/B4C-Gr hybrid composite were investigated using wire electrical discharge machining (WEDM. In the experiments, the machining parameters of wire speed, pulse-on time and pulse-off time were varied in order to explaiın their effects on machining performance, including the width of slit (kerf and surface roughness values (Rz and Rt. According to the Taguchi quality design concept, a L18 (21×32 orthogonal array was used to determine the S/N ratio, and analysis of variance (ANOVA and the F-test were used to indicate the significant machining parameters affecting the machining performance. From the ANOVA and F-test results, the significant factors were determined for each of the machining performance criteria of kerf, Rz and Rt. The variations of kerf, Rz and Rt with the machining parameters were statistically modeled via the regression analysis method. The optimum levels of the control factors for kerf, Rz and Rt were specified as A1B1C1, A1B1C2 and A1B1C2, respectively. The correlation coefficients of the predictive equations developed for kerf, Rz and Rt were calculated as 0.98, 0.828 and 0.855, respectively.

  8. Application of wire electrodes in electric discharge machining of metal samples of reactor blocks of the operative atomic power station

    International Nuclear Information System (INIS)

    Gozhenko, S.V.

    2007-01-01

    Features of application of electroerosive methods are considered during the process of direct definition of properties of metal of the equipment of power units of the atomic power station. Results of development of a complex of the equipment for wire electric discharge machining of metal templet and its use are presented at the control of the basic metal of the main circulating pipelines over blocks of the atomic power station of Ukraine over long terms of operation

  9. Securing a robust electrical discharge drilling process by means of flow rate control

    Science.gov (United States)

    Risto, Matthias; Munz, Markus; Haas, Ruediger; Abdolahi, Ali

    2017-10-01

    This paper deals with the increase of the process robustness while drilling cemented carbide using electrical discharge machining (EDM). A demand for high efficiency in the resulting diameter is equivalent with a high robustness of the EDM drilling process. Analysis were done to investigate the process robustness (standard deviation of the borehole diameter) when drilling cemented carbide. The investigation has shown that the dielectric flow rate changes over the drilling process. In this case the flow rate decreased with a shorter tool electrode due to an uneven wear of the tool electrode's cross section. Using a controlled flow rate during the drilling process has led to a reduced standard deviation of the borehole diameter, thus to a higher process robustness when drilling cemented carbide.

  10. Analytical approximation of the erosion rate and electrode wear in micro electrical discharge machining

    International Nuclear Information System (INIS)

    Kurnia, W; Tan, P C; Yeo, S H; Wong, M

    2008-01-01

    Theoretical models have been used to predict process performance measures in electrical discharge machining (EDM), namely the material removal rate (MRR), tool wear ratio (TWR) and surface roughness (SR). However, these contributions are mainly applicable to conventional EDM due to limits on the range of energy and pulse-on-time adopted by the models. This paper proposes an analytical approximation of micro-EDM performance measures, based on the crater prediction using a developed theoretical model. The results show that the analytical approximation of the MRR and TWR is able to provide a close approximation with the experimental data. The approximation results for the MRR and TWR are found to have a variation of up to 30% and 24%, respectively, from their associated experimental values. Since the voltage and current input used in the computation are captured in real time, the method can be applied as a reliable online monitoring system for the micro-EDM process

  11. Gaussian processes for machine learning.

    Science.gov (United States)

    Seeger, Matthias

    2004-04-01

    Gaussian processes (GPs) are natural generalisations of multivariate Gaussian random variables to infinite (countably or continuous) index sets. GPs have been applied in a large number of fields to a diverse range of ends, and very many deep theoretical analyses of various properties are available. This paper gives an introduction to Gaussian processes on a fairly elementary level with special emphasis on characteristics relevant in machine learning. It draws explicit connections to branches such as spline smoothing models and support vector machines in which similar ideas have been investigated. Gaussian process models are routinely used to solve hard machine learning problems. They are attractive because of their flexible non-parametric nature and computational simplicity. Treated within a Bayesian framework, very powerful statistical methods can be implemented which offer valid estimates of uncertainties in our predictions and generic model selection procedures cast as nonlinear optimization problems. Their main drawback of heavy computational scaling has recently been alleviated by the introduction of generic sparse approximations.13,78,31 The mathematical literature on GPs is large and often uses deep concepts which are not required to fully understand most machine learning applications. In this tutorial paper, we aim to present characteristics of GPs relevant to machine learning and to show up precise connections to other "kernel machines" popular in the community. Our focus is on a simple presentation, but references to more detailed sources are provided.

  12. Microstructure, Morphology, and Nanomechanical Properties Near Fine Holes Produced by Electro-Discharge Machining

    Science.gov (United States)

    Blau, P. J.; Howe, J. Y.; Coffey, D. W.; Trejo, R. M.; Kenik, E. D.; Jolly, B. C.; Yang, N.

    2012-08-01

    Fine holes in metal alloys are employed for many important technological purposes, including cooling and the precise atomization of liquids. For example, they play an important role in the metering and delivery of fuel to the combustion chambers in energy-efficient, low-emission diesel engines. Electro-discharge machining (EDM) is one process employed to produce such holes. Since the hole shape and bore morphology can affect fluid flow, and holes also represent structural discontinuities in the tips of the spray nozzles, it is important to understand the microstructures adjacent to these holes, the features of the hole walls, and the nanomechanical properties of the material that was in some manner altered by the EDM hole-making process. Several techniques were used to characterize the structure and properties of spray-holes in a commercial injector nozzle. These include scanning electron microscopy, cross sectioning and metallographic etching, bore surface roughness measurements by optical interferometry, scanning electron microscopy, and transmission electron microscopy of recast EDM layers extracted with the help of a focused ion beam.

  13. Parameters for Fabricating Nano-Au Colloids through the Electric Spark Discharge Method with Micro-Electrical Discharge Machining.

    Science.gov (United States)

    Tseng, Kuo-Hsiung; Chung, Meng-Yun; Chang, Chaur-Yang

    2017-06-02

    In this study, the Electric Spark Discharge Method (ESDM) was employed with micro-electrical discharge machining (m-EDM) to create an electric arc that melted two electrodes in deionized water (DW) and fabricated nano-Au colloids through pulse discharges with a controlled on-off duration (T ON -T OFF ) and a total fabrication time of 1 min. A total of six on-off settings were tested under normal experimental conditions and without the addition of any chemical substances. Ultraviolet-visible spectroscopy (UV-Vis), Zetasizer Nano measurements, and scanning electron microscopy-energy dispersive X-ray (SEM-EDX) analyses suggested that the nano-Au colloid fabricated at 10-10 µs (10 µs on, 10 µs off) had higher concentration and suspension stability than products made at other T ON -T OFF settings. The surface plasmon resonance (SPR) of the colloid was 549 nm on the first day of fabrication and stabilized at 532 nm on the third day. As the T ON -T OFF period increased, the absorbance (i.e., concentration) of all nano-Au colloids decreased. Absorbance was highest at 10-10 µs. The SPR peaks stabilized at 532 nm across all T ON -T OFF periods. The Zeta potential at 10-10 µs was -36.6 mV, indicating that no nano-Au agglomeration occurred and that the particles had high suspension stability.

  14. Investigation of material removal rate and surface roughness during wire electrical discharge machining (WEDM of Inconel 625 super alloy by cryogenic treated tool electrode

    Directory of Open Access Journals (Sweden)

    Ashish Goyal

    2017-10-01

    Full Text Available The present investigation focuses the effect of process parameters on material removal rate (MRR and surface roughness (Ra in wire electric discharge machining of Inconel 625. Machining was done by using a normal zinc coated wire and cryogenic treated zinc coated wire. The experiments were performed by considering different process parameters viz. tool electrode, current intensity, pulse on time, pulse off time, wire feed and wire tension. The thickness of work material and dia. of wire are kept constant. Taguchi L18 (21 * 35 orthogonal array of experimental design is used to perform the experiments. Analysis of variance (ANOVA is employed to optimize the material removal rate and surface roughness. Based on analysis it is found that pulse on time, tool electrode and current intensity are the significant parameters that affect the material removal rate and surface roughness. The scanning electron microscopy (SEM are used to identify the microstructure of the machined work piece.

  15. Employing Ti nano-powder dielectric to enhance surface characteristics in electrical discharge machining of AISI D2 steel

    Energy Technology Data Exchange (ETDEWEB)

    Marashi, Houriyeh, E-mail: houriyeh@marashi.co [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Center of Advanced Manufacturing and Materials Processing (AMMP), 50603 Kuala Lumpur (Malaysia); Sarhan, Ahmed A.D., E-mail: ah_sarhan@yahoo.com [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Center of Advanced Manufacturing and Materials Processing (AMMP), 50603 Kuala Lumpur (Malaysia); Department of Mechanical Engineering, Faculty of Engineering, Assiut University, Assiut 71516 (Egypt); Hamdi, Mohd [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Center of Advanced Manufacturing and Materials Processing (AMMP), 50603 Kuala Lumpur (Malaysia)

    2015-12-01

    Graphical abstract: - Highlights: • We proposed adding Ti nano-powder to dielectric in EDM. • Average and peak-valley surface roughness was improved by 35 and 40%, respectively. • Improvement of up to 69% in material removal rate was obtained. • Enhanced surface morphology and formation of shallower craters were observed. - Abstract: Manufacturing components with superior surface characteristics is challenging when electrical discharge machining (EDM) is employed for mass production. The aim of this research is to enhance the characteristics of AISI D2 steel surface machined with EDM through adding Ti nano-powder to dielectric under various machining parameters, including discharge duration (T{sub on}) and peak current (I). Surface roughness profilometer, FESEM and AFM analysis were utilized to reveal the machined surface characteristics in terms of surface roughness, surface morphology and surface micro-defects. Moreover, EDX analysis was performed in order to evaluate the atomic deposition of Ti nano-powder on the surface. The concentration of Ti nano-powder in dielectric was also examined using ESEM and EDX. According to the results, the addition of Ti nano-powder to dielectric notably enhanced the surface morphology and surface roughness at all machining parameters except T{sub on} = 340 μs. Of these parameters, maximum enhancement was observed at T{sub on} = 210 μs, where the material removal rate and average surface roughness improved by ∼69 and ∼35% for peak current of 6 and 12 A, respectively. Elemental analysis signified negligible Ti deposition on the machined surface while the atomic concentration of Ti was increased around the crack areas.

  16. Reliability of electrode wear compensation based on material removal per discharge in micro EDM milling

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Tristo, G.; Hansen, Hans Nørgaard

    2013-01-01

    This paper investigates the reliability of workpiece material removal per discharge (MRD) estimation for application in electrode wear compensation based on workpiece material removal. An experimental investigation involving discharge counting and automatic on the machine measurement of removed...... material volume was carried out in a range of process parameters settings from fine finishing to roughing. MRD showed a decreasing trend with the progress of the machining operation, reaching stabilization after a number of machined layers. Using the information on MRD and discharge counting, a material...

  17. Improvement of MRR and surface roughness during electrical discharge machining (EDM) using aluminum oxide powder mixed dielectric fluid

    Science.gov (United States)

    Khan, A. A.; Mohiuddin, A. K. M.; Latif, M. A. A.

    2018-01-01

    This paper discusses the effect of aluminium oxide (Al203) addition to dielectric fluid during electrical discharge machining (EDM). Aluminium oxide was added to the dielectric used in the EDM process to improve its performance when machining the stainless steel AISI 304, while copper was used as the electrode. Effect of the concentration of Al203 (0.3 mg/L) in dielectric fluid was compared with EDM without any addition of Al203. Surface quality of stainless steel and the material removal rate were investigated. Design of the experiment (DOE) was used for the experimental plan. Statistical analysis was done using ANOVA and then appropriate model was designated. The experimental results show that with dispersing of aluminium oxide in dielectric fluid surface roughness was improved while the material removal rate (MRR) was increased to some extent. These indicate the improvement of EDM performance using aluminium oxide in dielectric fluid. It was also found that with increase in pulse on time both MRR and surface roughness increase sharply.

  18. Partial discharge signal denoising with spatially adaptive wavelet thresholding and support vector machines

    Energy Technology Data Exchange (ETDEWEB)

    Mota, Hilton de Oliveira; Rocha, Leonardo Chaves Dutra da [Department of Computer Science, Federal University of Sao Joao del-Rei, Visconde do Rio Branco Ave., Colonia do Bengo, Sao Joao del-Rei, MG, 36301-360 (Brazil); Salles, Thiago Cunha de Moura [Department of Computer Science, Federal University of Minas Gerais, 6627 Antonio Carlos Ave., Pampulha, Belo Horizonte, MG, 31270-901 (Brazil); Vasconcelos, Flavio Henrique [Department of Electrical Engineering, Federal University of Minas Gerais, 6627 Antonio Carlos Ave., Pampulha, Belo Horizonte, MG, 31270-901 (Brazil)

    2011-02-15

    In this paper an improved method to denoise partial discharge (PD) signals is presented. The method is based on the wavelet transform (WT) and support vector machines (SVM) and is distinct from other WT-based denoising strategies in the sense that it exploits the high spatial correlations presented by PD wavelet decompositions as a way to identify and select the relevant coefficients. PD spatial correlations are characterized by WT modulus maxima propagation along decomposition levels (scales), which are a strong indicative of the their time-of-occurrence. Denoising is performed by identification and separation of PD-related maxima lines by an SVM pattern classifier. The results obtained confirm that this method has superior denoising capabilities when compared to other WT-based methods found in the literature for the processing of Gaussian and discrete spectral interferences. Moreover, its greatest advantages become clear when the interference has a pulsating or localized shape, situation in which traditional methods usually fail. (author)

  19. Perspectives of the Si3N4-TiN ceramic composite as a biomaterial and manufacturing of complex-shaped implantable devices by electrical discharge machining (EDM).

    Science.gov (United States)

    Bucciotti, Francesco; Mazzocchi, Mauro; Bellosi, Alida

    2010-01-01

    In this work we investigated the suitability of electroconductive silicon nitride/titanium nitride composite for biomedical implantable devices with particular attention on the processing route that allows the net-shaping of complex components by electrical discharge machining (EDM). The composite, constituted mainly of a beta-Si3N4, dispersed TiN grains and a glassy grain boundary phase, exhibited a low density and high hardness, strength and toughness. Bulk, surface characteristics and properties of the Si3N4-TiN composite were analyzed. After the EDM process, the microstructure of the machined surface was examined. The obtained results showed that the Si3N4-TiN ceramic composite together with the EDM manufacturing process might potentially play a key role in implantable load-bearing prosthesis applications.

  20. Investigations of Effect of Rotary EDM Electrode on Machining Performance of Al6061 Alloy

    Science.gov (United States)

    Robinson Smart, D. S.; Jenish Smart, Joses; Periasamy, C.; Ratna Kumar, P. S. Samuel

    2018-04-01

    Electric Discharge Machining is an essential process which is being used for machining desired shape using electrical discharges which creates sparks. There will be electrodes subjected to electric voltage and which are separated by a dielectric liquid. Removing of material will be due to the continuous and rapid current discharges between two electrodes.. The spark is very carefully controlled and localized so that it only affects the surface of the material. Usually in order to prevent the defects which are arising due to the conventional machining, the Electric Discharge Machining (EDM) machining is preferred. Also intricate and complicated shapes can be machined effectively by use of Electric Discharge Machining (EDM). The EDM process usually does not affect the heat treat below the surface. This research work focus on the design and fabrication of rotary EDM tool for machining Al6061alloy and investigation of effect of rotary tool on surface finish, material removal rate and tool wear rate. Also the effect of machining parameters of EDM such as pulse on & off time, current on material Removal Rate (MRR), Surface Roughness (SR) and Electrode wear rate (EWR) have studied. Al6061 alloy can be used for marine and offshore applications by reinforcing some other elements. The investigations have revealed that MRR (material removal rate), surface roughness (Ra) have been improved with the reduction in the tool wear rate (TWR) when the tool is rotating instead of stationary. It was clear that as rotary speed of the tool is increasing the material removal rate is increasing with the reduction of surface finish and tool wear rate.

  1. CQI project improves discharge process.

    Science.gov (United States)

    1998-08-01

    At Gibson Rehab Center in Williamsport, PA, a continuous quality improvement project to bolster the institution's discharge planning process has resulted in increased satisfaction and an award for quality. The 15-month project was spearheaded by a multidisciplinary team charged with identifying areas that had a significant impact on customer service and suggesting better ways of delivering that service. Among the changes the group suggested were establishing a weekly discharge planning group for new neuro patients, assigning a discharge coordinator for each treatment team, and creating an interdisciplinary communication sheet for the home health therapy staff.

  2. Fabrication of Superhydrophobic Metallic Surface by Wire Electrical Discharge Machining for Seamless Roll-to-Roll Printing

    Directory of Open Access Journals (Sweden)

    Jin-Young So

    2018-04-01

    Full Text Available This paper presents a proposal of a direct one-step method to fabricate a multi-scale superhydrophobic metallic seamless roll mold. The mold was fabricated using the wire electrical discharge machining (WEDM technique for a roll-to-roll imprinting application to produce a large superhydrophobic surface. Taking advantage of the exfoliating characteristic of the metallic surface, nano-sized surface roughness was spontaneously formed while manufacturing the micro-sized structure: that is, a dual-scale hierarchical structure was easily produced in a simple one-step fabrication with a large area on the aluminum metal surface. This hierarchical structure showed superhydrophobicity without chemical coating. A roll-type seamless mold for the roll-to-roll process was fabricated through engraving the patterns on the cylindrical substrate, thereby enabling to make a continuous film with superhydrophobicity.

  3. Restrictions of process machine retooling at machine-building enterprises

    Directory of Open Access Journals (Sweden)

    Kuznetsova Elena

    2017-01-01

    Full Text Available The competitiveness of the national economy depends on the technological level of the machine-building enterprises production equipment. Today in Russia there are objective and subjective restrictions for the optimum policy formation of the manufacturing equipment renewal. The analysis of the manufacturing equipment age structure dynamics in the Russian machine-building complex indicates the negative tendencies intensification: increase in the equipment service life, reduction in the share of up-to-date equipment, and drop in its use efficiency. The article investigates and classifies the main restrictions of the manufacturing equipment renewal process, such as regulatory and legislative, financial, organizational, competency-based. The economic consequences of the revealed restrictions influence on the machine-building enterprises activity are shown.

  4. Fundamental studies on initiation and evolution of multi-channel discharges and their application to next generation pulsed power machines.

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Jens; Savage, Mark E.; Lucero, Diego Jose; Jaramillo, Deanna M.; Seals, Kelly Gene; Pitts, Todd Alan; Hautzenroeder, Brenna M.; Laine, Mark Richard; Karelitz, David B.; Porter, John L.

    2014-09-01

    Future pulsed power systems may rely on linear transformer driver (LTD) technology. The LTD's will be the building blocks for a driver that can deliver higher current than the Z-Machine. The LTD's would require tens of thousands of low inductance ( %3C 85nH), high voltage (200 kV DC) switches with high reliability and long lifetime ( 10 4 shots). Sandia's Z-Machine employs 36 megavolt class switches that are laser triggered by a single channel discharge. This is feasible for tens of switches but the high inductance and short switch life- time associated with the single channel discharge are undesirable for future machines. Thus the fundamental problem is how to lower inductance and losses while increasing switch life- time and reliability. These goals can be achieved by increasing the number of current-carrying channels. The rail gap switch is ideal for this purpose. Although those switches have been extensively studied during the past decades, each effort has only characterized a particular switch. There is no comprehensive understanding of the underlying physics that would allow predictive capability for arbitrary switch geometry. We have studied rail gap switches via an extensive suite of advanced diagnostics in synergy with theoretical physics and advanced modeling capability. Design and topology of multichannel switches as they relate to discharge dynamics are investigated. This involves electrically and optically triggered rail gaps, as well as discrete multi-site switch concepts.

  5. Consolidation of materials by pulse-discharge processes

    Science.gov (United States)

    Strizhakov, E. L.; Nescoromniy, S. V.

    2017-07-01

    The article presents the research and the analysis of the pulse-discharge processes of capacitor discharge sintering: CD Stud Welding, capacitor discharge percussion welding (CDPW), high-voltage capacitor welding with an inductive-dynamic drive (HVCW with IDD), pulse electric current sintering (PECS) of powders. The comparative analysis of the impact parameter is presented.

  6. Traditional machining processes research advances

    CERN Document Server

    2015-01-01

    This book collects several examples of research in machining processes. Chapter 1 provides information on polycrystalline diamond tool material and its emerging applications. Chapter 2 is dedicated to the analysis of orthogonal cutting experiments using diamond-coated tools with force and temperature measurements. Chapter 3 describes the estimation of cutting forces and tool wear using modified mechanistic models in high performance turning. Chapter 4 contains information on cutting under gas shields for industrial applications. Chapter 5 is dedicated to the machinability of magnesium and its alloys. Chapter 6 provides information on grinding science. Finally, chapter 7 is dedicated to flexible integration of shape and functional modelling of machine tool spindles in a design framework.    

  7. Classification of electrical discharges in DC Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Srutarshi, E-mail: sruban.stephens@gmail.com [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Deb, A.K. [Department of Electrical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Rajan, Rehim N. [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Kishore, N.K. [Department of Electrical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2016-08-11

    Controlled electrical discharge aids in conditioning of the system while uncontrolled discharges damage its electronic components. DC Accelerator being a high voltage system is no exception. It is useful to classify electrical discharges according to the severity. Experimental prototypes of the accelerator discharges are developed. Photomultiplier Tubes (PMTs) are used to detect the signals from these discharges. Time and Frequency domain characteristics of the detected discharges are used to extract features. Machine Learning approaches like Fuzzy Logic, Neural Network and Least Squares Support Vector Machine (LSSVM) are employed to classify the discharges. This aids in detecting the severity of the discharges.

  8. MRR and TWR evaluation on electrical discharge machining of Ti-6Al-4V using tungsten : copper composite electrode

    Science.gov (United States)

    Prasanna, J.; Rajamanickam, S.; Amith Kumar, O.; Karthick Raj, G.; Sathya Narayanan, P. V. V.

    2017-05-01

    In this paper Ti-6Al-4V used as workpiece material and it is keenly seen in variety of field including medical, chemical, marine, automotive, aerospace, aviation, electronic industries, nuclear reactor, consumer products etc., The conventional machining of Ti-6Al-4V is very difficult due to its distinctive properties. The Electrical Discharge Machining (EDM) is right choice of machining this material. The tungsten copper composite material is employed as tool material. The gap voltage, peak current, pulse on time and duty factor is considered as the machining parameter to analyze the machining characteristics Material Removal Rate (MRR) and Tool Wear Rate (TWR). The Taguchi method is provided to work for finding the significant parameter of EDM. It is found that for MRR significant parameters rated in the following order Gap Voltage, Pulse On-Time, Peak Current and Duty Factor. On the other hand for TWR significant parameters are listed in line of Gap Voltage, Duty Factor, Peak Current and Pulse On-Time.

  9. Linear parallel processing machines I

    Energy Technology Data Exchange (ETDEWEB)

    Von Kunze, M

    1984-01-01

    As is well-known, non-context-free grammars for generating formal languages happen to be of a certain intrinsic computational power that presents serious difficulties to efficient parsing algorithms as well as for the development of an algebraic theory of contextsensitive languages. In this paper a framework is given for the investigation of the computational power of formal grammars, in order to start a thorough analysis of grammars consisting of derivation rules of the form aB ..-->.. A/sub 1/ ... A /sub n/ b/sub 1/...b /sub m/ . These grammars may be thought of as automata by means of parallel processing, if one considers the variables as operators acting on the terminals while reading them right-to-left. This kind of automata and their 2-dimensional programming language prove to be useful by allowing a concise linear-time algorithm for integer multiplication. Linear parallel processing machines (LP-machines) which are, in their general form, equivalent to Turing machines, include finite automata and pushdown automata (with states encoded) as special cases. Bounded LP-machines yield deterministic accepting automata for nondeterministic contextfree languages, and they define an interesting class of contextsensitive languages. A characterization of this class in terms of generating grammars is established by using derivation trees with crossings as a helpful tool. From the algebraic point of view, deterministic LP-machines are effectively represented semigroups with distinguished subsets. Concerning the dualism between generating and accepting devices of formal languages within the algebraic setting, the concept of accepting automata turns out to reduce essentially to embeddability in an effectively represented extension monoid, even in the classical cases.

  10. Multi-machine transport analysis of hybrid discharges from the ITPA Profile Database

    International Nuclear Information System (INIS)

    Imbreaux, F.; Fujita, T.; Isayama, A.; Joffrin, E.; Kinsey, J.; Litaudon, X.; Luce, T.; Murakami, M.; Na, Y. S.; Sakamoto, Y.; Slips, A. C. C. C.; Wade, M.; Artaud, J. F.; Basiuk, V.

    2005-01-01

    The so-called Hybrid regime is a promising candidate scenario for ITER with a potential for longer inductive pulse at high fusion gain. Hybrid discharges are operated at higher q95 than the conventional H modes, which increases the non-inductive current fraction and the duration of the discharge. Another important characteristics of this regime is the absence of large sawteeth owing toa q-profile generally just above one in the plasma core. This property allows to reach high values of the normalised kinetic to magnetic pressure ratio β N =βaB T /I p of the order of 3, without triggering deleterious Neoclassical Tearing Modes. This work presents results of transport modelling of hybrid discharges from various tokamaks (Asdes Upgrade, DIII-D, JET, JT-60U) which have been submitted recently to the ITPA database. The objective is to assess the commonality of the transport physics in the hybrid regimes obtained by the various machines. The study focuses on the dependence of the transport properties as a function of important parameters like the density and the normalised Larmor radios ρ. Induced, those parameters play a critical role in the extrapolation of the transport characteristics of present day experiments to ITER. Various transport models are used in order to test their capability to reproduce the experimental parametric dependences on density and ρ. The extrapolability of the hybrid regime to ITER is checked using integrated modeling. (Author)

  11. Machining of Complex Sculptured Surfaces

    CERN Document Server

    2012-01-01

    The machining of complex sculptured surfaces is a global technological topic in modern manufacturing with relevance in both industrialized and emerging in countries particularly within the moulds and dies sector whose applications include highly technological industries such as the automotive and aircraft industry. Machining of Complex Sculptured Surfaces considers new approaches to the manufacture of moulds and dies within these industries. The traditional technology employed in the manufacture of moulds and dies combined conventional milling and electro-discharge machining (EDM) but this has been replaced with  high-speed milling (HSM) which has been applied in roughing, semi-finishing and finishing of moulds and dies with great success. Machining of Complex Sculptured Surfaces provides recent information on machining of complex sculptured surfaces including modern CAM systems and process planning for three and five axis machining as well as explanations of the advantages of HSM over traditional methods ra...

  12. The Effect of High Frequency Pulse on the Discharge Probability in Micro EDM

    Science.gov (United States)

    Liu, Y.; Qu, Y.; Zhang, W.; Ma, F.; Sha, Z.; Wang, Y.; Rolfe, B.; Zhang, S.

    2017-12-01

    High frequency pulse improves the machining efficiency of micro electric discharge machining (micro EDM), while it also brings some changes in micro EDM process. This paper focuses on the influence of skin-effect under the high frequency pulse on energy distribution and transmission in micro EDM, based on which, the rules of discharge probability of electrode end face are also analysed. On the basis of the electrical discharge process under the condition of high frequency pulse in micro EDM, COMSOL Multiphysics software is used to establish energy transmission model in micro electrode. The discharge energy distribution and transmission within tool electrode under different pulse frequencies, electrical currents, and permeability situation are studied in order to get the distribution pattern of current density and electric field intensity in the electrode end face under the influence of electrical parameters change. The electric field intensity distribution is regarded as the influencing parameter of discharge probability on the electrode end. Finally, MATLAB is used to fit the curve and obtain the distribution of discharge probability of electrode end face.

  13. Combining human and machine processes (CHAMP)

    Science.gov (United States)

    Sudit, Moises; Sudit, David; Hirsch, Michael

    2015-05-01

    Machine Reasoning and Intelligence is usually done in a vacuum, without consultation of the ultimate decision-maker. The late consideration of the human cognitive process causes some major problems in the use of automated systems to provide reliable and actionable information that users can trust and depend to make the best Course-of-Action (COA). On the other hand, if automated systems are created exclusively based on human cognition, then there is a danger of developing systems that don't push the barrier of technology and are mainly done for the comfort level of selected subject matter experts (SMEs). Our approach to combining human and machine processes (CHAMP) is based on the notion of developing optimal strategies for where, when, how, and which human intelligence should be injected within a machine reasoning and intelligence process. This combination is based on the criteria of improving the quality of the output of the automated process while maintaining the required computational efficiency for a COA to be actuated in timely fashion. This research addresses the following problem areas: • Providing consistency within a mission: Injection of human reasoning and intelligence within the reliability and temporal needs of a mission to attain situational awareness, impact assessment, and COA development. • Supporting the incorporation of data that is uncertain, incomplete, imprecise and contradictory (UIIC): Development of mathematical models to suggest the insertion of a cognitive process within a machine reasoning and intelligent system so as to minimize UIIC concerns. • Developing systems that include humans in the loop whose performance can be analyzed and understood to provide feedback to the sensors.

  14. Feasibility demonstration of using wire electrical-discharge machining, abrasive flow honing, and laser spot welding to manufacture high-precision triangular-pitch Zircaloy-4 fuel-rod-support grids

    International Nuclear Information System (INIS)

    Horwood, W.A.

    1982-05-01

    Results are reported supporting the feasibility of manufacturing high precision machined triangular pitch Zircaloy-4 fuel rod support grids for application in water cooled nuclear power reactors. The manufacturing processes investigated included wire electrical discharge machining of the fuel rod and guide tube cells in Zircaloy plate stock to provide the grid body, multistep pickling of the machined grid to provide smooth and corrosion resistant surfaces, and laser welding of thin Zircaloy cover plates to both sides of the grid body to capture separate AM-350 stainless steel insert springs in the grid body. Results indicated that dimensional accuracy better than +- 0.001 and +- 0.002 inch could be obtained on cell shape and position respectively after wire EDM and surface pickling. Results on strength, corrosion resistance, and internal quality of laser spot welds are provided

  15. Proceedings of the IEEE Machine Learning for Signal Processing XVII

    DEFF Research Database (Denmark)

    The seventeenth of a series of workshops sponsored by the IEEE Signal Processing Society and organized by the Machine Learning for Signal Processing Technical Committee (MLSP-TC). The field of machine learning has matured considerably in both methodology and real-world application domains and has...... become particularly important for solution of problems in signal processing. As reflected in this collection, machine learning for signal processing combines many ideas from adaptive signal/image processing, learning theory and models, and statistics in order to solve complex real-world signal processing......, and two papers from the winners of the Data Analysis Competition. The program included papers in the following areas: genomic signal processing, pattern recognition and classification, image and video processing, blind signal processing, models, learning algorithms, and applications of machine learning...

  16. Influence of electrical discharge machining on the tribological characteristics of WC-Co alloys

    International Nuclear Information System (INIS)

    Casas, B.; Martinez, E.; Esteve, J.; Anglada, M.; Llanes, L.

    2001-01-01

    The influence of electrical discharge machining (EDM) on the abrasive wear resistance of two WC-10 % w tCo cemented carbides with different carbide grain size has been studied. Different surface finish conditions were evaluated corresponding to sequential EDM as well as grinding and polishing with diamond. The abrasive wear resistance was determined through microscratch measurements using a nano indentation system. Contrary to the results obtained from hardness measurements, this techniques allows to discern tribological differences among the distinct surface finish conditions studied. Finally, the abrasive wear resistance degradation associated with sequential EDM is discussed as a function of microstructure in terms of a damage parameters. (Author) 9 refs

  17. On Intelligent Design and Planning Method of Process Route Based on Gun Breech Machining Process

    Science.gov (United States)

    Hongzhi, Zhao; Jian, Zhang

    2018-03-01

    The paper states an approach of intelligent design and planning of process route based on gun breech machining process, against several problems, such as complex machining process of gun breech, tedious route design and long period of its traditional unmanageable process route. Based on gun breech machining process, intelligent design and planning system of process route are developed by virtue of DEST and VC++. The system includes two functional modules--process route intelligent design and its planning. The process route intelligent design module, through the analysis of gun breech machining process, summarizes breech process knowledge so as to complete the design of knowledge base and inference engine. And then gun breech process route intelligently output. On the basis of intelligent route design module, the final process route is made, edited and managed in the process route planning module.

  18. High Metal Removal Rate Process for Machining Difficult Materials

    Energy Technology Data Exchange (ETDEWEB)

    Bates, Robert; McConnell, Elizabeth

    2016-06-29

    Machining methods across many industries generally require multiple operations to machine and process advanced materials, features with micron precision, and complex shapes. The resulting multiple machining platforms can significantly affect manufacturing cycle time and the precision of the final parts, with a resultant increase in cost and energy consumption. Ultrafast lasers represent a transformative and disruptive technology that removes material with micron precision and in a single step manufacturing process. Such precision results from athermal ablation without modification or damage to the remaining material which is the key differentiator between ultrafast laser technologies and traditional laser technologies or mechanical processes. Athermal ablation without modification or damage to the material eliminates post-processing or multiple manufacturing steps. Combined with the appropriate technology to control the motion of the work piece, ultrafast lasers are excellent candidates to provide breakthrough machining capability for difficult-to-machine materials. At the project onset in early 2012, the project team recognized that substantial effort was necessary to improve the application of ultrafast laser and precise motion control technologies (for micromachining difficult-to-machine materials) to further the aggregate throughput and yield improvements over conventional machining methods. The project described in this report advanced these leading-edge technologies thru the development and verification of two platforms: a hybrid enhanced laser chassis and a multi-application testbed.

  19. Cutting force model for high speed machining process

    International Nuclear Information System (INIS)

    Haber, R. E.; Jimenez, J. E.; Jimenez, A.; Lopez-Coronado, J.

    2004-01-01

    This paper presents cutting force-based models able to describe a high speed machining process. The model considers the cutting force as output variable, essential for the physical processes that are taking place in high speed machining. Moreover, this paper shows the mathematical development to derive the integral-differential equations, and the algorithms implemented in MATLAB to predict the cutting force in real time MATLAB is a software tool for doing numerical computations with matrices and vectors. It can also display information graphically and includes many toolboxes for several research and applications areas. Two end mill shapes are considered (i. e. cylindrical and ball end mill) for real-time implementation of the developed algorithms. the developed models are validated in slot milling operations. The results corroborate the importance of the cutting force variable for predicting tool wear in high speed machining operations. The developed models are the starting point for future work related with vibration analysis, process stability and dimensional surface finish in high speed machining processes. (Author) 19 refs

  20. Parameter optimization of electrochemical machining process using black hole algorithm

    Science.gov (United States)

    Singh, Dinesh; Shukla, Rajkamal

    2017-12-01

    Advanced machining processes are significant as higher accuracy in machined component is required in the manufacturing industries. Parameter optimization of machining processes gives optimum control to achieve the desired goals. In this paper, electrochemical machining (ECM) process is considered to evaluate the performance of the considered process using black hole algorithm (BHA). BHA considers the fundamental idea of a black hole theory and it has less operating parameters to tune. The two performance parameters, material removal rate (MRR) and overcut (OC) are considered separately to get optimum machining parameter settings using BHA. The variations of process parameters with respect to the performance parameters are reported for better and effective understanding of the considered process using single objective at a time. The results obtained using BHA are found better while compared with results of other metaheuristic algorithms, such as, genetic algorithm (GA), artificial bee colony (ABC) and bio-geography based optimization (BBO) attempted by previous researchers.

  1. Tool path strategy and cutting process monitoring in intelligent machining

    Science.gov (United States)

    Chen, Ming; Wang, Chengdong; An, Qinglong; Ming, Weiwei

    2018-06-01

    Intelligent machining is a current focus in advanced manufacturing technology, and is characterized by high accuracy and efficiency. A central technology of intelligent machining—the cutting process online monitoring and optimization—is urgently needed for mass production. In this research, the cutting process online monitoring and optimization in jet engine impeller machining, cranio-maxillofacial surgery, and hydraulic servo valve deburring are introduced as examples of intelligent machining. Results show that intelligent tool path optimization and cutting process online monitoring are efficient techniques for improving the efficiency, quality, and reliability of machining.

  2. The research on construction and application of machining process knowledge base

    Science.gov (United States)

    Zhao, Tan; Qiao, Lihong; Qie, Yifan; Guo, Kai

    2018-03-01

    In order to realize the application of knowledge in machining process design, from the perspective of knowledge in the application of computer aided process planning(CAPP), a hierarchical structure of knowledge classification is established according to the characteristics of mechanical engineering field. The expression of machining process knowledge is structured by means of production rules and the object-oriented methods. Three kinds of knowledge base models are constructed according to the representation of machining process knowledge. In this paper, the definition and classification of machining process knowledge, knowledge model, and the application flow of the process design based on the knowledge base are given, and the main steps of the design decision of the machine tool are carried out as an application by using the knowledge base.

  3. Study on the Gap Flow Simulation in EDM Small Hole Machining with Ti Alloy

    Directory of Open Access Journals (Sweden)

    Shengfang Zhang

    2017-01-01

    Full Text Available In electrical discharge machining (EDM process, the debris removed from electrode material strongly affects the machining efficiency and accuracy, especially for the deep small hole machining process. In case of Ti alloy, the debris movement and removal process in gap flow between electrodes for small hole EDM process is studied in this paper. Based on the solid-liquid two-phase flow equation, the mathematical model on the gap flow field with flushing and self-adaptive disturbation is developed. In our 3D simulation process, the count of debris increases with number of EDM discharge cycles, and the disturbation generated by the movement of self-adaptive tool in the gap flow is considered. The methods of smoothing and remeshing are also applied in the modeling process to enable a movable tool. Under different depth, flushing velocity, and tool diameter, the distribution of velocity field, pressure field of gap flow, and debris movement are analyzed. The statistical study of debris distribution under different machining conditions is also carried out. Finally, a series of experiments are conducted on a self-made machine to verify the 3D simulation model. The experiment results show the burn mark at hole bottom and the tapered wall, which corresponds well with the simulating conclusion.

  4. Surface treatment by electric discharge machining of Ti–6Al–4V alloy for potential application in orthopaedics

    Czech Academy of Sciences Publication Activity Database

    Harcuba, P.; Bačáková, Lucie; Stráský, J.; Bačáková, Markéta; Novotná, Katarína; Janeček, M.

    2012-01-01

    Roč. 7, MAR (2012), s. 96-105 ISSN 1751-6161. [Symposium on Biological Materials Science /7./. San Diego, 27.02.2011-03.03.2011] R&D Projects: GA TA ČR(CZ) TA01011141 Institutional research plan: CEZ:AV0Z50110509 Keywords : electric discharge machining * surface roughness * mechanical properties Subject RIV: FI - Traumatology, Orthopedics Impact factor: 2.368, year: 2012

  5. Surface and elemental alterations of dental alloys induced by electro discharge machining (EDM).

    Science.gov (United States)

    Zinelis, Spiros

    2007-05-01

    To evaluate the surface and elemental alterations induced by electro discharge machining (EDM) on the surface of dental cast alloys used for the fabrication of implant retained meso- and super-structures. A completed cast model of an arch that received dental implants was used for the preparation of six wax patterns which were divided into three groups (Au, Co and Ti). The wax patterns of the Au and Co groups were invested with conventional phosphate-bonded silica-based investment material and the Ti group with magnesia-based investment material. The investment rings of the Au and Co groups were cast with an Au-Ag alloy (Stabilor G) and a Co-Cr base alloy (Okta C), respectively, while the investment rings of group Ti were cast with cp Ti (Biotan). One casting of each group was subjected to electro discharge machining (EDM); the other was conventionally ground and polished. The surface morphology and the elemental compositions of conventionally and EDM-finished surfaces were studied by SEM/X-ray EDS analysis. Six spectra were collected from each surface employing the area scan mode and the mean value of each element between conventionally and EDM-finished surfaces was statistically analyzed by t-test (a=0.05). Then the specimens of each group were cut perpendicular to their longitudinal axis and after metallographic grinding and polishing the cross-sections studied under the SEM. The EDM surfaces showed a significant increase in C due to the decomposition of the dielectric fluid during spark erosion. Moreover, a significant Cu uptake was noted on these surfaces from the decomposition of the Cu electrodes used for EDM. Cross-sectional analysis showed that all alloys developed a superficial zone (recast layer) varying from 2 microm for Au-Ag to 10 microm for Co-Cr alloy. The elemental composition of dental alloy surfaces is significantly altered after EDM treatment.

  6. Processing a fine slit by means of electric discharge

    International Nuclear Information System (INIS)

    Kasahara, S.; Inoue, H.; Hongo, T.

    1979-03-01

    Among fabrication methods using electricity, the electric discharge processing is widely used for fabrication of forms and dies. If one notes however features proper to the electric discharge processors and minds their effective utilization, it is possible to fabricate pieces of very special shapes or of high precision as such. This paper reports on our trial to process a fine slit by means of electric discharge, whose fabrication is impossible by the conventional methods. (author)

  7. Effect of hole geometry and Electric-Discharge Machining (EDM) on airflow rates through small diameter holes in turbine blade material

    Science.gov (United States)

    Hippensteele, S. A.; Cochran, R. P.

    1980-01-01

    The effects of two design parameters, electrode diameter and hole angle, and two machine parameters, electrode current and current-on time, on air flow rates through small-diameter (0.257 to 0.462 mm) electric-discharge-machined holes were measured. The holes were machined individually in rows of 14 each through 1.6 mm thick IN-100 strips. The data showed linear increase in air flow rate with increases in electrode cross sectional area and current-on time and little change with changes in hole angle and electrode current. The average flow-rate deviation (from the mean flow rate for a given row) decreased linearly with electrode diameter and increased with hole angle. Burn time and finished hole diameter were also measured.

  8. Proceedings of IEEE Machine Learning for Signal Processing Workshop XVI

    DEFF Research Database (Denmark)

    Larsen, Jan

    These proceedings contains refereed papers presented at the sixteenth IEEE Workshop on Machine Learning for Signal Processing (MLSP'2006), held in Maynooth, Co. Kildare, Ireland, September 6-8, 2006. This is a continuation of the IEEE Workshops on Neural Networks for Signal Processing (NNSP......). The name of the Technical Committee, hence of the Workshop, was changed to Machine Learning for Signal Processing in September 2003 to better reflect the areas represented by the Technical Committee. The conference is organized by the Machine Learning for Signal Processing Technical Committee...... the same standard as the printed version and facilitates the reading and searching of the papers. The field of machine learning has matured considerably in both methodology and real-world application domains and has become particularly important for solution of problems in signal processing. As reflected...

  9. Financial signal processing and machine learning

    CERN Document Server

    Kulkarni,Sanjeev R; Dmitry M. Malioutov

    2016-01-01

    The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available. Financial Signal Processing and Machine Learning unifies a number of recent advances made in signal processing and machine learning for the design and management of investment portfolios and financial engineering. This book bridges the gap between these disciplines, offering the latest information on key topics including characterizing statistical dependence and correlation in high dimensions, constructing effective and robust risk measures, and their use in portfolio optimization and rebalancing. The book focuses on signal processing approaches to model return, momentum, and mean reversion, addressing theoretical and implementation aspects. It highlights the connections between portfolio theory, sparse learning and compressed sensing, sparse eigen-portfolios, robust optimization, non-Gaussian data-driven risk measures, graphical models, causal analy...

  10. Toroidal helical quartz forming machine

    International Nuclear Information System (INIS)

    Hanks, K.W.; Cole, T.R.

    1977-01-01

    The Scyllac fusion experimental machine used 10 cm diameter smooth bore discharge tubes formed into a simple toroidal shape prior to 1974. At about that time, it was discovered that a discharge tube was required to follow the convoluted shape of the load coil. A machine was designed and built to form a fused quartz tube with a toroidal shape. The machine will accommodate quartz tubes from 5 cm to 20 cm diameter forming it into a 4 m toroidal radius with a 1 to 5 cm helical displacement. The machine will also generate a helical shape on a linear tube. Two sets of tubes with different helical radii and wavelengths have been successfully fabricated. The problems encountered with the design and fabrication of this machine are discussed

  11. Geometric improvement of electrochemical discharge micro-drilling using an ultrasonic-vibrated electrolyte

    International Nuclear Information System (INIS)

    Han, Min-Seop; Min, Byung-Kwon; Lee, Sang Jo

    2009-01-01

    Electrochemical discharge machining (ECDM) is a spark-based micromachining method especially suitable for the fabrication of various microstructures on nonconductive materials, such as glass and some engineering ceramics. However, since the spark discharge frequency is drastically reduced as the machining depth increases ECDM microhole drilling has confronted difficulty in achieving uniform geometry for machined holes. One of the primary reasons for this is the difficulty of sustaining an adequate electrolyte flow in the narrow gap between the tool and the workpiece, which results in a widened taper at the hole entrance, as well as a significant reduction of the machining depth. In this paper, ultrasonic electrolyte vibration was used to enhance the machining depth of the ECDM drilling process by assuring an adequate electrolyte flow, thus helping to maintain consistent spark generation. Moreover, the stability of the gas film formation, as well as the surface quality of the hole entrance, was improved with the aid of a side-insulated electrode and a pulse-power generator. The side-insulated electrode prevented stray electrolysis and concentrated the spark discharge at the tool tip, while the pulse voltage reduced thermal damage to the workpiece surface by introducing a periodic pulse-off time. Microholes were fabricated in order to investigate the effects of ultrasonic assistance on the overcut and machining depth of the holes. The experimental results demonstrated that the possibility of consistent spark generation and the machinability of microholes were simultaneously enhanced

  12. The influence of Span-20 surfactant and micro-/nano-Chromium (Cr) Powder Mixed Electrical Discharge Machining (PMEDM) on the surface characteristics of AISI D2 hardened steel

    Science.gov (United States)

    Hosni, N. A. J.; Lajis, M. A.

    2018-04-01

    The application of powder mixed dielectric to improve the efficiency of electrical discharge machining (EDM) has been extensively studied. Therefore, PMEDM have attracted the attention of many researchers since last few decades. Improvement in EDM process has resulted in the use of span-20 surfactant and Cr powder mixed in dielectric fluid, which results in increasing machiniability, better surface quality and faster machining time. However, the study of powder suspension size of surface charateristics in EDM field is still limited. This paper presents the improvement of micro-/nano- Cr powder size on the surface characteristics of the AISI D2 hardened steels in PMEDM. It has found that the reacst layer in PMEDM improved by as high as 41-53 % compared to conventional EDM. Also notably, the combination of added Cr powder and span-20 surfactant reduced the recast layer thickness significantly especially in nano-Cr size. This improvement was great potential adding nano-size Cr powder to dielectric for machining performance.

  13. IEEE International Workshop on Machine Learning for Signal Processing: Preface

    DEFF Research Database (Denmark)

    Tao, Jianhua

    The 21st IEEE International Workshop on Machine Learning for Signal Processing will be held in Beijing, China, on September 18–21, 2011. The workshop series is the major annual technical event of the IEEE Signal Processing Society's Technical Committee on Machine Learning for Signal Processing...

  14. Process Damping and Cutting Tool Geometry in Machining

    Science.gov (United States)

    Taylor, C. M.; Sims, N. D.; Turner, S.

    2011-12-01

    Regenerative vibration, or chatter, limits the performance of machining processes. Consequences of chatter include tool wear and poor machined surface finish. Process damping by tool-workpiece contact can reduce chatter effects and improve productivity. Process damping occurs when the flank (also known as the relief face) of the cutting tool makes contact with waves on the workpiece surface, created by chatter motion. Tool edge features can act to increase the damping effect. This paper examines how a tool's edge condition combines with the relief angle to affect process damping. An analytical model of cutting with chatter leads to a two-section curve describing how process damped vibration amplitude changes with surface speed for radiussed tools. The tool edge dominates the process damping effect at the lowest surface speeds, with the flank dominating at higher speeds. A similar curve is then proposed regarding tools with worn edges. Experimental data supports the notion of the two-section curve. A rule of thumb is proposed which could be useful to machine operators, regarding tool wear and process damping. The question is addressed, should a tool of a given geometry, used for a given application, be considered as sharp, radiussed or worn regarding process damping.

  15. Process Damping and Cutting Tool Geometry in Machining

    International Nuclear Information System (INIS)

    Taylor, C M; Sims, N D; Turner, S

    2011-01-01

    Regenerative vibration, or chatter, limits the performance of machining processes. Consequences of chatter include tool wear and poor machined surface finish. Process damping by tool-workpiece contact can reduce chatter effects and improve productivity. Process damping occurs when the flank (also known as the relief face) of the cutting tool makes contact with waves on the workpiece surface, created by chatter motion. Tool edge features can act to increase the damping effect. This paper examines how a tool's edge condition combines with the relief angle to affect process damping. An analytical model of cutting with chatter leads to a two-section curve describing how process damped vibration amplitude changes with surface speed for radiussed tools. The tool edge dominates the process damping effect at the lowest surface speeds, with the flank dominating at higher speeds. A similar curve is then proposed regarding tools with worn edges. Experimental data supports the notion of the two-section curve. A rule of thumb is proposed which could be useful to machine operators, regarding tool wear and process damping. The question is addressed, should a tool of a given geometry, used for a given application, be considered as sharp, radiussed or worn regarding process damping.

  16. 2015 International Conference on Machine Learning and Signal Processing

    CERN Document Server

    Woo, Wai; Sulaiman, Hamzah; Othman, Mohd; Saat, Mohd

    2016-01-01

    This book presents important research findings and recent innovations in the field of machine learning and signal processing. A wide range of topics relating to machine learning and signal processing techniques and their applications are addressed in order to provide both researchers and practitioners with a valuable resource documenting the latest advances and trends. The book comprises a careful selection of the papers submitted to the 2015 International Conference on Machine Learning and Signal Processing (MALSIP 2015), which was held on 15–17 December 2015 in Ho Chi Minh City, Vietnam with the aim of offering researchers, academicians, and practitioners an ideal opportunity to disseminate their findings and achievements. All of the included contributions were chosen by expert peer reviewers from across the world on the basis of their interest to the community. In addition to presenting the latest in design, development, and research, the book provides access to numerous new algorithms for machine learni...

  17. Multiple performance characteristics optimization for Al 7075 on electric discharge drilling by Taguchi grey relational theory

    Science.gov (United States)

    Khanna, Rajesh; Kumar, Anish; Garg, Mohinder Pal; Singh, Ajit; Sharma, Neeraj

    2015-12-01

    Electric discharge drill machine (EDDM) is a spark erosion process to produce micro-holes in conductive materials. This process is widely used in aerospace, medical, dental and automobile industries. As for the performance evaluation of the electric discharge drilling machine, it is very necessary to study the process parameters of machine tool. In this research paper, a brass rod 2 mm diameter was selected as a tool electrode. The experiments generate output responses such as tool wear rate (TWR). The best parameters such as pulse on-time, pulse off-time and water pressure were studied for best machining characteristics. This investigation presents the use of Taguchi approach for better TWR in drilling of Al-7075. A plan of experiments, based on L27 Taguchi design method, was selected for drilling of material. Analysis of variance (ANOVA) shows the percentage contribution of the control factor in the machining of Al-7075 in EDDM. The optimal combination levels and the significant drilling parameters on TWR were obtained. The optimization results showed that the combination of maximum pulse on-time and minimum pulse off-time gives maximum MRR.

  18. Machining of insulation ZrO2 ceramics by EDM using graphite electrode

    International Nuclear Information System (INIS)

    Tani, T.; Okada, M.; Fukuzawa, Y.; Mohri, N.

    1998-01-01

    As we proposed and reported before, insulating ceramics may be made into machinable materials with electrical discharge machining method by using an assisting electrode method. The machining properties depend on the formation mechanism of carbonization layer which has electrical conductivity on the ceramics surface during discharge. A big difference in machinability occurs between oxide and non-oxide ceramics. When ZrO 2 ceramics are machined with a copper tool electrode which was used for a machining of the non-oxide ceramics Si 3 N 4 , the electrical conductive layer is not formed on the machined surface uniformly. In this paper, in order to activate a carbonization reaction on the ceramics surface during discharge, the use of a porous graphite tool electrode is described. As a result of that, carbonized reaction occurs actively on the discharge gap and the uniform carbonized layer adheres to the machined surface. The surface roughness is much improved compared with previous machining conditions. Copyright (1998) Australasian Ceramic Society

  19. Process Machine Interactions Predicition and Manipulation of Interactions between Manufacturing Processes and Machine Tool Structures

    CERN Document Server

    Hollmann, Ferdinand

    2013-01-01

    This contributed volume collects the scientific results of the DFG Priority Program 1180 Prediction and Manipulation of Interactions between Structure and Process. The research program has been conducted during the years 2005 and 2012, whereas the primary goal was the analysis of the interactions between processes and structures in modern production facilities. This book presents the findings of the 20 interdisciplinary subprojects, focusing on different manufacturing processes such as high performance milling, tool grinding or metal forming. It contains experimental investigations as well as mathematical modeling of production processes and machine interactions. New experimental advancements and novel simulation approaches are also included.

  20. MEASUREMENT OF INDOOR AIR EMISSIONS FROM DRY-PROCESS PHOTOCOPY MACHINES

    Science.gov (United States)

    The article provides background information on indoor air emissions from office equipment, with emphasis on dry-process photocopy machines. The test method is described in detail along with results of a study to evaluate the test method using four dry-process photocopy machines. ...

  1. Continuous pile discharging machine

    International Nuclear Information System (INIS)

    Smith, P.P.

    1976-01-01

    A device for discharging cartridges from tubes under fluid pressure includes a cylindrical housing adapted to be seated in a leak-tight manner on the end of one of the tubes, a chute depending from the cylindrical housing near the end seated on the end of the tube, a rotatable piston having a wrench on the forward end thereof disposed in the cylindrical housing and adapted to manipulate a plug in the end of the tube, and a telescopic hydraulic ram adapted to move the piston toward the plug. In addition the wrench contains a magnet which prevents inadvertent uncoupling of the wrench and the plug. 7 claims, 10 drawing figures

  2. Continuous pile discharging machine

    Science.gov (United States)

    Smith, Phillips P.

    1976-05-11

    A device for discharging cartridges from tubes under fluid pressure includes a cylindrical housing adapted to be seated in a leak-tight manner on the end of one of the tubes, a chute depending from the cylindrical housing near the end seated on the end of the tube, a rotatable piston having a wrench on the forward end thereof disposed in the cylindrical housing and adapted to manipulate a plug in the end of the tube, and a telescopic hydraulic ram adapted to move the piston toward the plug. In addition the wrench contains a magnet which prevents inadvertent uncoupling of the wrench and the plug.

  3. Testing of new banknotes for machines that process currency

    Science.gov (United States)

    Foster, Eugenie E.

    2000-04-01

    Banknotes are now frequently use din machines. The Federal Reserve Board and the US Department of the Treasury have identified a need to produce notes that are reliably accepted in a variety of machine applications. This paper describes the steps that led to identifying requirements of manufacturers of machines that process banknotes for test notes, and the program developed for the Bureau of Engraving and Printing to address those requirements.

  4. Proceedings of IEEE Machine Learning for Signal Processing Workshop XV

    DEFF Research Database (Denmark)

    Larsen, Jan

    These proceedings contains refereed papers presented at the Fifteenth IEEE Workshop on Machine Learning for Signal Processing (MLSP’2005), held in Mystic, Connecticut, USA, September 28-30, 2005. This is a continuation of the IEEE Workshops on Neural Networks for Signal Processing (NNSP) organized...... by the NNSP Technical Committee of the IEEE Signal Processing Society. The name of the Technical Committee, hence of the Workshop, was changed to Machine Learning for Signal Processing in September 2003 to better reflect the areas represented by the Technical Committee. The conference is organized...... by the Machine Learning for Signal Processing Technical Committee with sponsorship of the IEEE Signal Processing Society. Following the practice started two years ago, the bound volume of the proceedings is going to be published by IEEE following the Workshop, and we are pleased to offer to conference attendees...

  5. Servo scanning 3D micro EDM for array micro cavities using on-machine fabricated tool electrodes

    Science.gov (United States)

    Tong, Hao; Li, Yong; Zhang, Long

    2018-02-01

    Array micro cavities are useful in many fields including in micro molds, optical devices, biochips and so on. Array servo scanning micro electro discharge machining (EDM), using array micro electrodes with simple cross-sectional shape, has the advantage of machining complex 3D micro cavities in batches. In this paper, the machining errors caused by offline-fabricated array micro electrodes are analyzed in particular, and then a machining process of array servo scanning micro EDM is proposed by using on-machine fabricated array micro electrodes. The array micro electrodes are fabricated on-machine by combined procedures including wire electro discharge grinding, array reverse copying and electrode end trimming. Nine-array tool electrodes with Φ80 µm diameter and 600 µm length are obtained. Furthermore, the proposed process is verified by several machining experiments for achieving nine-array hexagonal micro cavities with top side length of 300 µm, bottom side length of 150 µm, and depth of 112 µm or 120 µm. In the experiments, a chip hump accumulates on the electrode tips like the built-up edge in mechanical machining under the conditions of brass workpieces, copper electrodes and the dielectric of deionized water. The accumulated hump can be avoided by replacing the water dielectric by an oil dielectric.

  6. Process capability improvement through DMAIC for aluminum alloy wheel machining

    Science.gov (United States)

    Sharma, G. V. S. S.; Rao, P. Srinivasa; Babu, B. Surendra

    2017-07-01

    This paper first enlists the generic problems of alloy wheel machining and subsequently details on the process improvement of the identified critical-to-quality machining characteristic of A356 aluminum alloy wheel machining process. The causal factors are traced using the Ishikawa diagram and prioritization of corrective actions is done through process failure modes and effects analysis. Process monitoring charts are employed for improving the process capability index of the process, at the industrial benchmark of four sigma level, which is equal to the value of 1.33. The procedure adopted for improving the process capability levels is the define-measure-analyze-improve-control (DMAIC) approach. By following the DMAIC approach, the C p, C pk and C pm showed signs of improvement from an initial value of 0.66, -0.24 and 0.27, to a final value of 4.19, 3.24 and 1.41, respectively.

  7. Prediction of material removal rate and surface roughness for wire electrical discharge machining of nickel using response surface methodology

    Directory of Open Access Journals (Sweden)

    Thangam Chinnadurai

    2016-12-01

    Full Text Available This study focuses on investigating the effects of process parameters, namely, Peak current (Ip, Pulse on time (Ton, Pulse off time (Toff, Water pressure (Wp, Wire feed rate (Wf, Wire tension (Wt, Servo voltage (Sv and Servo feed setting (Sfs, on the Material Removal Rate (MRR and Surface Roughness (SR for Wire electrical discharge machining (Wire-EDM of nickel using Taguchi method. Response Surface Methodology (RSM is adopted to evolve mathematical relationships between the wire cutting process parameters and the output variables of the weld joint to determine the welding input parameters that lead to the desired optimal wire cutting quality. Besides, using response surface plots, the interaction effects of process parameters on the responses are analyzed and discussed. The statistical software Mini-tab is used to establish the design and to obtain the regression equations. The developed mathematical models are tested by analysis-of-variance (ANOVA method to check their appropriateness and suitability. Finally, a comparison is made between measured and calculated results, which are in good agreement. This indicates that the developed models can predict the responses accurately and precisely within the limits of cutting parameter being used.

  8. Prediction of material removal rate and surface roughness for wire electrical discharge machining of nickel using response surface methodology

    International Nuclear Information System (INIS)

    Chinnadurai, T.; Vendan, S.A.

    2016-01-01

    This study focuses on investigating the effects of process parameters, namely, Peak current (Ip), Pulse on time (Ton), Pulse off time (Toff), Water pressure (Wp), Wire feed rate (Wf), Wire tension (Wt), Servo voltage (Sv) and Servo feed setting (Sfs), on the Material Removal Rate (MRR) and Surface Roughness (SR) for Wire electrical discharge machining (Wire-EDM) of nickel using Taguchi method. Response Surface Methodology (RSM) is adopted to evolve mathematical relationships between the wire cutting process parameters and the output variables of the weld joint to determine the welding input parameters that lead to the desired optimal wire cutting quality. Besides, using response surface plots, the interaction effects of process parameters on the responses are analyzed and discussed. The statistical software Mini-tab is used to establish the design and to obtain the regression equations. The developed mathematical models are tested by analysis-of-variance (ANOVA) method to check their appropriateness and suitability. Finally, a comparison is made between measured and calculated results, which are in good agreement. This indicates that the developed models can predict the responses accurately and precisely within the limits of cutting parameter being used. (Author)

  9. Prediction of material removal rate and surface roughness for wire electrical discharge machining of nickel using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Chinnadurai, T.; Vendan, S.A.

    2016-07-01

    This study focuses on investigating the effects of process parameters, namely, Peak current (Ip), Pulse on time (Ton), Pulse off time (Toff), Water pressure (Wp), Wire feed rate (Wf), Wire tension (Wt), Servo voltage (Sv) and Servo feed setting (Sfs), on the Material Removal Rate (MRR) and Surface Roughness (SR) for Wire electrical discharge machining (Wire-EDM) of nickel using Taguchi method. Response Surface Methodology (RSM) is adopted to evolve mathematical relationships between the wire cutting process parameters and the output variables of the weld joint to determine the welding input parameters that lead to the desired optimal wire cutting quality. Besides, using response surface plots, the interaction effects of process parameters on the responses are analyzed and discussed. The statistical software Mini-tab is used to establish the design and to obtain the regression equations. The developed mathematical models are tested by analysis-of-variance (ANOVA) method to check their appropriateness and suitability. Finally, a comparison is made between measured and calculated results, which are in good agreement. This indicates that the developed models can predict the responses accurately and precisely within the limits of cutting parameter being used. (Author)

  10. Atomic processes in hydrogen and deuterium negative ion discharges

    International Nuclear Information System (INIS)

    Hiskes, J.R.

    1992-01-01

    A knowledge of the atomic processes active in a hydrogen negative ion discharge and their respective rates is an essential component of the interpretation, modeling, and enhancement of negative ion systems. The generation of the cross sections and rate processes appropriate to this problem has been a principal activity at several laboratories. In this paper is discussed those collision processes that are of major importance for the destruction of the vibrationally excited molecules generated in the discharge, processes that are essential to the valuation of the optimization procedure that is to be discussed in this paper

  11. Process evaluation of discharge planning implementation in healthcare using normalization process theory.

    Science.gov (United States)

    Nordmark, Sofi; Zingmark, Karin; Lindberg, Inger

    2016-04-27

    Discharge planning is a care process that aims to secure the transfer of care for the patient at transition from home to the hospital and back home. Information exchange and collaboration between care providers are essential, but deficits are common. A wide range of initiatives to improve the discharge planning process have been developed and implemented for the past three decades. However, there are still high rates of reported medical errors and adverse events related to failures in the discharge planning. Using theoretical frameworks such as Normalization Process Theory (NPT) can support evaluations of complex interventions and processes in healthcare. The aim of this study was to explore the embedding and integration of the DPP from the perspective of registered nurses, district nurses and homecare organizers. The study design was explorative, using the NPT as a framework to explore the embedding and integration of the DPP. Data consisted of written documentation from; workshops with staff, registered adverse events and system failures, web based survey and individual interviews with staff. Using the NPT as a framework to explore the embedding and integration of discharge planning after 10 years in use showed that the staff had reached a consensus of opinion of what the process was (coherence) and how they evaluated the process (reflexive monitoring). However, they had not reached a consensus of opinion of who performed the process (cognitive participation) and how it was performed (collective action). This could be interpreted as the process had not become normalized in daily practice. The result shows necessity to observe the implementation of old practices to better understand the needs of new ones before developing and implementing new practices or supportive tools within healthcare to reach the aim of development and to accomplish sustainable implementation. The NPT offers a generalizable framework for analysis, which can explain and shape the

  12. Residual stresses generated in F-522 steel by different machining processes

    International Nuclear Information System (INIS)

    Gracia-Navas, V.; Ferreres, I.; Maranon, J. A.; Garcia-Rosales, C.; Gil-Sevillano, J.

    2005-01-01

    Machining operations induce plastic deformation and heat generation in the near surface area of the machined part, giving rise to residual stresses. Depending on their magnitude and sign, these stresses can be detrimental or beneficial to the service life of the part. The final stress state depends on the machining process applied, as well as on the machining parameters. Therefore, the establishment of adequate machining guidelines requires the measurement of the residual stresses generated both at the surface and inside the material. in this work, the residual stresses generated in F-522 steel by two hard turning (conventional and laser assisted) and two grinding (production and finishing) processes were measured by X-ray diffraction. Additionally, depth profiles of the volume fraction of retained austenite, microstructure and nano hardness were obtained in order to correlate those results with the residual stress state obtained for each machining process. It has been observed that turning generates tensile stresses in the surface while grinding causes compressive stresses. Below the surface grinding generates weak tensile or nearly null stresses whereas turning generates strong compressive stresses. These results show that the optimum mechanising process (disregarding economical considerations) implies the combination of turning plus elimination of a small thickness by final grinding. (Author) 19 refs

  13. Frequency Dependent PD-pulse Distortion in Rotating Machines

    DEFF Research Database (Denmark)

    Holbøll, Joachim T.; Henriksen, Mogens

    1996-01-01

    at the machine terminals. The results show a variation of the attenuation of the discharge pulses inside the machine of about 20 dB highest for pulses from the far end, i.e. the neutral point. The capability of exact localization of the discharges in the winding gives a correct measure of the range...... of the current transformer based detection method, when being applied to rotating machines. The results are discussed with regard to the practical application of PD detection systems on rotating machines, particularly considering aspects of range and applicability of systems in the HF ranges...

  14. Plasma processes in water under effect of short duration pulse discharges

    Science.gov (United States)

    Gurbanov, Elchin

    2013-09-01

    It is very important to get a clear water without any impurities and bacteria by methods, that don't change the physical and chemical indicators of water now. In this article the plasma processes during the water treatment by strong electric fields and short duration pulse discharges are considered. The crown discharge around an electrode with a small radius of curvature consists of plasma leader channels with a high conductivity, where the thermo ionization processes and UV-radiation are taken place. Simultaneously the partial discharges around potential electrode lead to formation of atomic oxygen and ozone. The spark discharge arises, when plasma leader channels cross the all interelectrode gap, where the temperature and pressure are strongly grown. As a result the shock waves and dispersing liquid streams in all discharge gap are formed. The plasma channels extend, pressure inside it becomes less than hydrostatic one and the collapse and UV-radiation processes are started. The considered physical processes can be successfully used as a basis for development of pilot-industrial installations for conditioning of drinking water and to disinfecting of sewage.

  15. Dielectric barrier discharge image processing by Photoshop

    Science.gov (United States)

    Dong, Lifang; Li, Xuechen; Yin, Zengqian; Zhang, Qingli

    2001-09-01

    In this paper, the filamentary pattern of dielectric barrier discharge has been processed by using Photoshop, the coordinates of each filament can also be obtained. By using Photoshop two different ways have been used to analyze the spatial order of the pattern formation in dielectric barrier discharge. The results show that the distance of the neighbor filaments at U equals 14 kV and d equals 0.9 mm is about 1.8 mm. In the scope of the experimental error, the results from the two different methods are similar.

  16. Dielectric barrier discharge processing of aerospace materials

    International Nuclear Information System (INIS)

    Scott, S J; Figgures, C C; Dixon, D G

    2004-01-01

    We report the use of atmospheric pressure, air based, dielectric barrier discharges (DBD) to treat materials commonly used in the aerospace industries. The material samples were processed using a test-bed of a conventional DBD configuration in which the sample formed one of the electrodes and was placed in close proximity to a ceramic electrode. The discharges generated a powerful, cold oxidizing environment which was able to remove organic contaminants, etch primer and paint layers, oxidize aluminium and roughen carbon fibre composites by the selective removal of resin

  17. A Review on Parametric Analysis of Magnetic Abrasive Machining Process

    Science.gov (United States)

    Khattri, Krishna; Choudhary, Gulshan; Bhuyan, B. K.; Selokar, Ashish

    2018-03-01

    The magnetic abrasive machining (MAM) process is a highly developed unconventional machining process. It is frequently used in manufacturing industries for nanometer range surface finishing of workpiece with the help of Magnetic abrasive particles (MAPs) and magnetic force applied in the machining zone. It is precise and faster than conventional methods and able to produce defect free finished components. This paper provides a comprehensive review on the recent advancement of MAM process carried out by different researcher till date. The effect of different input parameters such as rotational speed of electromagnet, voltage, magnetic flux density, abrasive particles size and working gap on the performances of Material Removal Rate (MRR) and surface roughness (Ra) have been discussed. On the basis of review, it is observed that the rotational speed of electromagnet, voltage and mesh size of abrasive particles have significant impact on MAM process.

  18. Multi-objective optimization model of CNC machining to minimize processing time and environmental impact

    Science.gov (United States)

    Hamada, Aulia; Rosyidi, Cucuk Nur; Jauhari, Wakhid Ahmad

    2017-11-01

    Minimizing processing time in a production system can increase the efficiency of a manufacturing company. Processing time are influenced by application of modern technology and machining parameter. Application of modern technology can be apply by use of CNC machining, one of the machining process can be done with a CNC machining is turning. However, the machining parameters not only affect the processing time but also affect the environmental impact. Hence, optimization model is needed to optimize the machining parameters to minimize the processing time and environmental impact. This research developed a multi-objective optimization to minimize the processing time and environmental impact in CNC turning process which will result in optimal decision variables of cutting speed and feed rate. Environmental impact is converted from environmental burden through the use of eco-indicator 99. The model were solved by using OptQuest optimization software from Oracle Crystal Ball.

  19. Statistical dynamics of transient processes in a gas discharge plasma

    International Nuclear Information System (INIS)

    Smirnov, G.I.; Telegin, G.G.

    1991-01-01

    The properties of a gas discharge plasma to a great extent depend on random processes whose study has recently become particularly important. The present work is concerned with analyzing the statistical phenomena that occur during the prebreakdown stage in a gas discharge. Unlike other studies of breakdown in the discharge gap, in which secondary electron effects and photon processes at the electrodes must be considered, here the authors treat the case of an electrodeless rf discharge or a laser photoresonant plasma. The analysis is based on the balance between the rates of electron generation and recombination in the plasma. The fluctuation kinetics for ionization of atoms in the hot plasma may also play an important role when the electron temperature changes abruptly, as occurs during adiabatic pinching of the plasma or during electron cyclotron heating

  20. Machining of bone: Analysis of cutting force and surface roughness by turning process.

    Science.gov (United States)

    Noordin, M Y; Jiawkok, N; Ndaruhadi, P Y M W; Kurniawan, D

    2015-11-01

    There are millions of orthopedic surgeries and dental implantation procedures performed every year globally. Most of them involve machining of bones and cartilage. However, theoretical and analytical study on bone machining is lagging behind its practice and implementation. This study views bone machining as a machining process with bovine bone as the workpiece material. Turning process which makes the basis of the actually used drilling process was experimented. The focus is on evaluating the effects of three machining parameters, that is, cutting speed, feed, and depth of cut, to machining responses, that is, cutting forces and surface roughness resulted by the turning process. Response surface methodology was used to quantify the relation between the machining parameters and the machining responses. The turning process was done at various cutting speeds (29-156 m/min), depths of cut (0.03 -0.37 mm), and feeds (0.023-0.11 mm/rev). Empirical models of the resulted cutting force and surface roughness as the functions of cutting speed, depth of cut, and feed were developed. Observation using the developed empirical models found that within the range of machining parameters evaluated, the most influential machining parameter to the cutting force is depth of cut, followed by feed and cutting speed. The lowest cutting force was obtained at the lowest cutting speed, lowest depth of cut, and highest feed setting. For surface roughness, feed is the most significant machining condition, followed by cutting speed, and with depth of cut showed no effect. The finest surface finish was obtained at the lowest cutting speed and feed setting. © IMechE 2015.

  1. Recent Developments in Abrasive Hybrid Manufacturing Processes

    Directory of Open Access Journals (Sweden)

    Ruszaj Adam

    2017-06-01

    Full Text Available Recent dynamic development of abrasive hybrid manufacturing processes results from application of a new difficult for machining materials and improvement of technological indicators of manufacturing processes already applied in practice. This tendency also occurs in abrasive machining processes which are often supported by ultrasonic vibrations, electrochemical dissolution or by electrical discharges. In the paper we present the review of new results of investigations and new practical applications of Abrasive Electrodischarge (AEDM and Electrochemical (AECM Machining.

  2. IRB Process Improvements: A Machine Learning Analysis.

    Science.gov (United States)

    Shoenbill, Kimberly; Song, Yiqiang; Cobb, Nichelle L; Drezner, Marc K; Mendonca, Eneida A

    2017-06-01

    Clinical research involving humans is critically important, but it is a lengthy and expensive process. Most studies require institutional review board (IRB) approval. Our objective is to identify predictors of delays or accelerations in the IRB review process and apply this knowledge to inform process change in an effort to improve IRB efficiency, transparency, consistency and communication. We analyzed timelines of protocol submissions to determine protocol or IRB characteristics associated with different processing times. Our evaluation included single variable analysis to identify significant predictors of IRB processing time and machine learning methods to predict processing times through the IRB review system. Based on initial identified predictors, changes to IRB workflow and staffing procedures were instituted and we repeated our analysis. Our analysis identified several predictors of delays in the IRB review process including type of IRB review to be conducted, whether a protocol falls under Veteran's Administration purview and specific staff in charge of a protocol's review. We have identified several predictors of delays in IRB protocol review processing times using statistical and machine learning methods. Application of this knowledge to process improvement efforts in two IRBs has led to increased efficiency in protocol review. The workflow and system enhancements that are being made support our four-part goal of improving IRB efficiency, consistency, transparency, and communication.

  3. Discharge documentation of patients discharged to subacute facilities: a three-year quality improvement process across an integrated health care system.

    Science.gov (United States)

    Gandara, Esteban; Ungar, Jonathan; Lee, Jason; Chan-Macrae, Myrna; O'Malley, Terrence; Schnipper, Jeffrey L

    2010-06-01

    Effective communication among physicians during hospital discharge is critical to patient care. Partners Healthcare (Boston) has been engaged in a multi-year process to measure and improve the quality of documentation of all patients discharged from its five acute care hospitals to subacute facilities. Partners first engaged stakeholders to develop a consensus set of 12 required data elements for all discharges to subacute facilities. A measurement process was established and later refined. Quality improvement interventions were then initiated to address measured deficiencies and included education of physicians and nurses, improvements in information technology, creation of or improvements in discharge documentation templates, training of hospitalists to serve as role models, feedback to physicians and their service chiefs regarding reviewed cases, and case manager review of documentation before discharge. To measure improvement in quality as a result of these efforts, rates of simultaneous inclusion of all 12 applicable data elements ("defect-free rate") were analyzed over time. Some 3,101 discharge documentation packets of patients discharged to subacute facilities from January 1, 2006, through September 2008 were retrospectively studied. During the 11 monitored quarters, the defect-free rate increased from 65% to 96% (p improvements were seen in documentation of preadmission medication lists, allergies, follow-up, and warfarin information. Institution of rigorous measurement, feedback, and multidisciplinary, multimodal quality improvement processes improved the inclusion of data elements in discharge documentation required for safe hospital discharge across a large integrated health care system.

  4. Analysis of the influence of process conditions on the surface finish of ceramic materials manufactured by EDM

    International Nuclear Information System (INIS)

    Puertas-Arbizu, I.; Luis-Perez, C. J.

    2004-01-01

    Electrical discharge machining (EDM) is an emerging alternative versus some other manufacturing processes of conductive ceramic materials, such as: laser machining, electrochemical machining, abrasive water jet, ultrasonic machining and diamond wheel grinding. Due to its interest in the industrial field, in this work a study of the influence of process conditions on the surface aspect of three conductive ceramic materials: hot-pressed boron carbide (B 4 C), reaction-bonded silicon carbide (SiSiC) and cobalt-bonded tungsten carbide (WC-Co) is carried out. These materials are to be electrical discharge machined under different machining conditions and in the particular case of finish stages (Ra≤ 1 μm). (Author)

  5. A machine learning approach to understand business processes

    NARCIS (Netherlands)

    Maruster, L.

    2003-01-01

    Business processes (industries, administration, hospitals, etc.) become nowadays more and more complex and it is difficult to have a complete understanding of them. The goal of the thesis is to show that machine learning techniques can be used successfully for understanding a process on the basis of

  6. Methods of control the machining process

    Directory of Open Access Journals (Sweden)

    Yu.V. Petrakov

    2017-12-01

    Full Text Available Presents control methods, differentiated by the time of receipt of information used: a priori, a posteriori and current. When used a priori information to determine the mode of cutting is carried out by simulation the process of cutting allowance, where the shape of the workpiece and the details are presented in the form of wireframes. The office for current information provides for a system of adaptive control and modernization of CNC machine, where in the input of the unit shall be computed by using established optimization software. For the control by a posteriori information of the proposed method of correction of shape-generating trajectory in the second pass measurement surface of the workpiece formed by the first pass. Developed programs that automatically design the adjusted file for machining.

  7. Optimization of cryogenic cooled EDM process parameters using grey relational analysis

    International Nuclear Information System (INIS)

    Kumar, S Vinoth; Kumar, M Pradeep

    2014-01-01

    This paper presents an experimental investigation on cryogenic cooling of liquid nitrogen (LN 2 ) copper electrode in the electrical discharge machining (EDM) process. The optimization of the EDM process parameters, such as the electrode environment (conventional electrode and cryogenically cooled electrode in EDM), discharge current, pulse on time, gap voltage on material removal rate, electrode wear, and surface roughness on machining of AlSiCp metal matrix composite using multiple performance characteristics on grey relational analysis was investigated. The L 18 orthogonal array was utilized to examine the process parameters, and the optimal levels of the process parameters were identified through grey relational analysis. Experimental data were analyzed through analysis of variance. Scanning electron microscopy analysis was conducted to study the characteristics of the machined surface.

  8. Optimization and Surface Modification of Al-6351 Alloy Using SiC-Cu Green Compact Electrode by Electro Discharge Coating Process

    Science.gov (United States)

    Chakraborty, Sujoy; Kar, Siddhartha; Dey, Vidyut; Ghosh, Subrata Kumar

    2017-06-01

    This paper introduces the surface modification of Al-6351 alloy by green compact SiC-Cu electrode using electro-discharge coating (EDC) process. A Taguchi L-16 orthogonal array is employed to investigate the process by varying tool parameters like composition and compaction load and electro-discharge machining (EDM) parameters like pulse-on time and peak current. Material deposition rate (MDR), tool wear rate (TWR) and surface roughness (SR) are measured on the coated specimens. An optimum condition is achieved by formulating overall evaluation criteria (OEC), which combines multi-objective task into a single index. The signal-to-noise (S/N) ratio, and the analysis of variance (ANOVA) is employed to investigate the effect of relevant process parameters. A confirmation test is conducted based on optimal process parameters and experimental results are provided to illustrate the effectiveness of this approach. The modified surface is characterized by optical microscope and X-ray diffraction (XRD) analysis. XRD analysis of the deposited layer confirmed the transfer of tool materials to the work surface and formation of inter-metallic phases. The micro-hardness of the resulting composite layer is also measured which is 1.5-3 times more than work material’s one and highest layer thickness (LT) of 83.644μm has been successfully achieved.

  9. Heuristics for batching and sequencing in batch processing machines

    Directory of Open Access Journals (Sweden)

    Chuda Basnet

    2016-12-01

    Full Text Available In this paper, we discuss the “batch processing” problem, where there are multiple jobs to be processed in flow shops. These jobs can however be formed into batches and the number of jobs in a batch is limited by the capacity of the processing machines to accommodate the jobs. The processing time required by a batch in a machine is determined by the greatest processing time of the jobs included in the batch. Thus, the batch processing problem is a mix of batching and sequencing – the jobs need to be grouped into distinct batches, the batches then need to be sequenced through the flow shop. We apply certain newly developed heuristics to the problem and present computational results. The contributions of this paper are deriving a lower bound, and the heuristics developed and tested in this paper.

  10. Effect of the Machining Processes on Low Cycle Fatigue Behavior of a Powder Metallurgy Disk

    Science.gov (United States)

    Telesman, J.; Kantzos, P.; Gabb, T. P.; Ghosn, L. J.

    2010-01-01

    A study has been performed to investigate the effect of various machining processes on fatigue life of configured low cycle fatigue specimens machined out of a NASA developed LSHR P/M nickel based disk alloy. Two types of configured specimen geometries were employed in the study. To evaluate a broach machining processes a double notch geometry was used with both notches machined using broach tooling. EDM machined notched specimens of the same configuration were tested for comparison purposes. Honing finishing process was evaluated by using a center hole specimen geometry. Comparison testing was again done using EDM machined specimens of the same geometry. The effect of these machining processes on the resulting surface roughness, residual stress distribution and microstructural damage were characterized and used in attempt to explain the low cycle fatigue results.

  11. Numerical study of the dielectric liquid around an electrical discharge generated vapor bubble in ultrasonic assisted EDM.

    Science.gov (United States)

    Shervani-Tabar, Mohammad T; Mobadersany, Nima

    2013-07-01

    In electrical discharge machining due to the electrical current, very small bubbles are created in the dielectric fluid between the tool and the workpiece. Increase of the number of bubbles and their growth in size generate a single bubble. The bubble has an important role in electrical discharge machining. In this paper the effect of ultrasonic vibration of the tool and the velocity fields and pressure distribution in the dielectric fluid around the bubble in the process of electrical discharge machining are studied numerically. The boundary integral equation method is applied for the numerical solution of the problem. It is shown that ultrasonic vibration of the tool has great influence on the evolution of the bubble, fluid behavior and the efficiency of the machining in EDM. At the last stages of the collapse phase of the bubble, a liquid jet develops on the bubble which has different shapes. Due to the different cases, and a high pressure region appears just near the jet of the bubble. Also the fluid particles have the highest relative velocity just near the liquid jet of the bubble. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Research of plasma-electrolyte discharge in the processes of obtaining metallic powders

    Science.gov (United States)

    Kashapov, R. N.; Kashapov, L. N.; Kashapov, N. F.

    2017-11-01

    The use of the plasma electrolyte process has never been considered as a simple, cheap and fast method of obtaining powders used in selective laser melting processes. Therefore, the adaptation of the plasma-electrolyte process to the production of metal powders used in additive production is an urgent task. The paper presents the results of studies of gas discharge parameters between a metal and liquid electrode in the processes of obtaining metallic iron powders. The discharge combustion conditions necessary for the formation of metal powders of micron size are determined. A possible mechanism for the formation of powder particles in a discharge plasma is proposed.

  13. QUALITY LOSS FUNCTION FOR MACHINING PROCESS ACCURACY

    Directory of Open Access Journals (Sweden)

    Adrian Stere PARIS

    2017-05-01

    Full Text Available The main goal of the paper is to propose new quality loss models for machining process accuracy in the classical case “zero the best”, MMF and Harris type. In addition a numerical example illustrates that the choose regression functions are directly linked with the quality loss of manufacturing process. The proposed models can be adapted for the “maximal the best” and “nominal the best” cases.

  14. Target fabrication using laser and spark erosion machining

    International Nuclear Information System (INIS)

    Clement, X.; Coudeville, A.; Eyharts, P.; Perrine , J.P.; Rouillard, R.

    1981-11-01

    Lasers and E.D.M. (electrical discharge machining) are both extremely useful tools for machining the small targets needed in inertial confinement studies. Lasers are currently used in a wide range of target problems and it appears that E.D.M. has a still wider range of applications for plane and spherical targets. The problems of material deformation and tool breaking are practically eliminated as the electrode and the machined part are not in mechanical contact. In comparison with laser micromachining E.D.M. offers: larger versatility with the possibility of new developments and applications; higher production speed for thin conducting materials; lower initial and operating costs; the processes are well controlled, reproducible and can be easily automated; the operation is safe without the dangers associted with lasers

  15. Intelligent sensor networks the integration of sensor networks, signal processing and machine learning

    CERN Document Server

    Hu, Fei

    2012-01-01

    Although governments worldwide have invested significantly in intelligent sensor network research and applications, few books cover intelligent sensor networks from a machine learning and signal processing perspective. Filling this void, Intelligent Sensor Networks: The Integration of Sensor Networks, Signal Processing and Machine Learning focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on the world-class research of award-winning authors, the book provides a firm grounding in the fundamentals of intelligent sensor networks, incl

  16. A strategy for man-machine system development in process industries

    International Nuclear Information System (INIS)

    Wirstad, J.

    1986-12-01

    A framework for Man-Machine System design in process industry projects is reported. It is based in the Guidelines for the Design of Man-Machine interfaces which have been generated in cooperation within the European Workshop for Industrial Computer Systems (EWICS). The application of EWICS Guidelines in industrial projects is demonstrated by six User Scenarios, which represent typical projects from different industries, e.g. electrical power generation and distribution, water control, pulp and paper production, oil and gas production. In all these projects Man-Machine System design has been conducted. It is recommended in the report that each Company develops its set of Man-Machine Systems Standard techniques/procedures. At present there are several techniques/procedures available which, for moderate costs, can be adapted to specific Company conditions. A menu of such Man-Machine System techniques/procedures is presented. Means of estimating the costs and benefits of Man-Machine System design are also described. (author)

  17. Using a Radiofrequency Identification System for Improving the Patient Discharge Process: A Simulation Study.

    Science.gov (United States)

    Shim, Sung J; Kumar, Arun; Jiao, Roger

    2016-01-01

    A hospital is considering deploying a radiofrequency identification (RFID) system and setting up a new "discharge lounge" to improve the patient discharge process. This study uses computer simulation to model and compare the current process and the new process, and it assesses the impact of the RFID system and the discharge lounge on the process in terms of resource utilization and time taken in the process. The simulation results regarding resource utilization suggest that the RFID system can slightly relieve the burden on all resources, whereas the RFID system and the discharge lounge together can significantly mitigate the nurses' tasks. The simulation results in terms of the time taken demonstrate that the RFID system can shorten patient wait times, staff busy times, and bed occupation times. The results of the study could prove helpful to others who are considering the use of an RFID system in the patient discharge process in hospitals or similar processes.

  18. Design, fabrication and evaluation of fish meal pelletizing machine ...

    African Journals Online (AJOL)

    A 113.1kg/h fish meal pellet processing machine which produced 4mm diameter pellet, with an average length of 6mm was designed and fabricated. Design values of 210 was used for the maximum angle that the hopper wall formed with the vertical in the discharge zone, a critical stress of 1.3kPa of the ground particulate ...

  19. Performance Analysis of Abrasive Waterjet Machining Process at Low Pressure

    Science.gov (United States)

    Murugan, M.; Gebremariam, MA; Hamedon, Z.; Azhari, A.

    2018-03-01

    Normally, a commercial waterjet cutting machine can generate water pressure up to 600 MPa. This range of pressure is used to machine a wide variety of materials. Hence, the price of waterjet cutting machine is expensive. Therefore, there is a need to develop a low cost waterjet machine in order to make the technology more accessible for the masses. Due to its low cost, such machines may only be able to generate water pressure at a much reduced rate. The present study attempts to investigate the performance of abrasive water jet machining process at low cutting pressure using self-developed low cost waterjet machine. It aims to study the feasibility of machining various materials at low pressure which later can aid in further development of an effective low cost water jet machine. A total of three different materials were machined at a low pressure of 34 MPa. The materials are mild steel, aluminium alloy 6061 and plastics Delrin®. Furthermore, a traverse rate was varied between 1 to 3 mm/min. The study on cutting performance at low pressure for different materials was conducted in terms of depth penetration, kerf taper ratio and surface roughness. It was found that all samples were able to be machined at low cutting pressure with varied qualities. Also, the depth of penetration decreases with an increase in the traverse rate. Meanwhile, the surface roughness and kerf taper ratio increase with an increase in the traverse rate. It can be concluded that a low cost waterjet machine with a much reduced rate of water pressure can be successfully used for machining certain materials with acceptable qualities.

  20. Design Of A Small-Scale Hulling Machine For Improved Wet-Processed Coffee.

    Directory of Open Access Journals (Sweden)

    Adeleke

    2017-08-01

    Full Text Available The method of primary processing of coffee is a vital determinant of quality and price. Wet processing method produces higher quality beans but is very labourious. This work outlines the design of a small scale cost-effective ergonomic and easily maintained and operated coffee hulling machine that can improve quality and productivity of green coffee beans. The machine can be constructed from locally available materials at a relatively low cost of about NGN 140000.00 with cheap running cost. The beaters are made from rubber strip which can deflect when in contact with any obstruction causing little or no stresses on drum members and reducing the risk of damage to both the beans and machine. The machine is portable and detachable which make it fit to be owned by a group of farmers who can move it from one farm to the other making affordability and running cost easier. The easily affordable and relatively low running cost may be further reduced by the fact that the machine is powered by 3.0 Hp petrol engine which is suitable for other purposes among the rural dwellers. The eventual construction of the machine will encourage more farmers to go into wet processing of coffee and reduce the foreign exchange hitherto lost to this purpose.

  1. Performance of Process Damping in Machining Titanium Alloys at Low Cutting Speed with Different Helix Tools

    International Nuclear Information System (INIS)

    Shaharun, M A; Yusoff, A R; Reza, M S; Jalal, K A

    2012-01-01

    Titanium is a strong, lustrous, corrosion-resistant and transition metal with a silver color to produce strong lightweight alloys for industrial process, automotive, medical instruments and other applications. However, it is very difficult to machine the titanium due to its poor machinability. When machining titanium alloys with the conventional tools, the wear rate of the tool is rapidly accelerate and it is generally difficult to achieve at high cutting speed. In order to get better understanding of machining titanium alloy, the interaction between machining structural system and the cutting process which result in machining instability will be studied. Process damping is a useful phenomenon that can be exploited to improve the limited productivity of low speed machining. In this study, experiments are performed to evaluate the performance of process damping of milling under different tool helix geometries. The results showed that the helix of 42° angle is significantly increase process damping performance in machining titanium alloy.

  2. Improvement of the auto wire feeder machine in a de-soldering process

    Directory of Open Access Journals (Sweden)

    Niramon Nonkhukhetkhong

    2016-10-01

    Full Text Available This paper presents the methodology of the de-soldering process for rework of disk drive Head Stack Assembly (HSA units. The auto wire feeder is a machine that generates Tin (Sn on the product. This machine was determined to be one of the major sources of excess Sn on the HSA. The defect rate due to excess Sn is more than 30%, which leads to increased processing time and cost to perform additional cleaning steps. From process analysis, the major causes of excess Sn are as follows: 1 The machine cannot cut the wire all the way into the flux core area; 2 The sizes and types of soldering irons are not appropriate for the unit parts; and, 3 There are variations introduced into the de-soldering process by the workforce. This paper proposes a methodology to address all three of these causes. First, the auto wire feeder machine in the de-solder process will be adjusted in order to cut wires into flux core. Second, the types of equipment and material used in de-soldering will be optimized. Finally, a new standard method for operators, which can be controlled more easily, will be developed in order to reduce defects due to workforce related variation. After these process controls and machine adjustments were implemented, the overall Sn related problems were significantly improved. Sn contamination was reduced by 41% and cycle time was reduced by an average of 15 seconds.

  3. Application of PROMETHEE-GAIA method for non-traditional machining processes selection

    Directory of Open Access Journals (Sweden)

    Prasad Karande

    2012-10-01

    Full Text Available With ever increasing demand for manufactured products of hard alloys and metals with high surface finish and complex shape geometry, more interest is now being paid to non-traditional machining (NTM processes, where energy in its direct form is used to remove material from workpiece surface. Compared to conventional machining processes, NTM processes possess almost unlimited capabilities and there is a strong believe that use of NTM processes would go on increasing in diverse range of applications. Presence of a large number of NTM processes along with complex characteristics and capabilities, and lack of experts in NTM process selection domain compel for development of a structured approach for NTM process selection for a given machining application. Past researchers have already attempted to solve NTM process selection problems using various complex mathematical approaches which often require a profound knowledge in mathematics/artificial intelligence from the part of process engineers. In this paper, four NTM process selection problems are solved using an integrated PROMETHEE (preference ranking organization method for enrichment evaluation and GAIA (geometrical analysis for interactive aid method which would act as a visual decision aid to the process engineers. The observed results are quite satisfactory and exactly match with the expected solutions.

  4. A Web Observatory for the Machine Processability of Structured Data on the Web

    NARCIS (Netherlands)

    Beek, W.; Groth, P.; Schlobach, S.; Hoekstra, R.

    2014-01-01

    General human intelligence is needed in order to process Linked Open Data (LOD). On the Semantic Web (SW), content is intended to be machine-processable as well. But the extent to which a machine is able to navigate, access, and process the SW has not been extensively researched. We present LOD

  5. Modelling of destructive ability of water-ice-jet while machine processing of machine elements

    Directory of Open Access Journals (Sweden)

    Burnashov Mikhail

    2017-01-01

    Full Text Available This paper represents the classification of the most common contaminants, appearing on the surfaces of machine elements after a long-term service.The existing well-known surface cleaning methods are described and analyzed in the framework of this paper. The article is intended to provide the reader with an understanding of the process of cleaning and removing contamination from machine elements surface by means of water-ice-jet with preprepared beforehand particles, as well as the process of water-ice-jet formation. The paper deals with the description of such advantages of this method as low costs, wastelessness, high quality of the surface, undergoing processing, minimization of harmful impact upon environment and eco-friendliness, which makes it differ radically from formerly known methods. The scheme of interection between the surface and ice particle is represented. A thermo-physical model of destruction of contaminants by means of a water-ice-jet cleaning technology was developed on its basis. The thermo-physical model allows us to make setting of processing mode and the parameters of water-ice-jet scientifically substantiated and well-grounded.

  6. A Review of Additive Mixed-Electric Discharge Machining: Current Status and Future Perspectives for Surface Modification of Biomedical Implants

    Directory of Open Access Journals (Sweden)

    Abdul’Azeez Abdu Aliyu

    2017-01-01

    Full Text Available Surface treatment remained a key solution to numerous problems of synthetic hard tissues. The basic methods of implant surface modification include various physical and chemical deposition techniques. However, most of these techniques have several drawbacks such as excessive cost and surface cracks and require very high sintering temperature. Additive mixed-electric discharge machining (AM-EDM is an emerging technology which simultaneously acts as a machining and surface modification technique. Aside from the mere molds, dies, and tool fabrication, AM-EDM is materializing to finishing of automobiles and aerospace, nuclear, and biomedical components, through the concept of material migrations. The mechanism of material transfer by AM-EDM resembles electrophoretic deposition, whereby the additives in the AM-EDM dielectric fluids are melted and migrate to the machined surface, forming a mirror-like finishing characterized by extremely hard, nanostructured, and nanoporous layers. These layers promote the bone in-growth and strengthen the cell adhesion. Implant shaping and surface treatment through AM-EDM are becoming a key research focus in recent years. This paper reports and summarizes the current advancement of AM-EDM as a potential tool for orthopedic and dental implant fabrication. Towards the end of this paper, the current challenges and future research trends are highlighted.

  7. Investigation of near dry EDM compared with wet and dry EDM processes

    International Nuclear Information System (INIS)

    Gholipoor, Ahad; Baseri, Hamid; Shabgard, Mohammad Reza

    2015-01-01

    Material removal rate (MRR), tool wear ratio (TWR) and surface roughness (SR) obtained by near-dry EDM process were compared with wet and dry EDM at three levels of discharge energy in drilling of SPK steel. Surface integrity machined by this process was studied and compared with wet and dry EDM processes, by scanning electron microscopy (SEM). The results showed that at high level of discharge energy, wet EDM has the most MRR, TWR and SR, and dry EDM has the least MRR, TWR and SR, while at low discharge energy levels, near-dry EDM process has the most MRR and the least SR. SEM micrographs showed that the quality of surface obtained by near-dry EDM process is better than others and the machined surfaces by near-dry EDM process have lower micro-cracks and craters, relatively.

  8. Investigation of near dry EDM compared with wet and dry EDM processes

    Energy Technology Data Exchange (ETDEWEB)

    Gholipoor, Ahad [Islamic Azad University of Tabriz, Tabriz (Iran, Islamic Republic of); Baseri, Hamid [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Shabgard, Mohammad Reza [University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2015-05-15

    Material removal rate (MRR), tool wear ratio (TWR) and surface roughness (SR) obtained by near-dry EDM process were compared with wet and dry EDM at three levels of discharge energy in drilling of SPK steel. Surface integrity machined by this process was studied and compared with wet and dry EDM processes, by scanning electron microscopy (SEM). The results showed that at high level of discharge energy, wet EDM has the most MRR, TWR and SR, and dry EDM has the least MRR, TWR and SR, while at low discharge energy levels, near-dry EDM process has the most MRR and the least SR. SEM micrographs showed that the quality of surface obtained by near-dry EDM process is better than others and the machined surfaces by near-dry EDM process have lower micro-cracks and craters, relatively.

  9. Process acceptance and adjustment techniques for Swiss automatic screw machine parts. Final report

    International Nuclear Information System (INIS)

    Robb, J.M.

    1976-01-01

    Product tolerance requirements for small, cylindrical, piece parts produced on swiss automatic screw machines have progressed to the reliability limits of inspection equipment. The miniature size, configuration, and tolerance requirements (plus or minus 0.0001 in.) (0.00254 mm) of these parts preclude the use of screening techniques to accept product or adjust processes during setup and production runs; therefore, existing means of product acceptance and process adjustment must be refined or new techniques must be developed. The purpose of this endeavor has been to determine benefits gained through the implementation of a process acceptance technique (PAT) to swiss automatic screw machine processes. PAT is a statistical approach developed for the purpose of accepting product and centering processes for parts produced by selected, controlled processes. Through this endeavor a determination has been made of the conditions under which PAT can benefit a controlled process and some specific types of screw machine processes upon which PAT could be applied. However, it was also determined that PAT, if used indiscriminately, may become a record keeping burden when applied to more than one dimension at a given machining operation

  10. Effect of actuating voltage and discharge gap on plasma assisted detonation initiation process

    Science.gov (United States)

    Siyin, ZHOU; Xueke, CHE; Wansheng, NIE; Di, WANG

    2018-06-01

    The influence of actuating voltage and discharge gap on plasma assisted detonation initiation by alternating current dielectric barrier discharge was studied in detail. A loose coupling method was used to simulate the detonation initiation process of a hydrogen–oxygen mixture in a detonation tube under different actuating voltage amplitudes and discharge gap sizes. Both the discharge products and the detonation forming process assisted by the plasma were analyzed. It was found that the patterns of the temporal and spatial distributions of discharge products in one cycle keep unchanged as changing the two discharge operating parameters. However, the adoption of a higher actuating voltage leads to a higher active species concentration within the discharge zone, and atom H is the most sensitive to the variations of the actuating voltage amplitude among the given species. Adopting a larger discharge gap results in a lower concentration of the active species, and all species have the same sensitivity to the variations of the gap. With respect to the reaction flow of the detonation tube, the corresponding deflagration to detonation transition (DDT) time and distance become slightly longer when a higher actuating voltage is chosen. The acceleration effect of plasma is more prominent with a smaller discharge gap, and the benefit builds gradually throughout the DDT process. Generally, these two control parameters have little effect on the amplitude of the flow field parameters, and they do not alter the combustion degree within the reaction zone.

  11. Effect of dispersion hardening process on machinability of EN AB-AlSi9Mg silumin

    Directory of Open Access Journals (Sweden)

    J. Pezda

    2009-07-01

    Full Text Available Nowadays, aluminum and its alloys found their application in any type design structures, many’s the time being an alternative for a ferrous alloys due to their technological properties like low density, ductility, high strength and good corrosion resistance. Among different fabrication processes the machining stage has a significant importance considering fabrication costs and processing time. Therefore, optimization of the process parameters that affect machining stages such as, tool wear, alloy machinability, machining effort and cutting speed becomes an area of constant development and study. To the most important factors having impact on machining properties belong: initial condition of machined material, which depends on a method and conditions of material preparation. In the paper are presented initial tests of machining properties of the EN AB-AlSi9Mg silumin subjected to heat treatment. Machinability measurements of the investigated alloy were performed with use of reboring method with constant force of feed. It enabled determination of an effect of heat treatment on machining properties of the investigated alloy. A further investigation shall be connected with determination of optimal parameters of solutionizing and ageing treatments in aspects of improvement of both mechanical properties and its machinability.

  12. Experimental study on Response Parameters of Ni-rich NiTi Shape Memory Alloy during Wire Electric Discharge Machining

    Science.gov (United States)

    Bisaria, Himanshu; Shandilya, Pragya

    2018-03-01

    Nowadays NiTi SMAs are gaining more prominence due to their unique properties such as superelasticity, shape memory effect, high fatigue strength and many other enriched physical and mechanical properties. The current studies explore the effect of machining parameters namely, peak current (Ip), pulse off time (TOFF), and pulse on time (TON) on wire wear ratio (WWR), and dimensional deviation (DD) in WEDM. It was found that high discharge energy was mainly ascribed to high WWR and DD. The WWR and DD increased with the increase in pulse on time and peak current whereas high pulse off time was favourable for low WWR and DD.

  13. Collisional and radiative processes in high-pressure discharge plasmas

    Science.gov (United States)

    Becker, Kurt H.; Kurunczi, Peter F.; Schoenbach, Karl H.

    2002-05-01

    Discharge plasmas at high pressures (up to and exceeding atmospheric pressure), where single collision conditions no longer prevail, provide a fertile environment for the experimental study of collisions and radiative processes dominated by (i) step-wise processes, i.e., the excitation of an already excited atomic/molecular state and by (ii) three-body collisions leading, for instance, to the formation of excimers. The dominance of collisional and radiative processes beyond binary collisions involving ground-state atoms and molecules in such environments allows for many interesting applications of high-pressure plasmas such as high power lasers, opening switches, novel plasma processing applications and sputtering, absorbers and reflectors for electromagnetic waves, remediation of pollutants and waste streams, and excimer lamps and other noncoherent vacuum-ultraviolet light sources. Here recent progress is summarized in the use of hollow cathode discharge devices with hole dimensions in the range 0.1-0.5 mm for the generation of vacuum-ultraviolet light.

  14. Process parameter optimization based on principal components analysis during machining of hardened steel

    Directory of Open Access Journals (Sweden)

    Suryakant B. Chandgude

    2015-09-01

    Full Text Available The optimum selection of process parameters has played an important role for improving the surface finish, minimizing tool wear, increasing material removal rate and reducing machining time of any machining process. In this paper, optimum parameters while machining AISI D2 hardened steel using solid carbide TiAlN coated end mill has been investigated. For optimization of process parameters along with multiple quality characteristics, principal components analysis method has been adopted in this work. The confirmation experiments have revealed that to improve performance of cutting; principal components analysis method would be a useful tool.

  15. Strategies in electro-chemical machining of tungsten for divertor application

    International Nuclear Information System (INIS)

    Krauss, W.; Holstein, N.; Konys, J.

    2007-01-01

    For future application in a fusion power system a modular structured He cooled divertor concept is investigated under the framework of EFDA which is based on the use of pure W or W alloys for the thermally highly loaded parts. Due to the underlying physico-chemical principles electro-chemical machining (ECM) is the only shaping process which will not introduce microstructural defects, e.g. microcracks into work pieces as known by example from electro-discharge machining (EDM). However, ECM processes have no industrial application in W machining up to yet due to passivation effects using standard electrolytes known from steel working. Therefore, a systematical electrochemical development program was launched, and the electrochemical behavior of W was examined and passivation effects could be eliminated, successfully. The electrochemical shaping processes can be divided into two main categories. The first one is M-ECM, which represents the lithographic route based on structured anode masks, and the other is C-ECM, working with a negatively structured cathode as tool which is copied by electro-chemical dissolution. Both ECM branches are discussed on base of first machined structured parts, showing their process depending advantages and potential enhancements are revealed by applying pulsed currents instead of DC dissolution technique

  16. A study of plasma facing tungsten components with electrical discharge machined surface exposed to cyclic thermal loads

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Yohji, E-mail: seki.yohji@jaea.go.jp; Ezato, Koichiro; Suzuki, Satoshi; Yokoyama, Kenji; Yamada, Hirokazu; Hirayama, Tomoyuki

    2016-11-01

    Through R&D for a plasma facing units (PFUs) in an outer vertical target of an ITER full-tungsten (W) divertor, Japan Atomic Energy Agency succeeded in demonstrating the durability of the W divertor shaped by an electrical discharge machining (EDM). To prevent melting of W armors in the PFUs, an adequate technology to meet requirements of a geometrical shape and a tolerance is one of the most important key issues in a manufacturing process. From the necessity, the EDM has been evaluated to control the final shape of the W armor. Though the EDM was known to be advantages such as an easy workability, a potential disadvantage of presence of micro-cracks on the W surface appeared. In order to examine a potential effect of the micro-crack on a heat removal durability, a high heat flux testing was carried out for the W divertor mock-up with the polish and the EDM. As the result, all of the W armors endured the repetitive heat load of 1000 cycles at an absorbed heat flux of more than 20 MW/m{sup 2}, which strongly encourages the realization of the PFUs of the ITER full-W divertor with the various geometrical shape and the high accuracy tolerance.

  17. A study of plasma facing tungsten components with electrical discharge machined surface exposed to cyclic thermal loads

    International Nuclear Information System (INIS)

    Seki, Yohji; Ezato, Koichiro; Suzuki, Satoshi; Yokoyama, Kenji; Yamada, Hirokazu; Hirayama, Tomoyuki

    2016-01-01

    Through R&D for a plasma facing units (PFUs) in an outer vertical target of an ITER full-tungsten (W) divertor, Japan Atomic Energy Agency succeeded in demonstrating the durability of the W divertor shaped by an electrical discharge machining (EDM). To prevent melting of W armors in the PFUs, an adequate technology to meet requirements of a geometrical shape and a tolerance is one of the most important key issues in a manufacturing process. From the necessity, the EDM has been evaluated to control the final shape of the W armor. Though the EDM was known to be advantages such as an easy workability, a potential disadvantage of presence of micro-cracks on the W surface appeared. In order to examine a potential effect of the micro-crack on a heat removal durability, a high heat flux testing was carried out for the W divertor mock-up with the polish and the EDM. As the result, all of the W armors endured the repetitive heat load of 1000 cycles at an absorbed heat flux of more than 20 MW/m"2, which strongly encourages the realization of the PFUs of the ITER full-W divertor with the various geometrical shape and the high accuracy tolerance.

  18. Theory and practice in machining systems

    CERN Document Server

    Ito, Yoshimi

    2017-01-01

    This book describes machining technology from a wider perspective by considering it within the machining space. Machining technology is one of the metal removal activities that occur at the machining point within the machining space. The machining space consists of structural configuration entities, e.g., the main spindle, the turret head and attachments such the chuck and mandrel, and also the form-generating movement of the machine tool itself. The book describes fundamental topics, including the form-generating movement of the machine tool and the important roles of the attachments, before moving on to consider the supply of raw materials into the machining space, and the discharge of swarf from it, and then machining technology itself. Building on the latest research findings “Theory and Practice in Machining System” discusses current challenges in machining. Thus, with the inclusion of introductory and advanced topics, the book can be used as a guide and survey of machining technology for students an...

  19. Investigation on power discharge in micro-EDM stainless steel drilling using different electrodes

    Energy Technology Data Exchange (ETDEWEB)

    D' Urso, G.; Maccarini, G.; Quarto, M.; Ravasio, C. [University of Bergamo, Bergamo (Italy)

    2015-10-15

    The present work deals with the execution of through micro-holes on stainless steel plates using a micro-EDM (Electrical discharge machining) machine. The investigation focuses on the influence of different electrodes' materials and power discharge on both the process performance and the dimensional characteristics of the holes. The experimental campaign was carried out by varying peak current and voltage in order to achieve both high and low power discharge conditions. Tubular electrodes made of three different materials (tungsten carbide, brass and copper) were used. The indexes taken into account were Material removal rate (MRR), Tool wear ratio (TWR), Diametral overcut (DOC) and Taper rate (TR). Brass and copper electrodes always resulted to be the best solution in terms of drilling speed even though the wear of these electrode types is remarkable higher than the tungsten one. On the opposite, tungsten carbide electrodes resulted to be the best solution when high dimensional and geometrical precision is required. Concerning the finishing of the hole inner surface, the best results were achieved using tungsten carbide electrode.

  20. Investigation on power discharge in micro-EDM stainless steel drilling using different electrodes

    International Nuclear Information System (INIS)

    D'Urso, G.; Maccarini, G.; Quarto, M.; Ravasio, C.

    2015-01-01

    The present work deals with the execution of through micro-holes on stainless steel plates using a micro-EDM (Electrical discharge machining) machine. The investigation focuses on the influence of different electrodes' materials and power discharge on both the process performance and the dimensional characteristics of the holes. The experimental campaign was carried out by varying peak current and voltage in order to achieve both high and low power discharge conditions. Tubular electrodes made of three different materials (tungsten carbide, brass and copper) were used. The indexes taken into account were Material removal rate (MRR), Tool wear ratio (TWR), Diametral overcut (DOC) and Taper rate (TR). Brass and copper electrodes always resulted to be the best solution in terms of drilling speed even though the wear of these electrode types is remarkable higher than the tungsten one. On the opposite, tungsten carbide electrodes resulted to be the best solution when high dimensional and geometrical precision is required. Concerning the finishing of the hole inner surface, the best results were achieved using tungsten carbide electrode.

  1. Glow discharge processing vs bakeout for aluminum storage ring vacuum chambers

    International Nuclear Information System (INIS)

    Dean, N.R.; Hoyt, E.W.; Palrang, M.T.; Walker, B.G.

    1977-11-01

    Experiments were carried out on laboratory and prototype scale systems in order to establish the feasibility of argon discharge processing the PEP storage ring aluminum vacuum chambers. Electron-induced desorption rates showed significant reductions following bakeout and/or argon glow discharge treatment (>10 19 ions cm -1 ). Data are presented and discussed in relation to advantages and problems associated with: water removal, argon trapping and subsequent release, electron energy dependence, discharge distribution, and surface plasma chemical effects

  2. Performance Analysis of Machine-Learning Approaches for Modeling the Charging/Discharging Profiles of Stationary Battery Systems with Non-Uniform Cell Aging

    Directory of Open Access Journals (Sweden)

    Nandha Kumar Kandasamy

    2017-06-01

    Full Text Available The number of Stationary Battery Systems (SBS connected to various power distribution networks across the world has increased drastically. The increase in the integration of renewable energy sources is one of the major contributors to the increase in the number of SBS. SBS are also used in other applications such as peak load management, load-shifting, voltage regulation and power quality improvement. Accurately modeling the charging/discharging characteristics of such SBS at various instances (charging/discharging profile is vital for many applications. Capacity loss due to the aging of the batteries is an important factor to be considered for estimating the charging/discharging profile of SBS more accurately. Empirical modeling is a common approach used in the literature for estimating capacity loss, which is further used for estimating the charging/discharging profiles of SBS. However, in the case of SBS used for renewable integration and other grid related applications, machine-learning (ML based models provide extreme flexibility and require minimal resources for implementation. The models can even leverage existing smart meter data to estimate the charging/discharging profile of SBS. In this paper, an analysis on the performance of different ML approaches that can be applied for lithium iron phosphate battery systems and vanadium redox flow battery systems used as SBS is presented for the scenarios where the aging of individual cells is non-uniform.

  3. Improving the reliability of stator insulation system in rotating machines

    International Nuclear Information System (INIS)

    Gupta, G.K.; Sedding, H.G.; Culbert, I.M.

    1997-01-01

    Reliable performance of rotating machines, especially generators and primary heat transport pump motors, is critical to the efficient operation on nuclear stations. A significant number of premature machine failures have been attributed to the stator insulation problems. Ontario Hydro has attempted to assure the long term reliability of the insulation system in critical rotating machines through proper specifications and quality assurance tests for new machines and periodic on-line and off-line diagnostic tests on machines in service. The experience gained over the last twenty years is presented in this paper. Functional specifications have been developed for the insulation system in critical rotating machines based on engineering considerations and our past experience. These specifications include insulation stress, insulation resistance and polarization index, partial discharge levels, dissipation factor and tip up, AC and DC hipot tests. Voltage endurance tests are specified for groundwall insulation system of full size production coils and bars. For machines with multi-turn coils, turn insulation strength for fast fronted surges in specified and verified through tests on all coils in the factory and on samples of finished coils in the laboratory. Periodic on-line and off-line diagnostic tests were performed to assess the condition of the stator insulation system in machines in service. Partial discharges are measured on-line using several techniques to detect any excessive degradation of the insulation system in critical machines. Novel sensors have been developed and installed in several machines to facilitate measurements of partial discharges on operating machines. Several off-line tests are performed either to confirm the problems indicated by the on-line test or to assess the insulation system in machines which cannot be easily tested on-line. Experience with these tests, including their capabilities and limitations, are presented. (author)

  4. Morphological Processing of Ultraviolet Emissions of Electrical Corona Discharge for Analysis and Diagnostic Use

    Science.gov (United States)

    Schubert, Matthew R.; Moore, Andrew J.

    2015-01-01

    Electron cascades from electrical discharge produce secondary emissions from atmospheric plasma in the ultraviolet band. For a single point of discharge, these emissions exhibit a stereotypical discharge morphology, with latent information about the discharge location. Morphological processing can uncover the location and therefore can have diagnostic utility.

  5. Study on intelligent processing system of man-machine interactive garment frame model

    Science.gov (United States)

    Chen, Shuwang; Yin, Xiaowei; Chang, Ruijiang; Pan, Peiyun; Wang, Xuedi; Shi, Shuze; Wei, Zhongqian

    2018-05-01

    A man-machine interactive garment frame model intelligent processing system is studied in this paper. The system consists of several sensor device, voice processing module, mechanical parts and data centralized acquisition devices. The sensor device is used to collect information on the environment changes brought by the body near the clothes frame model, the data collection device is used to collect the information of the environment change induced by the sensor device, voice processing module is used for speech recognition of nonspecific person to achieve human-machine interaction, mechanical moving parts are used to make corresponding mechanical responses to the information processed by data collection device.it is connected with data acquisition device by a means of one-way connection. There is a one-way connection between sensor device and data collection device, two-way connection between data acquisition device and voice processing module. The data collection device is one-way connection with mechanical movement parts. The intelligent processing system can judge whether it needs to interact with the customer, realize the man-machine interaction instead of the current rigid frame model.

  6. Protecting air basins from harmful discharges

    Energy Technology Data Exchange (ETDEWEB)

    Yankovskiy, S S

    1983-01-01

    The work is a brief description of the content of the reports delivered at the seminar entitled Protecting the Air Basin from Harmful Discharges of the Machine Building Enterprises, which took place at the All Union Exhibit of the Achievements of the National Economy of the USSR (VDNKh) in 1982. Representatives of different ministries and agencies, scientific research institutes (NII), planning and design and other specialized organizations, institutes of higher learning (vuz) and enterprises from different branches of industry took part in the work of the seminar. The seminar noted measures to eliminate deficiencies which occur in individual enterprises of the branch and measures to improve the work to improve protection of the air basin from harmful discharges of machine building enterprises.

  7. Deployment of lean six sigma in care coordination: an improved discharge process.

    Science.gov (United States)

    Breslin, Susan Ellen; Hamilton, Karen Marie; Paynter, Jacquelyn

    2014-01-01

    This article presents a quality improvement project to reduce readmissions in the Medicare population related to heart failure, acute myocardial infarction, and pneumonia. The article describes a systematic approach to the discharge process aimed at improving transitions of care from hospital to post-acute care, utilizing Lean Six Sigma methodology. Inpatient acute care hospital. A coordinated discharge process, which includes postdischarge follow-up, can reduce avoidable readmissions. Implications for The quality improvement project demonstrated the significant role case management plays in preventing costly readmissions and improving outcomes for patients through better transitions of care from the hospital to the community. By utilizing Lean Six Sigma methodology, hospitals can focus on eliminating waste in their current processes and build more sustainable improvements to deliver a safe, quality, discharge process for their patients. Case managers are leading this effort to improve care transitions and assure a smoother transition into the community postdischarge..

  8. A literature review of organisational, individual and teamwork factors contributing to the ICU discharge process.

    Science.gov (United States)

    Lin, Frances; Chaboyer, Wendy; Wallis, Marianne

    2009-02-01

    It is everyday news that we need more intensive care unit (ICU) beds, thus effective use of existing resources is imperative. The aim of this literature review was to critically analyse current literature on how organizational factors, individual factors and teamwork factors influence the ICU discharge process. A better understanding of discharge practices has the potential to ultimately influence ICU resource availability. Databases including CINAHL, MEDLINE, PROQUEST, SCIENCE DIRECT were searched using key terms such as ICU discharge, discharge process, ICU guidelines and policies, discharge decision-making, ICU organisational factors, ICU and human factors, and ICU patient transfer. Articles' reference lists were also used to locate relevant literature. A total of 21 articles were included in the review. Only a small number of ICUs used written patient discharge guidelines. Consensus, rather than empirical evidence, dictates the importance of guidelines and policies. Premature discharge, discharge after hours and discharge by triage still exist due to resources constraints, even though the literature suggests these are associated with increased mortality. Teamwork and team training appear to be effective in improving efficiency and communication between professions or between clinical areas. However, this aspect has rarely been researched in relation to ICU patient discharge. Intensive care patient discharge is influenced by organisational factors, individual factors and teamwork factors. Organisational interventions are effective in reducing ICU discharge delay and shortening patient hospital stay. More rigorous research is needed to discover how these factors influence the ICU discharge process.

  9. Building micro and nanosystems with electrochemical discharges

    International Nuclear Information System (INIS)

    Wuethrich, Rolf; Allagui, Anis

    2010-01-01

    Since the discovery of the electrochemical discharge phenomenon by Fizeau and Foucault, several contributions have expanded the wide range of applications associated with this high current density electrochemical process. The complexity of the phenomenon, from the macroscopic to the microscopic scales, led since then to experimental and theoretical studies from different research fields. This contribution reviews the chemical and electrochemical perspectives where a mechanistic model based on results from radiation chemistry of aqueous solutions is proposed. In addition applications to micro-machining and fabrication of nanoparticles are discussed.

  10. Building micro and nanosystems with electrochemical discharges

    Energy Technology Data Exchange (ETDEWEB)

    Wuethrich, Rolf, E-mail: wuthrich@encs.concordia.c [Department of Mechanical and Industrial Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, QC (Canada); Allagui, Anis [Department of Mechanical and Industrial Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, QC (Canada)

    2010-11-30

    Since the discovery of the electrochemical discharge phenomenon by Fizeau and Foucault, several contributions have expanded the wide range of applications associated with this high current density electrochemical process. The complexity of the phenomenon, from the macroscopic to the microscopic scales, led since then to experimental and theoretical studies from different research fields. This contribution reviews the chemical and electrochemical perspectives where a mechanistic model based on results from radiation chemistry of aqueous solutions is proposed. In addition applications to micro-machining and fabrication of nanoparticles are discussed.

  11. Restrictions of process machine retooling at machine-building enterprises

    OpenAIRE

    Kuznetsova Elena; Tipner Ludmila; Ershov Alexey

    2017-01-01

    The competitiveness of the national economy depends on the technological level of the machine-building enterprises production equipment. Today in Russia there are objective and subjective restrictions for the optimum policy formation of the manufacturing equipment renewal. The analysis of the manufacturing equipment age structure dynamics in the Russian machine-building complex indicates the negative tendencies intensification: increase in the equipment service life, reduction in the share of...

  12. Multi-Response Optimization of Wire Electrical Discharge Machining for Titanium Grade-5 by Weighted Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Sachin Ashok Sonawane

    2018-04-01

    Full Text Available This paper reports the results of research to examine the effects of cutting parameters such as pulse-on time, pulse-off time, servo voltage, peak current, wire feed rate and cable tension on surface finish, overcut and metal removal rate (MRR during Wire Electrical Discharge Machining (WEDM of grade-5 titanium (Ti-6Al-4V. Taguchi’s L27 orthogonal design method is used for experimentation. Multi-response optimization is performed by applying weighted principal component analysis (WPCA. The optimum values of cutting variables are found as a pulse on time 118 μs, pulse off time 45 μs, servo voltage 40 volts, peak current 190 Amp. , wire feed rate 5 m/min and cable tension 5 gram. On the other hand, Analysis of Variance (ANOVA, simulation results indicate that pulse-on time is the primary influencing variable which affects the response characteristics contributing 76.00%. The results of verification experiments show improvement in the value of output characteristics at the optimal cutting variables settings. Scanning electron microscopic (SEM analysis of the surface after machining indicates the formation of craters, resolidified material, tool material transfer and increase in the thickness of recast layer at higher values of the pulse on time.

  13. Time-resolved processes in a pulsed electrical discharge in argon bubbles in water

    Science.gov (United States)

    Gershman, S.; Belkind, A.

    2010-12-01

    A phenomenological picture of a pulsed electrical discharge in gas bubbles in water is produced by combining electrical, spectroscopic, and imaging characterization methods. The discharge is generated by applying 1 μ s pulses of 5 to 20 kV between a needle and a disk electrode submerged in water. An Ar gas bubble surrounds the tip of the needle electrode. Imaging, electrical characteristics, and time-resolved optical emission spectroscopic data suggest a fast streamer propagation mechanism and the formation of a plasma channel in the bubble. Comparing the electrical and imaging data for consecutive pulses applied to the bubble at a frequency of 1 Hz indicates that each discharge proceeds as an entirely new process with no memory of the previous discharge aside from the presence of long-lived chemical species, such as ozone and oxygen. Imaging and electrical data show the presence of two discharge events during each applied voltage pulse, a forward discharge near the beginning of the applied pulse depositing charge on the surface of the bubble and a reverse discharge removing the accumulated charge from the water/gas interface when the applied voltage is turned off. The pd value of ~ 300-500 torr cm, the 1 μs long pulse duration, low repetition rate, and unidirectional character of the applied voltage pulses make the discharge process here unique compared to the traditional corona or dielectric barrier discharges.

  14. Correlation of eddy current responses between fatigue cracks and electrical-discharge-machining notches

    Science.gov (United States)

    Seo, Sukho; Choi, Gyudong; Eom, Tae Jhoun; Lee, Bokwon; Lee, Soo Yeol

    2017-07-01

    The eddy current responses of Electrical Discharge Machining (EDM) notches and fatigue cracks are directly compared to verify the reliability of eddy current inspection. The fatigue crack growth tests using a constant load range control mode were conducted to obtain a variety of edge crack sizes, ranging from 0.9 to 6.6 mm for Al alloy and from 0.1 to 3 mm for Ti alloy. EDM notch specimens of Al and Ti alloys were accordingly prepared in lengths similar to that of the fatigued specimen. The crack length was determined by optical microscope and scanning electron microscope. The eddy current responses between the EDM and fatigued specimens with varying notch/crack length were examined using probe sensors at (100-500) kHz and (1-2) MHz for Al and Ti alloys, respectively. The results show a significant difference in the eddy current signal between the two specimens, based on the correlation between the eddy current response and notch/crack length. This suggests that eddy current inspection using the EDM reference specimen is inaccurate in determining the precise crack size, unless the eddy current response data base is obtained from a fatigue-cracked specimen.

  15. Dense Medium Machine Processing Method for Palm Kernel/ Shell ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Cracked palm kernel is a mixture of kernels, broken shells, dusts and other impurities. In ... machine processing method using dense medium, a separator, a shell collector and a kernel .... efficiency, ease of maintenance and uniformity of.

  16. Plasmachemical oxidation processes in a hybrid gas-liquid electrical discharge reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lukes, Petr; Locke, Bruce R [Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, Florida (United States)

    2005-11-21

    Oxidation processes induced in water by pulsed electrical discharges generated simultaneously in the gas phase in close proximity to the water surface and directly in the liquid were investigated in a hybrid series gas-liquid electrical discharge reactor. The mechanism of phenol degradation was studied through its dependence on the gas phase and liquid phase compositions using pure argon and oxygen atmospheres above the liquid and different initial pH values in the aqueous solution. Phenol degradation was significantly enhanced in the hybrid-series reactor compared with the phenol removal by the single-liquid phase discharge reactor. Under an argon atmosphere the mechanism of phenol degradation was mainly caused by the electrophilic attack of OH{center_dot} radicals produced by the liquid phase discharge directly in water and OH{center_dot} radicals produced by the gas phase discharge at the gas-liquid interface. Under an oxygen atmosphere the formation of gaseous ozone dominated over the formation of OH{center_dot} radicals, and the contribution of the gas phase discharge in this case was determined mainly by the dissolution of gaseous ozone into the water and its subsequent interaction with phenol. At high pH phenol was degraded, in addition to the direct attack by ozone, also through indirect reactions of OH{center_dot} radicals formed via a peroxone process by the decomposition of dissolved ozone by hydrogen peroxide produced by the liquid phase discharge. Such a mechanism was proved by the detection of cis,cis-muconic acid and pH-dependent degradation of phenol, which resulted in significantly higher removal of phenol from alkaline solution observed under oxygen atmosphere than in argon.

  17. Plasmachemical oxidation processes in a hybrid gas-liquid electrical discharge reactor

    International Nuclear Information System (INIS)

    Lukes, Petr; Locke, Bruce R

    2005-01-01

    Oxidation processes induced in water by pulsed electrical discharges generated simultaneously in the gas phase in close proximity to the water surface and directly in the liquid were investigated in a hybrid series gas-liquid electrical discharge reactor. The mechanism of phenol degradation was studied through its dependence on the gas phase and liquid phase compositions using pure argon and oxygen atmospheres above the liquid and different initial pH values in the aqueous solution. Phenol degradation was significantly enhanced in the hybrid-series reactor compared with the phenol removal by the single-liquid phase discharge reactor. Under an argon atmosphere the mechanism of phenol degradation was mainly caused by the electrophilic attack of OH· radicals produced by the liquid phase discharge directly in water and OH· radicals produced by the gas phase discharge at the gas-liquid interface. Under an oxygen atmosphere the formation of gaseous ozone dominated over the formation of OH· radicals, and the contribution of the gas phase discharge in this case was determined mainly by the dissolution of gaseous ozone into the water and its subsequent interaction with phenol. At high pH phenol was degraded, in addition to the direct attack by ozone, also through indirect reactions of OH· radicals formed via a peroxone process by the decomposition of dissolved ozone by hydrogen peroxide produced by the liquid phase discharge. Such a mechanism was proved by the detection of cis,cis-muconic acid and pH-dependent degradation of phenol, which resulted in significantly higher removal of phenol from alkaline solution observed under oxygen atmosphere than in argon

  18. Materials processing and machine applications of bulk HTS

    Science.gov (United States)

    Miki, M.; Felder, B.; Tsuzuki, K.; Xu, Y.; Deng, Z.; Izumi, M.; Hayakawa, H.; Morita, M.; Teshima, H.

    2010-12-01

    We report a refrigeration system for rotating machines associated with the enhancement of the trapped magnetic flux of bulk high-temperature superconductor (HTS) field poles. A novel cryogenic system was designed and fabricated. It is composed of a low-loss rotary joint connecting the rotor and a closed-cycle thermosiphon under a GM cryocooler using a refrigerant. Condensed neon gas was adopted as a suitable cryogen for the operation of HTS rotating machines with field poles composed of RE-Ba-Cu-O family materials, where RE is a rare-earth metal. Regarding the materials processing of the bulks HTS, thanks to the addition of magnetic particles to GdBa2Cu3O7 - d (Gd123) bulk superconductors an increase of more than 20% in the trapped magnetic flux density was achieved at liquid nitrogen temperature. Field-pole Gd123 bulks up to 46 mm in diameter were synthesized with the addition of Fe-B alloy magnetic particles and assembled into the synchronous machine rotor to be tested. Successful cooling of the magnetized rotor field poles down to 35 K and low-output-power rotating operation was achieved up to 720 rpm in the test machine with eight field-pole bulks. The present results show a substantial basis for making a prototype system of rotating machinery of applied HTS bulks.

  19. Materials processing and machine applications of bulk HTS

    Energy Technology Data Exchange (ETDEWEB)

    Miki, M; Felder, B; Tsuzuki, K; Xu, Y; Deng, Z; Izumi, M [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan); Hayakawa, H [Kitano Seiki Co. Ltd, 7-17-3, Chuo, Ohta-ku, Tokyo 143-0024 (Japan); Morita, M; Teshima, H, E-mail: d082025@kaiyodai.ac.j [Nippon Steel Co. Ltd, 20-1, Shintomi, Huttsu-shi, Chiba 293-8511 (Japan)

    2010-12-15

    We report a refrigeration system for rotating machines associated with the enhancement of the trapped magnetic flux of bulk high-temperature superconductor (HTS) field poles. A novel cryogenic system was designed and fabricated. It is composed of a low-loss rotary joint connecting the rotor and a closed-cycle thermosiphon under a GM cryocooler using a refrigerant. Condensed neon gas was adopted as a suitable cryogen for the operation of HTS rotating machines with field poles composed of RE-Ba-Cu-O family materials, where RE is a rare-earth metal. Regarding the materials processing of the bulks HTS, thanks to the addition of magnetic particles to GdBa{sub 2}Cu{sub 3}O{sub 7-d} (Gd123) bulk superconductors an increase of more than 20% in the trapped magnetic flux density was achieved at liquid nitrogen temperature. Field-pole Gd123 bulks up to 46 mm in diameter were synthesized with the addition of Fe-B alloy magnetic particles and assembled into the synchronous machine rotor to be tested. Successful cooling of the magnetized rotor field poles down to 35 K and low-output-power rotating operation was achieved up to 720 rpm in the test machine with eight field-pole bulks. The present results show a substantial basis for making a prototype system of rotating machinery of applied HTS bulks.

  20. Single product lot-sizing on unrelated parallel machines with non-decreasing processing times

    Science.gov (United States)

    Eremeev, A.; Kovalyov, M.; Kuznetsov, P.

    2018-01-01

    We consider a problem in which at least a given quantity of a single product has to be partitioned into lots, and lots have to be assigned to unrelated parallel machines for processing. In one version of the problem, the maximum machine completion time should be minimized, in another version of the problem, the sum of machine completion times is to be minimized. Machine-dependent lower and upper bounds on the lot size are given. The product is either assumed to be continuously divisible or discrete. The processing time of each machine is defined by an increasing function of the lot volume, given as an oracle. Setup times and costs are assumed to be negligibly small, and therefore, they are not considered. We derive optimal polynomial time algorithms for several special cases of the problem. An NP-hard case is shown to admit a fully polynomial time approximation scheme. An application of the problem in energy efficient processors scheduling is considered.

  1. A New Servo Control Drive for Electro Discharge Texturing System Industrial Applications Using Ultrasonic Technology

    Directory of Open Access Journals (Sweden)

    M. Shafik

    2013-07-01

    Full Text Available This paper presents a new ultrasonic servo control drive for electro discharge texturing system industrial applications. The new drive is aiming to overcome the current teething issues of the existing electro discharge texturing system, servo control drive level of precision, processing stability, dynamic response and surface profile of the machined products. The new ultrasonic servo control drive consists of three main apparatuses, an ultrasonic motor, electronic driver and control unit. The ultrasonic motor consists of three main parts, the stator, rotor and sliding element. The motor design process, basic configuration, principles of motion, finite element analysis and experimental examination of the main characteristics is discussed in this paper. The electronic driver of the motor consists of two main stages which are the booster and piezoelectric amplifier. The experimental test and validation of the developed servo control drive in electro discharge texturing platform is also discussed and presented in this paper. The initial results showed that the ultrasonic servo control drive is able to provide: a bidirectional of motion, a resolution of <50μm and a dynamic response of <10msec. The electron microscopic micro examination into the textured samples showed that: a clear improvement in machining stability, products surface profile, a notable reduction in the processing time, arcing and short-circuiting teething phenomena.

  2. Combining Machine Learning and Natural Language Processing to Assess Literary Text Comprehension

    Science.gov (United States)

    Balyan, Renu; McCarthy, Kathryn S.; McNamara, Danielle S.

    2017-01-01

    This study examined how machine learning and natural language processing (NLP) techniques can be leveraged to assess the interpretive behavior that is required for successful literary text comprehension. We compared the accuracy of seven different machine learning classification algorithms in predicting human ratings of student essays about…

  3. Modernity Evaluation of the Machines Used During Production Process of Metal Products

    OpenAIRE

    Ingaldi, Manuela; Dziuba, Szymon T.

    2015-01-01

    Most manufacturing companies realize its technologies, implemented through concrete machinery parts. They differ in terms of importance, the relevance of their selection and the level of their modernity. Modernity and efficiency of the machine are also very important during production process of the metal products. They have an influence on the quality of these products. The purpose of this article is to analyse the chosen production machine (CNC machine AFE-3D8-T) used during pro...

  4. Flexible human machine interface for process diagnostics

    International Nuclear Information System (INIS)

    Reifman, J.; Graham, G.E.; Wei, T.Y.C.; Brown, K.R.; Chin, R.Y.

    1996-01-01

    A flexible human machine interface to design and display graphical and textual process diagnostic information is presented. The system operates on different computer hardware platforms, including PCs under MS Windows and UNIX Workstations under X-Windows, in a client-server architecture. The interface system is customized for specific process applications in a graphical user interface development environment by overlaying the image of the process piping and instrumentation diagram with display objects that are highlighted in color during diagnostic display. Customization of the system is presented for Commonwealth Edison's Braidwood PWR Chemical and Volume Control System with transients simulated by a full-scale operator-training simulator and diagnosed by a computer-based system

  5. Analysis and prediction of dimensions and cost of laser micro-machining internal channel fabrication process

    Directory of Open Access Journals (Sweden)

    Brabazon D.

    2010-06-01

    Full Text Available This paper presents the utilisation of Response Surface Methodology (RSM as the prediction tool for the laser micro-machining process. Laser internal microchannels machined using pulsed Nd:YVO4 laser in polycarbonate were investigated. The experiments were carried out according to 33 factorial Design of Experiment (DoE. In this work the three input process set as control parameters were laser power, P; pulse repetition frequency, PRF; and sample translation speed, U. Measured responses were the channel width and the micro-machining operating cost per metre of produced microchannels. The responses were sufficiently predicted within the set micro-machining parameters limits. Two factorial interaction (2FI and quadratic polynomial regression equations for both responses were constructed. It is proposed that the developed prediction equations can be used to find locally optimal micro-machining process parameters under experimental and operational conditions.

  6. Processing device for discharged water from radioactive material handling facility

    International Nuclear Information System (INIS)

    Kono, Takao; Kono, Hiroyuki; Yasui, Katsuaki; Kataiki, Koichi.

    1995-01-01

    The device of the present invention comprises a mechanical floating material-removing means for removing floating materials in discharged water, an ultrafiltration device for separating processed water discharged from the removing means by membranes, a reverse osmotic filtration device for separating the permeated water and a condensing means for evaporating condensed water. Since processed water after mechanically removing floating materials is supplied to the ultrafiltration device, the load applied on the filtering membrane is reduced, to simplify the operation control as a total. In addition, since the amount of resultant condensed water is reduced, and the devolumed condensed water is condensed and dried, the condensing device is made compact and the amount of resultant wastes is reduced. (T.M.)

  7. Auto-SEIA: simultaneous optimization of image processing and machine learning algorithms

    Science.gov (United States)

    Negro Maggio, Valentina; Iocchi, Luca

    2015-02-01

    Object classification from images is an important task for machine vision and it is a crucial ingredient for many computer vision applications, ranging from security and surveillance to marketing. Image based object classification techniques properly integrate image processing and machine learning (i.e., classification) procedures. In this paper we present a system for automatic simultaneous optimization of algorithms and parameters for object classification from images. More specifically, the proposed system is able to process a dataset of labelled images and to return a best configuration of image processing and classification algorithms and of their parameters with respect to the accuracy of classification. Experiments with real public datasets are used to demonstrate the effectiveness of the developed system.

  8. Innovative model of business process reengineering at machine building enterprises

    Science.gov (United States)

    Nekrasov, R. Yu; Tempel, Yu A.; Tempel, O. A.

    2017-10-01

    The paper provides consideration of business process reengineering viewed as amanagerial innovation accepted by present day machine building enterprises, as well as waysto improve its procedure. A developed innovative model of reengineering measures isdescribed and is based on the process approach and other principles of company management.

  9. Ozone production process in pulsed positive dielectric barrier discharge

    Science.gov (United States)

    Ono, Ryo; Oda, Tetsuji

    2007-01-01

    The ozone production process in a pulsed positive dielectric barrier discharge (DBD) is studied by measuring the spatial distribution of ozone density using a two-dimensional laser absorption method. DBD occurs in a 6 mm point-to-plane gap with a 1 mm-thick glass plate placed on the plane electrode. First, the propagation of DBD is observed using a short-gated ICCD camera. It is shown that DBD develops in three phases: primary streamer, secondary streamer and surface discharge phases. Next, the spatial distribution of ozone density is measured. It is shown that ozone is mostly produced in the secondary streamer and surface discharge, while only a small amount of ozone is produced in the primary streamer. The rate coefficient of the ozone production reaction, O + O2 + M → O3 + M, is estimated to be 2.5 × 10-34 cm6 s-1.

  10. Ozone production process in pulsed positive dielectric barrier discharge

    International Nuclear Information System (INIS)

    Ono, Ryo; Oda, Tetsuji

    2007-01-01

    The ozone production process in a pulsed positive dielectric barrier discharge (DBD) is studied by measuring the spatial distribution of ozone density using a two-dimensional laser absorption method. DBD occurs in a 6 mm point-to-plane gap with a 1 mm-thick glass plate placed on the plane electrode. First, the propagation of DBD is observed using a short-gated ICCD camera. It is shown that DBD develops in three phases: primary streamer, secondary streamer and surface discharge phases. Next, the spatial distribution of ozone density is measured. It is shown that ozone is mostly produced in the secondary streamer and surface discharge, while only a small amount of ozone is produced in the primary streamer. The rate coefficient of the ozone production reaction, O + O 2 + M → O 3 + M, is estimated to be 2.5 x 10 -34 cm 6 s -1

  11. Environmentally Friendly Machining

    CERN Document Server

    Dixit, U S; Davim, J Paulo

    2012-01-01

    Environment-Friendly Machining provides an in-depth overview of environmentally-friendly machining processes, covering numerous different types of machining in order to identify which practice is the most environmentally sustainable. The book discusses three systems at length: machining with minimal cutting fluid, air-cooled machining and dry machining. Also covered is a way to conserve energy during machining processes, along with useful data and detailed descriptions for developing and utilizing the most efficient modern machining tools. Researchers and engineers looking for sustainable machining solutions will find Environment-Friendly Machining to be a useful volume.

  12. Capacitor discharge process for welding braided cable

    Science.gov (United States)

    Wilson, Rick D.

    1995-01-01

    A capacitor discharge process for welding a braided cable formed from a plurality of individual cable strands to a solid metallic electrically conductive member comprises the steps of: (a) preparing the electrically conductive member for welding by bevelling one of its end portions while leaving an ignition projection extending outwardly from the apex of the bevel; (b) clamping the electrically conductive member in a cathode fixture; (c) connecting the electrically conductive member clamped in the cathode fixture to a capacitor bank capable of being charged to a preselected voltage value; (d) preparing the braided cable for welding by wrapping one of its end portions with a metallic sheet to form a retaining ring operable to maintain the individual strands of the braided cable in fixed position within the retaining ring; (e) clamping the braided cable and the retaining ring as a unit in an anode fixture so that the wrapped end portion of the braided cable faces the ignition projection of the electrically conductive member; and (f) moving the cathode fixture towards the anode fixture until the ignition projection of the electrically conductive member contacts the end portion of the braided cable thereby allowing the capacitor bank to discharge through the electrically conductive member and through the braided cable and causing the electrically conductive member to be welded to the braided cable via capacitor discharge action.

  13. Using the modern CNC controllers capabilities for estimating the machining forces during the milling process

    Directory of Open Access Journals (Sweden)

    Breaz Radu-Eugen

    2017-01-01

    Full Text Available Machining forces can nowadays be measured by using 3D dynamometers, which are usually very expensive devices and hardly available for most of the CNC machine-tools users. On the other hand, modern CNC controllers have nowadays the ability to display and save many outputs within the machining process, such as the currents or even the torques at the shaft's level for the feed motors on each axis. These outputs can be used for estimating the machining forces, but it is to be noticed that the above-mentioned currents and torques are proportional with the overall resistant forces, which includes not only technological forces, but also friction, inertial and pre-tensioning forces. This paper presents an approach for estimating the machining forces during a milling process, by using the outputs stored in the CNC controller and separating the effects of technological forces from the other forces involved in the process. The separation was made by running two sets of experiments, one set for dry-run regime and the other one for machining regime.

  14. Dynamic processes in technological systems of machining and the nature of their origin

    Science.gov (United States)

    Ershov, D. Y.; Zlotnikov, E. G.; Koboyankwe, L. E.

    2017-10-01

    The article describes the main causes of dynamic processes in technological systems, the types of vibrations that occur in machines, external sources that cause fluctuations in the machine bases. The article discusses the occurrence of self-oscillations in the machines. The authors proposed a mathematical model of a multi-mass technological system based on the example of a vertical drilling machine. The original multi-mass oscillatory system is replaced by a simplified three-mass model, which allows considering the low-frequency range of workloads and disturbing external influences.

  15. A model for plasma discharges simulation in Tokamak devices

    International Nuclear Information System (INIS)

    Fonseca, Antonio M.M.; Silva, Ruy P. da; Galvao, Ricardo M.O.; Kusnetzov, Yuri; Nascimento, I.C.; Cuevas, Nelson

    2001-01-01

    In this work, a 'zero-dimensional' model for simulation of discharges in Tokamak machine is presented. The model allows the calculation of the time profiles of important parameters of the discharge. The model was applied to the TCABR Tokamak to study the influence of parameters and physical processes during the discharges. Basically it is constituted of five differential equations: two related to the primary and secondary circuits of the ohmic heating transformer and the other three conservation equations of energy, charge and neutral particles. From the physical model, a computer program has been built with the objective of obtaining the time profiles of plasma current, the current in the primary of the ohmic heating transformer, the electronic temperature, the electronic density and the neutral particle density. It was also possible, with the model, to simulate the effects of gas puffing during the shot. The results of the simulation were compared with the experimental results obtained in the TCABR Tokamak, using hydrogen gas

  16. [Air Dielectric Barrier Discharge Emission Spectrum Measurement and Particle Analysis of Discharge Process].

    Science.gov (United States)

    Shen, Shuang-yan; Jin, Xing; Zhang, Peng

    2016-02-01

    The emission spectrum detection and diagnosis is one of the most common methods of application to the plasma. It provides wealth of information of the chemical and physical process of the plasma. The analysis of discharge plasma dynamic behavior plays an important role in the study of gas discharge mechanism and application. An air dielectric discharge spectrum measuring device was designed and the emission spectrum data was measured under the experimental condition. The plasma particles evolution was analyzed from the emission spectrum. The numerical calculation model was established and the density equation, energy transfer equation and the Boltzmann equation was coupled to analyze the change of the particle density to explain the emission spectrum characteristics. The results are that the particle density is growing with the increasing of reduced electric field. The particle density is one or two orders of magnitude difference for the same particle at the same moment for the reduced electric field of 40, 60 or 80 Td. A lot of N₂ (A³), N₂ (A³) and N₂ (C³) particles are generated by the electric field excitation. However, it transforms quickly due to the higher energy level. The transformation returns to the balance after the discharge of 10⁻⁶ s. The emission spectrometer measured in the experiments is mostly generated by the transition of excited nitrogen. The peak concentration of O₂ (A¹), O₂ (B¹) and O₂ (A³ ∑⁺u) is not low compared to the excited nitrogen molecules. These particles energy is relatively low and the transition spectral is longer. The spectrometer does not capture the oxygen emission spectrum. And the peak concentration of O particles is small, so the transition emission spectrum is weak. The calculation results of the stabled model can well explain the emission spectrum data.

  17. Time effectiveness of capillary effect improvement of ramie fabrics processed by RF glow discharging

    International Nuclear Information System (INIS)

    Wang Zhiwen; Wei Weixing; He Yanhe; Zhao Yuanqing; Pan Liyiji; Li Xuemei; Shi Shaodui; Li Guangxin

    2010-01-01

    The time effectiveness of capillary effect improvement of ramie fabrics processed by RF glow discharging was studied. The ramie fabrics were processed in fulfilling with different gas (O 2 , N 2 , Ar) by different parameters (such as pressure,power and time) plasma. The capillary effect of the ramie fabrics processed by RF glow discharging was tested at different time. The results indicate that the capillary effect of ramie fabrics processed by RF glow discharging has been improved, the improvement of the capillary effect firstly decrease rapidly, then slowly, and become stable after 15 day, it indicate that improvement of the ramie fabrics capillary has good time effectiveness, and the plasma parameter for the best capillary effect improvement of ramie fabric is 100 W and 40 Pa processed 20 min by oxygen plasma. (authors)

  18. Influence of the Category Discharge Processing on Strength Properties of Piezocomposites

    International Nuclear Information System (INIS)

    Ramazanov, M. A.

    2006-01-01

    Piezoelectric, dielectric and physicomechanical properties of polymeric piezocomposites on piezoceramics basis are one of the major operational devices of applications. During their application in various devices for a long time can be exposed to various influences for a long time. Piezoelectric, dielectric and strength properties of polymeric piezocomposites strongly depend from the interphase phenomena, and also on charges saved up on border of the unit between components of a composition. Therefore creation the preliminary centers localization for charges in a composition is an actual problem for development effective polymeric piezocomposites. In the given work results of a research preliminary discharge processing's of powders of polymer on strength properties and dielectric characteristics of polymeric compositions on a basis polyvinilidenftorid (PVDF), high density polyethylene and piezoceramic from tetragonal structure are poisoned. Piezoceramic had structure plumbum-zirconate-titanate (PZT). Powders of polymer have been subjected to discharge processing in a quartz glass tube with a diameter 15 mm which walls with 1 mm. It is earthed, from one end and to other end it is connected with high-voltage electrode. Compositions in a volumetric ratio of 90+10 % have been obtained at temperature 435Κ under pressure 15ΜΠa. After creation reception of samples they were exposed electrothermopolarization. It is experimentally established, that after discharge processing powders of polymer depending on of processing duration electric and mechanical durability, and also an accrued charge on border of the unit of phases up to the certain value increases, and then decreases. Also it is shown, hat influence of category processing on strength and dielectric characteristics of a composition on the basis of polymer PVDF is more than , has on polyethylene basis. Changes piezoelectric, dielectric it is supposed, that, and strength properties to an extreme piezocomposite

  19. Ozone production process in pulsed positive dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Ryo [High Temperature Plasma Center, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 227-8568 (Japan); Oda, Tetsuji [Department of Electrical Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan)

    2007-01-07

    The ozone production process in a pulsed positive dielectric barrier discharge (DBD) is studied by measuring the spatial distribution of ozone density using a two-dimensional laser absorption method. DBD occurs in a 6 mm point-to-plane gap with a 1 mm-thick glass plate placed on the plane electrode. First, the propagation of DBD is observed using a short-gated ICCD camera. It is shown that DBD develops in three phases: primary streamer, secondary streamer and surface discharge phases. Next, the spatial distribution of ozone density is measured. It is shown that ozone is mostly produced in the secondary streamer and surface discharge, while only a small amount of ozone is produced in the primary streamer. The rate coefficient of the ozone production reaction, O + O{sub 2} + M {yields} O{sub 3} + M, is estimated to be 2.5 x 10{sup -34} cm{sup 6} s{sup -1}.

  20. Characterization of cutting parameters in the minimum quantity lubricant (MQL) machining process of a gearbox

    OpenAIRE

    Travieso Rodriguez, Jose Antonio; Gómez Gras, David; García Vilana, Silvia; Mainau Noguer, Ferran; Jerez Mesa, Ramón

    2015-01-01

    This paper aims to find the key process parameters for machining different parts of an automobile gearbox, commissioned by a company that needs to replace with the MQL lubrication system their current machining process based on cutting fluids. It particularly focuses on the definition of appropriate cutting parameters for machining under the MQL condition through a statistical method of Design of Experiments (DOE). Using a combination of recommended parameters, significant improvements in the...

  1. Research in the field of development of a new generation of metal-processing machines

    Directory of Open Access Journals (Sweden)

    L.Tanovič

    2017-12-01

    Full Text Available The paper presents a review of research in the field of development of a new generation of metal-working machines for manufacturing high-precision products with dimensions of several micrometers from various materials. Presented are several new, newly created micro-machines that have the ability to manufacture products of a wide range. Studies in the field of metalworking machines and robots of a new generation with parallel kinematics, creation of machining systems for multi-axis machining, improvement and application of controllable systems, testing of processing systems in production conditions, which are conducted at the Machine-Building Faculty of the Belgrade University (Serbia are considered.

  2. Monitoring of laser material processing using machine integrated low-coherence interferometry

    Science.gov (United States)

    Kunze, Rouwen; König, Niels; Schmitt, Robert

    2017-06-01

    Laser material processing has become an indispensable tool in modern production. With the availability of high power pico- and femtosecond laser sources, laser material processing is advancing into applications, which demand for highest accuracies such as laser micro milling or laser drilling. In order to enable narrow tolerance windows, a closedloop monitoring of the geometrical properties of the processed work piece is essential for achieving a robust manufacturing process. Low coherence interferometry (LCI) is a high-precision measuring principle well-known from surface metrology. In recent years, we demonstrated successful integrations of LCI into several different laser material processing methods. Within this paper, we give an overview about the different machine integration strategies, that always aim at a complete and ideally telecentric integration of the measurement device into the existing beam path of the processing laser. Thus, highly accurate depth measurements within machine coordinates and a subsequent process control and quality assurance are possible. First products using this principle have already found its way to the market, which underlines the potential of this technology for the monitoring of laser material processing.

  3. Acoustic monitoring of rotating machine by advanced signal processing technology

    International Nuclear Information System (INIS)

    Kanemoto, Shigeru

    2010-01-01

    The acoustic data remotely measured by hand held type microphones are investigated for monitoring and diagnosing the rotational machine integrity in nuclear power plants. The plant operator's patrol monitoring is one of the important activities for condition monitoring. However, remotely measured sound has some difficulties to be considered for precise diagnosis or quantitative judgment of rotating machine anomaly, since the measurement sensitivity is different in each measurement, and also, the sensitivity deteriorates in comparison with an attached type sensor. Hence, in the present study, several advanced signal processing methods are examined and compared in order to find optimum anomaly monitoring technology from the viewpoints of both sensitivity and robustness of performance. The dimension of pre-processed signal feature patterns are reduced into two-dimensional space for the visualization by using the standard principal component analysis (PCA) or the kernel based PCA. Then, the normal state is classified by using probabilistic neural network (PNN) or support vector data description (SVDD). By using the mockup test facility of rotating machine, it is shown that the appropriate combination of the above algorithms gives sensitive and robust anomaly monitoring performance. (author)

  4. Modeling and simulation of the fluid flow in wire electrochemical machining with rotating tool (wire ECM)

    Science.gov (United States)

    Klocke, F.; Herrig, T.; Zeis, M.; Klink, A.

    2017-10-01

    Combining the working principle of electrochemical machining (ECM) with a universal rotating tool, like a wire, could manage lots of challenges of the classical ECM sinking process. Such a wire-ECM process could be able to machine flexible and efficient 2.5-dimensional geometries like fir tree slots in turbine discs. Nowadays, established manufacturing technologies for slotting turbine discs are broaching and wire electrical discharge machining (wire EDM). Nevertheless, high requirements on surface integrity of turbine parts need cost intensive process development and - in case of wire-EDM - trim cuts to reduce the heat affected rim zone. Due to the process specific advantages, ECM is an attractive alternative manufacturing technology and is getting more and more relevant for sinking applications within the last few years. But ECM is also opposed with high costs for process development and complex electrolyte flow devices. In the past, few studies dealt with the development of a wire ECM process to meet these challenges. However, previous concepts of wire ECM were only suitable for micro machining applications. Due to insufficient flushing concepts the application of the process for machining macro geometries failed. Therefore, this paper presents the modeling and simulation of a new flushing approach for process assessment. The suitability of a rotating structured wire electrode in combination with an axial flushing for electrodes with high aspect ratios is investigated and discussed.

  5. e-Learning Application for Machine Maintenance Process using Iterative Method in XYZ Company

    Science.gov (United States)

    Nurunisa, Suaidah; Kurniawati, Amelia; Pramuditya Soesanto, Rayinda; Yunan Kurnia Septo Hediyanto, Umar

    2016-02-01

    XYZ Company is a company based on manufacturing part for airplane, one of the machine that is categorized as key facility in the company is Millac 5H6P. As a key facility, the machines should be assured to work well and in peak condition, therefore, maintenance process is needed periodically. From the data gathering, it is known that there are lack of competency from the maintenance staff to maintain different type of machine which is not assigned by the supervisor, this indicate that knowledge which possessed by maintenance staff are uneven. The purpose of this research is to create knowledge-based e-learning application as a realization from externalization process in knowledge transfer process to maintain the machine. The application feature are adjusted for maintenance purpose using e-learning framework for maintenance process, the content of the application support multimedia for learning purpose. QFD is used in this research to understand the needs from user. The application is built using moodle with iterative method for software development cycle and UML Diagram. The result from this research is e-learning application as sharing knowledge media for maintenance staff in the company. From the test, it is known that the application make maintenance staff easy to understand the competencies.

  6. Multitechnique characterization of CPTi surfaces after electro discharge machining (EDM).

    Science.gov (United States)

    Zinelis, Spiros; Al Jabbari, Youssef S; Thomas, Andrew; Silikas, Nick; Eliades, George

    2014-01-01

    The aim of this study was to comparatively assess the surface roughness parameters, the hardness, and the elemental and molecular alterations induced on CPTi surfaces after conventional finishing and finishing with electro discharge machining (EDM). A completed cast model of an arch that received four implants was used for the preparation of two grade II CPTi castings. One framework was conventionally finished (CF), whereas the other was subjected to EDM finishing. The surface morphology was imaged employing SEM. 3D surface parameters (S a, S q, S z, S ds, S dr, and S ci) were calculated by optical profilometry. The elemental composition of the treated surfaces was determined by energy dispersive X-ray analysis, whereas the elemental and chemical states of the outmost layer were investigated by X-ray photoelectron spectrometry. Surface hardness was also tested with a Knoop indenter. The results of surface roughness parameters, elemental analysis, and hardness were compared using unpaired t test (a = 0.05). The EDM group demonstrated a rougher surface, with a significant uptake of C and Cu. The CF surface mainly consisted of TiO2. On EDM surface though, Ti was probed in different chemicals states (TiO2, Ti2O3, TiC and metallic Ti) and Cu was traced as Cu2O and CuO. Hardness after EDM was almost ten times higher than CF. EDM significantly affected surface roughness, chemical state, and hardness properties of grade II CPTi castings in comparison with CF. The morphological and elemental alterations of EDM-treated CPTi surfaces may strongly contribute to the reduced corrosion resistance documented for this procedure. The degradation of electrochemical properties may have further biological implications through ionic release in the oral environment.

  7. The Effect of Machining Conditions on the Forces in the Process of Roller Brush Machining

    Directory of Open Access Journals (Sweden)

    Jakub Matuszak

    2017-12-01

    Full Text Available Because of its advantages, brushing processing has many uses. The main ones include the removal of corrosion products, surface cleaning, deburring and shaping the properties of the surface layer. The intensity of these processes depends on the degree of impact of brush fibres on the work surface. In the case of tools, in which the resilient fibres are the working elements, forces in the brushing process, apart from the machining parameters, depend on the characteristics and overall dimensions of individual fibres. The paper presents the results of studies of the influence of technological parameters and type of fibres on the radial force in the brushing process.

  8. Process planning optimization on turning machine tool using a hybrid genetic algorithm with local search approach

    Directory of Open Access Journals (Sweden)

    Yuliang Su

    2015-04-01

    Full Text Available A turning machine tool is a kind of new type of machine tool that is equipped with more than one spindle and turret. The distinctive simultaneous and parallel processing abilities of turning machine tool increase the complexity of process planning. The operations would not only be sequenced and satisfy precedence constraints, but also should be scheduled with multiple objectives such as minimizing machining cost, maximizing utilization of turning machine tool, and so on. To solve this problem, a hybrid genetic algorithm was proposed to generate optimal process plans based on a mixed 0-1 integer programming model. An operation precedence graph is used to represent precedence constraints and help generate a feasible initial population of hybrid genetic algorithm. Encoding strategy based on data structure was developed to represent process plans digitally in order to form the solution space. In addition, a local search approach for optimizing the assignments of available turrets would be added to incorporate scheduling with process planning. A real-world case is used to prove that the proposed approach could avoid infeasible solutions and effectively generate a global optimal process plan.

  9. A portable virtual machine target for proof-carrying code

    DEFF Research Database (Denmark)

    Franz, Michael; Chandra, Deepak; Gal, Andreas

    2005-01-01

    Virtual Machines (VMs) and Proof-Carrying Code (PCC) are two techniques that have been used independently to provide safety for (mobile) code. Existing virtual machines, such as the Java VM, have several drawbacks: First, the effort required for safety verification is considerable. Second and mor...... simultaneously providing efficient justin-time compilation and target-machine independence. In particular, our approach reduces the complexity of the required proofs, resulting in fewer proof obligations that need to be discharged at the target machine....

  10. Comparison of glow discharge cleaning with Taylor-type discharge cleaning on JFT-2

    International Nuclear Information System (INIS)

    Yokokura, Kenji; Matsuzaki, Yoshimi; Tani, Takashi

    1983-01-01

    Method of glow discharge cleaning (GDC) was applied to JFT-2 tokamak and the cleaning effect of GDC was compared with that of taylor-type discharge cleaning (TDC) on the same machin. Results show clearly their individual characteristics to remove light impurities. Their abilities of surface cleaning were compared each other by observing cleanliness of sample surfaces with a AES and by measuring decay times of produced gas pressures during discharge cleanings with a mass-analyser. It was shown that TDC method is better by several times than GDC method from a mass-analyser measurement. Moreover discharge cleaning time necessary to reduce light impurities in the normal plasma to a certain level was compared by monitoring time evolution of radiation loss power with a bolometer, and the time by TDC was only one fifth of that by GDC. The advantage of TDC may come from the excellently high hydrogen flux which interacts with the limiter and the wall. (author)

  11. Effect of changing polarity of graphite tool/ Hadfield steel workpiece couple on machining performances in die sinking EDM

    Directory of Open Access Journals (Sweden)

    Özerkan Haci Bekir

    2017-01-01

    Full Text Available In this study, machining performance ouput parameters such as machined surface roughness (SR, material removal rate (MRR, tool wear rate (TWR, were experimentally examined and analyzed with the diversifying and changing machining parameters in (EDM. The processing parameters (input par. of this research are stated as tool material, peak current (I, pulse duration (ton and pulse interval (toff. The experimental machinings were put into practice by using Hadfield steel workpiece (prismatic and cylindrical graphite electrodes with kerosene dielectric at different machining current, polarity and pulse time settings. The experiments have shown that the type of tool material, polarity (direct polarity forms higher MRR, SR and TWR, current (high current lowers TWR and enhances MRR, TWR and pulse on time (ton=48□s is critical threshold value for MRR and TWR were influential on machining performance in electrical discharge machining.

  12. Intellectual Control System of Processing on CNC Machines

    Science.gov (United States)

    Nekrasov, R. Y.; Lasukov, A. A.; Starikov, A. I.; Soloviev, I. V.; Bekareva, O. V.

    2016-04-01

    Scientific and technical progress makes great demands for quality of engineering production. The priority is to ensure metalworking equipment with required dimensional accuracy during the entire period of operation at minimum manufacturing costs. In article considered the problem of increasing of accuracy of processing products on CNC. The authors offers a solution to the problem by providing compensating adjustment in the trajectory of the cutting tool and machining mode. The necessity of creation of mathematical models of processes behavior in an automated technological system operations (OATS). Based on the research, authors have proposed a generalized diagram of diagnosis and input operative correction and approximate mathematical models of individual processes of diagnosis.

  13. Welding process automation in power machine building

    International Nuclear Information System (INIS)

    Mel'bard, S.N.; Shakhnov, A.F.; Shergov, I.V.

    1977-01-01

    The level of welding automation operations in power engineering and ways of its enhancement are highlighted. Used as the examples of comlex automation are an apparatus for the horizontal welding of turbine rotors, remotely controlled automatic machine for welding ring joint of large-sized vessels, equipment for the electron-beam welding of steam turbine assemblies of alloyed steels. The prospects of industrial robots are noted. The importance of the complex automation of technological process, including stocking, assemblying, transportation and auxiliary operations, is emphasized

  14. Computerized prediction of intensive care unit discharge after cardiac surgery: development and validation of a Gaussian processes model

    Directory of Open Access Journals (Sweden)

    Meyfroidt Geert

    2011-10-01

    Full Text Available Abstract Background The intensive care unit (ICU length of stay (LOS of patients undergoing cardiac surgery may vary considerably, and is often difficult to predict within the first hours after admission. The early clinical evolution of a cardiac surgery patient might be predictive for his LOS. The purpose of the present study was to develop a predictive model for ICU discharge after non-emergency cardiac surgery, by analyzing the first 4 hours of data in the computerized medical record of these patients with Gaussian processes (GP, a machine learning technique. Methods Non-interventional study. Predictive modeling, separate development (n = 461 and validation (n = 499 cohort. GP models were developed to predict the probability of ICU discharge the day after surgery (classification task, and to predict the day of ICU discharge as a discrete variable (regression task. GP predictions were compared with predictions by EuroSCORE, nurses and physicians. The classification task was evaluated using aROC for discrimination, and Brier Score, Brier Score Scaled, and Hosmer-Lemeshow test for calibration. The regression task was evaluated by comparing median actual and predicted discharge, loss penalty function (LPF ((actual-predicted/actual and calculating root mean squared relative errors (RMSRE. Results Median (P25-P75 ICU length of stay was 3 (2-5 days. For classification, the GP model showed an aROC of 0.758 which was significantly higher than the predictions by nurses, but not better than EuroSCORE and physicians. The GP had the best calibration, with a Brier Score of 0.179 and Hosmer-Lemeshow p-value of 0.382. For regression, GP had the highest proportion of patients with a correctly predicted day of discharge (40%, which was significantly better than the EuroSCORE (p Conclusions A GP model that uses PDMS data of the first 4 hours after admission in the ICU of scheduled adult cardiac surgery patients was able to predict discharge from the ICU as a

  15. Electric ignition energy evaluation and the energy distribution structure of energy released in electrostatic discharge process

    International Nuclear Information System (INIS)

    Liu Qingming; Huang Jinxiang; Shao Huige; Zhang Yunming

    2017-01-01

    Ignition energy is one of the important parameters of flammable materials, and evaluating ignition energy precisely is essential to the safety of process industry and combustion science and technology. By using electric spark discharge test system, a series of electric spark discharge experiments were conducted with the capacitor-stored energy in the range of 10 J, 100 J, and 1000 J, respectively. The evaluation method for energy consumed by electric spark, wire, and switch during capacitor discharge process has been studied respectively. The resistance of wire, switch, and plasma between electrodes has been evaluated by different methods and an optimized evaluation method has been obtained. The electric energy consumed by wire, electric switch, and electric spark-induced plasma between electrodes were obtained and the energy structure of capacitor-released energy was analyzed. The dynamic process and the characteristic parameters (the maximum power, duration of discharge process) of electric spark discharge process have been analyzed. Experimental results showed that, electric spark-consumed energy only accounts for 8%–14% of the capacitor-released energy. With the increase of capacitor-released energy, the duration of discharge process becomes longer, and the energy of plasma accounts for more in the capacitor-released energy. The power of electric spark varies with time as a damped sinusoids function and the period and the maximum value increase with the capacitor-released energy. (paper)

  16. Micro-EDM process modeling and machining approaches for minimum tool electrode wear for fabrication of biocompatible micro-components

    DEFF Research Database (Denmark)

    Puthumana, Govindan

    2017-01-01

    Micro-electrical discharge machining (micro-EDM) is a potential non-contact method for fabrication of biocompatible micro devices. This paper presents an attempt to model the tool electrode wear in micro-EDM process using multiple linear regression analysis (MLRA) and artificial neural networks...... linear regression model was developed for prediction of TWR in ten steps at a significance level of 90%. The optimum architecture of the ANN was obtained with 7 hidden layers at an R-sq value of 0.98. The predicted values of TWR using ANN matched well with the practically measured and calculated values...... (ANN). The governing micro-EDM factors chosen for this investigation were: voltage (V), current (I), pulse on time (Ton) and pulse frequency (f). The proposed predictive models generate a functional correlation between the tool electrode wear rate (TWR) and the governing micro-EDM factors. A multiple...

  17. Influence of Electric Discharges on Bearings of Electric Machines

    Directory of Open Access Journals (Sweden)

    Karel Chmelik

    2006-01-01

    Full Text Available I the last time many articles were found out discussed about shaft voltage, bearing currents and their influence on lifetime and reliability of electric machines bearings. This is associated with extension of use of static converters for control drives for DC motors feeding in the past and for induction motors feeding from frequency converters in the last time. It is known from our own experiences that not all failures assigned to bearing currents were their real reason and we also know how hardly the mentioned currents can be measured on real machines and how work-intensive and expensive is to detect real reason of the failure on damaged bearing. We will not concern with basics of classical bearing currents in this paper, because they were known and studied in the beginning of the last century but our own investigations will be presented.

  18. SELECTION OF NON-CONVENTIONAL MACHINING PROCESSES USING THE OCRA METHOD

    Directory of Open Access Journals (Sweden)

    Miloš Madić

    2015-04-01

    Full Text Available Selection of the most suitable nonconventional machining process (NCMP for a given machining application can be viewed as multi-criteria decision making (MCDM problem with many conflicting and diverse criteria. To aid these selection processes, different MCDM methods have been proposed. This paper introduces the use of an almost unexplored MCDM method, i.e. operational competitiveness ratings analysis (OCRA method for solving the NCMP selection problems. Applicability, suitability and computational procedure of OCRA method have been demonstrated while solving three case studies dealing with selection of the most suitable NCMP. In each case study the obtained rankings were compared with those derived by the past researchers using different MCDM methods. The results obtained using the OCRA method have good correlation with those derived by the past researchers which validate the usefulness of this method while solving complex NCMP selection problems.

  19. Analysis on discharge process of a plasma-jet triggered gas spark switch

    Science.gov (United States)

    Weihao, TIE; Cui, MENG; Yuting, ZHANG; Zirang, YAN; Qiaogen, ZHANG

    2018-01-01

    The plasma-jet triggered gas switch (PJTGS) could operate at a low working coefficient with a low jitter. We observed and analyzed the discharge process of the PJTGS at the lowest working coefficient of 47% with the trigger voltage of 40 kV and the pulse energy of 2 J to evaluate the effect of the plasma jet. The temporal and spatial evolution and the optical emission spectrum of the plasma jet were captured. And the spraying delay time and outlet velocity under different gas pressures were investigated. In addition, the particle in cell with Monte Carlo collision was employed to obtain the particle distribution of the plasma jet varying with time. The results show that, the plasma jet generated by spark discharge is sprayed into a spark gap within tens of nanoseconds, and its outlet velocity could reach 104 m s-1. The plasma jet plays a non-penetrating inducing role in the triggered discharge process of the PJTGS. On the one hand, the plasma jet provides the initial electrons needed by the discharge; on the other hand, a large number of electrons focusing on the head of the plasma jet distort the electric field between the head of the plasma jet and the opposite electrode. Therefore, a fast discharge originated from the plasma jet is induced and quickly bridges two electrodes.

  20. CONTROL SYSTEM EVALUATION AND IMPLEMENTATION FOR THE ABRASIVE MACHINING PROCESS ON WOOD

    Directory of Open Access Journals (Sweden)

    Stephen Jackson

    2011-06-01

    Full Text Available Continuous process improvement and automation have proven to be powerful tools for the wood processing industries in order to obtain better final product quality and thus increase profits. Abrasive machining represents an important and relevant process in the manufacturing and processing of wood products, which also implies high cost of materials and labor; therefore, special attention to this process is necessary. The objective of this work was to evaluate and demonstrate a process control system for use in the abrasive machining of wood and wood-based products. A control system was created on LabView® to integrate the monitoring process and the actions required, depending on the abrasive machining process conditions. The system acquires information from the optical sensor to detect loading and activate the cleaning system. The system continuously monitors the condition of the abrasive belt (tool wear by using an acoustic emission sensor and alerts the operator of the status of the belt (green, yellow, and red lights indicating satisfactory, medium, and poor belt condition. The system also incorporates an additional safety device, which helps prevent permanent damage to the belt, equipment, or workpiece by alerting the operator when an excessive temperature has been reached. The process control system proved that automation permits enhancement in the consistency of the belt cleaning technique by the elimination of the human errors. Furthermore, this improvement also affects the cost by extending the life of the belt, which reduces setup time, belt cost, operation cost, as well as others.

  1. Simulation of dynamic processes when machining transition surfaces of stepped shafts

    Science.gov (United States)

    Maksarov, V. V.; Krasnyy, V. A.; Viushin, R. V.

    2018-03-01

    The paper addresses the characteristics of stepped surfaces of parts categorized as "solids of revolution". It is noted that in the conditions of transition modes during the switch to end surface machining, there is cutting with varied load intensity in the section of the cut layer, which leads to change in cutting force, onset of vibrations, an increase in surface layer roughness, a decrease of size precision, and increased wear of a tool's cutting edge. This work proposes a method that consists in developing a CNC program output code that allows one to process complex forms of stepped shafts with only one machine setup. The authors developed and justified a mathematical model of a technological system for mechanical processing with consideration for the resolution of tool movement at the stages of transition processes to assess the dynamical stability of a system in the process of manufacturing stepped surfaces of parts of “solid of revolution” type.

  2. Analysis of the influence of process conditions on the surface finish of ceramic materials manufactured by EDM; Analisis de la influencia de las condiciones de proceso sobre el acabado superficial de materiales ceramicos fabricados por electroerosion

    Energy Technology Data Exchange (ETDEWEB)

    Puertas-Arbizu, I.; Luis-Perez, C. J.

    2004-07-01

    Electrical discharge machining (EDM) is an emerging alternative versus some other manufacturing processes of conductive ceramic materials, such as: laser machining, electrochemical machining, abrasive water jet, ultrasonic machining and diamond wheel grinding. Due to its interest in the industrial field, in this work a study of the influence of process conditions on the surface aspect of three conductive ceramic materials: hot-pressed boron carbide (B{sub 4}C), reaction-bonded silicon carbide (SiSiC) and cobalt-bonded tungsten carbide (WC-Co) is carried out. These materials are to be electrical discharge machined under different machining conditions and in the particular case of finish stages (Ra{<=} 1 {mu}m). (Author)

  3. Flat Milling Process Simulation Taking into Consideration a Dependence of Dynamic Characteristics of the Machine

    Directory of Open Access Journals (Sweden)

    D. A. Zavarzin

    2016-01-01

    Full Text Available The milling process inherently is on/off, and therefore inevitably there is vibration excitation in the Machine/Fixture/Tool/Part (MFTP system, which results in a different quality of the treated surface, depending on the machining conditions. The objective is to identify effective operation conditions to cut a part on the 3-way easy class machines when there is no unwanted regenerative self-oscillation, leading to a significant deterioration in the quality of the surface machined. The paper describes vibrations arising during a milling process and their effect on the surface shape and the working tool. To solve this problem we apply a numerical simulation method of cutting dynamics, which consist of 4 modules. The main module is an algorithm of the geometric simulation. The second module is a phenomenological model of the cutting forces. Two remaining modules are responsible for dynamics simulation of the part machined and the cutting tool under time-varying cutting forces. The calculated values are transferred back to the geometric modelling algorithm at each step in time. Thus, the model is closed and allows us to take into account an effect of delay in a dynamic system. A finite element machine model to perform calculation in 3DCUT software has been a selected and compiled. The paper presents geometrical mapping of the machining process and natural frequencies and shapes found for the finite element model. Conducting multivariate calculations allowed us to analyse the dependences of a dynamic behaviour of the system on changing spindle speed. The multivariate modelling results are presented as the Poincare maps for a moving free end of the tool. These Poincare maps allow us to select the operation conditions domains coming both with forced vibration and with self-excited oscillations. On the Poincaré map for two operation conditions of different domains there are graphics of the cutting forces, a thickness of the cutting layer, tool

  4. Principles of image processing in machine vision systems for the color analysis of minerals

    Science.gov (United States)

    Petukhova, Daria B.; Gorbunova, Elena V.; Chertov, Aleksandr N.; Korotaev, Valery V.

    2014-09-01

    At the moment color sorting method is one of promising methods of mineral raw materials enrichment. This method is based on registration of color differences between images of analyzed objects. As is generally known the problem with delimitation of close color tints when sorting low-contrast minerals is one of the main disadvantages of color sorting method. It is can be related with wrong choice of a color model and incomplete image processing in machine vision system for realizing color sorting algorithm. Another problem is a necessity of image processing features reconfiguration when changing the type of analyzed minerals. This is due to the fact that optical properties of mineral samples vary from one mineral deposit to another. Therefore searching for values of image processing features is non-trivial task. And this task doesn't always have an acceptable solution. In addition there are no uniform guidelines for determining criteria of mineral samples separation. It is assumed that the process of image processing features reconfiguration had to be made by machine learning. But in practice it's carried out by adjusting the operating parameters which are satisfactory for one specific enrichment task. This approach usually leads to the fact that machine vision system unable to estimate rapidly the concentration rate of analyzed mineral ore by using color sorting method. This paper presents the results of research aimed at addressing mentioned shortcomings in image processing organization for machine vision systems which are used to color sorting of mineral samples. The principles of color analysis for low-contrast minerals by using machine vision systems are also studied. In addition, a special processing algorithm for color images of mineral samples is developed. Mentioned algorithm allows you to determine automatically the criteria of mineral samples separation based on an analysis of representative mineral samples. Experimental studies of the proposed algorithm

  5. Characteristics of the Arcing Plasma Formation Effect in Spark-Assisted Chemical Engraving of Glass, Based on Machine Vision.

    Science.gov (United States)

    Ho, Chao-Ching; Wu, Dung-Sheng

    2018-03-22

    Spark-assisted chemical engraving (SACE) is a non-traditional machining technology that is used to machine electrically non-conducting materials including glass, ceramics, and quartz. The processing accuracy, machining efficiency, and reproducibility are the key factors in the SACE process. In the present study, a machine vision method is applied to monitor and estimate the status of a SACE-drilled hole in quartz glass. During the machining of quartz glass, the spring-fed tool electrode was pre-pressured on the quartz glass surface to feed the electrode that was in contact with the machining surface of the quartz glass. In situ image acquisition and analysis of the SACE drilling processes were used to analyze the captured image of the state of the spark discharge at the tip and sidewall of the electrode. The results indicated an association between the accumulative size of the SACE-induced spark area and deepness of the hole. The results indicated that the evaluated depths of the SACE-machined holes were a proportional function of the accumulative spark size with a high degree of correlation. The study proposes an innovative computer vision-based method to estimate the deepness and status of SACE-drilled holes in real time.

  6. Characteristics of the Arcing Plasma Formation Effect in Spark-Assisted Chemical Engraving of Glass, Based on Machine Vision

    Directory of Open Access Journals (Sweden)

    Chao-Ching Ho

    2018-03-01

    Full Text Available Spark-assisted chemical engraving (SACE is a non-traditional machining technology that is used to machine electrically non-conducting materials including glass, ceramics, and quartz. The processing accuracy, machining efficiency, and reproducibility are the key factors in the SACE process. In the present study, a machine vision method is applied to monitor and estimate the status of a SACE-drilled hole in quartz glass. During the machining of quartz glass, the spring-fed tool electrode was pre-pressured on the quartz glass surface to feed the electrode that was in contact with the machining surface of the quartz glass. In situ image acquisition and analysis of the SACE drilling processes were used to analyze the captured image of the state of the spark discharge at the tip and sidewall of the electrode. The results indicated an association between the accumulative size of the SACE-induced spark area and deepness of the hole. The results indicated that the evaluated depths of the SACE-machined holes were a proportional function of the accumulative spark size with a high degree of correlation. The study proposes an innovative computer vision-based method to estimate the deepness and status of SACE-drilled holes in real time.

  7. Effect of Forging Allowance Value on the Power Consumption of Machining Process

    Directory of Open Access Journals (Sweden)

    L. D. Mal'kova

    2015-01-01

    Full Text Available The paper aim is to develop and study possible energy-efficiency measures for machined forgings drawing on analysis of the impact of the allowance for machining and its scatter.The most sophisticated option to take into consideration the effect of the cut depth is the work-piece machining in which the forging allowance value results from the blank production.Research of power consumption was conducted for turning the cylindrical surface of 144 mm length and  1,5 33 0,5   diameter on forgings of the work-pieces "screw of steering control" made from steel 60PP. A radial dimension allowance at said cylindrical surface at six points of the five sections was sized to assess the allowance value dispersion. The size of the sample measurements at the control points was n = 600. Statistic processing has shown normal law of distribution and sample homogeneity.To analyze the results of experiments was calculated a range of allowances for this workpiece. Calculated minimum and maximum allowance per one side for rough lathing were, respectively, 0.905 mm and 1.905mm. It was found that 77% points under control lie in calculated range of allowance values. And there are no points out of the range on lesser side that proves a lack of rejects; but there are points out of the range on the bigger side, that will require additional costs for machining the specified surface, including the cost of electricity.There were three power consumption calculations based on factory- recommended duty: for processing the entire sample of forgings with an average allowance, for machining forgings allowances of which are within the recommended design range of allowance, and for processing the entire sample of forgings with a minimum value of allowance.It was found that elimination of allowance values which are outside the recommended range enables to reduce the power consumption, at least, by 6%, and the overall power consumption for processing the measured forgings

  8. Machine Vision Systems for Processing Hardwood Lumber and Logs

    Science.gov (United States)

    Philip A. Araman; Daniel L. Schmoldt; Tai-Hoon Cho; Dongping Zhu; Richard W. Conners; D. Earl Kline

    1992-01-01

    Machine vision and automated processing systems are under development at Virginia Tech University with support and cooperation from the USDA Forest Service. Our goals are to help U.S. hardwood producers automate, reduce costs, increase product volume and value recovery, and market higher value, more accurately graded and described products. Any vision system is...

  9. Implementation of Real-Time Machining Process Control Based on Fuzzy Logic in a New STEP-NC Compatible System

    Directory of Open Access Journals (Sweden)

    Po Hu

    2016-01-01

    Full Text Available Implementing real-time machining process control at shop floor has great significance on raising the efficiency and quality of product manufacturing. A framework and implementation methods of real-time machining process control based on STEP-NC are presented in this paper. Data model compatible with ISO 14649 standard is built to transfer high-level real-time machining process control information between CAPP systems and CNC systems, in which EXPRESS language is used to define new STEP-NC entities. Methods for implementing real-time machining process control at shop floor are studied and realized on an open STEP-NC controller, which is developed using object-oriented, multithread, and shared memory technologies conjunctively. Cutting force at specific direction of machining feature in side mill is chosen to be controlled object, and a fuzzy control algorithm with self-adjusting factor is designed and embedded in the software CNC kernel of STEP-NC controller. Experiments are carried out to verify the proposed framework, STEP-NC data model, and implementation methods for real-time machining process control. The results of experiments prove that real-time machining process control tasks can be interpreted and executed correctly by the STEP-NC controller at shop floor, in which actual cutting force is kept around ideal value, whether axial cutting depth changes suddenly or continuously.

  10. Effect of processing parameters of rotary ultrasonic machining on surface integrity of potassium dihydrogen phosphate crystals

    Directory of Open Access Journals (Sweden)

    Jianfu Zhang

    2015-09-01

    Full Text Available Potassium dihydrogen phosphate is an important optical crystal. However, high-precision processing of large potassium dihydrogen phosphate crystal workpieces is difficult. In this article, surface roughness and subsurface damage characteristics of a (001 potassium dihydrogen phosphate crystal surface produced by traditional and rotary ultrasonic machining are studied. The influence of process parameters, including spindle speed, feed speed, type and size of sintered diamond wheel, ultrasonic power, and selection of cutting fluid on potassium dihydrogen phosphate crystal surface integrity, was analyzed. The surface integrity, especially the subsurface damage depth, was affected significantly by the ultrasonic power. Metal-sintered diamond tools with high granularity were most suitable for machining potassium dihydrogen phosphate crystal. Cutting fluid played a key role in potassium dihydrogen phosphate crystal machining. A more precise surface can be obtained in machining with a higher spindle speed, lower feed speed, and using kerosene as cutting fluid. Based on the provided optimized process parameters for machining potassium dihydrogen phosphate crystal, a processed surface quality with Ra value of 33 nm and subsurface damage depth value of 6.38 μm was achieved.

  11. Using Expert Systems in Evaluation of the State of High Voltage Machine Insulation Systems

    Directory of Open Access Journals (Sweden)

    K. Záliš

    2000-01-01

    Full Text Available Expert systems are used for evaluating the actual state and future behavior of insulating systems of high voltage electrical machines and equipment. Several rule-based expert systems have been developed in cooperation with top diagnostic workplaces in the Czech Republic for this purpose. The IZOLEX expert system evaluates diagnostic measurement data from commonly used offline diagnostic methods for the diagnostic of high voltage insulation of rotating machines, non-rotating machines and insulating oils. The CVEX expert system evaluates the discharge activity on high voltage electrical machines and equipment by means of an off-line measurement. The CVEXON expert system is for evaluating the discharge activity by on-line measurement, and the ALTONEX expert system is the expert system for on-line monitoring of rotating machines. These developed expert systems are also used for educating students (in bachelor, master and post-graduate studies and in courses which are organized for practicing engineers and technicians and for specialists in the electrical power engineering branch. A complex project has recently been set up to evaluate the measurement of partial discharges. Two parallel expert systems for evaluating partial dischatge activity on high voltage electrical machines will work at the same time in this complex evaluating system.

  12. Intellectual Control System of Processing on CNC Machines

    OpenAIRE

    Nekrasov, R. Y.; Lasukov, Aleksandr Aleksandrovich; Starikov, A. I.; Soloviev, I. V.; Bekareva, O. V.

    2016-01-01

    Scientific and technical progress makes great demands for quality of engineering production. The priority is to ensure metalworking equipment with required dimensional accuracy during the entire period of operation at minimum manufacturing costs. In article considered the problem of increasing of accuracy of processing products on CNC. The authors offers a solution to the problem by providing compensating adjustment in the trajectory of the cutting tool and machining mode. The necessity of cr...

  13. Some trends in man-machine interface design for industrial process plants

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    1980-01-01

    . In the paper, problems related to interface design, operator training and human reliability are discussed in the light of this technological development, and an integrated approach to system design based on a consistent model or framework describing the man-machine interaction is advocated.The work presented......The demands for an efficient and reliable man-machine inter-face in industrial process plant are increasing due to the steadily growing size and complexity of installations. At the same time, computerized technology offers the possibility of powerful and effective solutions to designers...

  14. REDUCING AND OPTIMIZING THE CYCLE TIME OF PATIENTS DISCHARGE PROCESS IN A HOSPITAL USING SIX SIGMA DMAIC APPROACH

    Directory of Open Access Journals (Sweden)

    S. Arun Vijay

    2014-06-01

    Full Text Available A lengthy and in-efficient process of discharging in-patients from the Hospital is an essential component that needs to be addressed in order to improve the quality of Health care facility. Even though, several quality methodologies are adopted to improve such services in Hospitals, the implementation of Six Sigma DMAIC methodology to improve the Hospital discharge process is much limited in the Literature. Thus, the objective of this research is to reduce the cycle time of the Patients discharge process using Six Sigma DMAIC Model in a multidisciplinary hospital setting in India. This study had been conducted through the five phases of the Six Sigma DMAIC Model using different Quality tools and techniques. This study suggested various improvement strategies to reduce the cycle time of Patients discharge process and after its implementation; there is a 61% reduction in the cycle time of the Patients discharge process. Also, a control pl an check sheet has been developed to sustain the Improvements obtained. This Study would be an eye opener for the Health Care Managers to reduce and optimize the cycle time of Patients discharge process in Hospitals using Six Sigma DMAIC Model.

  15. STUDY OF DESTRUCTION PROCESSES OF SYNTHETIC SURFACE-ACTIVE SUBSTENCES (SURFFACTANTS IN BARRIER DISCHARGE

    Directory of Open Access Journals (Sweden)

    V.I. Grinevich

    2012-06-01

    Full Text Available Kinetic data of degradation on aqueous solutions of surfactants in the plasma of barrier discharge are presented. The possible mechanism of proceeding processes is offered and considered. It is shown that the treatment in a barrier discharge results in decomposition efficiency of 95%. It is established that the main product of degradation are carboxylic acids.

  16. Machinability of lithium disilicate glass ceramic in in vitro dental diamond bur adjusting process.

    Science.gov (United States)

    Song, Xiao-Fei; Ren, Hai-Tao; Yin, Ling

    2016-01-01

    Esthetic high-strength lithium disilicate glass ceramics (LDGC) are used for monolithic crowns and bridges produced in dental CAD/CAM and oral adjusting processes, which machinability affects the restorative quality. A machinability study has been made in the simulated oral clinical machining of LDGC with a dental handpiece and diamond burs, regarding the diamond tool wear and chip control, machining forces and energy, surface finish and integrity. Machining forces, speeds and energy in in vitro dental adjusting of LDGC were measured by a high-speed data acquisition and force sensor system. Machined LDGC surfaces were assessed using three-dimensional non-contact chromatic confocal optical profilometry and scanning electron microscopy (SEM). Diamond bur morphology and LDGC chip shapes were also examined using SEM. Minimum tool wear but significant LDGC chip accumulations were found. Machining forces and energy significantly depended on machining conditions (pceramics (pceramics (pceramics. Surface roughness for machined LDGC was comparable for other glass ceramics. The removal mechanisms of LDGC were dominated by penetration-induced brittle fracture and shear-induced plastic deformation. Unlike most other glass ceramics, distinct intergranular and transgranular fractures of lithium disilicate crystals were found in LDGC. This research provides the fundamental data for dental clinicians on the machinability of LDGC in intraoral adjustments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Charging/discharging processes in nanocrystaline MOS structures - Theoretical study

    International Nuclear Information System (INIS)

    Tanous, D; Mazurak, A; Majkusiak, B

    2016-01-01

    We present the study of impact of some parameters of the metal-insulator-semiconductor structure with nanocrystals embedded in the insulator layer on the current-voltage and capacitance-voltage characteristics with the bias voltage ramp rate as a parameter. The developed model is used as a tool for theoretical understanding the physics behind charging and discharging processes in the considered structures. (paper)

  18. Machine learning and predictive data analytics enabling metrology and process control in IC fabrication

    Science.gov (United States)

    Rana, Narender; Zhang, Yunlin; Wall, Donald; Dirahoui, Bachir; Bailey, Todd C.

    2015-03-01

    Integrate circuit (IC) technology is going through multiple changes in terms of patterning techniques (multiple patterning, EUV and DSA), device architectures (FinFET, nanowire, graphene) and patterning scale (few nanometers). These changes require tight controls on processes and measurements to achieve the required device performance, and challenge the metrology and process control in terms of capability and quality. Multivariate data with complex nonlinear trends and correlations generally cannot be described well by mathematical or parametric models but can be relatively easily learned by computing machines and used to predict or extrapolate. This paper introduces the predictive metrology approach which has been applied to three different applications. Machine learning and predictive analytics have been leveraged to accurately predict dimensions of EUV resist patterns down to 18 nm half pitch leveraging resist shrinkage patterns. These patterns could not be directly and accurately measured due to metrology tool limitations. Machine learning has also been applied to predict the electrical performance early in the process pipeline for deep trench capacitance and metal line resistance. As the wafer goes through various processes its associated cost multiplies. It may take days to weeks to get the electrical performance readout. Predicting the electrical performance early on can be very valuable in enabling timely actionable decision such as rework, scrap, feedforward, feedback predicted information or information derived from prediction to improve or monitor processes. This paper provides a general overview of machine learning and advanced analytics application in the advanced semiconductor development and manufacturing.

  19. Development of cutting machine for disposal of highly activated equipments

    International Nuclear Information System (INIS)

    Iimura, Katumichi; Kitajima, Toshio; Hosokawa, Jinsaku; Abe, Shinichi; Takahashi, Kiyoshi; Ogawa, Mituhiro; Iwai, Takashi

    1994-01-01

    JMTR (Japan Materials Testing Reactor) Project has developed a cutting machine which can cut a highly activated in-pile tube under water and its performance and safety have been confirmed. This machine is for the purpose of cutting a multiplet structure pipe and made possible to cut it under water by adopting under-water discharge method. Furthermore, contamination of canal water and atmosphere is prevented by combining a filter with this machine. This report describes the outline and performance of the developed cutting machine and also results of cutting highly activated in-pile tubes. (author)

  20. The energy distribution structure and dynamic characteristics of energy release in electrostatic discharge process

    OpenAIRE

    Liu, Qingming; Shao, Huige; Zhang, Yunming

    2015-01-01

    The detail structure of energy output and the dynamic characteristics of electric spark discharge process have been studied to calculate the energy of electric spark induced plasma under different discharge condition accurately. A series of electric spark discharge experiments were conducted with the capacitor stored energy in the range of 10J 100J and 1000J respectively. And the resistance of wire, switch and plasma between electrodes were evaluated by different methods. An optimized method ...

  1. Disruption characteristics in PDX with limiter and divertor discharges

    International Nuclear Information System (INIS)

    Couture, P.; McGuire, K.

    1986-09-01

    A comparison has been made between the characteristics of disruptions with limiter and divertor configurations in PDX. A large data base on disruptions has been collected over four years of machine operation, and a total of 15,000 discharges are contained in the data file. It was found that divertor discharges have less disruptions during ramp up and flattop of the plasma current. However, for divertor discharges a large number of fast, low current disruptions take place during the current ramp down. These disruptions are probably caused by the deformation of the plasma shape

  2. Quasilinear Extreme Learning Machine Model Based Internal Model Control for Nonlinear Process

    Directory of Open Access Journals (Sweden)

    Dazi Li

    2015-01-01

    Full Text Available A new strategy for internal model control (IMC is proposed using a regression algorithm of quasilinear model with extreme learning machine (QL-ELM. Aimed at the chemical process with nonlinearity, the learning process of the internal model and inverse model is derived. The proposed QL-ELM is constructed as a linear ARX model with a complicated nonlinear coefficient. It shows some good approximation ability and fast convergence. The complicated coefficients are separated into two parts. The linear part is determined by recursive least square (RLS, while the nonlinear part is identified through extreme learning machine. The parameters of linear part and the output weights of ELM are estimated iteratively. The proposed internal model control is applied to CSTR process. The effectiveness and accuracy of the proposed method are extensively verified through numerical results.

  3. PROCESSING OF SOFT MAGNETIC MATERIALS BY POWDER METALLURGY AND ANALYSIS OF THEIR PERFORMANCE IN ELECTRICAL MACHINES

    Directory of Open Access Journals (Sweden)

    W. H. D. Luna

    2017-12-01

    Full Text Available This article presents the use of finite elements to analyze the yield of electric machines based on the use of different soft magnetic materials for the rotor and the stator, in order to verify the performance in electric machine using powder metallurgy. Traditionally, the cores of electric machines are built from rolled steel plates, thus the cores developed in this work are obtained from an alternative process known as powder metallurgy, where powders of soft magnetic materials are compacted and sintered. The properties of interest were analyzed (magnetic, electric and mechanical properties and they were introduced into the software database. The topology of the rotor used was 400 W three-phase synchronous motor manufactured by WEG Motors. The results show the feasibility to replace the metal sheets of the electric machines by solid blocks obtained by powder metallurgy process with only 0.37% yield losses. In addition, the powder metallurgical process reduces the use of raw materials and energy consumption per kg of raw material processed.

  4. Optimization the machining parameters by using VIKOR and Entropy Weight method during EDM process of Al–18% SiCp Metal matrix composit

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar Bhuyan

    2016-06-01

    Full Text Available The objective of this paper is to optimize the process parameters by combined approach of VIKOR and Entropy weight measurement method during Electrical discharge machining (EDM process of Al-18wt.%SiCp metal matrix composite (MMC. The central composite design (CCD method is considered to evaluate the effect of three process parameters; namely pulse on time (Ton, peak current (Ip and flushing pressure (Fp on the responses like material removal rate (MRR, tool wear rate (TWR, Radial over cut (ROC and surface roughness (Ra. The Entropy weight measurement method evaluates the individual weights of each response and, using VIKOR method, the multi-objective responses are optimized to get a single numerical index known as VIKOR Index. Then the Analysis of Variance (ANOVA technique is used to determine the significance of the process parameters on the VIKOR Index. Finally, the result of the VIKOR Indexed is validated by conformation test using the liner mathematical model equation develop by responses surface methodology to identify the effectiveness of the proposed method.

  5. CONTROL SYSTEM EVALUATION AND IMPLEMENTATION FOR THE ABRASIVE MACHINING PROCESS ON WOOD

    OpenAIRE

    Stephen Jackson; Richard Lemaster; Daniel E. Saloni

    2011-01-01

    Continuous process improvement and automation have proven to be powerful tools for the wood processing industries in order to obtain better final product quality and thus increase profits. Abrasive machining represents an important and relevant process in the manufacturing and processing of wood products, which also implies high cost of materials and labor; therefore, special attention to this process is necessary. The objective of this work was to evaluate and demonstrate a process control s...

  6. CMS proposes prioritizing patient preferences, linking patients to follow-up care in discharge planning process.

    Science.gov (United States)

    2016-03-01

    Hospital providers voice concerns about a proposed rule by the Centers for Medicare and Medicaid Services (CMS) that would require providers to devote more resources to discharge planning. The rule would apply to inpatients as well as emergency patients requiring comprehensive discharge plans as opposed to discharge instructions. CMS states that the rule would ensure the prioritization of patient preferences and goals in the discharge planning process, and also would prevent avoidable complications and readmissions. However, hospital and emergency medicine leaders worry that community resources are not yet in place to facilitate the links and follow-up required in the proposed rule, and that the costs associated with implementation would be prohibitive. The proposed rule would apply to acute care hospitals, EDs, long-term care facilities, inpatient rehabilitation centers, and home health agencies. Regardless of the setting, though, CMS is driving home the message that patient preferences should be given more weight during the discharge planning process. Under the rule, hospitals or EDs would need to develop a patient-centered discharge plan within 24 hours of admission or registration, and complete the plan prior to discharge or transfer to another facility. Under the rule, emergency physicians would determine which patients require a comprehensive discharge plan. Both the American Hospital Association and the American College of Emergency Physicians worry that hospitals will have to take on more staff, invest in training, and make changes to their electronic medical record systems to implement the provisions in the proposed rule.

  7. Simulation of spatially dependent excitation rates and power deposition in RF discharges for plasma processing

    International Nuclear Information System (INIS)

    Kushner, M.J.; Anderson, H.M.; Hargis, P.J.

    1985-01-01

    In low pressure, radio frequency (RF) discharges of the type used in plasma processing of semiconductor materials, the rate of electron impact excitation and energy transfer processes depends upon both the phase of the RF excitation and position in the discharge. Electron impact collisions create radicals that diffuse or drift to the surfaces of interest where they are adsorbed or otherwise react. To the extent that these radicals have a finite lifetime, their transport time from point of creation to surface of interest is an important parameter. The spatial dependence of the rate of the initial electron impact collisions is therefore also an important parameter. The power that sustains the discharge is coupled into the system by two mechanisms: a high energy e-beam component of the electron distribution resulting from electrons falling through or being accelerated by the sheaths, and by joule heating in the body of the plasma. In this paper, the authors discuss the spatial dependence of excitation rates and the method of power deposition iin RF discharges of the type used for plasma processing

  8. An investigation to adopt zero liquid discharge in textile dyeing using advanced oxidation processes

    International Nuclear Information System (INIS)

    Ahmd, F.

    2015-01-01

    In this study, a novel idea of using ozone oxidation at the end of reactive dyeing process was explored in order to achieve zero discharge dyeing. An advanced oxidative treatment was given during the dyeing process to remove unfixed and hydrolyzed reactive dyes from cotton substrate. Three different shades were dyed using vinylsulphone reactive class of dyes. At the end of fixation step, washing of fabrics was carried out using appropriate quantities of ozone in the process. Ozone oxidation continued until the liquor was decolorized around 95-100% and COD (Chemical Oxygen Demand) was reduced about 80-90%, thus achieving zero liquid discharge dyeing process. The decolouration efficiency of wastewater was regarded as an indicative of removal of dyes from the textile materials because fabric was being washed continuously in the same liquor. Fabric samples dyed with conventional and new methods were compared in terms of change in shade, colourfastness properties, colour stripping, and fabric appearance. Overall results showed that the use of ozone during reactive dyeing can result in less water consumption, reduced process time, and zero discharge of coloured effluents from textile dyeing factories. (author)

  9. Review of "Conceptual Structures: Information Processing in Mind and Machine."

    Science.gov (United States)

    Smoliar, Stephen W.

    This review of the book, "Conceptual Structures: Information Processing in Mind and Machine," by John F. Sowa, argues that anyone who plans to get involved with issues of knowledge representation should have at least a passing acquaintance with Sowa's conceptual graphs for a database interface. (Used to model the underlying semantics of…

  10. [Degradation of p-nitrophenol by high voltage pulsed discharge and ozone processes].

    Science.gov (United States)

    Pan, Li-li; Yan, Guo-qi; Zheng, Fei-yan; Liang, Guo-wei; Fu, Jian-jun

    2005-11-01

    The vigorous oxidation by ozone and the high energy by pulsed discharge are utilized to degrade the big hazardous molecules. And these big hazardous molecules become small and less hazardous by this process in order to improve the biodegradability. When pH value is 8-9, the concentration of p-nitrophenol solution can be degraded by 96.8% and the degradation efficiency of TOC is 38.6% by ozone and pulsed discharge treatment for 30 mins. The comparison results show that the combination treatment efficiency is higher than the separate, so the combination of ozone and pulsed discharge has high synergism. It is approved that the phenyl degradation efficiency is high and the degradation efficiency of linear molecules is relative low.

  11. Processing method for discharged radioactive laundry water waste

    International Nuclear Information System (INIS)

    Izumida, Tatsuo; Kitsukawa, Ryozo; Tsuchiya, Hiroyuki; Kiuchi, Yoshimasa; Hattori, Yasuo.

    1995-01-01

    In order to process discharged radioactive laundry water wastes safely and decrease radioactive wastes, bubbling of a surface active agent in a detergent which causes a problem upon its condensation is suppressed, so that the liquid condensate are continuously and easily dried into a powder. A nonionic surface active agent is used against the bubbling of the surface active agent. In addition, the bubbling in an the evaporation can is reduced, and the powderization is facilitated by adding an appropriate inorganic builder. (T.M.)

  12. Design of parallel intersector weld/cut robot for machining processes in ITER vacuum vessel

    International Nuclear Information System (INIS)

    Wu Huapeng; Handroos, Heikki; Kovanen, Janne; Rouvinen, Asko; Hannukainen, Petri; Saira, Tanja; Jones, Lawrence

    2003-01-01

    This paper presents a new parallel robot Penta-WH, which has five degrees of freedom driven by hydraulic cylinders. The manipulator has a large, singularity-free workspace and high stiffness and it acts as a transport device for welding, machining and inspection end-effectors inside the ITER vacuum vessel. The presented kinematic structure of a parallel robot is particularly suitable for the ITER environment. Analysis of the machining process for ITER, such as the machining methods and forces are given, and the kinematic analyses, such as workspace and force capacity are discussed

  13. corrosion and wear resistant ternary Cr-C-N coatings deposited by the ARC PVD process for machining tools and machining parts

    International Nuclear Information System (INIS)

    Knotek, O.; Lugscheider, E.; Zimmermann, H.; Bobzin, K.

    1997-01-01

    With the deposition of PVD hard coatings on the tools applied in machining operations it is possible to achieve significant improvements in the performance and quality of the machining processes. Depending on the machined material and the operating principle, e.g. turning, milling or drilling, not only different machining parameters but also different coating materials are necessary. In interrupted cut machining of tempered steel, for example, the life time of Ti-C-N coated inserts is several times greater than the Ti-C-N coated ones. This is a result of the favourable thermophysical and tribological properties of Ti-N-C. The potential for tool protection by CrN coatings is a result of the high ductility and low internal stress of this coating materials. CrN films can be deposited with greater film thickness, still maintaining very good adhesion. This paper presents the development of new arc PVD coatings in the system Cr-C-N. Owing to the carbon content in the coating an increased hardness and a better wear behavior in comparison to CrN was expected. The effects of various carbon carrier gases on the coating properties were examined. The coating properties were investigated by mechanical tests. X-ray diffraction, SEM analysis and corrosion tests. Some of the coatings were tested in machining tests. The results of these tests are presented in this paper. (author)

  14. Machine performance assessment and enhancement for a hexapod machine

    Energy Technology Data Exchange (ETDEWEB)

    Mou, J.I. [Arizona State Univ., Tempe, AZ (United States); King, C. [Sandia National Labs., Livermore, CA (United States). Integrated Manufacturing Systems Center

    1998-03-19

    The focus of this study is to develop a sensor fused process modeling and control methodology to model, assess, and then enhance the performance of a hexapod machine for precision product realization. Deterministic modeling technique was used to derive models for machine performance assessment and enhancement. Sensor fusion methodology was adopted to identify the parameters of the derived models. Empirical models and computational algorithms were also derived and implemented to model, assess, and then enhance the machine performance. The developed sensor fusion algorithms can be implemented on a PC-based open architecture controller to receive information from various sensors, assess the status of the process, determine the proper action, and deliver the command to actuators for task execution. This will enhance a hexapod machine`s capability to produce workpieces within the imposed dimensional tolerances.

  15. Complex Ornament Machining Process on a CNC Router

    Directory of Open Access Journals (Sweden)

    Camelia COŞEREANU

    2014-03-01

    Full Text Available The paper investigates the CNC routering possibilities for three species of wood, namely ash (Fraxinus Excelsior, lime wood (Tilia cordata and fir wood (Abies Alba, in order to obtain right surfaces of Art Nouveau sculptured ornaments. Given the complexity of the CNC tool path for getting wavy shapes of Art Nouveau decorations, the choice of processing parameters for each processed species of wood requires a laborious research work to correlate these parameters. Two Art Nouveau ornaments are proposed for the investigation. They are CNC routered using two types of cutting tools. The processed parameters namely the spindle speed, feed speed and depth of cut were the three variables of the machining process for the three species of wood, which were combined so, to provide good surface finish as a quality attribute. There were totally forty six variants of combining the processing parameter which were applied for CNC routering the samples made of the three species of wood. At the end, an optimum combination of the processed parameters is recommended for each species of wood.

  16. Development and Performance Evaluation of Fluted Pumpkin Seed Dehulling Machine

    Directory of Open Access Journals (Sweden)

    M. M. Odewole

    2017-08-01

    Full Text Available A machine for dehulling fluted pumpkin seed (Telfairia occidentalis was developed. The main objective of developing the machine was to provide a better substitute to traditional methods of dehulling the seed which contains edible oil of high medicinal and nutritional values. Traditional methods are full of drudgery, slow, injury prone and would lead to low and poor outputs in terms of quantity and quality of dehulled products. The machine is made of five major parts: the feed hopper (for holding the seeds to be dehulled before getting into the dehulling chamber, dehulling chamber (the part of the machine that impacts forces on seeds thereby causing fractures and opening of seeds coats for the delivery of the oily kernels, discharge unit (exit for oily kernels and seed coats after dehulling, the frame (for structural support and stability of all parts of the machine and electric motor (power source of the machine.The development process involved design of major components (shaft diameter (20 mm, machine velocity (7.59 m/s, power requirement (3hp single phase electric motor and structural support of mild steel angle iron, selection of construction materials and fabrication. ANSYS R14.5 machine design computer software was used to design the shaft and structural support; while other components were designed with conventional design method of using design equations. The machine works on the principle of centrifugal and impact forces. Performance evaluation was carried out after fabrication and 87.26%, 2.83g/s, 8.9% and 3.84%were obtained for dehulling efficiency, throughput capacity, percentage partially dehulled and percentage undehulled respectively.

  17. Discharging process of a finned heat pipe–assisted thermal energy storage system with high temperature phase change material

    International Nuclear Information System (INIS)

    Tiari, Saeed; Qiu, Songgang; Mahdavi, Mahboobe

    2016-01-01

    Highlights: • The discharging process of a latent heat thermal energy storage system is studied. • The thermal energy storage system is assisted by finned heat pipes. • The influences of heat pipe spacing and fins geometrical features are studied. • Smaller heat pipe spacing enhances the solidification rate. • Better heat pipe and fin arrangements are determined. - Abstract: This paper presents the results of a numerical study conducted to investigate the discharging process of a latent heat thermal energy storage system assisted by finned heat pipes. A two-dimensional finite volume based numerical model along with enthalpy-porosity technique is employed to simulate the phase change of storage media during the discharging mode. The thermal energy storage system in this study consists of a square container, finned heat pipes, and potassium nitrate (KNO 3 ) as the phase change material. The charging process of the same thermal energy storage system was reported in an early paper by the authors. This paper reports the results of discharging process of the thermal energy storage system. The influences of heat pipe spacing, fin geometry and quantities as well as the effects of natural convection heat transfer on the thermal performance of the storage system were studied. The results indicate that the phase change material solidification process is hardly affected by the natural convection. Decreasing the heat pipe spacing results in faster discharging process and higher container base wall temperature. Increasing the fins length does not change the discharging time but yields higher base wall temperature. Using more fins also accelerates the discharging process and increases the container base wall temperature.

  18. Lean methodology for performance improvement in the trauma discharge process.

    Science.gov (United States)

    O'Mara, Michael Shaymus; Ramaniuk, Aliaksandr; Graymire, Vickie; Rozzell, Monica; Martin, Stacey

    2014-07-01

    High-volume, complex services such as trauma and acute care surgery are at risk for inefficiency. Lean process improvement can reduce health care waste. Lean allows a structured look at processes not easily amenable to analysis. We applied lean methodology to the current state of communication and discharge planning on an urban trauma service, citing areas for improvement. A lean process mapping event was held. The process map was used to identify areas for immediate analysis and intervention-defining metrics for the stakeholders. After intervention, new performance was assessed by direct data evaluation. The process was completed with an analysis of effect and plans made for addressing future focus areas. The primary area of concern identified was interservice communication. Changes centering on a standardized morning report structure reduced the number of consult questions unanswered from 67% to 34% (p = 0.0021). Physical therapy rework was reduced from 35% to 19% (p = 0.016). Patients admitted to units not designated to the trauma service had 1.6 times longer stays (p miscommunication exists around patient education at discharge. Lean process improvement is a viable means of health care analysis. When applied to a trauma service with 4,000 admissions annually, lean identifies areas ripe for improvement. Our inefficiencies surrounded communication and patient localization. Strategies arising from the input of all stakeholders led to real solutions for communication through a face-to-face morning report and identified areas for ongoing improvement. This focuses resource use and identifies areas for improvement of throughput in care delivery.

  19. Optimal methodology for a machining process scheduling in spot electricity markets

    International Nuclear Information System (INIS)

    Yusta, J.M.; Torres, F.; Khodr, H.M.

    2010-01-01

    Electricity spot markets have introduced hourly variations in the price of electricity. These variations allow the increase of the energy efficiency by the appropriate scheduling and adaptation of the industrial production to the hourly cost of electricity in order to obtain the maximum profit for the industry. In this article a mathematical optimization model simulates costs and the electricity demand of a machining process. The resultant problem is solved using the generalized reduced gradient approach, to find the optimum production schedule that maximizes the industry profit considering the hourly variations of the price of electricity in the spot market. Different price scenarios are studied to analyze the impact of the spot market prices for electricity on the optimal scheduling of the machining process and on the industry profit. The convenience of the application of the proposed model is shown especially in cases of very high electricity prices.

  20. The evolution of discharge current and channel radius in cloud-to-ground lightning return stroke process

    Science.gov (United States)

    Fan, Tingting; Yuan, Ping; Wang, Xuejuan; Cen, Jianyong; Chang, Xuan; Zhao, Yanyan

    2017-09-01

    The spectra of two negative cloud-to-ground lightning discharge processes with multi-return strokes are obtained by a slit-less high-speed spectrograph, which the temporal resolution is 110 μs. Combined with the synchronous electrical observation data and theoretical calculation, the physical characteristics during return strokes process are analysed. A positive correlation between discharge current and intensity of ionic lines in the spectra is verified, and based on this feature, the current evolution characteristics during four return strokes are investigated. The results show that the time from peak current to the half-peak value estimated by multi point-fitting is about 101 μs-139 μs. The Joule heat in per unit length of four return strokes channel is in the order of 105J/m-106 J/m. The radius of arc discharge channel is positively related to the discharge current, and the more intense the current is, the greater the radius of channel is. Furthermore, the evolution for radius of arc core channel in the process of return stroke is consistent with the change trend of discharge current after the peak value. Compared with the decay of the current, the temperature decreases more slowly.

  1. Optimization process planning using hybrid genetic algorithm and intelligent search for job shop machining.

    Science.gov (United States)

    Salehi, Mojtaba; Bahreininejad, Ardeshir

    2011-08-01

    Optimization of process planning is considered as the key technology for computer-aided process planning which is a rather complex and difficult procedure. A good process plan of a part is built up based on two elements: (1) the optimized sequence of the operations of the part; and (2) the optimized selection of the machine, cutting tool and Tool Access Direction (TAD) for each operation. In the present work, the process planning is divided into preliminary planning, and secondary/detailed planning. In the preliminary stage, based on the analysis of order and clustering constraints as a compulsive constraint aggregation in operation sequencing and using an intelligent searching strategy, the feasible sequences are generated. Then, in the detailed planning stage, using the genetic algorithm which prunes the initial feasible sequences, the optimized operation sequence and the optimized selection of the machine, cutting tool and TAD for each operation based on optimization constraints as an additive constraint aggregation are obtained. The main contribution of this work is the optimization of sequence of the operations of the part, and optimization of machine selection, cutting tool and TAD for each operation using the intelligent search and genetic algorithm simultaneously.

  2. Re-Engineering the Hospital Discharge: An Example of a Multifaceted Process Evaluation

    National Research Council Canada - National Science Library

    Anthony, David; Chetty, V. K; Kartha, Anand; McKenna, Kathleen; DePaoli, Maria R; Jack, Brian

    2005-01-01

    The transfer of patient care from the hospital team to primary care and other providers in the community at the time of discharge is a high-risk process characterized by fragmented, nonstandardized...

  3. Process signal selection method to improve the impact mitigation of sensor broken for diagnosis using machine learning

    International Nuclear Information System (INIS)

    Minowa, Hirotsugu; Gofuku, Akio

    2014-01-01

    Accidents of industrial plants cause large loss on human, economic, social credibility. In recent, studies of diagnostic methods using techniques of machine learning are expected to detect early and correctly abnormality occurred in a plant. However, the general diagnostic machines are generated generally to require all process signals (hereafter, signals) for plant diagnosis. Thus if trouble occurs such as process sensor is broken, the diagnostic machine cannot diagnose or may decrease diagnostic performance. Therefore, we propose an important process signal selection method to improve impact mitigation without reducing the diagnostic performance by reducing the adverse effect of noises on multi-agent diagnostic system. The advantage of our method is the general-purpose property that allows to be applied to various supervised machine learning and to set the various parameters to decide termination of search. The experiment evaluation revealed that diagnostic machines generated by our method using SVM improved the impact mitigation and did not reduce performance about the diagnostic accuracy, the velocity of diagnosis, predictions of plant state near accident occurrence, in comparison with the basic diagnostic machine which diagnoses by using all signals. This paper reports our proposed method and the results evaluated which our method was applied to the simulated abnormal of the fast-breeder reactor Monju. (author)

  4. Barriers and facilitators of medication reconciliation processes for recently discharged patients from community pharmacists' perspectives.

    Science.gov (United States)

    Kennelty, Korey A; Chewning, Betty; Wise, Meg; Kind, Amy; Roberts, Tonya; Kreling, David

    2015-01-01

    Community pharmacists play a vital part in reconciling medications for patients transitioning from hospital to community care, yet their roles have not been fully examined in the extant literature. The objectives of this study were to: 1) examine the barriers and facilitators community pharmacists face when reconciling medications for recently discharged patients; and 2) identify pharmacists' preferred content and modes of information transfer regarding updated medication information for recently discharged patients. Community pharmacists were purposively and conveniently sampled from the Wisconsin (U.S. state) pharmacist-based research network, Pharmacy Practice Enhancement and Action Research Link (PEARL Rx). Community pharmacists were interviewed face-to-face, and transcriptions from audio recordings were analyzed using directed content analysis. The Theory of Planned Behavior (TPB) guided the development of questions for the semi-structured interviews. Interviewed community pharmacists (N = 10) described the medication reconciliation process to be difficult and time-consuming for recently discharged patients. In the context of the TPB, more barriers than facilitators of reconciling medications were revealed. Themes were categorized as organizational and individual-level themes. Major organizational-level factors affecting the medication reconciliation process included: pharmacy resources, discharge communication, and hospital resources. Major individual-level factors affecting the medication reconciliation process included: pharmacists' perceived responsibility, relationships, patient perception of pharmacist, and patient characteristics. Interviewed pharmacists consistently responded that several pieces of information items would be helpful when reconciling medications for recently discharged patients, including the hospital medication discharge list and stop-orders for discontinued medications. The TPB was useful for identifying barriers and facilitators of

  5. Gas discharge processes in the standard and metal channel PMTs

    International Nuclear Information System (INIS)

    Morozov, V.A.; Morozova, N.V.

    2015-01-01

    The effect of the potential difference at the focusing chamber electrodes of the XP2020, FEU-85, FEU-87, and FEU-93 photomultipliers on the intensity of afterpulses resulting from gas discharge processes is investigated. The time distribution of the afterpulses in the metal channel PMTs - H6780 and R7600U-200 - is studied as well

  6. Analysis of the process of raising the temperature in the spark channel at a discharge in gas

    CERN Document Server

    Korytchenko, K V; Chumakov, V I

    2001-01-01

    Analysis of the process of raising the temperature in the spark channel at a discharge in gas is performed. The quantitative evaluation was made in main for the air. The effect of steadying a thermodynamic equilibrium in gas,as well as the influence of power discharge parameters on the process of temperature increasing was analyzed. The quantitative evaluation of time parameters of the processes of rotary, oscillatory relaxation, dissociation and ionization has allowed to reveal the influence of each of them on temperature increasing in the spark channel. The problems arising in the course of practical realization of a spark discharge which influence on the process of temperature raising are detected,and the ways for their solution are determined. The results obtained can be put in a basis of developing the methods to design devices for intensive increase of temperatures in gas media using the electrical discharge,as well as for analysis of a dependence of shock wave intensity on dynamic parameters of the ele...

  7. Applied machining technology

    CERN Document Server

    Tschätsch, Heinz

    2010-01-01

    Machining and cutting technologies are still crucial for many manufacturing processes. This reference presents all important machining processes in a comprehensive and coherent way. It includes many examples of concrete calculations, problems and solutions.

  8. Continuous processing of polymers in repetitively pulsed atmospheric pressure discharges with moving surfaces and gas flow

    Energy Technology Data Exchange (ETDEWEB)

    Bhoj, Ananth N [Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 61801 (United States); Kushner, Mark J [Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011 (United States)

    2007-11-21

    Atmospheric pressure corona discharges are industrially employed to treat large areas of commodity polymer sheets by creating new surface functional groups. The most common processes use oxygen containing discharges to affix oxygen to hydrocarbon polymers, thereby increasing their surface energy and wettability. The process is typically continuous and is carried out in a web configuration with film speeds of tens to hundreds of cm s{sup -1}. The densities and relative abundances of functional groups depend on the gas composition, gas flow rate and residence time of the polymer in the discharge zone which ultimately determine the magnitude and mole fractions of reactive fluxes to the surface. In this paper, results are discussed from a two-dimensional computational investigation of the atmospheric pressure plasma functionalization of a moving polypropylene sheet in repetitively pulsed He/O{sub 2}/H{sub 2}O discharges. O and OH typically initiate surface processing by hydrogen abstraction. These species are regenerated during every plasma pulse but are also largely consumed during the inter-pulse period. Longer-lived species such as O{sub 3} accumulate over many pulses and convect downstream with the gas flow. Optimizing the interplay between local rapid reactions, such as H abstraction which occurs dominantly in the discharge zone, and non-local slower processes, such as surface-surface reactions, may enable the customization of the relative abundance of surface functional groups.

  9. Continuous processing of polymers in repetitively pulsed atmospheric pressure discharges with moving surfaces and gas flow

    International Nuclear Information System (INIS)

    Bhoj, Ananth N; Kushner, Mark J

    2007-01-01

    Atmospheric pressure corona discharges are industrially employed to treat large areas of commodity polymer sheets by creating new surface functional groups. The most common processes use oxygen containing discharges to affix oxygen to hydrocarbon polymers, thereby increasing their surface energy and wettability. The process is typically continuous and is carried out in a web configuration with film speeds of tens to hundreds of cm s -1 . The densities and relative abundances of functional groups depend on the gas composition, gas flow rate and residence time of the polymer in the discharge zone which ultimately determine the magnitude and mole fractions of reactive fluxes to the surface. In this paper, results are discussed from a two-dimensional computational investigation of the atmospheric pressure plasma functionalization of a moving polypropylene sheet in repetitively pulsed He/O 2 /H 2 O discharges. O and OH typically initiate surface processing by hydrogen abstraction. These species are regenerated during every plasma pulse but are also largely consumed during the inter-pulse period. Longer-lived species such as O 3 accumulate over many pulses and convect downstream with the gas flow. Optimizing the interplay between local rapid reactions, such as H abstraction which occurs dominantly in the discharge zone, and non-local slower processes, such as surface-surface reactions, may enable the customization of the relative abundance of surface functional groups

  10. Combination process of diamond machining and roll-to-roll UV-replication for thin film micro- and nanostructures

    Science.gov (United States)

    Väyrynen, J.; Mönkkönen, K.; Siitonen, S.

    2016-09-01

    Roll-to-roll (R2R) ultraviolet (UV) curable embossing replication process is a highly accurate and cost effective way to replicate large quantities of thin film polymer parts. These structures can be used for microfluidics, LED-optics, light guides, displays, cameras, diffusers, decorative, laser sensing and measuring devices. In the R2R UV-process, plastic thin film coated with UV-curable lacquer, passes through an imprinting embossing drum and is then hardened by an UV-lamp. One key element for mastering this process is the ability to manufacture a rotating drum containing micro- and nanostructures. Depending on the pattern shapes, the drum can be directly machined by diamond machining or it can be done through wafer level lithographical process. Due to the shrinkage of UV-curable lacquer, the R2R drum pattern process needs to be prototyped few times, in order to get the desired performance and shape from the R2R produced part. To speed up the prototyping and overall process we have developed a combination process where planar diamond machining patterns are being turned into a drum roller. Initially diamond machined patterns from a planar surface are replicated on a polymer sheet using UV-replication. Secondly, a nickel stamper shim is grown form the polymer sheet and at the end the stamper is turned into a roller and used in the R2R process. This process allows various micro milled, turned, grooved and ruled structures to be made at thin film products through the R2R process. In this paper, the process flow and examples of fabricating R2R embossed UVcurable thin film micro- and nanostructures from planar diamond machined patterns, is reported.

  11. Machining tools in AISI M2 high-speed steel obtained by spray forming process

    International Nuclear Information System (INIS)

    Jesus, Edilson Rosa Barbosa de.

    2004-01-01

    The aim of the present work was the obtention of AISI M2 high-speed steel by spray forming technique and the material evaluation when used as machining tool. The obtained material was hot rolled at 50% and 72% reduction ratios, and from which it was manufactured inserts for machining tests. The performance of inserts made of the spray formed material was compared to inserts obtained from conventional and powder metallurgy (MP) processed materials. The spray formed material was chemical, physical, mechanical and microstructural characterised. For further characterisation, the materials were submitted to machining tests for performance evaluation under real work condition. The results of material characterisation highlight the potential of the spray forming technique, in the obtention of materials with good characteristics and properties. Under the current processing, hot rolling and heat treatments condition, the analysis of the results of the machining tests revealed a very similar behaviour among the tested materials. Proceeding a criterious analysis of the machining results tests, it was verified that the performance presented by the powder metallurgy material (MP) was slight superior, followed by conventional obtained material (MConv), which presented a insignificant advantage over the spray formed and hot rolled (72% reduction ratio) material. The worst result was encountered for the spray forming and hot rolled (50% reduction ratio) material that presented the highest wear values. (author)

  12. Micromanufacturing Of Hard To Machine Materials By Physical And Chemical Ablation Processes

    International Nuclear Information System (INIS)

    Schubert, A.; Edelmann, J.; Gross, S.; Meichsner, G.; Wolf, N.; Schneider, J.; Zeidler, H.; Hackert, M.

    2011-01-01

    Miniaturization leads to high requirements to the applied manufacturing processes especially in respect to the used hard to machine materials and the aims of structure size and geometrical accuracy. Traditional manufacturing processes reach their limits here. One alternative for these provide thermal and chemical ablation processes. These processes are applied for the production of different microstructures in different materials like hardened steel, carbides and ceramics especially for medical engineering and tribological applications.

  13. Implementation of a classifier didactical machine for learning mechatronic processes

    Directory of Open Access Journals (Sweden)

    Alex De La Cruz

    2017-06-01

    Full Text Available The present article shows the design and construction of a classifier didactical machine through artificial vision. The implementation of the machine is to be used as a learning module of mechatronic processes. In the project, it is described the theoretical aspects that relate concepts of mechanical design, electronic design and software management which constitute popular field in science and technology, which is mechatronics. The design of the machine was developed based on the requirements of the user, through the concurrent design methodology to define and materialize the appropriate hardware and software solutions. LabVIEW 2015 was implemented for high-speed image acquisition and analysis, as well as for the establishment of data communication with a programmable logic controller (PLC via Ethernet and an open communications platform known as Open Platform Communications - OPC. In addition, the Arduino MEGA 2560 platform was used to control the movement of the step motor and the servo motors of the module. Also, is used the Arduino MEGA 2560 to control the movement of the stepper motor and servo motors in the module. Finally, we assessed whether the equipment meets the technical specifications raised by running specific test protocols.

  14. Effects of shielding coatings on the anode shaping process during counter-rotating electrochemical machining

    Science.gov (United States)

    Wang, Dengyong; Zhu, Zengwei; Wang, Ningfeng; Zhu, Di

    2016-09-01

    Electrochemical machining (ECM) has been widely used in the aerospace, automotive, defense and medical industries for its many advantages over traditional machining methods. However, the machining accuracy in ECM is to a great extent limited by the stray corrosion of the unwanted material removal. Many attempts have been made to improve the ECM accuracy, such as the use of a pulse power, passivating electrolytes and auxiliary electrodes. However, they are sometimes insufficient for the reduction of the stray removal and have their limitations in many cases. To solve the stray corrosion problem in CRECM, insulating and conductive coatings are respectively used. The different implement processes of the two kinds of coatings are introduced. The effects of the two kinds of shielding coatings on the anode shaping process are investigated. Numerical simulations and experiments are conducted for the comparison of the two coatings. The simulation and experimental results show that both the two kinds of coatings are valid for the reduction of stray corrosion on the top surface of the convex structure. However, for insulating coating, the convex sidewall becomes concave when the height of the convex structure is over 1.26 mm. In addition, it is easy to peel off by the high-speed electrolyte. In contrast, the conductive coating has a strong adhesion, and can be well reserved during the whole machining process. The convex structure fabricated by using a conductive iron coating layer presents a favorable sidewall profile. It is concluded that the conductive coating is more effective for the improvement of the machining quality in CRECM. The proposed shielding coatings can also be employed to reduce the stray corrosion in other schemes of ECM.

  15. The family living the child recovery process after hospital discharge.

    Science.gov (United States)

    Pinto, Júlia Peres; Mandetta, Myriam Aparecida; Ribeiro, Circéa Amalia

    2015-01-01

    to understand the meaning attributed by the family to its experience in the recovery process of a child affected by an acute disease after discharge, and to develop a theoretical model of this experience. Symbolic interactionism was adopted as a theoretical reference, and grounded theory was adopted as a methodological reference. data were collected through interviews and participant observation with 11 families, totaling 15 interviews. A theoretical model consisting of two interactive phenomena was formulated from the analysis: Mobilizing to restore functional balance and Suffering from the possibility of a child's readmission. the family remains alert to identify early changes in the child's health, in an attempt to avoid rehospitalization. the effects of the disease and hospitalization continue to manifest in family functioning, causing suffering even after the child's discharge and recovery.

  16. Features of measurement and processing of vibration signals registered on the moving parts of electrical machines

    OpenAIRE

    Gyzhko, Yuri

    2011-01-01

    Measurement and processing of vibration signals registered on the moving parts of the electrical machines using the diagnostic information-measuring system that uses Bluetooth wireless standard for the transmission of the measured data from moving parts of electrical machine is discussed.

  17. Modeling of the flow stress for AISI H13 Tool Steel during Hard Machining Processes

    Science.gov (United States)

    Umbrello, Domenico; Rizzuti, Stefania; Outeiro, José C.; Shivpuri, Rajiv

    2007-04-01

    In general, the flow stress models used in computer simulation of machining processes are a function of effective strain, effective strain rate and temperature developed during the cutting process. However, these models do not adequately describe the material behavior in hard machining, where a range of material hardness between 45 and 60 HRC are used. Thus, depending on the specific material hardness different material models must be used in modeling the cutting process. This paper describes the development of a hardness-based flow stress and fracture models for the AISI H13 tool steel, which can be applied for range of material hardness mentioned above. These models were implemented in a non-isothermal viscoplastic numerical model to simulate the machining process for AISI H13 with various hardness values and applying different cutting regime parameters. Predicted results are validated by comparing them with experimental results found in the literature. They are found to predict reasonably well the cutting forces as well as the change in chip morphology from continuous to segmented chip as the material hardness change.

  18. Modeling of the flow stress for AISI H13 Tool Steel during Hard Machining Processes

    International Nuclear Information System (INIS)

    Umbrello, Domenico; Rizzuti, Stefania; Outeiro, Jose C.; Shivpuri, Rajiv

    2007-01-01

    In general, the flow stress models used in computer simulation of machining processes are a function of effective strain, effective strain rate and temperature developed during the cutting process. However, these models do not adequately describe the material behavior in hard machining, where a range of material hardness between 45 and 60 HRC are used. Thus, depending on the specific material hardness different material models must be used in modeling the cutting process. This paper describes the development of a hardness-based flow stress and fracture models for the AISI H13 tool steel, which can be applied for range of material hardness mentioned above. These models were implemented in a non-isothermal viscoplastic numerical model to simulate the machining process for AISI H13 with various hardness values and applying different cutting regime parameters. Predicted results are validated by comparing them with experimental results found in the literature. They are found to predict reasonably well the cutting forces as well as the change in chip morphology from continuous to segmented chip as the material hardness change

  19. Optimization of machining parameters in dry EDM of EN31 steel

    Science.gov (United States)

    Brar, G. S.

    2018-03-01

    Dry electric discharge machining (Dry EDM) is one of the novel EDM technology in which gases namely helium, argon, oxygen, nitrogen etc. are used as a dielectric medium at high pressure instead of oil based liquid dielectric. The present study investigates dry electric discharge machining (with rotary tool) of EN-31 steel to achieve lower tool wear rate (TWR) and better surface roughness (Ra) by performing a set of exploratory experiments with oxygen gas as dielectric. The effect of polarity, discharge current, gas flow pressure, pulse-on time, R.P.M. and gap voltage on the MRR, TWR and surface roughness (Ra) in dry EDM was studied with copper as rotary tool. The significant factors affecting MRR are discharge current and pulse on time. The significant factors affecting TWR are gas flow pressure, pulse on time and R.P.M. TWR was found close to zero in most of the experiments. The significant factors affecting Ra are pulse on time, gas flow pressure and R.P.M. It was found that polarity has nearly zero effect on all the three output variables.

  20. PVD processes of thin films deposition using Hall-current discharge

    International Nuclear Information System (INIS)

    Svadkovskij, I.V.

    2007-01-01

    Results of research and developments in the field of PVD processes of thin films deposition using Hall-current discharge have been summarized. Effects of interaction of ions with surface during deposition have been considered. Also features of application and prospects of devices based on ion beam and magnetron sputtering systems in thin films technologies have been analyzed. The aspects in the field plasma physics, technology and equipment plasma PVD processes of thin films deposition have been systematized, on the base of investigations made by author and other scientists. (authors)

  1. Aspects of input processing in the numerical control of electron beam machines

    International Nuclear Information System (INIS)

    Chowdhury, A.K.

    1981-01-01

    A high-performance Numerical Control has been developed for an Electron Beam Machine. The system is structured into 3 hierarchial levels: Input Processing, Realtime Processing (such as Geometry Interpolation) and the Interfaces to the Electron Beam Machine. The author considers the Input Processing. In conventional Numerical Controls the Interfaces to the control is given by the control language as defined in DIN 66025. State of the art in NC-technology offers programming systems of differing competence covering the spectra between manual programming in the control language to highly sophisticated systems such as APT. This software interface has been used to define an Input Processor that in cooperation with the Hostcomputer meets the requirements of a sophisticated NC-system but at the same time provides a modest stand-alone system with all the basic functions such as interactive program-editing, program storage, program execution simultaneous with the development of another program, etc. Software aspects such as adapting DIN 66025 for Electron Beam Machining, organisation and modularisation of Input Processor Software has been considered and solutions have been proposed. Hardware aspects considered are interconnections of the Input Processor with the Host and the Realtime Processors. Because of economical and development-time considerations, available software and hardware has been liberally used and own development has been kept to a minimum. The proposed system is modular in software and hardware and therefore very flexible and open-ended to future expansion. (Auth.)

  2. Material machining with pseudo-spark electron beams

    International Nuclear Information System (INIS)

    Benker, W.; Christiansen, J.; Frank, K.; Gundel, H.; Redel, T.; Stetter, M.

    1989-01-01

    The authors give a brief description of the production of pseudo-spark (low pressure gas discharge) electron beams. They illustrate the use of these electron beams for machining not only conducting, semiconducting and insulating materials, but also thin layers of such materials as high temperature superconducting ceramics

  3. Simulation of electrochemical behavior in Lithium ion battery during discharge process.

    Science.gov (United States)

    Chen, Yong; Huo, Weiwei; Lin, Muyi; Zhao, Li

    2018-01-01

    An electrochemical Lithium ion battery model was built taking into account the electrochemical reactions. The polarization was divided into parts which were related to the solid phase and the electrolyte mass transport of species, and the electrochemical reactions. The influence factors on battery polarization were studied, including the active material particle radius and the electrolyte salt concentration. The results showed that diffusion polarization exist in the positive and negative electrodes, and diffusion polarization increase with the conducting of the discharge process. The physicochemical parameters of the Lithium ion battery had the huge effect on cell voltage via polarization. The simulation data show that the polarization voltage has close relationship with active material particle size, discharging rate and ambient temperature.

  4. A Simulation of Pre-Arcing Plasma Discharge Processes in Water Purification

    International Nuclear Information System (INIS)

    Rodriguez-Mendez, B. G.; Piedad-Beneitez, A. de la; Lopez-Callejas, R.; Godoy-Cabrera, O. G.; Benitez-Read, J. S.; Pacheco-Sotelo, J. O.; Pena-Eguiluz, R.; Mercado-Cabrera, A.; Valencia-A, R.; Barocio, S. R.

    2006-01-01

    The simulation of a water purification system within a coaxial cylinder reactor operated by 1 kHz frequency plasma discharges in pre-arcing regimes is presented. In contrast with precedent works, this computational model considers three mechanisms of the system operation: (a) the relevant physical characteristics of water (b) the ionisation and expansion processes in the spark channel including the near-breakdown electric current generated by the rate of change of the effective capacitance and resistance in the discharge, and (c) the energy associated with this initial spark in the water. The outcome of the model seems to meet all main requirements to allow the design and construction of specific water purification technology devices

  5. PD-pulse characteristics in rotating machine insulation

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Henriksen, Mogens; Jensen, A

    1994-01-01

    In this paper results are presented from investigations on partial discharges (PD) in insulation systems, resembling the stator insulation in high voltage rotating machines. A model, simulating a stator winding in a slot, has been developed, consisting of simple rotating machine insulation test...... bars with epoxy/mica insulation, mounted between steel sheets forming a dot, in order to investigate the fundamental behaviour of PD in insulation defects in epoxy/mica insulation and the characteristics of the resulting electrical pulses. Stator slot couplers (SSC) were used to detect pulses coming...

  6. Preparation of Ag/Cu/Ti Nanofluids by Spark Discharge System and Its Control Parameters Study

    Directory of Open Access Journals (Sweden)

    Kuo-Hsiung Tseng

    2015-01-01

    Full Text Available This study selected silver, copper, and titanium as the research objects to explore the relationship between nanofluids properties and electrical discharge machining (EDM processes. Regarding the products, UV-visible spectroscopy (UV-Vis was applied to measure the concentration distribution of nanofluids; zeta-size analysis is applied for measuring nanometal particles’ Zeta-Potential and the size distribution of metallic particles in the fluid. Finally, various instruments, including scanning electron microscope (SEM, were applied to observe the shape, size, and composition ratio of metal particles after processing. According to the experimental results, the control of the discharge pulse time, in addition to affecting the concentration of metallic liquid and temperature in the process, affects the size of the metal particles after the process. As the resistivity of silver and copper is very low, at about 15×10-9 Ω·m, if TON is set to between 10~50 μs, good preparation efficiency can be obtained. The resistivity of titanium is 420×10-9 Ω·m, which is much larger than that of silver or copper. Hence, TON should be set to approximately 100 μs to achieve a good discharge success rate.

  7. Sustainable machining

    CERN Document Server

    2017-01-01

    This book provides an overview on current sustainable machining. Its chapters cover the concept in economic, social and environmental dimensions. It provides the reader with proper ways to handle several pollutants produced during the machining process. The book is useful on both undergraduate and postgraduate levels and it is of interest to all those working with manufacturing and machining technology.

  8. Modeling of the effect of tool wear per discharge estimation error on the depth of machined cavities in micro-EDM milling

    DEFF Research Database (Denmark)

    Puthumana, Govindan; Bissacco, Giuliano; Hansen, Hans Nørgaard

    2017-01-01

    In micro-EDM milling, real time electrode wear compensation based on tool wear per discharge (TWD) estimation permits the direct control of the position of the tool electrode frontal surface. However, TWD estimation errors will cause errors on the tool electrode axial depth. A simulation tool...... is developed to determine the effects of errors in the initial estimation of TWD and its propagation effect with respect to the error on the depth of the cavity generated. Simulations were applied to micro-EDM milling of a slot of 5000 μm length and 50 μm depth and validated through slot milling experiments...... performed on a micro-EDM machine. Simulations and experimental results were found to be in good agreement, showing the effect of errror amplification through the cavity depth....

  9. Automated business process management – in times of digital transformation using machine learning or artificial intelligence

    Directory of Open Access Journals (Sweden)

    Paschek Daniel

    2017-01-01

    Full Text Available The continuous optimization of business processes is still a challenge for companies. In times of digital transformation, faster changing internal and external framework conditions and new customer expectations for fastest delivery and best quality of goods and many more, companies should set up their internal process at the best way. But what to do if framework conditions changed unexpectedly? The purpose of the paper is to analyse how the digital transformation will impact the Business Process Management (BPM while using methods like machine learning or artificial intelligence. Therefore, the core components will be explained, compared and set up in relation. To identify application areas interviews and analysis will be held up with digital companies. The finding of the paper will be recommendation for action in the field of BPM and process optimization through machine learning and artificial intelligence. The Approach of optimizing and management processes via machine learning and artificial intelligence will support companies to decide which tool will be the best for automated BPM.

  10. Development of a new universal machine device for eccentric shafts processing

    Directory of Open Access Journals (Sweden)

    Михайло Володимирович Маргуліс

    2015-11-01

    Full Text Available The analysis of the existing lathe devices for machining of eccentric details and the reasons for the development of a new universal machine device– a shifting lathe center-have been described in the article. The device design, its operating principle, the main parts functions and elements of the case were described and illustrated One of the most complicated cases of eccentric shaft turning, that is turning design and scheme of the eccentric shaft of precessional harmonic drive with intermediate rolling bodies when the proposed device was used was described in the article. The shifting lathe center can reduce the complexity of the machine tool for turning eccentric shafts configuration. The ability to install the shifting center in the tailstock and headstock of the lathe, and the availability of the leash makes it possible to turn various eccentric parts, conical surfaces, to apply the device to compensate for the emerging taper in cylindrical shafts processing. All the above mentioned makes the device universal. The specific feature of this device is the use of a ball center and the connection of the centering element with the adjusting screw by a fine thread screw, this increasing the precision machining. The protective cover of the device makes it possible to reduce the chance of possible injury from protruding parts of the device, namely the leash and the centering element

  11. An intelligent approach to optimize the EDM process parameters using utility concept and QPSO algorithm

    Directory of Open Access Journals (Sweden)

    Chinmaya P. Mohanty

    2017-04-01

    Full Text Available Although significant research has gone into the field of electrical discharge machining (EDM, analysis related to the machining efficiency of the process with different electrodes has not been adequately made. Copper and brass are frequently used as electrode materials but graphite can be used as a potential electrode material due to its high melting point temperature and good electrical conductivity. In view of this, the present work attempts to compare the machinability of copper, graphite and brass electrodes while machining Inconel 718 super alloy. Taguchi’s L27 orthogonal array has been employed to collect data for the study and analyze effect of machining parameters on performance measures. The important performance measures selected for this study are material removal rate, tool wear rate, surface roughness and radial overcut. Machining parameters considered for analysis are open circuit voltage, discharge current, pulse-on-time, duty factor, flushing pressure and electrode material. From the experimental analysis, it is observed that electrode material, discharge current and pulse-on-time are the important parameters for all the performance measures. Utility concept has been implemented to transform a multiple performance characteristics into an equivalent performance characteristic. Non-linear regression analysis is carried out to develop a model relating process parameters and overall utility index. Finally, the quantum behaved particle swarm optimization (QPSO and particle swarm optimization (PSO algorithms have been used to compare the optimal level of cutting parameters. Results demonstrate the elegance of QPSO in terms of convergence and computational effort. The optimal parametric setting obtained through both the approaches is validated by conducting confirmation experiments.

  12. The effect of Electro Discharge Machining (EDM) on the corrosion resistance of dental alloys.

    Science.gov (United States)

    Ntasi, Argyro; Mueller, Wolf Dieter; Eliades, George; Zinelis, Spiros

    2010-12-01

    The aim of the present study was to evaluate the effect of Electro Discharge Machining (EDM) on the corrosion resistance of two types of dental alloys used for fabrication of implant retained superstructures. Two groups of specimens were prepared from a Co-Cr (Okta-C) and a grade II cpTi (Biotan) alloys respectively. Half of the specimens were subjected to EDM with Cu electrodes and the rest were conventionally finished (CF). The corrosion resistance of the alloys was evaluated by anodic polarization in Ringer's solution. Morphological and elemental alterations before and after corrosion testing were studied by SEM/EDX. Six regions were analyzed on each surface before and after corrosion testing and the results were statistically analyzed by paired t-test (a=0.05). EDM demonstrated inferior corrosion resistance compared to CF surfaces, the latter being passive in a wider range of potential demonstrating higher polarization resistance and lower I(corr) values. Morphological alterations were found before and after corrosion testing for both materials tested after SEM analysis. EDX showed a significant decrease in Mo, Cr, Co, Cu (Co-Cr) and Ti, Cu (cpTi) after electrochemical testing plus an increase in C. According to the results of this study the EDM procedure decreases the corrosion resistance of both the alloys tested, increasing thus the risk of possible adverse biological reactions. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Study on the Optimization and Process Modeling of the Rotary Ultrasonic Machining of Zerodur Glass-Ceramic

    Science.gov (United States)

    Pitts, James Daniel

    Rotary ultrasonic machining (RUM), a hybrid process combining ultrasonic machining and diamond grinding, was created to increase material removal rates for the fabrication of hard and brittle workpieces. The objective of this research was to experimentally derive empirical equations for the prediction of multiple machined surface roughness parameters for helically pocketed rotary ultrasonic machined Zerodur glass-ceramic workpieces by means of a systematic statistical experimental approach. A Taguchi parametric screening design of experiments was employed to systematically determine the RUM process parameters with the largest effect on mean surface roughness. Next empirically determined equations for the seven common surface quality metrics were developed via Box-Behnken surface response experimental trials. Validation trials were conducted resulting in predicted and experimental surface roughness in varying levels of agreement. The reductions in cutting force and tool wear associated with RUM, reported by previous researchers, was experimentally verified to also extended to helical pocketing of Zerodur glass-ceramic.

  14. Hollow-cathode electrode for high-power, high-pressure discharge devices

    Science.gov (United States)

    Chang, J.J.; Alger, T.W.

    1995-08-22

    Several different cold cathode configurations are disclosed for a gas discharge device each having a plurality of grooves of selected spacing, depth and width to improve the emission of electrons in a gas discharge device. Each of the cold cathode configurations can be machined from a single piece of a selected material. Several of the configurations can be assembled with individual elements which is easily seen from the various figures. 8 figs.

  15. Comparison of Advanced Machine Learning Tools for Disruption Prediction and Disruption Studies

    Czech Academy of Sciences Publication Activity Database

    Odstrčil, Michal; Murari, A.; Mlynář, Jan

    2013-01-01

    Roč. 41, č. 7 (2013), s. 1751-1759 ISSN 0093-3813 R&D Projects: GA ČR GAP205/10/2055 Institutional support: RVO:61389021 Keywords : Learning Machines * Support Vector Machines * Neural Network * ASDEX Upgrade * JET * Disruption mitigation * Tokamaks * ITER Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.950, year: 2013

  16. On the physical processes ruling an atmospheric pressure air glow discharge operating in an intermediate current regime

    International Nuclear Information System (INIS)

    Prevosto, L.; Mancinelli, B.; Chamorro, J. C.; Cejas, E.; Kelly, H.

    2015-01-01

    Low-frequency (100 Hz), intermediate-current (50 to 200 mA) glow discharges were experimentally investigated in atmospheric pressure air between blunt copper electrodes. Voltage–current characteristics and images of the discharge for different inter-electrode distances are reported. A cathode-fall voltage close to 360 V and a current density at the cathode surface of about 11 A/cm 2 , both independent of the discharge current, were found. The visible emissive structure of the discharge resembles to that of a typical low-pressure glow, thus suggesting a glow-like electric field distribution in the discharge. A kinetic model for the discharge ionization processes is also presented with the aim of identifying the main physical processes ruling the discharge behavior. The numerical results indicate the presence of a non-equilibrium plasma with rather high gas temperature (above 4000 K) leading to the production of components such as NO, O, and N which are usually absent in low-current glows. Hence, the ionization by electron-impact is replaced by associative ionization, which is independent of the reduced electric field. This leads to a negative current-voltage characteristic curve, in spite of the glow-like features of the discharge. On the other hand, several estimations show that the discharge seems to be stabilized by heat conduction; being thermally stable due to its reduced size. All the quoted results indicate that although this discharge regime might be considered to be close to an arc, it is still a glow discharge as demonstrated by its overall properties, supported also by the presence of thermal non-equilibrium

  17. Effect of processing conditions on residual stress distributions by bead-on-plate welding after surface machining

    International Nuclear Information System (INIS)

    Ihara, Ryohei; Mochizuki, Masahito

    2014-01-01

    Residual stress is important factor for stress corrosion cracking (SCC) that has been observed near the welded zone in nuclear power plants. Especially, surface residual stress is significant for SCC initiation. In the joining processes of pipes, butt welding is conducted after surface machining. Residual stress is generated by both processes, and residual stress distribution due to surface machining is varied by the subsequent butt welding. In previous paper, authors reported that residual stress distribution generated by bead on plate welding after surface machining has a local maximum residual stress near the weld metal. The local maximum residual stress shows approximately 900 MPa that exceeds the stress threshold for SCC initiation. Therefore, for the safety improvement of nuclear power plants, a study on the local maximum residual stress is important. In this study, the effect of surface machining and welding conditions on residual stress distribution generated by welding after surface machining was investigated. Surface machining using lathe machine and bead on plate welding with tungsten inert gas (TIG) arc under various conditions were conducted for plate specimens made of SUS316L. Then, residual stress distributions were measured by X-ray diffraction method (XRD). As a result, residual stress distributions have the local maximum residual stress near the weld metal in all specimens. The values of the local maximum residual stresses are almost the same. The location of the local maximum residual stress is varied by welding condition. It could be consider that the local maximum residual stress is generated by same generation mechanism as welding residual stress in surface machined layer that has high yield stress. (author)

  18. An in-process form error measurement system for precision machining

    International Nuclear Information System (INIS)

    Gao, Y; Huang, X; Zhang, Y

    2010-01-01

    In-process form error measurement for precision machining is studied. Due to two key problems, opaque barrier and vibration, the study of in-process form error optical measurement for precision machining has been a hard topic and so far very few existing research works can be found. In this project, an in-process form error measurement device is proposed to deal with the two key problems. Based on our existing studies, a prototype system has been developed. It is the first one of the kind that overcomes the two key problems. The prototype is based on a single laser sensor design of 50 nm resolution together with two techniques, a damping technique and a moving average technique, proposed for use with the device. The proposed damping technique is able to improve vibration attenuation by up to 21 times compared to the case of natural attenuation. The proposed moving average technique is able to reduce errors by seven to ten times without distortion to the form profile results. The two proposed techniques are simple but they are especially useful for the proposed device. For a workpiece sample, the measurement result under coolant condition is only 2.5% larger compared with the one under no coolant condition. For a certified Wyko test sample, the overall system measurement error can be as low as 0.3 µm. The measurement repeatability error can be as low as 2.2%. The experimental results give confidence in using the proposed in-process form error measurement device. For better results, further improvement in design and tests are necessary

  19. Adsorbent cartridge for the exhaust of diazo process machines

    International Nuclear Information System (INIS)

    Michlin, N.; Thies, E.J.

    1982-01-01

    A disposable cartridge filled with a chemical composition that acts as an adsorbent for ammonia vapor is adapted to be used in connection with a diazo process printing machine having a vacuum exhausted chamber. Exhaust from the chamber is passed through the cartridge to remove the noxious ammonia vapors and then is vented into the atmosphere. The cartridge is housed in an elongated rectangular cardboard box having three end flaps formed at each of its opposed open ends. Two opposed flaps of each set are formed with central holes and a plastic screen section adhered between these flaps to retain and allow access to the center section of the box which contains the adsorbent chemical. The center end flaps have knock-outs or tear strips that allow holes to be formed in their centers. These center end flaps cover the screens during shipment and when the cartridge is ready for use the center sections of these end flaps are knocked-out to allow the machine exhaust to be vented into and out of the cartridge

  20. Duration of multipacting processes and discharges in the linac of ions

    International Nuclear Information System (INIS)

    Lobzov, L.D.; Shulika, N.G.; Shulika, O.N.; Belan, V.N.

    2009-01-01

    It is experimentally shown that multipactor processes may be as harmful as other of parasitic discharges and cause significant disturbance in resonator electrodynamic characteristics of an accelerating structure. The disturbance may be evaluated by pulse-shape distortions of a reference rf voltage impulse. Control over duration of multipactor processes within diode gaps of a linac is effected by varying parameters of a self-sustained oscillation system formed by two independent positive feedback circuits (PFC). If two synchronous rf voltage pulses of given amplitude superpose in the accelerating structure, there occurs an impediment to multipactor processes. As this takes place, multipactor processes display minimal duration and do not affect acceleration stability.

  1. Trends in Machine Learning for Signal Processing

    DEFF Research Database (Denmark)

    Adali, Tulay; Miller, David J.; Diamantaras, Konstantinos I.

    2011-01-01

    By putting the accent on learning from the data and the environment, the Machine Learning for SP (MLSP) Technical Committee (TC) provides the essential bridge between the machine learning and SP communities. While the emphasis in MLSP is on learning and data-driven approaches, SP defines the main...... applications of interest, and thus the constraints and requirements on solutions, which include computational efficiency, online adaptation, and learning with limited supervision/reference data....

  2. Determination of regression functions for the charging and discharging processes of valve regulated lead-acid batteries

    Directory of Open Access Journals (Sweden)

    Vukić Vladimir Đ.

    2012-01-01

    Full Text Available Following a deep discharge of AGM SVT 300 valve-regulated lead-acid batteries using the ten-hour discharge current, the batteries were charged using variable current. In accordance with the obtained results, exponential and polynomial functions for the approximation of the specified processes were analyzed. The main evaluation instrument for the quality of the implemented approximations was the adjusted coefficient of determination R-2. It was perceived that the battery discharge process might be successfully approximated with both an exponential and the second order polynomial function. On all the occasions analyzed, values of the adjusted coefficient of determination were greater than 0.995. The charging process of the deeply discharged batteries was successfully approximated with the exponential function; the measured values of the adjusted coefficient of determination being nearly 0.95. Apart from the high measured values of the adjusted coefficient of determination, polynomial approximations of the second and third order did not provide satisfactory results regarding the interpolation of the battery charging characteristics. A possibility for a practical implementation of the procured regression functions in uninterruptible power supply systems was described.

  3. [Practices of nursing staff in the process of preterm baby hospital discharge].

    Science.gov (United States)

    Schmidt, Kayna Trombini; Terassi, Mariélli; Marcon, Sonia Silva; Higarashi, Ieda Harumi

    2013-12-01

    The objective of this study was to identify the strategies used by the nursing team in the neonatal unity care of a school-hospital during the preparation of the family for the premature baby discharge. It is a descriptive study with qualitative approach. The data was collected between March and June 2011, by means of observation and semi-structured interviews. From the discourse analysis two categories appeared: Orientations and professional strategies in preparing the family for the premature baby hospital discharge and Difficulties and potentialities in the neonatal attention space. The main strategy mentioned was the family early insertion in the caring process and the stressed difficulty was the parents' absence during the child's hospital staying. The potentialities and limitations pointed out in this study revealed that the assistance process is dynamic, asking for constant correction and adequacies to effectively and wholly care for the premature baby and its family.

  4. FDX: a fast discharge homopolar generator

    International Nuclear Information System (INIS)

    Weldon, W.F.; Rylander, H.G.; Woodson, H.H.

    1977-01-01

    A study was undertaken to determine the fundamental limitations to the discharge times of homopolar generators. As a result of the study, a Fast Discharge Experiment (FDX) was proposed. FDX is a small (365 kJ), counterrotating disk type homopolar generator designed to explore the limits to homopolar generator discharge times. The FDX rotors are forged aluminum alloy with flame sprayed copper slip rings. Solid copper graphite brushes are used with a 95% packing factor on the slip rings. The high magnetic field required for fast discharge (3.6 T average) is provided by discharging the CEM 5.0 MJ homopolar generator into a four-turn, graphite-reinforced, room temperature copper coil. Since the field is pulsed and FDX rotors cannot be self motored, they are brought up to speed with two 37 kW air turbines. The two aluminum rotors are 30 cm in diameter and of a rimmed, modified constant stress configuration. They are designed for a maximum operating speed of 28,000 r/min at which point they each store 182.5 kJ and develop 104 V. The aluminum discharge coax is approximately 38 cm in diameter and is designed to carry the 1.88 MA anticipated from a half speed (14,000 r/min) short circuit discharge which would stop the rotors in 1.0 ms. It is predicted that the machine will ring on its own internal impedance for approximately five cycles in this mode. The discharge coax is shorted by four very fast making switches. Additional impedance can be introduced into the discharge circuit by extending the switch coaxes to allow full speed 1.4 MA discharges in approximately 3.5 ms

  5. Shock compression of glow discharge polymer (GDP): density functional theory (DFT) simulations and experiments on Sandia's Z-machine

    Science.gov (United States)

    Mattsson, Thomas R.; Cochrane, K. R.; Ao, T.; Lemke, R. W.; Flicker, D. G.; Schoff, M. E.; Blue, B. E.; Hamel, S.; Herrmann, M. C.

    2015-11-01

    Glow discharge polymer (GDP) is used extensively as capsule/ablation material in inertial confinement fusion (ICF) capsules. Accurate knowledge of the equation of state (EOS) under shock and release is particularly important for high-fidelity design, analysis, and optimization of ICF experiments since the capsule material is subject to several converging shocks as well as release towards the cryogenic fuel. We performed Density Functional Theory (DFT) based quantum molecular dynamics (QMD) simulations, to gain knowledge of the behavior of GDP - including the effect of changes in chemical composition. The shock pressures calculated from DFT are compared experimental data taken on magnetically launched flyer plate impact experiments on at Sandia's Z-machine. Large GDP samples were grown in a planar geometry to improve the sample quality and maintained in a nitrogen atmosphere following manufacturing, thus allowing for a direct comparison to the DFT/QMD simulations. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under contract DE-AC04-94AL85000.

  6. Prediction of Machine Tool Condition Using Support Vector Machine

    International Nuclear Information System (INIS)

    Wang Peigong; Meng Qingfeng; Zhao Jian; Li Junjie; Wang Xiufeng

    2011-01-01

    Condition monitoring and predicting of CNC machine tools are investigated in this paper. Considering the CNC machine tools are often small numbers of samples, a condition predicting method for CNC machine tools based on support vector machines (SVMs) is proposed, then one-step and multi-step condition prediction models are constructed. The support vector machines prediction models are used to predict the trends of working condition of a certain type of CNC worm wheel and gear grinding machine by applying sequence data of vibration signal, which is collected during machine processing. And the relationship between different eigenvalue in CNC vibration signal and machining quality is discussed. The test result shows that the trend of vibration signal Peak-to-peak value in surface normal direction is most relevant to the trend of surface roughness value. In trends prediction of working condition, support vector machine has higher prediction accuracy both in the short term ('One-step') and long term (multi-step) prediction compared to autoregressive (AR) model and the RBF neural network. Experimental results show that it is feasible to apply support vector machine to CNC machine tool condition prediction.

  7. Correlating neutron yield and reliability for selecting experimental parameters for a plasma focus machine

    International Nuclear Information System (INIS)

    Pross, G.

    Possibilities of optimizing focus machines with a given energy content in the sense of high neutron yield and high reliability of the discharges are investigated experimentally. For this purpose, a focus machine of the Mather type with an energy content of 12 kJ was constructed. The following experimental parameters were varied: the material of the insulator in the ignition zone, the structure of the outside electrode, the length of the inside electrode, the filling pressure and the amount and polarity of the battery voltage. An important part of the diagnostic program consists of measurements of the azimuthal and axial current distribution in the accelerator, correlated with short-term photographs of the luminous front as a function of time. The results are given. A functional schematic has been drafted for focus discharge as an aid in extensive optimization of focus machines, combining findings from theory and experiments. The schematic takes into account the multiparameter character of the discharge and clarifies relationships between the experimental parameters and the target variables neutron yield and reliability

  8. DNA-based machines.

    Science.gov (United States)

    Wang, Fuan; Willner, Bilha; Willner, Itamar

    2014-01-01

    The base sequence in nucleic acids encodes substantial structural and functional information into the biopolymer. This encoded information provides the basis for the tailoring and assembly of DNA machines. A DNA machine is defined as a molecular device that exhibits the following fundamental features. (1) It performs a fuel-driven mechanical process that mimics macroscopic machines. (2) The mechanical process requires an energy input, "fuel." (3) The mechanical operation is accompanied by an energy consumption process that leads to "waste products." (4) The cyclic operation of the DNA devices, involves the use of "fuel" and "anti-fuel" ingredients. A variety of DNA-based machines are described, including the construction of "tweezers," "walkers," "robots," "cranes," "transporters," "springs," "gears," and interlocked cyclic DNA structures acting as reconfigurable catenanes, rotaxanes, and rotors. Different "fuels", such as nucleic acid strands, pH (H⁺/OH⁻), metal ions, and light, are used to trigger the mechanical functions of the DNA devices. The operation of the devices in solution and on surfaces is described, and a variety of optical, electrical, and photoelectrochemical methods to follow the operations of the DNA machines are presented. We further address the possible applications of DNA machines and the future perspectives of molecular DNA devices. These include the application of DNA machines as functional structures for the construction of logic gates and computing, for the programmed organization of metallic nanoparticle structures and the control of plasmonic properties, and for controlling chemical transformations by DNA machines. We further discuss the future applications of DNA machines for intracellular sensing, controlling intracellular metabolic pathways, and the use of the functional nanostructures for drug delivery and medical applications.

  9. VIRTUAL MACHINES IN EDUCATION – CNC MILLING MACHINE WITH SINUMERIK 840D CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    Ireneusz Zagórski

    2014-11-01

    Full Text Available Machining process nowadays could not be conducted without its inseparable element: cutting edge and frequently numerically controlled milling machines. Milling and lathe machining centres comprise standard equipment in many companies of the machinery industry, e.g. automotive or aircraft. It is for that reason that tertiary education should account for this rising demand. This entails the introduction into the curricula the forms which enable visualisation of machining, milling process and virtual production as well as virtual machining centres simulation. Siemens Virtual Machine (Virtual Workshop sets an example of such software, whose high functionality offers a range of learning experience, such as: learning the design of machine tools, their configuration, basic operation functions as well as basics of CNC.

  10. Process Performances of 2 ns Pulsed Discharge Plasma

    Science.gov (United States)

    Matsumoto, Takao; Wang, Douyan; Namihira, Takao; Akiyama, Hidenori

    2011-08-01

    Pulsed discharge plasmas have been used to treat exhaust gases. Since pulse duration and the rise time of applied voltage to the discharge electrode has a strong influence on the energy efficiency of pollutant removal, the development of a short-pulse generator is of paramount importance for practical applications. In this work, it is demonstrated that the non thermal plasma produced by the 2 ns pulsed discharge has a higher energy efficiency than the 5 ns pulsed discharge plasma for NO removal and ozone generation. Typically, the NO removal efficiency was 1.0 mol kW-1 h-1 for 70% NO removal (initial NO concentration = 200 ppm, gas flow = 10 L/min). Meanwhile, the ozone yield was 500 g kW-1 h-1 for 20 g/m3 ozone concentration in the case of oxygen feeding. These energy efficiencies are the highest in the literature.

  11. WORKING MACHINE-HOUR COST COMPARISON OF MODERN ROAD COVERAGE PROCESSING MECHANIZATION

    Directory of Open Access Journals (Sweden)

    Dilyara Kyazymovna Izmaylova

    2017-09-01

    Full Text Available In the article there are mentioned features of alternative mechanization machine-hour cost calculations. Also determined analytical dependencies of calculating the expenses of ownership and maintenance. Given a comparison of expense items of various options for the processing implementation. The analysis is based on the international organizing experience for these types of work.

  12. Medical subdomain classification of clinical notes using a machine learning-based natural language processing approach

    OpenAIRE

    Weng, Wei-Hung; Wagholikar, Kavishwar B.; McCray, Alexa T.; Szolovits, Peter; Chueh, Henry C.

    2017-01-01

    Background The medical subdomain of a clinical note, such as cardiology or neurology, is useful content-derived metadata for developing machine learning downstream applications. To classify the medical subdomain of a note accurately, we have constructed a machine learning-based natural language processing (NLP) pipeline and developed medical subdomain classifiers based on the content of the note. Methods We constructed the pipeline using the clinical ...

  13. The patient's vulnerability, dependence and exposed situation in the discharge process: experiences of district nurses, geriatric nurses and social workers.

    Science.gov (United States)

    Rydeman, IngBritt; Törnkvist, Lena

    2006-10-01

    The aim of the study was to obtain a deeper understanding of the experiences of the discharge process among different professionals. An optimal discharge process for hospitalized elderly to other forms of care is of crucial importance, especially since health and medical policies encourages shorter hospital stays and increased healthcare service in outpatient care. Nurses and social workers from inpatient care, outpatient care, municipal care and social services were interviewed. Eight focus-group interviews with a total of 31 persons were conducted. The subsequent analyses followed a phenomenological approach. The findings revealed three themes, Framework, Basic Values and Patient Resources, which influenced the professionals' actions in the discharge process. The overall emerging structure comprised the patient's vulnerability, dependence and exposed situation in the discharge process. In conclusion some factors are of special importance for the co-operation and the actions of professionals involved in the discharge process. Firstly, a distinct and common framework, with conscious and organizationally based values. Secondly the need to take the patient resources into consideration. Together these factors could contribute to secure the patients involvement in the discharge process and to design an optimal, safe and good care. Collaborative approaches among a range of professionals within a variety of organizations are common, especially in the care of the elderly. The role and support of both the organizations and the educational units are decisive factors in this area.

  14. Outpatient rehabilitation care process factors and clinical outcomes among patients discharged home following unilateral total knee arthroplasty.

    Science.gov (United States)

    Brennan, Gerard P; Fritz, Julie M; Houck, L T C Kevin M; Hunter, Stephen J

    2015-05-01

    Research examining care process variables and their relationship to clinical outcomes after total knee arthroplasty has focused primarily on inpatient variables. Care process factors related to outpatient rehabilitation have not been adequately examined. We conducted a retrospective review of 321 patients evaluating outpatient care process variables including use of continuous passive motion, home health physical therapy, number of days from inpatient discharge to beginning outpatient physical therapy, and aspects of outpatient physical therapy (number of visits, length of stay) as possible predictors of pain and disability outcomes of outpatient physical therapy. Only the number of days between inpatient discharge and outpatient physical therapy predicted better outcomes, suggesting that this may be a target for improving outcomes after total knee arthroplasty for patients discharged directly home. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Fabrication Process for Machined and Shrink-Fitted Impactor-Type Liners for the LOS Alamos Hedp Program

    Science.gov (United States)

    Randolph, B.

    2004-11-01

    Composite liners have been fabricated for the Los Alamos liner-driven High Energy Density Physics (HEDP) experiments using impactors formed by physical vapor deposition, and by machining and shrink fitting. Chemical vapor deposition has been proposed for some ATLAS liner applications. This paper describes the processes used to fabricate machined and shrink-fitted impactors; these processes have been used for copper impactors in 1100 aluminum liners and for 6061 T-6 aluminum impactors in 1100 aluminum liners. The most successful processes have been largely empirically developed and rely upon a combination of shrink-fitting and light press fitting. The processes used to date will be described along with some considerations for future composite liners for the HEDP Program.

  16. Study of on-machine error identification and compensation methods for micro machine tools

    International Nuclear Information System (INIS)

    Wang, Shih-Ming; Yu, Han-Jen; Lee, Chun-Yi; Chiu, Hung-Sheng

    2016-01-01

    Micro machining plays an important role in the manufacturing of miniature products which are made of various materials with complex 3D shapes and tight machining tolerance. To further improve the accuracy of a micro machining process without increasing the manufacturing cost of a micro machine tool, an effective machining error measurement method and a software-based compensation method are essential. To avoid introducing additional errors caused by the re-installment of the workpiece, the measurement and compensation method should be on-machine conducted. In addition, because the contour of a miniature workpiece machined with a micro machining process is very tiny, the measurement method should be non-contact. By integrating the image re-constructive method, camera pixel correction, coordinate transformation, the error identification algorithm, and trajectory auto-correction method, a vision-based error measurement and compensation method that can on-machine inspect the micro machining errors and automatically generate an error-corrected numerical control (NC) program for error compensation was developed in this study. With the use of the Canny edge detection algorithm and camera pixel calibration, the edges of the contour of a machined workpiece were identified and used to re-construct the actual contour of the work piece. The actual contour was then mapped to the theoretical contour to identify the actual cutting points and compute the machining errors. With the use of a moving matching window and calculation of the similarity between the actual and theoretical contour, the errors between the actual cutting points and theoretical cutting points were calculated and used to correct the NC program. With the use of the error-corrected NC program, the accuracy of a micro machining process can be effectively improved. To prove the feasibility and effectiveness of the proposed methods, micro-milling experiments on a micro machine tool were conducted, and the results

  17. Exploring challenges in the patient's discharge process from the internal medicine service: A qualitative study of patients' and providers' perceptions.

    Science.gov (United States)

    Pinelli, Vincent; Stuckey, Heather L; Gonzalo, Jed D

    2017-09-01

    In hospital-based medicine units, patients have a wide range of complex medical conditions, requiring timely and accurate communication between multiple interprofessional providers at the time of discharge. Limited work has investigated the challenges in interprofessional collaboration and communication during the patient discharge process. In this study, authors qualitatively assessed the experiences of internal medicine providers and patients about roles, challenges, and potential solutions in the discharge process, with a phenomenological focus on the process of collaboration. Authors conducted interviews with 87 providers and patients-41 providers in eight focus-groups, 39 providers in individual interviews, and seven individual patient interviews. Provider roles included physicians, nurses, therapists, pharmacists, care coordinators, and social workers. Interviews were audio-recorded and transcribed verbatim, followed by iterative review of transcripts using qualitative coding and content analysis. Participants identified several barriers related to interprofessional collaboration during the discharge process, including systems insufficiencies (e.g., medication reconciliation process, staffing challenges); lack of understanding others' roles (e.g., unclear which provider should be completing the discharge summary); information-communication breakdowns (e.g., inaccurate information communicated to the primary medical team); patient issues (e.g., patient preferences misaligned with recommendations); and poor collaboration processes (e.g., lack of structured interprofessional rounds). These results provide context for targeting improvement in interprofessional collaboration in medicine units during patient discharges. Implementing changes in care delivery processes may increase potential for accurate and timely coordination, thereby improving the quality of care transitions.

  18. 3D Machine Vision and Additive Manufacturing: Concurrent Product and Process Development

    International Nuclear Information System (INIS)

    Ilyas, Ismet P

    2013-01-01

    The manufacturing environment rapidly changes in turbulence fashion. Digital manufacturing (DM) plays a significant role and one of the key strategies in setting up vision and strategic planning toward the knowledge based manufacturing. An approach of combining 3D machine vision (3D-MV) and an Additive Manufacturing (AM) may finally be finding its niche in manufacturing. This paper briefly overviews the integration of the 3D machine vision and AM in concurrent product and process development, the challenges and opportunities, the implementation of the 3D-MV and AM at POLMAN Bandung in accelerating product design and process development, and discusses a direct deployment of this approach on a real case from our industrial partners that have placed this as one of the very important and strategic approach in research as well as product/prototype development. The strategic aspects and needs of this combination approach in research, design and development are main concerns of the presentation.

  19. Ionization processes in a transient hollow cathode discharge before electric breakdown: statistical distribution

    International Nuclear Information System (INIS)

    Zambra, M.; Favre, M.; Moreno, J.; Wyndham, E.; Chuaqui, H.; Choi, P.

    1998-01-01

    The charge formation processes in a hollow cathode region (HCR) of transient hollow cathode discharge have been studied at the final phase. The statistical distribution that describe different processes of ionization have been represented by Gaussian distributions. Nevertheless, was observed a better representation of these distributions when the pressure is near a minimum value, just before breakdown

  20. Machine Learning.

    Science.gov (United States)

    Kirrane, Diane E.

    1990-01-01

    As scientists seek to develop machines that can "learn," that is, solve problems by imitating the human brain, a gold mine of information on the processes of human learning is being discovered, expert systems are being improved, and human-machine interactions are being enhanced. (SK)

  1. Preparation of carbon nanotubes by DC arc discharge process under reduced pressure in an air atmosphere

    International Nuclear Information System (INIS)

    Kim, Hyeon Hwan; Kim, Hyeong Joon

    2006-01-01

    Carbon nanotubes (CNTs) were grown using a DC arc discharge process in an air atmosphere and relevant process parameters were investigated. Without using an inert gas, multi walled carbon nanotubes could be synthesized in the deposit area of the cathode even in an air atmosphere, but single walled carbon nanotubes were not detected in the soot area despite using the same process conditions as in the inert gas. The air pressure for the highest yield of multi walled CNTs was 300 Torr. In addition, the quantity of amorphous carbon and other nanoparticles in the process chamber was remarkably reduced by this technique, showing that an efficient, feasible method of large scale CNT fabrication could be achieved by the arc discharge process

  2. Development of Mathematical Model for Lifecycle Management Process of New Type of Multirip Saw Machine

    Directory of Open Access Journals (Sweden)

    B. V. Phung

    2017-01-01

    variables. Based on the obtained unified information model, a multi-criterion problem has been formulated for the process of automated synthesis and rational choice to design and manufacture the multirip saw machine of new generation.

  3. Machining of Metal Matrix Composites

    CERN Document Server

    2012-01-01

    Machining of Metal Matrix Composites provides the fundamentals and recent advances in the study of machining of metal matrix composites (MMCs). Each chapter is written by an international expert in this important field of research. Machining of Metal Matrix Composites gives the reader information on machining of MMCs with a special emphasis on aluminium matrix composites. Chapter 1 provides the mechanics and modelling of chip formation for traditional machining processes. Chapter 2 is dedicated to surface integrity when machining MMCs. Chapter 3 describes the machinability aspects of MMCs. Chapter 4 contains information on traditional machining processes and Chapter 5 is dedicated to the grinding of MMCs. Chapter 6 describes the dry cutting of MMCs with SiC particulate reinforcement. Finally, Chapter 7 is dedicated to computational methods and optimization in the machining of MMCs. Machining of Metal Matrix Composites can serve as a useful reference for academics, manufacturing and materials researchers, manu...

  4. High-speed micro electrode tool fabrication by a twin-wire EDM system

    International Nuclear Information System (INIS)

    Sheu, Dong-Yea

    2008-01-01

    This paper describes a new machining process which combines twin-electro-wire together with two electro discharge circuits to rapidly fabricate micro electrode tools. The results show that transistor electro discharge and RC electro discharge circuits coexist to fabricate micro tools with rough and finish machining both on the same machine. Compared to conventional wire electro discharge grinding (WEDG) technology, a twin-wire EDM system that combines rough and finish machining into one process allows the efficient fabrication of micro tools. This high-speed micro tool fabrication process can be applied not only to micro electrode machining but also to micro punching tool and micro probing tips machining

  5. Student Modeling and Machine Learning

    OpenAIRE

    Sison , Raymund; Shimura , Masamichi

    1998-01-01

    After identifying essential student modeling issues and machine learning approaches, this paper examines how machine learning techniques have been used to automate the construction of student models as well as the background knowledge necessary for student modeling. In the process, the paper sheds light on the difficulty, suitability and potential of using machine learning for student modeling processes, and, to a lesser extent, the potential of using student modeling techniques in machine le...

  6. Investigations on the performance of ultrasonic drilling process with special reference to precision machining of advanced ceramics

    International Nuclear Information System (INIS)

    Adithan, M.; Laroiya, S.C.

    1997-01-01

    Advanced ceramics are assuming an important role in modern industrial technology. The applications and advantages of using advanced ceramics are many. There are several reasons why we should go in for machining of advanced ceramics after their compacting and sintering. These are discussed in this paper. However, precision machining of advanced ceramics must be economical. Critical technological issues to be addressed in cost effective machining of ceramics include design of machine tools, tooling arrangements, improved yield and precision, relationship of part dimensions and finish specifications to functional performance, and on-line inspection. Considering the above ultrasonic drilling is an important process used for the precision machining of advanced ceramics. Extensive studies on tool wear occurring in the ultrasonic machining of advanced ceramics have been carried out. In addition, production accuracy of holes drilled, surface finish obtained and surface integrity aspects in the machining of advanced ceramics have also been investigated. Some specific findings with reference to surface integrity are: a) there were no cracks or micro-cracks developed during or after ultrasonic machining of advanced ceramics, b) while machining Hexoloy alpha silicon carbide a recast layer is formed as a result of ultrasonic machining. This is attributed to the viscous heating resulting from high energy impacts during ultrasonic machining. While machining all other types of ceramics no such formation of recast layer was observed, and , c) there is no change in the microstructure of the advanced ceramics as a result of ultrasonic machining

  7. The Process of Parents' Decision-Making to Discharge Their Child against Medical Advice (DAMA: A grounded theory study

    Directory of Open Access Journals (Sweden)

    Nikbakht Nasrabadi Alireza

    2016-05-01

    Full Text Available Discharge against medical advice (DAMA refers to the phenomenon that patient or the patient’s surrogate decides to leave the hospital before the attending physician confirms the patient is discharged. Children are much more vulnerable to such discharges. This process occurs with different mechanisms that identifying them can be helpful in reducing this phenomenon. We aimed to explore the process of parents' decision-making to discharge their child against medical advice. In-depth, semi-structured interviews were conducted with 10 fathers, 10 mothers, 6 nurses and 3 physician assistants and the data were collected to the point of saturation. Grounded theory methodology was adopted for data collection and analysis. The results of qualitative analysis in the field of the parents' decisionmaking on the DAMA revealed 4 main themes: "lack of family-centered care", "disruption of the parenting process", "distrust to the medical team and center" and "psychological strategy of shirk responsibility for child care and treatment ". By providing family-centered care, adopting measures to empowering the families, developing the trust of parents to the health care team and developing a discharge plan from the beginning of children hospitalization with the cooperation of health care team and parents and considering all factors such as child's special health condition and parent's health related perceptions and beliefs, children will not be discharged against medical advice and will experience better outcomes.

  8. Electromagnetic effects in high-frequency capacitive discharges used for plasma processing

    International Nuclear Information System (INIS)

    Chabert, P

    2007-01-01

    In plasma processing, capacitive discharges have classically been operated in the electrostatic regime, for which the excitation wavelength λ is much greater than the electrode radius, and the plasma skin depth δ is much greater than the electrode spacing. However, contemporary reactors are larger and excited at higher frequencies which leads to strong electromagnetic effects. This paper gives a review of the work that has recently been carried out to carefully model and diagnose these effects, which cause major uniformity problems in plasma processing for microelectronics and flat panel displays industries. (topical review)

  9. Droop-Control-Based State-of-Charge Balancing Method for Charging and Discharging Process in Autonomous DC Microgrids

    DEFF Research Database (Denmark)

    Lu, Xiaonan; Sun, Kai; Guerrero, Josep M.

    2014-01-01

    in the discharging process. Meanwhile, the ESU with lower SoC absorbs more power in the charging process and delivers less power in the discharging process. Eventually, the SoC and injected/output power in each ESU are equalized. The exponent n for SoC is employed to regulate the balancing speed of the So......C and injected/output power. It is demonstrated that with higher exponent n, the balancing speed is higher. Simulation model comprised of three ESUs is implemented by using MATLAB/Simulink. The proposed method is verified by the simulation results....

  10. Modeling of heat and mass transfer processes during core melt discharge from a reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, T.N.; Bui, V.A.; Nourgaliev, R.R. [Royal Institute of Technology, Stockholm (Sweden)] [and others

    1995-09-01

    The objective of the paper is to study heat and mass transfer processes related to core melt discharge from a reactor vessel is a severe light water reactor accident. The phenomenology of the issue includes (1) melt convection in and heat transfer from the melt pool in contact with the vessel lower head wall; (2) fluid dynamics and heat transfer of the melt flow in the growing discharge hole; and (3) multi-dimensional heat conduction in the ablating lower head wall. A program of model development, validation and application is underway (i) to analyse the dominant physical mechanisms determining characteristics of the lower head ablation process; (ii) to develop and validate efficient analytic/computational methods for estimating heat and mass transfer under phase-change conditions in irregular moving-boundary domains; and (iii) to investigate numerically the melt discharge phenomena in a reactor-scale situation, and, in particular, the sensitivity of the melt discharge transient to structural differences and various in-vessel melt progression scenarios. The paper presents recent results of the analysis and model development work supporting the simulant melt-structure interaction experiments.

  11. A novel photochemical machining process for magnesium aerospace and biomedical microengineering applications

    International Nuclear Information System (INIS)

    Allen, D M; Simpkins, M; Almond, H

    2010-01-01

    Research was carried out to evaluate the feasibility of fabricating perforated (filigree) magnesium microcomponents with metal wire widths of the order of the metal thickness using a photochemical machining (PCM) process. Experimentally, it has been demonstrated for the first time that metal wire widths of 0.15 mm can be achieved within a 2D, 0.25 mm thick magnesium foil to fabricate microcomponents for use as micro air vehicle (MAV) wings or stents through a bespoke PCM process. This etching process differs significantly from the industrial etching process used currently to manufacture magnesium letterpress printing plates and embossing dies

  12. Analysis of paper machine process waters; Paperikoneen prosessivesianalytiikka - MPKT 09

    Energy Technology Data Exchange (ETDEWEB)

    Knuutinen, J.; Alen, R.; Harjula, P.; Kilpinen, J.; Pallonen, R.; Jurvela, V.

    1998-12-31

    The closure of paper machine circuits demands a better knowledge of the chemical structures and behaviour of organic compounds in pulp mill process waters. Nonionic or negatively charged detrimental substances (anionic trash) which will eventually cause runnability. Paper quality problems are of special interest. The main purpose of the project was to develop routine `fingerprint` analytical procedures to study various process waters. Our major interest was focused on low molecular weight carboxylic acids, carbohydrates and lignin based material. The `fingerprints` (chromatograms and electropherograms) can be used to differentiate various process waters or to find out changes between the composition of organic compounds in various stages of the papermaking process. Until now the most characteristic `fingerprints` were obtained by capillary zone electrophoresis (CZE) and by pyrolysis - gas chromatography - mass spectrometry (Py-GC/MS). Examples of using these techniques are briefly discussed. (orig.)

  13. Analysis of paper machine process waters; Paperikoneen prosessivesianalytiikka - MPKT 09

    Energy Technology Data Exchange (ETDEWEB)

    Knuutinen, J; Alen, R; Harjula, P; Kilpinen, J; Pallonen, R; Jurvela, V

    1999-12-31

    The closure of paper machine circuits demands a better knowledge of the chemical structures and behaviour of organic compounds in pulp mill process waters. Nonionic or negatively charged detrimental substances (anionic trash) which will eventually cause runnability. Paper quality problems are of special interest. The main purpose of the project was to develop routine `fingerprint` analytical procedures to study various process waters. Our major interest was focused on low molecular weight carboxylic acids, carbohydrates and lignin based material. The `fingerprints` (chromatograms and electropherograms) can be used to differentiate various process waters or to find out changes between the composition of organic compounds in various stages of the papermaking process. Until now the most characteristic `fingerprints` were obtained by capillary zone electrophoresis (CZE) and by pyrolysis - gas chromatography - mass spectrometry (Py-GC/MS). Examples of using these techniques are briefly discussed. (orig.)

  14. Harmony search optimization in dimensional accuracy of die sinking EDM process using SS316L stainless steel

    Science.gov (United States)

    Deris, A. M.; Zain, A. M.; Sallehuddin, R.; Sharif, S.

    2017-09-01

    Electric discharge machine (EDM) is one of the widely used nonconventional machining processes for hard and difficult to machine materials. Due to the large number of machining parameters in EDM and its complicated structural, the selection of the optimal solution of machining parameters for obtaining minimum machining performance is remain as a challenging task to the researchers. This paper proposed experimental investigation and optimization of machining parameters for EDM process on stainless steel 316L work piece using Harmony Search (HS) algorithm. The mathematical model was developed based on regression approach with four input parameters which are pulse on time, peak current, servo voltage and servo speed to the output response which is dimensional accuracy (DA). The optimal result of HS approach was compared with regression analysis and it was found HS gave better result y giving the most minimum DA value compared with regression approach.

  15. Characteristics of a large reversed field pinch machine, TPE-RX

    International Nuclear Information System (INIS)

    Yagi, Y.; Shimada, T.; Hirano, Y.; Sekine, S.; Sakakita, H.; Koguchi, H.; Kiyama, S.; Maejima, Y.; Hirota, I.; Hayase, K.; Sato, Y.; Sugisaki, K.; Oyabu, I.; Hasegawa, M.; Yamane, M.; Sato, F.; Kuno, K.; Minato, T.; Kiryu, A.; Takagi, S.; Sako, K.; Kudough, F.; Urata, K.; Orita, J.; Kaguchi, H.; Sago, H.; Ue, K.

    1998-01-01

    Construction of a new, large reversed field pinch (RFP) machine called TPE-RX was complete at the end of 1997 as a successor of the previous TPE-1RM20 machine at the Electrotechnical Laboratory (ETL). RFP configuration has been successfully obtained in March 1998. The optimization of the operating condition and discharge cleaning of the wall are presently undergoing with the first physics experiments. This paper is the first report of TPE-RX especially on the goals, overall machine characteristics and the present status. Other papers accompanying with this one will present specific topics on the magnetic coil system and the vacuum vessel system. (author)

  16. Characteristics of a large reversed field pinch machine, TPE-RX

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Y.; Shimada, T.; Hirano, Y.; Sekine, S.; Sakakita, H.; Koguchi, H.; Kiyama, S.; Maejima, Y.; Hirota, I.; Hayase, K.; Sato, Y.; Sugisaki, K. [Electrotechnical Lab., Tsukuba-shi, Ibaraki (Japan); Oyabu, I.; Hasegawa, M.; Yamane, M.; Sato, F.; Kuno, K.; Minato, T.; Kiryu, A.; Takagi, S.; Sako, K. [Mitsubishi Electric Corp. (Japan); Kudough, F.; Urata, K.; Orita, J.; Kaguchi, H.; Sago, H.; Ue, K. [Mitsubishi Heavy Industries Ltd. (Japan)

    1998-07-01

    Construction of a new, large reversed field pinch (RFP) machine called TPE-RX was complete at the end of 1997 as a successor of the previous TPE-1RM20 machine at the Electrotechnical Laboratory (ETL). RFP configuration has been successfully obtained in March 1998. The optimization of the operating condition and discharge cleaning of the wall are presently undergoing with the first physics experiments. This paper is the first report of TPE-RX especially on the goals, overall machine characteristics and the present status. Other papers accompanying with this one will present specific topics on the magnetic coil system and the vacuum vessel system. (author)

  17. Consequences of heavy machining vis à vis the machine structure – typical applications

    International Nuclear Information System (INIS)

    Leuch, M

    2011-01-01

    StarragHeckert has built 5 axis machines since the middle of the 80s for heavy duty milling. The STC-Centres are predominantly utilised in the aerospace industry, especially for milling structural workpieces, casings or Impellers made out of titanium and steel. StarragHeckert has a history of building machines for high performance milling. The machining of these components includes high forces thus spreading the wheat from the chaff. Although FEM calculations and multi-body simulations are carried out in the early stages of development, this paper will illustrate how the real process stability with modal analysis and cutting trials is determined. The experiment observes chatter stability to identify if the machine devices are adequate for the application or if the design has to be improved. Machining parameters of industrial applications are demonstrating the process stability for five axis heavy duties milling of StarragHeckert machine.

  18. Influence of electrical discharge machining on the tribological characteristics of WC-Co alloys; Influencia de la electroerosion sobre las caracteristicas tribologicas de materiales compuestos WC-Co

    Energy Technology Data Exchange (ETDEWEB)

    Casas, B.; Martinez, E.; Esteve, J.; Anglada, M.; Llanes, L.

    2001-07-01

    The influence of electrical discharge machining (EDM) on the abrasive wear resistance of two WC-10 %{sub w}tCo cemented carbides with different carbide grain size has been studied. Different surface finish conditions were evaluated corresponding to sequential EDM as well as grinding and polishing with diamond. The abrasive wear resistance was determined through microscratch measurements using a nano indentation system. Contrary to the results obtained from hardness measurements, this techniques allows to discern tribological differences among the distinct surface finish conditions studied. Finally, the abrasive wear resistance degradation associated with sequential EDM is discussed as a function of microstructure in terms of a damage parameters. (Author) 9 refs.

  19. Charging machine

    International Nuclear Information System (INIS)

    Medlin, J.B.

    1976-01-01

    A charging machine for loading fuel slugs into the process tubes of a nuclear reactor includes a tubular housing connected to the process tube, a charging trough connected to the other end of the tubular housing, a device for loading the charging trough with a group of fuel slugs, means for equalizing the coolant pressure in the charging trough with the pressure in the process tubes, means for pushing the group of fuel slugs into the process tube and a latch and a seal engaging the last object in the group of fuel slugs to prevent the fuel slugs from being ejected from the process tube when the pusher is removed and to prevent pressure liquid from entering the charging machine. 3 claims, 11 drawing figures

  20. Machining with abrasives

    CERN Document Server

    Jackson, Mark J

    2011-01-01

    Abrasive machining is key to obtaining the desired geometry and surface quality in manufacturing. This book discusses the fundamentals and advances in the abrasive machining processes. It provides a complete overview of developing areas in the field.

  1. Shock compression of glow discharge polymer (GDP): density functional theory (DFT) simulations and experiments on Sandia's Z machine

    Science.gov (United States)

    Cochrane, Kyle R.; Ao, T.; Lemke, R. W.; Hamel, S.; Schoff, M. E.; Blue, B. E.; Herrmann, M. C.; Mattsson, T. R.

    2014-03-01

    Glow discharge polymer (GDP) is used extensively as capsule/ablation material in inertial confinement fusion (ICF) capsules. Accurate knowledge of the equation of state (EOS) under shock and release is particularly important for high-fidelity design, analysis, and optimization of ICF experiments since the capsule material is subject to several converging shocks as well as release towards the cryogenic fuel. We performed Density Functional Theory (DFT) based quantum molecular dynamics (QMD) simulations, to gain knowledge of the behavior of GDP - for example regarding the role of chemical dissociation during shock compression, we find that the dissociation regime along the Hugoniot extends from 50 GPa to 250 GPa. The shock pressures calculated from DFT are compared experimental data taken at Sandia's Z-machine. The GDP samples were grown in a planar geometry to improve the sample quality and maintained in a nitrogen atmosphere following manufacturing, thus allowing for a direct comparison to the DFT/QMD simulations. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under contract DE-AC04-94AL85000.

  2. A zero-liquid-discharge scheme for vanadium extraction process by electrodialysis-based technology

    International Nuclear Information System (INIS)

    Wang, Meng; Xing, Hong-bo; Jia, Yu-xiang; Ren, Qing-chun

    2015-01-01

    Highlights: • A zero discharge scheme for vanadiumextraction process is proposed. • The water transport in the electrodialysis process is analyzed quantitatively. • The influence of concentration ratio in the electrodialysis process is explored. - Abstract: The sharp increase of demand for vanadium makes the treatment of the wastewater generated from its extraction process become an urgent problem. In this study, a hybrid process coupling the electrodialysis with the cooling crystallization is put forward for upgrading the conventional vanadium extraction process to zero discharge. Accordingly, the objective of this work lies in evaluating the feasibility of the proposed scheme on the basis of a systematic study on the influences of membrane types and operating parameters on the electrodilysis performance. The results indicate that the relative importance of osmosis and electro-osmosis to overall water transport is closely related to the applied current density. The increase in the applied current density and the decrease in the mole ratio of water and salt flux will contribute to the concentration degree. Moreover, it is worth noting that a relatively large concentration ratio can result in the remarkable decrease of current efficiency and increase of energy consumption. In general, the reclamation scheme can easily achieve the recovered water with relatively low salt content and the highly concentrated Na 2 SO 4 solution (e.g., 300 g/L) for producing high-purity sodium sulphate crystals.

  3. A zero-liquid-discharge scheme for vanadium extraction process by electrodialysis-based technology

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Meng, E-mail: wangmeng@ouc.edu.cn [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education (China); College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100 (China); Xing, Hong-bo; Jia, Yu-xiang [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education (China); College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100 (China); Ren, Qing-chun [Beijing Unisplendour Empyreal Environmental Engineering Technology Co. Ltd., Beijing 100083 (China)

    2015-12-30

    Highlights: • A zero discharge scheme for vanadiumextraction process is proposed. • The water transport in the electrodialysis process is analyzed quantitatively. • The influence of concentration ratio in the electrodialysis process is explored. - Abstract: The sharp increase of demand for vanadium makes the treatment of the wastewater generated from its extraction process become an urgent problem. In this study, a hybrid process coupling the electrodialysis with the cooling crystallization is put forward for upgrading the conventional vanadium extraction process to zero discharge. Accordingly, the objective of this work lies in evaluating the feasibility of the proposed scheme on the basis of a systematic study on the influences of membrane types and operating parameters on the electrodilysis performance. The results indicate that the relative importance of osmosis and electro-osmosis to overall water transport is closely related to the applied current density. The increase in the applied current density and the decrease in the mole ratio of water and salt flux will contribute to the concentration degree. Moreover, it is worth noting that a relatively large concentration ratio can result in the remarkable decrease of current efficiency and increase of energy consumption. In general, the reclamation scheme can easily achieve the recovered water with relatively low salt content and the highly concentrated Na{sub 2}SO{sub 4} solution (e.g., 300 g/L) for producing high-purity sodium sulphate crystals.

  4. Artificial Intelligence Learning Semantics via External Resources for Classifying Diagnosis Codes in Discharge Notes.

    Science.gov (United States)

    Lin, Chin; Hsu, Chia-Jung; Lou, Yu-Sheng; Yeh, Shih-Jen; Lee, Chia-Cheng; Su, Sui-Lung; Chen, Hsiang-Cheng

    2017-11-06

    Automated disease code classification using free-text medical information is important for public health surveillance. However, traditional natural language processing (NLP) pipelines are limited, so we propose a method combining word embedding with a convolutional neural network (CNN). Our objective was to compare the performance of traditional pipelines (NLP plus supervised machine learning models) with that of word embedding combined with a CNN in conducting a classification task identifying International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) diagnosis codes in discharge notes. We used 2 classification methods: (1) extracting from discharge notes some features (terms, n-gram phrases, and SNOMED CT categories) that we used to train a set of supervised machine learning models (support vector machine, random forests, and gradient boosting machine), and (2) building a feature matrix, by a pretrained word embedding model, that we used to train a CNN. We used these methods to identify the chapter-level ICD-10-CM diagnosis codes in a set of discharge notes. We conducted the evaluation using 103,390 discharge notes covering patients hospitalized from June 1, 2015 to January 31, 2017 in the Tri-Service General Hospital in Taipei, Taiwan. We used the receiver operating characteristic curve as an evaluation measure, and calculated the area under the curve (AUC) and F-measure as the global measure of effectiveness. In 5-fold cross-validation tests, our method had a higher testing accuracy (mean AUC 0.9696; mean F-measure 0.9086) than traditional NLP-based approaches (mean AUC range 0.8183-0.9571; mean F-measure range 0.5050-0.8739). A real-world simulation that split the training sample and the testing sample by date verified this result (mean AUC 0.9645; mean F-measure 0.9003 using the proposed method). Further analysis showed that the convolutional layers of the CNN effectively identified a large number of keywords and automatically

  5. Non linear seismic analysis of charge/discharge machine

    International Nuclear Information System (INIS)

    Dostal, M.; Trbojevic, V.M.; Nobile, M.

    1987-01-01

    The main conclusions of the seismic analysis of the Latina CDM are: i. The charge machine has been demonstrated to be capable of withstanding the effects of a 0.1 g earthquake. Stresses and displacements were all within allowable limits and the stability criteria were fully satisfied for all positions of the cross-travel bogie on the gantry. ii. Movements due to loss of friction between the cross-travel bogie wheels and the rail was found to be small, i.e. less than 2 mm for all cases considered. The modes of rocking of the fixed and hinged legs preclude any possibility of excessive movement between the long travel bogie wheels and the rail. iii. The non-linear analysis incorporating contact and friction has given more realistic results than any of the linear verification analyses. The method of analysis indicates that even the larger structures can be efficiently solved on a mini computer for a long forcing input (16 s). (orig.)

  6. Monte Carlo point process estimation of electromyographic envelopes from motor cortical spikes for brain-machine interfaces

    Science.gov (United States)

    Liao, Yuxi; She, Xiwei; Wang, Yiwen; Zhang, Shaomin; Zhang, Qiaosheng; Zheng, Xiaoxiang; Principe, Jose C.

    2015-12-01

    Objective. Representation of movement in the motor cortex (M1) has been widely studied in brain-machine interfaces (BMIs). The electromyogram (EMG) has greater bandwidth than the conventional kinematic variables (such as position, velocity), and is functionally related to the discharge of cortical neurons. As the stochastic information of EMG is derived from the explicit spike time structure, point process (PP) methods will be a good solution for decoding EMG directly from neural spike trains. Previous studies usually assume linear or exponential tuning curves between neural firing and EMG, which may not be true. Approach. In our analysis, we estimate the tuning curves in a data-driven way and find both the traditional functional-excitatory and functional-inhibitory neurons, which are widely found across a rat’s motor cortex. To accurately decode EMG envelopes from M1 neural spike trains, the Monte Carlo point process (MCPP) method is implemented based on such nonlinear tuning properties. Main results. Better reconstruction of EMG signals is shown on baseline and extreme high peaks, as our method can better preserve the nonlinearity of the neural tuning during decoding. The MCPP improves the prediction accuracy (the normalized mean squared error) 57% and 66% on average compared with the adaptive point process filter using linear and exponential tuning curves respectively, for all 112 data segments across six rats. Compared to a Wiener filter using spike rates with an optimal window size of 50 ms, MCPP decoding EMG from a point process improves the normalized mean square error (NMSE) by 59% on average. Significance. These results suggest that neural tuning is constantly changing during task execution and therefore, the use of spike timing methodologies and estimation of appropriate tuning curves needs to be undertaken for better EMG decoding in motor BMIs.

  7. Study on Integration Treatment Technology of Waste Emulsion from Machining Processing

    OpenAIRE

    Xin-dong Li; Wan-fu Huang

    2013-01-01

    The study studied the treatment technology of high concentration emulsion wastewater in metal machining plant. By analyzing the properties of emulsion wastewater, the author used the combination process of membrane technology + Fe-C micro-electrolysis + membrane bioreactor to treat the wastewater. Through the ceramic membrane, the removal rate of CODCr can reach 95%. Fe-C micro-electrolysis treatment can improve the biodegradability of wastewater, lastly through the membrane bioreactor treatm...

  8. DETERMINATION AND ANALYSIS OF CHANGE POWER CHARACTER AND POWER PARAMETERS OF EARTHMOVING- TRANSPORT WORKING PROCESS MACHINES OF CYCLIC ACTION

    Directory of Open Access Journals (Sweden)

    KHMARA L. A.

    2017-05-01

    Full Text Available Summary. Raising of problem. Efficiency of implementation working process an earthmoving-transport machine on digging of soil depends on complete realization of power equipment and hauling properties working equipment during implementation this operation. Most effective will be the mode of digging when from his beginning to the final stage a power equipment will realize nominal power, and working equipment maximal KKD at that skidding of mover does not exceed the defined possible value. However, for the traditional constructions of earthmoving-transport machines cyclic action, for such, as a drag shovel, bulldozer, realizing these terms is heavy. The feature of process digging consists in the increase of resistance to digging soil from the ego of the initial stage to eventual when hauling possibilities of machine will be maximally realized. Therefore the calculation of power equipment takes into account the power indexes of machine on the final stage of digging. Thus the unstationarity of working process results in the under exploitation of power equipment machine and hereupon appearance her bits and pieces. The size of bits and pieces power depends on the stage digging of soil, his physical and mechanical properties, terms cooperation of working equipment with the surface of motion. One of methods realization surplus power, this use it for the drive intensifiers working process of earthmoving-transport machines. Therefore for the effective choice parameters of intensifier, his office hours it is necessary to know the size of bits and pieces of power and character her change during digging of soil. The purpose of the article. Development of methodology determination remaining power equipment an earthmoving-transport machine on the example self-propelled drags hovel, character her change at digging of soil taking into account physical and mechanical properties of soil and terms cooperation working equipment with the surface of motion. Conclusion

  9. Development of iFab (Instant Foundry Adaptive Through Bits) Manufacturing Process and Machine Library

    Science.gov (United States)

    2012-08-01

    input shaft , pump, gearbox, rack & pinion… Wheel assy wheel, tire, drive hub, lug, spindle , bearing… Braking brake disc/drum, caliper, friction...processes and associated machines is provided. Progress with respect to Task 3 (to design and develop the Manufacturing Capability Modeling Environment...of Military Ground Vehicle Design , Materials, and Processes ............... 4 4.2 Task 2 Manufacturing Knowledge Characterization

  10. Energy scaling of focused discharges with enhanced reactivity

    International Nuclear Information System (INIS)

    Bortolotti, A.; Broglio, L.; Brzosko, J.S.; Dechiara, P.; Kilic, H.; Mezzetti, F.; Montanari, T.; Nardi, V.; Powell, C.; Woo, H.

    1993-01-01

    The neutron yield per pulse (Y n ) from D + D reactions, the thickness (δ) and speed (v s ) of the leading plasma current sheath in the electrode gap and the multiplicity (υ) of current sheaths in one discharge are monitored in two plasma focus machines operating at different levels of the capacitor bank energy 5 kJ ≤ W ≤ 10 kJ and 12 kJ ≤ W ≤ 30 kJ, respectively .The time spacing (Δt) between leading (CS 1 ) and trailing (CS 2 ) current sheath is also recorded up to a CS distance r = 1.7 cm from the center electrode (anode) axis. The scaling of Y n ∼ A W 2 is tested for PF-Mather-geometry machines with a field distortion element (FDE) inserted at the breech side of the electrode gap which increases Y n (i.e. the constant A) by a factor ≥ 5, above the Y n value of the same machines, operating under identical conditions, but without FDE, Similar scaling tests on Y n = Y n (W, δ, V s , υ, Δt) confirm that Δt is one of the controlling parameters with strong effects on Y n . Spectra and intensities of ion and ion cluster emission from the pinch are also routinely observed in each discharge, in order to determine the relative weight of each controlling parameter for a variety of PF applications

  11. Optimisation of wire-cut EDM process parameter by Grey-based response surface methodology

    Science.gov (United States)

    Kumar, Amit; Soota, Tarun; Kumar, Jitendra

    2018-03-01

    Wire electric discharge machining (WEDM) is one of the advanced machining processes. Response surface methodology coupled with Grey relation analysis method has been proposed and used to optimise the machining parameters of WEDM. A face centred cubic design is used for conducting experiments on high speed steel (HSS) M2 grade workpiece material. The regression model of significant factors such as pulse-on time, pulse-off time, peak current, and wire feed is considered for optimising the responses variables material removal rate (MRR), surface roughness and Kerf width. The optimal condition of the machining parameter was obtained using the Grey relation grade. ANOVA is applied to determine significance of the input parameters for optimising the Grey relation grade.

  12. Unsupervised process monitoring and fault diagnosis with machine learning methods

    CERN Document Server

    Aldrich, Chris

    2013-01-01

    This unique text/reference describes in detail the latest advances in unsupervised process monitoring and fault diagnosis with machine learning methods. Abundant case studies throughout the text demonstrate the efficacy of each method in real-world settings. The broad coverage examines such cutting-edge topics as the use of information theory to enhance unsupervised learning in tree-based methods, the extension of kernel methods to multiple kernel learning for feature extraction from data, and the incremental training of multilayer perceptrons to construct deep architectures for enhanced data

  13. State-space prediction of spring discharge in a karst catchment in southwest China

    Science.gov (United States)

    Li, Zhenwei; Xu, Xianli; Liu, Meixian; Li, Xuezhang; Zhang, Rongfei; Wang, Kelin; Xu, Chaohao

    2017-06-01

    Southwest China represents one of the largest continuous karst regions in the world. It is estimated that around 1.7 million people are heavily dependent on water derived from karst springs in southwest China. However, there is a limited amount of water supply in this region. Moreover, there is not enough information on temporal patterns of spring discharge in the area. In this context, it is essential to accurately predict spring discharge, as well as understand karst hydrological processes in a thorough manner, so that water shortages in this area could be predicted and managed efficiently. The objectives of this study were to determine the primary factors that govern spring discharge patterns and to develop a state-space model to predict spring discharge. Spring discharge, precipitation (PT), relative humidity (RD), water temperature (WD), and electrical conductivity (EC) were the variables analyzed in the present work, and they were monitored at two different locations (referred to as karst springs A and B, respectively, in this paper) in a karst catchment area in southwest China from May to November 2015. Results showed that a state-space model using any combinations of variables outperformed a classical linear regression, a back-propagation artificial neural network model, and a least square support vector machine in modeling spring discharge time series for karst spring A. The best state-space model was obtained by using PT and RD, which accounted for 99.9% of the total variation in spring discharge. This model was then applied to an independent data set obtained from karst spring B, and it provided accurate spring discharge estimates. Therefore, state-space modeling was a useful tool for predicting spring discharge in karst regions in southwest China, and this modeling procedure may help researchers to obtain accurate results in other karst regions.

  14. Investigation of the removing process of cathode material in micro-EDM using an atomistic-continuum model

    International Nuclear Information System (INIS)

    Guo, Jianwen; Zhang, Guojun; Huang, Yu; Ming, Wuyi; Liu, Min; Huang, Hao

    2014-01-01

    Highlights: • An atomistic-continuum computational simulation model for single-discharge micro-EDM process of Cu cathode is constructed. • Cathode material is removed mainly in the form of single atoms or small clusters in micro-EDM. • Electric action leads to the formation of peaks on the surface of crater. • Removing process of cathode material under the hybrid action combining the thermal action and the electric action is studied, and the strength of either action needed for material to remove is much reduced. - Abstract: In micro-electrical discharge machining (micro-EDM), the discharge duration is ultra-short, and both the electric action and the thermal action by the discharge channel play important roles in the removing process of cathode material. However, in most researches on the machining mechanism of micro-EDM, only the thermal action is concerned. In this article, a combined atomistic-continuum modeling method in which the two-temperature model and the molecular dynamics simulation model are integrated is used to construct the simulation model for cathode in single-discharge micro-EDM process. With this simulation model, removing processes of Cu cathode material in micro-EDM under pure thermal action, pure electric action and the combination of them are investigated in a simulative way. By analyzing evolutions of temperature, stress and micro-structure of material as well as the dynamical behaviors of material in the removing process, mechanisms of the cathode material removal and crater formation are revealed. In addition, the removing process of cathode material under the combination of pure thermal action and pure electric action is compared with those under the two pure actions respectively to analyze the interactive effect between the thermal action and the electric action

  15. High performance discharges and capabilities in Alcator C-Mod

    International Nuclear Information System (INIS)

    Porkolab, M.

    1996-01-01

    Alcator C-Mod is a compact, diverted, shaped, high magnetic field (B = 9 T) tokamak operating at the Massachusetts Institute of Technology Plasma Fusion Center. The machine interior is all metallic, and the walls and divertor region are covered with molybdenum tiles. The vacuum vessel is a continuous, thick wall stainless steel construction, prototypical of future fusion devices (e.g., ITER). Typical discharge cleaning utilizes ECDC, or electron-cyclotron discharge cleaning, in the steady state at low magnetic field (0.0875 T). While its dimensions are compact (R = 0.67 m, a = 0.22 m, K = 1.8), C-Mod is designed to operate up to 2.5 MA at 9.0 T magnetic field. To present date the machine has operated at currents up to 1.5 MA at B = 5.3 T, and magnetic fields up to 8.0 T at I p = 1.2 MA. Due to the high current density, line average densities of 4.0 x 10 20 m -3 are obtained with gas fueling, and peak densities in excess of 1.0 x 10 21 m -3 have been obtained with pellet fueling. Typical pulse lengths are up to 2.0 seconds, with a flat-top of typically 1.0 sec. Presently the device is equipped with 4.0 MW of ICRF heating power operating at 80 MHz, but this capability is being upgraded to 8.0 MW with the addition of 4.0 MW of tunable ICRF power operating at 40.80 MHz. A 20 pellet/pulse deuterium injector is operational, and a 4 pellet Li injector is also operational. To reduce the influx of metallic impurities during high power operation, recently boronization of the machine interior was begun prior to plasma discharges, this allowed plasma operation with full auxiliary power capability without excessive radiative power losses from the plasma core. 7 refs

  16. Support Vector Hazards Machine: A Counting Process Framework for Learning Risk Scores for Censored Outcomes.

    Science.gov (United States)

    Wang, Yuanjia; Chen, Tianle; Zeng, Donglin

    2016-01-01

    Learning risk scores to predict dichotomous or continuous outcomes using machine learning approaches has been studied extensively. However, how to learn risk scores for time-to-event outcomes subject to right censoring has received little attention until recently. Existing approaches rely on inverse probability weighting or rank-based regression, which may be inefficient. In this paper, we develop a new support vector hazards machine (SVHM) approach to predict censored outcomes. Our method is based on predicting the counting process associated with the time-to-event outcomes among subjects at risk via a series of support vector machines. Introducing counting processes to represent time-to-event data leads to a connection between support vector machines in supervised learning and hazards regression in standard survival analysis. To account for different at risk populations at observed event times, a time-varying offset is used in estimating risk scores. The resulting optimization is a convex quadratic programming problem that can easily incorporate non-linearity using kernel trick. We demonstrate an interesting link from the profiled empirical risk function of SVHM to the Cox partial likelihood. We then formally show that SVHM is optimal in discriminating covariate-specific hazard function from population average hazard function, and establish the consistency and learning rate of the predicted risk using the estimated risk scores. Simulation studies show improved prediction accuracy of the event times using SVHM compared to existing machine learning methods and standard conventional approaches. Finally, we analyze two real world biomedical study data where we use clinical markers and neuroimaging biomarkers to predict age-at-onset of a disease, and demonstrate superiority of SVHM in distinguishing high risk versus low risk subjects.

  17. Characterizing the Effects of Micro Electrical Discharge Machining Parameters on Material Removal Rate during Micro EDM Drilling of Tungsten Carbide (WC-Co)

    Science.gov (United States)

    Hourmand, Mehdi; Sarhan, Ahmed A. D.; Sayuti, Mohd

    2017-10-01

    Micro-dies, molds and miniaturized products can be manufactured using micro EDM process. In this research, EDM machine and on-machine fabricated CuW micro-electrode were utilized to produce the micro holes in WC-16%Co. The effects of voltage, current, pulse ON time, pulse OFF time, capacitor and rotating speed on Material removal rate (MRR) during micro EDM drilling of WC-16% Co was analyzed using fractional factorial design method. ANOVA analysis shows that increasing current, rotating speed, capacitor and decreasing voltage and pulse ON time lead to the amplify in MRR. It was found that out of all the factors, current and capacitor had the most significant effect on MRR, while the effect of capacitor was more than current. Eventually, it can be concluded that micro holes can be produced using EDM machine.

  18. A Comparison of Inductive Sensors in the Characterization of Partial Discharges and Electrical Noise Using the Chromatic Technique.

    Science.gov (United States)

    Ardila-Rey, Jorge Alfredo; Montaña, Johny; de Castro, Bruno Albuquerque; Schurch, Roger; Covolan Ulson, José Alfredo; Muhammad-Sukki, Firdaus; Bani, Nurul Aini

    2018-03-29

    Partial discharges (PDs) are one of the most important classes of ageing processes that occur within electrical insulation. PD detection is a standardized technique to qualify the state of the insulation in electric assets such as machines and power cables. Generally, the classical phase-resolved partial discharge (PRPD) patterns are used to perform the identification of the type of PD source when they are related to a specific degradation process and when the electrical noise level is low compared to the magnitudes of the PD signals. However, in practical applications such as measurements carried out in the field or in industrial environments, several PD sources and large noise signals are usually present simultaneously. In this study, three different inductive sensors have been used to evaluate and compare their performance in the detection and separation of multiple PD sources by applying the chromatic technique to each of the measured signals.

  19. The transition mechanism from a symmetric single period discharge to a period-doubling discharge in atmospheric helium dielectric-barrier discharge

    International Nuclear Information System (INIS)

    Zhang, Dingzong; Wang, Yanhui; Wang, Dezhen

    2013-01-01

    Period-doubling and chaos phenomenon have been frequently observed in atmospheric-pressure dielectric-barrier discharges. However, how a normal single period discharge bifurcates into period-doubling state is still unclear. In this paper, by changing the driving frequency, we study numerically the transition mechanisms from a normal single period discharge to a period-doubling state using a one-dimensional self-consistent fluid model. The results show that before a discharge bifurcates into a period-doubling state, it first deviates from its normal operation and transforms into an asymmetric single period discharge mode. Then the weaker discharge in this asymmetric discharge will be enhanced gradually with increasing of the frequency until it makes the subsequent discharge weaken and results in the discharge entering a period-doubling state. In the whole transition process, the spatial distribution of the charged particle density and the electric field plays a definitive role. The conclusions are further confirmed by changing the gap width and the amplitude of the applied voltage

  20. The transition mechanism from a symmetric single period discharge to a period-doubling discharge in atmospheric helium dielectric-barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dingzong; Wang, Yanhui; Wang, Dezhen [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2013-06-15

    Period-doubling and chaos phenomenon have been frequently observed in atmospheric-pressure dielectric-barrier discharges. However, how a normal single period discharge bifurcates into period-doubling state is still unclear. In this paper, by changing the driving frequency, we study numerically the transition mechanisms from a normal single period discharge to a period-doubling state using a one-dimensional self-consistent fluid model. The results show that before a discharge bifurcates into a period-doubling state, it first deviates from its normal operation and transforms into an asymmetric single period discharge mode. Then the weaker discharge in this asymmetric discharge will be enhanced gradually with increasing of the frequency until it makes the subsequent discharge weaken and results in the discharge entering a period-doubling state. In the whole transition process, the spatial distribution of the charged particle density and the electric field plays a definitive role. The conclusions are further confirmed by changing the gap width and the amplitude of the applied voltage.

  1. Electric discharges in an electrostatic machine. Analysis of work by J.A. Staniforth and C.M. Cooke

    International Nuclear Information System (INIS)

    Frick, G.

    1988-04-01

    Electric discharges, stored energy, and transient phenomena in electrostatic accelerators are reviewed in the framework of the Vivitron project. Before discharge, predischarge phenomena governed by the value of the electric field and the geometry appear. Transient phenomena appear after discharge. The alternance lasts from 20 to 100 nsec. Waves propagating along the electrodes can cause other discharges, after a time lapse. Overvoltages of a factor of 1.5 to 2 can appear. If they provoke fresh discharges, formation times may be such that in many cases the overvoltages remain present throughout times of this order of magnitude. The behavior of a solid insulator under such conditions is unknown, and the behavior inside the tube is poorly understood. If the initial arc is produced outside the tube, a large part of the available energy will be dissipated before the arrival of the overvoltage at the sensitive part of the tube. If the discharge begins in the tube, it will propagate outside because of the short circuit created in the tube by the discharges. For rapid phenomena, it is possible that the spark gaps may not always operate efficiently, especially for vacuum discharges [fr

  2. Humanizing machines: Anthropomorphization of slot machines increases gambling.

    Science.gov (United States)

    Riva, Paolo; Sacchi, Simona; Brambilla, Marco

    2015-12-01

    Do people gamble more on slot machines if they think that they are playing against humanlike minds rather than mathematical algorithms? Research has shown that people have a strong cognitive tendency to imbue humanlike mental states to nonhuman entities (i.e., anthropomorphism). The present research tested whether anthropomorphizing slot machines would increase gambling. Four studies manipulated slot machine anthropomorphization and found that exposing people to an anthropomorphized description of a slot machine increased gambling behavior and reduced gambling outcomes. Such findings emerged using tasks that focused on gambling behavior (Studies 1 to 3) as well as in experimental paradigms that included gambling outcomes (Studies 2 to 4). We found that gambling outcomes decrease because participants primed with the anthropomorphic slot machine gambled more (Study 4). Furthermore, we found that high-arousal positive emotions (e.g., feeling excited) played a role in the effect of anthropomorphism on gambling behavior (Studies 3 and 4). Our research indicates that the psychological process of gambling-machine anthropomorphism can be advantageous for the gaming industry; however, this may come at great expense for gamblers' (and their families') economic resources and psychological well-being. (c) 2015 APA, all rights reserved).

  3. A new workstation based man/machine interface system for the JT-60 Upgrade

    International Nuclear Information System (INIS)

    Yonekawa, I.; Shimono, M.; Totsuka, T.; Yamagishi, K.

    1992-01-01

    Development of a new man/machine interface system was stimulated by the requirements of making the JT-60 operator interface more 'friendly' on the basis of the past five-year operational experience. Eleven Sun/3 workstations and their supervisory mini-computer HIDIC V90/45 are connected through the standard network; Ethernet. The network is also connected to the existing 'ZENKEI' mini-computer system through the shared memory on the HIDIC V90/45 mini-computer. Improved software, such as automatic setting of the discharge conditions, consistency check among the related parameters and easy operation for discharge result data display, offered the 'user-friendly' environments. This new man/machine interface system leads to the efficient operation of the JT-60. (author)

  4. Process automation using combinations of process and machine control technologies with application to a continuous dissolver

    International Nuclear Information System (INIS)

    Spencer, B.B.; Yarbro, O.O.

    1991-01-01

    Operation of a continuous rotary dissolver, designed to leach uranium-plutonium fuel from chopped sections of reactor fuel cladding using nitric acid, has been automated. The dissolver is a partly continuous, partly batch process that interfaces at both ends with batchwise processes, thereby requiring synchronization of certain operations. Liquid acid is fed and flows through the dissolver continuously, whereas chopped fuel elements are fed to the dissolver in small batches and move through the compartments of the dissolver stagewise. Sequential logic (or machine control) techniques are used to control discrete activities such as the sequencing of isolation valves. Feedback control is used to control acid flowrates and temperatures. Expert systems technology is used for on-line material balances and diagnostics of process operation. 1 ref., 3 figs

  5. Experimental Investigation on the Performance of Grinding Assisted Electrochemical Discharge Drilling of Glass

    Directory of Open Access Journals (Sweden)

    Ladeesh V G

    2016-01-01

    Full Text Available Grinding assisted electrochemical discharge drilling (G-ECDD is a novel technique for producing micro and macro holes in brittle materials including advanced ceramics and glass, both efficiently and economically. G-ECDD involves the use of a rotating diamond core drill as the tool in a normal electrochemical discharge machine setup. The material removal happens by a combination of thermal melting due to electric discharges, followed by grinding action of diamond grits and chemical etching action. In this study, the effect of process parameters like voltage, duty cycle, cycle time and electrolyte concentration on material removed (MR was investigated systematically using response surface methodology. Analysis of variance was performed to identify the significant factors and their percentage contribution. The most significant factor was found to be duty cycle followed by voltage, cycle time and concentration. A quadratic mathematical model was developed to predict MR. Tool wear was found for different frequencies and voltages. Higher tool wear was observed for high frequency above 5kHz pulsed DC supply at high voltage of 110V. Tool wear at the end face of the tool was found to be a significant problem affecting the tool life.

  6. Processing of Niobium-Lined M240 Machine Gun Barrels

    Science.gov (United States)

    2014-11-01

    Fig. 5 Finished niobium-lined M240 machine gun barrel with flash suppressor attached ..........11 Fig. 6 End of barrel 1 showing small amount of...the finished barrel is shown in Fig. 5. 11 Fig. 5 Finished niobium-lined M240 machine gun barrel with flash suppressor attached Firing tests

  7. Machining of uranium and uranium alloys

    International Nuclear Information System (INIS)

    Morris, T.O.

    1981-01-01

    Uranium and uranium alloys can be readily machined by conventional methods in the standard machine shop when proper safety and operating techniques are used. Material properties that affect machining processes and recommended machining parameters are discussed. Safety procedures and precautions necessary in machining uranium and uranium alloys are also covered. 30 figures

  8. The magnetic field application for the gas discharge plasma control in processes of surface coating and modification

    International Nuclear Information System (INIS)

    Asadullin, T Ya; Galeev, I G

    2017-01-01

    In this paper the method of magnetic field application to control the gas discharge plasma effect on the various surfaces in processes of surface coating and modification is considered. The magnetic field directed perpendicular to the direction of electric current in the gas discharge plasma channel is capable to reject this plasma channel due to action of Lorentz force on the moving electrically charged particles [1,2]. The three-dimensional spatial structure of magnetic field is created by system of necessary quantity of the magnets located perpendicular to the direction of course of electric current in the gas-discharge plasma channel. The formation of necessary spatial distribution of magnetic field makes possible to obtain a required distribution of plasma parameters near the processed surfaces. This way of the plasma channel parameters spatial distribution management is the most suitable for application in processes of plasma impact on a surface of irregular shape and in cases when the selective impact of plasma on a part of a surface of a product is required. It is necessary to apply automated computer management of the process parameters [3] to the most effective plasma impact. (paper)

  9. Development of Partial Discharging Simulation Test Equipment

    Science.gov (United States)

    Kai, Xue; Genghua, Liu; Yan, Jia; Ziqi, Chai; Jian, Lu

    2017-12-01

    In the case of partial discharge training for recruits who lack of on-site work experience, the risk of physical shock and damage of the test equipment may be due to the limited skill level and improper operation by new recruits. Partial discharge simulation tester is the use of simulation technology to achieve partial discharge test process simulation, relatively true reproduction of the local discharge process and results, so that the operator in the classroom will be able to get familiar with and understand the use of the test process and equipment.The teacher sets up the instrument to display different partial discharge waveforms so that the trainees can analyze the test results of different partial discharge types.

  10. Pengendalian Kualitas Kertas Dengan Menggunakan Statistical Process Control di Paper Machine 3

    Directory of Open Access Journals (Sweden)

    Vera Devani

    2017-01-01

    Full Text Available Purpose of this research is to determine types and causes of defects commonly found in Paper Machine 3 by using statistical process control (SPC method.  Statistical process control (SPC is a technique for solving problems and is used to monitor, control, analyze, manage and improve products and processes using statistical methods.  Based on Pareto Diagrams, wavy defect is found as the most frequent defect, which is 81.7%.  Human factor, meanwhile, is found as the main cause of defect, primarily due to lack of understanding on machinery and lack of training both leading to errors in data input.

  11. Virtual Machine in Automation Projects

    OpenAIRE

    Xing, Xiaoyuan

    2010-01-01

    Virtual machine, as an engineering tool, has recently been introduced into automation projects in Tetra Pak Processing System AB. The goal of this paper is to examine how to better utilize virtual machine for the automation projects. This paper designs different project scenarios using virtual machine. It analyzes installability, performance and stability of virtual machine from the test results. Technical solutions concerning virtual machine are discussed such as the conversion with physical...

  12. Machine Vision Handbook

    CERN Document Server

    2012-01-01

    The automation of visual inspection is becoming more and more important in modern industry as a consistent, reliable means of judging the quality of raw materials and manufactured goods . The Machine Vision Handbook  equips the reader with the practical details required to engineer integrated mechanical-optical-electronic-software systems. Machine vision is first set in the context of basic information on light, natural vision, colour sensing and optics. The physical apparatus required for mechanized image capture – lenses, cameras, scanners and light sources – are discussed followed by detailed treatment of various image-processing methods including an introduction to the QT image processing system. QT is unique to this book, and provides an example of a practical machine vision system along with extensive libraries of useful commands, functions and images which can be implemented by the reader. The main text of the book is completed by studies of a wide variety of applications of machine vision in insp...

  13. Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model

    Science.gov (United States)

    Pathak, Jaideep; Wikner, Alexander; Fussell, Rebeckah; Chandra, Sarthak; Hunt, Brian R.; Girvan, Michelle; Ott, Edward

    2018-04-01

    A model-based approach to forecasting chaotic dynamical systems utilizes knowledge of the mechanistic processes governing the dynamics to build an approximate mathematical model of the system. In contrast, machine learning techniques have demonstrated promising results for forecasting chaotic systems purely from past time series measurements of system state variables (training data), without prior knowledge of the system dynamics. The motivation for this paper is the potential of machine learning for filling in the gaps in our underlying mechanistic knowledge that cause widely-used knowledge-based models to be inaccurate. Thus, we here propose a general method that leverages the advantages of these two approaches by combining a knowledge-based model and a machine learning technique to build a hybrid forecasting scheme. Potential applications for such an approach are numerous (e.g., improving weather forecasting). We demonstrate and test the utility of this approach using a particular illustrative version of a machine learning known as reservoir computing, and we apply the resulting hybrid forecaster to a low-dimensional chaotic system, as well as to a high-dimensional spatiotemporal chaotic system. These tests yield extremely promising results in that our hybrid technique is able to accurately predict for a much longer period of time than either its machine-learning component or its model-based component alone.

  14. Experimental study of electrical discharge drilling of stainless steel UNS S30400

    Science.gov (United States)

    Hanash, E. A. H.; Ali, M. Y.

    2018-01-01

    In this study, overcut and taper angle were investigated in machining of stainless steel UNS S30400 against three different electrical discharge machining parameters which are electric current (Ip), pulse on-time (Ton) and pulse off-time (Toff). The electrode used was of 1 mm diameter with aspect ratio of 10. Dimensional accuracy was measured by evaluating overcut and taper angle. Those two measurements were performed using optical microscope model (Olympus BX41M, Japan). The experimentation planning, evaluation, analysis and optimization have been carried out using DOE software version 10.0.3 RSM based method with total number of twenty experiments. The research reveals that, discharge current was found to have the most significant effect on overcut and taper angle followed by pulse on-time and pulse off-time. As the discharge current and pulse on-time increase, overcut and taper angle are increased. However, when pulse off-time increases, overcut and taper angle decrease. The outcome result of this study will be very useful in the manufacturing industry to select the appropriate parameters for the selected work material. The model has shown a great accuracy with percentage error of less than 5%.

  15. Process Approach for Modeling of Machine and Tractor Fleet Structure

    Science.gov (United States)

    Dokin, B. D.; Aletdinova, A. A.; Kravchenko, M. S.; Tsybina, Y. S.

    2018-05-01

    The existing software complexes on modelling of the machine and tractor fleet structure are mostly aimed at solving the task of optimization. However, the creators, choosing only one optimization criterion and incorporating it in their software, provide grounds on why it is the best without giving a decision maker the opportunity to choose it for their enterprise. To analyze “bottlenecks” of machine and tractor fleet modelling, the authors of this article created a process model, in which they included adjustment to the plan of using machinery based on searching through alternative technologies. As a result, the following recommendations for software complex development have been worked out: the introduction of a database of alternative technologies; the possibility for a user to change the timing of the operations even beyond the allowable limits and in that case the calculation of the incurred loss; the possibility to rule out the solution of an optimization task, and if there is a necessity in it - the possibility to choose an optimization criterion; introducing graphical display of an annual complex of works, which could be enough for the development and adjustment of a business strategy.

  16. Machine vision systems using machine learning for industrial product inspection

    Science.gov (United States)

    Lu, Yi; Chen, Tie Q.; Chen, Jie; Zhang, Jian; Tisler, Anthony

    2002-02-01

    Machine vision inspection requires efficient processing time and accurate results. In this paper, we present a machine vision inspection architecture, SMV (Smart Machine Vision). SMV decomposes a machine vision inspection problem into two stages, Learning Inspection Features (LIF), and On-Line Inspection (OLI). The LIF is designed to learn visual inspection features from design data and/or from inspection products. During the OLI stage, the inspection system uses the knowledge learnt by the LIF component to inspect the visual features of products. In this paper we will present two machine vision inspection systems developed under the SMV architecture for two different types of products, Printed Circuit Board (PCB) and Vacuum Florescent Displaying (VFD) boards. In the VFD board inspection system, the LIF component learns inspection features from a VFD board and its displaying patterns. In the PCB board inspection system, the LIF learns the inspection features from the CAD file of a PCB board. In both systems, the LIF component also incorporates interactive learning to make the inspection system more powerful and efficient. The VFD system has been deployed successfully in three different manufacturing companies and the PCB inspection system is the process of being deployed in a manufacturing plant.

  17. Numerical simulation of the manual operation of the charging/discharging machine (MID) control desk

    International Nuclear Information System (INIS)

    Doca, C; Dobre, A

    2004-01-01

    Since the year 2000 at 7th Division TAR of Institute for Nuclear Research - Pitesti continuous efforts were made to implement a software product package devoted to numerical simulation of operations at the test bench of charging/discharging machine (MID). Till now there were specified, designed, worked out and implemented on a computer the PUPITRU code, the present version fulfilling the following requirements: - graphical output specific for the computer/human operator interface: - design at a 1 : 4 scale for each of the 25 drawers of the control desk; - graphical and functional simulation of all the physical objects mounted in these drawers, namely: 12 measuring analog instruments with linear and non-linear dials (ampermeters), 21 measuring digital instruments (voltmeters), 24 two up/down settings switches, 13 switches with three up/down settings, 23 switches with two left/right hand settings, one switch with three left/right hand settings, one switch with four left/right hand settings, 2 switches with five left/right hand settings, 68, 16, 23, 53, 81 signaling lamps of white, yellow, orange, red and green light, respectively; implementation in the frame of PUPITRU code of the main notations used in the automation schemes in the execution design of the control desk, in view of a quick identification of the physical objects: switches, lamps, instruments, etc. ; - implementation in the frame of PUPITRU code of the full database (mnemonics and numerical values) used in the frame of MID tests; - implementation of over 1000 equations of numerical simulation appropriate to the situations characteristic for test bench and MID operation. At the moment, the final functional simulation for all the control desk components is finalized. In this paper a description and a demonstration run of the PUPITRU code is presented. (authors)

  18. Machining of Fibre Reinforced Plastic Composite Materials

    Science.gov (United States)

    2018-01-01

    Fibre reinforced plastic composite materials are difficult to machine because of the anisotropy and inhomogeneity characterizing their microstructure and the abrasiveness of their reinforcement components. During machining, very rapid cutting tool wear development is experienced, and surface integrity damage is often produced in the machined parts. An accurate selection of the proper tool and machining conditions is therefore required, taking into account that the phenomena responsible for material removal in cutting of fibre reinforced plastic composite materials are fundamentally different from those of conventional metals and their alloys. To date, composite materials are increasingly used in several manufacturing sectors, such as the aerospace and automotive industry, and several research efforts have been spent to improve their machining processes. In the present review, the key issues that are concerning the machining of fibre reinforced plastic composite materials are discussed with reference to the main recent research works in the field, while considering both conventional and unconventional machining processes and reporting the more recent research achievements. For the different machining processes, the main results characterizing the recent research works and the trends for process developments are presented. PMID:29562635

  19. Machining of Fibre Reinforced Plastic Composite Materials

    Directory of Open Access Journals (Sweden)

    Alessandra Caggiano

    2018-03-01

    Full Text Available Fibre reinforced plastic composite materials are difficult to machine because of the anisotropy and inhomogeneity characterizing their microstructure and the abrasiveness of their reinforcement components. During machining, very rapid cutting tool wear development is experienced, and surface integrity damage is often produced in the machined parts. An accurate selection of the proper tool and machining conditions is therefore required, taking into account that the phenomena responsible for material removal in cutting of fibre reinforced plastic composite materials are fundamentally different from those of conventional metals and their alloys. To date, composite materials are increasingly used in several manufacturing sectors, such as the aerospace and automotive industry, and several research efforts have been spent to improve their machining processes. In the present review, the key issues that are concerning the machining of fibre reinforced plastic composite materials are discussed with reference to the main recent research works in the field, while considering both conventional and unconventional machining processes and reporting the more recent research achievements. For the different machining processes, the main results characterizing the recent research works and the trends for process developments are presented.

  20. The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team.

    Science.gov (United States)

    Hrubiak, Rostislav; Sinogeikin, Stanislav; Rod, Eric; Shen, Guoyin

    2015-07-01

    We have designed and constructed a new system for micro-machining parts and sample assemblies used for diamond anvil cells and general user operations at the High Pressure Collaborative Access Team, sector 16 of the Advanced Photon Source. The new micro-machining system uses a pulsed laser of 400 ps pulse duration, ablating various materials without thermal melting, thus leaving a clean edge. With optics designed for a tight focus, the system can machine holes any size larger than 3 μm in diameter. Unlike a standard electrical discharge machining drill, the new laser system allows micro-machining of non-conductive materials such as: amorphous boron and silicon carbide gaskets, diamond, oxides, and other materials including organic materials such as polyimide films (i.e., Kapton). An important feature of the new system is the use of gas-tight or gas-flow environmental chambers which allow the laser micro-machining to be done in a controlled (e.g., inert gas) atmosphere to prevent oxidation and other chemical reactions in air sensitive materials. The gas-tight workpiece enclosure is also useful for machining materials with known health risks (e.g., beryllium). Specialized control software with a graphical interface enables micro-machining of custom 2D and 3D shapes. The laser-machining system was designed in a Class 1 laser enclosure, i.e., it includes laser safety interlocks and computer controls and allows for routine operation. Though initially designed mainly for machining of the diamond anvil cell gaskets, the laser-machining system has since found many other micro-machining applications, several of which are presented here.

  1. The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team

    International Nuclear Information System (INIS)

    Hrubiak, Rostislav; Sinogeikin, Stanislav; Rod, Eric; Shen, Guoyin

    2015-01-01

    We have designed and constructed a new system for micro-machining parts and sample assemblies used for diamond anvil cells and general user operations at the High Pressure Collaborative Access Team, sector 16 of the Advanced Photon Source. The new micro-machining system uses a pulsed laser of 400 ps pulse duration, ablating various materials without thermal melting, thus leaving a clean edge. With optics designed for a tight focus, the system can machine holes any size larger than 3 μm in diameter. Unlike a standard electrical discharge machining drill, the new laser system allows micro-machining of non-conductive materials such as: amorphous boron and silicon carbide gaskets, diamond, oxides, and other materials including organic materials such as polyimide films (i.e., Kapton). An important feature of the new system is the use of gas-tight or gas-flow environmental chambers which allow the laser micro-machining to be done in a controlled (e.g., inert gas) atmosphere to prevent oxidation and other chemical reactions in air sensitive materials. The gas-tight workpiece enclosure is also useful for machining materials with known health risks (e.g., beryllium). Specialized control software with a graphical interface enables micro-machining of custom 2D and 3D shapes. The laser-machining system was designed in a Class 1 laser enclosure, i.e., it includes laser safety interlocks and computer controls and allows for routine operation. Though initially designed mainly for machining of the diamond anvil cell gaskets, the laser-machining system has since found many other micro-machining applications, several of which are presented here

  2. Characterization and modeling of 2D-glass micro-machining by spark-assisted chemical engraving (SACE) with constant velocity

    International Nuclear Information System (INIS)

    Didar, Tohid Fatanat; Dolatabadi, Ali; Wüthrich, Rolf

    2008-01-01

    Spark-assisted chemical engraving (SACE) is an unconventional micro-machining technology based on electrochemical discharge used for micro-machining nonconductive materials. SACE 2D micro-machining with constant speed was used to machine micro-channels in glass. Parameters affecting the quality and geometry of the micro-channels machined by SACE technology with constant velocity were presented and the effect of each of the parameters was assessed. The effect of chemical etching on the geometry of micro-channels under different machining conditions has been studied, and a model is proposed for characterization of the micro-channels as a function of machining voltage and applied speed

  3. Comparative Study of Powdered Ginger Drink Processed by Different Method:Traditional and using Evaporation Machine

    Science.gov (United States)

    Apriyana, Wuri; Taufika Rosyida, Vita; Nur Hayati, Septi; Darsih, Cici; Dewi Poeloengasih, Crescentiana

    2017-12-01

    Ginger drink is one of the traditional beverage that became one of the products of interest by consumers in Indonesia. This drink is believed to have excellent properties for the health of the body. In this study, we have compared the moisture content, ash content, metal content and the identified compound of product which processed with traditional technique and using an evaporator machine. The results show that both of products fulfilled some parameters of the Indonesian National Standard for the traditional powdered drink. GC-MS analysis data showed the identified compound of both product. The major of hydrocarbon groups that influenced the flavor such as zingiberene, camphene, beta-phelladrine, beta-sesquepelladrine, curcumene, and beta-bisabolene were found higher in ginger drink powder treated with a machine than those processed traditionally.

  4. Characterization of Ni ferrites powders prepared by plasma arc discharge process

    Energy Technology Data Exchange (ETDEWEB)

    Safari, A. [Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University, Ahvaz (Iran, Islamic Republic of); Gheisari, Kh., E-mail: khgheisari@scu.ac.ir [Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University, Ahvaz (Iran, Islamic Republic of); Farbod, M. [Physics Department, Shahid Chamran University, Ahvaz (Iran, Islamic Republic of)

    2017-01-01

    The aim of this work was to synthesize a single-phase spinel structure from a mixture of zinc, iron and nickel powders by plasma arc discharge method. A mixture of zinc, iron and nickel powders with the appropriate molar ratio was prepared and formed into a cylindrical shape. The synthesis process was performed in air, oxygen and argon atmospheres with the applied arc current of 400 A and pressure of 1 atm. After establishing an arc between the electrodes, the produced powders were collected and their structure and magnetic properties were examined by XRD and VSM, respectively. ZnO as an impurity was appeared in the as-produced powders owing to the high reactivity of zinc atoms, preventing the formation of Ni–Zn ferrite. A pure spinel structure with the highest saturation magnetization (43.8 emu/g) was observed as zinc powders removed completely from the initial mixture. Morphological evaluations using field emission scanning electron microscopy showed that the mean size of fabricated nanoparticles was in the range 100–200 nm and was dependent on the production conditions. - Highlights: • Nanocrystalline Ni ferrite powders are prepared by plasma arc discharge process. • The mean particle size of the as-synthesized ceramic powders is about 100 nm. • The highest saturation magnetization is observed as zinc powders removed completely from the initial mixture.

  5. A combined experimental and numerical study on upper airway dosimetry of inhaled nanoparticles from an electrical discharge machine shop.

    Science.gov (United States)

    Tian, Lin; Shang, Yidan; Chen, Rui; Bai, Ru; Chen, Chunying; Inthavong, Kiao; Tu, Jiyuan

    2017-07-12

    Exposure to nanoparticles in the workplace is a health concern to occupational workers with increased risk of developing respiratory, cardiovascular, and neurological disorders. Based on animal inhalation study and human lung tumor risk extrapolation, current authoritative recommendations on exposure limits are either on total mass or number concentrations. Effects of particle size distribution and the implication to regional airway dosages are not elaborated. Real time production of particle concentration and size distribution in the range from 5.52 to 98.2 nm were recorded in a wire-cut electrical discharge machine shop (WEDM) during a typical working day. Under the realistic exposure condition, human inhalation simulations were performed in a physiologically realistic nasal and upper airway replica. The combined experimental and numerical study is the first to establish a realistic exposure condition, and under which, detailed dose metric studies can be performed. In addition to mass concentration guided exposure limit, inhalation risks to nano-pollutant were reexamined accounting for the actual particle size distribution and deposition statistics. Detailed dosimetries of the inhaled nano-pollutants in human nasal and upper airways with respect to particle number, mass and surface area were discussed, and empirical equations were developed. An astonishing enhancement of human airway dosages were detected by current combined experimental and numerical study in the WEDM machine shop. Up to 33 folds in mass, 27 folds in surface area and 8 folds in number dosages were detected during working hours in comparison to the background dosimetry measured at midnight. The real time particle concentration measurement showed substantial emission of nano-pollutants by WEDM machining activity, and the combined experimental and numerical study provided extraordinary details on human inhalation dosimetry. It was found out that human inhalation dosimetry was extremely sensitive

  6. Machinability of Stellite 6 hardfacing

    Directory of Open Access Journals (Sweden)

    Dudzinski D.

    2010-06-01

    Full Text Available This paper reports some experimental findings concerning the machinability at high cutting speed of nickel-base weld-deposited hardfacings for the manufacture of hot tooling. The forging work involves extreme impacts, forces, stresses and temperatures. Thus, mould dies must be extremely resistant. The aim of the project is to create a rapid prototyping process answering to forging conditions integrating a Stellite 6 hardfacing deposed PTA process. This study talks about the dry machining of the hardfacing, using a two tips machining tool and a high speed milling machine equipped by a power consumption recorder Wattpilote. The aim is to show the machinability of the hardfacing, measuring the power and the tip wear by optical microscope and white light interferometer, using different strategies and cutting conditions.

  7. Influence of surface emission processes on a fast-pulsed dielectric barrier discharge in air at atmospheric pressure

    Science.gov (United States)

    Pechereau, François; Bonaventura, Zdeněk; Bourdon, Anne

    2016-08-01

    This paper presents simulations of an atmospheric pressure air discharge in a point-to-plane geometry with a dielectric layer parallel to the cathode plane. Experimentally, a discharge reignition in the air gap below the dielectrics has been observed. With a 2D fluid model, it is shown that due to the fast rise of the high voltage applied and the sharp point used, a first positive spherical discharge forms around the point. Then this discharge propagates axially and impacts the dielectrics. As the first discharge starts spreading on the upper dielectric surface, in the second air gap with a low preionization density of {{10}4}~\\text{c}{{\\text{m}}-3} , the 2D fluid model predicts a rapid reignition of a positive discharge. As in experiments, the discharge reignition is much slower, a discussion on physical processes to be considered in the model to increase the reignition delay is presented. The limit case with no initial seed charges in the second air gap has been studied. First, we have calculated the time to release an electron from the cathode surface by thermionic and field emission processes for a work function φ \\in ≤ft[3,4\\right] eV and an amplification factor β \\in ≤ft[100,220\\right] . Then a 3D Monte Carlo model has been used to follow the dynamics of formation of an avalanche starting from a single electron emitted at the cathode. Due to the high electric field in the second air gap, we have shown that in a few nanoseconds, a Gaussian cloud of seed charges is formed at a small distance from the cathode plane. This Gaussian cloud has been used as the initial condition of the 2D fluid model in the second air gap. In this case, the propagation of a double headed discharge in the second air gap has been observed and the reignition delay is in rather good agreement with experiments.

  8. Investigation of gas discharge processes in PMTs by the autocorrelation method

    International Nuclear Information System (INIS)

    Morozov, V.A.; Morozova, N.V.

    2012-01-01

    The effect of the potential different at the focusing chamber electrodes of the FEU-85, FEU-87, and FEU-93 photomultipliers on the intensity of afterpulses resulting from gas discharge processes is investigated. With appropriately selected potentials, the number of recorded secondary pulses can be decreased. Charge distribution spectra are obtained for this sort of pulses, which gives a qualitative estimate of both the homogeneity of the charge and mass distribution of residual gases and the ion-electron emission coefficients

  9. Characteristics of Partial Discharge and Ozone Generation for Twisted-pair of Enameled Wires under High-repetitive Impulse Voltage Application

    Science.gov (United States)

    Kanazawa, Seiji; Enokizono, Masato; Shibakita, Toshihide; Umehara, Eiji; Toshimitsu, Jun; Ninomiya, Shinji; Taniguchi, Hideki; Abe, Yukari

    In recent years, inverter drive machines such as a hybrid vehicle and an electric vehicle are operated under high voltage pulse with high repetition rate. In this case, inverter surge is generated and affected the machine operation. Especially, the enameled wire of a motor is deteriorated due to the partial discharge (PD) and finally breakdown of the wire will occur. In order to investigate a PD on a resistant enameled wire, characteristics of PD in the twisted pair sample under bipolar repetitive impulse voltages are investigated experimentally. The relationship between the applied voltage and discharge current was measured at PD inception and extinction, and we estimated the repetitive PD inception and extinction voltages experimentally. The corresponding optical emission of the discharge was also observed by using an ICCD camera. Furthermore, ozone concentration due to the discharge was measured during the life-time test of the resistant enameled wires from a working environmental point of view.

  10. Analysis of the Influence of the Use of Cutting Fluid in Hybrid Processes of Machining and Laser Metal Deposition (LMD

    Directory of Open Access Journals (Sweden)

    Magdalena Cortina

    2018-02-01

    Full Text Available Hybrid manufacturing processes that combine additive and machining operations are gaining relevance in modern industry thanks to the capability of building complex parts with minimal material and, many times, with process time reduction. Besides, as the additive and subtractive operations are carried out in the same machine, without moving the part, dead times are reduced and higher accuracies are achieved. However, it is not clear whether the direct material deposition after the machining operation is possible or intermediate cleaning stages are required because of the possible presence of residual cutting fluids. Therefore, different Laser Metal Deposition (LMD tests are performed on a part impregnated with cutting fluid, both directly and after the removal of the coolant by techniques such as laser vaporizing and air blasting. The present work studies the influence of the cutting fluid in the LMD process and the quality of the resulting part. Resulting porosity is evaluated and it is concluded that if the part surface is not properly clean after the machining operation, deficient clad quality can be obtained in the subsequent laser additive operation.

  11. A Comparison of Inductive Sensors in the Characterization of Partial Discharges and Electrical Noise Using the Chromatic Technique

    Directory of Open Access Journals (Sweden)

    Jorge Alfredo Ardila-Rey

    2018-03-01

    Full Text Available Partial discharges (PDs are one of the most important classes of ageing processes that occur within electrical insulation. PD detection is a standardized technique to qualify the state of the insulation in electric assets such as machines and power cables. Generally, the classical phase-resolved partial discharge (PRPD patterns are used to perform the identification of the type of PD source when they are related to a specific degradation process and when the electrical noise level is low compared to the magnitudes of the PD signals. However, in practical applications such as measurements carried out in the field or in industrial environments, several PD sources and large noise signals are usually present simultaneously. In this study, three different inductive sensors have been used to evaluate and compare their performance in the detection and separation of multiple PD sources by applying the chromatic technique to each of the measured signals.

  12. Handbook of natural language processing and machine translation DARPA global autonomous language exploitation

    CERN Document Server

    Olive, Joseph P; McCary, John

    2011-01-01

    This comprehensive handbook, written by leading experts in the field, details the groundbreaking research conducted under the breakthrough GALE program - The Global Autonomous Language Exploitation within the Defense Advanced Research Projects Agency (DARPA), while placing it in the context of previous research in the fields of natural language and signal processing, artificial intelligence and machine translation. The most fundamental contrast between GALE and its predecessor programs was its holistic integration of previously separate or sequential processes. In earlier language research pro

  13. Concepts of increasing productivity and reducing the processing cost of machine parts

    Directory of Open Access Journals (Sweden)

    О. С. Кленов

    2017-06-01

    Full Text Available The basic conditions to reduce the cost of processing technology and improve productivity through the use of modern cutting tools produced by leading foreign firms producing tools have been appraised from theory in the work. Theoretically, it has been found that an increase in the cost of processing varies according to extremum dependence, passing the minimum point. It is possible to reduce the minimum processing cost due to the increase of productivity using cutting edge tools, characterized by a high capacity for work in high cutting temperatures. The criterion showing the technological price cost minimum is the ratio of the expenditures on workers’ wages to the expenditures on the cutting tools, it being quite specific for various processing conditions. To analyze the possibilities of practical use of the proposed criterion, a complex of experimental researches of the technological prime cost and productivity of the processing with hard alloy cutting tools with wear-resistant coatings produced by the company «Iscar» has been carried out. It has been established that their use makes it possible by more than one half to reduce the labour consumption and overall costs as compared to the hard alloy cutting tools traditionally used in home industry. It has been shown that this effect is achieved by increasing the cutting speed and feed due to increased wear resistance and heat resistance of the «Iscar» company tools. It was established that it is much more possible to achieve low processing cost at milling than at turning. It was stated with regard to all major expenditures including the workers' wages, the cost of the cutting tools, equipment and other costs, allowing more correctly estimate the cost-effectiveness of mechanical processing. Experiments confirmed that the main condition for reducing the processing cost to its minimum value is to increase the processing performance through the use of a heat-resistant and wear-resistant cutting

  14. Machining dynamics fundamentals, applications and practices

    CERN Document Server

    Cheng, Kai

    2008-01-01

    Machining dynamics are vital to the performance of machine tools and machining processes in manufacturing. This book discusses the state-of-the-art applications, practices and research in machining dynamics. It presents basic theory, analysis and control methodology. It is useful for manufacturing engineers, supervisors, engineers and designers.

  15. Machine Learning

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Machine learning, which builds on ideas in computer science, statistics, and optimization, focuses on developing algorithms to identify patterns and regularities in data, and using these learned patterns to make predictions on new observations. Boosted by its industrial and commercial applications, the field of machine learning is quickly evolving and expanding. Recent advances have seen great success in the realms of computer vision, natural language processing, and broadly in data science. Many of these techniques have already been applied in particle physics, for instance for particle identification, detector monitoring, and the optimization of computer resources. Modern machine learning approaches, such as deep learning, are only just beginning to be applied to the analysis of High Energy Physics data to approach more and more complex problems. These classes will review the framework behind machine learning and discuss recent developments in the field.

  16. Tritium decontamination of machine components and walls

    International Nuclear Information System (INIS)

    Hircq, B.; Wong, K.Y.; Jalbert, R.A.; Shmayda, W.T.

    1991-01-01

    Tritium decontamination techniques for machine components and their application at tritium handling facilities are reviewed. These include commonly used methods such as vacuuming, purging, thermal desorption and isotopic exchange as well as less common methods such as chemical/electrochemical etching, plasma discharge cleaning, and destructive methods. Problems associated with tritium contamination of walls and use of protective coatings are reviewed. Tritium decontamination considerations at fusion facilities are discussed

  17. Free-piston cutting machine

    Science.gov (United States)

    Ciccarelli, Gaby; Subudhi, Manomohan; Hall, Robert E.

    2000-01-01

    A cutting machine includes a gun barrel for receiving a projectile. A compression tube is disposed in flow communication with the barrel and includes a piston therein. A reservoir is disposed in flow communication with the tube and receives a first gas under pressure. A second gas fills the compression tube on a front face of the piston. And, the pressurized first gas is discharged into the tube on a back face of the piston to accelerate the piston through the tube for compressing the second gas, and in turn launching the projectile through the barrel to impact a workpiece.

  18. Optimization of high pressure machine decocting process for Dachengqi Tang using HPLC fingerprints combined with the Box-Behnken experimental design.

    Science.gov (United States)

    Xie, Rui-Fang; Shi, Zhi-Na; Li, Zhi-Cheng; Chen, Pei-Pei; Li, Yi-Min; Zhou, Xin

    2015-04-01

    Using Dachengqi Tang (DCQT) as a model, high performance liquid chromatography (HPLC) fingerprints were applied to optimize machine extracting process with the Box-Behnken experimental design. HPLC fingerprints were carried out to investigate the chemical ingredients of DCQT; synthetic weighing method based on analytic hierarchy process (AHP) and criteria importance through intercriteria correlation (CRITIC) was performed to calculate synthetic scores of fingerprints; using the mark ingredients contents and synthetic scores as indicators, the Box-Behnken design was carried out to optimize the process parameters of machine decocting process under high pressure for DCQT. Results of optimal process showed that the herb materials were soaked for 45 min and extracted with 9 folds volume of water in the decocting machine under the temperature of 140 °C till the pressure arrived at 0.25 MPa; then hot decoction was excreted to soak Dahuang and Mangxiao for 5 min. Finally, obtained solutions were mixed, filtrated and packed. It concluded that HPLC fingerprints combined with the Box-Behnken experimental design could be used to optimize extracting process of traditional Chinese medicine (TCM).

  19. Human-Machine Communication

    International Nuclear Information System (INIS)

    Farbrot, J.E.; Nihlwing, Ch.; Svengren, H.

    2005-01-01

    New requirements for enhanced safety and design changes in process systems often leads to a step-wise installation of new information and control equipment in the control room of older nuclear power plants, where nowadays modern digital I and C solutions with screen-based human-machine interfaces (HMI) most often are introduced. Human factors (HF) expertise is then required to assist in specifying a unified, integrated HMI, where the entire integration of information is addressed to ensure an optimal and effective interplay between human (operators) and machine (process). Following a controlled design process is the best insurance for ending up with good solutions. This paper addresses the approach taken when introducing modern human-machine communication in the Oskarshamn 1 NPP, the results, and the lessons learned from this work with high operator involvement seen from an HF point of view. Examples of possibilities modern technology might offer for the operators are also addressed. (orig.)

  20. The cognitive approach to conscious machines

    CERN Document Server

    Haikonen, Pentti O

    2003-01-01

    Could a machine have an immaterial mind? The author argues that true conscious machines can be built, but rejects artificial intelligence and classical neural networks in favour of the emulation of the cognitive processes of the brain-the flow of inner speech, inner imagery and emotions. This results in a non-numeric meaning-processing machine with distributed information representation and system reactions. It is argued that this machine would be conscious; it would be aware of its own existence and its mental content and perceive this as immaterial. Novel views on consciousness and the mind-

  1. Waste water discharges into natural waters

    International Nuclear Information System (INIS)

    Marri, P.; Barsanti, P.; Mione, A.; Posarelli, M.

    1996-12-01

    The aqueous discharges into natural waters is a very technical solution expecially for surface buoyant discharges. It is not only convenient to limit the concentration levels of the discharges, but also to improve the turbolent processes that diluite the discharge. Mostly these processes depend by some geometric parameters of the discharge and by some physical parameters of the effluent and of the receiving water body. An appropriate choice of some parameters, using also suitable mathematical models, allows to design discharges with a very high dilution; so the decreasing of the pollutant levels is improved and the environmental impact can be reduced versus a not diluted effluent. The simulations of a mathematical model, here described, prove that in some circumstances, expecially in case of discharges of fresh water into saline water bodies with a low velocity of the current, the dilution is poor; the effluent can be trapped in a narrow water surface layer where the pollutant concentrations remain high. also far away from the discharge point

  2. Traceability of On-Machine Tool Measurement: A Review

    Science.gov (United States)

    Gomez-Acedo, Eneko; Kortaberria, Gorka; Olarra, Aitor

    2017-01-01

    Nowadays, errors during the manufacturing process of high value components are not acceptable in driving industries such as energy and transportation. Sectors such as aerospace, automotive, shipbuilding, nuclear power, large science facilities or wind power need complex and accurate components that demand close measurements and fast feedback into their manufacturing processes. New measuring technologies are already available in machine tools, including integrated touch probes and fast interface capabilities. They provide the possibility to measure the workpiece in-machine during or after its manufacture, maintaining the original setup of the workpiece and avoiding the manufacturing process from being interrupted to transport the workpiece to a measuring position. However, the traceability of the measurement process on a machine tool is not ensured yet and measurement data is still not fully reliable enough for process control or product validation. The scientific objective is to determine the uncertainty on a machine tool measurement and, therefore, convert it into a machine integrated traceable measuring process. For that purpose, an error budget should consider error sources such as the machine tools, components under measurement and the interactions between both of them. This paper reviews all those uncertainty sources, being mainly focused on those related to the machine tool, either on the process of geometric error assessment of the machine or on the technology employed to probe the measurand. PMID:28696358

  3. Traceability of On-Machine Tool Measurement: A Review.

    Science.gov (United States)

    Mutilba, Unai; Gomez-Acedo, Eneko; Kortaberria, Gorka; Olarra, Aitor; Yagüe-Fabra, Jose A

    2017-07-11

    Nowadays, errors during the manufacturing process of high value components are not acceptable in driving industries such as energy and transportation. Sectors such as aerospace, automotive, shipbuilding, nuclear power, large science facilities or wind power need complex and accurate components that demand close measurements and fast feedback into their manufacturing processes. New measuring technologies are already available in machine tools, including integrated touch probes and fast interface capabilities. They provide the possibility to measure the workpiece in-machine during or after its manufacture, maintaining the original setup of the workpiece and avoiding the manufacturing process from being interrupted to transport the workpiece to a measuring position. However, the traceability of the measurement process on a machine tool is not ensured yet and measurement data is still not fully reliable enough for process control or product validation. The scientific objective is to determine the uncertainty on a machine tool measurement and, therefore, convert it into a machine integrated traceable measuring process. For that purpose, an error budget should consider error sources such as the machine tools, components under measurement and the interactions between both of them. This paper reviews all those uncertainty sources, being mainly focused on those related to the machine tool, either on the process of geometric error assessment of the machine or on the technology employed to probe the measurand.

  4. Discharge Processes and 30-Day Readmission Rates of Patients Hospitalized for Heart Failure on General Medicine and Cardiology Services.

    Science.gov (United States)

    Salata, Brian M; Sterling, Madeline R; Beecy, Ashley N; Ullal, Ajayram V; Jones, Erica C; Horn, Evelyn M; Goyal, Parag

    2018-05-01

    Given high rates of heart failure (HF) hospitalizations and widespread adoption of the hospitalist model, patients with HF are often cared for on General Medicine (GM) services. Differences in discharge processes and 30-day readmission rates between patients on GM and those on Cardiology during the contemporary hospitalist era are unknown. The present study compared discharge processes and 30-day readmission rates of patients with HF admitted on GM services and those on Cardiology services. We retrospectively studied 926 patients discharged home after HF hospitalization. The primary outcome was 30-day all-cause readmission after discharge from index hospitalization. Although 60% of patients with HF were admitted to Cardiology services, 40% were admitted to GM services. Prevalence of cardiovascular and noncardiovascular co-morbidities were similar between patients admitted to GM services and Cardiology services. Discharge summaries for patients on GM services were less likely to have reassessments of ejection fraction, new study results, weights, discharge vital signs, discharge physical examinations, and scheduled follow-up cardiologist appointments. In a multivariable regression analysis, patients on GM services were more likely to experience 30-day readmissions compared with those on Cardiology services (odds ratio 1.43 95% confidence interval [1.05 to 1.96], p = 0.02). In conclusion, outcomes are better among those admitted to Cardiology services, signaling the need for studies and interventions focusing on noncardiology hospital providers that care for patients with HF. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Discharge time dependence of a solution plasma process for colloidal copper nanoparticle synthesis and particle characteristics

    International Nuclear Information System (INIS)

    Pootawang, Panuphong; Saito, Nagahiro; Lee, Sang Yul

    2013-01-01

    In this study, we investigate a new synthetic route, termed the solution plasma process, for the synthesis of colloidal copper nanoparticles (CuNPs) in the presence of an amide and acid capping agent. Gelatin and ascorbic acid were selected as the capping agents to protect the particles against coalescence and oxidation side reaction. Using a high voltage power supply, CuNPs were rapidly formed by 1 min after the discharge. The size and shape of the CuNPs were dependent on the discharge time and were clearly influenced by the effect of the capping agents under two characteristics of the discharge medium (pH and temperature). With a long discharge time, the CuNP size tended to decrease with the formation of anisotropic particle morphologies: spherical, cubic, hexagonal, triangular and rod-like shapes. The decrease in CuNP size as a function of discharge time could be explained by the dissolution of CuNPs in a lower pH solution. After 5 min discharge the capping agent evidently allowed the protection of the synthesized CuNPs against oxidation with the presence of anisotropic CuNP shapes. It is demonstrated that the CuNP shape could be tuned from spherical to anisotropic shapes without the undesirable oxidation by adjusting the discharge time of the solution plasma. These advantages are valuable for material engineering to design the properties of Cu-based nanoparticles for the desired applications. (paper)

  6. Examination of the radiation of magnetron discharge in the process of spraying thin films

    International Nuclear Information System (INIS)

    Sokolov, V.F.; Sokolova, Yu.A.; Protasevich, A.A.

    1999-01-01

    In this work, we investigated the light radiation of the magnetron discharge in order to develop a method of spectral control and regulation of the process of deposition of thin films in UVN-25 industrial equipment used for metallising of superlarge integrated circuits and other components

  7. Machining refractory alloys: an overview

    International Nuclear Information System (INIS)

    Christopher, J.D.

    1984-01-01

    Nontraditional machining is a generic term for those material removal processes that differ drastically from the historic operations such as turning, milling, drilling, tapping, and grinding. The use of primary energy modes other than mechanical, such as thermal, electrical, and chemical, sets these operations apart and reinforces their nontraditional label. Several of these newer processes have been very successful in machining close tolerance parts from refractory materials. This paper provides a general overview of both traditional and nontraditional aspects of machining refractory materials. 11 figures, 7 tables

  8. Scheduling of hybrid types of machines with two-machine flowshop as the first type and a single machine as the second type

    Science.gov (United States)

    Hsiao, Ming-Chih; Su, Ling-Huey

    2018-02-01

    This research addresses the problem of scheduling hybrid machine types, in which one type is a two-machine flowshop and another type is a single machine. A job is either processed on the two-machine flowshop or on the single machine. The objective is to determine a production schedule for all jobs so as to minimize the makespan. The problem is NP-hard since the two parallel machines problem was proved to be NP-hard. Simulated annealing algorithms are developed to solve the problem optimally. A mixed integer programming (MIP) is developed and used to evaluate the performance for two SAs. Computational experiments demonstrate the efficiency of the simulated annealing algorithms, the quality of the simulated annealing algorithms will also be reported.

  9. Process Condition Monitoring of Micro Moulding Using a Two-plunger Micro Injection Moulding Machine

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Guerrier, Patrick

    2010-01-01

    The influence of micro injection moulding (µIM) process parameters (melt and mould temperature, piston injection speed and stoke length) on the injection pressure was investigated using Design of Experiments. Direct piston injection pressure measurements were performed and data collected using...... a micro injection moulding machine equipped with a two-pluger injection unit. Miniaturized dog-bone shaped speciments on polyoxymethylene (POM) were moulded over a wide range of processing cpnditions in order to characterize the process and assess its capability. Experimental results obtained under...

  10. Investigation on the effect of nonlinear processes on similarity law in high-pressure argon discharges

    Science.gov (United States)

    Fu, Yangyang; Parsey, Guy M.; Verboncoeur, John P.; Christlieb, Andrew J.

    2017-11-01

    In this paper, the effect of nonlinear processes (such as three-body collisions and stepwise ionizations) on the similarity law in high-pressure argon discharges has been studied by the use of the Kinetic Global Model framework. In the discharge model, the ground state argon atoms (Ar), electrons (e), atom ions (Ar+), molecular ions (Ar2+), and fourteen argon excited levels Ar*(4s and 4p) are considered. The steady-state electron and ion densities are obtained with nonlinear processes included and excluded in the designed models, respectively. It is found that in similar gas gaps, keeping the product of gas pressure and linear dimension unchanged, with the nonlinear processes included, the normalized density relations deviate from the similarity relations gradually as the scale-up factor decreases. Without the nonlinear processes, the parameter relations are in good agreement with the similarity law predictions. Furthermore, the pressure and the dimension effects are also investigated separately with and without the nonlinear processes. It is shown that the gas pressure effect on the results is less obvious than the dimension effect. Without the nonlinear processes, the pressure and the dimension effects could be estimated from one to the other based on the similarity relations.

  11. Tool vibration detection with eddy current sensors in machining process and computation of stability lobes using fuzzy classifiers

    Science.gov (United States)

    Devillez, Arnaud; Dudzinski, Daniel

    2007-01-01

    Today the knowledge of a process is very important for engineers to find optimal combination of control parameters warranting productivity, quality and functioning without defects and failures. In our laboratory, we carry out research in the field of high speed machining with modelling, simulation and experimental approaches. The aim of our investigation is to develop a software allowing the cutting conditions optimisation to limit the number of predictive tests, and the process monitoring to prevent any trouble during machining operations. This software is based on models and experimental data sets which constitute the knowledge of the process. In this paper, we deal with the problem of vibrations occurring during a machining operation. These vibrations may cause some failures and defects to the process, like workpiece surface alteration and rapid tool wear. To measure on line the tool micro-movements, we equipped a lathe with a specific instrumentation using eddy current sensors. Obtained signals were correlated with surface finish and a signal processing algorithm was used to determine if a test is stable or unstable. Then, a fuzzy classification method was proposed to classify the tests in a space defined by the width of cut and the cutting speed. Finally, it was shown that the fuzzy classification takes into account of the measurements incertitude to compute the stability limit or stability lobes of the process.

  12. Current breathomics-a review on data pre-processing techniques and machine learning in metabolomics breath analysis

    DEFF Research Database (Denmark)

    Smolinska, A.; Hauschild, A. C.; Fijten, R. R. R.

    2014-01-01

    been extensively developed. Yet, the application of machine learning methods for fingerprinting VOC profiles in the breathomics is still in its infancy. Therefore, in this paper, we describe the current state of the art in data pre-processing and multivariate analysis of breathomics data. We start...... different conditions (e.g. disease stage, treatment). Independently of the utilized analytical method, the most important question, 'which VOCs are discriminatory?', remains the same. Answers can be given by several modern machine learning techniques (multivariate statistics) and, therefore, are the focus...

  13. Feasibility of wear compensation in micro EDM milling based on discharge counting and discharge population characterization

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; Tristo, G.

    2011-01-01

    This paper investigates the applicability of real time wear compensation in micro EDM milling based on discharge counting and discharge population characterization. Experiments were performed involving discharge counting and tool electrode wear measurement in a wide range of process parameters...

  14. Introduction to machine learning

    OpenAIRE

    Baştanlar, Yalın; Özuysal, Mustafa

    2014-01-01

    The machine learning field, which can be briefly defined as enabling computers make successful predictions using past experiences, has exhibited an impressive development recently with the help of the rapid increase in the storage capacity and processing power of computers. Together with many other disciplines, machine learning methods have been widely employed in bioinformatics. The difficulties and cost of biological analyses have led to the development of sophisticated machine learning app...

  15. Support vector machines applications

    CERN Document Server

    Guo, Guodong

    2014-01-01

    Support vector machines (SVM) have both a solid mathematical background and good performance in practical applications. This book focuses on the recent advances and applications of the SVM in different areas, such as image processing, medical practice, computer vision, pattern recognition, machine learning, applied statistics, business intelligence, and artificial intelligence. The aim of this book is to create a comprehensive source on support vector machine applications, especially some recent advances.

  16. Zero Liquid Discharge (ZLD) System for Flue-Gas Derived Water From Oxy-Combustion Process

    Energy Technology Data Exchange (ETDEWEB)

    Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs; Stephen J. Gerdemann; John Clark

    2011-10-16

    Researchers at the National Energy Technology Laboratory (NETL) located in Albany, Oregon, have patented a process - Integrated Pollutant Removal (IPR) that uses off-the-shelf technology to produce a sequestration ready CO{sub 2} stream from an oxy-combustion power plant. Capturing CO{sub 2} from fossil-fuel combustion generates a significant water product which can be tapped for use in the power plant and its peripherals. Water condensed in the IPR{reg_sign} process may contain fly ash particles, sodium (from pH control), and sulfur species, as well as heavy metals, cations and anions. NETL is developing a treatment approach for zero liquid discharge while maximizing available heat from IPR. Current treatment-process steps being studied are flocculation/coagulation, for removal of cations and fine particles, and reverse osmosis, for anion removal as well as for scavenging the remaining cations. After reverse osmosis process steps, thermal evaporation and crystallization steps will be carried out in order to build the whole zero liquid discharge (ZLD) system for flue-gas condensed wastewater. Gypsum is the major product from crystallization process. Fast, in-line treatment of water for re-use in IPR seems to be one practical step for minimizing water treatment requirements for CO{sub 2} capture. The results obtained from above experiments are being used to build water treatment models.

  17. Ice Cover Prediction of a Power Grid Transmission Line Based on Two-Stage Data Processing and Adaptive Support Vector Machine Optimized by Genetic Tabu Search

    OpenAIRE

    Xiaomin Xu; Dongxiao Niu; Lihui Zhang; Yongli Wang; Keke Wang

    2017-01-01

    With the increase in energy demand, extreme climates have gained increasing attention. Ice disasters on transmission lines can cause gap discharge and icing flashover electrical failures, which can lead to mechanical failure of the tower, conductor, and insulators, causing significant harm to people’s daily life and work. To address this challenge, an intelligent combinational model is proposed based on improved empirical mode decomposition and support vector machine for short-term forecastin...

  18. A geometric process model for M/PH(M/PH)/1/K queue with new service machine procurement lead time

    Science.gov (United States)

    Yu, Miaomiao; Tang, Yinghui; Fu, Yonghong

    2013-06-01

    In this article, we consider a geometric process model for M/PH(M/PH)/1/K queue with new service machine procurement lead time. A maintenance policy (N - 1, N) based on the number of failures of the service machine is introduced into the system. Assuming that a failed service machine after repair will not be 'as good as new', and the spare service machine for replacement is only available by an order. More specifically, we suppose that the procurement lead time for delivering the spare service machine follows a phase-type (PH) distribution. Under such assumptions, we apply the matrix-analytic method to develop the steady state probabilities of the system, and then we obtain some system performance measures. Finally, employing an important Lemma, the explicit expression of the long-run average cost rate for the service machine is derived, and the direct search method is also implemented to determine the optimal value of N for minimising the average cost rate.

  19. Digital-image processing improves man-machine communication at a nuclear reactor

    International Nuclear Information System (INIS)

    Cook, S.A.; Harrington, T.P.; Toffer, H.

    1982-01-01

    The application of digital image processing to improve man-machine communication in a nuclear reactor control room is illustrated. At the Hanford N Reactor, operated by UNC Nuclear Industries for the United States Department of Energy, in Richland, Washington, digital image processing is applied to flow, temperature, and tube power data. Color displays are used to present the data in a clear and concise fashion. Specific examples are used to demonstrate the capabilities and benefits of digital image processing of reactor data. N Reactor flow and power maps for routine reactor operations and for perturbed reactor conditions are displayed. The advantages of difference mapping are demonstrated. Image processing techniques have also been applied to results of analytical reactor models; two examples are shown. The potential of combining experimental and analytical information with digital image processing to produce predictive and adaptive reactor core models is discussed. The applications demonstrate that digital image processing can provide new more effective ways for control room personnel to assess reactor status, to locate problems and explore corrective actions. 10 figures

  20. Modelling electric discharge chemistry

    International Nuclear Information System (INIS)

    McFarlane, J.; Wren, J.C.

    1991-07-01

    The chemistry occurring in a electric discharge was modelled to predict how it would be influenced by discharge conditions. The discharge was characterized by a calculated Boltzmann electron-energy distribution, from which rate constants for electron-molecule processes in air were determined. These rate constants were used in a chemical kinetics calculation that also included reactions between neutral molecules, ions, free radicals and electronically excited species. The model describes how the discharge chemistry was influenced by humidity, electric field, electron number density, and concentrations of key reagents identified in the study. The use of an electric discharge to destroy airborne contaminant molecules was appraised, the targeted contaminants being CF 2 Cl 2 , HCN, and SO 2 . The modelling results indicate that an electric discharge should be able to remove HCN and CF 2 Cl 2 effectively, especially if the discharge conditions have been optimized. Effective destruction is achieved with a moderate electric field (over 1 x 10 -15 V.cm 2 ), a substantial electron number density (over 1 x 10 12 cm -3 ), and the presence of H 2 0 in the process air. The residence time in the discharge was also shown to be important in contaminant destruction. An attempt was made to explain the results of the electric discharge abatement of SO 2 , a component of a simulated flue-gas mixture. Results from the model indicate that the discharge parameters that increase the concentration of hydroxyl radical also increase the rate of decomposition of SO 2 . An objective of the study was to explain the apparent enhancement of SO 2 destruction by the presence of a small amount of NO 2 . It was thought that a likely explanation would be the stabilization of HOSO 2 , an important intermediate in the oxidation of SO 2 by NO 2 . (49 figs., 14 tabs., 75 refs.)

  1. COMPARISION OF FUZZY PERT APPROACHES IN MACHINE PRODUCTION PROCESS

    Directory of Open Access Journals (Sweden)

    İRFAN ERTUĞRUL

    2013-06-01

    Full Text Available In traditional PERT (Program Evaluation and Review Technique activity durations are represented as crisp numbers and assumed that they are drawn from beta distribution. However, in real life the duration of the activities are usually difficult to estimate precisely.  In order to overcome this difficulty, there are studies in the literature that combine fuzzy set theory and PERT method. In this study, two fuzzy PERT approaches proposed by different authors are employed to find the degrees of criticality of each path in the network and comparison of these two methods is also given. Furthermore, by the help of these methods the criticality of the activities in the marble machine production process of a company that manufactures machinery is determined and results are compared.

  2. Counterfeit Electronics Detection Using Image Processing and Machine Learning

    Science.gov (United States)

    Asadizanjani, Navid; Tehranipoor, Mark; Forte, Domenic

    2017-01-01

    Counterfeiting is an increasing concern for businesses and governments as greater numbers of counterfeit integrated circuits (IC) infiltrate the global market. There is an ongoing effort in experimental and national labs inside the United States to detect and prevent such counterfeits in the most efficient time period. However, there is still a missing piece to automatically detect and properly keep record of detected counterfeit ICs. Here, we introduce a web application database that allows users to share previous examples of counterfeits through an online database and to obtain statistics regarding the prevalence of known defects. We also investigate automated techniques based on image processing and machine learning to detect different physical defects and to determine whether or not an IC is counterfeit.

  3. Counterfeit Electronics Detection Using Image Processing and Machine Learning

    International Nuclear Information System (INIS)

    Asadizanjani, Navid; Tehranipoor, Mark; Forte, Domenic

    2017-01-01

    Counterfeiting is an increasing concern for businesses and governments as greater numbers of counterfeit integrated circuits (IC) infiltrate the global market. There is an ongoing effort in experimental and national labs inside the United States to detect and prevent such counterfeits in the most efficient time period. However, there is still a missing piece to automatically detect and properly keep record of detected counterfeit ICs. Here, we introduce a web application database that allows users to share previous examples of counterfeits through an online database and to obtain statistics regarding the prevalence of known defects. We also investigate automated techniques based on image processing and machine learning to detect different physical defects and to determine whether or not an IC is counterfeit. (paper)

  4. [Study on formation process of honeycomb pattern in dielectric barrier discharge by optical emission spectrum].

    Science.gov (United States)

    Dong, Li-Fang; Zhu, Ping; Yang, Jing; Zhang, Yu

    2014-04-01

    The authors report on the first investigation of the variations in the plasma parameters in the formation process of the honeycomb pattern in a dielectric barrier discharge by optical emission spectrum in argon and air mixture. The discharge undergoes hexagonal lattice, concentric spot-ring pattern and honeycomb pattern with the applied voltage increasing. The molecular vibration temperature, electron excitation temperature and electronic density of the three kinds of patterns were investigated by the emission spectra of nitrogen band of second positive system (C3pi(u) --> B3 pi(g)), the relative intensity ratio method of spectral lines of Ar I 763.51 nm (2P(6) --> 1S(5)) and Ar I 772.42 nm (2P(2) -->1S(3)) and the broadening of spectral line 696.5 nm respectively. It was found that the molecular vibration temperature and electron excitation temperature of the honeycomb pattern are higher than those of the hexagonal lattice, but the electron density of the former is lower than that of the latter. The discharge powers of the patterns were also measured with the capacitance method. The discharge power of the honeycomb pattern is much higher than that of the hexagonal lattice. These results are of great importance to the formation mechanism of the patterns in dielectric barrier discharge.

  5. Comparison of discharges with core transport barriers on DIII-D and JET

    International Nuclear Information System (INIS)

    Luce, T.C.; Alper, B.; Challis, C.D.

    1997-07-01

    The basic phenomenology of discharges with core transport barriers is the same for DIII-D and JET. The limitations on performance in both cases are well described by MHD stability calculations. Since the discharge behavior of the two machines is so similar, it seems reasonable to apply a simple parameterization of fusion performance which describes well the best performance discharges on DIII-D. The highest fusion performance shot on JET has Q DD = 3.1 10 -3 at 3.2 MA. Scaling from the highest Q DD DIII-D single-null discharge would predict Q DD = 4.2 10 -3 for JET. Raising the plasma current to 4.0 MA would increase the projection to 6.6 10 -3 . Realization of such performance would require significant effort to develop lower q plasmas with an H-mode edge. Because the performance is so closely tied to the current profile, this class of discharges also shows significant potential for steady state if current profile control can be demonstrated

  6. Application of machine learning and expert systems to Statistical Process Control (SPC) chart interpretation

    Science.gov (United States)

    Shewhart, Mark

    1991-01-01

    Statistical Process Control (SPC) charts are one of several tools used in quality control. Other tools include flow charts, histograms, cause and effect diagrams, check sheets, Pareto diagrams, graphs, and scatter diagrams. A control chart is simply a graph which indicates process variation over time. The purpose of drawing a control chart is to detect any changes in the process signalled by abnormal points or patterns on the graph. The Artificial Intelligence Support Center (AISC) of the Acquisition Logistics Division has developed a hybrid machine learning expert system prototype which automates the process of constructing and interpreting control charts.

  7. Determining the Efficiency of Adaptation of Foreign Economic Activity of Machine-Building Enterprises in Conditions of Deepening the European Integration Process of Ukraine

    Directory of Open Access Journals (Sweden)

    Semeniuk Iryna Yu.

    2018-02-01

    Full Text Available The article determines that introduction and implementation of the mechanism for foreign economic adaptation of machine-building enterprises to the conditions of the European integration processes requires constant monitoring of the processes of export-import operations and the adaptation activities to identify current problems and avoid risks. It has been found that one of the monitoring instruments is the system of indicators, which provides to evaluate the efficiency of use of the mechanism for foreign economic adaptation of a machine-building enterprise by comparing the values of the obtained indicators after accomplishing adaptation changes with the values of the indicators of previous periods. It is suggested to determine efficiency of adaptation of foreign economic activity of machine-building enterprises to conditions of deepening of the European integration process of Ukraine by means of: index of change of volume of exported production of a machine-building enterprise to the EU countries; weighted average of the change in the share of the European market, which is covered by the enterprise’s products; indicator of efficiency of exports of production of a machine-building enterprise to the European Union countries; indicator of the index of changes in the volume of permanent orders from European partners; integral indicator of efficiency of use of adaptive potential of a machine-building enterprise in conditions of integration processes.

  8. The ASDEX Upgrade discharge schedule

    International Nuclear Information System (INIS)

    Neu, G.; Engelhardt, K.; Raupp, G.; Treutterer, W.; Zasche, D.; Zehetbauer, T.

    2007-01-01

    ASDEX Upgrade's recently commissioned discharge control system (DCS) marks the transition from a traditional programmed system to a highly flexible 'data driven' one. The allocation of application processes (APs) to controllers, the interconnection of APs through uniquely named signals, and AP control parameter values are all defined as data, and can easily be adapted to the requirements of a particular discharge. The data is laid down in a set of XML documents which APs request via HTTP from a configuration server before a discharge. The use of XML allows for easy parsing, and structural validation through (XSD) schemas. The central input to the configuration process is the discharge schedule (DS), which embodies the dynamic behaviour of a planned discharge as reference trajectories grouped in segments, concatenated through transition conditions. Editing, generation and validation tools, and version control through CVS allow for efficient management of DSs

  9. TOPICAL REVIEW: Electromagnetic effects in high-frequency capacitive discharges used for plasma processing

    Science.gov (United States)

    Chabert, P.

    2007-02-01

    In plasma processing, capacitive discharges have classically been operated in the electrostatic regime, for which the excitation wavelength λ is much greater than the electrode radius, and the plasma skin depth δ is much greater than the electrode spacing. However, contemporary reactors are larger and excited at higher frequencies which leads to strong electromagnetic effects. This paper gives a review of the work that has recently been carried out to carefully model and diagnose these effects, which cause major uniformity problems in plasma processing for microelectronics and flat panel displays industries.

  10. Micro tooling technologies for polymer micro replication: direct, indirect and hybrid process chains

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard

    2009-01-01

    The increasing employment of micro products, of products containing micro parts and of products with micro-structured surfaces calls for mass fabrication technologies based on replication processes. In many cases, a suitable solution is given by the use of polymer micro products, whose production...... and performance of the corresponding micro mould. Traditional methods of micro tooling, such as various machining processes (e.g. micro milling, micro electrical discharge machining) have already reached their limitations with decreasing dimensions of mould inserts and cavities. To this respect, tooling process...... chains based on combination of micro manufacturing processes (defined as hybrid tooling) have been established in order to obtain further features miniaturization and increased accuracy. In this paper, examples and performance of different hybrid tooling approaches as well as challenges, opportunities...

  11. Application of Module System for Processing a Large Capacity of Coal Steam Power Plant Flue gas by Electron Beam Machine

    International Nuclear Information System (INIS)

    Rukijatmo; Munawir Z, M.

    2003-01-01

    Conceptual design of SOx dan NOx flue gas treatment base on 25% of 400 M We capacity and 90% efficiency reduction of SOx, the electron beam machine will be utilized to performed the environment quality standard of air pollution. The technical specification of electron beam machine, processing system and chamber dimension should conformed to the regulation. The discussion is focused on the selection of electron beam machine type and the dimension of radiation vessel for perfect reaction and exact time processing. The design calculation is indicated that we need two electron beam machines of 500 mA, 800 kV installed in parallel and 3 up to 3.4 metres diameter, the speed of flue gas in the vessel around 16.4 up to 18.14 metre per second, 80% treatment of 0,7% sulphur content coal is conform to regulation on emission of flue gas environment, and only 50% of flue gas needed to be treated by 4 modular. (author)

  12. Effects of processing phases on the quality of massai grass seeds

    Directory of Open Access Journals (Sweden)

    Lilian Faria de Melo

    Full Text Available ABSTRACT Massai grass is an important tropical forage grass. The harvested seeds upon being received by the company, are found to be contaminated with impurities which are removable by processing machines. This procedure is necessary to produce seeds of a quality level within standards established for commercialization and sowing purposes. The objective of this project was to evaluate the effects of processing phases on the physical and physiological quality of massai grass (Panicum maximum x P. infestum, cv. Massai seeds for commercialization purposes. Seeds were sampled before processing and after leaving the air and screen machine (upper and intermediary screens and bottom; first gravity table (drift, upper and intermediate spouts; treating machine; and second gravity table (upper, intermediate, and lower spouts. Seeds were evaluated as to water content, physical (purity and 1,000 seeds weight and physiological quality (germination, first count of germination, seedling vigor classification, accelerated aging, seedling emergence in the field, speed of emergence index, and primary root length, shoot length. Massai grass seeds had their physical and physiological qualities improved when they were processed by an air and screen machine and a gravity table. Seeds from the intermediate discharge spout of the first gravity table, after going through the air and screen machine, are those of with highest physiological potential. The seeds of this species do not need to be processed to fit the germination and purity standards when the national market is the goal.

  13. Machine Translation Effect on Communication

    DEFF Research Database (Denmark)

    Jensen, Mika Yasuoka; Bjørn, Pernille

    2011-01-01

    Intercultural collaboration facilitated by machine translation has gradually spread in various settings. Still, little is known as for the practice of machine-translation mediated communication. This paper investigates how machine translation affects intercultural communication in practice. Based...... on communication in which multilingual communication system is applied, we identify four communication types and its’ influences on stakeholders’ communication process, especially focusing on establishment and maintenance of common ground. Different from our expectation that quality of machine translation results...

  14. Study on the surface reaction of LaNi{sub 5} alloy during discharge process in KOH solution

    Energy Technology Data Exchange (ETDEWEB)

    Tan Zuxian [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Yang Yifu [Department of Chemistry, Wuhan University, Wuhan 430072 (China)]. E-mail: yang-y-f1@vip.sina.com; Jiang Fengshan [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Shao Huixia [Department of Chemistry, Wuhan University, Wuhan 430072 (China)

    2006-10-05

    A new method for studying surface reaction of LaNi{sub 5} absorbing alloy in KOH solution (pH 12) was established. It is based on tip-substrate voltammetry of scanning electrochemical microscopy (SECM) where the tip faradic current is recorded while scanning the substrate potential. The Pt electrode is selected as tip electrode, and the Pt oxide formation-reduction is used as a pH-dependent reaction while the tip potential is held at a constant value. As substrate surface reactions proceed, the pH of solution can be changed, and then the tip faradic current is recorded. The mechanism of discharge process of LaNi{sub 5} alloy was analyzed by comparing the tip current (I {sub tip}) versus substrate potential (E {sub sub}) curve, which reflects the exchange of H{sup +} or OH{sup -} between the alloy surface and the solution, with the substrate current (I {sub sub}) versus substrate potential (E {sub sub}) curve, which reflects the exchange of electron on the LaNi{sub 5} alloy surface. The results showed that the OH{sup -} adsorption process is occurred before the electron transfer process during discharge process, and the adsorptive OH{sup -} helps the oxidation of adsorbed hydrogen atom on the alloy surface. A quantitative assessment for the maximum changes of pH during discharge process is also proposed, and the variation as large as 2.65 pH unit was detected.

  15. Study on the surface reaction of LaNi{sub 5} alloy during discharge process in KOH solution

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Zuxian; Yang, Yifu; Jiang, Fengshan; Shao, Huixia [Wuhan University, Wuhan (China). Department of Chemistry

    2006-10-05

    A new method for studying surface reaction of LaNi{sub 5} absorbing alloy in KOH solution (pH 12) was established. It is based on tip-substrate voltammetry of scanning electrochemical microscopy (SECM) where the tip faradic current is recorded while scanning the substrate potential. The Pt electrode is selected as tip electrode, and the Pt oxide formation-reduction is used as a pH-dependent reaction while the tip potential is held at a constant value. As substrate surface reactions proceed, the pH of solution can be changed, and then the tip faradic current is recorded. The mechanism of discharge process of LaNi{sub 5} alloy was analyzed by comparing the tip current (I{sub tip}) versus substrate potential (E{sub sub}) curve, which reflects the exchange of H{sup +} or OH{sup -} between the alloy surface and the solution, with the substrate current (I{sub sub}) versus substrate potential (E{sub sub}) curve, which reflects the exchange of electron on the LaNi{sub 5} alloy surface. The results showed that the OH{sup -} adsorption process is occurred before the electron transfer process during discharge process, and the adsorptive OH{sup -} helps the oxidation of adsorbed hydrogen atom on the alloy surface. A quantitative assessment for the maximum changes of pH during discharge process is also proposed, and the variation as large as 2.65 pH unit was detected. (author)

  16. Plasmachemical Oxidation Processes in Hybrid Gas-Liquid Electrical Discharge Reactor

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Petr; Locke, B.R.

    2005-01-01

    Roč. 38, č. 22 (2005), s. 4074-4081 ISSN 0022-3727 Institutional research plan: CEZ:AV0Z20430508 Keywords : Corona discharge * hybrid reactor * hydroxyl radical * ozone * phenol * water treatment Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.957, year: 2005

  17. Machine Learning Based Single-Frame Super-Resolution Processing for Lensless Blood Cell Counting

    Directory of Open Access Journals (Sweden)

    Xiwei Huang

    2016-11-01

    Full Text Available A lensless blood cell counting system integrating microfluidic channel and a complementary metal oxide semiconductor (CMOS image sensor is a promising technique to miniaturize the conventional optical lens based imaging system for point-of-care testing (POCT. However, such a system has limited resolution, making it imperative to improve resolution from the system-level using super-resolution (SR processing. Yet, how to improve resolution towards better cell detection and recognition with low cost of processing resources and without degrading system throughput is still a challenge. In this article, two machine learning based single-frame SR processing types are proposed and compared for lensless blood cell counting, namely the Extreme Learning Machine based SR (ELMSR and Convolutional Neural Network based SR (CNNSR. Moreover, lensless blood cell counting prototypes using commercial CMOS image sensors and custom designed backside-illuminated CMOS image sensors are demonstrated with ELMSR and CNNSR. When one captured low-resolution lensless cell image is input, an improved high-resolution cell image will be output. The experimental results show that the cell resolution is improved by 4×, and CNNSR has 9.5% improvement over the ELMSR on resolution enhancing performance. The cell counting results also match well with a commercial flow cytometer. Such ELMSR and CNNSR therefore have the potential for efficient resolution improvement in lensless blood cell counting systems towards POCT applications.

  18. Post-processing of multi-model ensemble river discharge forecasts using censored EMOS

    Science.gov (United States)

    Hemri, Stephan; Lisniak, Dmytro; Klein, Bastian

    2014-05-01

    When forecasting water levels and river discharge, ensemble weather forecasts are used as meteorological input to hydrologic process models. As hydrologic models are imperfect and the input ensembles tend to be biased and underdispersed, the output ensemble forecasts for river runoff typically are biased and underdispersed, too. Thus, statistical post-processing is required in order to achieve calibrated and sharp predictions. Standard post-processing methods such as Ensemble Model Output Statistics (EMOS) that have their origins in meteorological forecasting are now increasingly being used in hydrologic applications. Here we consider two sub-catchments of River Rhine, for which the forecasting system of the Federal Institute of Hydrology (BfG) uses runoff data that are censored below predefined thresholds. To address this methodological challenge, we develop a censored EMOS method that is tailored to such data. The censored EMOS forecast distribution can be understood as a mixture of a point mass at the censoring threshold and a continuous part based on a truncated normal distribution. Parameter estimates of the censored EMOS model are obtained by minimizing the Continuous Ranked Probability Score (CRPS) over the training dataset. Model fitting on Box-Cox transformed data allows us to take account of the positive skewness of river discharge distributions. In order to achieve realistic forecast scenarios over an entire range of lead-times, there is a need for multivariate extensions. To this end, we smooth the marginal parameter estimates over lead-times. In order to obtain realistic scenarios of discharge evolution over time, the marginal distributions have to be linked with each other. To this end, the multivariate dependence structure can either be adopted from the raw ensemble like in Ensemble Copula Coupling (ECC), or be estimated from observations in a training period. The censored EMOS model has been applied to multi-model ensemble forecasts issued on a

  19. Process parameter optimization during EDM of AISI 316 LN stainless steel by using fuzzy based multi-objective PSO

    Energy Technology Data Exchange (ETDEWEB)

    Majumder, Arindam [National Institute of Technology Agartala, Tripura (India)

    2013-07-15

    The present contribution describes an application of a hybrid approach using fuzzy logic and particle swarm optimization (PSO) for optimizing the process parameters in the electric discharge machining (EDM) of AISI 316LN Stainless Steel. In this study, each experimentation was performed under different machining conditions of pulse current, pulse on-time, and pulse off-time. Machining performances such as MRR and EWR were evaluated. A Taguchi L9 orthogonal array was produced to plan the experimentation and the regression method was applied to model the relationship between the input factors and responses. A fuzzy model was employed to provide a fitness function to PSO by unifying the multiple responses. Finally, PSO was used to predict the optimal process parametric settings for the multi-performance optimization of the EDM operation. The experimental results confirm the feasibility of the strategy and are in good agreement with the predicted results over a wide range of machining conditions employed in the process.

  20. Synthesis and characteristics of Ag/Pt bimetallic nanocomposites by arc-discharge solution plasma processing.

    Science.gov (United States)

    Pootawang, Panuphong; Saito, Nagahiro; Takai, Osamu; Lee, Sang-Yul

    2012-10-05

    Arc discharge in solution, generated by applying a high voltage of unipolar pulsed dc to electrodes of Ag and Pt, was used as a method to form Ag/Pt bimetallic nanocomposites via electrode erosion by the effects of the electric arc at the cathode (Ag rod) and the sputtering at the anode (Pt rod). Ag/Pt bimetallic nanocomposites were formed as colloidal particles dispersed in solution via the reduction of hydrogen radicals generated during discharge without the addition of chemical precursor or reducing agent. At a discharge time of 30 s, the fine bimetallic nanoparticles with a mean particle size of approximately 5 nm were observed by transmission electron microscopy (TEM). With increasing discharge time, the bimetallic nanoparticle size tended to increase by forming an agglomeration. The presence of the relatively small amount of Pt dispersed in the Ag matrix could be observed by the analytical mapping mode of energy-dispersive x-ray spectroscopy and high-resolution TEM. This demonstrated that the synthesized particle was in the form of a nanocomposite. No contamination of other chemical substances was detected by x-ray photoelectron spectroscopy. Hence, solution plasma could be a clean and simple process to effectively synthesize Ag/Pt bimetallic nanocomposites and it is expected to be widely applicable in the preparation of several types of nanoparticle.