WorldWideScience

Sample records for directives dassault-aviation model

  1. 75 FR 79952 - Airworthiness Directives; DASSAULT AVIATION Model Falcon 10 Airplanes; Model FAN JET FALCON, FAN...

    2010-12-21

    ... Airworthiness Directives; DASSAULT AVIATION Model Falcon 10 Airplanes; Model FAN JET FALCON, FAN JET FALCON.... (1) DASSAULT AVIATION Model Falcon 10 airplanes, Model FAN JET FALCON, FAN JET FALCON SERIES C, D, E... airplanes Inspection threshold (whichever occurs later) Inspection interval Model FAN JET FALCON, FAN JET...

  2. 75 FR 43878 - Airworthiness Directives; DASSAULT AVIATION Model Falcon 10 Airplanes; Model FAN JET FALCON, FAN...

    2010-07-27

    ... Model Falcon 10 Airplanes; Model FAN JET FALCON, FAN JET FALCON SERIES C, D, E, F, and G Airplanes.... Since that NPRM was issued, we have determined that Model FAN JET FALCON SERIES C, D, E, F, and G..., Model FAN JET FALCON, FAN JET FALCON SERIES C, D, E, F, and G airplanes, and Model MYSTERE-FALCON 20-C5...

  3. 77 FR 36950 - Airworthiness Directives; Dassault Aviation Airplanes

    2012-06-20

    ... time between overhauls, and required an initial overhaul, of the direct current (DC) generator... overhauls, and required an initial overhaul, of the DC generator (bearings). That NPRM resulted from... condition as: Time between overhaul (TBO) of DC [direct current] generator bearings is set at 1,000 flight...

  4. 77 FR 46946 - Airworthiness Directives; Dassault Aviation Airplanes

    2012-08-07

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 39 [Docket No. FAA-2012... of Transportation (DOT). ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive... of the oxygen pipe developing a crack. This AD requires modifying the routing of and, if necessary...

  5. 75 FR 27926 - Special Conditions: Dassault Aviation Falcon Model 2000EX; Autobraking System

    2010-05-19

    ... Certificate (TC) No. A50NM to install an automatic braking system on the Falcon Model 2000EX airplane. This is... potentially higher structural loads that could result from this type of automatic braking system. Title 14... from maximum braking, taking into account the effects of the automatic braking system. Type...

  6. 75 FR 28465 - Airworthiness Directives; Dassault-Aviation Model FALCON 2000 and FALCON 2000EX Airplanes

    2010-05-21

    ... INFORMATION CONTACT: Tom Rodriguez, Aerospace Engineer, International Branch, ANM-116, Transport Airplane... function of the shock absorber is lost and high loads may be transmitted to the aircraft structure during... maneuvers or landing. Dassault states that, based on engineering studies, it believes that the failure or...

  7. 75 FR 82327 - Airworthiness Directives; Dassault-Aviation Model FALCON 7X Airplanes

    2010-12-30

    ... has been determined that in case a short circuit occurs on a weight-on-wheels (WOW) proximity sensor... of all WOW proximity sensors of that part of the system. The loss of the corresponding WOW... case a short circuit occurs on a weight-on-wheels (WOW) proximity sensor wiring, both circuit breakers...

  8. 76 FR 24358 - Airworthiness Directives; Dassault-Aviation Model FALCON 7X Airplanes

    2011-05-02

    ...-wheels (WOW) proximity sensor wiring, both circuit breakers that supply power to that wiring will trip, causing simultaneous de-power of all WOW proximity sensors of that part of the system. The loss of the corresponding WOW information would lead to untimely inhibition of warnings that could compromise the pilot...

  9. 75 FR 71530 - Airworthiness Directives; DASSAULT AVIATION Model MYSTERE-FALCON 50 Airplanes

    2010-11-24

    ... requires painting the affected pipes for clear identification in order to avoid mistakes while reinstalling..., Congress charges the FAA with promoting safe flight of civil aircraft in air commerce by prescribing... Accomplishment Instructions of Dassault Service Bulletin F50-515, dated October 12, 2010, except that work...

  10. 76 FR 47424 - Airworthiness Directives; Dassault Aviation Model FALCON 7X Airplanes

    2011-08-05

    ... installing a placard in the cockpit, 3. Amending the Minimum Equipment List (MEL), and 4. Implementing an... with certain inoperative MEL items, and revising the electronic checklist. You may obtain further... prohibition takes precedence over the FAA master minimum equipment list (MMEL) or any operator's MEL. Air data...

  11. 75 FR 51931 - Airworthiness Directives; Dassault-Aviation Model FALCON 7X Airplanes

    2010-08-24

    ...: Several in service events related to various electrical systems, have led to the discovery of a common... discovery of a common root cause: A leakage failure mode of Transient Voltage Suppressor (TVS) diodes used... embodied. Subject (d) Air Transport Association (ATA) of America Code 24: Electrical Power. Reason (e) The...

  12. 78 FR 73687 - Airworthiness Directives; DASSAULT AVIATION Airplanes

    2013-12-09

    ... and corrected, could lead to complete fracture of the rib and loss of integrity of the flap structure... inboard end plate (rib) of the inboard flap could lead to complete fracture of the rib and loss of... correct such cracking, which could lead to complete fracture of the rib and loss of integrity of the flap...

  13. 78 FR 40065 - Airworthiness Directives; Dassault Aviation Airplanes

    2013-07-03

    ... electronic control units (HSECU); operating the airplane according to the limitations and procedures in the... incorporate repetitive operational tests of the electric motors reversion relays and trim emergency command of... electric motors reversion relays and trim emergency command of the HSTS, and repairs if necessary. We are...

  14. 78 FR 58973 - Airworthiness Directives; Dassault Aviation Airplanes

    2013-09-25

    ... AMM chapter 5-40 at revision 7 introduces extended inspection interval; --Tests of the auto brake... pressurization control regulating valves. Compliance with this check is required by EASA AD 2008-0072 [ http://ad... air commerce by prescribing regulations for practices, methods, and procedures the Administrator finds...

  15. 75 FR 47176 - Special Conditions: Dassault Aviation Model Falcon 7X; Enhanced Flight Visibility System (EFVS)

    2010-08-05

    ... needed for each of the following factors: An acceptable degree of image transparency; Image alignment... altitude will be 51,000 feet with a range of 5,700 nautical miles. The electronic infrared image displayed... anticipation of such technology. The electronic image has the potential to enhance the pilot's awareness of the...

  16. 77 FR 18099 - Special Conditions: Dassault Aviation, Model Falcon 7X Airplanes; Seats With Inflatable Shoulder...

    2012-03-27

    .... The airbag system in the shoulder strap must provide a consistent approach to energy absorption.... Comments Invited We invite interested people to take part in this rulemaking by sending written comments...

  17. Developpements numeriques recents realises en aeroelasticite chez Dassault Aviation pour la conception des avions de combat modernes et des avions d’affaires

    2003-03-01

    Cost through Advanced Modelling and Virtual Simulation [La reduction des couts et des delais d’acquisition des vehicules militaires par la modelisation...sont les 6quations de restitution, par le mod~e, des frdquences et des amortissements des modes adrodlastiques mesurds h une prdcision F- donnde. Afin... amortissements mesurds h 37800 Pa et 60000 Pa (points nettemnent inferieurs A la vitesse critique). Comme le montre ce diagramme, le calcul, recal6 h

  18. Directed Innovation of Business Models

    Stelian Brad

    2016-06-01

    Full Text Available Business model innovation is an important issue to keep business competitive and increase company’s profits. Due to many market attractors, identification of appropriate paths of business model evolution is a painful and risky process. To improve decision’s effectiveness in this process, an architectural construct of analysis and conceptualization for business model innovation that combines directed evolution and blue ocean concepts is proposed in this paper under the name of directed innovation. It displays the key points where innovations would happen to direct adaptation of the business model towards sustainable competitiveness. Formulation of mature solutions is supported by inventive problem solving tools. The significance of the directed innovation approach is demonstrated in a case study dealing with business model innovation of a software company.

  19. Directed Innovation of Business Models

    Stelian Brad; Emilia Brad

    2016-01-01

    Business model innovation is an important issue to keep business competitive and increase company’s profits. Due to many market attractors, identification of appropriate paths of business model evolution is a painful and risky process. To improve decision’s effectiveness in this process, an architectural construct of analysis and conceptualization for business model innovation that combines directed evolution and blue ocean concepts is proposed in this paper under the name o...

  20. Directional wave measurements and modelling

    Anand, N.M.; Nayak, B.U.; Bhat, S.S.; SanilKumar, V.

    Some of the results obtained from analysis of the monsoon directional wave data measured over 4 years in shallow waters off the west coast of India are presented. The directional spectrum computed from the time series data seems to indicate...

  1. Directions in Radiation Transport Modelling

    P Nicholas Smith

    2016-12-01

    More exciting advances are on the horizon to increase the power of simulation tools. The advent of high performance computers is allowing bigger, higher fidelity models to be created, if the challenges of parallelization and memory management can be met. 3D whole core transport modelling is becoming possible. Uncertainty quantification is improving with large benefits to be gained from more accurate, less pessimistic estimates of uncertainty. Advanced graphical displays allow the user to assimilate and make sense of the vast amounts of data produced by modern modelling tools. Numerical solvers are being developed that use goal-based adaptivity to adjust the nodalisation of the system to provide the optimum scheme to achieve the user requested accuracy on the results, thus removing the need to perform costly convergence studies in space and angle etc. More use is being made of multi-physics methods in which radiation transport is coupled with other phenomena, such as thermal-hydraulics, structural response, fuel performance and/or chemistry in order to better understand their interplay in reactor cores.

  2. A novel Direct Small World network model

    LIN Tao

    2016-10-01

    Full Text Available There is a certain degree of redundancy and low efficiency of existing computer networks.This paper presents a novel Direct Small World network model in order to optimize networks.In this model,several nodes construct a regular network.Then,randomly choose and replot some nodes to generate Direct Small World network iteratively.There is no change in average distance and clustering coefficient.However,the network performance,such as hops,is improved.The experiments prove that compared to traditional small world network,the degree,average of degree centrality and average of closeness centrality are lower in Direct Small World network.This illustrates that the nodes in Direct Small World networks are closer than Watts-Strogatz small world network model.The Direct Small World can be used not only in the communication of the community information,but also in the research of epidemics.

  3. Computer Modeling of Direct Metal Laser Sintering

    Cross, Matthew

    2014-01-01

    A computational approach to modeling direct metal laser sintering (DMLS) additive manufacturing process is presented. The primary application of the model is for determining the temperature history of parts fabricated using DMLS to evaluate residual stresses found in finished pieces and to assess manufacturing process strategies to reduce part slumping. The model utilizes MSC SINDA as a heat transfer solver with imbedded FORTRAN computer code to direct laser motion, apply laser heating as a boundary condition, and simulate the addition of metal powder layers during part fabrication. Model results are compared to available data collected during in situ DMLS part manufacture.

  4. Chaotic inflation in models with flat directions

    Graziani, F.; Olive, K.

    1989-01-01

    We consider the chaotic inflationary scenario in models with flat directions. We find that unless the scalars along the flat directions have vacuum expectation values p or 10 14 M p 15 M p depending on the expectation values of the chaotic inflator, Ψ, one or two or more periods of inflation occur but with a resulting energy density perturbation δρ/ρ ≅ 10 -16 , far too small to be of any consequence for galaxy formation. Even with p only limited initial values of ≅ (3-200) M p result in inflation with reasonable density perturbations. Thus chaotic inflation in models with flat directions require rather special initial conditions. (orig.)

  5. Modeling switching behaviour of direct selling customers

    P Msweli-Mbanga

    2004-04-01

    Full Text Available The direct selling industry suffers a high turnover rate of salespeople, resulting in high costs of training new salespeople. Further costs are incurred when broken relationships with customers cause them to switch from one product supplier to another. This study identifies twelve factors that drive the switching behaviour of direct sales customers and examines the extent to which these factors influence switching. Exploratory factor analysis was used to assess the validity of these factors. The factors were represented in a model that posits that an interpersonal relationship between a direct sales person and a customer moderates the relationship between switching behaviour and loyalty. Structural equation modeling was used to test the proposed model. The author then discusses the empirical findings and their managerial implications, providing further avenues for research.

  6. Directional Dipole Model for Subsurface Scattering

    Frisvad, Jeppe Revall; Hachisuka, Toshiya; Kjeldsen, Thomas Kim

    2014-01-01

    Rendering translucent materials using Monte Carlo ray tracing is computationally expensive due to a large number of subsurface scattering events. Faster approaches are based on analytical models derived from diffusion theory. While such analytical models are efficient, they miss out on some...... point source diffusion. A ray source corresponds better to the light that refracts through the surface of a translucent material. Using this ray source, we are able to take the direction of the incident light ray and the direction toward the point of emergence into account. We use a dipole construction...

  7. New Directions in Modeling the Lighting Systems

    P. Fiala

    2004-12-01

    Full Text Available This paper presents information about new directions in the modelingof lighting systems, and an overview of methods for the modeling oflighting systems. The new R-FEM method is described, which is acombination of the Radiosity method and the Finite Elements Method. Thepaper contains modeling results and their verification by experimentalmeasurements and by the Matlab simulation for this R-FEM method.

  8. Relativistic direct interaction and hadron models

    Biswas, T.

    1984-01-01

    Direct interaction theories at a nonrelativistic level have been used successfully in several areas earlier (e.g. nuclear physics). But for hadron spectroscopy relativistic effects are important and hence the need for a relativistic direct interaction theory arises. It is the goal of this thesis to suggest such a theory which has the simplicity and the flexibility required for phenomenological model building. In general the introduction of relativity in a direct interaction theory is shown to be non-trivial. A first attempt leads to only an approximate form for allowed interactions. Even this is far too complex for phenomenological applicability. To simplify the model an extra spacelike particle called the vertex is introduced in any set of physical (timelike) particles. The vertex model is successfully used to fit and to predict experimental data on hadron spectra, γ and psi states fit very well with an interaction function inspired by QCD. Light mesons also fit reasonably well. Better forms of hyperfine interaction functions would be needed to improve the fitting of light mesons. The unexpectedly low pi meson mass is partially explained. Baryon ground states are fitted with unprecedented accuracy with very few adjustable parameters. For baryon excited states it is shown that better QCD motivated interaction functions are needed for a fit. Predictions for bb states in e + e - experiments are made to assist current experiments

  9. Adiabatic equilibrium models for direct containment heating

    Pilch, M.; Allen, M.D.

    1991-01-01

    Probabilistic risk assessment (PRA) studies are being extended to include a wider spectrum of reactor plants than was considered in NUREG-1150. There is a need for simple direct containment heating (DCH) models that can be used for screening studies aimed at identifying potentially significant contributors to overall risk in individual nuclear power plants. This paper presents two adiabatic equilibrium models suitable for the task. The first, a single-cell model, places a true upper bound on DCH loads. This upper bound, however, often far exceeds reasonable expectations of containment loads based on CONTAIN calculations and experiment observations. In this paper, a two cell model is developed that captures the major mitigating feature of containment compartmentalization, thus providing more reasonable estimates of the containment load

  10. Direct modeling for computational fluid dynamics

    Xu, Kun

    2015-06-01

    All fluid dynamic equations are valid under their modeling scales, such as the particle mean free path and mean collision time scale of the Boltzmann equation and the hydrodynamic scale of the Navier-Stokes (NS) equations. The current computational fluid dynamics (CFD) focuses on the numerical solution of partial differential equations (PDEs), and its aim is to get the accurate solution of these governing equations. Under such a CFD practice, it is hard to develop a unified scheme that covers flow physics from kinetic to hydrodynamic scales continuously because there is no such governing equation which could make a smooth transition from the Boltzmann to the NS modeling. The study of fluid dynamics needs to go beyond the traditional numerical partial differential equations. The emerging engineering applications, such as air-vehicle design for near-space flight and flow and heat transfer in micro-devices, do require further expansion of the concept of gas dynamics to a larger domain of physical reality, rather than the traditional distinguishable governing equations. At the current stage, the non-equilibrium flow physics has not yet been well explored or clearly understood due to the lack of appropriate tools. Unfortunately, under the current numerical PDE approach, it is hard to develop such a meaningful tool due to the absence of valid PDEs. In order to construct multiscale and multiphysics simulation methods similar to the modeling process of constructing the Boltzmann or the NS governing equations, the development of a numerical algorithm should be based on the first principle of physical modeling. In this paper, instead of following the traditional numerical PDE path, we introduce direct modeling as a principle for CFD algorithm development. Since all computations are conducted in a discretized space with limited cell resolution, the flow physics to be modeled has to be done in the mesh size and time step scales. Here, the CFD is more or less a direct

  11. Radiation Modeling with Direct Simulation Monte Carlo

    Carlson, Ann B.; Hassan, H. A.

    1991-01-01

    Improvements in the modeling of radiation in low density shock waves with direct simulation Monte Carlo (DSMC) are the subject of this study. A new scheme to determine the relaxation collision numbers for excitation of electronic states is proposed. This scheme attempts to move the DSMC programs toward a more detailed modeling of the physics and more reliance on available rate data. The new method is compared with the current modeling technique and both techniques are compared with available experimental data. The differences in the results are evaluated. The test case is based on experimental measurements from the AVCO-Everett Research Laboratory electric arc-driven shock tube of a normal shock wave in air at 10 km/s and .1 Torr. The new method agrees with the available data as well as the results from the earlier scheme and is more easily extrapolated to di erent ow conditions.

  12. Beyond the standard model in many directions

    Chris Quigg

    2004-04-28

    These four lectures constitute a gentle introduction to what may lie beyond the standard model of quarks and leptons interacting through SU(3){sub c} {direct_product} SU(2){sub L} {direct_product} U(1){sub Y} gauge bosons, prepared for an audience of graduate students in experimental particle physics. In the first lecture, I introduce a novel graphical representation of the particles and interactions, the double simplex, to elicit questions that motivate our interest in physics beyond the standard model, without recourse to equations and formalism. Lecture 2 is devoted to a short review of the current status of the standard model, especially the electroweak theory, which serves as the point of departure for our explorations. The third lecture is concerned with unified theories of the strong, weak, and electromagnetic interactions. In the fourth lecture, I survey some attempts to extend and complete the electroweak theory, emphasizing some of the promise and challenges of supersymmetry. A short concluding section looks forward.

  13. Modeling mental spatial reasoning about cardinal directions.

    Schultheis, Holger; Bertel, Sven; Barkowsky, Thomas

    2014-01-01

    This article presents research into human mental spatial reasoning with orientation knowledge. In particular, we look at reasoning problems about cardinal directions that possess multiple valid solutions (i.e., are spatially underdetermined), at human preferences for some of these solutions, and at representational and procedural factors that lead to such preferences. The article presents, first, a discussion of existing, related conceptual and computational approaches; second, results of empirical research into the solution preferences that human reasoners actually have; and, third, a novel computational model that relies on a parsimonious and flexible spatio-analogical knowledge representation structure to robustly reproduce the behavior observed with human reasoners. Copyright © 2014 Cognitive Science Society, Inc.

  14. Incorporating direct marketing activity into latent attrition models

    Schweidel, David A.; Knox, George

    2013-01-01

    When defection is unobserved, latent attrition models provide useful insights about customer behavior and accurate forecasts of customer value. Yet extant models ignore direct marketing efforts. Response models incorporate the effects of direct marketing, but because they ignore latent attrition,

  15. Adolescent Contraceptive Use: Models, Research, and Directions.

    Whitley, Bernard E., Jr.; Schofield, Janet Ward

    Both the career model and the decision model have been proposed to explain patterns of contraceptive use in teenagers. The career model views contraceptive use as a symbol of a woman's sexuality and implies a clear decision to be sexually active. The decision model is based on the subjective expected utility (SEU) theory which holds that people…

  16. Markov chain Monte Carlo methods in directed graphical models

    Højbjerre, Malene

    Directed graphical models present data possessing a complex dependence structure, and MCMC methods are computer-intensive simulation techniques to approximate high-dimensional intractable integrals, which emerge in such models with incomplete data. MCMC computations in directed graphical models h...

  17. Nonlinear dynamics new directions models and applications

    Ugalde, Edgardo

    2015-01-01

    This book, along with its companion volume, Nonlinear Dynamics New Directions: Theoretical Aspects, covers topics ranging from fractal analysis to very specific applications of the theory of dynamical systems to biology. This second volume contains mostly new applications of the theory of dynamical systems to both engineering and biology. The first volume is devoted to fundamental aspects and includes a number of important new contributions as well as some review articles that emphasize new development prospects. The topics addressed in the two volumes include a rigorous treatment of fluctuations in dynamical systems, topics in fractal analysis, studies of the transient dynamics in biological networks, synchronization in lasers, and control of chaotic systems, among others. This book also: ·         Develops applications of nonlinear dynamics on a diversity of topics such as patterns of synchrony in neuronal networks, laser synchronization, control of chaotic systems, and the study of transient dynam...

  18. Direct Importance Estimation with Gaussian Mixture Models

    Yamada, Makoto; Sugiyama, Masashi

    The ratio of two probability densities is called the importance and its estimation has gathered a great deal of attention these days since the importance can be used for various data processing purposes. In this paper, we propose a new importance estimation method using Gaussian mixture models (GMMs). Our method is an extention of the Kullback-Leibler importance estimation procedure (KLIEP), an importance estimation method using linear or kernel models. An advantage of GMMs is that covariance matrices can also be learned through an expectation-maximization procedure, so the proposed method — which we call the Gaussian mixture KLIEP (GM-KLIEP) — is expected to work well when the true importance function has high correlation. Through experiments, we show the validity of the proposed approach.

  19. Flat directions in left-right symmetric string derived models

    Cleaver, Gerald B.; Clements, David J.; Faraggi, Alon E.

    2002-01-01

    The only string models known to reproduce the minimal supersymmetric standard model in the low energy effective field theory are those constructed in the free fermionic formulation. We demonstrate the existence of quasirealistic free fermionic heterotic string models in which supersymmetric singlet flat directions do not exist. This raises the possibility that supersymmetry is broken perturbatively in such models by the one-loop Fayet-Iliopoulos term. We show, however, that supersymmetric flat directions that utilize vacuum expectation values of some non-Abelian fields in the massless string spectrum do exist in the model. We argue that hidden sector condensates lift the flat directions and break supersymmetry hierarchically

  20. Directions for model building from asymptotic safety

    Bond, Andrew D.; Hiller, Gudrun; Kowalska, Kamila; Litim, Daniel F.

    2017-08-01

    Building on recent advances in the understanding of gauge-Yukawa theories we explore possibilities to UV-complete the Standard Model in an asymptotically safe manner. Minimal extensions are based on a large flavor sector of additional fermions coupled to a scalar singlet matrix field. We find that asymptotic safety requires fermions in higher representations of SU(3) C × SU(2) L . Possible signatures at colliders are worked out and include R-hadron searches, diboson signatures and the evolution of the strong and weak coupling constants.

  1. The Aalborg Model and participant directed learning

    Qvist, Palle

    2009-01-01

    Preparing students for a life as active citizens in a democratic society is one of the aims within the Bologna process. The Council of Europe has also stressed the importance of focus on democracy in Higher Education. Higher Education is seen as important to develop a democratic culture among...... students. Teaching democracy should be promoted in lessons and curricula. Creating democratic learning systems in institutions of higher education could be the answer to reaching the aim related to democracy. The Aalborg Model practised at Aalborg University is a learning system which has collaborative...

  2. Comparison of NGA-West2 directivity models

    Spudich, Paul A.; Rowshandel, Badie; Shahi, Shrey; Baker, Jack W.; Chiou, Brian S-J

    2014-01-01

    Five directivity models have been developed based on data from the NGA-West2 database and based on numerical simulations of large strike-slip and reverse-slip earthquakes. All models avoid the use of normalized rupture dimension, enabling them to scale up to the largest earthquakes in a physically reasonable way. Four of the five models are explicitly “narrow-band” (in which the effect of directivity is maximum at a specific period that is a function of earthquake magnitude). Several strategies for determining the zero-level for directivity have been developed. We show comparisons of maps of the directivity amplification. This comparison suggests that the predicted geographic distributions of directivity amplification are dominated by effects of the models' assumptions, and more than one model should be used for ruptures dipping less than about 65 degrees.

  3. The CEDSS model of direct domestic energy demand

    Gotts, Nicholas Mark

    2014-01-01

    This paper describes the design, implementation and testing of the CEDSS model of direct domestic energy demand, and the first results of its use to produce estimates of future demand under a range of scenarios. CEDSS simulates direct domestic energy demand at within communities of approximately 200 households. The scenarios explored differ in the economic conditions assumed, and policy measures adopted at national level.

  4. Modeling HIV-1 drug resistance as episodic directional selection.

    Murrell, Ben; de Oliveira, Tulio; Seebregts, Chris; Kosakovsky Pond, Sergei L; Scheffler, Konrad

    2012-01-01

    The evolution of substitutions conferring drug resistance to HIV-1 is both episodic, occurring when patients are on antiretroviral therapy, and strongly directional, with site-specific resistant residues increasing in frequency over time. While methods exist to detect episodic diversifying selection and continuous directional selection, no evolutionary model combining these two properties has been proposed. We present two models of episodic directional selection (MEDS and EDEPS) which allow the a priori specification of lineages expected to have undergone directional selection. The models infer the sites and target residues that were likely subject to directional selection, using either codon or protein sequences. Compared to its null model of episodic diversifying selection, MEDS provides a superior fit to most sites known to be involved in drug resistance, and neither one test for episodic diversifying selection nor another for constant directional selection are able to detect as many true positives as MEDS and EDEPS while maintaining acceptable levels of false positives. This suggests that episodic directional selection is a better description of the process driving the evolution of drug resistance.

  5. Modeling HIV-1 drug resistance as episodic directional selection.

    Ben Murrell

    Full Text Available The evolution of substitutions conferring drug resistance to HIV-1 is both episodic, occurring when patients are on antiretroviral therapy, and strongly directional, with site-specific resistant residues increasing in frequency over time. While methods exist to detect episodic diversifying selection and continuous directional selection, no evolutionary model combining these two properties has been proposed. We present two models of episodic directional selection (MEDS and EDEPS which allow the a priori specification of lineages expected to have undergone directional selection. The models infer the sites and target residues that were likely subject to directional selection, using either codon or protein sequences. Compared to its null model of episodic diversifying selection, MEDS provides a superior fit to most sites known to be involved in drug resistance, and neither one test for episodic diversifying selection nor another for constant directional selection are able to detect as many true positives as MEDS and EDEPS while maintaining acceptable levels of false positives. This suggests that episodic directional selection is a better description of the process driving the evolution of drug resistance.

  6. Direct Model Reference Adaptive Control for a Magnetic Bearing

    Durling, Mike [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1999-11-01

    A Direct Model Reference Adaptive Controller (DMRAC) is applied to a magnetic bearing test stand. The bearing of interest is the MBC 500 Magnetic Bearing System manufactured by Magnetic Moments, LLC. The bearing model is presented in state space form and the system transfer function is measured directly using a closed-loop swept sine technique. Next, the bearing models are used to design a phase-lead controller, notch filter and then a DMRAC. The controllers are tuned in simulations and finally are implemented using a combination of MATLAB, SIMULINK and dSPACE. The results show a successful implementation of a DMRAC on the magnetic bearing hardware.

  7. Direct model reference adaptive control with application to flexible robots

    Steinvorth, Rodrigo; Kaufman, Howard; Neat, Gregory W.

    1992-01-01

    A modification to a direct command generator tracker-based model reference adaptive control (MRAC) system is suggested in this paper. This modification incorporates a feedforward into the reference model's output as well as the plant's output. Its purpose is to eliminate the bounded model following error present in steady state when previous MRAC systems were used. The algorithm was evaluated using the dynamics for a single-link flexible-joint arm. The results of these simulations show a response with zero steady state model following error. These results encourage further use of MRAC for various types of nonlinear plants.

  8. Revisiting the direct detection of dark matter in simplified models

    Li, Tong

    2018-01-01

    In this work we numerically re-examine the loop-induced WIMP-nucleon scattering cross section for the simplified dark matter models and the constraint set by the latest direct detection experiment. We consider a fermion, scalar or vector dark matter component from five simplified models with leptophobic spin-0 mediators coupled only to Standard Model quarks and dark matter particles. The tree-level WIMP-nucleon cross sections in these models are all momentum-suppressed. We calculate the non-s...

  9. A Model of Direct Gauge Mediation of Supersymmetry Breaking

    Murayama, H.

    1997-01-01

    We present the first phenomenologically viable model of gauge meditation of supersymmetry breaking without a messenger sector or gauge singlet fields. The standard model gauge groups couple directly to the sector which breaks supersymmetry dynamically. Despite the direct coupling, it can preserve perturbative gauge unification thanks to the inverted hierarchy mechanism. There is no dangerous negative contribution to m 2 q , m 2 l due to two-loop renormalization group equation. The potentially nonuniversal supergravity contribution to m 2 q and m 2 l can be suppressed enough. The model is completely chiral, and one does not need to forbid mass terms for the messenger fields by hand. Cosmology of the model is briefly discussed. copyright 1997 The American Physical Society

  10. Total, Direct, and Indirect Effects in Logit Models

    Karlson, Kristian Bernt; Holm, Anders; Breen, Richard

    It has long been believed that the decomposition of the total effect of one variable on another into direct and indirect effects, while feasible in linear models, is not possible in non-linear probability models such as the logit and probit. In this paper we present a new and simple method...... average partial effects, as defined by Wooldridge (2002). We present the method graphically and illustrate it using the National Educational Longitudinal Study of 1988...

  11. A Dynamic Growth Model for Flows of Foreign Direct Investment

    Yi-Hui Chiang; Yiming Li; Chih-Young Hung

    2007-01-01

    In this work, we for the first time study the dynamic flows of the foreign direct investment (FDI) with a dynamic growth theory. We define the FDI flow as a process which transmits throughout a given social system by way of diverse communication channels. In model formulation, seven assumptions are thus proposed and the foreign capital policy of the host country is considered as an external influence; in addition, the investment policy of the investing country is modeled as an internal influe...

  12. Macroscopic Modeling of Transport Phenomena in Direct Methanol Fuel Cells

    Olesen, Anders Christian

    An increasing need for energy efficiency and high energy density has sparked a growing interest in direct methanol fuel cells for portable power applications. This type of fuel cell directly generates electricity from a fuel mixture consisting of methanol and water. Although this technology...... surpasses batteries in important areas, fundamental research is still required to improve durability and performance. Particularly the transport of methanol and water within the cell structure is difficult to study in-situ. A demand therefore exist for the fundamental development of mathematical models...... for studying their transport. In this PhD dissertation the macroscopic transport phenomena governing direct methanol fuel cell operation are analyzed, discussed and modeled using the two-fluid approach in the computational fluid dynamics framework of CFX 14. The overall objective of this work is to extend...

  13. A Nonstationary Markov Model Detects Directional Evolution in Hymenopteran Morphology.

    Klopfstein, Seraina; Vilhelmsen, Lars; Ronquist, Fredrik

    2015-11-01

    Directional evolution has played an important role in shaping the morphological, ecological, and molecular diversity of life. However, standard substitution models assume stationarity of the evolutionary process over the time scale examined, thus impeding the study of directionality. Here we explore a simple, nonstationary model of evolution for discrete data, which assumes that the state frequencies at the root differ from the equilibrium frequencies of the homogeneous evolutionary process along the rest of the tree (i.e., the process is nonstationary, nonreversible, but homogeneous). Within this framework, we develop a Bayesian approach for testing directional versus stationary evolution using a reversible-jump algorithm. Simulations show that when only data from extant taxa are available, the success in inferring directionality is strongly dependent on the evolutionary rate, the shape of the tree, the relative branch lengths, and the number of taxa. Given suitable evolutionary rates (0.1-0.5 expected substitutions between root and tips), accounting for directionality improves tree inference and often allows correct rooting of the tree without the use of an outgroup. As an empirical test, we apply our method to study directional evolution in hymenopteran morphology. We focus on three character systems: wing veins, muscles, and sclerites. We find strong support for a trend toward loss of wing veins and muscles, while stationarity cannot be ruled out for sclerites. Adding fossil and time information in a total-evidence dating approach, we show that accounting for directionality results in more precise estimates not only of the ancestral state at the root of the tree, but also of the divergence times. Our model relaxes the assumption of stationarity and reversibility by adding a minimum of additional parameters, and is thus well suited to studying the nature of the evolutionary process in data sets of limited size, such as morphology and ecology. © The Author

  14. Progress in microscopic direct reaction modeling of nucleon induced reactions

    Dupuis, M.; Bauge, E.; Hilaire, S.; Lechaftois, F.; Peru, S.; Pillet, N.; Robin, C. [CEA, DAM, DIF, Arpajon (France)

    2015-12-15

    A microscopic nuclear reaction model is applied to neutron elastic and direct inelastic scatterings, and pre-equilibrium reaction. The JLM folding model is used with nuclear structure information calculated within the quasi-particle random phase approximation implemented with the Gogny D1S interaction. The folding model for direct inelastic scattering is extended to include rearrangement corrections stemming from both isoscalar and isovector density variations occurring during a transition. The quality of the predicted (n,n), (n,n{sup '}), (n,xn) and (n,n{sup '}γ) cross sections, as well as the generality of the present microscopic approach, shows that it is a powerful tool that can help improving nuclear reactions data quality. Short- and long-term perspectives are drawn to extend the present approach to more systems, to include missing reactions mechanisms, and to consistently treat both structure and reaction problems. (orig.)

  15. Direct Use Reservoir Models - How We think They Work

    Culver, G.

    1990-01-01

    The resource base for low-to-moderate temperature direct use geothermal applications is large and wide spread throughout the western United States. The models for direct use resources likely to be utilized in EPA Region IX depict fluids percolating to significant depths, being heated and convecting to the surface or near surface. The most commonly utilized resource is the fault controlled lateral leakage type. Geothermal fluids within the shallow reservoir vary in temperature and chemistry depending on the distance from the upflow zone. Regulations governing injected water chemistry compared to receiving water chemistry should take variations of chemistry into account.

  16. Modeling and Simulation of the Direct Methanol Fuel Cell

    Wohr, M.; Narayanan, S. R.; Halpert, G.

    1996-01-01

    From intro.: The direct methanol liquid feed fuel cell uses aqueous solutions of methanol as fuel and oxygen or air as the oxidant and uses an ionically conducting polymer membrane such as Nafion(sup r)117 and the electrolyte. This type of direct oxidation cell is fuel versatile and offers significant advantages in terms of simplicity of design and operation...The present study focuses on the results of a phenomenological model based on current understanding of the various processed operating in these cells.

  17. Evading direct dark matter detection in Higgs portal models

    Arcadi, Giorgio [Max Planck Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Gross, Christian, E-mail: christian.gross@helsinki.fi [Department of Physics and Helsinki Institute of Physics, Gustaf Hällströmin katu 2, FI-00014 Helsinki (Finland); Lebedev, Oleg [Department of Physics and Helsinki Institute of Physics, Gustaf Hällströmin katu 2, FI-00014 Helsinki (Finland); Pokorski, Stefan [Institute of Theoretical Physics, University of Warsaw, Pasteura 5, PL-02-093 Warsaw (Poland); Toma, Takashi [Physik-Department T30d, Technische Universität München, James-Franck-Straße, D-85748 Garching (Germany)

    2017-06-10

    Many models of Higgs portal Dark Matter (DM) find themselves under pressure from increasingly tight direct detection constraints. In the framework of gauge field DM, we study how such bounds can be relaxed while retaining the thermal WIMP paradigm. When the hidden sector gauge symmetry is broken via the Higgs mechanism, the hidden sector generally contains unstable states which are lighter than dark matter. These states provide DM with an efficient annihilation channel. As a result, the DM relic abundance and the direct detection limits are controlled by different parameters, and the two can easily be reconciled. This simple setup realizes the idea of “secluded” dark matter naturally.

  18. Induction and direct resistance heating theory and numerical modeling

    Lupi, Sergio; Aliferov, Aleksandr

    2015-01-01

    This book offers broad, detailed coverage of theoretical developments in induction and direct resistance heating and presents new material on the solution of problems in the application of such heating. The physical basis of induction and conduction heating processes is explained, and electromagnetic phenomena in direct resistance and induction heating of flat workpieces and cylindrical bodies are examined in depth. The calculation of electrical and energetic characteristics of induction and conduction heating systems is then thoroughly reviewed. The final two chapters consider analytical solutions and numerical modeling of problems in the application of induction and direct resistance heating, providing industrial engineers with the knowledge needed in order to use numerical tools in the modern design of installations. Other engineers, scientists, and technologists will find the book to be an invaluable reference that will assist in the efficient utilization of electrical energy.

  19. Lattice models of directed and semiflexible polymers in anisotropic environment

    Haydukivska, K; Blavatska, V

    2015-01-01

    We study the conformational properties of polymers in presence of extended columnar defects of parallel orientation. Two classes of macromolecules are considered: the so-called partially directed polymers with preferred orientation along direction of the external stretching field and semiflexible polymers. We are working within the frames of lattice models: partially directed self-avoiding walks (PDSAWs) and biased self-avoiding walks (BSAWs). Our numerical analysis of PDSAWs reveals, that competition between the stretching field and anisotropy caused by presence of extended defects leads to existing of three characteristic length scales in the system. At each fixed concentration of disorder we found a transition point, where the influence of extended defects is exactly counterbalanced by the stretching field. Numerical simulations of BSAWs in anisotropic environment reveal an increase of polymer stiffness. In particular, the persistence length of semiflexible polymers increases in presence of disorder. (paper)

  20. EXTENDE MODEL OF COMPETITIVITY THROUG APPLICATION OF NEW APPROACH DIRECTIVES

    Slavko Arsovski

    2009-03-01

    Full Text Available The basic subject of this work is the model of new approach impact on quality and safety products, and competency of our companies. This work represents real hypothesis on the basis of expert's experiences, in regard to that the infrastructure with using new approach directives wasn't examined until now, it isn't known which product or industry of Serbia is related to directives of the new approach and CE mark, and it is not known which are effects of the use of the CE mark. This work should indicate existing quality reserves and product's safety, the level of possible competency improvement and increasing the profit by discharging new approach directive requires.

  1. Direct containment heating models in the CONTAIN code

    Washington, K.E.; Williams, D.C.

    1995-08-01

    The potential exists in a nuclear reactor core melt severe accident for molten core debris to be dispersed under high pressure into the containment building. If this occurs, the set of phenomena that result in the transfer of energy to the containment atmosphere and its surroundings is referred to as direct containment heating (DCH). Because of the potential for DCH to lead to early containment failure, the U.S. Nuclear Regulatory Commission (USNRC) has sponsored an extensive research program consisting of experimental, analytical, and risk integration components. An important element of the analytical research has been the development and assessment of direct containment heating models in the CONTAIN code. This report documents the DCH models in the CONTAIN code. DCH models in CONTAIN for representing debris transport, trapping, chemical reactions, and heat transfer from debris to the containment atmosphere and surroundings are described. The descriptions include the governing equations and input instructions in CONTAIN unique to performing DCH calculations. Modifications made to the combustion models in CONTAIN for representing the combustion of DCH-produced and pre-existing hydrogen under DCH conditions are also described. Input table options for representing the discharge of debris from the RPV and the entrainment phase of the DCH process are also described. A sample calculation is presented to demonstrate the functionality of the models. The results show that reasonable behavior is obtained when the models are used to predict the sixth Zion geometry integral effects test at 1/10th scale

  2. Direct containment heating models in the CONTAIN code

    Washington, K.E.; Williams, D.C.

    1995-08-01

    The potential exists in a nuclear reactor core melt severe accident for molten core debris to be dispersed under high pressure into the containment building. If this occurs, the set of phenomena that result in the transfer of energy to the containment atmosphere and its surroundings is referred to as direct containment heating (DCH). Because of the potential for DCH to lead to early containment failure, the U.S. Nuclear Regulatory Commission (USNRC) has sponsored an extensive research program consisting of experimental, analytical, and risk integration components. An important element of the analytical research has been the development and assessment of direct containment heating models in the CONTAIN code. This report documents the DCH models in the CONTAIN code. DCH models in CONTAIN for representing debris transport, trapping, chemical reactions, and heat transfer from debris to the containment atmosphere and surroundings are described. The descriptions include the governing equations and input instructions in CONTAIN unique to performing DCH calculations. Modifications made to the combustion models in CONTAIN for representing the combustion of DCH-produced and pre-existing hydrogen under DCH conditions are also described. Input table options for representing the discharge of debris from the RPV and the entrainment phase of the DCH process are also described. A sample calculation is presented to demonstrate the functionality of the models. The results show that reasonable behavior is obtained when the models are used to predict the sixth Zion geometry integral effects test at 1/10th scale.

  3. Information Modeling for Direct Control of Distributed Energy Resources

    Biegel, Benjamin; Andersen, Palle; Stoustrup, Jakob

    2013-01-01

    We present an architecture for an unbundled liberalized electricity market system where a virtual power plant (VPP) is able to control a number of distributed energy resources (DERs) directly through a two-way communication link. The aggregator who operates the VPP utilizes the accumulated...... a desired accumulated response. In this paper, we design such an information model based on the markets that the aggregator participates in and based on the flexibility characteristics of the remote controlled DERs. The information model is constructed in a modular manner making the interface suitable...

  4. Molecular level in silico studies for oncology. Direct models review

    Psakhie, S. G.; Tsukanov, A. A.

    2017-09-01

    The combination of therapy and diagnostics in one process "theranostics" is a trend in a modern medicine, especially in oncology. Such an approach requires development and usage of multifunctional hybrid nanoparticles with a hierarchical structure. Numerical methods and mathematical models play a significant role in the design of the hierarchical nanoparticles and allow looking inside the nanoscale mechanisms of agent-cell interactions. The current position of in silico approach in biomedicine and oncology is discussed. The review of the molecular level in silico studies in oncology, which are using the direct models, is presented.

  5. Cohesive zone model for direct silicon wafer bonding

    Kubair, D. V.; Spearing, S. M.

    2007-05-01

    Direct silicon wafer bonding and decohesion are simulated using a spectral scheme in conjunction with a rate-dependent cohesive model. The cohesive model is derived assuming the presence of a thin continuum liquid layer at the interface. Cohesive tractions due to the presence of a liquid meniscus always tend to reduce the separation distance between the wafers, thereby opposing debonding, while assisting the bonding process. In the absence of the rate-dependence effects the energy needed to bond a pair of wafers is equal to that needed to separate them. When rate-dependence is considered in the cohesive law, the experimentally observed asymmetry in the energetics can be explained. The derived cohesive model has the potential to form a bridge between experiments and a multiscale-modelling approach to understand the mechanics of wafer bonding.

  6. Quantummechanical multi-step direct models for nuclear data applications

    Koning, A.J.

    1992-10-01

    Various multi-step direct models have been derived and compared on a theoretical level. Subsequently, these models have been implemented in the computer code system KAPSIES, enabling a consistent comparison on the basis of the same set of nuclear parameters and same set of numerical techniques. Continuum cross sections in the energy region between 10 and several hundreds of MeV have successfully been analysed. Both angular distributions and energy spectra can be predicted in an essentially parameter-free manner. It is demonstrated that the quantum-mechanical MSD models (in particular the FKK model) give an improved prediction of pre-equilibrium angular distributions as compared to the experiment-based systematics of Kalbach. This makes KAPSIES a reliable tool for nuclear data applications in the afore-mentioned energy region. (author). 10 refs., 2 figs

  7. Performance evaluation of four directional emissivity analytical models with thermal SAIL model and airborne images.

    Ren, Huazhong; Liu, Rongyuan; Yan, Guangjian; Li, Zhao-Liang; Qin, Qiming; Liu, Qiang; Nerry, Françoise

    2015-04-06

    Land surface emissivity is a crucial parameter in the surface status monitoring. This study aims at the evaluation of four directional emissivity models, including two bi-directional reflectance distribution function (BRDF) models and two gap-frequency-based models. Results showed that the kernel-driven BRDF model could well represent directional emissivity with an error less than 0.002, and was consequently used to retrieve emissivity with an accuracy of about 0.012 from an airborne multi-angular thermal infrared data set. Furthermore, we updated the cavity effect factor relating to multiple scattering inside canopy, which improved the performance of the gap-frequency-based models.

  8. Modeling directional thermal radiance from a forest canopy

    McGuire, M.J.; Balick, L.K.; Smith, J.A.; Hutchison, B.A.

    1989-01-01

    Recent advances in remote sensing technology have increased interest in utilizing the thermal-infared region to gain additional information about surface features such as vegetation canopies. Studies have shown that sensor view angle, canopy structure, and percentage of canopy coverage can affect the response of a thermal sensor. These studies have been primarily of agricultural regions and there have been relatively few examples describing the thermal characteristics of forested regions. This paper describes an extension of an existing thermal vegetation canopy radiance model which has been modified to partially account for the geometrically rough structure of a forest canopy. Fourier series expansion of a canopy height profile is used to calculate improved view factors which partially account for the directional variations in canopy thermal radiance transfers. The original and updated radiance model predictions are compared with experimental data obtained over a deciduous (oak-hickory) forest site. The experimental observations are also used to document azimuthal and nadir directional radiance variations. Maximum angular variations in measured canopy temperatures were 4–6°C (azimuth) and 2.5°C (nadir). Maximum angular variations in simulated temperatures using the modified rough surface model was 4°C. The rough surface model appeared to be sensitive to large gaps in the canopy height profile, which influenced the resultant predicted temperature. (author)

  9. Spin and Wind Directions II: A Bell State Quantum Model.

    Aerts, Diederik; Arguëlles, Jonito Aerts; Beltran, Lester; Geriente, Suzette; Sassoli de Bianchi, Massimiliano; Sozzo, Sandro; Veloz, Tomas

    2018-01-01

    In the first half of this two-part article (Aerts et al. in Found Sci. doi:10.1007/s10699-017-9528-9, 2017b), we analyzed a cognitive psychology experiment where participants were asked to select pairs of directions that they considered to be the best example of Two Different Wind Directions , and showed that the data violate the CHSH version of Bell's inequality, with same magnitude as in typical Bell-test experiments in physics. In this second part, we complete our analysis by presenting a symmetrized version of the experiment, still violating the CHSH inequality but now also obeying the marginal law, for which we provide a full quantum modeling in Hilbert space, using a singlet state and suitably chosen product measurements. We also address some of the criticisms that have been recently directed at experiments of this kind, according to which they would not highlight the presence of genuine forms of entanglement. We explain that these criticisms are based on a view of entanglement that is too restrictive, thus unable to capture all possible ways physical and conceptual entities can connect and form systems behaving as a whole. We also provide an example of a mechanical model showing that the violations of the marginal law and Bell inequalities are generally to be associated with different mechanisms.

  10. Modeling Uncertainty of Directed Movement via Markov Chains

    YIN Zhangcai

    2015-10-01

    Full Text Available Probabilistic time geography (PTG is suggested as an extension of (classical time geography, in order to present the uncertainty of an agent located at the accessible position by probability. This may provide a quantitative basis for most likely finding an agent at a location. In recent years, PTG based on normal distribution or Brown bridge has been proposed, its variance, however, is irrelevant with the agent's speed or divergent with the increase of the speed; so they are difficult to take into account application pertinence and stability. In this paper, a new method is proposed to model PTG based on Markov chain. Firstly, a bidirectional conditions Markov chain is modeled, the limit of which, when the moving speed is large enough, can be regarded as the Brown bridge, thus has the characteristics of digital stability. Then, the directed movement is mapped to Markov chains. The essential part is to build step length, the state space and transfer matrix of Markov chain according to the space and time position of directional movement, movement speed information, to make sure the Markov chain related to the movement speed. Finally, calculating continuously the probability distribution of the directed movement at any time by the Markov chains, it can be get the possibility of an agent located at the accessible position. Experimental results show that, the variance based on Markov chains not only is related to speed, but also is tending towards stability with increasing the agent's maximum speed.

  11. A Modeling Approach for Plastic-Metal Laser Direct Joining

    Lutey, Adrian H. A.; Fortunato, Alessandro; Ascari, Alessandro; Romoli, Luca

    2017-09-01

    Laser processing has been identified as a feasible approach to direct joining of metal and plastic components without the need for adhesives or mechanical fasteners. The present work sees development of a modeling approach for conduction and transmission laser direct joining of these materials based on multi-layer optical propagation theory and numerical heat flow simulation. The scope of this methodology is to predict process outcomes based on the calculated joint interface and upper surface temperatures. Three representative cases are considered for model verification, including conduction joining of PBT and aluminum alloy, transmission joining of optically transparent PET and stainless steel, and transmission joining of semi-transparent PA 66 and stainless steel. Conduction direct laser joining experiments are performed on black PBT and 6082 anticorodal aluminum alloy, achieving shear loads of over 2000 N with specimens of 2 mm thickness and 25 mm width. Comparison with simulation results shows that consistently high strength is achieved where the peak interface temperature is above the plastic degradation temperature. Comparison of transmission joining simulations and published experimental results confirms these findings and highlights the influence of plastic layer optical absorption on process feasibility.

  12. Differential Binding Models for Direct and Reverse Isothermal Titration Calorimetry.

    Herrera, Isaac; Winnik, Mitchell A

    2016-03-10

    Isothermal titration calorimetry (ITC) is a technique to measure the stoichiometry and thermodynamics from binding experiments. Identifying an appropriate mathematical model to evaluate titration curves of receptors with multiple sites is challenging, particularly when the stoichiometry or binding mechanism is not available. In a recent theoretical study, we presented a differential binding model (DBM) to study calorimetry titrations independently of the interaction among the binding sites (Herrera, I.; Winnik, M. A. J. Phys. Chem. B 2013, 117, 8659-8672). Here, we build upon our DBM and show its practical application to evaluate calorimetry titrations of receptors with multiple sites independently of the titration direction. Specifically, we present a set of ordinary differential equations (ODEs) with the general form d[S]/dV that can be integrated numerically to calculate the equilibrium concentrations of free and bound species S at every injection step and, subsequently, to evaluate the volume-normalized heat signal (δQ(V) = δq/dV) of direct and reverse calorimetry titrations. Additionally, we identify factors that influence the shape of the titration curve and can be used to optimize the initial concentrations of titrant and analyte. We demonstrate the flexibility of our updated DBM by applying these differentials and a global regression analysis to direct and reverse calorimetric titrations of gadolinium ions with multidentate ligands of increasing denticity, namely, diglycolic acid (DGA), citric acid (CIT), and nitrilotriacetic acid (NTA), and use statistical tests to validate the stoichiometries for the metal-ligand pairs studied.

  13. New meteoroid model predictions for directional impacts on LDEF

    Divine, Neil; Agueero, Rene C.

    1993-01-01

    An extensive body of data, from meteors, zodiacal light, spacecraft-borne impact detectors (Helios, Pioneer, Galileo, Ulysses), and other sources, forms the basis of a new numerical model for the distributions of interplanetary meteoroids. For each of the five populations in this model it is possible to evaluate meteoroid concentration and flux for oriented surfaces or detectors having arbitrary position and velocity in interplanetary space. For a spacecraft in geocentric orbit the effects of gravitational focussing and shielding by the Earth have been newly derived with full attention to the directionality of the particles, both on approach (i.e., relative to a massless Earth) and at the target. This modeling approach was exercised to provide an estimate of meteoroid fluence for each of several oriented surfaces on LDEF.

  14. Modelling 1-minute directional observations of the global irradiance.

    Thejll, Peter; Pagh Nielsen, Kristian; Andersen, Elsa; Furbo, Simon

    2016-04-01

    Direct and diffuse irradiances from the sky has been collected at 1-minute intervals for about a year from the experimental station at the Technical University of Denmark for the IEA project "Solar Resource Assessment and Forecasting". These data were gathered by pyrheliometers tracking the Sun, as well as with apertured pyranometers gathering 1/8th and 1/16th of the light from the sky in 45 degree azimuthal ranges pointed around the compass. The data are gathered in order to develop detailed models of the potentially available solar energy and its variations at high temporal resolution in order to gain a more detailed understanding of the solar resource. This is important for a better understanding of the sub-grid scale cloud variation that cannot be resolved with climate and weather models. It is also important for optimizing the operation of active solar energy systems such as photovoltaic plants and thermal solar collector arrays, and for passive solar energy and lighting to buildings. We present regression-based modelling of the observed data, and focus, here, on the statistical properties of the model fits. Using models based on the one hand on what is found in the literature and on physical expectations, and on the other hand on purely statistical models, we find solutions that can explain up to 90% of the variance in global radiation. The models leaning on physical insights include terms for the direct solar radiation, a term for the circum-solar radiation, a diffuse term and a term for the horizon brightening/darkening. The purely statistical model is found using data- and formula-validation approaches picking model expressions from a general catalogue of possible formulae. The method allows nesting of expressions, and the results found are dependent on and heavily constrained by the cross-validation carried out on statistically independent testing and training data-sets. Slightly better fits -- in terms of variance explained -- is found using the purely

  15. Direction of Effects in Multiple Linear Regression Models.

    Wiedermann, Wolfgang; von Eye, Alexander

    2015-01-01

    Previous studies analyzed asymmetric properties of the Pearson correlation coefficient using higher than second order moments. These asymmetric properties can be used to determine the direction of dependence in a linear regression setting (i.e., establish which of two variables is more likely to be on the outcome side) within the framework of cross-sectional observational data. Extant approaches are restricted to the bivariate regression case. The present contribution extends the direction of dependence methodology to a multiple linear regression setting by analyzing distributional properties of residuals of competing multiple regression models. It is shown that, under certain conditions, the third central moments of estimated regression residuals can be used to decide upon direction of effects. In addition, three different approaches for statistical inference are discussed: a combined D'Agostino normality test, a skewness difference test, and a bootstrap difference test. Type I error and power of the procedures are assessed using Monte Carlo simulations, and an empirical example is provided for illustrative purposes. In the discussion, issues concerning the quality of psychological data, possible extensions of the proposed methods to the fourth central moment of regression residuals, and potential applications are addressed.

  16. Radiation damage of DNA. Model for direct ionization of DNA

    Kobayashi, Kazuo; Tagawa, Seiichi

    2004-01-01

    Current aspects of radiation damage of DNA, particularly induced by the direct effect of radiation, and author's method of pulse radiolysis are described in relation to behavior of ions formed by radiation and active principles to induce the strand break. In irradiation of DNA solution in water, the direct effect of radiation is derived from ionization of DNA itself and indirect one, from the reaction between DNA and radicals generated from water molecules and the former direct one has been scarcely investigated due to difficulty of experimental approach. Radicals generated in sugar moiety of DNA are shown important in the strand break by recent studies on crystalline DNA irradiated by X-ray, DNA solution by electron and photon beams, hydrated DNA by γ-ray and by high linear energy transfer (LET) ion. Author's pulse radiolysis studies have revealed behaviors of guanine and adenine radical cations in dynamics of DNA oxidation. Since reactions described are the model, the experimental approach is thought necessary for elucidation of the actually occurring DNA damage in living cells. (N.I.)

  17. Nanotoxicity prediction using computational modelling - review and future directions

    Saini, Bhavna; Srivastava, Sumit

    2018-04-01

    Nanomaterials has stimulated various outlooks for future in a number of industries and scientific ventures. A number of applications such as cosmetics, medicines, and electronics are employing nanomaterials due to their various compelling properties. The unending growth of nanomaterials usage in our daily life has escalated the health and environmental risks. Early nanotoxicity recognition is a big challenge. Various researches are going on in the field of nanotoxicity, which comprised of several problems such as inadequacy of proper datasets, lack of appropriate rules and characterization of nanomaterials. Computational modelling would be beneficial asset for nanomaterials researchers because it can foresee the toxicity, rest on previous experimental data. In this study, we have reviewed sufficient work demonstrating a proper pathway to proceed with QSAR analysis of Nanomaterials for toxicity modelling. The paper aims at providing comprehensive insight of Nano QSAR, various theories, tools and approaches used, along with an outline for future research directions to work on.

  18. Direct and indirect signals of natural composite Higgs models

    Niehoff, Christoph; Stangl, Peter; Straub, David M.

    2016-01-01

    We present a comprehensive numerical analysis of a four-dimensional model with the Higgs as a composite pseudo-Nambu-Goldstone boson that features a calculable Higgs potential and protective custodial and flavour symmetries to reduce electroweak fine-tuning. We employ a novel numerical technique that allows us for the first time to study constraints from radiative electroweak symmetry breaking, Higgs physics, electroweak precision tests, flavour physics, and direct LHC bounds on fermion and vector boson resonances in a single framework. We consider four different flavour symmetries in the composite sector, one of which we show to not be viable anymore in view of strong precision constraints. In the other cases, all constraints can be passed with a sub-percent electroweak fine-tuning. The models can explain the excesses recently observed in WW, WZ, Wh and ℓ + ℓ - resonance searches by ATLAS and CMS and the anomalies in angular observables and branching ratios of rare semi-leptonic B decays observed by LHCb. Solving the B physics anomalies predicts the presence of a dijet or toverline{t} resonance around 1 TeV just below the sensitivity of LHC run 1. We discuss the prospects to probe the models at run 2 of the LHC. As a side product, we identify several gaps in the searches for vector-like quarks at hadron colliders, that could be closed by reanalyzing existing LHC data.

  19. A signaling model of foreign direct investment attraction

    Marcelo de C. Griebeler

    2017-09-01

    Full Text Available Foreign direct investors face uncertainty about government's type of the host country. In a two period game, we allow the host country's government to mitigate such uncertainty by sending a signal through fiscal policy. Our main finding states that a populist government may mimic a conservative one in order to attract foreign direct investment (FDI, and this choice depends mainly on its impatience degree and the originally planned FDI stock. We highlight the role of the government's reputation in attracting foreign capital and thus provide some policy implications. Moreover, our model explains why some governments considered to be populist adopt conservative policies in the beginning of its terms of office. Resumo: Investidores estrangeiros diretos são incertos sobre o tipo do governo do país onde desejam investir. Em um jogo de dois períodos, permitimos que o governo de tal país mitigue essa incerteza ao enviar um sinal através da política fiscal. Nosso principal resultado estabelece que um governo populista pode imitar um conservador a fim de atrair investimento estrangeiro direto (IED, e essa escolha depende principalmente do grau de impaciência e do estoque de IED originalmente planejado. Destacamos o papel da reputação do governo em atrair capital externo e assim fornecemos algumas recomendações de política. Além disso, nosso modelo explica porque alguns governos considerados populistas adotam políticas conservadores no início do seus mandatos. JEL classification: F41, F34, C72, Keywords: Signaling, Foreign direct investment, Game theory, Palavras-chave: Sinalização, Investimento estrangeiro direto, Teoria dos jogos

  20. Directed Abelian algebras and their application to stochastic models.

    Alcaraz, F C; Rittenberg, V

    2008-10-01

    With each directed acyclic graph (this includes some D-dimensional lattices) one can associate some Abelian algebras that we call directed Abelian algebras (DAAs). On each site of the graph one attaches a generator of the algebra. These algebras depend on several parameters and are semisimple. Using any DAA, one can define a family of Hamiltonians which give the continuous time evolution of a stochastic process. The calculation of the spectra and ground-state wave functions (stationary state probability distributions) is an easy algebraic exercise. If one considers D-dimensional lattices and chooses Hamiltonians linear in the generators, in finite-size scaling the Hamiltonian spectrum is gapless with a critical dynamic exponent z=D. One possible application of the DAA is to sandpile models. In the paper we present this application, considering one- and two-dimensional lattices. In the one-dimensional case, when the DAA conserves the number of particles, the avalanches belong to the random walker universality class (critical exponent sigma_(tau)=32 ). We study the local density of particles inside large avalanches, showing a depletion of particles at the source of the avalanche and an enrichment at its end. In two dimensions we did extensive Monte-Carlo simulations and found sigma_(tau)=1.780+/-0.005 .

  1. Direct numerical methods of mathematical modeling in mechanical structural design

    Sahili, Jihad; Verchery, Georges; Ghaddar, Ahmad; Zoaeter, Mohamed

    2002-01-01

    Full text.Structural design and numerical methods are generally interactive; requiring optimization procedures as the structure is analyzed. This analysis leads to define some mathematical terms, as the stiffness matrix, which are resulting from the modeling and then used in numerical techniques during the dimensioning procedure. These techniques and many others involve the calculation of the generalized inverse of the stiffness matrix, called also the 'compliance matrix'. The aim of this paper is to introduce first, some different existing mathematical procedures, used to calculate the compliance matrix from the stiffness matrix, then apply direct numerical methods to solve the obtained system with the lowest computational time, and to compare the obtained results. The results show a big difference of the computational time between the different procedures

  2. Theoretical intercomparison of multi-step direct reaction models and computational intercomparison of multi-step direct reaction models

    Koning, A.J.

    1992-08-01

    In recent years several statistical theories have been developed concerning multistep direct (MSD) nuclear reactions. In addition, dominant in applications is a whole class of semiclassical models that may be subsumed under the heading of 'generalized exciton models'. These are basically MSD-type extensions on top of compound-like concepts. In this report the relationship between their underlying statistical MSD-postulates is highlighted. A command framework is outlined that enables to generate the various MSD theories through assigning statistical properties to different parts of the nuclear Hamiltonian. Then it is shown that distinct forms of nuclear randomness are embodied in the mentioned theories. All these theories appear to be very similar at a qualitative level. In order to explain the high energy-tails and forward-peaked angular distribution typical for particles emitted in MSD reactions, it is imagined that the incident continuum particle stepwise looses its energy and direction in a sequence of collisions, thereby creating new particle-hole pairs in the target system. At each step emission may take place. The statistical aspect comes in because many continuum states are involved in the process. These are supposed to display chaotic behavior, the associated randomness assumption giving rise to important simplifications in the expression for MSD emission cross sections. This picture suggests that mentioned MSD models can be interpreted as a variant of essentially one and the same theory. However, this appears not to be the case. To show this usual MSD distinction within the composite reacting nucleus between the fast continuum particle and the residual interactions, the nucleons of the residual core are to be distinguished from those of the leading particle with the residual system. This distinction will turn out to be crucial to present analysis. 27 refs.; 5 figs.; 1 tab

  3. Foreign Direct Investments in Central Asian Energy: A CGE Model

    Michael P. BARRY

    2009-05-01

    Full Text Available Turkmenistan, Uzbekistan, and Kazakhstan have adopted significant legislative changes since the fall of the former Soviet Union in an effort to attract foreign direct investment into their energy sectors. Of the three republics, Kazakhstan has been the most successful in attracting foreign interest, but all three republics face significant challenges in further development of oil and gas infrastructure. Even if these countries are completely successful in bringing in foreign investment, a question will remain: who wins and who loses in these countries. Using updated data, this paper will use a computable general equilibrium model to measure the effects of FDI into Central Asia. Results of the model suggest that the region would be better off overall from foreign investment in its natural gas sector, due mostly to improvements in overall production efficiency and its overall terms of trade. However, the gain in the natural gas sector would come at the expense of production and net exports of non-petroleum related industries.

  4. Examining Attitudes of Students Regarding the Sports Education Model and Direct Teaching Model

    Bilgin, Nevruz; Dalkiran, Oguzhan

    2017-01-01

    The aim of the research was to investigate the effects of sports education model and direct teaching model on the attitudes of the students, and the differences among the attitudes of students. The study group of the research included 29 students from 6th and 7th grade of a secondary school in the 2015-2016 academic years. The experimental group…

  5. A copula method for modeling directional dependence of genes

    Park Changyi

    2008-05-01

    Full Text Available Abstract Background Genes interact with each other as basic building blocks of life, forming a complicated network. The relationship between groups of genes with different functions can be represented as gene networks. With the deposition of huge microarray data sets in public domains, study on gene networking is now possible. In recent years, there has been an increasing interest in the reconstruction of gene networks from gene expression data. Recent work includes linear models, Boolean network models, and Bayesian networks. Among them, Bayesian networks seem to be the most effective in constructing gene networks. A major problem with the Bayesian network approach is the excessive computational time. This problem is due to the interactive feature of the method that requires large search space. Since fitting a model by using the copulas does not require iterations, elicitation of the priors, and complicated calculations of posterior distributions, the need for reference to extensive search spaces can be eliminated leading to manageable computational affords. Bayesian network approach produces a discretely expression of conditional probabilities. Discreteness of the characteristics is not required in the copula approach which involves use of uniform representation of the continuous random variables. Our method is able to overcome the limitation of Bayesian network method for gene-gene interaction, i.e. information loss due to binary transformation. Results We analyzed the gene interactions for two gene data sets (one group is eight histone genes and the other group is 19 genes which include DNA polymerases, DNA helicase, type B cyclin genes, DNA primases, radiation sensitive genes, repaire related genes, replication protein A encoding gene, DNA replication initiation factor, securin gene, nucleosome assembly factor, and a subunit of the cohesin complex by adopting a measure of directional dependence based on a copula function. We have compared

  6. The modelling of direct chemical kinetic effects in turbulent flames

    Lindstet, R.P. [Imperial College of Science, Technology and Medicine, London (United Kingdom). Dept. of Mechanical Engineering

    2000-06-01

    Combustion chemistry-related effects have traditionally been of secondary importance in the design of gas turbine combustors. However, the need to deal with issues such as flame stability, relight and pollutant emissions has served to bring chemical kinetics and the coupling of finite rate chemistry with turbulent flow fields to the centre of combustor design. Indeed, improved cycle efficiency and more stringent environmental legislation, as defined by the ICAO, are current key motivators in combustor design. Furthermore, lean premixed prevaporized (LPP) combustion systems, increasingly used for power generation, often operate close to the lean blow-off limit and are prone to extinction/reignition type phenomena. Thus, current key design issues require that direct chemical kinetic effects be accounted for accurately in any simulation procedure. The transported probability density function (PDF) approach uniquely offers the potential of facilitating the accurate modelling of such effects. The present paper thus assesses the ability of this technique to model kinetically controlled phenomena, such as carbon monoxide emissions and flame blow-off, through the application of a transported PDF method closed at the joint scalar level. The closure for the velocity field is at the second moment level, and a key feature of the present work is the use of comprehensive chemical kinetic mechanisms. The latter are derived from recent work by Lindstedt and co-workers that has resulted in a compact 141 reactions and 28 species mechanism for LNG combustion. The systematically reduced form used here features 14 independent C/H/O scalars, with the remaining species incorporated via steady state approximations. Computations have been performed for hydrogen/carbon dioxide and methane flames. The former (high Reynolds number) flames permit an assessment of the modelling of flame blow-off, and the methane flame has been selected to obtain an indication of the influence of differential

  7. Statistical mechanics of directed models of polymers in the square lattice

    Rensburg, J V

    2003-01-01

    Directed square lattice models of polymers and vesicles have received considerable attention in the recent mathematical and physical sciences literature. These are idealized geometric directed lattice models introduced to study phase behaviour in polymers, and include Dyck paths, partially directed paths, directed trees and directed vesicles models. Directed models are closely related to models studied in the combinatorics literature (and are often exactly solvable). They are also simplified versions of a number of statistical mechanics models, including the self-avoiding walk, lattice animals and lattice vesicles. The exchange of approaches and ideas between statistical mechanics and combinatorics have considerably advanced the description and understanding of directed lattice models, and this will be explored in this review. The combinatorial nature of directed lattice path models makes a study using generating function approaches most natural. In contrast, the statistical mechanics approach would introduce...

  8. Direct modeling of regression effects for transition probabilities in the progressive illness-death model

    Azarang, Leyla; Scheike, Thomas; de Uña-Álvarez, Jacobo

    2017-01-01

    In this work, we present direct regression analysis for the transition probabilities in the possibly non-Markov progressive illness–death model. The method is based on binomial regression, where the response is the indicator of the occupancy for the given state along time. Randomly weighted score...

  9. Modeling membrane protein structure through site-directed ESR spectroscopy

    Kavalenka, A.A.

    2009-01-01

    Site-directed spin labeling (SDSL) electron spin resonance (ESR) spectroscopy is a
    relatively new biophysical tool for obtaining structural information about proteins. This
    thesis presents a novel approach, based on powerful spectral analysis techniques (multicomponent
    spectral

  10. Developing model-making and model-breaking skills using direct measurement video-based activities

    Vonk, Matthew; Bohacek, Peter; Militello, Cheryl; Iverson, Ellen

    2017-12-01

    This study focuses on student development of two important laboratory skills in the context of introductory college-level physics. The first skill, which we call model making, is the ability to analyze a phenomenon in a way that produces a quantitative multimodal model. The second skill, which we call model breaking, is the ability to critically evaluate if the behavior of a system is consistent with a given model. This study involved 116 introductory physics students in four different sections, each taught by a different instructor. All of the students within a given class section participated in the same instruction (including labs) with the exception of five activities performed throughout the semester. For those five activities, each class section was split into two groups; one group was scaffolded to focus on model-making skills and the other was scaffolded to focus on model-breaking skills. Both conditions involved direct measurement videos. In some cases, students could vary important experimental parameters within the video like mass, frequency, and tension. Data collected at the end of the semester indicate that students in the model-making treatment group significantly outperformed the other group on the model-making skill despite the fact that both groups shared a common physical lab experience. Likewise, the model-breaking treatment group significantly outperformed the other group on the model-breaking skill. This is important because it shows that direct measurement video-based instruction can help students acquire science-process skills, which are critical for scientists, and which are a key part of current science education approaches such as the Next Generation Science Standards and the Advanced Placement Physics 1 course.

  11. My IEP: A Student-Directed Individualized Education Program Model

    Royer, David J.

    2017-01-01

    Students with disabilities need to be more involved in planning and presenting individualized education program (IEP) meetings, and teachers need an effective, efficient curriculum to teach students how. "My IEP" curriculum uses folding graphic organizers to teach students to self-direct IEP meetings, targeting self-advocacy and…

  12. mathematical model for direct evaporative space cooling systems

    eobe

    of the sensible heat of the air is transferred to the water and becomes latent heat by evaporating some of the water. The latent heat follows the water vapour and diffuses into the air. In a DEC (direct evaporative cooling), the heat and mass transferred between air and water decreases the air dry bulb temperature (DBT) and ...

  13. Future directions in climate modeling: A climate impacts perspective

    Mearns, L.O.

    1990-01-01

    One of the most serious impediments to further progress on the determination of specific impacts of climate change on relevant earth systems is the lack of precise and accurate scenarios of regional change. Spatial resolution of models is generally coarse (5-10 degree, corresponding to 550-1,100 km), and the modeling of physical processes is quite crude. Three main areas in which improvements in the modeling of physical processes are being made are modeling of surface processes, modeling of oceans and coupling of oceans and atmospheric models, and modeling of clouds. Improvements are required in the modeling of surface hydrology and vegetative effects, which have significant impact on the albedo scheme used. Oceans are important in climate modeling for the following reasons: delay of warming due to oceanic heat absorption; effect of mean meridional circulation; control of regional patterns of sea surface temperatures and sea ice by wind driven currents; absorption of atmospheric carbon dioxide by the oceans; and determination of interannual climatic variability via variability in sea surface temperature. The effects of clouds on radiation balance is highly significant. Clouds both reflect shortwave radiation and trap longwave radiation. Most cloud properties are sub-grid scale and thus difficult to include explicitly in models. 25 refs., 1 tab

  14. Luttinger model the first 50 years and some new directions

    Mattis, Daniel C

    2014-01-01

    The Luttinger Model is the only model of many-fermion physics with legitimate claims to be both exactly and completely solvable. In several respects it plays the same role in many-body theory as does the 2D Ising model in statistical physics. Interest in the Luttinger model has increased steadily ever since its introduction half a century ago. The present volume starts with reprints of the seminal papers in which it was originally introduced and solved, and continues with several contributions setting out the landscape of the principal advances of the last fifty years and of prominent new dire

  15. Mathematical Model for Direct Evaporative Space Cooling Systems ...

    This paper deals with the development of a simple mathematical model for experimental validation of the performance of a small evaporative cooling system in a tropical climate. It also presents the coefficient of convective heat transfer of wide range of temperatures based on existing model. Extensive experiments have ...

  16. SEMIPARAMETRIC VERSUS PARAMETRIC CLASSIFICATION MODELS - AN APPLICATION TO DIRECT MARKETING

    BULT, [No Value

    In this paper we are concerned with estimation of a classification model using semiparametric and parametric methods. Benefits and limitations of semiparametric models in general, and of Manski's maximum score method in particular, are discussed. The maximum score method yields consistent estimates

  17. Modeling the Movement of Beach Alluvia in the Alongshore Direction

    Elena V. Bondareva

    2014-06-01

    Full Text Available The authors have worked out a design model for the dynamics of a mixed-composition beach in the vicinity of transverse structures. The model uses a modified formula for calculating alluvia, which is based on modified energy dependencies. The authors provide an algorithm for performing these calculations.

  18. Direct cointegration testing in error-correction models

    F.R. Kleibergen (Frank); H.K. van Dijk (Herman)

    1994-01-01

    textabstractAbstract An error correction model is specified having only exact identified parameters, some of which reflect a possible departure from a cointegration model. Wald, likelihood ratio, and Lagrange multiplier statistics are derived to test for the significance of these parameters. The

  19. Numerical implementation of a model with directional distortional hardening

    Marek, René; Plešek, Jiří; Hrubý, Zbyněk; Parma, Slavomír; Feigenbaum, H. P.; Dafalias, Y.F.

    2015-01-01

    Roč. 141, č. 12 (2015), 04015048-04015048 ISSN 0733-9399 R&D Projects: GA MŠk LH14018; GA ČR(CZ) GA15-20666S Institutional support: RVO:61388998 Keywords : plasticity * directional distortional hardening * finite-element procedures Subject RIV: JG - Metallurgy Impact factor: 1.346, year: 2015 http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EM.1943-7889.0000954

  20. The Direct Payments in the European Model of Agriculture

    Věra Bečvářová

    2008-01-01

    Full Text Available The paper deals with the evaluation of economic contexts of the direct payments, as a targeted lump-sum financial transfer to the recipient’s income, employment in agricultural policy. Based upon the basic types of subsidies and their economic costs evaluation from the point of view of their deforming effects as well as transaction costs the direct payments are analysed generally as a type of support without a distorting effect on the gathering and transmission of market signals. The direct payments imply that the predominant flow from public funding to agriculture is paid independently from the volume of the present production (its amount and structure and make possible to choose the best structure of farm activities. However, their additional expenses are evaluated as a relatively very high. The transaction costs are high because the realisation of their objective (increase of the recipients’ income requires detailed personal information. Budgetary costs may also become extraordinarily high in the long term. On the basis at above the positive as well as negative components of their capacity for producers’ decision-making processes and their impact on the competitiveness in the framework of the modern agriculture are evaluated. In the following part of the paper the relationships effects of decoupled payments and agrarian markets are evaluated. Results of analyses indicate, the decoupled payments are not fully production neutral. Four topics of influence through which decoupled payments could affect production decisions are bringing to the attention as follows: wealth and investment effects (direct wealth effect, a wealth-facilitated increased investment effect, and a secondary wealth effect resulting from the increase in investment, sector consolidation effects, payment basis effects, and producer risk and expectations effects.

  1. Zr Extrusion – Direct Input for Models & Validation

    Cerreta, Ellen Kathleen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-07

    As we examine differences in the high strain rate, high strain tensile response of high purity, highly textured Zr as a function of loading direction, temperature and extrusion velocity with primarily post mortem characterization techniques, we have also developed a technique for characterizing the in-situ extrusion process. This particular measurement is useful for partitioning energy of the system during the extrusion process: friction, kinetic energy, and temperature

  2. Individual based and mean-field modeling of direct aggregation

    Burger, Martin

    2013-10-01

    We introduce two models of biological aggregation, based on randomly moving particles with individual stochasticity depending on the perceived average population density in their neighborhood. In the firstorder model the location of each individual is subject to a density-dependent random walk, while in the second-order model the density-dependent random walk acts on the velocity variable, together with a density-dependent damping term. The main novelty of our models is that we do not assume any explicit aggregative force acting on the individuals; instead, aggregation is obtained exclusively by reducing the individual stochasticity in response to higher perceived density. We formally derive the corresponding mean-field limits, leading to nonlocal degenerate diffusions. Then, we carry out the mathematical analysis of the first-order model, in particular, we prove the existence of weak solutions and show that it allows for measure-valued steady states. We also perform linear stability analysis and identify conditions for pattern formation. Moreover, we discuss the role of the nonlocality for well-posedness of the first-order model. Finally, we present results of numerical simulations for both the first- and second-order model on the individual-based and continuum levels of description. 2012 Elsevier B.V. All rights reserved.

  3. Individual based and mean-field modeling of direct aggregation

    Burger, Martin; Haskovec, Jan; Wolfram, Marie-Therese

    2013-01-01

    We introduce two models of biological aggregation, based on randomly moving particles with individual stochasticity depending on the perceived average population density in their neighborhood. In the firstorder model the location of each individual is subject to a density-dependent random walk, while in the second-order model the density-dependent random walk acts on the velocity variable, together with a density-dependent damping term. The main novelty of our models is that we do not assume any explicit aggregative force acting on the individuals; instead, aggregation is obtained exclusively by reducing the individual stochasticity in response to higher perceived density. We formally derive the corresponding mean-field limits, leading to nonlocal degenerate diffusions. Then, we carry out the mathematical analysis of the first-order model, in particular, we prove the existence of weak solutions and show that it allows for measure-valued steady states. We also perform linear stability analysis and identify conditions for pattern formation. Moreover, we discuss the role of the nonlocality for well-posedness of the first-order model. Finally, we present results of numerical simulations for both the first- and second-order model on the individual-based and continuum levels of description. 2012 Elsevier B.V. All rights reserved.

  4. Classical kinematic model for direct reactions of oriented reagents

    Schechter, I.; Prisant, M.G.; Levine, R.D.

    1987-01-01

    A simple kinematic model based on the concept of an orientation-dependent critical configuration for reaction is introduced and applied. The model serves two complementary purposes. In the predictive mode the model provides an easily implemented procedure for computing the reactivity of oriented reagents (including those actually amenable to measure) from a given potential energy surface. The predictions of the model are compared against classical trajectory results for the H + D 2 reaction. By use of realistic potential energy surfaces the model is applied to the Li + HF and O + HCl reactions where the HX molecules are pumped by a polarized laser. A given classical trajectory is deemed reactive or not according to whether it can surmount the barrier at that particular orientation. The essential difference with the model of Levine and Bernstein is that the averaging over initial conditions is performed by using a Monte Carlo integration. One can therefore use the correct orientation-dependent shape (and not only height) of the barrier to reaction and, furthermore, use oriented or aligned reagents. Since the only numerical step is a Monte Carlo sampling of initial conditions, very many trajectories can be run. This suffices to determine the reaction cross section for different initial conditions. To probe the products, they have employed the kinematic approach of Elsum and Gordon. The result is a model where, under varying initial conditions, examining final-state distributions or screening different potential energy surfaces can be efficiently carried out

  5. Thermodynamic modeling of direct injection methanol fueled engines

    Shen Yuan; Bedford, Joshua; Wichman, Indrek S.

    2009-01-01

    In-cylinder pressure is an important parameter that is used to investigate the combustion process in internal combustion (IC) engines. In this paper, a thermodynamic model of IC engine combustion is presented and examined. A heat release function and an empirical conversion efficiency factor are introduced to solve the model. The pressure traces obtained by solving the thermodynamic model are compared with measured pressure data for a fully instrumented laboratory IC spark ignition (SI) engine. Derived scaling parameters for time to peak pressure, peak pressure, and maximum rate of pressure rise (among others) are developed and compared with the numerical simulations. The models examined here may serve as pedagogic tools and, when suitably refined, as preliminary design tools.

  6. The Integrated Landscape Modeling partnership - Current status and future directions

    Mushet, David M.; Scherff, Eric J.

    2016-01-28

    The Integrated Landscape Modeling (ILM) partnership is an effort by the U.S. Geological Survey (USGS) and U.S. Department of Agriculture (USDA) to identify, evaluate, and develop models to quantify services derived from ecosystems, with a focus on wetland ecosystems and conservation effects. The ILM partnership uses the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) modeling platform to facilitate regional quantifications of ecosystem services under various scenarios of land-cover change that are representative of differing conservation program and practice implementation scenarios. To date, the ILM InVEST partnership has resulted in capabilities to quantify carbon stores, amphibian habitat, plant-community diversity, and pollination services. Work to include waterfowl and grassland bird habitat quality is in progress. Initial InVEST modeling has been focused on the Prairie Pothole Region (PPR) of the United States; future efforts might encompass other regions as data availability and knowledge increase as to how functions affecting ecosystem services differ among regions.The ILM partnership is also developing the capability for field-scale process-based modeling of depressional wetland ecosystems using the Agricultural Policy/Environmental Extender (APEX) model. Progress was made towards the development of techniques to use the APEX model for closed-basin depressional wetlands of the PPR, in addition to the open systems that the model was originally designed to simulate. The ILM partnership has matured to the stage where effects of conservation programs and practices on multiple ecosystem services can now be simulated in selected areas. Future work might include the continued development of modeling capabilities, as well as development and evaluation of differing conservation program and practice scenarios of interest to partner agencies including the USDA’s Farm Service Agency (FSA) and Natural Resources Conservation Service (NRCS). When

  7. Direct detection of darkmatter in radiative seesaw model

    Schmidt, Daniel; Schwetz, Thomas [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Toma, Takashi [Institute for Theoretical Physics, Kanazawa University (Japan)

    2012-07-01

    In the radiative seesaw model proposed by Ma, we assume that the lightest right-handed neutrino is the Dark Matter candidate and almost degenerated with the second lightest right-handed neutrino. Thus, elastic Dark Matter-nucleus scattering is suppressed. Inelastic scattering is induced by a lepton-loop coupled to the photon. Effectively, there are charge-charge, dipole-charge and dipole-dipole interactions. We present the event rate of the model and compare it with existing data. Moreover, monochromatic photons from the decay of the excited Dark Matter state are discussed.

  8. Investigating the performance of directional boundary layer model through staged modeling method

    Jeong, Moon-Gyu; Lee, Won-Chan; Yang, Seung-Hune; Jang, Sung-Hoon; Shim, Seong-Bo; Kim, Young-Chang; Suh, Chun-Suk; Choi, Seong-Woon; Kim, Young-Hee

    2011-04-01

    BLM since the feasibility of the BLM has been investigated in many papers[4][5][6]. Instead of fitting the parameters to the wafer critical dimensions (CD) directly, we tried to use the aerial image (AI) from the rigorous simulator with the electromagnetic field (EMF) solver. Usually that kind of method is known as the staged modeling method. To see the advantages of this method we conducted several experiments and observed the results comparing the method of fitting to the wafer CD directly. Through the tests we could observe some remarkable results and confirmed that the staged modeling had better performance in many ways.

  9. Recommended direct simulation Monte Carlo collision model parameters for modeling ionized air transport processes

    Swaminathan-Gopalan, Krishnan; Stephani, Kelly A., E-mail: ksteph@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2016-02-15

    A systematic approach for calibrating the direct simulation Monte Carlo (DSMC) collision model parameters to achieve consistency in the transport processes is presented. The DSMC collision cross section model parameters are calibrated for high temperature atmospheric conditions by matching the collision integrals from DSMC against ab initio based collision integrals that are currently employed in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and Data Parallel Line Relaxation (DPLR) high temperature computational fluid dynamics solvers. The DSMC parameter values are computed for the widely used Variable Hard Sphere (VHS) and the Variable Soft Sphere (VSS) models using the collision-specific pairing approach. The recommended best-fit VHS/VSS parameter values are provided over a temperature range of 1000-20 000 K for a thirteen-species ionized air mixture. Use of the VSS model is necessary to achieve consistency in transport processes of ionized gases. The agreement of the VSS model transport properties with the transport properties as determined by the ab initio collision integral fits was found to be within 6% in the entire temperature range, regardless of the composition of the mixture. The recommended model parameter values can be readily applied to any gas mixture involving binary collisional interactions between the chemical species presented for the specified temperature range.

  10. DEFORMATION DEPENDENT TUL MULTI-STEP DIRECT MODEL

    WIENKE, H.; CAPOTE, R.; HERMAN, M.; SIN, M.

    2007-01-01

    The Multi-Step Direct (MSD) module TRISTAN in the nuclear reaction code EMPIRE has been extended in order to account for nuclear deformation. The new formalism was tested in calculations of neutron emission spectra emitted from the 232 Th(n,xn) reaction. These calculations include vibration-rotational Coupled Channels (CC) for the inelastic scattering to low-lying collective levels, ''deformed'' MSD with quadrupole deformation for inelastic scattering to the continuum, Multi-Step Compound (MSC) and Hauser-Feshbach with advanced treatment of the fission channel. Prompt fission neutrons were also calculated. The comparison with experimental data shows clear improvement over the ''spherical'' MSD calculations and JEFF-3.1 and JENDL-3.3 evaluations

  11. Deformation dependent TUL multi-step direct model

    Wienke, H.; Capote, R.; Herman, M.; Sin, M.

    2008-01-01

    The Multi-Step Direct (MSD) module TRISTAN in the nuclear reaction code EMPIRE has been extended to account for nuclear deformation. The new formalism was tested in calculations of neutron emission spectra emitted from the 232 Th(n,xn) reaction. These calculations include vibration-rotational Coupled Channels (CC) for the inelastic scattering to low-lying collective levels, 'deformed' MSD with quadrupole deformation for inelastic scattering to the continuum, Multi-Step Compound (MSC) and Hauser-Feshbach with advanced treatment of the fission channel. Prompt fission neutrons were also calculated. The comparison with experimental data shows clear improvement over the 'spherical' MSD calculations and JEFF-3.1 and JENDL-3.3 evaluations. (authors)

  12. Parallel direct solver for finite element modeling of manufacturing processes

    Nielsen, Chris Valentin; Martins, P.A.F.

    2017-01-01

    The central processing unit (CPU) time is of paramount importance in finite element modeling of manufacturing processes. Because the most significant part of the CPU time is consumed in solving the main system of equations resulting from finite element assemblies, different approaches have been...

  13. 77 FR 69747 - Airworthiness Directives; The Boeing Company Model Airplanes

    2012-11-21

    ... cycles after the effective date of this AD.'' The new language in paragraph (i)(1) of the NPRM states... language specified in paragraphs (l) through (n) of the NPRM from paragraph (o) of the NPRM. In the... inclusive. Boeing stated that the NPRM requirements do not differentiate for Model 737-200 series airplanes...

  14. Directional heterogeneity in WTP models for environmental valuation

    Schaafsma, M.; Brouwer, R.; Rose, J.

    2012-01-01

    Many studies in the stated preference literature on environmental valuation do not include the effects of substitutes and distance in willingness-to-pay (WTP) models, in spite of the relevance of these effects in aggregation and benefit transfer. Heterogeneity in the availability of substitutes over

  15. Architecture for Direct Model-to-Part CNC Manufacturing

    Gilbert Poon

    2006-02-01

    Full Text Available In the traditional paradigm for Computer Numerical Control (CNC machining, tool paths are programmed offline from the CNC machine using the Computer-Aided Design (CAD model of the workpiece. The program is downloaded to the CNC controller and the part is then machined. Since a CAD model does not exist inside the CNC controller, it is unaware of the part to be machined and cannot predict or prevent errors. Not only is this paradigm labor intensive, it can lead to catastrophic damage if there are errors during machining. This paper presents a new concept for CNC machine control whereby a CAD model of the workpiece exists inside the controller and the tool positions are generated in real-time by the controller using the computer's graphics hardware without human intervention. The new concept was implemented on an experimental lathe machine specifically designed to machine complicated ornamental wood workpieces with a personal computer. An example workpiece was machined and measured using a 3D camera. The measured data was registered to the CAD model to evaluate machining accuracy.

  16. Bi-directional approach for logical traffic isolation forensic model

    Dlamini, I

    2009-08-01

    Full Text Available -it-as-you-can" system, which seizes all packets passing through a certain traffic point, captures and writes them to the storage. The main aim of this paper is to address some of the challenges faced by the Logical Traffic Isolation (LTI) model, more specifically...

  17. 78 FR 38826 - Airworthiness Directives; Various Helicopter Models

    2013-06-28

    ... (ECD) Model MBB-BK 117 C-2 helicopter picked up a dummy load of 552 lbs. to conduct a ``maximum load... comply with this AD. It will take about 1 work-hour to perform the lift testing at an average labor rate... the distribution of power and responsibilities among the various levels of government. For the reasons...

  18. CHIMERA: Top-down model for hierarchical, overlapping and directed cluster structures in directed and weighted complex networks

    Franke, R.

    2016-11-01

    In many networks discovered in biology, medicine, neuroscience and other disciplines special properties like a certain degree distribution and hierarchical cluster structure (also called communities) can be observed as general organizing principles. Detecting the cluster structure of an unknown network promises to identify functional subdivisions, hierarchy and interactions on a mesoscale. It is not trivial choosing an appropriate detection algorithm because there are multiple network, cluster and algorithmic properties to be considered. Edges can be weighted and/or directed, clusters overlap or build a hierarchy in several ways. Algorithms differ not only in runtime, memory requirements but also in allowed network and cluster properties. They are based on a specific definition of what a cluster is, too. On the one hand, a comprehensive network creation model is needed to build a large variety of benchmark networks with different reasonable structures to compare algorithms. On the other hand, if a cluster structure is already known, it is desirable to separate effects of this structure from other network properties. This can be done with null model networks that mimic an observed cluster structure to improve statistics on other network features. A third important application is the general study of properties in networks with different cluster structures, possibly evolving over time. Currently there are good benchmark and creation models available. But what is left is a precise sandbox model to build hierarchical, overlapping and directed clusters for undirected or directed, binary or weighted complex random networks on basis of a sophisticated blueprint. This gap shall be closed by the model CHIMERA (Cluster Hierarchy Interconnection Model for Evaluation, Research and Analysis) which will be introduced and described here for the first time.

  19. Direct regional energy/economic modeling (DREEM) design

    Hall, P.D.; Pleatsikas, C.J.

    1979-10-01

    This report summarizes an investigation into the use of regional and multiregional economic models for estimating the indirect and induced impacts of Federally-mandated energy policies. It includes an examination of alternative types of energy policies that can impact regional economies and the available analytical frameworks for measuring the magnitudes and spatial extents of these impacts. One such analytical system, the National Regional Impact Evaluation System (NRIES), currently operational in the Bureau of Economic Analysis (BEA), is chosen for more detailed investigation. The report summarizes the models capabilities for addressing various energy policy issues and then demonstrates the applicability of the model in specified contexts by developing appropriate input data for three scenarios. These scenarios concern the multi-state impacts of alternative coal-mining-development decisions, multi-regional impacts of macroeconomic change, and the comprehensive effects of an alternative national energy supply trajectory. On the basis of this experience, the capabilities of NRIES for analyzing energy-policy issues are summarized in a concluding chapter.

  20. Supply chain management models, applications, and research directions

    Pardalos, Panos; Romeijn, H

    2005-01-01

    This work brings together some of the most up to date research in the application of operations research and mathematical modeling te- niques to problems arising in supply chain management and e-Commerce. While research in the broad area of supply chain management enc- passes a wide range of topics and methodologies, we believe this book provides a good snapshot of current quantitative modeling approaches, issues, and trends within the field. Each chapter is a self-contained study of a timely and relevant research problem in supply chain mana- ment. The individual works place a heavy emphasis on the application of modeling techniques to real world management problems. In many instances, the actual results from applying these techniques in practice are highlighted. In addition, each chapter provides important mana- rial insights that apply to general supply chain management practice. The book is divided into three parts. The first part contains ch- ters that address the new and rapidly growing role of the inte...

  1. Stochastic model of template-directed elongation processes in biology.

    Schilstra, Maria J; Nehaniv, Chrystopher L

    2010-10-01

    We present a novel modular, stochastic model for biological template-based linear chain elongation processes. In this model, elongation complexes (ECs; DNA polymerase, RNA polymerase, or ribosomes associated with nascent chains) that span a finite number of template units step along the template, one after another, with semaphore constructs preventing overtaking. The central elongation module is readily extended with modules that represent initiation and termination processes. The model was used to explore the effect of EC span on motor velocity and dispersion, and the effect of initiation activator and repressor binding kinetics on the overall elongation dynamics. The results demonstrate that (1) motors that move smoothly are able to travel at a greater velocity and closer together than motors that move more erratically, and (2) the rate at which completed chains are released is proportional to the occupancy or vacancy of activator or repressor binding sites only when initiation or activator/repressor dissociation is slow in comparison with elongation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Model based, sensor directed remediation of underground storage tanks

    Christensen, B.; Drotning, W.; Thunborg, S.

    1991-01-01

    Sensor rich, intelligent robots which function with respect to models of their environment have significant potential to reduce the time and cost for the cleanup of hazardous waste while increasing operator safety. Sandia National Laboratories is performing experimental investigations into the application of intelligent robot control technology to the problem of removing waste stored tanks. This paper describes the experimental environment employed at Saudi with particular attention to the computing and software control environment. Intelligent system control is achieved though the integration of extensive geometric and kinematic world models with real-time sensor based control. All operator interactions with the system are validate all operator commands before execution to provide a safe operation. Sensing is used to add information to the robot system's world model and to allow sensor based sensor control during selected operations. The results of a first Critical Feature Test are reported and the potential for applying advanced intelligent control concepts to the removal of waste in storage tanks is discussed

  3. Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots.

    Hajdin, Christine E; Bellaousov, Stanislav; Huggins, Wayne; Leonard, Christopher W; Mathews, David H; Weeks, Kevin M

    2013-04-02

    A pseudoknot forms in an RNA when nucleotides in a loop pair with a region outside the helices that close the loop. Pseudoknots occur relatively rarely in RNA but are highly overrepresented in functionally critical motifs in large catalytic RNAs, in riboswitches, and in regulatory elements of viruses. Pseudoknots are usually excluded from RNA structure prediction algorithms. When included, these pairings are difficult to model accurately, especially in large RNAs, because allowing this structure dramatically increases the number of possible incorrect folds and because it is difficult to search the fold space for an optimal structure. We have developed a concise secondary structure modeling approach that combines SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) experimental chemical probing information and a simple, but robust, energy model for the entropic cost of single pseudoknot formation. Structures are predicted with iterative refinement, using a dynamic programming algorithm. This melded experimental and thermodynamic energy function predicted the secondary structures and the pseudoknots for a set of 21 challenging RNAs of known structure ranging in size from 34 to 530 nt. On average, 93% of known base pairs were predicted, and all pseudoknots in well-folded RNAs were identified.

  4. Modelling water use in global hydrological models: review, challenges and directions

    Bierkens, M. F.; de Graaf, I.; Wada, Y.; Wanders, N.; Van Beek, L. P.

    2017-12-01

    During the late 1980s and early 1990s, awareness of the shortage of global water resources lead to the first detailed global water resources assessments using regional statistics of water use and observations of meteorological and hydrological variables. Shortly thereafter, the first macroscale hydrological models (MHM) appeared. In these models, blue water (i.e., surface water and renewable groundwater) availability was calculated by accumulating runoff over a stream network and comparing it with population densities or with estimated water demand for agriculture, industry and households. In this talk we review the evolution of human impact modelling in global land models with a focus on global water resources, touching upon developments of the last 15 years: i.e. calculating human water scarcity; estimating groundwater depletion; adding dams and reservoirs; fully integrating water use (demand, withdrawal, consumption, return flow) in the hydrology; simulating the effects of land use change. We show example studies for each of these steps. We identify We identify major challenges that hamper the further development of integrated water resources modelling. Examples of these are: 1) simulating reservoir operations; 2) including local infrastructure and redistribution; 3) using the correct allocations rules; 4) projecting future water demand and water use. For each of these challenges we signify promising directions for further research.

  5. Transcranial Direct Current Stimulation and behavioral models of smoking addiction

    Paige eFraser

    2012-08-01

    Full Text Available While few studies have applied transcranial direct current stimulation (tDCS to smoking addiction, existing work suggests that the intervention holds promise for altering the complex system by which environmental cues interact with cravings to drive behavior. Imaging and repetitive transcranial magnetic stimulation (rTMS studies suggest that increased dorsolateral prefrontal cortex (DLPFC activation and integrity may be associated with increased resistance to smoking cues. Anodal tDCS of the DLPFC, believed to boost activation, reduces cravings in response to these cues. The finding that noninvasive stimulation modifies cue induced cravings has profound implications for understanding the processes underlying addiction and relapse. TDCS can also be applied to probe mechanisms underlying and supporting nicotine addiction, as was done in a pharmacologic study that applied nicotine, tDCS, and TMS paired associative stimulation to find that stopping nicotine after chronic use induces a reduction in plasticity, causing difficulty in breaking free from association between cues and cravings. This mini-review will place studies that apply tDCS to smokers in the context of research involving the neural substrates of nicotine addiction.

  6. Assessing dengue vaccination impact: Model challenges and future directions.

    Recker, Mario; Vannice, Kirsten; Hombach, Joachim; Jit, Mark; Simmons, Cameron P

    2016-08-31

    In response to the sharp rise in the global burden caused by dengue virus (DENV) over the last few decades, the WHO has set out three specific key objectives in its disease control strategy: (i) to estimate the true burden of dengue by 2015; (ii) a reduction in dengue mortality by at least 50% by 2020 (used as a baseline); and (iii) a reduction in dengue morbidity by at least 25% by 2020. Although various elements will all play crucial parts in achieving this goal, from diagnosis and case management to integrated surveillance and outbreak response, sustainable vector control, vaccine implementation and finally operational and implementation research, it seems clear that new tools (e.g. a safe and effective vaccine and/or effective vector control) are key to success. The first dengue vaccine was licensed in December 2015, Dengvaxia® (CYD-TDV) developed by Sanofi Pasteur. The WHO has provided guidance on the use of CYD-TDV in endemic countries, for which there are a variety of considerations beyond the risk-benefit evaluation done by regulatory authorities, including public health impact and cost-effectiveness. Population-level vaccine impact and economic and financial aspects are two issues that can potentially be considered by means of mathematical modelling, especially for new products for which empirical data are still lacking. In December 2014 a meeting was convened by the WHO in order to revisit the current status of dengue transmission models and their utility for public health decision-making. Here, we report on the main points of discussion and the conclusions of this meeting, as well as next steps for maximising the use of mathematical models for vaccine decision-making. Copyright © 2016.

  7. Modeling of Direct Contact Wet Cooling Tower in ETRR-2

    El Khatib, H.H.; Ismail, A.L.; ElRefaie, M.E.

    2008-01-01

    The Egyptian Testing and Research Reactor no.2 (ETRR-2) was commissioned at 1997 with maximum power 22 MW for research purposes; an induced draft wet cooling tower (counter flow type) was putted in operation in 2003 instead of the first one. Investigations are achieved to evaluate cooling tower performance to guarantee that the cooling tower capable to dissipate heat generated in reactor core. Merkel and Poppe analysis was applied to simulate this cooling tower packing. Merkel analysis was applied to predict water outlet temperature from cooling tower and also to show the effect of ambient conditions on this temperature. Poppe analysis was applied to predict Merkel number which evaluate cooling tower. The Runge-Kutta numerical method was applied to solve the differential equations in this model and an engineering equation solver (EES) is the language used to model the cooling tower. This research illustrates that the cooling tower achieves good performance in various sever ambient condition at maximum operating condition of reactor power. The results show that at severe summer condition of wet bulb temperature equals 24 degree c and tower inlet temperature equals 37 degree c, the outlet water temperature equals 30.4 degree c from cooling tower, while the Merkel number is be found 1.253

  8. A computational neural model of goal-directed utterance selection.

    Klein, Michael; Kamp, Hans; Palm, Guenther; Doya, Kenji

    2010-06-01

    It is generally agreed that much of human communication is motivated by extra-linguistic goals: we often make utterances in order to get others to do something, or to make them support our cause, or adopt our point of view, etc. However, thus far a computational foundation for this view on language use has been lacking. In this paper we propose such a foundation using Markov Decision Processes. We borrow computational components from the field of action selection and motor control, where a neurobiological basis of these components has been established. In particular, we make use of internal models (i.e., next-state transition functions defined on current state action pairs). The internal model is coupled with reinforcement learning of a value function that is used to assess the desirability of any state that utterances (as well as certain non-verbal actions) can bring about. This cognitive architecture is tested in a number of multi-agent game simulations. In these computational experiments an agent learns to predict the context-dependent effects of utterances by interacting with other agents that are already competent speakers. We show that the cognitive architecture can account for acquiring the capability of deciding when to speak in order to achieve a certain goal (instead of performing a non-verbal action or simply doing nothing), whom to address and what to say. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Modeling of Pulsed Direct-Current Glow Discharge

    Du Mu; Zheng Yaru; Fan Yujia; Zhang Nan; Liu Chengsen; Wang Dezhen

    2010-01-01

    A self-consistent model was adopted to study the time evolution of low-voltage pulsed DC glow discharge. The distributions of electric field, ion density and electron density in nitrogen were investigated in our simulation, and the temporal shape of the discharge current was also obtained. Our results show that the dynamic behaviors of the discharge depends strongly on the applied pulse voltage, and the use of higher pulse voltages results in a significantly increase of discharge current and a decrease of discharge delay time. The current-voltage characteristic calculated by adjusting secondary electron emission coefficient for different applied pulse voltage under the gas pressure of 1 Torr is found in a reasonable agreement with the experimental results.

  10. Model based, sensor-directed remediation of underground storage tanks

    Harrigan, R.W.; Thunborg, S.

    1990-01-01

    Sensor-rich, intelligent robots that function with respect to models of their environment have significant potential to reduce the time and cost for the cleanup of hazardous waste while increasing operator safety. Sandia National Laboratories (SNL) is performing technology development and experimental investigations into the application of intelligent robot control technology to the problem of cleaning up waste stored in underground tanks. The tasks addressed in the SNL experiments are in situ physical characterizations of underground storage tanks (USTs) as well as the contained waste and the removal of the waste from the tank both for laboratory analysis and as part of the tank cleanup process. Both fully automatic and manual robot control technologies are being developed and demonstrated. The SNL-developed concept of human-assisted computer control will be employed whenever manual control of the robot is required. The UST Robot Technology Development Laboratory (URTDL) consists of a commercial gantry robot modified to allow hybrid force/position control

  11. 76 FR 31800 - Airworthiness Directives; Viking Air Limited Model DHC-3 (Otter) Airplanes

    2011-06-02

    ... Airworthiness Directives; Viking Air Limited Model DHC-3 (Otter) Airplanes AGENCY: Federal Aviation... INFORMATION: Discussion Recent analysis by the FAA on the Viking Air Limited Model DHC-3 (Otter) airplanes... new airworthiness directive (AD): 2011-12-02 Viking Aircraft Limited: Amendment 39-16709; Docket No...

  12. 75 FR 61655 - Airworthiness Directives; Piper Aircraft, Inc. Model PA-28-161 Airplanes

    2010-10-06

    ...-1006; Directorate Identifier 2009-CE-057-AD] RIN 2120-AA64 Airworthiness Directives; Piper Aircraft... airworthiness directive (AD) for all Piper Aircraft, Inc. (Piper) Model PA-28-161 airplanes equipped with.... Piper Model PA-28-161 airplanes modified by STC No. SA03303AT have a similar unsafe design feature that...

  13. 76 FR 58416 - Airworthiness Directives; Lockheed Martin Corporation/Lockheed Martin Aeronautics Company Model L...

    2011-09-21

    ... Aircraft Certification Office (ACO), 1701 Columbia Avenue, College Park, Georgia 30337; phone: 404- 474... Airworthiness Directives; Lockheed Martin Corporation/Lockheed Martin Aeronautics Company Model L-1011 Series...). SUMMARY: We propose to adopt a new airworthiness directive (AD) for certain Model L-1011 series airplanes...

  14. 75 FR 30282 - Airworthiness Directives; Quartz Mountain Aerospace, Inc. Model 11E Airplanes

    2010-06-01

    ... Airworthiness Directives; Quartz Mountain Aerospace, Inc. Model 11E Airplanes AGENCY: Federal Aviation... airworthiness directive (AD) for all Quartz Mountain Aerospace, Inc. Model 11E airplanes. This AD requires you... reference of certain publications listed in this AD. ADDRESSES: Quartz Mountain Aerospace, Inc. is in...

  15. Statistical mechanics of directed models of polymers in the square lattice

    Rensburg, E J Janse van

    2003-01-01

    Directed square lattice models of polymers and vesicles have received considerable attention in the recent mathematical and physical sciences literature. These are idealized geometric directed lattice models introduced to study phase behaviour in polymers, and include Dyck paths, partially directed paths, directed trees and directed vesicles models. Directed models are closely related to models studied in the combinatorics literature (and are often exactly solvable). They are also simplified versions of a number of statistical mechanics models, including the self-avoiding walk, lattice animals and lattice vesicles. The exchange of approaches and ideas between statistical mechanics and combinatorics have considerably advanced the description and understanding of directed lattice models, and this will be explored in this review. The combinatorial nature of directed lattice path models makes a study using generating function approaches most natural. In contrast, the statistical mechanics approach would introduce partition functions and free energies, and then investigate these using the general framework of critical phenomena. Generating function and statistical mechanics approaches are closely related. For example, questions regarding the limiting free energy may be approached by considering the radius of convergence of a generating function, and the scaling properties of thermodynamic quantities are related to the asymptotic properties of the generating function. In this review the methods for obtaining generating functions and determining free energies in directed lattice path models of linear polymers is presented. These methods include decomposition methods leading to functional recursions, as well as the Temperley method (that is implemented by creating a combinatorial object, one slice at a time). A constant term formulation of the generating function will also be reviewed. The thermodynamic features and critical behaviour in models of directed paths may be

  16. Discovery of non-directional and directional pioneer transcription factors by modeling DNase profile magnitude and shape

    Lewis, Sophia; Barkal, Amira A; van Hoff, John Peter; Karun, Vivek; Jaakkola, Tommi; Gifford, David K

    2014-01-01

    Here we describe Protein Interaction Quantitation (PIQ), a computational method that models the magnitude and shape of genome-wide DNase profiles to facilitate the identification of transcription factor (TF) binding sites. Through the use of machine learning techniques, PIQ identified binding sites for >700 TFs from one DNase-seq experiment with accuracy comparable to ChIP-seq for motif-associated TFs (median AUC=0.93 across 303 TFs). We applied PIQ to analyze DNase-seq data from mouse embryonic stem cells differentiating into pre-pancreatic and intestinal endoderm. We identified (n=120) and experimentally validated eight ‘pioneer’ TF families that dynamically open chromatin, enabling other TFs to bind to adjacent DNA. Four pioneer TF families only open chromatin in one direction from their motifs. Furthermore, we identified a class of ‘settler’ TFs whose genomic binding is principally governed by proximity to open chromatin. Our results support a model of hierarchical TF binding in which directional and non-directional pioneer activity shapes the chromatin landscape for population by settler TFs. PMID:24441470

  17. Direction dependence analysis: A framework to test the direction of effects in linear models with an implementation in SPSS.

    Wiedermann, Wolfgang; Li, Xintong

    2018-04-16

    In nonexperimental data, at least three possible explanations exist for the association of two variables x and y: (1) x is the cause of y, (2) y is the cause of x, or (3) an unmeasured confounder is present. Statistical tests that identify which of the three explanatory models fits best would be a useful adjunct to the use of theory alone. The present article introduces one such statistical method, direction dependence analysis (DDA), which assesses the relative plausibility of the three explanatory models on the basis of higher-moment information about the variables (i.e., skewness and kurtosis). DDA involves the evaluation of three properties of the data: (1) the observed distributions of the variables, (2) the residual distributions of the competing models, and (3) the independence properties of the predictors and residuals of the competing models. When the observed variables are nonnormally distributed, we show that DDA components can be used to uniquely identify each explanatory model. Statistical inference methods for model selection are presented, and macros to implement DDA in SPSS are provided. An empirical example is given to illustrate the approach. Conceptual and empirical considerations are discussed for best-practice applications in psychological data, and sample size recommendations based on previous simulation studies are provided.

  18. Application of a Pore Fraction Hot Tearing Model to Directionally Solidified and Direct Chill Cast Aluminum Alloys

    Dou, Ruifeng; Phillion, A. B.

    2016-08-01

    Hot tearing susceptibility is commonly assessed using a pressure drop equation in the mushy zone that includes the effects of both tensile deformation perpendicular to the thermal gradient as well as shrinkage feeding. In this study, a Pore Fraction hot tearing model, recently developed by Monroe and Beckermann (JOM 66:1439-1445, 2014), is extended to additionally include the effect of strain rate parallel to the thermal gradient. The deformation and shrinkage pore fractions are obtained on the basis of the dimensionless Niyama criterion and a scaling variable method. First, the model is applied to the binary Al-Cu system under conditions of directional solidification. It is shown that for the same Niyama criterion, a decrease in the cooling rate increases both the deformation and shrinkage pore fractions because of an increase in the time spent in the brittle temperature region. Second, the model is applied to the industrial aluminum alloy AA5182 as part of a finite element simulation of the Direct Chill (DC) casting process. It is shown that an increase in the casting speed during DC casting increases the deformation and shrinkage pore fractions, causing the maximum point of pore fraction to move towards the base of the casting. These results demonstrate that including the strain rate parallel to the thermal gradient significantly improves the predictive quality of hot tearing criteria based on the pressure drop equation.

  19. Markov Chain model for the stochastic behaviors of wind-direction data

    Masseran, Nurulkamal

    2015-01-01

    Highlights: • I develop a Markov chain model to describe about the stochastic and probabilistic behaviors of wind direction data. • I describe some of the theoretical arguments regarding the Markov chain model in term of wind direction data. • I suggest a limiting probabilities approach to determine a dominant directions of wind blow. - Abstract: Analyzing the behaviors of wind direction can complement knowledge concerning wind speed and help researchers draw conclusions regarding wind energy potential. Knowledge of the wind’s direction enables the wind turbine to be positioned in such a way as to maximize the total amount of captured energy and optimize the wind farm’s performance. In this paper, first-order and higher-order Markov chain models are proposed to describe the probabilistic behaviors of wind-direction data. A case study is conducted using data from Mersing, Malaysia. The wind-direction data are classified according to an eight-state Markov chain based on natural geographical directions. The model’s parameters are estimated using the maximum likelihood method and the linear programming formulation. Several theoretical arguments regarding the model are also discussed. Finally, limiting probabilities are used to determine a long-run proportion of the wind directions generated. The results explain the dominant direction for Mersing’s wind in terms of probability metrics

  20. Direct and semi-direct aerosol radiative effect on the Mediterranean climate variability using a coupled regional climate system model

    Nabat, Pierre; Somot, Samuel; Mallet, Marc; Sevault, Florence; Chiacchio, Marc; Wild, Martin

    2015-02-01

    A fully coupled regional climate system model (CNRM-RCSM4) has been used over the Mediterranean region to investigate the direct and semi-direct effects of aerosols, but also their role in the radiation-atmosphere-ocean interactions through multi-annual ensemble simulations (2003-2009) with and without aerosols and ocean-atmosphere coupling. Aerosols have been taken into account in CNRM-RCSM4 through realistic interannual monthly AOD climatologies. An evaluation of the model has been achieved, against various observations for meteorological parameters, and has shown the ability of CNRM-RCSM4 to reproduce the main patterns of the Mediterranean climate despite some biases in sea surface temperature (SST), radiation and cloud cover. The results concerning the aerosol radiative effects show a negative surface forcing on average because of the absorption and scattering of the incident radiation. The SW surface direct effect is on average -20.9 Wm-2 over the Mediterranean Sea, -14.7 Wm-2 over Europe and -19.7 Wm-2 over northern Africa. The LW surface direct effect is weaker as only dust aerosols contribute (+4.8 Wm-2 over northern Africa). This direct effect is partly counterbalanced by a positive semi-direct radiative effect over the Mediterranean Sea (+5.7 Wm-2 on average) and Europe (+5.0 Wm-2) due to changes in cloud cover and atmospheric circulation. The total aerosol effect is consequently negative at the surface and responsible for a decrease in land (on average -0.4 °C over Europe, and -0.5 °C over northern Africa) and sea surface temperature (on average -0.5 °C for the Mediterranean SST). In addition, the latent heat loss is shown to be weaker (-11.0 Wm-2) in the presence of aerosols, resulting in a decrease in specific humidity in the lower troposphere, and a reduction in cloud cover and precipitation. Simulations also indicate that dust aerosols warm the troposphere by absorbing solar radiation, and prevent radiation from reaching the surface, thus

  1. Using Direct Sub-Level Entity Access to Improve Nuclear Stockpile Simulation Modeling

    Parker, Robert Y. [Brigham Young Univ., Provo, UT (United States)

    1999-08-01

    Direct sub-level entity access is a seldom-used technique in discrete-event simulation modeling that addresses the accessibility of sub-level entity information. The technique has significant advantages over more common, alternative modeling methods--especially where hierarchical entity structures are modeled. As such, direct sub-level entity access is often preferable in modeling nuclear stockpile, life-extension issues, an area to which it has not been previously applied. Current nuclear stockpile, life-extension models were demonstrated to benefit greatly from the advantages of direct sub-level entity access. In specific cases, the application of the technique resulted in models that were up to 10 times faster than functionally equivalent models where alternative techniques were applied. Furthermore, specific implementations of direct sub-level entity access were observed to be more flexible, efficient, functional, and scalable than corresponding implementations using common modeling techniques. Common modeling techniques (''unbatch/batch'' and ''attribute-copying'') proved inefficient and cumbersome in handling many nuclear stockpile modeling complexities, including multiple weapon sites, true defect analysis, and large numbers of weapon and subsystem types. While significant effort was required to enable direct sub-level entity access in the nuclear stockpile simulation models, the enhancements were worth the effort--resulting in more efficient, more capable, and more informative models that effectively addressed the complexities of the nuclear stockpile.

  2. A Direct Adaptive Control Approach in the Presence of Model Mismatch

    Joshi, Suresh M.; Tao, Gang; Khong, Thuan

    2009-01-01

    This paper considers the problem of direct model reference adaptive control when the plant-model matching conditions are violated due to abnormal changes in the plant or incorrect knowledge of the plant's mathematical structure. The approach consists of direct adaptation of state feedback gains for state tracking, and simultaneous estimation of the plant-model mismatch. Because of the mismatch, the plant can no longer track the state of the original reference model, but may be able to track a new reference model that still provides satisfactory performance. The reference model is updated if the estimated plant-model mismatch exceeds a bound that is determined via robust stability and/or performance criteria. The resulting controller is a hybrid direct-indirect adaptive controller that offers asymptotic state tracking in the presence of plant-model mismatch as well as parameter deviations.

  3. Comparing consumer-directed and agency models for providing supportive services at home.

    Benjamin, A E; Matthias, R; Franke, T M

    2000-04-01

    To examine the service experiences and outcomes of low-income Medicaid beneficiaries with disabilities under two different models for organizing home-based personal assistance services: agency-directed and consumer-directed. A survey of a random sample of 1,095 clients, age 18 and over, who receive services in California's In-Home Supportive Services (IHSS) program funded primarily by Medicaid. Other data were obtained from the California Management and Payrolling System (CMIPS). The sample was stratified by service model (agency-directed or consumer-directed), client age (over or under age 65), and severity. Data were collected on client demographics, condition/functional status, and supportive service experience. Outcome measures were developed in three areas: safety, unmet need, and service satisfaction. Factor analysis was used to reduce multiple outcome measures to nine dimensions. Multiple regression analysis was used to assess the effect of service model on each outcome dimension, taking into account the client-provider relationship, client demographics, and case mix. Recipients of IHSS services as of mid-1996 were interviewed by telephone. The survey was conducted in late 1996 and early 1997. On various outcomes, recipients in the consumer-directed model report more positive outcomes than those in the agency model, or they report no difference. Statistically significant differences emerge on recipient safety, unmet needs, and service satisfaction. A family member present as a paid provider is also associated with more positive reported outcomes within the consumer-directed model, but model differences persist even when this is taken into account. Although both models have strengths and weaknesses, from a recipient perspective the consumer-directed model is associated with more positive outcomes. Although health professionals have expressed concerns about the capacity of consumer direction to assure quality, particularly with respect to safety, meeting unmet

  4. 76 FR 62605 - Airworthiness Directives; Viking Air Limited Model DHC-3 (Otter) Airplanes With Supplemental Type...

    2011-10-11

    ... Airworthiness Directives; Viking Air Limited Model DHC-3 (Otter) Airplanes With Supplemental Type Certificate.... That AD applies to Viking Air Limited Model DHC-3 (Otter) airplanes equipped with a Honeywell TPE331... limitations and marking the airspeed indicator accordingly for Viking Air Limited Model DHC-3 (Otter...

  5. Single-layer skull approximations perform well in transcranial direct current stimulation modeling

    Rampersad, S.M.; Stegeman, D.F.; Oostendorp, T.F.

    2013-01-01

    In modeling the effect of transcranial direct current stimulation, the representation of the skull is an important factor. In a spherical model, we compared a realistic skull modeling approach, in which the skull consisted of three isotropic layers, to anisotropic and isotropic single-layer

  6. Differences in directional sound source behavior and perception between assorted computer room models

    Vigeant, Michelle C.; Wang, Lily M.; Rindel, Jens Holger

    2004-01-01

    considering reverberation time. However, for the three other parameters evaluated (sound pressure level, clarity index and lateral fraction), the changing diffusivity of the room does not diminish the importance of the directivity. The study therefore shows the importance of considering source directivity......Source directivity is an important input variable when using room acoustic computer modeling programs to generate auralizations. Previous research has shown that using a multichannel anechoic recording can produce a more natural sounding auralization, particularly as the number of channels...

  7. On Training Bi-directional Neural Network Language Model with Noise Contrastive Estimation

    He, Tianxing; Zhang, Yu; Droppo, Jasha; Yu, Kai

    2016-01-01

    We propose to train bi-directional neural network language model(NNLM) with noise contrastive estimation(NCE). Experiments are conducted on a rescore task on the PTB data set. It is shown that NCE-trained bi-directional NNLM outperformed the one trained by conventional maximum likelihood training. But still(regretfully), it did not out-perform the baseline uni-directional NNLM.

  8. Predictive modeling capabilities from incident powder and laser to mechanical properties for laser directed energy deposition

    Shin, Yung C.; Bailey, Neil; Katinas, Christopher; Tan, Wenda

    2018-01-01

    This paper presents an overview of vertically integrated comprehensive predictive modeling capabilities for directed energy deposition processes, which have been developed at Purdue University. The overall predictive models consist of vertically integrated several modules, including powder flow model, molten pool model, microstructure prediction model and residual stress model, which can be used for predicting mechanical properties of additively manufactured parts by directed energy deposition processes with blown powder as well as other additive manufacturing processes. Critical governing equations of each model and how various modules are connected are illustrated. Various illustrative results along with corresponding experimental validation results are presented to illustrate the capabilities and fidelity of the models. The good correlations with experimental results prove the integrated models can be used to design the metal additive manufacturing processes and predict the resultant microstructure and mechanical properties.

  9. Predictive modeling capabilities from incident powder and laser to mechanical properties for laser directed energy deposition

    Shin, Yung C.; Bailey, Neil; Katinas, Christopher; Tan, Wenda

    2018-05-01

    This paper presents an overview of vertically integrated comprehensive predictive modeling capabilities for directed energy deposition processes, which have been developed at Purdue University. The overall predictive models consist of vertically integrated several modules, including powder flow model, molten pool model, microstructure prediction model and residual stress model, which can be used for predicting mechanical properties of additively manufactured parts by directed energy deposition processes with blown powder as well as other additive manufacturing processes. Critical governing equations of each model and how various modules are connected are illustrated. Various illustrative results along with corresponding experimental validation results are presented to illustrate the capabilities and fidelity of the models. The good correlations with experimental results prove the integrated models can be used to design the metal additive manufacturing processes and predict the resultant microstructure and mechanical properties.

  10. 75 FR 68245 - Airworthiness Directives; McDonnell Douglas Corporation Model MD-90-30 Airplanes

    2010-11-05

    ...-1043; Directorate Identifier 2010-NM-200-AD] RIN 2120-AA64 Airworthiness Directives; McDonnell Douglas... McDonnell Douglas Model MD-90-30 airplanes. This proposed AD would require installing new fire handle... airworthiness directive (AD): McDonnell Douglas Corporation: Docket No. FAA-2010-1043; Directorate Identifier...

  11. 75 FR 80742 - Airworthiness Directives; McDonnell Douglas Corporation Model MD-90-30 Airplanes

    2010-12-23

    ...-1202; Directorate Identifier 2010-NM-167-AD] RIN 2120-AA64 Airworthiness Directives; McDonnell Douglas... amends Sec. 39.13 by adding the following new airworthiness directive (AD): McDonnell Douglas Corporation... Douglas Corporation Model MD-90-30 airplanes, certificated in any category. Subject (d) Joint Aircraft...

  12. 75 FR 81417 - Airworthiness Directives; Piper Aircraft, Inc. Model PA-28-161 Airplanes

    2010-12-28

    ... Airworthiness Directives; Piper Aircraft, Inc. Model PA-28-161 Airplanes AGENCY: Federal Aviation Administration... new airworthiness directive (AD): 2010-26-04 Piper Aircraft, Inc: Amendment 39-16543; Docket No. FAA... times may be Airplane approved for this part. Maintenance Manual Piper PA28-161 TAE 125-01, Doc. No...

  13. 76 FR 13075 - Airworthiness Directives; Airbus Model A330-243F Airplanes

    2011-03-10

    ... Airworthiness Directives; Airbus Model A330-243F Airplanes AGENCY: Federal Aviation Administration (FAA... recent in-service event the flight crew of a Trent 700 powered A330 aircraft [[Page 13076

  14. Mathematical interpretation of Brownian motor model: Limit cycles and directed transport phenomena

    Yang, Jianqiang; Ma, Hong; Zhong, Suchuang

    2018-03-01

    In this article, we first suggest that the attractor of Brownian motor model is one of the reasons for the directed transport phenomenon of Brownian particle. We take the classical Smoluchowski-Feynman (SF) ratchet model as an example to investigate the relationship between limit cycles and directed transport phenomenon of the Brownian particle. We study the existence and variation rule of limit cycles of SF ratchet model at changing parameters through mathematical methods. The influences of these parameters on the directed transport phenomenon of a Brownian particle are then analyzed through numerical simulations. Reasonable mathematical explanations for the directed transport phenomenon of Brownian particle in SF ratchet model are also formulated on the basis of the existence and variation rule of the limit cycles and numerical simulations. These mathematical explanations provide a theoretical basis for applying these theories in physics, biology, chemistry, and engineering.

  15. Bivariate Gaussian bridges: directional factorization of diffusion in Brownian bridge models.

    Kranstauber, Bart; Safi, Kamran; Bartumeus, Frederic

    2014-01-01

    In recent years high resolution animal tracking data has become the standard in movement ecology. The Brownian Bridge Movement Model (BBMM) is a widely adopted approach to describe animal space use from such high resolution tracks. One of the underlying assumptions of the BBMM is isotropic diffusive motion between consecutive locations, i.e. invariant with respect to the direction. Here we propose to relax this often unrealistic assumption by separating the Brownian motion variance into two directional components, one parallel and one orthogonal to the direction of the motion. Our new model, the Bivariate Gaussian bridge (BGB), tracks movement heterogeneity across time. Using the BGB and identifying directed and non-directed movement within a trajectory resulted in more accurate utilisation distributions compared to dynamic Brownian bridges, especially for trajectories with a non-isotropic diffusion, such as directed movement or Lévy like movements. We evaluated our model with simulated trajectories and observed tracks, demonstrating that the improvement of our model scales with the directional correlation of a correlated random walk. We find that many of the animal trajectories do not adhere to the assumptions of the BBMM. The proposed model improves accuracy when describing the space use both in simulated correlated random walks as well as observed animal tracks. Our novel approach is implemented and available within the "move" package for R.

  16. A New Bi-Directional Projection Model Based on Pythagorean Uncertain Linguistic Variable

    Huidong Wang; Shifan He; Xiaohong Pan

    2018-01-01

    To solve the multi-attribute decision making (MADM) problems with Pythagorean uncertain linguistic variable, an extended bi-directional projection method is proposed. First, we utilize the linguistic scale function to convert uncertain linguistic variable and provide a new projection model, subsequently. Then, to depict the bi-directional projection method, the formative vectors of alternatives and ideal alternatives are defined. Furthermore, a comparative analysis with projection model is co...

  17. Modeling Directional Selectivity Using Self-Organizing Delay-Aadaptation Maps

    Tversky, Mr. Tal; Miikkulainen, Dr. Risto

    2002-01-01

    Using a delay adaptation learning rule, we model the activity-dependent development of directionally selective cells in the primary visual cortex. Based on input stimuli, a learning rule shifts delays to create synchronous arrival of spikes at cortical cells. As a result, delays become tuned creating a smooth cortical map of direction selectivity. This result demonstrates how delay adaption can serve as a powerful abstraction for modeling temporal learning in the brain.

  18. Tools for model-independent bounds in direct dark matter searches

    Cirelli, M.; Del Nobile, E.; Panci, P.

    2013-01-01

    We discuss a framework (based on non-relativistic operators) and a self-contained set of numerical tools to derive the bounds from some current direct detection experiments on virtually any arbitrary model of Dark Matter elastically scattering on nuclei.......We discuss a framework (based on non-relativistic operators) and a self-contained set of numerical tools to derive the bounds from some current direct detection experiments on virtually any arbitrary model of Dark Matter elastically scattering on nuclei....

  19. Heteroscedasticity as a Basis of Direction Dependence in Reversible Linear Regression Models.

    Wiedermann, Wolfgang; Artner, Richard; von Eye, Alexander

    2017-01-01

    Heteroscedasticity is a well-known issue in linear regression modeling. When heteroscedasticity is observed, researchers are advised to remedy possible model misspecification of the explanatory part of the model (e.g., considering alternative functional forms and/or omitted variables). The present contribution discusses another source of heteroscedasticity in observational data: Directional model misspecifications in the case of nonnormal variables. Directional misspecification refers to situations where alternative models are equally likely to explain the data-generating process (e.g., x → y versus y → x). It is shown that the homoscedasticity assumption is likely to be violated in models that erroneously treat true nonnormal predictors as response variables. Recently, Direction Dependence Analysis (DDA) has been proposed as a framework to empirically evaluate the direction of effects in linear models. The present study links the phenomenon of heteroscedasticity with DDA and describes visual diagnostics and nine homoscedasticity tests that can be used to make decisions concerning the direction of effects in linear models. Results of a Monte Carlo simulation that demonstrate the adequacy of the approach are presented. An empirical example is provided, and applicability of the methodology in cases of violated assumptions is discussed.

  20. Modeling of the Direct Current Generator Including the Magnetic Saturation and Temperature Effects

    Alfonso J. Mercado-Samur

    2013-11-01

    Full Text Available In this paper the inclusion of temperature effect on the field resistance on the direct current generator model DC1A, which is valid to stability studies is proposed. First, the linear generator model is presented, after the effect of magnetic saturation and the change in the resistance value due to temperature produced by the field current are included. The comparison of experimental results and model simulations to validate the model is used. A direct current generator model which is a better representation of the generator is obtained. Visual comparison between simulations and experimental results shows the success of the proposed model, because it presents the lowest error of the compared models. The accuracy of the proposed model is observed via Modified Normalized Sum of Squared Errors index equal to 3.8979%.

  1. Model and control scheme for recirculation mode direct steam generation parabolic trough solar power plants

    Guo, Su; Liu, Deyou; Chen, Xingying; Chu, Yinghao; Xu, Chang; Liu, Qunming; Zhou, Ling

    2017-01-01

    Highlights: •A nonlinear dynamic model of recirculation DSG parabolic trough is developed. •Collector row, water separator and spray attemperator are modeled, respectively. •The dynamic behaviors of the collector field are simulated and analyzed. •Transfer functions of water level and outlet fluid temperature are derived. •Multi-model switching generalized predictive control strategy is developed. -- Abstract: This work describes and evaluates a new nonlinear dynamic model, and a new generalized predictive control scheme for a collector field of direct steam generation parabolic troughs in recirculation mode. Modeling the dynamic behaviors of collector fields is essential to design, testing and validation of automatic control systems for direct steam generation parabolic troughs. However, the behaviors of two-phase heat transfer fluids impose challenges to simulating and developing process control schemes. In this work, a new nonlinear dynamic model is proposed, based on the nonlinear distributed parameter and the nonlinear lumped parameter methods. The proposed model is used to simulate and analyze the dynamic behaviors of the entire collector field for recirculation mode direct steam generation parabolic troughs under different weather conditions, without excessive computational costs. Based on the proposed model, transfer functions for both the water level of the separator and outlet steam temperatures are derived, and a new multi-model switching generalized predictive control scheme is developed for simulated control of the plant behaviors for a wide region of operational conditions. The proposed control scheme achieves excellent control performance and robustness for systems with long delay, large inertia and time-varying parameters, and efficiently solves the model mismatching problem in direct steam generation parabolic troughs. The performances of the model and control scheme are validated with design data from the project of Integration of Direct

  2. Prediction and Validation of Heat Release Direct Injection Diesel Engine Using Multi-Zone Model

    Anang Nugroho, Bagus; Sugiarto, Bambang; Prawoto; Shalahuddin, Lukman

    2014-04-01

    The objective of this study is to develop simulation model which capable to predict heat release of diesel combustion accurately in efficient computation time. A multi-zone packet model has been applied to solve the combustion phenomena inside diesel cylinder. The model formulations are presented first and then the numerical results are validated on a single cylinder direct injection diesel engine at various engine speed and timing injections. The model were found to be promising to fulfill the objective above.

  3. A New Bi-Directional Projection Model Based on Pythagorean Uncertain Linguistic Variable

    Huidong Wang

    2018-04-01

    Full Text Available To solve the multi-attribute decision making (MADM problems with Pythagorean uncertain linguistic variable, an extended bi-directional projection method is proposed. First, we utilize the linguistic scale function to convert uncertain linguistic variable and provide a new projection model, subsequently. Then, to depict the bi-directional projection method, the formative vectors of alternatives and ideal alternatives are defined. Furthermore, a comparative analysis with projection model is conducted to show the superiority of bi-directional projection method. Finally, an example of graduate’s job option is given to demonstrate the effectiveness and feasibility of the proposed method.

  4. An empirically grounded agent based model for modeling directs, conflict detection and resolution operations in air traffic management.

    Bongiorno, Christian; Miccichè, Salvatore; Mantegna, Rosario N

    2017-01-01

    We present an agent based model of the Air Traffic Management socio-technical complex system aiming at modeling the interactions between aircraft and air traffic controllers at a tactical level. The core of the model is given by the conflict detection and resolution module and by the directs module. Directs are flight shortcuts that are given by air controllers to speed up the passage of an aircraft within a certain airspace and therefore to facilitate airline operations. Conflicts between flight trajectories can occur for two main reasons: either the planning of the flight trajectory was not sufficiently detailed to rule out all potential conflicts or unforeseen events during the flight require modifications of the flight plan that can conflict with other flight trajectories. Our model performs a local conflict detection and resolution procedure. Once a flight trajectory has been made conflict-free, the model searches for possible improvements of the system efficiency by issuing directs. We give an example of model calibration based on real data. We then provide an illustration of the capability of our model in generating scenario simulations able to give insights about the air traffic management system. We show that the calibrated model is able to reproduce the existence of a geographical localization of air traffic controllers' operations. Finally, we use the model to investigate the relationship between directs and conflict resolutions (i) in the presence of perfect forecast ability of controllers, and (ii) in the presence of some degree of uncertainty in flight trajectory forecast.

  5. An empirically grounded agent based model for modeling directs, conflict detection and resolution operations in air traffic management.

    Christian Bongiorno

    Full Text Available We present an agent based model of the Air Traffic Management socio-technical complex system aiming at modeling the interactions between aircraft and air traffic controllers at a tactical level. The core of the model is given by the conflict detection and resolution module and by the directs module. Directs are flight shortcuts that are given by air controllers to speed up the passage of an aircraft within a certain airspace and therefore to facilitate airline operations. Conflicts between flight trajectories can occur for two main reasons: either the planning of the flight trajectory was not sufficiently detailed to rule out all potential conflicts or unforeseen events during the flight require modifications of the flight plan that can conflict with other flight trajectories. Our model performs a local conflict detection and resolution procedure. Once a flight trajectory has been made conflict-free, the model searches for possible improvements of the system efficiency by issuing directs. We give an example of model calibration based on real data. We then provide an illustration of the capability of our model in generating scenario simulations able to give insights about the air traffic management system. We show that the calibrated model is able to reproduce the existence of a geographical localization of air traffic controllers' operations. Finally, we use the model to investigate the relationship between directs and conflict resolutions (i in the presence of perfect forecast ability of controllers, and (ii in the presence of some degree of uncertainty in flight trajectory forecast.

  6. A Polygon Model for Wireless Sensor Network Deployment with Directional Sensing Areas

    Wu, Chun-Hsien; Chung, Yeh-Ching

    2009-01-01

    The modeling of the sensing area of a sensor node is essential for the deployment algorithm of wireless sensor networks (WSNs). In this paper, a polygon model is proposed for the sensor node with directional sensing area. In addition, a WSN deployment algorithm is presented with topology control and scoring mechanisms to maintain network connectivity and improve sensing coverage rate. To evaluate the proposed polygon model and WSN deployment algorithm, a simulation is conducted. The simulation results show that the proposed polygon model outperforms the existed disk model and circular sector model in terms of the maximum sensing coverage rate. PMID:22303159

  7. A Generalized Radiation Model for Human Mobility: Spatial Scale, Searching Direction and Trip Constraint.

    Chaogui Kang

    Full Text Available We generalized the recently introduced "radiation model", as an analog to the generalization of the classic "gravity model", to consolidate its nature of universality for modeling diverse mobility systems. By imposing the appropriate scaling exponent λ, normalization factor κ and system constraints including searching direction and trip OD constraint, the generalized radiation model accurately captures real human movements in various scenarios and spatial scales, including two different countries and four different cities. Our analytical results also indicated that the generalized radiation model outperformed alternative mobility models in various empirical analyses.

  8. Genomic selection models for directional dominance: an example for litter size in pigs.

    Varona, Luis; Legarra, Andrés; Herring, William; Vitezica, Zulma G

    2018-01-26

    The quantitative genetics theory argues that inbreeding depression and heterosis are founded on the existence of directional dominance. However, most procedures for genomic selection that have included dominance effects assumed prior symmetrical distributions. To address this, two alternatives can be considered: (1) assume the mean of dominance effects different from zero, and (2) use skewed distributions for the regularization of dominance effects. The aim of this study was to compare these approaches using two pig datasets and to confirm the presence of directional dominance. Four alternative models were implemented in two datasets of pig litter size that consisted of 13,449 and 11,581 records from 3631 and 2612 sows genotyped with the Illumina PorcineSNP60 BeadChip. The models evaluated included (1) a model that does not consider directional dominance (Model SN), (2) a model with a covariate b for the average individual homozygosity (Model SC), (3) a model with a parameter λ that reflects asymmetry in the context of skewed Gaussian distributions (Model AN), and (4) a model that includes both b and λ (Model Full). The results of the analysis showed that posterior probabilities of a negative b or a positive λ under Models SC and AN were higher than 0.99, which indicate positive directional dominance. This was confirmed with the predictions of inbreeding depression under Models Full, SC and AN, that were higher than in the SN Model. In spite of differences in posterior estimates of variance components between models, comparison of models based on LogCPO and DIC indicated that Model SC provided the best fit for the two datasets analyzed. Our results confirmed the presence of positive directional dominance for pig litter size and suggested that it should be taken into account when dominance effects are included in genomic evaluation procedures. The consequences of ignoring directional dominance may affect predictions of breeding values and can lead to biased

  9. 75 FR 50878 - Airworthiness Directives; McDonnell Douglas Corporation Model MD-90-30 Airplanes

    2010-08-18

    ... Airworthiness Directives; McDonnell Douglas Corporation Model MD- 90-30 Airplanes AGENCY: Federal Aviation... McDonnell Douglas Corporation: Amendment 39-16388. Docket No. FAA-2010-0433; Directorate Identifier 2009-NM..., 2010. Affected ADs (b) None. Applicability (c) This AD applies to McDonnell Douglas Corporation Model...

  10. A Direct inverse model to determine permeability fields from pressure and flow rate measurements

    Brouwer, G.K.; Fokker, P.A.; Wilschut, F.; Zijl, W.

    2008-01-01

    The determination of the permeability field from pressure and flow rate measurements in wells is a key problem in reservoir engineering. This paper presents a Double Constraint method for inverse modeling that is an example of direct inverse modeling. The method is used with a standard

  11. P2 : A random effects model with covariates for directed graphs

    van Duijn, M.A.J.; Snijders, T.A.B.; Zijlstra, B.J.H.

    A random effects model is proposed for the analysis of binary dyadic data that represent a social network or directed graph, using nodal and/or dyadic attributes as covariates. The network structure is reflected by modeling the dependence between the relations to and from the same actor or node.

  12. 76 FR 73483 - Airworthiness Directives; Gulfstream Aerospace Corporation Model GV and GV-SP Airplanes

    2011-11-29

    ... Management Branch, ACE-102A, FAA, Atlanta Aircraft Certification Office (ACO), 1701 Columbia Avenue, College... Airworthiness Directives; Gulfstream Aerospace Corporation Model GV and GV-SP Airplanes AGENCY: Federal Aviation... certain Gulfstream Aerospace Corporation Model GV and GV-SP airplanes. This AD was prompted by...

  13. 76 FR 61255 - Airworthiness Directives; Honeywell International Inc. TPE331 Model Turboprop Engines With...

    2011-10-04

    ... Certification Office, FAA, Atlanta Aircraft Certification Office, 1701 Columbia Avenue, College Park, GA 30337... Airworthiness Directives; Honeywell International Inc. TPE331 Model Turboprop Engines With Certain Dixie... Honeywell International Inc. TPE331 model turboprop engines with a part manufacturer approval (PMA...

  14. 75 FR 20265 - Airworthiness Directives; Liberty Aerospace Incorporated Model XL-2 Airplanes

    2010-04-19

    ... Office, 1701 Columbia Avenue, College Park, Georgia 30337; telephone: (404) 474-5524; facsimile: (404... Airworthiness Directives; Liberty Aerospace Incorporated Model XL-2 Airplanes AGENCY: Federal Aviation...-08- 05, which applies to certain Liberty Aerospace Incorporated Model XL-2 airplanes. AD 2009-08-05...

  15. 76 FR 48049 - Airworthiness Directives; Lockheed Martin Corporation/Lockheed Martin Aeronautics Company Model L...

    2011-08-08

    ... Aircraft Certification Office (ACO), 1701 Columbia Avenue, College Park, Georgia 30337; phone: 404- 474... Corporation/Lockheed Martin Aeronautics Company Model L-1011 Series Airplanes AGENCY: Federal Aviation... existing airworthiness directive (AD) that applies to Model L-1011-385-1, L-1011-385-1-14, and L-1011- 385...

  16. 75 FR 12468 - Airworthiness Directives; Quartz Mountain Aerospace, Inc. Model 11E Airplanes

    2010-03-16

    ... Aerospace, Inc. Model 11E Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... airworthiness directive (AD) for all Quartz Mountain Aerospace, Inc. Model 11E airplanes. This proposed AD would... 5 p.m., Monday through Friday, except Federal holidays. Quartz Mountain Aerospace, Inc. is in...

  17. Disconfirming User Expectations of the Online Service Experience: Inferred versus Direct Disconfirmation Modeling.

    O'Neill, Martin; Palmer, Adrian; Wright, Christine

    2003-01-01

    Disconfirmation models of online service measurement seek to define service quality as the difference between user expectations of the service to be received and perceptions of the service actually received. Two such models-inferred and direct disconfirmation-for measuring quality of the online experience are compared (WebQUAL, SERVQUAL). Findings…

  18. A direct derivation of the exact Fisther information matrix of Gaussian vector state space models

    Klein, A.A.B.; Neudecker, H.

    2000-01-01

    This paper deals with a direct derivation of Fisher's information matrix of vector state space models for the general case, by which is meant the establishment of the matrix as a whole and not element by element. The method to be used is matrix differentiation, see [4]. We assume the model to be

  19. Possible constraints on SUSY-model parameters from direct dark matter search

    Bednyakov, V.A.; Kovalenko, S.G.

    1993-01-01

    We consider the SUSY-model neutralino as a dominant Dark Matter particle in the galactic halo and investigate some general issues of direct DM searches via elastic neutralino-nucleus scattering. On the basis of conventional assumptions about the nuclear and nucleon structure, without referring to a specific SUSY-model, we prove that it is impossible in principle to extract more than three constrains on fundamental SUSY-model parameters from the direct Dark Matter searches. Three types of Dark Matter detector probing different groups of parameters are recognized. 21 refs., 1 tab

  20. Investigations of incorporating source directivity into room acoustics computer models to improve auralizations

    Vigeant, Michelle C.

    Room acoustics computer modeling and auralizations are useful tools when designing or modifying acoustically sensitive spaces. In this dissertation, the input parameter of source directivity has been studied in great detail to determine first its effect in room acoustics computer models and secondly how to better incorporate the directional source characteristics into these models to improve auralizations. To increase the accuracy of room acoustics computer models, the source directivity of real sources, such as musical instruments, must be included in the models. The traditional method for incorporating source directivity into room acoustics computer models involves inputting the measured static directivity data taken every 10° in a sphere-shaped pattern around the source. This data can be entered into the room acoustics software to create a directivity balloon, which is used in the ray tracing algorithm to simulate the room impulse response. The first study in this dissertation shows that using directional sources over an omni-directional source in room acoustics computer models produces significant differences both in terms of calculated room acoustics parameters and auralizations. The room acoustics computer model was also validated in terms of accurately incorporating the input source directivity. A recently proposed technique for creating auralizations using a multi-channel source representation has been investigated with numerous subjective studies, applied to both solo instruments and an orchestra. The method of multi-channel auralizations involves obtaining multi-channel anechoic recordings of short melodies from various instruments and creating individual channel auralizations. These auralizations are then combined to create a total multi-channel auralization. Through many subjective studies, this process was shown to be effective in terms of improving the realism and source width of the auralizations in a number of cases, and also modeling different

  1. Micromechanical modeling of stress-induced strain in polycrystalline Ni–Mn–Ga by directional solidification

    Zhu, Yuping; Shi, Tao; Teng, Yao

    2015-01-01

    Highlights: • A micromechanical model of directional solidification Ni–Mn–Ga is developed. • The stress–strain curves in different directions are tested. • The martensite Young’s moduli in different directions are predicted. • The macro reorientation strains in different directions are investigated. - Abstract: Polycrystalline ferromagnetic shape memory alloy Ni–Mn–Ga produced by directional solidification possess unique properties. Its compressive stress–strain behaviors in loading–unloading cycle show nonlinear and anisotropic. Based on the self-consistent theory and thermodynamics principle, a micromechanical constitutive model of polycrystalline Ni–Mn–Ga by directional solidification is developed considering the generating mechanism of the macroscopic strain and anisotropy. Then, the stress induced strains at different angles to solidification direction are calculated, and the results agree well with the experimental data. The predictive curves of martensite Young’s modulus and macro reorientation strain in different directions are investigated. It may provide theoretical guidance for the design and use of ferromagnetic shape memory alloy

  2. Three-dimensional two-phase mass transport model for direct methanol fuel cells

    Yang, W.W.; Zhao, T.S.; Xu, C.

    2007-01-01

    A three-dimensional (3D) steady-state model for liquid feed direct methanol fuel cells (DMFC) is presented in this paper. This 3D mass transport model is formed by integrating five sub-models, including a modified drift-flux model for the anode flow field, a two-phase mass transport model for the porous anode, a single-phase model for the polymer electrolyte membrane, a two-phase mass transport model for the porous cathode, and a homogeneous mist-flow model for the cathode flow field. The two-phase mass transport models take account the effect of non-equilibrium evaporation/ condensation at the gas-liquid interface. A 3D computer code is then developed based on the integrated model. After being validated against the experimental data reported in the literature, the code was used to investigate numerically transport behaviors at the DMFC anode and their effects on cell performance

  3. Mathematical modeling for corrosion environment estimation based on concrete resistivity measurement directly above reinforcement

    Lim, Young-Chul; Lee, Han-Seung; Noguchi, Takafumi

    2009-01-01

    This study aims to formulate a resistivity model whereby the concrete resistivity expressing the environment of steel reinforcement can be directly estimated and evaluated based on measurement immediately above reinforcement as a method of evaluating corrosion deterioration in reinforced concrete structures. It also aims to provide a theoretical ground for the feasibility of durability evaluation by electric non-destructive techniques with no need for chipping of cover concrete. This Resistivity Estimation Model (REM), which is a mathematical model using the mirror method, combines conventional four-electrode measurement of resistivity with geometric parameters including cover depth, bar diameter, and electrode intervals. This model was verified by estimation using this model at areas directly above reinforcement and resistivity measurement at areas unaffected by reinforcement in regard to the assessment of the concrete resistivity. Both results strongly correlated, proving the validity of this model. It is expected to be applicable to laboratory study and field diagnosis regarding reinforcement corrosion. (author)

  4. Modeling Macrosegregation in Directionally Solidified Aluminum Alloys under Gravitational and Microgravitational Conditions.

    Lauer, Mark A.; Poirier, David R.; Erdmann, Robert G.; Tewari, Surendra N.; Madison, Jonathan D

    2014-09-01

    This report covers the modeling of seven directionally solidified samples, five under normal gravitational conditions and two in microgravity. A model is presented to predict macrosegregation during the melting phases of samples solidified under microgravitational conditions. The results of this model are compared against two samples processed in microgravity and good agreement is found. A second model is presented that captures thermosolutal convection during directional solidification. Results for this model are compared across several experiments and quantitative comparisons are made between the model and the experimentally obtained radial macrosegregation profiles with good agreement being found. Changes in cross section were present in some samples and micrographs of these are qualitatively compared with the results of the simulations. It is found that macrosegregation patterns can be affected by changing the mold material.

  5. Using Measured Plane-of-Array Data Directly in Photovoltaic Modeling: Methodology and Validation: Preprint

    Freeman, Janine; Freestate, David; Riley, Cameron; Hobbs, William

    2016-11-01

    Measured plane-of-array (POA) irradiance may provide a lower-cost alternative to standard irradiance component data for photovoltaic (PV) system performance modeling without loss of accuracy. Previous work has shown that transposition models typically used by PV models to calculate POA irradiance from horizontal data introduce error into the POA irradiance estimates, and that measured POA data can correlate better to measured performance data. However, popular PV modeling tools historically have not directly used input POA data. This paper introduces a new capability in NREL's System Advisor Model (SAM) to directly use POA data in PV modeling, and compares SAM results from both POA irradiance and irradiance components inputs against measured performance data for eight operating PV systems.

  6. Enhanced model of photovoltaic cell/panel/array considering the direct and reverse modes

    Zegaoui, Abdallah; Boutoubat, Mohamed; Sawicki, Jean-Paul; Kessaissia, Fatma Zohra; Djahbar, Abdelkader; Aillerie, Michel

    2018-05-01

    This paper presents an improved generalized physical model for photovoltaic, PV cells, panels and arrays taking into account the behavior of these devices when considering their biasing existing in direct and reverse modes. Existing PV physical models generally are very efficient for simulating influence of irradiation changes on the short circuit current but they could not visualize the influences of temperature changes. The Enhanced Direct and Reverse Mode model, named EDRM model, enlightens the influence on the short-circuit current of both temperature and irradiation in the reverse mode of the considered PV devices. Due to its easy implementation, the proposed model can be a useful power tool for the development of new photovoltaic systems taking into account and in a more exhaustive manner, environmental conditions. The developed model was tested on a marketed PV panel and it gives a satisfactory results compared with parameters given in the manufacturer datasheet.

  7. Directed walk models of adsorbing semi-flexible polymers subject to an elongational force

    Iliev, G K [Department of Mathematics and Statistics, University of Melbourne, Parkville (Australia); Orlandini, E [Dipartimento di Fisica, CNISM, Universita di Padova, Via Marzolo 8, 35131 Padova (Italy); Whittington, S G [Department of Chemistry, University of Toronto, Toronto (Canada)

    2010-08-06

    We consider several directed path models of semi-flexible polymers. In each model we associate an energy parameter for every pair of adjacent collinear steps, allowing for a model of a polymer with tunable stiffness. We introduce weightings for vertices or edges in a distinguished plane to model the interaction of a semi-flexible polymer with an impenetrable surface. We also investigate the desorption of such a polymer under the influence of an elongational force and study the order of the associated phase transitions. Using a simple low-temperature theory, we approximate and study the ground state behaviour of the models.

  8. Modeling the impact of normative beliefs in the context of online buying: Direct and moderating effects

    Iconaru Claudia

    2012-01-01

    Normative beliefs tend to play a significant role in the context of online buying, having both direct and moderating effects. The results of the structural equation modeling indicate a direct effect of normative beliefs on the intention to buy online. Also, the magnitude of the relationship between online trust and perceived risk depends on the level of normative beliefs, showing that the effect of online trust on perceived risk varies as a function of the level of the moderator variable. Thi...

  9. Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction

    Ju Feng; Wen Zhong Shen

    2015-01-01

    Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint distributions of wind speed and wind direction, which is based on the parameters of sector-wise Weibull distributions and interpolations between direction sectors. It is applied to the wind measurement data a...

  10. Differences in directional sound source behavior and perception between assorted computer room models

    Vigeant, M. C.; Wang, L. M.; Rindel, Jens Holger

    2004-01-01

    time. However, for the three other parameters evaluated (sound-pressure level, clarity index, and lateral fraction), the changing diffusivity of the room does not diminish the importance of the directivity. The study therefore shows the importance of considering source directivity when using computer......Source directivity is an important input variable when using room acoustic computer modeling programs to generate auralizations. Previous research has shown that using a multichannel anechoic recording can produce a more natural sounding auralization, particularly as the number of channels...

  11. Direct risk standardisation: a new method for comparing casemix adjusted event rates using complex models.

    Nicholl, Jon; Jacques, Richard M; Campbell, Michael J

    2013-10-29

    Comparison of outcomes between populations or centres may be confounded by any casemix differences and standardisation is carried out to avoid this. However, when the casemix adjustment models are large and complex, direct standardisation has been described as "practically impossible", and indirect standardisation may lead to unfair comparisons. We propose a new method of directly standardising for risk rather than standardising for casemix which overcomes these problems. Using a casemix model which is the same model as would be used in indirect standardisation, the risk in individuals is estimated. Risk categories are defined, and event rates in each category for each centre to be compared are calculated. A weighted sum of the risk category specific event rates is then calculated. We have illustrated this method using data on 6 million admissions to 146 hospitals in England in 2007/8 and an existing model with over 5000 casemix combinations, and a second dataset of 18,668 adult emergency admissions to 9 centres in the UK and overseas and a published model with over 20,000 casemix combinations and a continuous covariate. Substantial differences between conventional directly casemix standardised rates and rates from direct risk standardisation (DRS) were found. Results based on DRS were very similar to Standardised Mortality Ratios (SMRs) obtained from indirect standardisation, with similar standard errors. Direct risk standardisation using our proposed method is as straightforward as using conventional direct or indirect standardisation, always enables fair comparisons of performance to be made, can use continuous casemix covariates, and was found in our examples to have similar standard errors to the SMR. It should be preferred when there is a risk that conventional direct or indirect standardisation will lead to unfair comparisons.

  12. Direct Detection Phenomenology in Models Where the Products of Dark Matter Annihilation Interact with Nuclei

    Cherry, John F.; Frandsen, Mads T.; Shoemaker, Ian M.

    2015-01-01

    We investigate the direct detection phenomenology of a class of dark matter (DM) models in which DM does not directly interact with nuclei, {but rather} the products of its annihilation do. When these annihilation products are very light compared to the DM mass, the scattering in direct detection...... to nuclei, the limit from annihilation to relativistic particles in the Sun can be stronger than that of conventional non-relativistic direct detection by more than three orders of magnitude for masses in a 2-7 GeV window.......We investigate the direct detection phenomenology of a class of dark matter (DM) models in which DM does not directly interact with nuclei, {but rather} the products of its annihilation do. When these annihilation products are very light compared to the DM mass, the scattering in direct detection...... experiments is controlled by relativistic kinematics. This results in a distinctive recoil spectrum, a non-standard and or even absent annual modulation, and the ability to probe DM masses as low as a $\\sim$10 MeV. We use current LUX data to show that experimental sensitivity to thermal relic annihilation...

  13. Less-simplified models of dark matter for direct detection and the LHC

    Choudhury, Arghya [Regional Centre for Accelerator-based Particle Physics, Harish-Chandra Research Institute,Allahabad - 211019 (India); Kowalska, Kamila; Roszkowski, Leszek; Sessolo, Enrico Maria; Williams, Andrew J. [National Centre for Nuclear Research,Hoża 69, 00-681 Warsaw (Poland)

    2016-04-29

    We construct models of dark matter with suppressed spin-independent scattering cross section utilizing the existing simplified model framework. Even simple combinations of simplified models can exhibit interference effects that cause the tree level contribution to the scattering cross section to vanish, thus demonstrating that direct detection limits on simplified models are not robust when embedded in a more complicated and realistic framework. In general for fermionic WIMP masses ≳10 GeV direct detection limits on the spin-independent scattering cross section are much stronger than those coming from the LHC. However these model combinations, which we call less-simplified models, represent situations where LHC searches become more competitive than direct detection experiments even for moderate dark matter mass. We show that a complementary use of several searches at the LHC can strongly constrain the direct detection blind spots by setting limits on the coupling constants and mediators’ mass. We derive the strongest limits for combinations of vector + scalar, vector + “squark”, and “squark” + scalar mediator, and present the corresponding projections for the LHC 14 TeV for a number of searches: mono-jet, jets + missing energy, and searches for heavy vector resonances.

  14. Less-simplified models of dark matter for direct detection and the LHC

    Choudhury, Arghya; Kowalska, Kamila; Roszkowski, Leszek; Sessolo, Enrico Maria; Williams, Andrew J.

    2016-01-01

    We construct models of dark matter with suppressed spin-independent scattering cross section utilizing the existing simplified model framework. Even simple combinations of simplified models can exhibit interference effects that cause the tree level contribution to the scattering cross section to vanish, thus demonstrating that direct detection limits on simplified models are not robust when embedded in a more complicated and realistic framework. In general for fermionic WIMP masses ≳10 GeV direct detection limits on the spin-independent scattering cross section are much stronger than those coming from the LHC. However these model combinations, which we call less-simplified models, represent situations where LHC searches become more competitive than direct detection experiments even for moderate dark matter mass. We show that a complementary use of several searches at the LHC can strongly constrain the direct detection blind spots by setting limits on the coupling constants and mediators’ mass. We derive the strongest limits for combinations of vector + scalar, vector + “squark”, and “squark” + scalar mediator, and present the corresponding projections for the LHC 14 TeV for a number of searches: mono-jet, jets + missing energy, and searches for heavy vector resonances.

  15. Less-simplified models of dark matter for direct detection and the LHC

    Choudhury, Arghya; Kowalska, Kamila; Roszkowski, Leszek; Sessolo, Enrico Maria; Williams, Andrew J.

    2016-04-01

    We construct models of dark matter with suppressed spin-independent scattering cross section utilizing the existing simplified model framework. Even simple combinations of simplified models can exhibit interference effects that cause the tree level contribution to the scattering cross section to vanish, thus demonstrating that direct detection limits on simplified models are not robust when embedded in a more complicated and realistic framework. In general for fermionic WIMP masses ≳ 10 GeV direct detection limits on the spin-independent scattering cross section are much stronger than those coming from the LHC. However these model combinations, which we call less-simplified models, represent situations where LHC searches become more competitive than direct detection experiments even for moderate dark matter mass. We show that a complementary use of several searches at the LHC can strongly constrain the direct detection blind spots by setting limits on the coupling constants and mediators' mass. We derive the strongest limits for combinations of vector + scalar, vector + "squark", and "squark" + scalar mediator, and present the corresponding projections for the LHC 14 TeV for a number of searches: mono-jet, jets + missing energy, and searches for heavy vector resonances.

  16. Fitting direct covariance structures by the MSTRUCT modeling language of the CALIS procedure.

    Yung, Yiu-Fai; Browne, Michael W; Zhang, Wei

    2015-02-01

    This paper demonstrates the usefulness and flexibility of the general structural equation modelling (SEM) approach to fitting direct covariance patterns or structures (as opposed to fitting implied covariance structures from functional relationships among variables). In particular, the MSTRUCT modelling language (or syntax) of the CALIS procedure (SAS/STAT version 9.22 or later: SAS Institute, 2010) is used to illustrate the SEM approach. The MSTRUCT modelling language supports a direct covariance pattern specification of each covariance element. It also supports the input of additional independent and dependent parameters. Model tests, fit statistics, estimates, and their standard errors are then produced under the general SEM framework. By using numerical and computational examples, the following tests of basic covariance patterns are illustrated: sphericity, compound symmetry, and multiple-group covariance patterns. Specification and testing of two complex correlation structures, the circumplex pattern and the composite direct product models with or without composite errors and scales, are also illustrated by the MSTRUCT syntax. It is concluded that the SEM approach offers a general and flexible modelling of direct covariance and correlation patterns. In conjunction with the use of SAS macros, the MSTRUCT syntax provides an easy-to-use interface for specifying and fitting complex covariance and correlation structures, even when the number of variables or parameters becomes large. © 2014 The British Psychological Society.

  17. Model-free inference of direct network interactions from nonlinear collective dynamics.

    Casadiego, Jose; Nitzan, Mor; Hallerberg, Sarah; Timme, Marc

    2017-12-19

    The topology of interactions in network dynamical systems fundamentally underlies their function. Accelerating technological progress creates massively available data about collective nonlinear dynamics in physical, biological, and technological systems. Detecting direct interaction patterns from those dynamics still constitutes a major open problem. In particular, current nonlinear dynamics approaches mostly require to know a priori a model of the (often high dimensional) system dynamics. Here we develop a model-independent framework for inferring direct interactions solely from recording the nonlinear collective dynamics generated. Introducing an explicit dependency matrix in combination with a block-orthogonal regression algorithm, the approach works reliably across many dynamical regimes, including transient dynamics toward steady states, periodic and non-periodic dynamics, and chaos. Together with its capabilities to reveal network (two point) as well as hypernetwork (e.g., three point) interactions, this framework may thus open up nonlinear dynamics options of inferring direct interaction patterns across systems where no model is known.

  18. A Quasi-Linear Behavioral Model and an Application to Self-Directed Learning

    Ponton, Michael K.; Carr, Paul B.

    1999-01-01

    A model is presented that describes the relationship between one's knowledge of the world and the concomitant personal behaviors that serve as a mechanism to obtain desired outcomes. Integrated within this model are the differing roles that outcomes serve as motivators and as modifiers to one's worldview. The model is dichotomized between general and contextual applications. Because learner self-directedness (a personal characteristic) involves cognition and affection while self-directed learning (a pedagogic process) encompasses conation, behavior and introspection, the model can be dichotomized again in another direction. Presented also are the roles that cognitive motivation theories play in moving an individual through this behavioral model and the roles of wishes, self-efficacy, opportunity and self-influence.

  19. Directional statistics-based reflectance model for isotropic bidirectional reflectance distribution functions.

    Nishino, Ko; Lombardi, Stephen

    2011-01-01

    We introduce a novel parametric bidirectional reflectance distribution function (BRDF) model that can accurately encode a wide variety of real-world isotropic BRDFs with a small number of parameters. The key observation we make is that a BRDF may be viewed as a statistical distribution on a unit hemisphere. We derive a novel directional statistics distribution, which we refer to as the hemispherical exponential power distribution, and model real-world isotropic BRDFs as mixtures of it. We derive a canonical probabilistic method for estimating the parameters, including the number of components, of this novel directional statistics BRDF model. We show that the model captures the full spectrum of real-world isotropic BRDFs with high accuracy, but a small footprint. We also demonstrate the advantages of the novel BRDF model by showing its use for reflection component separation and for exploring the space of isotropic BRDFs.

  20. Predicting the Direction of Stock Market Index Movement Using an Optimized Artificial Neural Network Model.

    Mingyue Qiu

    Full Text Available In the business sector, it has always been a difficult task to predict the exact daily price of the stock market index; hence, there is a great deal of research being conducted regarding the prediction of the direction of stock price index movement. Many factors such as political events, general economic conditions, and traders' expectations may have an influence on the stock market index. There are numerous research studies that use similar indicators to forecast the direction of the stock market index. In this study, we compare two basic types of input variables to predict the direction of the daily stock market index. The main contribution of this study is the ability to predict the direction of the next day's price of the Japanese stock market index by using an optimized artificial neural network (ANN model. To improve the prediction accuracy of the trend of the stock market index in the future, we optimize the ANN model using genetic algorithms (GA. We demonstrate and verify the predictability of stock price direction by using the hybrid GA-ANN model and then compare the performance with prior studies. Empirical results show that the Type 2 input variables can generate a higher forecast accuracy and that it is possible to enhance the performance of the optimized ANN model by selecting input variables appropriately.

  1. Predicting the Direction of Stock Market Index Movement Using an Optimized Artificial Neural Network Model.

    Qiu, Mingyue; Song, Yu

    2016-01-01

    In the business sector, it has always been a difficult task to predict the exact daily price of the stock market index; hence, there is a great deal of research being conducted regarding the prediction of the direction of stock price index movement. Many factors such as political events, general economic conditions, and traders' expectations may have an influence on the stock market index. There are numerous research studies that use similar indicators to forecast the direction of the stock market index. In this study, we compare two basic types of input variables to predict the direction of the daily stock market index. The main contribution of this study is the ability to predict the direction of the next day's price of the Japanese stock market index by using an optimized artificial neural network (ANN) model. To improve the prediction accuracy of the trend of the stock market index in the future, we optimize the ANN model using genetic algorithms (GA). We demonstrate and verify the predictability of stock price direction by using the hybrid GA-ANN model and then compare the performance with prior studies. Empirical results show that the Type 2 input variables can generate a higher forecast accuracy and that it is possible to enhance the performance of the optimized ANN model by selecting input variables appropriately.

  2. Modifying Geometric-Optical Bidirectional Reflectance Model for Direct Inversion of Forest Canopy Leaf Area Index

    Congrong Li

    2015-08-01

    Full Text Available Forest canopy leaf area index (LAI inversion based on remote sensing data is an important method to obtain LAI. Currently, the most widely-used model to achieve forest canopy structure parameters is the Li-Strahler geometric-optical bidirectional reflectance model, by considering the effect of crown shape and mutual shadowing, which is referred to as the GOMS model. However, it is difficult to retrieve LAI through the GOMS model directly because LAI is not a fundamental parameter of the model. In this study, a gap probability model was used to obtain the relationship between the canopy structure parameter nR2 and LAI. Thus, LAI was introduced into the GOMS model as an independent variable by replacing nR2 The modified GOMS (MGOMS model was validated by application to Dayekou in the Heihe River Basin of China. The LAI retrieved using the MGOMS model with optical multi-angle remote sensing data, high spatial resolution images and field-measured data was in good agreement with the field-measured LAI, with an R-square (R2 of 0.64, and an RMSE of 0.67. The results demonstrate that the MGOMS model obtained by replacing the canopy structure parameter nR2 of the GOMS model with LAI can be used to invert LAI directly and precisely.

  3. A comparative study of approaches to direct methanol fuel cells modelling

    Oliveira, V.B.; Falcao, D.S.; Pinto, A.M.F.R. [Centro de Estudos de Fenomenos de Transporte, Departamento de Eng. Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Rangel, C.M. [Instituto Nacional de Engenharia, Tecnologia e Inovacao, Paco do Lumiar, 22,1649-038 (Portugal)

    2007-03-15

    Fuel cell modelling has received much attention over the past decade in an attempt to better understand the phenomena occurring within the cell. Mathematical models and simulation are needed as tools for design optimization of fuel cells, stacks and fuel cell power systems. Analytical, semi-empirical and mechanistic models for direct methanol fuel cells (DMFC) are reviewed. Effective models were until now developed describing the fundamental electrochemical and transport phenomena taking place in the cell. More research is required to develop models that can account for the two-phase flows occurring in the anode and cathode of the DMFC. The merits and demerits of the models are presented. Selected models of different categories are implemented and discussed. Finally, one of the selected simplified models is proposed as a computer-aided tool for real-time system level DMFC calculations. (author)

  4. Testing lowered isothermal models with direct N-body simulations of globular clusters - II. Multimass models

    Peuten, M.; Zocchi, A.; Gieles, M.; Hénault-Brunet, V.

    2017-09-01

    Lowered isothermal models, such as the multimass Michie-King models, have been successful in describing observational data of globular clusters. In this study, we assess whether such models are able to describe the phase space properties of evolutionary N-body models. We compare the multimass models as implemented in limepy (Gieles & Zocchi) to N-body models of star clusters with different retention fractions for the black holes and neutron stars evolving in a tidal field. We find that multimass models successfully reproduce the density and velocity dispersion profiles of the different mass components in all evolutionary phases and for different remnants retention. We further use these results to study the evolution of global model parameters. We find that over the lifetime of clusters, radial anisotropy gradually evolves from the low- to the high-mass components and we identify features in the properties of observable stars that are indicative of the presence of stellar-mass black holes. We find that the model velocity scale depends on mass as m-δ, with δ ≃ 0.5 for almost all models, but the dependence of central velocity dispersion on m can be shallower, depending on the dark remnant content, and agrees well with that of the N-body models. The reported model parameters, and correlations amongst them, can be used as theoretical priors when fitting these types of mass models to observational data.

  5. Garrison's model of self-directed learning: preliminary validation and relationship to academic achievement.

    Abd-El-Fattah, Sabry M

    2010-11-01

    In this project, 119 undergraduates responded to a questionnaire tapping three psychological constructs implicated in Garrison's model of self-directed learning: self-management, self-monitoring, and motivation. Mediation analyses showed that these psychological constructs are interrelated and that motivation mediates the relationship between self-management and self-monitoring. Path modeling analyses revealed that self-management and self-monitoring significantly predicted academic achievement over two semesters with self-management being the strongest predictor. Motivation significantly predicted academic achievement over the second semester only. Implications of these findings for self-directed learning and academic achievement in a traditional classroom setting are discussed.

  6. Potts Model in One-Dimension on Directed Small-World Networks

    Aquino, Édio O.; Lima, F. W. S.; Araújo, Ascânio D.; Costa Filho, Raimundo N.

    2018-06-01

    The critical properties of the Potts model with q=3 and 8 states in one-dimension on directed small-world networks are investigated. This disordered system is simulated by updating it with the Monte Carlo heat bath algorithm. The Potts model on these directed small-world networks presents in fact a second-order phase transition with a new set of critical exponents for q=3 considering a rewiring probability p=0.1. For q=8 the system exhibits only a first-order phase transition independent of p.

  7. A Numerical Implementation of a Nonlinear Mild Slope Model for Shoaling Directional Waves

    Justin R. Davis

    2014-02-01

    Full Text Available We describe the numerical implementation of a phase-resolving, nonlinear spectral model for shoaling directional waves over a mild sloping beach with straight parallel isobaths. The model accounts for non-linear, quadratic (triad wave interactions as well as shoaling and refraction. The model integrates the coupled, nonlinear hyperbolic evolution equations that describe the transformation of the complex Fourier amplitudes of the deep-water directional wave field. Because typical directional wave spectra (observed or produced by deep-water forecasting models such as WAVEWATCH III™ do not contain phase information, individual realizations are generated by associating a random phase to each Fourier mode. The approach provides a natural extension to the deep-water spectral wave models, and has the advantage of fully describing the shoaling wave stochastic process, i.e., the evolution of both the variance and higher order statistics (phase correlations, the latter related to the evolution of the wave shape. The numerical implementation (a Fortran 95/2003 code includes unidirectional (shore-perpendicular propagation as a special case. Interoperability, both with post-processing programs (e.g., MATLAB/Tecplot 360 and future model coupling (e.g., offshore wave conditions from WAVEWATCH III™, is promoted by using NetCDF-4/HD5 formatted output files. The capabilities of the model are demonstrated using a JONSWAP spectrum with a cos2s directional distribution, for shore-perpendicular and oblique propagation. The simulated wave transformation under combined shoaling, refraction and nonlinear interactions shows the expected generation of directional harmonics of the spectral peak and of infragravity (frequency <0.05 Hz waves. Current development efforts focus on analytic testing, development of additional physics modules essential for applications and validation with laboratory and field observations.

  8. Direct Monte Carlo dose calculation using polygon-surface computational human model

    Jeong, Jong Hwi; Kim, Chan Hyeong; Yeom, Yeon Su; Cho, Sungkoo; Chung, Min Suk; Cho, Kun-Woo

    2011-01-01

    In the present study, a voxel-type computational human model was converted to a polygon-surface model, after which it was imported directly to the Geant4 code without using a voxelization process, that is, without converting back to a voxel model. The original voxel model was also imported to the Geant4 code, in order to compare the calculated dose values and the computational speed. The average polygon size of the polygon-surface model was ∼0.5 cm 2 , whereas the voxel resolution of the voxel model was 1.981 × 1.981 × 2.0854 mm 3 . The results showed a good agreement between the calculated dose values of the two models. The polygon-surface model was, however, slower than the voxel model by a factor of 6–9 for the photon energies and irradiation geometries considered in the present study, which nonetheless is considered acceptable, considering that direct use of the polygon-surface model does not require a separate voxelization process. (author)

  9. Evaluation of Three Parametric Models for Estimating Directional Thermal Radiation from Simulation, Airborne, and Satellite Data

    Xiangyang Liu

    2018-03-01

    Full Text Available An appropriate model to correct thermal radiation anisotropy is important for the wide applications of land surface temperature (LST. This paper evaluated the performance of three published directional thermal radiation models—the Roujean–Lagouarde (RL model, the Bidirectional Reflectance Distribution Function (BRDF model, and the Vinnikov model—at canopy and pixel scale using simulation, airborne, and satellite data. The results at canopy scale showed that (1 the three models could describe directional anisotropy well and the Vinnikov model performed the best, especially for erectophile canopy or low leaf area index (LAI; (2 the three models reached the highest fitting accuracy when the LAI varied from 1 to 2; and (3 the capabilities of the three models were all restricted by the hotspot effect, plant height, plant spacing, and three-dimensional structure. The analysis at pixel scale indicated a consistent result that the three models presented a stable effect both on verification and validation, but the Vinnikov model had the best ability in the erectophile canopy (savannas and grassland and low LAI (barren or sparsely vegetated areas. Therefore, the Vinnikov model was calibrated for different land cover types to instruct the angular correction of LST. Validation with the Surface Radiation Budget Network (SURFRAD-measured LST demonstrated that the root mean square (RMSE of the Moderate Resolution Imaging Spectroradiometer (MODIS LST product could be decreased by 0.89 K after angular correction. In addition, the corrected LST showed better spatial uniformity and higher angular correlation.

  10. Analysis of direct contact membrane distillation based on a lumped-parameter dynamic predictive model

    Karam, Ayman M.

    2016-10-03

    Membrane distillation (MD) is an emerging technology that has a great potential for sustainable water desalination. In order to pave the way for successful commercialization of MD-based water desalination techniques, adequate and accurate dynamical models of the process are essential. This paper presents the predictive capabilities of a lumped-parameter dynamic model for direct contact membrane distillation (DCMD) and discusses the results under wide range of steady-state and dynamic conditions. Unlike previous studies, the proposed model captures the time response of the spacial temperature distribution along the flow direction. It also directly solves for the local temperatures at the membrane interfaces, which allows to accurately model and calculate local flux values along with other intrinsic variables of great influence on the process, like the temperature polarization coefficient (TPC). The proposed model is based on energy and mass conservation principles and analogy between thermal and electrical systems. Experimental data was collected to validated the steady-state and dynamic responses of the model. The obtained results shows great agreement with the experimental data. The paper discusses the results of several simulations under various conditions to optimize the DCMD process efficiency and analyze its response. This demonstrates some potential applications of the proposed model to carry out scale up and design studies. © 2016

  11. Analysis of direct contact membrane distillation based on a lumped-parameter dynamic predictive model

    Karam, Ayman M.; Alsaadi, Ahmad Salem; Ghaffour, NorEddine; Laleg-Kirati, Taous-Meriem

    2016-01-01

    Membrane distillation (MD) is an emerging technology that has a great potential for sustainable water desalination. In order to pave the way for successful commercialization of MD-based water desalination techniques, adequate and accurate dynamical models of the process are essential. This paper presents the predictive capabilities of a lumped-parameter dynamic model for direct contact membrane distillation (DCMD) and discusses the results under wide range of steady-state and dynamic conditions. Unlike previous studies, the proposed model captures the time response of the spacial temperature distribution along the flow direction. It also directly solves for the local temperatures at the membrane interfaces, which allows to accurately model and calculate local flux values along with other intrinsic variables of great influence on the process, like the temperature polarization coefficient (TPC). The proposed model is based on energy and mass conservation principles and analogy between thermal and electrical systems. Experimental data was collected to validated the steady-state and dynamic responses of the model. The obtained results shows great agreement with the experimental data. The paper discusses the results of several simulations under various conditions to optimize the DCMD process efficiency and analyze its response. This demonstrates some potential applications of the proposed model to carry out scale up and design studies. © 2016

  12. Study of the permeability up-scaling by direct filtering of geostatistical model; Etude du changement d'echelle des permeabilites par filtrage direct du modele geostatistique

    Zargar, G

    2005-10-15

    In this thesis, we present a new approach, which consists in directly up-scaling the geostatistical permeability distribution rather than the individual realizations. Practically, filtering techniques based on. the FFT (Fast Fourier Transform), allows us to generate geostatistical images, which sample the up-scaled distributions. In the log normal case, an equivalence hydraulic criterion is proposed, allowing to re-estimate the geometric mean of the permeabilities. In the anisotropic case, the effective geometric mean becomes a tensor which depends on the level of filtering used and it can be calculated by a method of renormalisation. Then, the method was generalized for the categorial model. Numerical tests of the method were set up for isotropic, anisotropic and categorial models, which shows good agreement with theory. (author)

  13. Study of the permeability up-scaling by direct filtering of geostatistical model; Etude du changement d'echelle des permeabilites par filtrage direct du modele geostatistique

    Zargar, G.

    2005-10-15

    In this thesis, we present a new approach, which consists in directly up-scaling the geostatistical permeability distribution rather than the individual realizations. Practically, filtering techniques based on. the FFT (Fast Fourier Transform), allows us to generate geostatistical images, which sample the up-scaled distributions. In the log normal case, an equivalence hydraulic criterion is proposed, allowing to re-estimate the geometric mean of the permeabilities. In the anisotropic case, the effective geometric mean becomes a tensor which depends on the level of filtering used and it can be calculated by a method of renormalisation. Then, the method was generalized for the categorial model. Numerical tests of the method were set up for isotropic, anisotropic and categorial models, which shows good agreement with theory. (author)

  14. Extension of the direct statistical approach to a volume parameter model (non-integer splitting)

    Burn, K.W.

    1990-01-01

    The Direct Statistical Approach is a rigorous mathematical derivation of the second moment for surface splitting and Russian Roulette games attached to the Monte Carlo modelling of fixed source particle transport. It has been extended to a volume parameter model (involving non-integer ''expected value'' splitting), and then to a cell model. The cell model gives second moment and time functions that have a closed form. This suggests the possibility of two different methods of solution of the optimum splitting/Russian Roulette parameters. (author)

  15. Electrical Thermal Network for Direct Contact Membrane Distillation Modeling and Analysis

    Karam, Ayman M.

    2015-02-04

    Membrane distillation is an emerging water distillation technology that offers several advantages compared to conventional water desalination processes. Although progress has been made to model and understand the physics of the process, many studies are based on steady-state assumptions or are computationally not appropriate for real time control. This paper presents the derivation of a novel dynamical model, based on analogy between electrical and thermal systems, for direct contact membrane distillation (DCMD). The proposed model captures the dynamics of temperature distribution and distilled water flux. To demonstrate the adequacy of the proposed model, validation with transient and steady-state experimental data is presented.

  16. A Model of Direct Contact Membrane Distillation of Black Currant Juice

    Jensen, Morten Busch; Christensen, Knud Villy; Andrésen, René

    2011-01-01

    A numerical model to describe a direct contact membrane distillation proces has been developed. Said model is based on the Dusty Gas model and shell mass and energy balances over a tubular membrane module.  "The solution is applicable to laminar, incompressible and continuous flow in shell......-side spacing of tubular-type unit."  Turtuosity and porosity are characteristics of the membrane in use and have been estimated base don eksperimental studies on destillation of pure water. The fitted model shows a good fit to experimental data obtained by destillation of black currant juice....

  17. A self-discharge model of Lithium-Sulfur batteries based on direct shuttle current measurement

    Knap, Vaclav; Stroe, Daniel Loan; Swierczynski, Maciej Jozef

    2016-01-01

    . A simple but comprehensive mathematical model of the Li-S battery cell self-discharge based on the shuttle current was developed and is presented. The shuttle current values for the model parameterization were obtained from the direct shuttle current measurements. Furthermore, the battery cell depth......-of-discharge values were recomputed in order to account for the influence of the self-discharge and provide a higher accuracy of the model. Finally, the derived model was successfully validated against laboratory experiments at various conditions....

  18. State-to-state models of vibrational relaxation in Direct Simulation Monte Carlo (DSMC)

    Oblapenko, G. P.; Kashkovsky, A. V.; Bondar, Ye A.

    2017-02-01

    In the present work, the application of state-to-state models of vibrational energy exchanges to the Direct Simulation Monte Carlo (DSMC) is considered. A state-to-state model for VT transitions of vibrational energy in nitrogen and oxygen, based on the application of the inverse Laplace transform to results of quasiclassical trajectory calculations (QCT) of vibrational energy transitions, along with the Forced Harmonic Oscillator (FHO) state-to-state model is implemented in DSMC code and applied to flows around blunt bodies. Comparisons are made with the widely used Larsen-Borgnakke model and the in uence of multi-quantum VT transitions is assessed.

  19. Homogenization of a Directed Dispersal Model for Animal Movement in a Heterogeneous Environment.

    Yurk, Brian P

    2016-10-01

    The dispersal patterns of animals moving through heterogeneous environments have important ecological and epidemiological consequences. In this work, we apply the method of homogenization to analyze an advection-diffusion (AD) model of directed movement in a one-dimensional environment in which the scale of the heterogeneity is small relative to the spatial scale of interest. We show that the large (slow) scale behavior is described by a constant-coefficient diffusion equation under certain assumptions about the fast-scale advection velocity, and we determine a formula for the slow-scale diffusion coefficient in terms of the fast-scale parameters. We extend the homogenization result to predict invasion speeds for an advection-diffusion-reaction (ADR) model with directed dispersal. For periodic environments, the homogenization approximation of the solution of the AD model compares favorably with numerical simulations. Invasion speed approximations for the ADR model also compare favorably with numerical simulations when the spatial period is sufficiently small.

  20. Improving Atomic Force Microscopy Imaging by a Direct Inverse Asymmetric PI Hysteresis Model

    Dong Wang

    2015-02-01

    Full Text Available A modified Prandtl–Ishlinskii (PI model, referred to as a direct inverse asymmetric PI (DIAPI model in this paper, was implemented to reduce the displacement error between a predicted model and the actual trajectory of a piezoelectric actuator which is commonly found in AFM systems. Due to the nonlinearity of the piezoelectric actuator, the standard symmetric PI model cannot precisely describe the asymmetric motion of the actuator. In order to improve the accuracy of AFM scans, two series of slope parameters were introduced in the PI model to describe both the voltage-increase-loop (trace and voltage-decrease-loop (retrace. A feedforward controller based on the DIAPI model was implemented to compensate hysteresis. Performance of the DIAPI model and the feedforward controller were validated by scanning micro-lenses and standard silicon grating using a custom-built AFM.

  1. The CHAOS-X Model and Uncertainty Values for Magnetic Directional Surveying

    Herland, E. V.; Finlay, Chris; Olsen, Nils

    2017-01-01

    surveying applications. The model is derived from more than one million satellite and ground-based observatory magnetic measurements and consists of modules representing internal sources (in the Earth's core and crust), mag-netospheric sources, and ionospheric sources. Compared with previous reference...... positional errors in magnetic directional surveying applications. The discrepancy between geomagnetic measurements and reference models are typically dominated by spatial variations caused by local geology. In applications requiring high accuracy, these variations can be taken into account by using...

  2. A Comparative Study of Foreign Direct Investment Flow Using Diffusion Models

    Li, Yiming; Chiang, Yi-Hui; Yu, Shao-Ming; Chiang, Su-Yun; Hung, C.-H.

    2007-12-01

    In this work, we apply an improvement dynamic model of the foreign direct investment (FDI) flow to analyze the evolution of FDI flow. In comparison with the fundamental growth model of FDI, the simulation result is further accurate if the asymmetric growth pattern and heterogeneity of the potential adopters are considered. According to the result, the internal influence dominates the growth of FDI flow from Taiwan to China during 2001-2006, taking the electronics industry for example.

  3. Direct Drive Synchronous Machine Models for Stability Assessment of Wind Farms

    Poeller, Markus; Achilles, Sebastian [DIgSILENT GmbH, Gomaringen (Germany)

    2003-11-01

    The increasing size of wind farms requires power system stability analysis including dynamic wind generator models. For turbines above 1MW doubly-fed induction machines are the most widely used concept. However, especially in Germany, direct-drive wind generators based on converter-driven synchronous generator concepts have reached considerable market penetration. This paper presents converter driven synchronous generator models of various order that can be used for simulating transients and dynamics in a very wide time range.

  4. Revisiting directed flow in relativistic heavy-ion collisions from a multiphase transport model

    Guo, Chong-Qiang; Zhang, Chun-Jian; Xu, Jun

    2017-12-01

    We have revisited several interesting questions on how the rapidity-odd directed flow is developed in relativistic 197Au+197Au collisions at √{s_{NN}} = 200 and 39 GeV based on a multiphase transport model. As the partonic phase evolves with time, the slope of the parton directed flow at midrapidity region changes from negative to positive as a result of the later dynamics at 200 GeV, while it remains negative at 39 GeV due to the shorter life time of the partonic phase. The directed flow splitting for various quark species due to their different initial eccentricities is observed at 39 GeV, while the splitting is very small at 200GeV. From a dynamical coalescence algorithm with Wigner functions, we found that the directed flow of hadrons is a result of competition between the coalescence in momentum and coordinate space as well as further modifications by the hadronic rescatterings.

  5. Application of the linear-quadratic model with incomplete repair to radionuclide directed therapy

    Millar, W.T.; Glasgow Univ.

    1991-01-01

    The LQ model has now been extended to include a general time varying dose rate profile, and the equations can be readily evaluated if an exponential radiation damage repair process is assumed. These equations are applicable to radionuclide directed therapy, including brachytherapy. Kinetic uptake data obtained during radionuclide directed therapy may therefore be used to determine the radiobiological dosimetry of the target and non-target tissues. Also, preliminary tracer studies may be used to pre-plan the radionuclide directed therapy, provided that tracer and therapeutic amounts of the radionuclide carrier are identically processed by the tissues. It is also shown that continuous radionuclide therapy will induce less damage in late-responding tissues than 2 Gy/fraction external beam therapy if the ratio of the maximum dose rate and the sublethal damage repair half-life in the tissue is less than 1.0 Gy. Similar inequalities may be derived for β-particle radionuclide directed therapy. (author)

  6. Using Video Modeling with Voiceover Instruction Plus Feedback to Train Staff to Implement Direct Teaching Procedures.

    Giannakakos, Antonia R; Vladescu, Jason C; Kisamore, April N; Reeve, Sharon A

    2016-06-01

    Direct teaching procedures are often an important part of early intensive behavioral intervention for consumers with autism spectrum disorder. In the present study, a video model with voiceover (VMVO) instruction plus feedback was evaluated to train three staff trainees to implement a most-to-least direct (MTL) teaching procedure. Probes for generalization were conducted with untrained direct teaching procedures (i.e., least-to-most, prompt delay) and with an actual consumer. The results indicated that VMVO plus feedback was effective in training the staff trainees to implement the MTL procedure. Although additional feedback was required for the staff trainees to show mastery of the untrained direct teaching procedures (i.e., least-to-most and prompt delay) and with an actual consumer, moderate to high levels of generalization were observed.

  7. Assessing work disability for social security benefits: international models for the direct assessment of work capacity.

    Geiger, Ben Baumberg; Garthwaite, Kayleigh; Warren, Jon; Bambra, Clare

    2017-08-25

    It has been argued that social security disability assessments should directly assess claimants' work capacity, rather than relying on proxies such as on functioning. However, there is little academic discussion of how such assessments could be conducted. The article presents an account of different models of direct disability assessments based on case studies of the Netherlands, Germany, Denmark, Norway, the United States of America, Canada, Australia, and New Zealand, utilising over 150 documents and 40 expert interviews. Three models of direct work disability assessments can be observed: (i) structured assessment, which measures the functional demands of jobs across the national economy and compares these to claimants' functional capacities; (ii) demonstrated assessment, which looks at claimants' actual experiences in the labour market and infers a lack of work capacity from the failure of a concerned rehabilitation attempt; and (iii) expert assessment, based on the judgement of skilled professionals. Direct disability assessment within social security is not just theoretically desirable, but can be implemented in practice. We have shown that there are three distinct ways that this can be done, each with different strengths and weaknesses. Further research is needed to clarify the costs, validity/legitimacy, and consequences of these different models. Implications for rehabilitation It has recently been argued that social security disability assessments should directly assess work capacity rather than simply assessing functioning - but we have no understanding about how this can be done in practice. Based on case studies of nine countries, we show that direct disability assessment can be implemented, and argue that there are three different ways of doing it. These are "demonstrated assessment" (using claimants' experiences in the labour market), "structured assessment" (matching functional requirements to workplace demands), and "expert assessment" (the

  8. The Effects of Methylphenidate on Goal-Directed Behavior in a Rat Model of ADHD

    Joman Y. Natsheh

    2015-11-01

    Full Text Available Although attentional and motor alterations in Attention Deficit Hyperactivity Disorder (ADHD have been well characterized, less is known about how this disorder impacts goal-directed behavior. To investigate whether there is a misbalance between goal-directed and habitual behaviors in an animal model of ADHD, we tested adult [P75-P105] Spontaneously Hypertensive Rats (SHR (ADHD rat model and Wistar-Kyoto rats (WKY, the normotensive control strain, on an instrumental conditioning paradigm with two phases: a free-operant training phase in which rats separately acquired two distinct action-outcome contingencies, and a choice test conducted in extinction prior to which one of the food outcomes was devalued through specific satiety. To assess the effects of Methylphenidate, a commonly used ADHD medication, on goal-directed behavior, we injected rats with either Methylphenidate or saline prior to the choice test. Both rat strains acquired an instrumental response, with SHR responding at greater rates over the course of training. During the choice test WKY demonstrated goal-directed behavior, responding more frequently on the lever that delivered, during training, the still-valued outcome. In contrast, SHR showed no goal-directed behavior, responding equally on both levers. However, methylphenidate administration prior to the choice test restored goal-directed behavior in SHR, and disrupted this behavior in WKY rats. This study provides the first experimental evidence for selective impairment in goal-directed behavior in rat models of ADHD, and how methylphenidate acts differently on SHR and WKY animals to restore or impair this behavior, respectively.

  9. Dynamical behavior of an epidemic model for a vector-borne disease with direct transmission

    Cai Liming; Li Xuezhi; Li Zhaoqiang

    2013-01-01

    An epidemic model of a vector-borne disease with direct transmission is investigated. The reproduction number (R 0 ) of the model is obtained. Rigorous qualitative analysis of the model reveals the presence of the phenomenon of backward bifurcation (where the stable disease-free equilibrium (DFE) coexists with a stable endemic equilibrium when the reproduction number of the disease is less than unity) in the standard incidence model. The phenomenon shows that the classical epidemiological requirement of having the reproduction number less than unity is no longer sufficient, although necessary, for effectively controlling the spread of some vector-borne diseases in a community. The backward bifurcation phenomenon can be removed by substituting the standard incidence with a bilinear mass action incidence. By using Lyapunov function theory and LaSalle invariance principle, it is shown that the unique endemic equilibrium for the model with a mass action incidence is globally stable if the reproduction number R mass is greater than one in feasible region. This suggests that the use of standard incidence in modelling some vector-borne diseases with direct transmission results in the presence of backward bifurcation. Numerical simulations analyze the effect of the direct transmission and the disease-induced death rate on dynamics of the disease transmission, and also verify our analyzed results.

  10. Modelling temporal variance of component temperatures and directional anisotropy over vegetated canopy

    Bian, Zunjian; du, yongming; li, hua

    2016-04-01

    Land surface temperature (LST) as a key variable plays an important role on hydrological, meteorology and climatological study. Thermal infrared directional anisotropy is one of essential factors to LST retrieval and application on longwave radiance estimation. Many approaches have been proposed to estimate directional brightness temperatures (DBT) over natural and urban surfaces. While less efforts focus on 3-D scene and the surface component temperatures used in DBT models are quiet difficult to acquire. Therefor a combined 3-D model of TRGM (Thermal-region Radiosity-Graphics combined Model) and energy balance method is proposed in the paper for the attempt of synchronously simulation of component temperatures and DBT in the row planted canopy. The surface thermodynamic equilibrium can be final determined by the iteration strategy of TRGM and energy balance method. The combined model was validated by the top-of-canopy DBTs using airborne observations. The results indicated that the proposed model performs well on the simulation of directional anisotropy, especially the hotspot effect. Though we find that the model overestimate the DBT with Bias of 1.2K, it can be an option as a data reference to study temporal variance of component temperatures and DBTs when field measurement is inaccessible

  11. 75 FR 38056 - Airworthiness Directives; McDonnell Douglas Corporation Model MD-90-30 Airplanes

    2010-07-01

    ...-0645; Directorate Identifier 2009-NM-200-AD] RIN 2120-AA64 Airworthiness Directives; McDonnell Douglas..., September 9, 2008), for certain McDonnell Douglas Corporation Model MD-90-30 airplanes. That AD requires a... fasteners in the aft mount support fitting of the left and right engines on 29 McDonnell Douglas Corporation...

  12. 75 FR 21528 - Airworthiness Directives; McDonnell Douglas Corporation Model MD-90-30 Airplanes

    2010-04-26

    ...-0433; Directorate Identifier 2009-NM-117-AD] RIN 2120-AA64 Airworthiness Directives; McDonnell Douglas... main landing gear (MLG) during gear extension, damaging the hydraulic system on McDonnell Douglas.... The retract cylinder support fittings for the MLG on McDonnell Douglas Model MD-80 series airplanes...

  13. 75 FR 36577 - Airworthiness Directives; McDonnell Douglas Corporation Model MD-90-30 Airplanes

    2010-06-28

    ... Airworthiness Directives; McDonnell Douglas Corporation Model MD- 90-30 Airplanes AGENCY: Federal Aviation... Douglas Corporation: Docket No. FAA-2010-0554; Directorate Identifier 2010-NM-082-AD. Comments Due Date (a... supersedes AD 2009-07-04, Amendment 39-15863. Applicability (c) This AD applies to McDonnell Douglas...

  14. 75 FR 66653 - Airworthiness Directives; McDonnell Douglas Corporation Model MD-90-30 Airplanes

    2010-10-29

    ... Airworthiness Directives; McDonnell Douglas Corporation Model MD- 90-30 Airplanes AGENCY: Federal Aviation...-15667 (73 FR 52203, September 9, 2008), and adding the following new AD: 2010-22-04 McDonnell Douglas... supersedes AD 2008-18-10, Amendment 39-15667. Applicability (c) This AD applies to McDonnell Douglas...

  15. Measurements of ionospheric TEC in the direction of GPS satellites and comparison with three ionospheric models

    E. Zuccheretti

    1997-06-01

    Full Text Available The IEN Galileo Ferraris uses GPS for time and frequency synchronization. To obtain high performance it is important to reduce the error due to the ionospheric time-delay in GPS measurements. Evaluations of TEC in the direction of GPS satellites, obtained from three different ionospheric models, have been compared with corresponding measurements by GPS signal.

  16. 76 FR 1985 - Airworthiness Directives; Short Brothers PLC Model SD3 Airplanes

    2011-01-12

    ... Airworthiness Directives; Short Brothers PLC Model SD3 Airplanes AGENCY: Federal Aviation Administration (FAA..., at an average labor rate of $85 per work hour. Required parts cost about $10 per product. Based on.... The average labor rate is $85 per work-hour. Based on these figures, we estimate the cost of the AD on...

  17. 75 FR 68179 - Airworthiness Directives; Austro Engine GmbH Model E4 Diesel Piston Engines

    2010-11-05

    ... Airworthiness Directives; Austro Engine GmbH Model E4 Diesel Piston Engines AGENCY: Federal Aviation... pumps failed as a result of pressure oscillations in the fuel supply line. We are issuing this AD to.... Analyses have shown that high pressure (HP) fuel pumps failed as a result of pressure oscillations in the...

  18. 76 FR 54373 - Airworthiness Directives; Austro Engine GmbH Model E4 Diesel Piston Engines

    2011-09-01

    ... diesel piston engines, with high-pressure (HP) fuel pump, part number (P/N) E4A- 30-100-000, installed... Airworthiness Directives; Austro Engine GmbH Model E4 Diesel Piston Engines AGENCY: Federal Aviation... pressure supply for excessive oscillations to determine if high-pressure (HP) fuel pumps have been exposed...

  19. 76 FR 31457 - Airworthiness Directives; Diamond Aircraft Industries GmbH Model DA 42 Airplanes

    2011-06-01

    ... Airworthiness Directives; Diamond Aircraft Industries GmbH Model DA 42 Airplanes AGENCY: Federal Aviation... reportedly found on DA 42 Main Landing Gear (MLG) Damper-to-Trailing Arm joints during standard maintenance... DA 42 Main Landing Gear (MLG) Damper-to-Trailing Arm joints during standard maintenance. Depending on...

  20. 77 FR 64439 - Airworthiness Directives; Bell Helicopter Textron Canada (Bell) Model Helicopters

    2012-10-22

    ... unsafe condition for the Bell Model 430 helicopters. Discrepancies in the processing and display of air... pilot and copilot electronic attitude direction indicators airspeed indicators; [cir] Leak testing the... and responsibilities among the various levels of government. For the reasons discussed, I certify this...

  1. modelling of directed evolution: Implications for experimental design and stepwise evolution

    Wedge , David C.; Rowe , William; Kell , Douglas B.; Knowles , Joshua

    2009-01-01

    In silico modelling of directed evolution: Implications for experimental design and stepwise evolution correspondence: Corresponding author. Tel.: +441613065145. (Wedge, David C.) (Wedge, David C.) Manchester Interdisciplinary Biocentre, University of Manchester - 131 Princess Street--> , Manchester--> , M1 7ND--> - UNITED KINGDOM (Wedge, David C.) UNITED KINGDOM (Wedge, David C.) Man...

  2. Direct fit of a theoretical model of phase transition in oscillatory finger motions.

    Newell, K.M.; Molenaar, P.C.M.

    2003-01-01

    This paper presents a general method to fit the Schoner-Haken-Kelso (SHK) model of human movement phase transitions directly to time series data. A robust variant of the extended Kalman filter technique is applied to the data of a single subject. The options of covariance resetting and iteration

  3. Teaching Higher Order Thinking in the Introductory MIS Course: A Model-Directed Approach

    Wang, Shouhong; Wang, Hai

    2011-01-01

    One vision of education evolution is to change the modes of thinking of students. Critical thinking, design thinking, and system thinking are higher order thinking paradigms that are specifically pertinent to business education. A model-directed approach to teaching and learning higher order thinking is proposed. An example of application of the…

  4. Efficient accurate syntactic direct translation models: one tree at a time

    Hassan, H.; Sima'an, K.; Way, A.

    2011-01-01

    A challenging aspect of Statistical Machine Translation from Arabic to English lies in bringing the Arabic source morpho-syntax to bear on the lexical as well as word-order choices of the English target string. In this article, we extend the feature-rich discriminative Direct Translation Model 2

  5. 76 FR 4226 - Airworthiness Directives; Aircraft Industries a.s. Model L 23 Super Blanik Sailplanes

    2011-01-25

    ... through Friday, except Federal holidays. For service information identified in this AD, contact Aircraft... docket. Relevant Service Information Aircraft Industries a.s. has issued LET Aircraft Industries... Airworthiness Directives; Aircraft Industries a.s. Model L 23 Super Blanik Sailplanes AGENCY: Federal Aviation...

  6. 75 FR 7945 - Airworthiness Directives; Augustair, Inc. Models 2150, 2150A, and 2180 Airplanes

    2010-02-23

    ... Certification Office (ACO), 1701 Columbia Avenue, College Park, Georgia 30337; fax: (404) 474-5606; e-mail: hal..., FAA, Atlanta Aircraft Certification Office (ACO), 1701 Columbia Avenue, College Park, Georgia 30337... Airworthiness Directives; Augustair, Inc. Models 2150, 2150A, and 2180 Airplanes AGENCY: Federal Aviation...

  7. 75 FR 61345 - Airworthiness Directives; Eclipse Aerospace, Inc. Model EA500 Airplanes

    2010-10-05

    ... Airworthiness Directives; Eclipse Aerospace, Inc. Model EA500 Airplanes AGENCY: Federal Aviation Administration... service information identified in this AD, contact Eclipse Aerospace Incorporated, 2503 Clark Carr Loop... Kinney, Aerospace Engineer, Ft. Worth Aircraft Certification Office, FAA, 2601 Meacham Blvd., Fort Worth...

  8. Progress in the improved lattice calculation of direct CP-violation in the Standard Model

    Kelly, Christopher

    2018-03-01

    We discuss the ongoing effort by the RBC & UKQCD collaborations to improve our lattice calculation of the measure of Standard Model direct CP violation, ɛ', with physical kinematics. We present our progress in decreasing the (dominant) statistical error and discuss other related activities aimed at reducing the systematic errors.

  9. 75 FR 26885 - Airworthiness Directives; Sikorsky Aircraft Corporation Model S-76A, B, and C Helicopters

    2010-05-13

    ... aircraft.'' They state that we should require overhauling any affected servo actuator at intervals of 2,000... (servo actuator), Sikorsky Aircraft Corporation (Sikorsky) part number (P/N) 76650-09805-109 or -110... Airworthiness Directives; Sikorsky Aircraft Corporation Model S- 76A, B, and C Helicopters AGENCY: Federal...

  10. 76 FR 66615 - Airworthiness Directives; Sikorsky Aircraft Corporation (Sikorsky) Model S-92A Helicopters

    2011-10-27

    ... subject of this AD. (d) The Joint Aircraft System/Component (JASC) Code is 3233: Landing Gear Actuator. (e... Airworthiness Directives; Sikorsky Aircraft Corporation (Sikorsky) Model S-92A Helicopters AGENCY: Federal... landing gear retract actuator (actuator). Instead of limiting the groundspeed, replacing the affected...

  11. A model for the direct-to-indirect band-gap transition in monolayer ...

    Abstract. A monolayer of MoSe2 is found to be a direct band-gap semiconductor. We show, ... In order to determine appropriate basis for the tight-binding model, the Mo and Se ..... RD thanks the Council of Scientific and Industrial Research.

  12. Models of direct reactions and quantum pre-equilibrium for nucleon scattering on spherical nuclei

    Dupuis, M.

    2006-01-01

    When a nucleon collides with a target nucleus, several reactions may occur: elastic and inelastic scatterings, charge exchange... In order to describe these reactions, different models are involved: the direct reactions, pre-equilibrium and compound nucleus models. Our goal is to study, within a quantum framework and without any adjustable parameter, the direct and pre-equilibrium reactions for nucleons scatterings off double closed-shell nuclei. We first consider direct reactions: we are studying nucleon scattering with the Melbourne G-matrix, which represents the interaction between the projectile and one target nucleon, and with random phase approximation (RPA) wave functions which describe all target states. This is a fully microscopic approach since no adjustable parameters are involved. A second part is dedicated to the study of nucleon inelastic scattering for large energy transfer which necessarily involves the pre-equilibrium mechanism. Several models have been developed in the past to deal with pre-equilibrium. They start from the Born expansion of the transition amplitude which is associated to the inelastic process and they use several approximations which have not yet been tested. We have achieved some comparisons between second order cross sections which have been calculated with and without these approximations. Our results allow us to criticize some of these approximations and give several directions to improve the quantum pre-equilibrium models. (author)

  13. School Direct: A Hastily Constructed Model or a Systematically Designed Campaign?

    Kelly, Clare; Pitfield, Maggie

    2013-01-01

    This article examines School Direct, a model of initial teacher education (ITE) in England, recently introduced by the coalition government and based on a paradigm of teaching as a craft to be learned as an apprenticeship, significantly reducing and in some cases removing the influence of higher education. The history of the move away from…

  14. Electrical equivalent thermal network for direct contact membrane distillation modeling and analysis

    Karam, Ayman M.

    2016-09-19

    Membrane distillation (MD) is an emerging water desalination technology that offers several advantages compared to conventional desalination methods. Although progress has been made to model the physics of the process, there are two common limitations of existing models. Firstly, many of the models are based on the steady-state analysis of the process and secondly, some of the models are based on partial differential equations, which when discretized introduce many states which are not accessible in practice. This paper presents the derivation of a novel dynamic model, based on the analogy between electrical and thermal systems, for direct contact membrane distillation (DCMD). An analogous electrical thermal network is constructed and its elements are parameterized such that the response of the network models the DCMD process. The proposed model captures the spatial and temporal responses of the temperature distribution along the flow direction and is able to accurately predict the distilled water flux output. To demonstrate the adequacy of the proposed model, validation with time varying and steady-state experimental data is presented. (C) 2016 Elsevier Ltd. All rights reserved.

  15. Integrating high dimensional bi-directional parsing models for gene mention tagging.

    Hsu, Chun-Nan; Chang, Yu-Ming; Kuo, Cheng-Ju; Lin, Yu-Shi; Huang, Han-Shen; Chung, I-Fang

    2008-07-01

    Tagging gene and gene product mentions in scientific text is an important initial step of literature mining. In this article, we describe in detail our gene mention tagger participated in BioCreative 2 challenge and analyze what contributes to its good performance. Our tagger is based on the conditional random fields model (CRF), the most prevailing method for the gene mention tagging task in BioCreative 2. Our tagger is interesting because it accomplished the highest F-scores among CRF-based methods and second over all. Moreover, we obtained our results by mostly applying open source packages, making it easy to duplicate our results. We first describe in detail how we developed our CRF-based tagger. We designed a very high dimensional feature set that includes most of information that may be relevant. We trained bi-directional CRF models with the same set of features, one applies forward parsing and the other backward, and integrated two models based on the output scores and dictionary filtering. One of the most prominent factors that contributes to the good performance of our tagger is the integration of an additional backward parsing model. However, from the definition of CRF, it appears that a CRF model is symmetric and bi-directional parsing models will produce the same results. We show that due to different feature settings, a CRF model can be asymmetric and the feature setting for our tagger in BioCreative 2 not only produces different results but also gives backward parsing models slight but constant advantage over forward parsing model. To fully explore the potential of integrating bi-directional parsing models, we applied different asymmetric feature settings to generate many bi-directional parsing models and integrate them based on the output scores. Experimental results show that this integrated model can achieve even higher F-score solely based on the training corpus for gene mention tagging. Data sets, programs and an on-line service of our gene

  16. Multi-terminal direct-current grids modeling, analysis, and control

    Chaudhuri, Nilanjan; Majumder, Rajat; Yazdani, Amirnaser

    2014-01-01

    A comprehensive modeling, analysis, and control design framework for multi-terminal direct current (MTDC) grids is presented together with their interaction with the surrounding AC networks and the impact on overall stability. The first book of its kind on the topic of multi-terminal DC (MTDC) grids  Presents a comprehensive modeling framework for MTDC grids which is compatible with the standard AC system modeling for stability studies Includes modal analysis and study of the interactions between the MTDC grid and the surrounding AC systems Addresses the problems of autonomous power sharing an

  17. One-equation near-wall turbulence modeling with the aid of direct simulation data

    Rodi, W.; Mansour, N. N.; Michelassi, V.

    1993-01-01

    The length scales appearing in the relations for the eddy viscosity and dissipation rate in one-equation models were evaluated from direct numerical (DNS) simulation data for developed channel and boundary-layer flow at two Reynolds numbers each. To prepare the ground for the evaluation, the distribution of the most relevant mean-flow and turbulence quantities is presented and discussed, also with respect to Reynolds-number influence and to differences between channel and boundary-layer flow. An alternative model is tested as near wall component of a two-layer model by application to developed-channel, boundary-layer and backward-facing-step flows.

  18. Direct numerical simulation and modeling of turbulent natural convection in a vertical differentially heated slot

    Boudjemadi, R.

    1996-03-01

    The main objectives of this thesis are the direct numerical simulation of natural convection in a vertical differentially heated slot and the improvements of second-order turbulence modelling. A three-dimensional direct numerical simulation code has been developed in order to gain a better understanding of turbulence properties in natural convection flows. This code has been validated in several physical configurations: non-stratified natural convection flows (conduction solution), stratified natural convection flows (double boundary layer solution), transitional and turbulent Poiseuille flows. For the conduction solution, the turbulent regime was reached at a Rayleigh number of 1*10 5 and 5.4*10 5 . A detailed analysis of these results has revealed the principal qualities of the available models but has also pointed our their shortcomings. This data base has been used in order to improve the triple correlations transport models and to select the turbulent time scales suitable for such flows. (author). 122 refs., figs., tabs., 4 appends

  19. Scaling model for high-aspect-ratio microballoon direct-drive implosions at short laser wavelengths

    Schirmann, D.; Juraszek, D.; Lane, S.M.; Campbell, E.M.

    1992-01-01

    A scaling model for hot spherical ablative implosions in direct-drive mode is presented. The model results have been compared with experiments from LLE, ILE, and LLNL. Reduction of the neutron yield due to illumination nonuniformities is taken into account by the assumption that the neutron emission is cut off when the gas shock wave reflected off the center meets the incoming pusher, i.e., at a time when the probability of shell breakup is greatly enhanced. The main advantage of this semiempirical scaling model is that it elucidates the principal features of these simple implosions and permits one to estimate very quickly the performance of a high-aspect-ratio direct-drive target illuminated by short-wavelength laser light. (Author)

  20. A model of directional selection applied to the evolution of drug resistance in HIV-1.

    Seoighe, Cathal; Ketwaroo, Farahnaz; Pillay, Visva; Scheffler, Konrad; Wood, Natasha; Duffet, Rodger; Zvelebil, Marketa; Martinson, Neil; McIntyre, James; Morris, Lynn; Hide, Winston

    2007-04-01

    Understanding how pathogens acquire resistance to drugs is important for the design of treatment strategies, particularly for rapidly evolving viruses such as HIV-1. Drug treatment can exert strong selective pressures and sites within targeted genes that confer resistance frequently evolve far more rapidly than the neutral rate. Rapid evolution at sites that confer resistance to drugs can be used to help elucidate the mechanisms of evolution of drug resistance and to discover or corroborate novel resistance mutations. We have implemented standard maximum likelihood methods that are used to detect diversifying selection and adapted them for use with serially sampled reverse transcriptase (RT) coding sequences isolated from a group of 300 HIV-1 subtype C-infected women before and after single-dose nevirapine (sdNVP) to prevent mother-to-child transmission. We have also extended the standard models of codon evolution for application to the detection of directional selection. Through simulation, we show that the directional selection model can provide a substantial improvement in sensitivity over models of diversifying selection. Five of the sites within the RT gene that are known to harbor mutations that confer resistance to nevirapine (NVP) strongly supported the directional selection model. There was no evidence that other mutations that are known to confer NVP resistance were selected in this cohort. The directional selection model, applied to serially sampled sequences, also had more power than the diversifying selection model to detect selection resulting from factors other than drug resistance. Because inference of selection from serial samples is unlikely to be adversely affected by recombination, the methods we describe may have general applicability to the analysis of positive selection affecting recombining coding sequences when serially sampled data are available.

  1. Physics Implications of Flat Directions in Free Fermionic Superstring Models; 1, Mass Spectrum and Couplings

    Cleaver, G; Espinosa, J R; Everett, L; Langacker, P G; Wang, J

    1999-01-01

    From the "top-down" approach we investigate physics implications of the class of D- and F- flat directions formed from non-Abelian singlets which are proven flat to all orders in the nonrenormalizable superpotential, for a prototype quasi-realistic free fermionic string model with the standard model gauge group and three families (CHL5). These flat directions have at least an additional U(1)' unbroken at the string scale. For each flat direction, the complete set of effective mass terms and effective trilinear superpotential terms in the observable sector are computed to all orders in the VEV's of the fields in the flat direction. The "string selection-rules" disallow a large number of couplings allowed by gauge invariance, resulting in a massless spectrum with a large number of exotics, in most cases excluded by experiment, thus signifying a generic flaw of these models. Nevertheless, the resulting trilinear couplings of the massless spectrum possess a number of interesting features which we analyse for two ...

  2. Direct-phase-variable model of a synchronous reluctance motor including all slot and winding harmonics

    Obe, Emeka S.; Binder, A.

    2011-01-01

    A detailed model in direct-phase variables of a synchronous reluctance motor operating at mains voltage and frequency is presented. The model includes the stator and rotor slot openings, the actual winding layout and the reluctance rotor geometry. Hence, all mmf and permeance harmonics are taken into account. It is seen that non-negligible harmonics introduced by slots are present in the inductances computed by the winding function procedure. These harmonics are usually ignored in d-q models. The machine performance is simulated in the stator reference frame to depict the difference between this new direct-phase model including all harmonics and the conventional rotor reference frame d-q model. Saturation is included by using a polynomial fitting the variation of d-axis inductance with stator current obtained by finite-element software FEMAG DC (registered) . The detailed phase-variable model can yield torque pulsations comparable to those obtained from finite elements while the d-q model cannot.

  3. Direct Scaling of Leaf-Resolving Biophysical Models from Leaves to Canopies

    Bailey, B.; Mahaffee, W.; Hernandez Ochoa, M.

    2017-12-01

    Recent advances in the development of biophysical models and high-performance computing have enabled rapid increases in the level of detail that can be represented by simulations of plant systems. However, increasingly detailed models typically require increasingly detailed inputs, which can be a challenge to accurately specify. In this work, we explore the use of terrestrial LiDAR scanning data to accurately specify geometric inputs for high-resolution biophysical models that enables direct up-scaling of leaf-level biophysical processes. Terrestrial LiDAR scans generate "clouds" of millions of points that map out the geometric structure of the area of interest. However, points alone are often not particularly useful in generating geometric model inputs, as additional data processing techniques are required to provide necessary information regarding vegetation structure. A new method was developed that directly reconstructs as many leaves as possible that are in view of the LiDAR instrument, and uses a statistical backfilling technique to ensure that the overall leaf area and orientation distribution matches that of the actual vegetation being measured. This detailed structural data is used to provide inputs for leaf-resolving models of radiation, microclimate, evapotranspiration, and photosynthesis. Model complexity is afforded by utilizing graphics processing units (GPUs), which allows for simulations that resolve scales ranging from leaves to canopies. The model system was used to explore how heterogeneity in canopy architecture at various scales affects scaling of biophysical processes from leaves to canopies.

  4. Collective properties of injection-induced earthquake sequences: 1. Model description and directivity bias

    Dempsey, David; Suckale, Jenny

    2016-05-01

    Induced seismicity is of increasing concern for oil and gas, geothermal, and carbon sequestration operations, with several M > 5 events triggered in recent years. Modeling plays an important role in understanding the causes of this seismicity and in constraining seismic hazard. Here we study the collective properties of induced earthquake sequences and the physics underpinning them. In this first paper of a two-part series, we focus on the directivity ratio, which quantifies whether fault rupture is dominated by one (unilateral) or two (bilateral) propagating fronts. In a second paper, we focus on the spatiotemporal and magnitude-frequency distributions of induced seismicity. We develop a model that couples a fracture mechanics description of 1-D fault rupture with fractal stress heterogeneity and the evolving pore pressure distribution around an injection well that triggers earthquakes. The extent of fault rupture is calculated from the equations of motion for two tips of an expanding crack centered at the earthquake hypocenter. Under tectonic loading conditions, our model exhibits a preference for unilateral rupture and a normal distribution of hypocenter locations, two features that are consistent with seismological observations. On the other hand, catalogs of induced events when injection occurs directly onto a fault exhibit a bias toward ruptures that propagate toward the injection well. This bias is due to relatively favorable conditions for rupture that exist within the high-pressure plume. The strength of the directivity bias depends on a number of factors including the style of pressure buildup, the proximity of the fault to failure and event magnitude. For injection off a fault that triggers earthquakes, the modeled directivity bias is small and may be too weak for practical detection. For two hypothetical injection scenarios, we estimate the number of earthquake observations required to detect directivity bias.

  5. An Evaluation of Semiempirical Models for Partitioning Photosynthetically Active Radiation Into Diffuse and Direct Beam Components

    Oliphant, Andrew J.; Stoy, Paul C.

    2018-03-01

    Photosynthesis is more efficient under diffuse than direct beam photosynthetically active radiation (PAR) per unit PAR, but diffuse PAR is infrequently measured at research sites. We examine four commonly used semiempirical models (Erbs et al., 1982, https://doi.org/10.1016/0038-092X(82)90302-4; Gu et al., 1999, https://doi.org/10.1029/1999JD901068; Roderick, 1999, https://doi.org/10.1016/S0168-1923(99)00028-3; Weiss & Norman, 1985, https://doi.org/10.1016/0168-1923(85)90020-6) that partition PAR into diffuse and direct beam components based on the negative relationship between atmospheric transparency and scattering of PAR. Radiation observations at 58 sites (140 site years) from the La Thuille FLUXNET data set were used for model validation and coefficient testing. All four models did a reasonable job of predicting the diffuse fraction of PAR (ϕ) at the 30 min timescale, with site median r2 values ranging between 0.85 and 0.87, model efficiency coefficients (MECs) between 0.62 and 0.69, and regression slopes within 10% of unity. Model residuals were not strongly correlated with astronomical or standard meteorological variables. We conclude that the Roderick (1999, https://doi.org/10.1016/S0168-1923(99)00028-3) and Gu et al. (1999, https://doi.org/10.1029/1999JD901068) models performed better overall than the two older models. Using the basic form of these models, the data set was used to find both individual site and universal model coefficients that optimized predictive accuracy. A new universal form of the model is presented in section 5 that increased site median MEC to 0.73. Site-specific model coefficients increased median MEC further to 0.78, indicating usefulness of local/regional training of coefficients to capture the local distributions of aerosols and cloud types.

  6. Nurse-directed care model in a psychiatric hospital: a model for clinical accountability.

    E-Morris, Marlene; Caldwell, Barbara; Mencher, Kathleen J; Grogan, Kimberly; Judge-Gorny, Margaret; Patterson, Zelda; Christopher, Terrian; Smith, Russell C; McQuaide, Teresa

    2010-01-01

    The focus on recovery for persons with severe and persistent mental illness is leading state psychiatric hospitals to transform their method of care delivery. This article describes a quality improvement project involving a hospital's administration and multidisciplinary state-university affiliation that collaborated in the development and implementation of a nursing care delivery model in a state psychiatric hospital. The quality improvement project team instituted a new model to promote the hospital's vision of wellness and recovery through utilization of the therapeutic relationship and greater clinical accountability. Implementation of the model was accomplished in 2 phases: first, the establishment of a structure to lay the groundwork for accountability and, second, the development of a mechanism to provide a clinical supervision process for staff in their work with clients. Effectiveness of the model was assessed by surveys conducted at baseline and after implementation. Results indicated improvement in clinical practices and client living environment. As a secondary outcome, these improvements appeared to be associated with increased safety on the units evidenced by reduction in incidents of seclusion and restraint. Restructuring of the service delivery system of care so that clients are the center of clinical focus improves safety and can enhance the staff's attention to work with clients on their recovery. The role of the advanced practice nurse can influence the recovery of clients in state psychiatric hospitals. Future research should consider the impact on clients and their perceptions of the new service models.

  7. A finite volume alternate direction implicit approach to modeling selective laser melting

    Hattel, Jesper Henri; Mohanty, Sankhya

    2013-01-01

    Over the last decade, several studies have attempted to develop thermal models for analyzing the selective laser melting process with a vision to predict thermal stresses, microstructures and resulting mechanical properties of manufactured products. While a holistic model addressing all involved...... to accurately simulate the process, are constrained by either the size or scale of the model domain. A second challenging aspect involves the inclusion of non-linear material behavior into the 3D implicit FE models. An alternating direction implicit (ADI) method based on a finite volume (FV) formulation...... is proposed for modeling single-layer and few-layers selective laser melting processes. The ADI technique is implemented and applied for two cases involving constant material properties and non-linear material behavior. The ADI FV method consume less time while having comparable accuracy with respect to 3D...

  8. Particulate matter emission modelling based on soot and SOF from direct injection diesel engines

    Tan, P.Q.; Hu, Z.Y.; Deng, K.Y.; Lu, J.X.; Lou, D.M.; Wan, G.

    2007-01-01

    Particulate matter (PM) emission is one of the major pollutants from diesel engines, and it is harmful for human health and influences the atmospheric visibility. In investigations for reducing PM emission, a simulation model for PM emission is a useful tool. In this paper, a phenomenological, composition based PM model of direct injection (DI) diesel engines has been proposed and formulated to simulate PM emission. The PM emission model is based on a quasi-dimensional multi-zone combustion model using the formation mechanisms of the two main compositions of PM: soot and soluble organic fraction (SOF). First, the quasi-dimensional multi-zone combustion model is given. Then, two models for soot and SOF emissions are established, respectively, and after that, the two models are integrated into a single PM emission model. The soot emission model is given by the difference between a primary formation model and an oxidation model of soot. The soot primary formation model is the Hiroyasu soot formation model, and the Nagle and Strickland-Constable model is adopted for soot oxidation. The SOF emission model is based on an unburned hydrocarbons (HC) emission model, and the HC emission model is given by the difference between a HC primary formation model and a HC oxidation model. The HC primary formation model considers fuel injected and mixed beyond the lean combustion limit during ignition delay and fuel effusing from the nozzle sac volume at low pressure and low velocity. In order to validate the PM emission model, experiments were performed on a six cylinder, turbocharged and intercooled DI diesel engine. The simulation results show good agreement with the experimental data, which indicates the validity of the PM emission model. The calculation results show that the distinctions between PM and soot formation rates are mainly in the early combustion stage. The SOF formation has an important influence on the PM formation at lower loads, and soot formation dominates the

  9. Directional and Spectral Irradiance in Ocean Models: Effects on Simulated Global Phytoplankton, Nutrients, and Primary Production

    Gregg, Watson W.; Rousseaux, Cecile S.

    2016-01-01

    The importance of including directional and spectral light in simulations of ocean radiative transfer was investigated using a coupled biogeochemical-circulation-radiative model of the global oceans. The effort focused on phytoplankton abundances, nutrient concentrations and vertically-integrated net primary production. The importance was approached by sequentially removing directional (i.e., direct vs. diffuse) and spectral irradiance and comparing results of the above variables to a fully directionally and spectrally-resolved model. In each case the total irradiance was kept constant; it was only the pathways and spectral nature that were changed. Assuming all irradiance was diffuse had negligible effect on global ocean primary production. Global nitrate and total chlorophyll concentrations declined by about 20% each. The largest changes occurred in the tropics and sub-tropics rather than the high latitudes, where most of the irradiance is already diffuse. Disregarding spectral irradiance had effects that depended upon the choice of attenuation wavelength. The wavelength closest to the spectrally-resolved model, 500 nm, produced lower nitrate (19%) and chlorophyll (8%) and higher primary production (2%) than the spectral model. Phytoplankton relative abundances were very sensitive to the choice of non-spectral wavelength transmittance. The combined effects of neglecting both directional and spectral irradiance exacerbated the differences, despite using attenuation at 500 nm. Global nitrate decreased 33% and chlorophyll decreased 24%. Changes in phytoplankton community structure were considerable, representing a change from chlorophytes to cyanobacteria and coccolithophores. This suggested a shift in community function, from light-limitation to nutrient limitation: lower demands for nutrients from cyanobacteria and coccolithophores favored them over the more nutrient-demanding chlorophytes. Although diatoms have the highest nutrient demands in the model, their

  10. Modeling and validation of directional reflectance for heterogeneous agro-forestry scenarios

    Yelu, Z.; Jing, L.; Qinhuo, L.; Huete, A. R.

    2015-12-01

    Landscape heterogeneity is a common natural phenomenon but is seldom considered in current radiative transfer models for predicting the surface reflectance. This paper developed an explicit analytical Radiative Transfer model for heterogeneous Agro-Forestry scenarios (RTAF) by dividing the scenario into non-boundary regions and boundary regions. The scattering contribution of the non-boundary regions that are treated as homogeneous canopies can be estimated from the SAILH model, whereas that of the boundary regions with lengths, widths, canopy heights, and orientations of the field patches, is calculated based on the bidirectional gap probability by considering the interactions and mutual shadowing effects among different patches. The hot spot factor is extended for heterogeneous scenarios, the Hapke model for soil anisotropy is incorporated, and the contributions of the direct and diffuse radiation are separately calculated. The multi-angular airborne observations and the Discrete Anisotropic Radiative Transfer (DART) model simulations were used for validating and evaluating the RTAF model over an agro-forestry scenario in Heihe River Basin, China. It indicates that the RTAF model can accurately simulate the hemispherical-directional reflectance factors (HDRFs) of the heterogeneous agro-forestry scenario, with an RMSE of 0.0016 and 0.0179 in the red and near-infrared (NIR) bands, respectively. The RTAF model was compared with two widely used models, the dominant cover type (DCT) model and the spectral linear mixture (SLM) model, which either neglected the interactions and mutual shadowing effects between the shelterbets and crops, or did not account for the contribution of the shelterbets. Results suggest that the boundary effect can significantly influence the angular distribution of the HDRFs, and consequently enlarged the HDRF variations between the backward and forward directions in the principle plane. The RTAF model reduced the maximum relative error from 25

  11. Anticlockwise or Clockwise? A Dynamic Perception-Action-Laterality Model for Directionality Bias in Visuospatial Functioning

    Karim, A.K.M. Rezaul; Proulx, Michael J.; Likova, Lora T.

    2016-01-01

    Reviewing the relevant literature in visual psychophysics and visual neuroscience we propose a three-stage model of directionality bias in visuospatial functioning. We call this model the ‘Perception-Action-Laterality’ (PAL) hypothesis. We analyzed the research findings for a wide range of visuospatial tasks, showing that there are two major directionality trends: clockwise versus anticlockwise. It appears these preferences are combinatorial, such that a majority of people fall in the first category demonstrating a preference for stimuli/objects arranged from left-to-right rather than from right-to-left, while people in the second category show an opposite trend. These perceptual biases can guide sensorimotor integration and action, creating two corresponding turner groups in the population. In support of PAL, we propose another model explaining the origins of the biases– how the neurogenetic factors and the cultural factors interact in a biased competition framework to determine the direction and extent of biases. This dynamic model can explain not only the two major categories of biases, but also the unbiased, unreliably biased or mildly biased cases in visuosptial functioning. PMID:27350096

  12. Dynamical Intention: Integrated Intelligence Modeling for Goal-directed Embodied Agents

    Eric Aaron

    2016-11-01

    Full Text Available Intelligent embodied robots are integrated systems: As they move continuously through their environments, executing behaviors and carrying out tasks, components for low-level and high-level intelligence are integrated in the robot's cognitive system, and cognitive and physical processes combine to create their behavior. For a modeling framework to enable the design and analysis of such integrated intelligence, the underlying representations in the design of the robot should be dynamically sensitive, capable of reflecting both continuous motion and micro-cognitive influences, while also directly representing the necessary beliefs and intentions for goal-directed behavior. In this paper, a dynamical intention-based modeling framework is presented that satisfies these criteria, along with a hybrid dynamical cognitive agent (HDCA framework for employing dynamical intentions in embodied agents. This dynamical intention-HDCA (DI-HDCA modeling framework is a fusion of concepts from spreading activation networks, hybrid dynamical system models, and the BDI (belief-desire-intention theory of goal-directed reasoning, adapted and employed unconventionally to meet entailments of environment and embodiment. The paper presents two kinds of autonomous agent learning results that demonstrate dynamical intentions and the multi-faceted integration they enable in embodied robots: with a simulated service robot in a grid-world office environment, reactive-level learning minimizes reliance on deliberative-level intelligence, enabling task sequencing and action selection to be distributed over both deliberative and reactive levels; and with a simulated game of Tag, the cognitive-physical integration of an autonomous agent enables the straightforward learning of a user-specified strategy during gameplay, without interruption to the game. In addition, the paper argues that dynamical intentions are consistent with cognitive theory underlying goal-directed behavior, and

  13. Simplified dark matter models with charged mediators: prospects for direct detection

    Sandick, Pearl; Sinha, Kuver; Teng, Fei [Department of Physics and Astronomy, University of Utah,Salt Lake City, UT 84112 (United States)

    2016-10-05

    We consider direct detection prospects for a class of simplified models of fermionic dark matter (DM) coupled to left and right-handed Standard Model fermions via two charged scalar mediators with arbitrary mixing angle α. DM interactions with the nucleus are mediated by higher electromagnetic moments, which, for Majorana DM, is the anapole moment. After giving a full analytic calculation of the anapole moment, including its α dependence, and matching with limits in the literature, we compute the DM-nucleon scattering cross-section and show the LUX and future LZ constraints on the parameter space of these models. We then compare these results with constraints coming from Fermi-LAT continuum and line searches. Results in the supersymmetric limit of these simplified models are provided in all cases. We find that future direct detection experiments will be able to probe most of the parameter space of these models for O(100−200) GeV DM and lightest mediator mass ≲O(5%) larger than the DM mass. The direct detection prospects dwindle for larger DM mass and larger mass gap between the DM and the lightest mediator mass, although appreciable regions are still probed for O(200) GeV DM and lightest mediator mass ≲O(20%) larger than the DM mass. The direct detection bounds are also attenuated near certain “blind spots' in the parameter space, where the anapole moment is severely suppressed due to cancellation of different terms. We carefully study these blind spots and the associated Fermi-LAT signals in these regions.

  14. Asymptotic analysis soot model and experiment for a directed injection engine

    Liu, Yongfeng; Pei, Pucheng; Xiong, Qinghui; Lu, Yong

    2012-09-01

    The existing soot models are either too complex and can not be applied to the internal combustion engine, or too simple to make calculation errors. Exploring the soot model becomes the pursuit of the goal of many researchers within the error range in the current computer speed. On the basis of the latest experimental results, TP (temperature phases) model is presented as a new soot model to carry out optimization calculation for a high-pressure common rail diesel engine. Temperature and excess air factor are the most important two parameters in this model. When zone temperature T0.6, only the soot precursors—polycyclic aromatic hydrocarbons(PAH) is created and there is no soot emission. When zone temperature T ⩾ 1 500 K and excess air factor Φinjection time, variation of rail pressure and variation of speed among TP models. The experimental results indicate that the TP model can carry out optimization and computational fluid dynamics can be a tool to calculate for a high-pressure common rail directed injection diesel engine. The TP model result is closer than the use of the original KIVA-3V results of soot model accuracy by about 50% and TP model gives a new method for engine researchers.

  15. Computational comparison of quantum-mechanical models for multistep direct reactions

    Koning, A.J.; Akkermans, J.M.

    1993-01-01

    We have carried out a computational comparison of all existing quantum-mechanical models for multistep direct (MSD) reactions. The various MSD models, including the so-called Feshbach-Kerman-Koonin, Tamura-Udagawa-Lenske and Nishioka-Yoshida-Weidenmueller models, have been implemented in a single computer system. All model calculations thus use the same set of parameters and the same numerical techniques; only one adjustable parameter is employed. The computational results have been compared with experimental energy spectra and angular distributions for several nuclear reactions, namely, 90 Zr(p,p') at 80 MeV, 209 Bi(p,p') at 62 MeV, and 93 Nb(n,n') at 25.7 MeV. In addition, the results have been compared with the Kalbach systematics and with semiclassical exciton model calculations. All quantum MSD models provide a good fit to the experimental data. In addition, they reproduce the systematics very well and are clearly better than semiclassical model calculations. We furthermore show that the calculated predictions do not differ very strongly between the various quantum MSD models, leading to the conclusion that the simplest MSD model (the Feshbach-Kerman-Koonin model) is adequate for the analysis of experimental data

  16. Offset-Free Direct Power Control of DFIG Under Continuous-Time Model Predictive Control

    Errouissi, Rachid; Al-Durra, Ahmed; Muyeen, S.M.

    2017-01-01

    This paper presents a robust continuous-time model predictive direct power control for doubly fed induction generator (DFIG). The proposed approach uses Taylor series expansion to predict the stator current in the synchronous reference frame over a finite time horizon. The predicted stator current...... is directly used to compute the required rotor voltage in order to minimize the difference between the actual stator currents and their references over the predictive time. However, as the proposed strategy is sensitive to parameter variations and external disturbances, a disturbance observer is embedded...... into the control loop to remove the steady-state error of the stator current. It turns out that the steady-state and the transient performances can be identified by simple design parameters. In this paper, the reference of the stator current is directly calculated from the desired stator active and reactive powers...

  17. Recommended Research Directions for Improving the Validation of Complex Systems Models.

    Vugrin, Eric D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Trucano, Timothy G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swiler, Laura Painton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Finley, Patrick D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flanagan, Tatiana Paz [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Naugle, Asmeret Bier [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tsao, Jeffrey Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Verzi, Stephen Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    Improved validation for models of complex systems has been a primary focus over the past year for the Resilience in Complex Systems Research Challenge. This document describes a set of research directions that are the result of distilling those ideas into three categories of research -- epistemic uncertainty, strong tests, and value of information. The content of this document can be used to transmit valuable information to future research activities, update the Resilience in Complex Systems Research Challenge's roadmap, inform the upcoming FY18 Laboratory Directed Research and Development (LDRD) call and research proposals, and facilitate collaborations between Sandia and external organizations. The recommended research directions can provide topics for collaborative research, development of proposals, workshops, and other opportunities.

  18. Accurate Models for Evaluating the Direct Conducted and Radiated Emissions from Integrated Circuits

    Domenico Capriglione

    2018-03-01

    Full Text Available This paper deals with the electromagnetic compatibility (EMC issues related to the direct and radiated emissions from a high-speed integrated circuits (ICs. These emissions are evaluated here by means of circuital and electromagnetic models. As for the conducted emission, an equivalent circuit model is derived to describe the IC and the effect of its loads (package, printed circuit board, decaps, etc., based on the Integrated Circuit Emission Model template (ICEM. As for the radiated emission, an electromagnetic model is proposed, based on the superposition of the fields generated in the far field region by the loop currents flowing into the IC and the package pins. A custom experimental setup is designed for validating the models. Specifically, for the radiated emission measurement, a custom test board is designed and realized, able to highlight the contribution of the direct emission from the IC, usually hidden by the indirect emission coming from the printed circuit board. Measurements of the package currents and of the far-field emitted fields are carried out, providing a satisfactory agreement with the model predictions.

  19. Significance tests to determine the direction of effects in linear regression models.

    Wiedermann, Wolfgang; Hagmann, Michael; von Eye, Alexander

    2015-02-01

    Previous studies have discussed asymmetric interpretations of the Pearson correlation coefficient and have shown that higher moments can be used to decide on the direction of dependence in the bivariate linear regression setting. The current study extends this approach by illustrating that the third moment of regression residuals may also be used to derive conclusions concerning the direction of effects. Assuming non-normally distributed variables, it is shown that the distribution of residuals of the correctly specified regression model (e.g., Y is regressed on X) is more symmetric than the distribution of residuals of the competing model (i.e., X is regressed on Y). Based on this result, 4 one-sample tests are discussed which can be used to decide which variable is more likely to be the response and which one is more likely to be the explanatory variable. A fifth significance test is proposed based on the differences of skewness estimates, which leads to a more direct test of a hypothesis that is compatible with direction of dependence. A Monte Carlo simulation study was performed to examine the behaviour of the procedures under various degrees of associations, sample sizes, and distributional properties of the underlying population. An empirical example is given which illustrates the application of the tests in practice. © 2014 The British Psychological Society.

  20. Trust in direct leaders and top leaders: A trickle-up model.

    Fulmer, C Ashley; Ostroff, Cheri

    2017-04-01

    Low levels of employee trust in top leaders pose challenges to organizations with respect to retention, performance, and profits. This research examines how trust in top leaders can be fostered through the relationships individuals have with their direct leaders. We propose a trickle-up model whereby trust in direct leaders exerts an upward influence on trust in top leaders. Drawing on the group value model, we predict that direct leaders' procedural justice serves as the key mechanism in facilitating the trickle-up process. Further, this process should be particularly strong for employees high on vertical collectivism, and the trickled-up trust in top leaders should exert a stronger impact on employees' overall performance in the organization than trust in direct leaders. Multiphase and multisource data from 336 individuals support these hypotheses. The findings advance our understanding of trust and leadership by highlighting that trust in leaders at different levels does not form independently and that trust in leaders trickles up across hierarchical levels. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. 2D modeling of direct laser metal deposition process using a finite particle method

    Anedaf, T.; Abbès, B.; Abbès, F.; Li, Y. M.

    2018-05-01

    Direct laser metal deposition is one of the material additive manufacturing processes used to produce complex metallic parts. A thorough understanding of the underlying physical phenomena is required to obtain a high-quality parts. In this work, a mathematical model is presented to simulate the coaxial laser direct deposition process tacking into account of mass addition, heat transfer, and fluid flow with free surface and melting. The fluid flow in the melt pool together with mass and energy balances are solved using the Computational Fluid Dynamics (CFD) software NOGRID-points, based on the meshless Finite Pointset Method (FPM). The basis of the computations is a point cloud, which represents the continuum fluid domain. Each finite point carries all fluid information (density, velocity, pressure and temperature). The dynamic shape of the molten zone is explicitly described by the point cloud. The proposed model is used to simulate a single layer cladding.

  2. Physics Implications of Flat Directions in Free Fermionic Superstring Models; 2, Renormalization Group Analysis

    Cleaver, G.; Espinosa, J.R.; Everett, L.L.; Langacker, P.; Wang, J.

    1999-01-01

    We continue the investigation of the physics implications of a class of flat directions for a prototype quasi-realistic free fermionic string model (CHL5), building upon the results of the previous paper in which the complete mass spectrum and effective trilinear couplings of the observable sector were calculated to all orders in the superpotential. We introduce soft supersymmetry breaking mass parameters into the model, and investigate the gauge symmetry breaking patterns and the renormalization group analysis for two representative flat directions, which leave an additional $U(1)'$ as well as the SM gauge group unbroken at the string scale. We study symmetry breaking patterns that lead to a phenomenologically acceptable $Z-Z'$ hierarchy, $M_{Z^{'}} \\sim {\\cal O}(1~{\\rm TeV})$ and $ 10^{12}~{\\rm GeV}$ for electroweak and intermediate scale $U(1)^{'}$ symmetry breaking, respectively, and the associated mass spectra after electroweak symmetry breaking. The fermion mass spectrum exhibits unrealistic features, i...

  3. A systematic narrative review of consumer-directed care for older people: implications for model development.

    Ottmann, Goetz; Allen, Jacqui; Feldman, Peter

    2013-11-01

    Consumer-directed care is increasingly becoming a mainstream option in community-based aged care. However, a systematic review describing how the current evaluation research translates into practise has not been published to date. This review aimed to systematically establish an evidence base of user preferences for and satisfaction with services associated with consumer-directed care programmes for older people. Twelve databases were searched, including MedLine, BioMed Central, Cinahl, Expanded Academic ASAP, PsychInfo, ProQuest, Age Line, Science Direct, Social Citation Index, Sociological Abstracts, Web of Science and the Cochrane Library. Google Scholar and Google were also searched. Eligible studies were those reporting on choice, user preferences and service satisfaction outcomes regarding a programme or model of home-based care in the United States or United Kingdom. This systematic narrative review retrieved literature published from January 1992 to August 2011. A total of 277 references were identified. Of these 17 met the selection criteria and were reviewed. Findings indicate that older people report varying preferences for consumer-directed care with some demonstrating limited interest. Clients and carers reported good service satisfaction. However, research comparing user preferences across countries or investigating how ecological factors shape user preferences has received limited attention. Policy-makers and practitioners need to carefully consider the diverse contexts, needs and preferences of older adults in adopting consumer-directed care approaches in community aged care. The review calls for the development of consumer-directed care programmes offering a broad range of options that allow for personalisation and greater control over services without necessarily transferring the responsibility for administrative responsibilities to service users. Review findings suggest that consumer-directed care approaches have the potential to empower older

  4. Promoting advance directives among African Americans: a faith-based model.

    Bullock, Karen

    2006-02-01

    Studies show that African Americans are less likely than other ethnic groups to complete advance directives. However, what influences African Americans' decisions to complete or not complete advance directives is unclear. Using a faith-based promotion model, 102 African Americans aged 55 years or older were recruited from local churches and community-based agencies to participate in a pilot study to promote advance care planning. Focus groups were used to collect data on participants' preferences for care, desire to make personal choices, values and attitudes, beliefs about death and dying, and advance directives. A standardized interview was used in the focus groups, and the data were organized and analyzed using NUDIST 4 software (QRS Software, Victoria, Australia). Three fourths of the participants refused to complete advance directives. The following factors influenced the participants' decisions about end-of-life care and completion of an advance directive: spirituality; view of suffering, death, and dying; social support networks; barriers to utilization; and mistrust of the health care system. The dissemination of information apprises individuals of their right to self-determine about their care, but educational efforts may not produce a significant change in behavior toward completion of advance care planning. Thus, ongoing efforts are needed to improve the trust that African Americans have in medical and health care providers.

  5. Reliable four-point flexion test and model for die-to-wafer direct bonding

    Tabata, T., E-mail: toshiyuki.tabata@cea.fr; Sanchez, L.; Fournel, F.; Moriceau, H. [Univ. Grenoble Alpes, F-38000 Grenoble, France and CEA, LETI, MINATEC Campus, F-38054 Grenoble (France)

    2015-07-07

    For many years, wafer-to-wafer (W2W) direct bonding has been very developed particularly in terms of bonding energy measurement and bonding mechanism comprehension. Nowadays, die-to-wafer (D2W) direct bonding has gained significant attention, for instance, in photonics and microelectro-mechanics, which supposes controlled and reliable fabrication processes. So, whatever the stuck materials may be, it is not obvious whether bonded D2W structures have the same bonding strength as bonded W2W ones, because of possible edge effects of dies. For that reason, it has been strongly required to develop a bonding energy measurement technique which is suitable for D2W structures. In this paper, both D2W- and W2W-type standard SiO{sub 2}-to-SiO{sub 2} direct bonding samples are fabricated from the same full-wafer bonding. Modifications of the four-point flexion test (4PT) technique and applications for measuring D2W direct bonding energies are reported. Thus, the comparison between the modified 4PT and the double-cantilever beam techniques is drawn, also considering possible impacts of the conditions of measures such as the water stress corrosion at the debonding interface and the friction error at the loading contact points. Finally, reliability of a modified technique and a new model established for measuring D2W direct bonding energies is demonstrated.

  6. Modeling hemispherical and directional radiative fluxes in regular-clumped canopies

    Begue, A.

    1992-01-01

    A model of radiative transfer in regular-clumped canopies is presented. The canopy is approximated by an array of porous cylinders located at the vertices of equilateral triangles. The model is split into two submodels, each describing a different level of structure: 1) The macrostructure submodel is based on Brown and Pandolfo (1969), who applied geometrical optics theory to an array of opaque cylinders. This model is adapted for porous cylinders and is used to derive expressions for directional interception efficiency as a function of height, radius, spacing and porosity of the cylinders. 2) The microstructure submodel makes use of the average canopy transmittance theory, applied to a cylinder, to compute the porosity of the clumps as a function of the leaf area density, the leaf inclination distribution function, the dimensions of the cylinder (height and radius), and the transmittance of green leaves in the appropriate spectral band. It is shown that, in the case of erectophile plant stands, the daily porosity of the cylinder can be approximated by the porosity calculated using the extinction coefficient of diffuse radiation. Directional interception efficiency, geometric conditions (incidence/viewing), and landscape component reflectances are used to compute hemispherical (interception, absorption, and reflectance) and directional (reflectance) radiative fluxes from simple analytical formulae. This model is validated against a data set of biological, radiative (PAR region) and radiometric (SPOT channels) measurements, collected in Niger on pearl millet (Pennisetum typhoides). The model fits the data quite well in terms of hourly and daily single-band or combined (NDVI) radiative fluxes. Close correspondence to measured fluxes, using few parameters, and the possibility of inversion makes the present model a valuable tool for the study of radiative transfer in discontinuous canopies. (author)

  7. A posteriori model validation for the temporal order of directed functional connectivity maps.

    Beltz, Adriene M; Molenaar, Peter C M

    2015-01-01

    A posteriori model validation for the temporal order of neural directed functional connectivity maps is rare. This is striking because models that require sequential independence among residuals are regularly implemented. The aim of the current study was (a) to apply to directed functional connectivity maps of functional magnetic resonance imaging data an a posteriori model validation procedure (i.e., white noise tests of one-step-ahead prediction errors combined with decision criteria for revising the maps based upon Lagrange Multiplier tests), and (b) to demonstrate how the procedure applies to single-subject simulated, single-subject task-related, and multi-subject resting state data. Directed functional connectivity was determined by the unified structural equation model family of approaches in order to map contemporaneous and first order lagged connections among brain regions at the group- and individual-levels while incorporating external input, then white noise tests were run. Findings revealed that the validation procedure successfully detected unmodeled sequential dependencies among residuals and recovered higher order (greater than one) simulated connections, and that the procedure can accommodate task-related input. Findings also revealed that lags greater than one were present in resting state data: With a group-level network that contained only contemporaneous and first order connections, 44% of subjects required second order, individual-level connections in order to obtain maps with white noise residuals. Results have broad methodological relevance (e.g., temporal validation is necessary after directed functional connectivity analyses because the presence of unmodeled higher order sequential dependencies may bias parameter estimates) and substantive implications (e.g., higher order lags may be common in resting state data).

  8. A posteriori model validation for the temporal order of directed functional connectivity maps

    Adriene M. Beltz

    2015-08-01

    Full Text Available A posteriori model validation for the temporal order of neural directed functional connectivity maps is rare. This is striking because models that require sequential independence among residuals are regularly implemented. The aim of the current study was (a to apply to directed functional connectivity maps of functional magnetic resonance imaging data an a posteriori model validation procedure (i.e., white noise tests of one-step-ahead prediction errors combined with decision criteria for revising the maps based upon Lagrange Multiplier tests, and (b to demonstrate how the procedure applies to single-subject simulated, single-subject task-related, and multi-subject resting state data. Directed functional connectivity was determined by the unified structural equation model family of approaches in order to map contemporaneous and first order lagged connections among brain regions at the group- and individual-levels while incorporating external input, then white noise tests were run. Findings revealed that the validation procedure successfully detected unmodeled sequential dependencies among residuals and recovered higher order (greater than one simulated connections, and that the procedure can accommodate task-related input. Findings also revealed that lags greater than one were present in resting state data: With a group-level network that contained only contemporaneous and first order connections, 44% of subjects required second order, individual-level connections in order to obtain maps with white noise residuals. Results have broad methodological relevance (e.g., temporal validation is necessary after directed functional connectivity analyses because the presence of unmodeled higher order sequential dependencies may bias parameter estimates and substantive implications (e.g., higher order lags may be common in resting state data.

  9. Stuttering Intervention in Three Service Delivery Models (Direct, Hybrid, and Telepractice): Two Case Studies

    VALENTINE, DANIEL T.

    2015-01-01

    This study assessed outcomes in stuttering intervention across three service delivery models: direct, hybrid, and telepractice for two 11-year old children who stutter. The goal of the study was to investigate whether short-term goals were maintained through the telepractice sessions. The Stuttering Severity Instrument, Fourth Edition (SSI-4) was administered to each child before and after each intervention period and weekly fluency samples (percentage of stuttered syllables in a monologue) w...

  10. Direct estimates of unemployment rate and capacity utilization in macroeconometric models

    Klein, L R [Univ. of Pennsylvania, Philadelphia; Su, V

    1979-10-01

    The problem of measuring resource-capacity utilization as a factor in overall economic efficiency is examined, and a tentative solution is offered. A macro-econometric model is applied to the aggregate production function by linking unemployment rate and capacity utilization rate. Partial- and full-model simulations use Wharton indices as a filter and produce direct estimates of unemployment rates. The simulation paths of durable-goods industries, which are more capital-intensive, are found to be more sensitive to business cycles than the nondurable-goods industries. 11 references.

  11. Alternating Direction Implicit (ADI) schemes for a PDE-based image osmosis model

    Calatroni, L.; Estatico, C.; Garibaldi, N.; Parisotto, S.

    2017-10-01

    We consider Alternating Direction Implicit (ADI) splitting schemes to compute efficiently the numerical solution of the PDE osmosis model considered by Weickert et al. in [10] for several imaging applications. The discretised scheme is shown to preserve analogous properties to the continuous model. The dimensional splitting strategy traduces numerically into the solution of simple tridiagonal systems for which standard matrix factorisation techniques can be used to improve upon the performance of classical implicit methods, even for large time steps. Applications to the shadow removal problem are presented.

  12. Experiments to investigate direct containment heating phenomena with scaled models of the Surry Nuclear Power Plant

    Blanchat, T.K.; Allen, M.D.; Pilch, M.M.

    1994-01-01

    The Containment Technology Test Facility (CTTF) and the Surtsey Test Facility at Sandia National Laboratories (SNL) are used to perform scaled experiments for the Nuclear Regulatory Commission (NRC) that simulate High Pressure Melt Ejection (HPME) accidents in a nuclear power plant (NPP). These experiments are designed to investigate the effects of direct containment heating (DCH) phenomena on the containment load. High-temperature, chemically reactive melt is ejected by high-pressure steam into a scale model of a reactor cavity. Debris is entrained by the steam blowdown into a containment model where specific phenomena, such as the effect of subcompartment structures, prototypic atmospheres, and hydrogen generation and combustion, can be studied

  13. Combining spanwise morphing, inline motion and model based optimization for force magnitude and direction control

    Scheller, Johannes; Braza, Marianna; Triantafyllou, Michael

    2016-11-01

    Bats and other animals rapidly change their wingspan in order to control the aerodynamic forces. A NACA0013 type airfoil with dynamically changing span is proposed as a simple model to experimentally study these biomimetic morphing wings. Combining this large-scale morphing with inline motion allows to control both force magnitude and direction. Force measurements are conducted in order to analyze the impact of the 4 degree of freedom flapping motion on the flow. A blade-element theory augmented unsteady aerodynamic model is then used to derive optimal flapping trajectories.

  14. Direct Neuronal Reprogramming for Disease Modeling Studies Using Patient-Derived Neurons: What Have We Learned?

    Janelle Drouin-Ouellet

    2017-09-01

    Full Text Available Direct neuronal reprogramming, by which a neuron is formed via direct conversion from a somatic cell without going through a pluripotent intermediate stage, allows for the possibility of generating patient-derived neurons. A unique feature of these so-called induced neurons (iNs is the potential to maintain aging and epigenetic signatures of the donor, which is critical given that many diseases of the CNS are age related. Here, we review the published literature on the work that has been undertaken using iNs to model human brain disorders. Furthermore, as disease-modeling studies using this direct neuronal reprogramming approach are becoming more widely adopted, it is important to assess the criteria that are used to characterize the iNs, especially in relation to the extent to which they are mature adult neurons. In particular: i what constitutes an iN cell, ii which stages of conversion offer the earliest/optimal time to assess features that are specific to neurons and/or a disorder and iii whether generating subtype-specific iNs is critical to the disease-related features that iNs express. Finally, we discuss the range of potential biomedical applications that can be explored using patient-specific models of neurological disorders with iNs, and the challenges that will need to be overcome in order to realize these applications.

  15. Job stress and job satisfaction: home care workers in a consumer-directed model of care.

    Delp, Linda; Wallace, Steven P; Geiger-Brown, Jeanne; Muntaner, Carles

    2010-08-01

    To investigate determinants of job satisfaction among home care workers in a consumer-directed model. Analysis of data collected from telephone interviews with 1,614 Los Angeles home care workers on the state payroll in 2003. Multivariate logistic regression analysis was used to determine the odds of job satisfaction using job stress model domains of demands, control, and support. Abuse from consumers, unpaid overtime hours, and caring for more than one consumer as well as work-health demands predict less satisfaction. Some physical and emotional demands of the dyadic care relationship are unexpectedly associated with greater job satisfaction. Social support and control, indicated by job security and union involvement, have a direct positive effect on job satisfaction. Policies that enhance the relational component of care may improve workers' ability to transform the demands of their job into dignified and satisfying labor. Adequate benefits and sufficient authorized hours of care can minimize the stress of unpaid overtime work, caring for multiple consumers, job insecurity, and the financial constraints to seeking health care. Results have implications for the structure of consumer-directed models of care and efforts to retain long-term care workers.

  16. THE ELECTORAL FAILURE OF LIBERAL PARTIES IN CENTRAL EUROPE: A DIRECTIONAL MODEL ANALYSIS

    Alexandru VOLACU

    2011-12-01

    Full Text Available In this paper we provide a theoretical framework for interpreting the reiterated failure of liberal parties in a series of Central European states (namely Austria, Belgium, Germany, Luxembourg and the Netherlands. We argue that the directional model of spatial analysis elaborated by Rabinowitz and Macdonald (1989 and Macdonald, Listhaug and Rabinowitz (1991 can be an efficient instrument used for understanding why liberal parties are not able to perform as well as their opponents in elections, our hypothesis being, in consistency with the theoretical predictions made by the directional model, that political parties which ideologically diverge from the center without becoming too radical are more likely to increase their electoral percentage then parties which converge toward the ideological center. We test and partially confirm our hypothesis by comparatively studying the ideological shifts and electoral percentages of liberal parties within the 5 states mentioned above, across a period of five consecutive elections, proving that a correlation between ideological shifts and electoral percentages exists in the sense predicted by the directional model for a large majority of cases.

  17. Exploring User Engagement in Information Networks: Behavioural – based Navigation Modelling, Ideas and Directions

    Vesna Kumbaroska

    2017-04-01

    Full Text Available Revealing an endless array of user behaviors in an online environment is a very good indicator of the user’s interests either in the process of browsing or in purchasing. One such behavior is the navigation behavior, so detected user navigation patterns are able to be used for practical purposes such as: improving user engagement, turning most browsers into buyers, personalize content or interface, etc. In this regard, our research represents a connection between navigation modelling and user engagement. A usage of the Generalized Stochastic Petri Nets concept for stochastic behavioral-based modelling of the navigation process is proposed for measuring user engagement components. Different types of users are automatically identified and clustered according to their navigation behaviors, thus the developed model gives great insight into the navigation process. As part of this study, Peterson’s model for measuring the user engagement is explored and a direct calculation of its components is illustrated. At the same time, asssuming that several user sessions/visits are initialized in a certain time frame, following the Petri Nets dynamics is indicating that the proposed behavioral – based model could be used for user engagement metrics calculation, thus some basic ideas are discussed, and initial directions are given.

  18. Heat transfer modelling of two-phase bubbles swarm condensing in three - phase direct - contact condenser

    Mahood Hameed B.

    2016-01-01

    Full Text Available An analytical model for the convective heat transfer coefficient and the two-phase bubble size of a three-phase direct contact heat exchanger was developed. Until the present, there has only been a theoretical model available that deals with a single two-phase bubble and a bubble train condensation in an immiscible liquid. However, to understand the actual heat transfer process within the three-phase direct contact condenser, characteristic models are required. A quasi - steady energy equation in a spherical coordinate system with a potential flow assumption and a cell model configuration has been simplified and solved analytically. The convective heat transfer in terms of Nu number has been derived, and it was found to be a function to Pe number and a system void fraction. In addition, the two-phase bubble size relates to the system void fraction and has been developed by solving a simple energy balance equation and using the derived convective heat transfer coefficient expression. Furthermore, the model correlates well with previous experimental data and theoretical results.

  19. Kinematics modeling and simulation of an autonomous omni-directional mobile robot

    Daniel Garcia Sillas

    2015-05-01

    Full Text Available Although robotics has progressed to the extent that it has become relatively accessible with low-cost projects, there is still a need to create models that accurately represent the physical behavior of a robot. Creating a completely virtual platform allows us to test behavior algorithms such as those implemented using artificial intelligence, and additionally, it enables us to find potential problems in the physical design of the robot. The present work describes a methodology for the construction of a kinematic model and a simulation of the autonomous robot, specifically of an omni-directional wheeled robot. This paper presents the kinematic model development and its implementation using several tools. The result is a model that follows the kinematics of a triangular omni-directional mobile wheeled robot, which is then tested by using a 3D model imported from 3D Studio® and Matlab® for the simulation. The environment used for the experiment is very close to the real environment and reflects the kinematic characteristics of the robot.

  20. An analytical–numerical model of laser direct metal deposition track and microstructure formation

    Ahsan, M Naveed; Pinkerton, Andrew J

    2011-01-01

    Multiple analytical and numerical models of the laser metal deposition process have been presented, but most rely on sequential solution of the energy and mass balance equations or discretization of the problem domain. Laser direct metal deposition is a complex process involving multiple interdependent processes which can be best simulated using a fully coupled mass-energy balance solution. In this work a coupled analytical–numerical solution is presented. Sub-models of the powder stream, quasi-stationary conduction in the substrate and powder assimilation into the area of the substrate above the liquidus temperature are combined. An iterative feedback loop is used to ensure mass and energy balances are maintained at the melt pool. The model is verified using Ti–6Al–4V single track deposition, produced with a coaxial nozzle and a diode laser. The model predictions of local temperature history, the track profile and microstructure scale show good agreement with the experimental results. The model is a useful industrial aid and alternative to finite element methods for selecting the parameters to use for laser direct metal deposition when separate geometric and microstructural outcomes are required

  1. Machine Directional Register System Modeling for Shaft-Less Drive Gravure Printing Machines

    Shanhui Liu

    2013-01-01

    Full Text Available In the latest type of gravure printing machines referred to as the shaft-less drive system, each gravure printing roller is driven by an individual servo motor, and all motors are electrically synchronized. The register error is regulated by a speed difference between the adjacent printing rollers. In order to improve the control accuracy of register system, an accurate mathematical model of the register system should be investigated for the latest machines. Therefore, the mathematical model of the machine directional register (MDR system is studied for the multicolor gravure printing machines in this paper. According to the definition of the MDR error, the model is derived, and then it is validated by the numerical simulation and experiments carried out in the experimental setup of the four-color gravure printing machines. The results show that the established MDR system model is accurate and reliable.

  2. Modeling an Optical and Infrared Search for Extraterrestrial Intelligence Survey with Exoplanet Direct Imaging

    Vides, Christina; Macintosh, Bruce; Ruffio, Jean-Baptiste; Nielsen, Eric; Povich, Matthew Samuel

    2018-01-01

    Gemini Planet Imager (GPI) is a direct high contrast imaging instrument coupled to the Gemini South Telescope. Its purpose is to image extrasolar planets around young (~Intelligence), we modeled GPI’s capabilities to detect an extraterrestrial continuous wave (CW) laser broadcasted within the H-band have been modeled. By using sensitivity evaluated for actual GPI observations of young target stars, we produced models of the CW laser power as a function of distance from the star that could be detected if GPI were to observe nearby (~ 3-5 pc) planet-hosting G-type stars. We took a variety of transmitters into consideration in producing these modeled values. GPI is known to be sensitive to both pulsed and CW coherent electromagnetic radiation. The results were compared to similar studies and it was found that these values are competitive to other optical and infrared observations.

  3. Initial Comparison of Direct and Legacy Modeling Approaches for Radial Core Expansion Analysis

    Shemon, Emily R.

    2016-01-01

    Radial core expansion in sodium-cooled fast reactors provides an important reactivity feedback effect. As the reactor power increases due to normal start up conditions or accident scenarios, the core and surrounding materials heat up, causing both grid plate expansion and bowing of the assembly ducts. When the core restraint system is designed correctly, the resulting structural deformations introduce negative reactivity which decreases the reactor power. Historically, an indirect procedure has been used to estimate the reactivity feedback due to structural deformation which relies upon perturbation theory and coupling legacy physics codes with limited geometry capabilities. With advancements in modeling and simulation, radial core expansion phenomena can now be modeled directly, providing an assessment of the accuracy of the reactivity feedback coefficients generated by indirect legacy methods. Recently a new capability was added to the PROTEUS-SN unstructured geometry neutron transport solver to analyze deformed meshes quickly and directly. By supplying the deformed mesh in addition to the base configuration input files, PROTEUS-SN automatically processes material adjustments including calculation of region densities to conserve mass, calculation of isotopic densities according to material models (for example, sodium density as a function of temperature), and subsequent re-homogenization of materials. To verify the new capability of directly simulating deformed meshes, PROTEUS-SN was used to compute reactivity feedback for a series of contrived yet representative deformed configurations for the Advanced Burner Test Reactor design. The indirect legacy procedure was also performed to generate reactivity feedback coefficients for the same deformed configurations. Interestingly, the legacy procedure consistently overestimated reactivity feedbacks by 35% compared to direct simulations by PROTEUS-SN. This overestimation indicates that the legacy procedures are in fact

  4. Initial Comparison of Direct and Legacy Modeling Approaches for Radial Core Expansion Analysis

    Shemon, Emily R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-10

    Radial core expansion in sodium-cooled fast reactors provides an important reactivity feedback effect. As the reactor power increases due to normal start up conditions or accident scenarios, the core and surrounding materials heat up, causing both grid plate expansion and bowing of the assembly ducts. When the core restraint system is designed correctly, the resulting structural deformations introduce negative reactivity which decreases the reactor power. Historically, an indirect procedure has been used to estimate the reactivity feedback due to structural deformation which relies upon perturbation theory and coupling legacy physics codes with limited geometry capabilities. With advancements in modeling and simulation, radial core expansion phenomena can now be modeled directly, providing an assessment of the accuracy of the reactivity feedback coefficients generated by indirect legacy methods. Recently a new capability was added to the PROTEUS-SN unstructured geometry neutron transport solver to analyze deformed meshes quickly and directly. By supplying the deformed mesh in addition to the base configuration input files, PROTEUS-SN automatically processes material adjustments including calculation of region densities to conserve mass, calculation of isotopic densities according to material models (for example, sodium density as a function of temperature), and subsequent re-homogenization of materials. To verify the new capability of directly simulating deformed meshes, PROTEUS-SN was used to compute reactivity feedback for a series of contrived yet representative deformed configurations for the Advanced Burner Test Reactor design. The indirect legacy procedure was also performed to generate reactivity feedback coefficients for the same deformed configurations. Interestingly, the legacy procedure consistently overestimated reactivity feedbacks by 35% compared to direct simulations by PROTEUS-SN. This overestimation indicates that the legacy procedures are in fact

  5. 3-D direct current resistivity anisotropic modelling by goal-oriented adaptive finite element methods

    Ren, Zhengyong; Qiu, Lewen; Tang, Jingtian; Wu, Xiaoping; Xiao, Xiao; Zhou, Zilong

    2018-01-01

    Although accurate numerical solvers for 3-D direct current (DC) isotropic resistivity models are current available even for complicated models with topography, reliable numerical solvers for the anisotropic case are still an open question. This study aims to develop a novel and optimal numerical solver for accurately calculating the DC potentials for complicated models with arbitrary anisotropic conductivity structures in the Earth. First, a secondary potential boundary value problem is derived by considering the topography and the anisotropic conductivity. Then, two a posteriori error estimators with one using the gradient-recovery technique and one measuring the discontinuity of the normal component of current density are developed for the anisotropic cases. Combing the goal-oriented and non-goal-oriented mesh refinements and these two error estimators, four different solving strategies are developed for complicated DC anisotropic forward modelling problems. A synthetic anisotropic two-layer model with analytic solutions verified the accuracy of our algorithms. A half-space model with a buried anisotropic cube and a mountain-valley model are adopted to test the convergence rates of these four solving strategies. We found that the error estimator based on the discontinuity of current density shows better performance than the gradient-recovery based a posteriori error estimator for anisotropic models with conductivity contrasts. Both error estimators working together with goal-oriented concepts can offer optimal mesh density distributions and highly accurate solutions.

  6. Assessment of ANN and SVM models for estimating normal direct irradiation (H_b)

    Santos, Cícero Manoel dos; Escobedo, João Francisco; Teramoto, Érico Tadao; Modenese Gorla da Silva, Silvia Helena

    2016-01-01

    Highlights: • The performance of SVM and ANN in estimating Normal Direct Irradiation (H_b) was evaluated. • 12 models using different input variables are developed (hourly and daily partitions). • The most relevant input variables for DNI are kt, H_s_c and insolation ratio (r′ = n/N). • Support Vector Machine (SVM) provides accurate estimates and outperforms the Artificial Neural Network (ANN). - Abstract: This study evaluates the estimation of hourly and daily normal direct irradiation (H_b) using machine learning techniques (ML): Artificial Neural Network (ANN) and Support Vector Machine (SVM). Time series of different meteorological variables measured over thirteen years in Botucatu were used for training and validating ANN and SVM. Seven different sets of input variables were tested and evaluated, which were chosen based on statistical models reported in the literature. Relative Mean Bias Error (rMBE), Relative Root Mean Square Error (rRMSE), determination coefficient (R"2) and “d” Willmott index were used to evaluate ANN and SVM models. When compared to statistical models which use the same set of input variables (R"2 between 0.22 and 0.78), ANN and SVM show higher values of R"2 (hourly models between 0.52 and 0.88; daily models between 0.42 and 0.91). Considering the input variables, atmospheric transmissivity of global radiation (kt), integrated solar constant (H_s_c) and insolation ratio (n/N, n is sunshine duration and N is photoperiod) were the most relevant in ANN and SVM models. The rMBE and rRMSE values in the two time partitions of SVM models are lower than those obtained with ANN. Hourly ANN and SVM models have higher rRMSE values than daily models. Optimal performance with hourly models was obtained with ANN4"h (rMBE = 12.24%, rRMSE = 23.99% and “d” = 0.96) and SVM4"h (rMBE = 1.75%, rRMSE = 20.10% and “d” = 0.96). Optimal performance with daily models was obtained with ANN2"d (rMBE = −3.09%, rRMSE = 18.95% and “d” = 0

  7. Intercomparison of two BRDF models in the estimation of the directional emissivity in MIR channel from MSG1-SEVIRI data.

    Jiang, Geng-Ming; Li, Zhao-Liang

    2008-11-10

    This work intercompared two Bi-directional Reflectance Distribution Function (BRDF) models, the modified Minnaert's model and the RossThick-LiSparse-R model, in the estimation of the directional emissivity in Middle Infra-Red (MIR) channel from the data acquired by the Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) onboard the first Meteosat Second Generation (MSG1). The bi-directional reflectances in SEVIRI channel 4 (3.9 microm) were estimated from the combined MIR and Thermal Infra-Red (TIR) data and then were used to estimate the directional emissivity in this channel with aid of the BRDF models. The results show that: (1) Both models can relatively well describe the non-Lambertian reflective behavior of land surfaces in SEVIRI channel 4; (2) The RossThick-LiSparse-R model is better than the modified Minnaert's model in modeling the bi-directional reflectances, and the directional emissivities modeled by the modified Minnaert's model are always lower than the ones obtained by the RossThick-LiSparse-R model with averaged emissivity differences of approximately 0.01 and approximately 0.04 over the vegetated and bare areas, respectively. The use of the RossThick-LiSparse-R model in the estimation of the directional emissivity in MIR channel is recommended.

  8. Constraining supersymmetric models using Higgs physics, precision observables and direct searches

    Zeune, Lisa

    2014-08-01

    We present various complementary possibilities to exploit experimental measurements in order to test and constrain supersymmetric (SUSY) models. Direct searches for SUSY particles have not resulted in any signal so far, and limits on the SUSY parameter space have been set. Measurements of the properties of the observed Higgs boson at ∝126 GeV as well as of the W boson mass (M W ) can provide valuable indirect constraints, supplementing the ones from direct searches. This thesis is divided into three major parts: In the first part we present the currently most precise prediction for M W in the Minimal Supersymmetric Standard Model (MSSM) with complex parameters and in the Next-to-Minimal Supersymmetric Standard Model (NMSSM). The evaluation includes the full one-loop result and all relevant available higher order corrections of Standard Model (SM) and SUSY type. We perform a detailed scan over the MSSM parameter space, taking into account the latest experimental results, including the observation of a Higgs signal. We find that the current measurements for M W and the top quark mass (m t ) slightly favour a non-zero SUSY contribution. The impact of different SUSY sectors on the prediction of M W as well as the size of the higher-order SUSY corrections are analysed both in the MSSM and the NMSSM. We investigate the genuine NMSSM contribution from the extended Higgs and neutralino sectors and highlight differences between the M W predictions in the two SUSY models. In the second part of the thesis we discuss possible interpretations of the observed Higgs signal in SUSY models. The properties of the observed Higgs boson are compatible with the SM so far, but many other interpretations are also possible. Performing scans over the relevant parts of the MSSM and the NMSSM parameter spaces and applying relevant constraints from Higgs searches, flavour physics and electroweak measurements, we find that a Higgs boson at ∝126 GeV, which decays into two photons, can in

  9. Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model

    Fang, Yilin; Scheibe, Timothy D.; Mahadevan, Radhakrishnan; Garg, Srinath; Long, Philip E.; Lovley, Derek R.

    2011-01-01

    The activity of microorganisms often plays an important role in dynamic natural attenuation or engineered bioremediation of subsurface contaminants, such as chlorinated solvents, metals, and radionuclides. To evaluate and/or design bioremediated systems, quantitative reactive transport models are needed. State-of-the-art reactive transport models often ignore the microbial effects or simulate the microbial effects with static growth yield and constant reaction rate parameters over simulated conditions, while in reality microorganisms can dynamically modify their functionality (such as utilization of alternative respiratory pathways) in response to spatial and temporal variations in environmental conditions. Constraint-based genome-scale microbial in silico models, using genomic data and multiple-pathway reaction networks, have been shown to be able to simulate transient metabolism of some well studied microorganisms and identify growth rate, substrate uptake rates, and byproduct rates under different growth conditions. These rates can be identified and used to replace specific microbially-mediated reaction rates in a reactive transport model using local geochemical conditions as constraints. We previously demonstrated the potential utility of integrating a constraint based microbial metabolism model with a reactive transport simulator as applied to bioremediation of uranium in groundwater. However, that work relied on an indirect coupling approach that was effective for initial demonstration but may not be extensible to more complex problems that are of significant interest (e.g., communities of microbial species, multiple constraining variables). Here, we extend that work by presenting and demonstrating a method of directly integrating a reactive transport model (FORTRAN code) with constraint-based in silico models solved with IBM ILOG CPLEX linear optimizer base system (C library). The models were integrated with BABEL, a language interoperability tool. The

  10. Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model.

    Fang, Yilin; Scheibe, Timothy D; Mahadevan, Radhakrishnan; Garg, Srinath; Long, Philip E; Lovley, Derek R

    2011-03-25

    The activity of microorganisms often plays an important role in dynamic natural attenuation or engineered bioremediation of subsurface contaminants, such as chlorinated solvents, metals, and radionuclides. To evaluate and/or design bioremediated systems, quantitative reactive transport models are needed. State-of-the-art reactive transport models often ignore the microbial effects or simulate the microbial effects with static growth yield and constant reaction rate parameters over simulated conditions, while in reality microorganisms can dynamically modify their functionality (such as utilization of alternative respiratory pathways) in response to spatial and temporal variations in environmental conditions. Constraint-based genome-scale microbial in silico models, using genomic data and multiple-pathway reaction networks, have been shown to be able to simulate transient metabolism of some well studied microorganisms and identify growth rate, substrate uptake rates, and byproduct rates under different growth conditions. These rates can be identified and used to replace specific microbially-mediated reaction rates in a reactive transport model using local geochemical conditions as constraints. We previously demonstrated the potential utility of integrating a constraint-based microbial metabolism model with a reactive transport simulator as applied to bioremediation of uranium in groundwater. However, that work relied on an indirect coupling approach that was effective for initial demonstration but may not be extensible to more complex problems that are of significant interest (e.g., communities of microbial species and multiple constraining variables). Here, we extend that work by presenting and demonstrating a method of directly integrating a reactive transport model (FORTRAN code) with constraint-based in silico models solved with IBM ILOG CPLEX linear optimizer base system (C library). The models were integrated with BABEL, a language interoperability tool. The

  11. Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model

    Fang, Yilin; Scheibe, Timothy D.; Mahadevan, Radhakrishnan; Garg, Srinath; Long, Philip E.; Lovley, Derek R.

    2011-03-01

    The activity of microorganisms often plays an important role in dynamic natural attenuation or engineered bioremediation of subsurface contaminants, such as chlorinated solvents, metals, and radionuclides. To evaluate and/or design bioremediated systems, quantitative reactive transport models are needed. State-of-the-art reactive transport models often ignore the microbial effects or simulate the microbial effects with static growth yield and constant reaction rate parameters over simulated conditions, while in reality microorganisms can dynamically modify their functionality (such as utilization of alternative respiratory pathways) in response to spatial and temporal variations in environmental conditions. Constraint-based genome-scale microbial in silico models, using genomic data and multiple-pathway reaction networks, have been shown to be able to simulate transient metabolism of some well studied microorganisms and identify growth rate, substrate uptake rates, and byproduct rates under different growth conditions. These rates can be identified and used to replace specific microbially-mediated reaction rates in a reactive transport model using local geochemical conditions as constraints. We previously demonstrated the potential utility of integrating a constraint-based microbial metabolism model with a reactive transport simulator as applied to bioremediation of uranium in groundwater. However, that work relied on an indirect coupling approach that was effective for initial demonstration but may not be extensible to more complex problems that are of significant interest (e.g., communities of microbial species and multiple constraining variables). Here, we extend that work by presenting and demonstrating a method of directly integrating a reactive transport model (FORTRAN code) with constraint-based in silico models solved with IBM ILOG CPLEX linear optimizer base system (C library). The models were integrated with BABEL, a language interoperability tool. The

  12. Direct calculation of ice homogeneous nucleation rate for a molecular model of water

    Haji-Akbari, Amir; Debenedetti, Pablo G.

    2015-01-01

    Ice formation is ubiquitous in nature, with important consequences in a variety of environments, including biological cells, soil, aircraft, transportation infrastructure, and atmospheric clouds. However, its intrinsic kinetics and microscopic mechanism are difficult to discern with current experiments. Molecular simulations of ice nucleation are also challenging, and direct rate calculations have only been performed for coarse-grained models of water. For molecular models, only indirect estimates have been obtained, e.g., by assuming the validity of classical nucleation theory. We use a path sampling approach to perform, to our knowledge, the first direct rate calculation of homogeneous nucleation of ice in a molecular model of water. We use TIP4P/Ice, the most accurate among existing molecular models for studying ice polymorphs. By using a novel topological approach to distinguish different polymorphs, we are able to identify a freezing mechanism that involves a competition between cubic and hexagonal ice in the early stages of nucleation. In this competition, the cubic polymorph takes over because the addition of new topological structural motifs consistent with cubic ice leads to the formation of more compact crystallites. This is not true for topological hexagonal motifs, which give rise to elongated crystallites that are not able to grow. This leads to transition states that are rich in cubic ice, and not the thermodynamically stable hexagonal polymorph. This mechanism provides a molecular explanation for the earlier experimental and computational observations of the preference for cubic ice in the literature. PMID:26240318

  13. Intraplate Crustal Deformation Within the Northern Sinai Microplate: Evidence from Paleomagnetic Directions and Mechanical Modeling

    Dembo, N.; Granot, R.; Hamiel, Y.

    2017-12-01

    The intraplate crustal deformation found in the northern part of the Sinai Microplate, located near the northern Dead Sea Fault plate boundary, is examined. Previous studies have suggested that distributed deformation in Lebanon is accommodated by regional uniform counterclockwise rigid block rotations. However, remanent magnetization directions observed near the Lebanese restraining bend are not entirely homogeneous suggesting that an unexplained and complex internal deformation pattern exists. In order to explain the variations in the amount of vertical-axis rotations we construct a mechanical model of the major active faults in the region that simulates the rotational deformation induced by motion along these faults. The rotational pattern calculated by the mechanical modeling predicts heterogeneous distribution of rotations around the faults. The combined rotation field that considers both the fault induced rotations and the already suggested regional block rotations stands in general agreement with the observed magnetization directions. Overall, the modeling results provide a more detailed and complete picture of the deformation pattern in this region and show that rotations induced by motion along the Dead Sea Fault act in parallel to rigid block rotations. Finally, the new modeling results unravel important insights as to the fashion in which crustal deformation is distributed within the northern part of the Sinai Microplate and propose an improved deformational mechanism that might be appropriate for other plate margins as well.

  14. Dynamics of the two-dimensional directed Ising model in the paramagnetic phase

    Godrèche, C.; Pleimling, M.

    2014-05-01

    We consider the nonconserved dynamics of the Ising model on the two-dimensional square lattice, where each spin is influenced preferentially by its east and north neighbours. The single-spin flip rates are such that the stationary state is Gibbsian with respect to the usual ferromagnetic Ising Hamiltonian. We show the existence, in the paramagnetic phase, of a dynamical transition between two regimes of violation of the fluctuation-dissipation theorem in the nonequilibrium stationary state: a regime of weak violation where the stationary fluctuation-dissipation ratio is finite, when the asymmetry parameter is less than a threshold value, and a regime of strong violation where this ratio vanishes asymptotically above the threshold. This study suggests that this novel kind of dynamical transition in nonequilibrium stationary states, already found for the directed Ising chain and the spherical model with asymmetric dynamics, might be quite general. In contrast with the latter models, the equal-time correlation function for the two-dimensional directed Ising model depends on the asymmetry.

  15. Assessing the direct effects of deep brain stimulation using embedded axon models

    Sotiropoulos, Stamatios N.; Steinmetz, Peter N.

    2007-06-01

    To better understand the spatial extent of the direct effects of deep brain stimulation (DBS) on neurons, we implemented a geometrically realistic finite element electrical model incorporating anisotropic and inhomogenous conductivities. The model included the subthalamic nucleus (STN), substantia nigra (SN), zona incerta (ZI), fields of Forel H2 (FF), internal capsule (IC) and Medtronic 3387/3389 electrode. To quantify the effects of stimulation, we extended previous studies by using multi-compartment axon models with geometry and orientation consistent with anatomical features of the brain regions of interest. Simulation of axonal firing produced a map of relative changes in axonal activation. Voltage-controlled stimulation, with clinically typical parameters at the dorso-lateral STN, caused axon activation up to 4 mm from the target. This activation occurred within the FF, IC, SN and ZI with current intensities close to the average injected during DBS (3 mA). A sensitivity analysis of model parameters (fiber size, fiber orientation, degree of inhomogeneity, degree of anisotropy, electrode configuration) revealed that the FF and IC were consistently activated. Direct activation of axons outside the STN suggests that other brain regions may be involved in the beneficial effects of DBS when treating Parkinsonian symptoms.

  16. Modeling of microstructure evolution in direct metal laser sintering: A phase field approach

    Nandy, Jyotirmoy; Sarangi, Hrushikesh; Sahoo, Seshadev

    2017-02-01

    Direct Metal Laser Sintering (DMLS) is a new technology in the field of additive manufacturing, which builds metal parts in a layer by layer fashion directly from the powder bed. The process occurs within a very short time period with rapid solidification rate. Slight variations in the process parameters may cause enormous change in the final build parts. The physical and mechanical properties of the final build parts are dependent on the solidification rate which directly affects the microstructure of the material. Thus, the evolving of microstructure plays a vital role in the process parameters optimization. Nowadays, the increase in computational power allows for direct simulations of microstructures during materials processing for specific manufacturing conditions. In this study, modeling of microstructure evolution of Al-Si-10Mg powder in DMLS process was carried out by using a phase field approach. A MATLAB code was developed to solve the set of phase field equations, where simulation parameters include temperature gradient, laser scan speed and laser power. The effects of temperature gradient on microstructure evolution were studied and found that with increase in temperature gradient, the dendritic tip grows at a faster rate.

  17. Revisiting directed flow in relativistic heavy-ion collisions from a multiphase transport model

    Guo, Chong-Qiang; Zhang, Chun-Jian [Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai (China); University of Chinese Academy of Sciences, Beijing (China); Xu, Jun [Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai (China)

    2017-12-15

    We have revisited several interesting questions on how the rapidity-odd directed flow is developed in relativistic {sup 197}Au + {sup 197}Au collisions at √(s{sub NN}) = 200 and 39 GeV based on a multiphase transport model. As the partonic phase evolves with time, the slope of the parton directed flow at midrapidity region changes from negative to positive as a result of the later dynamics at 200 GeV, while it remains negative at 39 GeV due to the shorter life time of the partonic phase. The directed flow splitting for various quark species due to their different initial eccentricities is observed at 39 GeV, while the splitting is very small at 200 GeV. From a dynamical coalescence algorithm with Wigner functions, we found that the directed flow of hadrons is a result of competition between the coalescence in momentum and coordinate space as well as further modifications by the hadronic rescatterings. (orig.)

  18. Analysis of the EU renewable energy directive by a techno-economic optimisation model

    Lind, Arne; Rosenberg, Eva; Seljom, Pernille; Espegren, Kari; Fidje, Audun; Lindberg, Karen

    2013-01-01

    The EU renewable energy (RES) directive sets a target of increasing the share of renewable energy used in the EU to 20% by 2020. The Norwegian goal for the share of renewable energy in 2020 is 67.5%, an increase from 60.1% in 2005. The Norwegian power production is almost solely based on renewable resources and the possibility to change from fossil power plants to renewable power production is almost non-existing. Therefore other measures have to be taken to fulfil the RES directive. Possible ways for Norway to reach its target for 2020 are analysed with a technology-rich, bottom-up energy system model (TIMES-Norway). This new model is developed with a high time resolution among others to be able to analyse intermittent power production. Model results indicate that the RES target can be achieved with a diversity of options including investments in hydropower, wind power, high-voltage power lines for export, various heat pump technologies, energy efficiency measures and increased use of biodiesel in the transportation sector. Hence, it is optimal to invest in a portfolio of technology choices in order to satisfy the RES directive, and not one single technology in one energy sector. - Highlights: • A new technology-rich, bottom-up energy system model is developed for Norway. • Possible ways for Norway to reach its renewable energy target for 2020 is analysed. • Results show that the renewable target can be achieved with a diversity of options. • The green certificate market contributes to increased investments in wind power

  19. Immune tolerance induction using fetal directed placental injection in rodent models: a murine model.

    Kei Takahashi

    Full Text Available Induction of the immune response is a major problem in replacement therapies for inherited protein deficiencies. Tolerance created in utero can facilitate postnatal treatment. In this study, we aimed to induce immune tolerance towards a foreign protein with early gestational cell transplantation into the chorionic villi under ultrasound guidance in the murine model.Pregnant C57BL/6 (B6 mice on day 10 of gestation were anesthetized and imaged by high resolution ultrasound. Murine embryos and their placenta were positioned to get a clear view in B-mode with power mode of the labyrinth, which is the equivalent of chorionic villi in the human. Bone marrow cells (BMCs from B6-Green Fluorescence Protein (B6GFP transgenic mice were injected into the fetal side of the placenta which includes the labyrinth with glass microcapillary pipettes. Each fetal mouse received 2 x 105 viable GFP-BMCs. After birth, we evaluated the humoral and cell-mediated immune response against GFP.Bone marrow transfer into fetal side of placenta efficiently distributed donor cells to the fetal mice. The survival rate of this procedure was 13.5%(5 out of 37. Successful engraftment of the B6-GFP donor skin grafts was observed in all recipient (5 out of 5 mice 6 weeks after birth. Induction of anti-GFP antibodies was completely inhibited. Cytotoxic immune reactivity of thymic cells against cells harboring GFP was suppressed by ELISPOT assay.In this study, we utilized early gestational placental injection targeting the murine fetus, to transfer donor cells carrying a foreign protein into the fetal circulation. This approach is sufficient to induce both humoral and cell-mediated immune tolerance against the foreign protein.

  20. Models of physician-patient relationships in pharmaceutical direct-to-consumer advertising and consumer interviews.

    Arney, Jennifer; Lewin, Benjamin

    2013-07-01

    The rise of direct-to-consumer advertising (DTCA) has mirrored, if not facilitated, the shift toward more active health care consumers. We used content analysis to identify models of physician-patient interaction in DTCA from the 1997 to 2006 issues of a broad sample of women's, men's, and common readership magazines. We also conducted 36 in-depth interviews to examine the ways consumers receive and regard advertising messages, and to explore their preferences for clinical communication and decision making. We identified four models of physician-patient relationships that vary in their locus of control (physician, patient, or shared) and the form of support sought or obtained in the relationship (emotional or instrumental). Whereas consumer interviews reflected references to all four models of interaction, only two appeared in DTCA. The limited range of interactions seen in these advertisements creates a lack of congruity between interaction styles found in advertisements vs. styles reported by actual consumers.

  1. Site selection and directional models of deserts used for ERBE validation targets

    Staylor, W. F.

    1986-01-01

    Broadband shortwave and longwave radiance measurements obtained from the Nimbus 7 Earth Radiation Budget scanner were used to develop reflectance and emittance models for the Sahara, Gibson, and Saudi Deserts. These deserts will serve as in-flight validation targets for the Earth Radiation Budget Experiment being flown on the Earth Radiation Budget Satellite and two National Oceanic and Atmospheric Administration polar satellites. The directional reflectance model derived for the deserts was a function of the sum and product of the cosines of the solar and viewing zenith angles, and thus reciprocity existed between these zenith angles. The emittance model was related by a power law of the cosine of the viewing zenith angle.

  2. Nonlocal electron transport: direct and Greens function solution and comparison of our model with the SNB model

    Colombant, Denis; Manheimer, Wallace; Schmitt, Andrew J.

    2013-10-01

    At least two models, ours and SNB (Schurtz-Nicolai-Busquet), and two methods of solution, direct numerical solution (DS) and Greens function (GF) are being used in multi-dimensional radiation hydrodynamics codes. We present results of a laser target implosion using both methods of solution. Although our model and SNB differ in some physical content, direct comparisons have been non-existent up to now. However a paper by Marocchino et al. has recently presented the results of two nanosecond-time-scale test problems, showing that the preheat calculated by the two models are different by about three orders of magnitude. We have rerun these problems and we find much less difference between the two than they do. One can show analytically that the results should be quite similar and are about an order of magnitude less than the maximum, and two orders of magnitude more than the minimum preheating in. We have been able to trace the somewhat different results back to the different physical assumptions made in each model. Work supported by DoE-NNSA and ONR.

  3. A Direct Simulation Monte Carlo Model Of Thermal Escape From Titan

    Johnson, Robert E.; Tucker, O. J.

    2008-09-01

    Recent analysis of density profiles vs. altitude from the Ion Neutral Mass Spectrometer (INMS) on Cassini (Waite et al. 2005) suggest Titan could have loss a significant amount of atmosphere in 4 Gyr at present escape rates (e.g., Johnson 2008). Strobel 2008 applied a slow hydrodynamic escape model to Titan's atmosphere using solar heating below the exobase to drive upward thermal conduction and power escape. However, near the exobase continuum models become problematic as a result of the increasing rarefaction in the atmosphere. The microscopic nature of DSMC is directly suitable to model atmosphere flow in nominal exobase region (e.g., Michael et. al. 2005). Our Preliminary DSMC models have shown no evidence for slow hydrodynamic escape of N2 and CH4 from Titan's atmosphere using boundary conditions normalized to the atmospheric properties in Strobel (2008). In this paper we use a 1D radial Direct Simulation Monte Carlo (DSMC) model of heating in Titan's upper atmosphere to estimate the escape rate as a function of the Jean's parameter. In this way we can test under what conditions the suggested deviations from Jeans escape would occur. In addition, we will be able to extract the necessary energy deposition to power the heavy molecule loss rates suggested in recent models (Strobel 2008; Yelle et. al. 2008). Michael, M. Johnson, R.E. 2005 Energy Deposition of pickup ions and heating of Titan's atmosphere. Planat. Sp. Sci. 53, 1510-1514 Johnson, R.E., "Sputtering and Heating of Titan's Upper Atmosphere", Proc Royal Soc. (London) (2008) Strobel, D.F. 2008 Titan's hydrodynamically escaping atmosphere. Icarus 193, 588-594 Yelle, R.V., J. Cui and I. C.F. Muller-Wodarg 2008 Methane Escape from Titan's Atmosphere. J. Geophys. Res in press Waite, J.H., Jr., Niemann, H.B., Yelle, R.V. et al. 2005 Ion Neutral Mass Spectrometer Results from the First Flyby of Titan. Science 308, 982-986

  4. A Method for Improving Hotspot Directional Signatures in BRDF Models Used for MODIS

    Jiao, Ziti; Schaaf, Crystal B.; Dong, Yadong; Roman, Miguel; Hill, Michael J.; Chen, Jing M.; Wang, Zhuosen; Zhang, Hu; Saenz, Edward; Poudyal, Rajesh; hide

    2016-01-01

    The semi-empirical, kernel-driven, linear RossThick-LiSparseReciprocal (RTLSR) Bidirectional Reflectance Distribution Function (BRDF) model is used to generate the routine MODIS BRDFAlbedo product due to its global applicability and the underlying physics. A challenge of this model in regard to surface reflectance anisotropy effects comes from its underestimation of the directional reflectance signatures near the Sun illumination direction; also known as the hotspot effect. In this study, a method has been developed for improving the ability of the RTLSR model to simulate the magnitude and width of the hotspot effect. The method corrects the volumetric scattering component of the RTLSR model using an exponential approximation of a physical hotspot kernel, which recreates the hotspot magnitude and width using two free parameters (C(sub 1) and C(sub 2), respectively). The approach allows one to reconstruct, with reasonable accuracy, the hotspot effect by adjusting or using the prior values of these two hotspot variables. Our results demonstrate that: (1) significant improvements in capturing hotspot effect can be made to this method by using the inverted hotspot parameters; (2) the reciprocal nature allow this method to be more adaptive for simulating the hotspot height and width with high accuracy, especially in cases where hotspot signatures are available; and (3) while the new approach is consistent with the heritage RTLSR model inversion used to estimate intrinsic narrowband and broadband albedos, it presents some differences for vegetation clumping index (CI) retrievals. With the hotspot-related model parameters determined a priori, this method offers improved performance for various ecological remote sensing applications; including the estimation of canopy structure parameters.

  5. Modelling soot formation from wall films in a gasoline direct injection engine using a detailed population balance model

    Wang, Buyu; Mosbach, Sebastian; Schmutzhard, Sebastian; Shuai, Shijin; Huang, Yaqing; Kraft, Markus

    2016-01-01

    Highlights: • Soot formation from a wall film in a GDI engine is simulated. • Spray impingement and wall film evaporation models are added to SRM Engine Suite. • Soot is modelled using a highly detailed population balance model. • Particle size distributions are measured experimentally. • Evolution of wall region is shown in equivalence ratio-temperature diagrams. - Abstract: In this study, soot formation in a Gasoline Direct Injection (GDI) engine is simulated using a Stochastic Reactor Model (SRM Engine Suite) which contains a detailed population balance soot model capable of describing particle morphology and chemical composition. In order to describe the soot formation originating from the wall film, the SRM Engine Suite is extended to include spray impingement and wall film evaporation models. The cylinder is divided into a wall and a bulk zone to resolve the equivalence ratio and temperature distributions of the mixture near the wall. The combustion chamber wall is assumed to exchange heat directly only with the wall zone. The turbulent mixing within each zone and between the two zones are simulated with different mixing models. The effects of key parameters on the temperature and equivalence ratio in the two zones are investigated. The mixing rate between the wall and bulk zone has a significant effect on the wall zone, whilst the mixing rate in the wall zone only has a negligible impact on the temperature and equivalence ratio below a certain threshold. Experimental data are obtained from a four-cylinder, gasoline-fuelled direct injection spark ignition engine operated stoichiometrically. An injection timing sweep, ranging from 120 CAD BTDC to 330 CAD BTDC, is conducted in order to investigate the effect of spray impingement on soot formation. The earliest injection case (330 CAD BTDC), which produces significantly higher levels of particle emissions than any other case, is simulated by the current model. It is found that the in-cylinder pressure

  6. 3D Monte Carlo model with direct photon flux recording for optimal optogenetic light delivery

    Shin, Younghoon; Kim, Dongmok; Lee, Jihoon; Kwon, Hyuk-Sang

    2017-02-01

    Configuring the light power emitted from the optical fiber is an essential first step in planning in-vivo optogenetic experiments. However, diffusion theory, which was adopted for optogenetic research, precluded accurate estimates of light intensity in the semi-diffusive region where the primary locus of the stimulation is located. We present a 3D Monte Carlo model that provides an accurate and direct solution for light distribution in this region. Our method directly records the photon trajectory in the separate volumetric grid planes for the near-source recording efficiency gain, and it incorporates a 3D brain mesh to support both homogeneous and heterogeneous brain tissue. We investigated the light emitted from optical fibers in brain tissue in 3D, and we applied the results to design optimal light delivery parameters for precise optogenetic manipulation by considering the fiber output power, wavelength, fiber-to-target distance, and the area of neural tissue activation.

  7. Directional Congestion and Regime Switching in a Long Memory Model for Electricity Prices

    Haldrup, Niels; Nielsen, Morten Ø.

    The functioning of electricity markets has experienced increasing complexityas a result of deregulation in recent years. Consequently this affects the multilateral price behaviour across regions with physical exchange of power. It has been documented elsewhere that features such aslong memory...... and regime switching reflecting congestion and non-congestion periods are empirically relevant and hence are features that need to be taken into account when modeling price behavior. In the present paper we further elaborate on the co-existence of long memory and regime switches by focusing on the effect...... that the direction of possible congestion episodes has on the price dynamics. Under non-congestion prices are identical. The direction of possible congestion is identified by the region with excess demand of power through the sign of price differences and hence three different states can be considered: Non...

  8. Transport phenomena and fouling in vacuum enhanced direct contact membrane distillation: Experimental and modelling

    Naidu, Gayathri

    2016-08-27

    The application of vacuum to direct contact membrane distillation (vacuum enhanced direct contact membrane distillation, V-DCMD) removed condensable gasses and reduced partial pressure in the membrane pores, achieving 37.6% higher flux than DCMD at the same feed temperature. Transfer mechanism and temperature distribution profile in V-DCMD were studied. The empirical flux decline (EFD) model represented fouling profiles of V-DCMD. In a continuous V-DCMD operation with moderate temperature (55 degrees C) and permeate pressure (300 mbar) for treating wastewater ROC, a flux of 16.0 +/- 0.3 L/m(2) h and high quality distillate were achieved with water flushing, showing the suitability of V-DCMD for ROC treatment. (C) 2016 Elsevier B.V. All rights reserved.

  9. Transport phenomena and fouling in vacuum enhanced direct contact membrane distillation: Experimental and modelling

    Naidu, Gayathri; Shim, Wang Geun; Jeong, Sanghyun; Choi, YoungKwon; Ghaffour, NorEddine; Vigneswaran, Saravanamuthu

    2016-01-01

    The application of vacuum to direct contact membrane distillation (vacuum enhanced direct contact membrane distillation, V-DCMD) removed condensable gasses and reduced partial pressure in the membrane pores, achieving 37.6% higher flux than DCMD at the same feed temperature. Transfer mechanism and temperature distribution profile in V-DCMD were studied. The empirical flux decline (EFD) model represented fouling profiles of V-DCMD. In a continuous V-DCMD operation with moderate temperature (55 degrees C) and permeate pressure (300 mbar) for treating wastewater ROC, a flux of 16.0 +/- 0.3 L/m(2) h and high quality distillate were achieved with water flushing, showing the suitability of V-DCMD for ROC treatment. (C) 2016 Elsevier B.V. All rights reserved.

  10. Thermomechanical Modelling of Direct-Drive Friction Welding Applying a Thermal Pseudo Mechanical Model for the Generation of Heat

    Sonne, Mads Rostgaard; Hattel, Jesper Henri

    2018-01-01

    In the present work a 2D a xisymmetric thermomechanical model of the direct-drive friction welding process is developed, taking the temperature dependent shear yield stress into account in the description of the heat generation, utilizing a recent thermal pseudo mechanical model originally...... developed for the friction stir welding (FSW) process. The model is implemented in ABAQUS/Explicit via a subroutine. The application in this case is joining of austenitic stainless steel rods with an outer diameter of 112 mm, used for manufacturing of exhaust gas valves for large two stroke marine engines....... The material properties in terms of the temperature dependent flowstress curves used both in the thermal and the mechanical constitutive description are extracted from compression tests performed between 20 °C and 1200 °C on a Gleeble 1500 thermomechanical simulator. Comparison between measured and simulated...

  11. A mathematical model for eph/ephrin-directed segregation of intermingled cells.

    Rotem Aharon

    Full Text Available Eph receptors, the largest family of receptor tyrosine kinases, control cell-cell adhesion/de-adhesion, cell morphology and cell positioning through interaction with cell surface ephrin ligands. Bi-directional signalling from the Eph and ephrin complexes on interacting cells have a significant role in controlling normal tissue development and oncogenic tissue patterning. Eph-mediated tissue patterning is based on the fine-tuned balance of adhesion and de-adhesion reactions between distinct Eph- and ephrin-expressing cell populations, and adhesion within like populations (expressing either Eph or ephrin. Here we develop a stochastic, Lagrangian model that is based on Eph/ephrin biology: incorporating independent Brownian motion to describe cell movement and a deterministic term (the drift term to represent repulsive and adhesive interactions between neighbouring cells. Comparison between the experimental and computer simulated Eph/ephrin cell patterning events shows that the model recapitulates the dynamics of cell-cell segregation and cell cluster formation. Moreover, by modulating the term for Eph/ephrin-mediated repulsion, the model can be tuned to match the actual behaviour of cells with different levels of Eph expression or activity. Together the results of our experiments and modelling suggest that the complexity of Eph/ephrin signalling mechanisms that control cell-cell interactions can be described well by a mathematical model with a single term balancing adhesion and de-adhesion between interacting cells. This model allows reliable prediction of Eph/ephrin-dependent control of cell patterning behaviour.

  12. Modelling Geomechanical Heterogeneity of Rock Masses Using Direct and Indirect Geostatistical Conditional Simulation Methods

    Eivazy, Hesameddin; Esmaieli, Kamran; Jean, Raynald

    2017-12-01

    An accurate characterization and modelling of rock mass geomechanical heterogeneity can lead to more efficient mine planning and design. Using deterministic approaches and random field methods for modelling rock mass heterogeneity is known to be limited in simulating the spatial variation and spatial pattern of the geomechanical properties. Although the applications of geostatistical techniques have demonstrated improvements in modelling the heterogeneity of geomechanical properties, geostatistical estimation methods such as Kriging result in estimates of geomechanical variables that are not fully representative of field observations. This paper reports on the development of 3D models for spatial variability of rock mass geomechanical properties using geostatistical conditional simulation method based on sequential Gaussian simulation. A methodology to simulate the heterogeneity of rock mass quality based on the rock mass rating is proposed and applied to a large open-pit mine in Canada. Using geomechanical core logging data collected from the mine site, a direct and an indirect approach were used to model the spatial variability of rock mass quality. The results of the two modelling approaches were validated against collected field data. The study aims to quantify the risks of pit slope failure and provides a measure of uncertainties in spatial variability of rock mass properties in different areas of the pit.

  13. An atomic model of brome mosaic virus using direct electron detection and real-space optimization

    Wang, Zhao; Hryc, Corey F.; Bammes, Benjamin; Afonine, Pavel V.; Jakana, Joanita; Chen, Dong-Hua; Liu, Xiangan; Baker, Matthew L.; Kao, Cheng; Ludtke, Steven J.; Schmid, Michael F.; Adams, Paul D.; Chiu, Wah

    2014-09-01

    Advances in electron cryo-microscopy have enabled structure determination of macromolecules at near-atomic resolution. However, structure determination, even using de novo methods, remains susceptible to model bias and overfitting. Here we describe a complete workflow for data acquisition, image processing, all-atom modelling and validation of brome mosaic virus, an RNA virus. Data were collected with a direct electron detector in integrating mode and an exposure beyond the traditional radiation damage limit. The final density map has a resolution of 3.8 Å as assessed by two independent data sets and maps. We used the map to derive an all-atom model with a newly implemented real-space optimization protocol. The validity of the model was verified by its match with the density map and a previous model from X-ray crystallography, as well as the internal consistency of models from independent maps. This study demonstrates a practical approach to obtain a rigorously validated atomic resolution electron cryo-microscopy structure.

  14. A multiphysics and multiscale model for low frequency electromagnetic direct-chill casting

    Košnik, N; Guštin, A Z; Mavrič, B; Šarler, B

    2016-01-01

    Simulation and control of macrosegregation, deformation and grain size in low frequency electromagnetic (EM) direct-chill casting (LFEMC) is important for downstream processing. Respectively, a multiphysics and multiscale model is developed for solution of Lorentz force, temperature, velocity, concentration, deformation and grain structure of LFEMC processed aluminum alloys, with focus on axisymmetric billets. The mixture equations with lever rule, linearized phase diagram, and stationary thermoelastic solid phase are assumed, together with EM induction equation for the field imposed by the coil. Explicit diffuse approximate meshless solution procedure [1] is used for solving the EM field, and the explicit local radial basis function collocation method [2] is used for solving the coupled transport phenomena and thermomechanics fields. Pressure-velocity coupling is performed by the fractional step method [3]. The point automata method with modified KGT model is used to estimate the grain structure [4] in a post-processing mode. Thermal, mechanical, EM and grain structure outcomes of the model are demonstrated. A systematic study of the complicated influences of the process parameters can be investigated by the model, including intensity and frequency of the electromagnetic field. The meshless solution framework, with the implemented simplest physical models, will be further extended by including more sophisticated microsegregation and grain structure models, as well as a more realistic solid and solid-liquid phase rheology. (paper)

  15. Dynamical response of the magnetotail to changes of the solar wind direction: an MHD modeling perspective

    V. A. Sergeev

    2008-08-01

    Full Text Available We performed global MHD simulations to investigate the magnetotail response to the solar wind directional changes (Vz-variations. These changes, although small, cause significant variations of the neutral sheet shape and location even in the near and middle tail regions. They display a complicated temporal response, in which ~60 to 80% of the final shift of the neutral sheet in Z direction occurs within first 10–15 min (less for faster solar wind, whereas a much longer time (exceeding half hour is required to reach a new equilibrium. The asymptotic equilibrium shape of the simulated neutral sheet is consistent with predictions of Tsyganenko-Fairfield (2004 empirical model. To visualize a physical origin of the north-south tail motion we compared the values of the total pressure in the northern and southern tail lobes and found a considerable difference (10–15% for only 6° change of the solar wind direction used in the simulation. That difference builds up during the passage of the solar wind directional discontinuity and is responsible for the vertical shift of the neutral sheet, although some pressure difference remains in the near tail even near the new equilibrium. Surprisingly, at a given tailward distance, the response was found to be first initiated in the tail center (the "leader effect", rather than near the flanks, which can be explained by the wave propagation in the tail, and which may have interesting implications for the substorm triggering studies. The present results have serious implications for the data-based modeling, as they place constraints on the accuracy of tail magnetic configurations to be derived for specific events using data of multi-spacecraft missions, e.g. such as THEMIS.

  16. State-of-the-art and needs for jet instability and direct contact condensation model improvements

    Bousbia-Salah, A.; Moretti, F.; D'auria, F.; Bousbia-Salah, A.)

    2007-01-01

    There is a common understanding among thermal-hydraulic experts that the system analysis codes have currently reached an acceptable degree of maturity. Reliable application, however, is still limited to the validated domain. There is a growing need for qualified codes in assessing the safety of the existing reactors and for developing advanced reactor systems. Under conditions involving multi-phase flow simulations, the use of classical methods, mainly based upon the one dimensional approach, is not appropriate at all. The use of new computational models, such as the direct numerical simulation, large-eddy simulation or other advanced computational fluid dynamics methods, seems to be more suitable for more complex events. For this purpose, the European Commission financed NURESIM Integrated Project (as a part of the FP6 programme), was adopted to provide the initial step towards a Common European Standard Software Platform for modelling, recording and recovering computer data for nuclear reactor simulations. Some of the studies carried out at the University of Pisa within the framework of the NURESIM project are presented in this paper. They mainly concern the investigation of two critical phenomena connected with jet instabilities and direct contact condensation that occur during emergency core cooling. Through these examples, the state-of-the-art and the need for model improvements and validation against new experimental data for the sake of getting a better understanding and more accurate predictions are discussed. (author)

  17. Characterisation and modelling of defect formation in direct-chill cast AZ80 alloy

    Mackie, D.; Robson, J.D.; Withers, P.J. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Turski, M. [Magnesium Elektron UK, Rake Lane, Manchester, M27 8BF (United Kingdom)

    2015-06-15

    Wrought magnesium alloys for demanding structural applications require high quality defect free cast feedstock. The aim of this study was to first identify and characterise typical defects in direct chill cast magnesium–aluminium–zinc (AZ) alloy billet and then use modelling to understand the origins of these defects so they can be prevented. Defects were first located using ultrasonic inspection and were then characterised using X-ray computed tomography (XCT) and serial sectioning, establishing the presence of oxide films and intermetallic particles Al{sub 8}Mn{sub 5} in all defects. A model was developed to predict the flow patterns and growth kinetics of the intermetallic phases during casting, which influence the formation of defects. Simulation of the growth of the intermetallic particles demonstrated that precipitation from the liquid occurs in the mould. The combination of the entrained oxide films and intermetallic particles recirculates in the liquid metal and continues to grow, until large enough to settle, which is predicted to occur at the centre of the mould where the flow is the slowest. Based on these predictions, strategies to reduce the susceptibility to defect formation are suggested. - Highlights: • Casting defects in magnesium direct chill casting have been imaged and characterised in 3-dimensions. • The occurrences of co-located clusters of particles and oxide films have been characterised and explained. • A coupled model has been developed to help interpret the observed trend for defects located towards the centre of billets.

  18. Dynamic exposure model analysis of continuous laser direct writing in Polar-coordinate

    Zhang, Shan; Lv, Yingjun; Mao, Wenjie

    2018-01-01

    In order to exactly predict the continuous laser direct writing quality in Polar-coordinate, we take into consideration the effect of the photoresist absorbing beam energy, the Gaussian attribute of the writing beam and the dynamic exposure process, and establish a dynamic exposure model to describe the influence of the tangential velocity of the normal incident facular center and laser power on the line width and sidewall angle. Numerical simulation results indicate that while writing velocity remains unchanged, the line width and sidewall angle are all increased as the laser power increases; while laser power remains unchanged, the line width and sidewall angle are all decreased as the writing velocity increases; at the same time the line profile in the exposure section is asymmetry and the center of the line has tiny excursion toward the Polar-coordinate origin compared with the facular center. Then it is necessary to choose the right writing velocity and laser power to obtain the ideal line profile. The model makes up the shortcomings of traditional models that can only predict line width or estimate the profile of the writing line in the absence of photoresist absorption, and can be considered as an effect analysis method for optimizing the parameters of fabrication technique of laser direct writing.

  19. Direct cell writing of 3D microorgan for in vitro pharmacokinetic model.

    Chang, Robert; Nam, Jae; Sun, Wei

    2008-06-01

    A novel targeted application of tissue engineering is the development of an in vitro pharmacokinetic model for drug screening and toxicology. An in vitro pharmacokinetic model is needed to realistically and reliably predict in vivo human response to drug administrations and potential toxic exposures. This paper details the fabrication process development and adaptation of microfluidic devices for the creation of such a physiologically relevant pharmacokinetic model. First, an automated syringe-based, layered direct cell writing (DCW) bioprinting process creates a 3D microorgan that biomimics the cell's natural microenvironment with enhanced functionality. Next, soft lithographic micropatterning techniques are used to fabricate a microscale in vitro device to house the 3D microorgan. This paper demonstrates the feasibility of the DCW process for freeform biofabrication of 3D cell-encapsulated hydrogel-based tissue constructs with defined reproducible patterns, direct integration of 3D constructs onto a microfluidic device for continuous perfusion drug flow, and characterization of 3D tissue constructs with predictable cell viability/proliferation outcomes and enhanced functionality over traditional culture methods.

  20. Characterisation and modelling of defect formation in direct-chill cast AZ80 alloy

    Mackie, D.; Robson, J.D.; Withers, P.J.; Turski, M.

    2015-01-01

    Wrought magnesium alloys for demanding structural applications require high quality defect free cast feedstock. The aim of this study was to first identify and characterise typical defects in direct chill cast magnesium–aluminium–zinc (AZ) alloy billet and then use modelling to understand the origins of these defects so they can be prevented. Defects were first located using ultrasonic inspection and were then characterised using X-ray computed tomography (XCT) and serial sectioning, establishing the presence of oxide films and intermetallic particles Al 8 Mn 5 in all defects. A model was developed to predict the flow patterns and growth kinetics of the intermetallic phases during casting, which influence the formation of defects. Simulation of the growth of the intermetallic particles demonstrated that precipitation from the liquid occurs in the mould. The combination of the entrained oxide films and intermetallic particles recirculates in the liquid metal and continues to grow, until large enough to settle, which is predicted to occur at the centre of the mould where the flow is the slowest. Based on these predictions, strategies to reduce the susceptibility to defect formation are suggested. - Highlights: • Casting defects in magnesium direct chill casting have been imaged and characterised in 3-dimensions. • The occurrences of co-located clusters of particles and oxide films have been characterised and explained. • A coupled model has been developed to help interpret the observed trend for defects located towards the centre of billets

  1. Research Capabilities Directed to all Electric Engineering Teachers, from an Alternative Energy Model

    Víctor Hugo Ordóñez Navea

    2017-08-01

    Full Text Available The purpose of this work was to contemplate research capabilities directed to all electric engineering teachers from an alternative energy model intro the explanation of a semiconductor in the National Training Program in Electricity. Some authors, such as. Vidal (2016, Atencio (2014 y Camilo (2012 point out to technological applications with semiconductor electrical devices. In this way; a diagnostic phase is presented, held on this field research as a descriptive type about: a how to identify the necessities of alternative energies, and b The research competences in the alternatives energies of researcher from a solar cell model, to boost and innovate the academic praxis and technologic ingenuity. Themselves was applied a survey for a group of 15 teachers in the National Program of Formation in electricity to diagnose the deficiencies in the research area of alternatives energies. The process of data analysis was carried out through descriptive statistic. Later the conclusions are presented the need to generate strategies for stimulate and propose exploration of alternatives energies to the development of research competences directed to the teachers of electrical engineering for develop the research competences in the enforcement of the teachers exercise for the electric engineering, from an alternative energy model and boost the technologic research in the renewal energies field.

  2. The green electricity market model. Proposal for an optional, cost-neutral direct marketing model for supplying electricity customers

    Heinemann, Ronald

    2014-01-01

    One of the main goals of the Renewable Energy Law (EEG) is the market integration of renewable energy resources. For this purpose it has introduced compulsory direct marketing on the basis of a moving market premium. At the same time the green electricity privilege, a regulation which made it possible for customers to be supplied with electricity from EEG plants, has been abolished without substitution with effect from 1 August 2014. This means that, aside from other direct marketing channels, which will not be economically viable save for in a few exceptional cases, it will no longer be possible in future to sell electricity from EEG plants to electricity customers under the designation ''electricity from renewable energy''. The reason for this is that electricity sold under the market premium model can no longer justifiably be said to originate from renewable energy. As a consequence, almost all green electricity products sold in Germany carry a foreign green electricity certificate.

  3. Modelled radiative forcing of the direct aerosol effect with multi-observation evaluation

    G. Myhre

    2009-02-01

    Full Text Available A high-resolution global aerosol model (Oslo CTM2 driven by meteorological data and allowing a comparison with a variety of aerosol observations is used to simulate radiative forcing (RF of the direct aerosol effect. The model simulates all main aerosol components, including several secondary components such as nitrate and secondary organic carbon. The model reproduces the main chemical composition and size features observed during large aerosol campaigns. Although the chemical composition compares best with ground-based measurement over land for modelled sulphate, no systematic differences are found for other compounds. The modelled aerosol optical depth (AOD is compared to remote sensed data from AERONET ground and MODIS and MISR satellite retrievals. To gain confidence in the aerosol modelling, we have tested its ability to reproduce daily variability in the aerosol content, and this is performing well in many regions; however, we also identified some locations where model improvements are needed. The annual mean regional pattern of AOD from the aerosol model is broadly similar to the AERONET and the satellite retrievals (mostly within 10–20%. We notice a significant improvement from MODIS Collection 4 to Collection 5 compared to AERONET data. Satellite derived estimates of aerosol radiative effect over ocean for clear sky conditions differs significantly on regional scales (almost up to a factor two, but also in the global mean. The Oslo CTM2 has an aerosol radiative effect close to the mean of the satellite derived estimates. We derive a radiative forcing (RF of the direct aerosol effect of −0.35 Wm−2 in our base case. Implementation of a simple approach to consider internal black carbon (BC mixture results in a total RF of −0.28 Wm−2. Our results highlight the importance of carbonaceous particles, producing stronger individual RF than considered in the recent IPCC estimate; however, net RF is less different

  4. Performance analysis and comparison of a minimum interconnections direct storage model with traditional neural bidirectional memories.

    Bhatti, A Aziz

    2009-12-01

    This study proposes an efficient and improved model of a direct storage bidirectional memory, improved bidirectional associative memory (IBAM), and emphasises the use of nanotechnology for efficient implementation of such large-scale neural network structures at a considerable lower cost reduced complexity, and less area required for implementation. This memory model directly stores the X and Y associated sets of M bipolar binary vectors in the form of (MxN(x)) and (MxN(y)) memory matrices, requires O(N) or about 30% of interconnections with weight strength ranging between +/-1, and is computationally very efficient as compared to sequential, intraconnected and other bidirectional associative memory (BAM) models of outer-product type that require O(N(2)) complex interconnections with weight strength ranging between +/-M. It is shown that it is functionally equivalent to and possesses all attributes of a BAM of outer-product type, and yet it is simple and robust in structure, very large scale integration (VLSI), optical and nanotechnology realisable, modular and expandable neural network bidirectional associative memory model in which the addition or deletion of a pair of vectors does not require changes in the strength of interconnections of the entire memory matrix. The analysis of retrieval process, signal-to-noise ratio, storage capacity and stability of the proposed model as well as of the traditional BAM has been carried out. Constraints on and characteristics of unipolar and bipolar binaries for improved storage and retrieval are discussed. The simulation results show that it has log(e) N times higher storage capacity, superior performance, faster convergence and retrieval time, when compared to traditional sequential and intraconnected bidirectional memories.

  5. Load Torque Compensator for Model Predictive Direct Current Control in High Power PMSM Drive Systems

    Preindl, Matthias; Schaltz, Erik

    2011-01-01

    The widely used cascade speed and torque controllers have a limited control performance in most high power applications due to the low switching frequency of power electronic converters and the convenience to avoid speed overshoots and oscillations for lifetime considerations. Model Predictive...... Direct Current Control (MPDCC) leads to an increase of torque control performance taking into account the discrete nature of inverters but temporary offsets and poor responses to load torque variations are still issues in speed control. A load torque estimator is proposed in this paper in order...

  6. Load Torque Compensator for Model Predictive Direct Current Control in High Power PMSM Drive Systems

    Preindl, Matthias; Schaltz, Erik

    2010-01-01

    In drive systems the most used control structure is the cascade control with an inner torque, i.e. current and an outer speed control loop. The fairly small converter switching frequency in high power applications, e.g. wind turbines lead to modest speed control performance. An improvement bring...... the use of a current controller which takes into account the discrete states of the inverter, e.g. DTC or a more modern approach: Model Predictive Direct Current Control (MPDCC). Moreover overshoots and oscillations in the speed are not desired in many applications, since they lead to mechanical stress...

  7. Estimation of direct effects for survival data by using the Aalen additive hazards model

    Martinussen, Torben; Vansteelandt, Stijn; Gerster, Mette

    2011-01-01

    We extend the definition of the controlled direct effect of a point exposure on a survival outcome, other than through some given, time-fixed intermediate variable, to the additive hazard scale. We propose two-stage estimators for this effect when the exposure is dichotomous and randomly assigned...... Aalen's additive regression for the event time, given exposure, intermediate variable and confounders. The second stage involves applying Aalen's additive model, given the exposure alone, to a modified stochastic process (i.e. a modification of the observed counting process based on the first...

  8. Evaluation of the wind direction uncertainty and its impact on wake modeling at the Horns Rev offshore wind farm

    Gaumond, M.; Réthoré, Pierre-Elouan; Ott, Søren

    2014-01-01

    of the wind direction inside the wind farm and the variability of the wind direction within the averaging period. The results show that the technique corrects the predictions of the models when the simulations and data are averaged over narrow wind direction sectors. In addition, the agreement of the shape...... of the power deficit in a single wake situation is improved. The robustness of the method is verified using the Jensen model, the Larsen model and Fuga, which are three different engineering wake models. The results indicate that the discrepancies between the traditional numerical simulations and power...... production data for narrow wind direction sectors are not caused by an inherent inaccuracy of the current wake models, but rather by the large wind direction uncertainty included in the dataset. The technique can potentially improve wind farm control algorithms and layout optimization because both...

  9. Sensitivity of tsunami evacuation modeling to direction and land cover assumptions

    Schmidtlein, Mathew C.; Wood, Nathan J.

    2015-01-01

    Although anisotropic least-cost-distance (LCD) modeling is becoming a common tool for estimating pedestrian-evacuation travel times out of tsunami hazard zones, there has been insufficient attention paid to understanding model sensitivity behind the estimates. To support tsunami risk-reduction planning, we explore two aspects of LCD modeling as it applies to pedestrian evacuations and use the coastal community of Seward, Alaska, as our case study. First, we explore the sensitivity of modeling to the direction of movement by comparing standard safety-to-hazard evacuation times to hazard-to-safety evacuation times for a sample of 3985 points in Seward's tsunami-hazard zone. Safety-to-hazard evacuation times slightly overestimated hazard-to-safety evacuation times but the strong relationship to the hazard-to-safety evacuation times, slightly conservative bias, and shorter processing times of the safety-to-hazard approach make it the preferred approach. Second, we explore how variations in land cover speed conservation values (SCVs) influence model performance using a Monte Carlo approach with one thousand sets of land cover SCVs. The LCD model was relatively robust to changes in land cover SCVs with the magnitude of local model sensitivity greatest in areas with higher evacuation times or with wetland or shore land cover types, where model results may slightly underestimate travel times. This study demonstrates that emergency managers should be concerned not only with populations in locations with evacuation times greater than wave arrival times, but also with populations with evacuation times lower than but close to expected wave arrival times, particularly if they are required to cross wetlands or beaches.

  10. Crowd of individuals walking in opposite directions. A toy model to study the segregation of the group into lanes of individuals moving in the same direction

    Goldsztein, Guillermo H.

    2017-08-01

    Consider a corridor, street or bridge crowded with pedestrians walking in both directions. The individuals do not walk in a completely straight line. They adjust their path to avoid colliding with incoming pedestrians. As a result of these adjustments, the whole group sometimes end up split into lanes of individuals moving in the same direction. While this formation of lanes facilitates the flow and benefits the whole group, it is believed that results from the actions of the individuals acting only on their behalf, without considering others. This phenomenon is an example of self-organization. We analyze a simple model. We assume that individuals move around a two-lane circular track. All of them at the same speed. Half of them in one direction and the rest in the opposite direction. Each time two individuals collide, one of them moves to the other lane. The individual changing lanes is selected randomly. The system self-organizes. Eventually each lane is occupied with individuals moving in only one direction. We show that the time required for the system to self-organize is bounded by a linear function on the number of individuals. This toy model provides an example where global self-organization occurs even though each member of the group acts without considering the rest.

  11. Polarization leakage in epoch of reionization windows - II. Primary beam model and direction-dependent calibration

    Asad, K. M. B.; Koopmans, L. V. E.; Jelić, V.; Ghosh, A.; Abdalla, F. B.; Brentjens, M. A.; de Bruyn, A. G.; Ciardi, B.; Gehlot, B. K.; Iliev, I. T.; Mevius, M.; Pandey, V. N.; Yatawatta, S.; Zaroubi, S.

    2016-11-01

    Leakage of diffuse polarized emission into Stokes I caused by the polarized primary beam of the instrument might mimic the spectral structure of the 21-cm signal coming from the epoch of reionization (EoR) making their separation difficult. Therefore, understanding polarimetric performance of the antenna is crucial for a successful detection of the EoR signal. Here, we have calculated the accuracy of the nominal model beam of Low Frequency ARray (LOFAR) in predicting the leakage from Stokes I to Q, U by comparing them with the corresponding leakage of compact sources actually observed in the 3C 295 field. We have found that the model beam has errors of ≤10 per cent on the predicted levels of leakage of ˜1 per cent within the field of view, I.e. if the leakage is taken out perfectly using this model the leakage will reduce to 10-3 of the Stokes I flux. If similar levels of accuracy can be obtained in removing leakage from Stokes Q, U to I, we can say, based on the results of our previous paper, that the removal of this leakage using this beam model would ensure that the leakage is well below the expected EoR signal in almost the whole instrumental k-space of the cylindrical power spectrum. We have also shown here that direction-dependent calibration can remove instrumentally polarized compact sources, given an unpolarized sky model, very close to the local noise level.

  12. Advancing predictive models for particulate formation in turbulent flames via massively parallel direct numerical simulations

    Bisetti, Fabrizio

    2014-07-14

    Combustion of fossil fuels is likely to continue for the near future due to the growing trends in energy consumption worldwide. The increase in efficiency and the reduction of pollutant emissions from combustion devices are pivotal to achieving meaningful levels of carbon abatement as part of the ongoing climate change efforts. Computational fluid dynamics featuring adequate combustion models will play an increasingly important role in the design of more efficient and cleaner industrial burners, internal combustion engines, and combustors for stationary power generation and aircraft propulsion. Today, turbulent combustion modelling is hindered severely by the lack of data that are accurate and sufficiently complete to assess and remedy model deficiencies effectively. In particular, the formation of pollutants is a complex, nonlinear and multi-scale process characterized by the interaction of molecular and turbulent mixing with a multitude of chemical reactions with disparate time scales. The use of direct numerical simulation (DNS) featuring a state of the art description of the underlying chemistry and physical processes has contributed greatly to combustion model development in recent years. In this paper, the analysis of the intricate evolution of soot formation in turbulent flames demonstrates how DNS databases are used to illuminate relevant physico-chemical mechanisms and to identify modelling needs. © 2014 The Author(s) Published by the Royal Society.

  13. Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions

    Mafakheri, Fereshteh; Nasiri, Fuzhan

    2014-01-01

    Reducing dependency on fossil fuels and mitigating their environmental impacts are among the most promising aspects of utilizing renewable energy sources. The availability of various biomass resources has made it an appealing source of renewable energy. Given the variability of supply and sources of biomass, supply chains play an important role in the efficient provisioning of biomass resources for energy production. This paper provides a comprehensive review and classification of the excising literature in modeling of biomass supply chain operations while linking them to the wider strategic challenges and issues with the design, planning and management of biomass supply chains. On that basis, we will present an analysis of the existing gaps and the potential future directions for research in modeling of biomass supply chain operations. - Highlights: • An extensive review of biomass supply chain operations management models presented in the literature is provided. • The models are classified in line with biomass supply chain activities from harvesting to conversion. • The issues surrounding biomass supply chains are investigated manifesting the need to novel modeling approaches. • Our gap analysis has identified a number of existing shortcomings and opportunities for future research

  14. Dynamic modeling and experimental validation for direct contact membrane distillation (DCMD) process

    Eleiwi, Fadi

    2016-02-01

    This work proposes a mathematical dynamic model for the direct contact membrane distillation (DCMD) process. The model is based on a 2D Advection–Diffusion Equation (ADE), which describes the heat and mass transfer mechanisms that take place inside the DCMD module. The model studies the behavior of the process in the time varying and the steady state phases, contributing to understanding the process performance, especially when it is driven by intermittent energy supply, such as the solar energy. The model is experimentally validated in the steady state phase, where the permeate flux is measured for different feed inlet temperatures and the maximum absolute error recorded is 2.78 °C. Moreover, experimental validation includes the time variation phase, where the feed inlet temperature ranges from 30 °C to 75 °C with 0.1 °C increment every 2min. The validation marks relative error to be less than 5%, which leads to a strong correlation between the model predictions and the experiments.

  15. Stationarity test with a direct test for heteroskedasticity in exchange rate forecasting models

    Khin, Aye Aye; Chau, Wong Hong; Seong, Lim Chee; Bin, Raymond Ling Leh; Teng, Kevin Low Lock

    2017-05-01

    Global economic has been decreasing in the recent years, manifested by the greater exchange rates volatility on international commodity market. This study attempts to analyze some prominent exchange rate forecasting models on Malaysian commodity trading: univariate ARIMA, ARCH and GARCH models in conjunction with stationarity test on residual diagnosis direct testing of heteroskedasticity. All forecasting models utilized the monthly data from 1990 to 2015. Given a total of 312 observations, the data used to forecast both short-term and long-term exchange rate. The forecasting power statistics suggested that the forecasting performance of ARIMA (1, 1, 1) model is more efficient than the ARCH (1) and GARCH (1, 1) models. For ex-post forecast, exchange rate was increased from RM 3.50 per USD in January 2015 to RM 4.47 per USD in December 2015 based on the baseline data. For short-term ex-ante forecast, the analysis results indicate a decrease in exchange rate on 2016 June (RM 4.27 per USD) as compared with 2015 December. A more appropriate forecasting method of exchange rate is vital to aid the decision-making process and planning on the sustainable commodities' production in the world economy.

  16. Dynamic modeling and experimental validation for direct contact membrane distillation (DCMD) process

    Eleiwi, Fadi; Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Francis, Lijo; Laleg-Kirati, Taous-Meriem

    2016-01-01

    This work proposes a mathematical dynamic model for the direct contact membrane distillation (DCMD) process. The model is based on a 2D Advection–Diffusion Equation (ADE), which describes the heat and mass transfer mechanisms that take place inside the DCMD module. The model studies the behavior of the process in the time varying and the steady state phases, contributing to understanding the process performance, especially when it is driven by intermittent energy supply, such as the solar energy. The model is experimentally validated in the steady state phase, where the permeate flux is measured for different feed inlet temperatures and the maximum absolute error recorded is 2.78 °C. Moreover, experimental validation includes the time variation phase, where the feed inlet temperature ranges from 30 °C to 75 °C with 0.1 °C increment every 2min. The validation marks relative error to be less than 5%, which leads to a strong correlation between the model predictions and the experiments.

  17. Mathematical Modeling of Transport Phenomena in Polymer Electrolyte and Direct Methanol Fuel Cells

    Birgersson, Erik

    2004-02-01

    This thesis deals with modeling of two types of fuel cells: the polymer electrolyte fuel cell (PEFC) and the direct methanol fuel cell (DMFC), for which we address four major issues: a) mass transport limitations; b) water management (PEFC); c) gas management (DMFC); d) thermal management. Four models have been derived and studied for the PEFC, focusing on the cathode. The first exploits the slenderness of the cathode for a two-dimensional geometry, leading to a reduced model, where several non dimensional parameters capture the behavior of the cathode. The model was extended to three dimensions, where four different flow distributors were studied for the cathode. A quantitative comparison shows that the interdigitated channels can sustain the highest current densities. These two models, comprising isothermal gas phase flow, limit the studies to (a). Returning to a two-dimensional geometry of the PEFC, the liquid phase was introduced via a separate flow model approach for the cathode. In addition to conservation of mass, momentum and species, the model was extended to consider simultaneous charge and heat transfer for the whole cell. Different thermal, flow fields, and hydrodynamic conditions were studied, addressing (a), (b) and (d). A scale analysis allowed for predictions of the cell performance prior to any computations. Good agreement between experiments with a segmented cell and the model was obtained. A liquid-phase model, comprising conservation of mass, momentum and species, was derived and analyzed for the anode of the DMFC. The impact of hydrodynamic, electrochemical and geometrical features on the fuel cell performance were studied, mainly focusing on (a). The slenderness of the anode allows the use of a narrow-gap approximation, leading to a reduced model, with benefits such as reduced computational cost and understanding of the physical trends prior to any numerical computations. Adding the gas-phase via a multiphase mixture approach, the gas

  18. A two-locus model of spatially varying stabilizing or directional selection on a quantitative trait.

    Geroldinger, Ludwig; Bürger, Reinhard

    2014-06-01

    The consequences of spatially varying, stabilizing or directional selection on a quantitative trait in a subdivided population are studied. A deterministic two-locus two-deme model is employed to explore the effects of migration, the degree of divergent selection, and the genetic architecture, i.e., the recombination rate and ratio of locus effects, on the maintenance of genetic variation. The possible equilibrium configurations are determined as functions of the migration rate. They depend crucially on the strength of divergent selection and the genetic architecture. The maximum migration rates are investigated below which a stable fully polymorphic equilibrium or a stable single-locus polymorphism can exist. Under stabilizing selection, but with different optima in the demes, strong recombination may facilitate the maintenance of polymorphism. However usually, and in particular with directional selection in opposite direction, the critical migration rates are maximized by a concentrated genetic architecture, i.e., by a major locus and a tightly linked minor one. Thus, complementing previous work on the evolution of genetic architectures in subdivided populations subject to diversifying selection, it is shown that concentrated architectures may aid the maintenance of polymorphism. Conditions are obtained when this is the case. Finally, the dependence of the phenotypic variance, linkage disequilibrium, and various measures of local adaptation and differentiation on the parameters is elaborated. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Direct detection of singlet dark matter in classically scale-invariant standard model

    Kazuhiro Endo

    2015-10-01

    Full Text Available Classical scale invariance is one of the possible solutions to explain the origin of the electroweak scale. The simplest extension is the classically scale-invariant standard model augmented by a multiplet of gauge singlet real scalar. In the previous study it was shown that the properties of the Higgs potential deviate substantially, which can be observed in the International Linear Collider. On the other hand, since the multiplet does not acquire vacuum expectation value, the singlet components are stable and can be dark matter. In this letter we study the detectability of the real singlet scalar bosons in the experiment of the direct detection of dark matter. It is shown that a part of this model has already been excluded and the rest of the parameter space is within the reach of the future experiment.

  20. Modeling and simulation of a direct ethanol fuel cell: An overview

    Abdullah, S.; Kamarudin, S. K.; Hasran, U. A.; Masdar, M. S.; Daud, W. R. W.

    2014-09-01

    The commercialization of Direct Ethanol Fuel Cells (DEFCs) is still hindered because of economic and technical reasons. Fundamental scientific research is required to more completely understanding the complex electrochemical behavior and engineering technology of DEFCs. To use the DEFC system in real-world applications, fast, reliable, and cost-effective methods are needed to explore this complex phenomenon and to predict the performance of different system designs. Thus, modeling and simulation play an important role in examining the DEFC system as well as in designing an optimized DEFC system. The current DEFC literature shows that modeling studies on DEFCs are still in their early stages and are not able to describe the DEFC system as a whole. Potential DEFC applications and their current status are also presented.

  1. Design, Testing and Modeling of the Direct Reactor Auxiliary Cooling System for AHTRs

    Lv, Quiping [The Ohio State Univ., Columbus, OH (United States); Sun, Xiaodong [The Ohio State Univ., Columbus, OH (United States); Chtistensen, Richard [The Ohio State Univ., Columbus, OH (United States); Blue, Thomas [The Ohio State Univ., Columbus, OH (United States); Yoder, Graydon [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-05-08

    The principal objective of this research is to test and model the heat transfer performance and reliability of the Direct Reactor Auxiliary Cooling System (DRACS) for AHTRs. In addition, component testing of fluidic diodes is to be performed to examine the performance and viability of several existing fluidic diode designs. An extensive database related to the thermal performance of the heat exchangers involved will be obtained, which will be used to benchmark a computer code for the DRACS design and to evaluate and improve, if needed, existing heat transfer models of interest. The database will also be valuable for assessing the viability of the DRACS concept and benchmarking any related computer codes in the future. The experience of making a liquid fluoride salt test facility available, with lessons learned, will greatly benefit the development of the Fluoride Salt-cooled High-temperature Reactor (FHR) and eventually the AHTR programs.

  2. Self-consistent model for pulsed direct-current N2 glow discharge

    Liu Chengsen

    2005-01-01

    A self-consistent analysis of a pulsed direct-current (DC) N 2 glow discharge is presented. The model is based on a numerical solution of the continuity equations for electron and ions coupled with Poisson's equation. The spatial-temporal variations of ionic and electronic densities and electric field are obtained. The electric field structure exhibits all the characteristic regions of a typical glow discharge (the cathode fall, the negative glow, and the positive column). Current-voltage characteristics of the discharge can be obtained from the model. The calculated current-voltage results using a constant secondary electron emission coefficient for the gas pressure 133.32 Pa are in reasonable agreement with experiment. (authors)

  3. Design, Testing and Modeling of the Direct Reactor Auxiliary Cooling System for AHTRs

    Lv, Quiping; Sun, Xiaodong; Chtistensen, Richard; Blue, Thomas; Yoder, Graydon; Wilson, Dane

    2015-01-01

    The principal objective of this research is to test and model the heat transfer performance and reliability of the Direct Reactor Auxiliary Cooling System (DRACS) for AHTRs. In addition, component testing of fluidic diodes is to be performed to examine the performance and viability of several existing fluidic diode designs. An extensive database related to the thermal performance of the heat exchangers involved will be obtained, which will be used to benchmark a computer code for the DRACS design and to evaluate and improve, if needed, existing heat transfer models of interest. The database will also be valuable for assessing the viability of the DRACS concept and benchmarking any related computer codes in the future. The experience of making a liquid fluoride salt test facility available, with lessons learned, will greatly benefit the development of the Fluoride Salt-cooled High-temperature Reactor (FHR) and eventually the AHTR programs.

  4. Epidemic spreading in annealed directed networks: susceptible-infected-susceptible model and contact process.

    Kwon, Sungchul; Kim, Yup

    2013-01-01

    We investigate epidemic spreading in annealed directed scale-free networks with the in-degree (k) distribution P(in)(k)~k(-γ(in)) and the out-degree (ℓ) distribution, P(out)(ℓ)~ℓ(-γ(out)). The correlation of each node on the networks is controlled by the probability r(0≤r≤1) in two different algorithms, the so-called k and ℓ algorithms. For r=1, the k algorithm gives =, whereas the ℓ algorithm gives =. For r=0, = for both algorithms. As the prototype of epidemic spreading, the susceptible-infected-susceptible model and contact process on the networks are analyzed using the heterogeneous mean-field theory and Monte Carlo simulations. The directedness of links and the correlation of the network are found to play important roles in the spreading, so that critical behaviors of both models are distinct from those on undirected scale-free networks.

  5. Directional harmonic theory: a computational Gestalt model to account for illusory contour and vertex formation.

    Lehar, Steven

    2003-01-01

    Visual illusions and perceptual grouping phenomena offer an invaluable tool for probing the computational mechanism of low-level visual processing. Some illusions, like the Kanizsa figure, reveal illusory contours that form edges collinear with the inducing stimulus. This kind of illusory contour has been modeled by neural network models by way of cells equipped with elongated spatial receptive fields designed to detect and complete the collinear alignment. There are, however, other illusory groupings which are not so easy to account for in neural network terms. The Ehrenstein illusion exhibits an illusory contour that forms a contour orthogonal to the stimulus instead of collinear with it. Other perceptual grouping effects reveal illusory contours that exhibit a sharp corner or vertex, and still others take the form of vertices defined by the intersection of three, four, or more illusory contours that meet at a point. A direct extension of the collinear completion models to account for these phenomena tends towards a combinatorial explosion, because it would suggest cells with specialized receptive fields configured to perform each of those completion types, each of which would have to be replicated at every location and every orientation across the visual field. These phenomena therefore challenge the adequacy of the neural network approach to account for these diverse perceptual phenomena. I have proposed elsewhere an alternative paradigm of neurocomputation in the harmonic resonance theory (Lehar 1999, see website), whereby pattern recognition and completion are performed by spatial standing waves across the neural substrate. The standing waves perform a computational function analogous to that of the spatial receptive fields of the neural network approach, except that, unlike that paradigm, a single resonance mechanism performs a function equivalent to a whole array of spatial receptive fields of different spatial configurations and of different orientations

  6. A Neurocomputational Model of Goal-Directed Navigation in Insect-Inspired Artificial Agents.

    Goldschmidt, Dennis; Manoonpong, Poramate; Dasgupta, Sakyasingha

    2017-01-01

    Despite their small size, insect brains are able to produce robust and efficient navigation in complex environments. Specifically in social insects, such as ants and bees, these navigational capabilities are guided by orientation directing vectors generated by a process called path integration. During this process, they integrate compass and odometric cues to estimate their current location as a vector, called the home vector for guiding them back home on a straight path. They further acquire and retrieve path integration-based vector memories globally to the nest or based on visual landmarks. Although existing computational models reproduced similar behaviors, a neurocomputational model of vector navigation including the acquisition of vector representations has not been described before. Here we present a model of neural mechanisms in a modular closed-loop control-enabling vector navigation in artificial agents. The model consists of a path integration mechanism, reward-modulated global learning, random search, and action selection. The path integration mechanism integrates compass and odometric cues to compute a vectorial representation of the agent's current location as neural activity patterns in circular arrays. A reward-modulated learning rule enables the acquisition of vector memories by associating the local food reward with the path integration state. A motor output is computed based on the combination of vector memories and random exploration. In simulation, we show that the neural mechanisms enable robust homing and localization, even in the presence of external sensory noise. The proposed learning rules lead to goal-directed navigation and route formation performed under realistic conditions. Consequently, we provide a novel approach for vector learning and navigation in a simulated, situated agent linking behavioral observations to their possible underlying neural substrates.

  7. The Nordic welfare model providing energy transition? A political geography approach to the EU RES directive

    Westholm, Erik; Beland Lindahl, Karin

    2012-01-01

    The EU Renewable Energy Strategy (RES) Directive requires that each member state obtain 20% of its energy supply from renewable sources by 2020. If fully implemented, this implies major changes in institutions, infrastructure, land use, and natural resource flows. This study applies a political geography perspective to explore the transition to renewable energy use in the heating and cooling segment of the Swedish energy system, 1980–2010. The Nordic welfare model, which developed mainly after the Second World War, required relatively uniform, standardized local and regional authorities functioning as implementation agents for national politics. Since 1980, the welfare orientation has gradually been complemented by competition politics promoting technological change, innovation, and entrepreneurship. This combination of welfare state organization and competition politics provided the dynamics necessary for energy transition, which occurred in a semi-public sphere of actors at various geographical scales. However, our analysis, suggest that this was partly an unintended policy outcome, since it was based on a welfare model with no significant energy aims. Our case study suggests that state organization plays a significant role, and that the EU RES Directive implementation will be uneven across Europe, reflecting various welfare models with different institutional pre-requisites for energy transition. - Highlights: ► We explore the energy transition in the heating/cooling sector in Sweden 1980–2000. ► The role of the state is studied from a political geography perspective. ► The changing welfare model offered the necessary institutional framework. ► Institutional arrangements stand out as central to explain the relative success. ► The use of renewables in EU member states will continue to vary significantly.

  8. Quasi-steady State Reduction of Molecular Motor-Based Models of Directed Intermittent Search

    Newby, Jay M.

    2010-02-19

    We present a quasi-steady state reduction of a linear reaction-hyperbolic master equation describing the directed intermittent search for a hidden target by a motor-driven particle moving on a one-dimensional filament track. The particle is injected at one end of the track and randomly switches between stationary search phases and mobile nonsearch phases that are biased in the anterograde direction. There is a finite possibility that the particle fails to find the target due to an absorbing boundary at the other end of the track. Such a scenario is exemplified by the motor-driven transport of vesicular cargo to synaptic targets located on the axon or dendrites of a neuron. The reduced model is described by a scalar Fokker-Planck (FP) equation, which has an additional inhomogeneous decay term that takes into account absorption by the target. The FP equation is used to compute the probability of finding the hidden target (hitting probability) and the corresponding conditional mean first passage time (MFPT) in terms of the effective drift velocity V, diffusivity D, and target absorption rate λ of the random search. The quasi-steady state reduction determines V, D, and λ in terms of the various biophysical parameters of the underlying motor transport model. We first apply our analysis to a simple 3-state model and show that our quasi-steady state reduction yields results that are in excellent agreement with Monte Carlo simulations of the full system under physiologically reasonable conditions. We then consider a more complex multiple motor model of bidirectional transport, in which opposing motors compete in a "tug-of-war", and use this to explore how ATP concentration might regulate the delivery of cargo to synaptic targets. © 2010 Society for Mathematical Biology.

  9. Modeling of block copolymer dry etching for directed self-assembly lithography

    Belete, Zelalem; Baer, Eberhard; Erdmann, Andreas

    2018-03-01

    Directed self-assembly (DSA) of block copolymers (BCP) is a promising alternative technology to overcome the limits of patterning for the semiconductor industry. DSA exploits the self-assembling property of BCPs for nano-scale manufacturing and to repair defects in patterns created during photolithography. After self-assembly of BCPs, to transfer the created pattern to the underlying substrate, selective etching of PMMA (poly (methyl methacrylate)) to PS (polystyrene) is required. However, the etch process to transfer the self-assemble "fingerprint" DSA patterns to the underlying layer is still a challenge. Using combined experimental and modelling studies increases understanding of plasma interaction with BCP materials during the etch process and supports the development of selective process that form well-defined patterns. In this paper, a simple model based on a generic surface model has been developed and an investigation to understand the etch behavior of PS-b-PMMA for Ar, and Ar/O2 plasma chemistries has been conducted. The implemented model is calibrated for etch rates and etch profiles with literature data to extract parameters and conduct simulations. In order to understand the effect of the plasma on the block copolymers, first the etch model was calibrated for polystyrene (PS) and poly (methyl methacrylate) (PMMA) homopolymers. After calibration of the model with the homopolymers etch rate, a full Monte-Carlo simulation was conducted and simulation results are compared with the critical-dimension (CD) and selectivity of etch profile measurement. In addition, etch simulations for lamellae pattern have been demonstrated, using the implemented model.

  10. Physics implications of flat directions in free fermionic superstring models. II. Renormalization group analysis

    Cleaver, G.; Cvetic, M.; Everett, L.; Langacker, P.; Wang, J.; Espinosa, J.R.; Everett, L.

    1999-01-01

    We continue the investigation of the physics implications of a class of flat directions for a prototype quasi-realistic free fermionic string model (CHL5), building upon the results of a previous paper in which the complete mass spectrum and effective trilinear couplings of the observable sector were calculated to all orders in the superpotential. We introduce soft supersymmetry breaking mass parameters into the model, and investigate the gauge symmetry breaking patterns and the renormalization group analysis for two representative flat directions, which leave an additional U(1) ' as well as the SM gauge group unbroken at the string scale. We study symmetry breaking patterns that lead to a phenomenologically acceptable Z-Z ' hierarchy, M Z ' ∼O(1 TeV) and 10 12 GeV for electroweak and intermediate scale U(1) ' symmetry breaking, respectively, and the associated mass spectra after electroweak symmetry breaking. The fermion mass spectrum exhibits unrealistic features, including massless exotic fermions, but has an interesting d-quark hierarchy and associated CKM matrix in one case. There are (some) non-canonical effective μ terms, which lead to a non-minimal Higgs sector with more than two Higgs doublets involved in the symmetry breaking, and a rich structure of Higgs particles, charginos, and neutralinos, some of which, however, are massless or ultralight. In the electroweak scale cases the scale of supersymmetry breaking is set by the Z ' mass, with the sparticle masses in the several TeV range. copyright 1999 The American Physical Society

  11. Modeling Multilevel Supplier Selection Problem Based on Weighted-Directed Network and Its Solution

    Chia-Te Wei

    2017-01-01

    Full Text Available With the rapid development of economy, the supplier network is becoming more and more complicated. It is important to choose the right suppliers for improving the efficiency of the supply chain, so how to choose the right ones is one of the important research directions of supply chain management. This paper studies the partner selection problem from the perspective of supplier network global optimization. Firstly, this paper discusses and forms the evaluation system to estimate the supplier from the two indicators of risk and greenness and then applies the value as the weight of the network between two nodes to build a weighted-directed supplier network; secondly, the study establishes the optimal combination model of supplier selection based on the global network perspective and solves the model by the dynamic programming-tabu search algorithm and the improved ant colony algorithm, respectively; finally, different scale simulation examples are given to testify the efficiency of the two algorithms. The results show that the ant colony algorithm is superior to the tabu search one as a whole, but the latter is slightly better than the former when network scale is small.

  12. Biologically-directed modeling reflects cytolytic clearance of SIV-infected cells in vivo in macaques.

    W David Wick

    Full Text Available The disappointing outcomes of cellular immune-based vaccines against HIV-1 despite strong evidence for the protective role of CD8⁺ T lymphocytes (CTLs has prompted revisiting the mechanisms of cellular immunity. Prior data from experiments examining the kinetics of Simian Immunodeficiency Virus (SIV clearance in infected macaques with or without in vivo CD8 depletion were interpreted as refuting the concept that CTLs suppress SIV/HIV by direct killing of infected cells. Here we briefly review the biological evidence for CTL cytolytic activity in viral infections, and utilize biologically-directed modeling to assess the possibility of a killing mechanism for the antiviral effect of CTLs, taking into account the generation, proliferation, and survival of activated CD4⁺ and CD8⁺ T lymphocytes, as well as the life cycle of the virus. Our analyses of the published macaque data using these models support a killing mechanism, when one considers T lymphocyte and HIV-1 lifecycles, and factors such as the eclipse period before release of virions by infected cells, an exponential pattern of virion production by infected cells, and a variable lifespan for acutely infected cells. We conclude that for SIV/HIV pathogenesis, CTLs deserve their reputation as being cytolytic.

  13. A new methodology for modeling of direct landslide costs for transportation infrastructures

    Klose, Martin; Terhorst, Birgit

    2014-05-01

    The world's transportation infrastructure is at risk of landslides in many areas across the globe. A safe and affordable operation of traffic routes are the two main criteria for transportation planning in landslide-prone areas. The right balancing of these often conflicting priorities requires, amongst others, profound knowledge of the direct costs of landslide damage. These costs include capital investments for landslide repair and mitigation as well as operational expenditures for first response and maintenance works. This contribution presents a new methodology for ex post assessment of direct landslide costs for transportation infrastructures. The methodology includes tools to compile, model, and extrapolate landslide losses on different spatial scales over time. A landslide susceptibility model enables regional cost extrapolation by means of a cost figure obtained from local cost compilation for representative case study areas. On local level, cost survey is closely linked with cost modeling, a toolset for cost estimation based on landslide databases. Cost modeling uses Landslide Disaster Management Process Models (LDMMs) and cost modules to simulate and monetize cost factors for certain types of landslide damage. The landslide susceptibility model provides a regional exposure index and updates the cost figure to a cost index which describes the costs per km of traffic route at risk of landslides. Both indexes enable the regionalization of local landslide losses. The methodology is applied and tested in a cost assessment for highways in the Lower Saxon Uplands, NW Germany, in the period 1980 to 2010. The basis of this research is a regional subset of a landslide database for the Federal Republic of Germany. In the 7,000 km² large Lower Saxon Uplands, 77 km of highway are located in potential landslide hazard area. Annual average costs of 52k per km of highway at risk of landslides are identified as cost index for a local case study area in this region. The

  14. Fitting a mixture of von Mises distributions in order to model data on wind direction in Peninsular Malaysia

    Masseran, N.; Razali, A.M.; Ibrahim, K.; Latif, M.T.

    2013-01-01

    Highlights: • We suggest a simple way for wind direction modeling using the mixture of von Mises distribution. • We determine the most suitable probability model for wind direction regime in Malaysia. • We provide the circular density plots to show the most prominent directions of wind blows. - Abstract: A statistical distribution for describing wind direction provides information about the wind regime at a particular location. In addition, this information complements knowledge of wind speed, which allows researchers to draw some conclusions about the energy potential of wind and aids the development of efficient wind energy generation. This study focuses on modeling the frequency distribution of wind direction, including some characteristics of wind regime that cannot be represented by a unimodal distribution. To identify the most suitable model, a finite mixture of von Mises distributions were fitted to the average hourly wind direction data for nine wind stations located in Peninsular Malaysia. The data used were from the years 2000 to 2009. The suitability of each mixture distribution was judged based on the R 2 coefficient and the histogram plot with a density line. The results showed that the finite mixture of the von Mises distribution with H number of components was the best distribution to describe the wind direction distributions in Malaysia. In addition, the circular density plots of the suitable model clearly showed the most prominent directions of wind blows than the other directions

  15. Do bisphosphonates inhibit direct fracture healing?: A laboratory investigation using an animal model.

    Savaridas, T; Wallace, R J; Salter, D M; Simpson, A H R W

    2013-09-01

    Fracture repair occurs by two broad mechanisms: direct healing, and indirect healing with callus formation. The effects of bisphosphonates on fracture repair have been assessed only in models of indirect fracture healing. A rodent model of rigid compression plate fixation of a standardised tibial osteotomy was used. Ten skeletally mature Sprague-Dawley rats received daily subcutaneous injections of 1 µg/kg ibandronate (IBAN) and ten control rats received saline (control). Three weeks later a tibial osteotomy was rigidly fixed with compression plating. Six weeks later the animals were killed. Fracture repair was assessed with mechanical testing, radiographs and histology. The mean stress at failure in a four-point bending test was significantly lower in the IBAN group compared with controls (8.69 Nmm(-2) (sd 7.63) vs 24.65 Nmm(-2) (sd 6.15); p = 0.017). On contact radiographs of the extricated tibiae the mean bone density assessment at the osteotomy site was lower in the IBAN group than in controls (3.7 mmAl (sd 0.75) vs 4.6 mmAl (sd 0.57); p = 0.01). In addition, histological analysis revealed progression to fracture union in the controls but impaired fracture healing in the IBAN group, with predominantly cartilage-like and undifferentiated mesenchymal tissue (p = 0.007). Bisphosphonate treatment in a therapeutic dose, as used for risk reduction in fragility fractures, had an inhibitory effect on direct fracture healing. We propose that bisphosphonate therapy not be commenced until after the fracture has united if the fracture has been rigidly fixed and is undergoing direct osteonal healing.

  16. Evaluating the usefulness of dynamic pollutant fate models for implementing the EU Water Framework Directive.

    Gevaert, Veerle; Verdonck, Frederik; Benedetti, Lorenzo; De Keyser, Webbey; De Baets, Bernard

    2009-06-01

    The European Water Framework Directive (WFD) aims at achieving a good ecological and chemical status of surface waters in river basins by 2015. The chemical status is considered good if the Environmental Quality Standards (EQSs) are met for all substances listed on the priority list and eight additional specific emerging substances. To check compliance with these standards, the WFD requires the establishment of monitoring programmes. The minimum measuring frequency for priority substances is currently set at once per month. This can result in non-representative sampling and increased probability of misinterpretation of the surface water quality status. To assist in the classification of the water body, the combined use of monitoring data and pollutant fate models is recommended. More specifically, dynamic models are suggested, as possible exceedance of the quality standards can be predicted by such models. In the presented work, four realistic scenarios are designed and discussed to illustrate the usefulness of dynamic pollutant fate models for implementing the WFD. They comprise a combination of two priority substances and two rivers, representative for Western Europe.

  17. Modeling of molecular nitrogen collisions and dissociation processes for direct simulation Monte Carlo.

    Parsons, Neal; Levin, Deborah A; van Duin, Adri C T; Zhu, Tong

    2014-12-21

    The Direct Simulation Monte Carlo (DSMC) method typically used for simulating hypersonic Earth re-entry flows requires accurate total collision cross sections and reaction probabilities. However, total cross sections are often determined from extrapolations of relatively low-temperature viscosity data, so their reliability is unknown for the high temperatures observed in hypersonic flows. Existing DSMC reaction models accurately reproduce experimental equilibrium reaction rates, but the applicability of these rates to the strong thermal nonequilibrium observed in hypersonic shocks is unknown. For hypersonic flows, these modeling issues are particularly relevant for nitrogen, the dominant species of air. To rectify this deficiency, the Molecular Dynamics/Quasi-Classical Trajectories (MD/QCT) method is used to accurately compute collision and reaction cross sections for the N2(Σg+1)-N2(Σg+1) collision pair for conditions expected in hypersonic shocks using a new potential energy surface developed using a ReaxFF fit to recent advanced ab initio calculations. The MD/QCT-computed reaction probabilities were found to exhibit better physical behavior and predict less dissociation than the baseline total collision energy reaction model for strong nonequilibrium conditions expected in a shock. The MD/QCT reaction model compared well with computed equilibrium reaction rates and shock-tube data. In addition, the MD/QCT-computed total cross sections were found to agree well with established variable hard sphere total cross sections.

  18. Modeling of molecular nitrogen collisions and dissociation processes for direct simulation Monte Carlo

    Parsons, Neal; Levin, Deborah A.; Duin, Adri C. T. van; Zhu, Tong

    2014-01-01

    The Direct Simulation Monte Carlo (DSMC) method typically used for simulating hypersonic Earth re-entry flows requires accurate total collision cross sections and reaction probabilities. However, total cross sections are often determined from extrapolations of relatively low-temperature viscosity data, so their reliability is unknown for the high temperatures observed in hypersonic flows. Existing DSMC reaction models accurately reproduce experimental equilibrium reaction rates, but the applicability of these rates to the strong thermal nonequilibrium observed in hypersonic shocks is unknown. For hypersonic flows, these modeling issues are particularly relevant for nitrogen, the dominant species of air. To rectify this deficiency, the Molecular Dynamics/Quasi-Classical Trajectories (MD/QCT) method is used to accurately compute collision and reaction cross sections for the N 2 ( 1 Σ g + )-N 2 ( 1 Σ g + ) collision pair for conditions expected in hypersonic shocks using a new potential energy surface developed using a ReaxFF fit to recent advanced ab initio calculations. The MD/QCT-computed reaction probabilities were found to exhibit better physical behavior and predict less dissociation than the baseline total collision energy reaction model for strong nonequilibrium conditions expected in a shock. The MD/QCT reaction model compared well with computed equilibrium reaction rates and shock-tube data. In addition, the MD/QCT-computed total cross sections were found to agree well with established variable hard sphere total cross sections

  19. Theoretical modeling of mechanical homeostasis of a mammalian cell under gravity-directed vector.

    Zhou, Lüwen; Zhang, Chen; Zhang, Fan; Lü, Shouqin; Sun, Shujin; Lü, Dongyuan; Long, Mian

    2018-02-01

    Translocation of dense nucleus along gravity vector initiates mechanical remodeling of a eukaryotic cell. In our previous experiments, we quantified the impact of gravity vector on cell remodeling by placing an MC3T3-E1 cell onto upward (U)-, downward (D)-, or edge-on (E)- orientated substrate. Our experimental data demonstrate that orientation dependence of nucleus longitudinal translocation is positively correlated with cytoskeletal (CSK) remodeling of their expressions and structures and also is associated with rearrangement of focal adhesion complex (FAC). However, the underlying mechanism how CSK network and FACs are reorganized in a mammalian cell remains unclear. In this paper, we developed a theoretical biomechanical model to integrate the mechanosensing of nucleus translocation with CSK remodeling and FAC reorganization induced by a gravity vector. The cell was simplified as a nucleated tensegrity structure in the model. The cell and CSK filaments were considered to be symmetrical. All elements of CSK filaments and cytomembrane that support the nucleus were simplified as springs. FACs were simplified as an adhesion cluster of parallel bonds with shared force. Our model proposed that gravity vector-directed translocation of the cell nucleus is mechanically balanced by CSK remodeling and FAC reorganization induced by a gravitational force. Under gravity, dense nucleus tends to translocate and exert additional compressive or stretching force on the cytoskeleton. Finally, changes of the tension force acting on talin by microfilament alter the size of FACs. Results from our model are in qualitative agreement with those from experiments.

  20. Direct Test of the Brown Dwarf Evolutionary Models Through Secondary Eclipse Spectroscopy of LHS 6343

    Albert, Loic

    2015-10-01

    As the number of field Brown Dwarfs counts in the thousands, interpreting their physical parameters (mass, temperature, radius, luminosity, age, metallicity) relies as heavily as ever on atmosphere and evolutionary models. Fortunately, models are largely successful in explaining observations (colors, spectral types, luminosity), so they appear well calibrated in a relative sense. However, an absolute model-independent calibration is still lacking. Eclipsing BDs systems are a unique laboratory in this respect but until recently only one such system was known, 2M0535-05 - a very young (1 Gyr) - was identified (62.1+/-1.2 MJup, 0.783+/-0.011 RJup) transiting LHS6343 with a 12.7-day period. We propose to use WFC3 in drift scan mode and 5 HST orbits to determine the spectral type (a proxy for temperature) as well as the near-infrared luminosity of this brown dwarf. We conducted simulations that predict a signal-to-noise ratio ranging between 10 and 30 per resolution element in the peaks of the spectrum. These measurements, coupled with existing luminosity measurements with Spitzer at 3.6 and 4.5 microns, will allow us to trace the spectral energy distribution of the Brown Dwarf and directly calculate its blackbody temperature. It will be the first field Brown Dwarfs with simultaneous measurements of its radius, mass, luminosity and temperature all measured independently of models.

  1. Direct characterization of chaotic and stochastic dynamics in a population model with strong periodicity

    Tung Wenwen; Qi Yan; Gao, J.B.; Cao Yinhe; Billings, Lora

    2005-01-01

    In recent years it has been increasingly recognized that noise and determinism may have comparable but different influences on population dynamics. However, no simple analysis methods have been introduced into ecology which can readily characterize those impacts. In this paper, we study a population model with strong periodicity and both with and without noise. The noise-free model generates both quasi-periodic and chaotic dynamics for certain parameter values. Due to the strong periodicity, however, the generated chaotic dynamics have not been satisfactorily described. The dynamics becomes even more complicated when there is noise. Characterizing the chaotic and stochastic dynamics in this model thus represents a challenging problem. Here we show how the chaotic dynamics can be readily characterized by the direct dynamical test for deterministic chaos developed by [Gao JB, Zheng ZM. Europhys. Lett. 1994;25:485] and how the influence of noise on quasi-periodic motions can be characterized as asymmetric diffusions wandering along the quasi-periodic orbit. It is hoped that the introduced methods will be useful in studying other population models as well as population time series obtained both in field and laboratory experiments

  2. Searching for beyond the Standard Model physics using direct and indirect methods at LHCb

    Hall, Samuel C P; Golutvin, Andrey

    It is known that the Standard Model of particle physics is incomplete in its description of nature at a fundamental level. For example, the Standard Model can neither incorporate dark matter nor explain the matter dominated nature of the Universe. This thesis presents three analyses undertaken using data collected by the LHCb detector. Each analysis searches for indications of physics beyond the Standard Model in dierent decays of B mesons, using dierent techniques. Notably, two analyses look for indications of new physics using indirect methods, and one uses a direct approach. The rst analysis shows evidence for the rare decay $B^{+} \\rightarrow D^{+}_{s}\\phi$ with greater than 3 $\\sigma$ signicance; this also constitutes the rst evidence for a fullyhadronic annihilation-type decay of a $B^{+}$ meson. A measurement of the branching fraction of the decay $B^{+} \\rightarrow D^{+}_{s}\\phi$ is seen to be higher than, but still compatible with, Standard Model predictions. The CP-asymmetry of the decay is also ...

  3. Confining multiple polymers between sticky walls: a directed walk model of two polymers

    Wong, Thomas; Rechnitzer, Andrew; Owczarek, Aleksander L

    2014-01-01

    We study a model of two polymers confined to a slit with sticky walls. More precisely, we find and analyse the exact solution of two directed friendly walks in such a geometry on the square lattice. We compare the infinite slit limit, in which the length of the polymer (thermodynamic limit) is taken to infinity before the width of the slit is considered to become large, to the opposite situation where the order of the limits are swapped, known as the half-plane limit when one polymer is modelled. In contrast with the single polymer system we find that the half-plane and infinite slit limits coincide. We understand this result in part due to the tethering of polymers on both walls of the slit. We also analyse the entropic force exerted by the polymers on the walls of the slit. Again the results differ significantly from single polymer models. In a single polymer system both attractive and repulsive regimes were seen, whereas in our two walk model only repulsive forces are observed. We do, however, see that the range of the repulsive force is dependent on the parameter values. This variation can be explained by the adsorption of the walks on opposite walls of the slit. (paper)

  4. Modelling derecho dynamics and the direct radiative effect of wildfire smoke upon it with NWP model HARMONIE

    Toll, Velle; Männik, Aarne

    2014-05-01

    Convection permitting numerical weather prediction model HARMONIE was used to simulate the dynamics of the derecho that swept over Eastern Europe on August 8, 2010. The storm moved over Belarus, Lithuania, Latvia, Estonia and Finland and the strongest wind gusts (up to 36.5 m/s) were measured in Estonia. The storm path is recorded on the radar images where characteristic bow echo was observed. The model setup was similar to near-future operational, nearly kilometre-scale environments in European national weather services. Hindcast experiments show the ability of the HARMONIE model to predict the severe convective storm and forecast concurrent strong wind gusts. Wind gusts with very similar intensity to observed ones were simulated by the HARMONIE model and 2.5-km horizontal resolution appears sufficient for reliable forecast of the derecho event. The timing of the modelled storm was in good agreement with the observations. The simulated average storm propagation speed was 25 m/s, similar to the radar observations. Hindcast experiments suggest that more precise warning for the storm could have been issued if the HARMONIE model would have been utilised. The derecho event was accompanied by the remarkable smoke aerosol concentrations (maximum total aerosol optical depth more than 4 at 550 nm) originating from the wildfires from Russia. Smoke plume travelled clockwise around Moscow from August 5 to 9. On August 8, 2010, smoke plume was situated on the Eastern border of Estonia. The derecho occurred on the western side of the smoke plume path. HARMONIE experiments were performed to study the direct radiative effect of wildfire smoke on a severe convective storm. The impact of smoke aerosol on the derecho dynamics was investigated. Reduction in the shortwave radiation flux at the surface resulting from aerosol influence simulated by the HARMONIE model is up to 200 W/m2 in the area with the highest aerosol concentrations. This causes near surface cooling of up to 3 º

  5. Goal-directed behaviour and instrumental devaluation: a neural system-level computational model

    Francesco Mannella

    2016-10-01

    Full Text Available Devaluation is the key experimental paradigm used to demonstrate the presence of instrumental behaviours guided by goals in mammals. We propose a neural system-level computational model to address the question of which brain mechanisms allow the current value of rewards to control instrumental actions. The model pivots on and shows the computational soundness of the hypothesis for which the internal representation of instrumental manipulanda (e.g., levers activate the representation of rewards (or `action-outcomes', e.g. foods while attributing to them a value which depends on the current internal state of the animal (e.g., satiation for some but not all foods. The model also proposes an initial hypothesis of the integrated system of key brain components supporting this process and allowing the recalled outcomes to bias action selection: (a the sub-system formed by the basolateral amygdala and insular cortex acquiring the manipulanda-outcomes associations and attributing the current value to the outcomes; (b the three basal ganglia-cortical loops selecting respectively goals, associative sensory representations, and actions; (c the cortico-cortical and striato-nigro-striatal neural pathways supporting the selection, and selection learning, of actions based on habits and goals. The model reproduces and integrates the results of different devaluation experiments carried out with control rats and rats with pre- and post-training lesions of the basolateral amygdala, the nucleus accumbens core, the prelimbic cortex, and the dorso-medial striatum. The results support the soundness of the hypotheses of the model and show its capacity to integrate, at the system-level, the operations of the key brain structures underlying devaluation. Based on its hypotheses and predictions, the model also represents an operational framework to support the design and analysis of new experiments on the motivational aspects of goal-directed behaviour.

  6. Extended causal modeling to assess Partial Directed Coherence in multiple time series with significant instantaneous interactions.

    Faes, Luca; Nollo, Giandomenico

    2010-11-01

    The Partial Directed Coherence (PDC) and its generalized formulation (gPDC) are popular tools for investigating, in the frequency domain, the concept of Granger causality among multivariate (MV) time series. PDC and gPDC are formalized in terms of the coefficients of an MV autoregressive (MVAR) model which describes only the lagged effects among the time series and forsakes instantaneous effects. However, instantaneous effects are known to affect linear parametric modeling, and are likely to occur in experimental time series. In this study, we investigate the impact on the assessment of frequency domain causality of excluding instantaneous effects from the model underlying PDC evaluation. Moreover, we propose the utilization of an extended MVAR model including both instantaneous and lagged effects. This model is used to assess PDC either in accordance with the definition of Granger causality when considering only lagged effects (iPDC), or with an extended form of causality, when we consider both instantaneous and lagged effects (ePDC). The approach is first evaluated on three theoretical examples of MVAR processes, which show that the presence of instantaneous correlations may produce misleading profiles of PDC and gPDC, while ePDC and iPDC derived from the extended model provide here a correct interpretation of extended and lagged causality. It is then applied to representative examples of cardiorespiratory and EEG MV time series. They suggest that ePDC and iPDC are better interpretable than PDC and gPDC in terms of the known cardiovascular and neural physiologies.

  7. New experimental model for single liver lobe hyperthermia in small animals using non-directional microwaves.

    Ionuț Tudorancea

    Full Text Available Our aim was to develop a new experimental model for in vivo hyperthermia using non-directional microwaves, applicable to small experimental animals. We present an affordable approach for targeted microwave heat delivery to an isolated liver lobe in rat, which allows rapid, precise and stable tissue temperature control.A new experimental model is proposed. We used a commercial available magnetron generating 2450 MHz, with 4.4V and 14A in the filament and 4500V anodic voltage. Modifications were required in order to adjust tissue heating such as to prevent overheating and to allow for fine adjustments according to real-time target temperature. The heating is controlled using a virtual instrument application implemented in LabView® and responds to 0.1° C variations in the target. Ten healthy adult male Wistar rats, weighing 250-270 g were used in this study. The middle liver lobe was the target for controlled heating, while the rest of the living animal was protected.In vivo microwave delivery using our experimental setting is safe for the animals. Target tissue temperature rises from 30°C to 40°C with 3.375°C / second (R2 = 0.9551, while the increment is lower it the next two intervals (40-42°C and 42-44°C with 0.291°C/ s (R2 = 0.9337 and 0.136°C/ s (R2 = 0.7894 respectively, when testing in sequences. After reaching the desired temperature, controlled microwave delivery insures a very stable temperature during the experiments.We have developed an inexpensive and easy to manufacture system for targeted hyperthermia using non-directional microwave radiation. This system allows for fine and stable temperature adjustments within the target tissue and is ideal for experimental models testing below or above threshold hyperthermia.

  8. Hybrid Large Eddy Simulation / Reynolds Averaged Navier-Stokes Modeling in Directed Energy Applications

    Zilberter, Ilya Alexandrovich

    In this work, a hybrid Large Eddy Simulation / Reynolds-Averaged Navier Stokes (LES/RANS) turbulence model is applied to simulate two flows relevant to directed energy applications. The flow solver blends the Menter Baseline turbulence closure near solid boundaries with a Lenormand-type subgrid model in the free-stream with a blending function that employs the ratio of estimated inner and outer turbulent length scales. A Mach 2.2 mixing nozzle/diffuser system representative of a gas laser is simulated under a range of exit pressures to assess the ability of the model to predict the dynamics of the shock train. The simulation captures the location of the shock train responsible for pressure recovery but under-predicts the rate of pressure increase. Predicted turbulence production at the wall is found to be highly sensitive to the behavior of the RANS turbulence model. A Mach 2.3, high-Reynolds number, three-dimensional cavity flow is also simulated in order to compute the wavefront aberrations of an optical beam passing thorough the cavity. The cavity geometry is modeled using an immersed boundary method, and an auxiliary flat plate simulation is performed to replicate the effects of the wind-tunnel boundary layer on the computed optical path difference. Pressure spectra extracted on the cavity walls agree with empirical predictions based on Rossiter's formula. Proper orthogonal modes of the wavefront aberrations in a beam originating from the cavity center agree well with experimental data despite uncertainty about in flow turbulence levels and boundary layer thicknesses over the wind tunnel window. Dynamic mode decomposition of a planar wavefront spanning the cavity reveals that wavefront distortions are driven by shear layer oscillations at the Rossiter frequencies; these disturbances create eddy shocklets that propagate into the free-stream, creating additional optical wavefront distortion.

  9. The FluxCompensator: Making Radiative Transfer Models of Hydrodynamical Simulations Directly Comparable to Real Observations

    Koepferl, Christine M.; Robitaille, Thomas P., E-mail: koepferl@usm.lmu.de [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany)

    2017-11-01

    When modeling astronomical objects throughout the universe, it is important to correctly treat the limitations of the data, for instance finite resolution and sensitivity. In order to simulate these effects, and to make radiative transfer models directly comparable to real observations, we have developed an open-source Python package called the FluxCompensator that enables the post-processing of the output of 3D Monte Carlo radiative transfer codes, such as Hyperion. With the FluxCompensator, realistic synthetic observations can be generated by modeling the effects of convolution with arbitrary point-spread functions, transmission curves, finite pixel resolution, noise, and reddening. Pipelines can be applied to compute synthetic observations that simulate observatories, such as the Spitzer Space Telescope or the Herschel Space Observatory . Additionally, this tool can read in existing observations (e.g., FITS format) and use the same settings for the synthetic observations. In this paper, we describe the package as well as present examples of such synthetic observations.

  10. Direct evaluation of Pseudomonas aeruginosa biofilm mediators in a chronic infection model.

    Byrd, Matthew S; Pang, Bing; Hong, Wenzhou; Waligora, Elizabeth A; Juneau, Richard A; Armbruster, Chelsie E; Weimer, Kristen E D; Murrah, Kyle; Mann, Ethan E; Lu, Haiping; Sprinkle, April; Parsek, Matthew R; Kock, Nancy D; Wozniak, Daniel J; Swords, W Edward

    2011-08-01

    Biofilms contribute to Pseudomonas aeruginosa persistence in a variety of diseases, including cystic fibrosis, burn wounds, and chronic suppurative otitis media. However, few studies have directly addressed P. aeruginosa biofilms in vivo. We used a chinchilla model of otitis media, which has previously been used to study persistent Streptococcus pneumoniae and Haemophilus influenzae infections, to show that structures formed in vivo are biofilms of bacterial and host origin within a matrix that includes Psl, a P. aeruginosa biofilm polysaccharide. We evaluated three biofilm and/or virulence mediators of P. aeruginosa known to affect biofilm formation in vitro and pathogenesis in vivo--bis-(3',5')-cyclic dimeric GMP (c-di-GMP), flagella, and quorum sensing--in a chinchilla model. We show that c-di-GMP overproduction has a positive impact on bacterial persistence, while quorum sensing increases virulence. We found no difference in persistence attributed to flagella. We conclude from these studies that a chinchilla otitis media model provides a means to evaluate pathogenic mediators of P. aeruginosa and that in vitro phenotypes should be examined in multiple infection systems to fully understand their role in disease.

  11. The FluxCompensator: Making Radiative Transfer Models of Hydrodynamical Simulations Directly Comparable to Real Observations

    Koepferl, Christine M.; Robitaille, Thomas P.

    2017-11-01

    When modeling astronomical objects throughout the universe, it is important to correctly treat the limitations of the data, for instance finite resolution and sensitivity. In order to simulate these effects, and to make radiative transfer models directly comparable to real observations, we have developed an open-source Python package called the FluxCompensator that enables the post-processing of the output of 3D Monte Carlo radiative transfer codes, such as Hyperion. With the FluxCompensator, realistic synthetic observations can be generated by modeling the effects of convolution with arbitrary point-spread functions, transmission curves, finite pixel resolution, noise, and reddening. Pipelines can be applied to compute synthetic observations that simulate observatories, such as the Spitzer Space Telescope or the Herschel Space Observatory. Additionally, this tool can read in existing observations (e.g., FITS format) and use the same settings for the synthetic observations. In this paper, we describe the package as well as present examples of such synthetic observations.

  12. Performance modeling of direct contact membrane distillation (DCMD) seawater desalination process using a commercial composite membrane

    Lee, Junggil

    2015-01-10

    This paper presents the development of a rigorous theoretical model to predict the transmembrane flux of a flat sheet hydrophobic composite membrane, comprising both an active layer of polytetrafluoroethylene and a scrim-backing support layer of polypropylene, in the direct contact membrane distillation (DCMD) process. An integrated model includes the mass, momentum, species and energy balances for both retentate and permeate flows, coupled with the mass transfer of water vapor through the composite membrane and the heat transfer across the membrane and through the boundary layers adjacent to the membrane surfaces. Experimental results and model predictions for permeate flux and performance ratio are compared and shown to be in good agreement. The permeate flux through the composite layer can be ignored in the consideration of mass transfer pathways at the composite membrane. The effect of the surface porosity and the thickness of active and support layers on the process performance of composite membrane has also been studied. Among these parameters, surface porosity is identified to be the main factor significantly influencing the permeate flux and performance ratio, while the relative influence of the surface porosity on the performance ratio is less than that on flux.

  13. Modeling of Production and Quality of Bioethanol Obtained from Sugarcane Fermentation Using Direct Dissolved Sugars Measurements

    Borja Velazquez-Marti

    2016-04-01

    Full Text Available Bioethanol production from sugarcane represents an opportunity for urban-agricultural development in small communities of Ecuador. Despite the fact that the industry for bioethanol production from sugarcane in Brazil is fully developed, it is still considered expensive as a small rural business. In order to be able to reduce the costs of monitoring the production process, and avoid the application of expensive sensors, the aim of this research was modeling the kinetics of production of bioethanol based on direct measurements of Brix grades, instead of the concentration of alcohol, during the process of cane juice bio-fermentation with Saccharomyces cerevisiae. This avoids the application of expensive sensors that increase the investment costs. Fermentation experiments with three concentrations of yeast and two temperatures were carried out in a laboratory reactor. In each case Brix grades, amount of ethanol and alcoholic degree were measured. A mathematical model to predict the quality and production of bioethanol was developed from Brix grade measurements, obtaining an adjusted coefficient of determination of 0.97. The model was validated in a pilot plant.

  14. Direct numerical simulation of turbulent combustion: fundamental insights towards predictive models

    Hawkes, Evatt R; Sankaran, Ramanan; Sutherland, James C; Chen, Jacqueline H

    2005-01-01

    The advancement of our basic understanding of turbulent combustion processes and the development of physics-based predictive tools for design and optimization of the next generation of combustion devices are strategic areas of research for the development of a secure, environmentally sound energy infrastructure. In direct numerical simulation (DNS) approaches, all scales of the reacting flow problem are resolved. However, because of the magnitude of this task, DNS of practical high Reynolds number turbulent hydrocarbon flames is out of reach of even terascale computing. For the foreseeable future, the approach to this complex multi-scale problem is to employ distinct but synergistic approaches to tackle smaller sub-ranges of the complete problem, which then require models for the small scale interactions. With full access to the spatially and temporally resolved fields, DNS can play a major role in the development of these models and in the development of fundamental understanding of the micro-physics of turbulence-chemistry interactions. Two examples, from simulations performed at terascale Office of Science computing facilities, are presented to illustrate the role of DNS in delivering new insights to advance the predictive capability of models. Results are presented from new three-dimensional DNS with detailed chemistry of turbulent non-premixed jet flames, revealing the differences between mixing of passive and reacting scalars, and determining an optimal lower dimensional representation of the full thermochemical state space

  15. Model-based analysis of water management in alkaline direct methanol fuel cells

    Weinzierl, C.; Krewer, U.

    2014-12-01

    Mathematical modelling is used to analyse water management in Alkaline Direct Methanol Fuel Cells (ADMFCs) with an anion exchange membrane as electrolyte. Cathodic water supply is identified as one of the main challenges and investigated at different operation conditions. Two extreme case scenarios are modelled to study the feasible conditions for sufficient water supply. Scenario 1 reveals that water supply by cathodic inlet is insufficient and, thus, water transport through membrane is essential for ADMFC operation. The second scenario is used to analyse requirements on water transport through the membrane for different operation conditions. These requirements are influenced by current density, evaporation rate, methanol cross-over and electro-osmotic drag of water. Simulations indicate that water supply is mainly challenging for high current densities and demands on high water diffusion are intensified by water drag. Thus, current density might be limited by water transport through membrane. The presented results help to identify important effects and processes in ADMFCs with a polymer electrolyte membrane and to understand these processes. Furthermore, the requirements identified by modelling show the importance of considering water transport through membrane besides conductivity and methanol cross-over especially for designing new membrane materials.

  16. A predictive thermal dynamic model for parameter generation in the laser assisted direct write process

    Shang Shuo; Fearon, Eamonn; Wellburn, Dan; Sato, Taku; Edwardson, Stuart; Dearden, G; Watkins, K G

    2011-01-01

    The laser assisted direct write (LADW) method can be used to generate electrical circuitry on a substrate by depositing metallic ink and curing the ink thermally by a laser. Laser curing has emerged over recent years as a novel yet efficient alternative to oven curing. This method can be used in situ, over complicated 3D contours of large parts (e.g. aircraft wings) and selectively cure over heat sensitive substrates, with little or no thermal damage. In previous studies, empirical methods have been used to generate processing windows for this technique, relating to the several interdependent processing parameters on which the curing quality and efficiency strongly depend. Incorrect parameters can result in a track that is cured in some areas and uncured in others, or in damaged substrates. This paper addresses the strong need for a quantitative model which can systematically output the processing conditions for a given combination of ink, substrate and laser source; transforming the LADW technique from a purely empirical approach, to a simple, repeatable, mathematically sound, efficient and predictable process. The method comprises a novel and generic finite element model (FEM) that for the first time predicts the evolution of the thermal profile of the ink track during laser curing and thus generates a parametric map which indicates the most suitable combination of parameters for process optimization. Experimental data are compared with simulation results to verify the accuracy of the model.

  17. 76 FR 6541 - Airworthiness Directives; Fokker Services B.V. Model F.28 Mark 0100, 1000, 2000, 3000, and 4000...

    2011-02-07

    ... Airworthiness Directives; Fokker Services B.V. Model F.28 Mark 0100, 1000, 2000, 3000, and 4000 Airplanes AGENCY.... Applicability (c) This AD applies to Fokker Services B.V. Model F.28 Mark 1000, 2000, 3000, and 4000 airplanes... April 20, 2010 (for Model F.28 Mark 1000, 2000, 3000, and 4000 airplanes); or SBF100-28-063, dated April...

  18. 75 FR 75868 - Airworthiness Directives; Diamond Aircraft Industries GmbH Models DA 40 and DA 40F Airplanes

    2010-12-07

    ... Airworthiness Directives; Diamond Aircraft Industries GmbH Models DA 40 and DA 40F Airplanes AGENCY: Federal... of the Thielert Engine Owners Group commented that the Model DA 42 has the same door design and the same unsafe condition. He recommended that the AD also apply to the Model DA 42. The FAA has discussed...

  19. 75 FR 52292 - Airworthiness Directives; Diamond Aircraft Industries GmbH Models DA 40 and DA 40F Airplanes

    2010-08-25

    ... Industries GmbH Models DA 40 and DA 40F Airplanes AGENCY: Federal Aviation Administration (FAA), Department... new airworthiness directive (AD) for all Diamond Aircraft Industries GmbH Models DA 40 and DA 40F... received information from Diamond Aircraft Industries GmbH that the Models DA 40 and DA 40F airplanes have...

  20. Conservation laws for voter-like models on random directed networks

    Ángeles Serrano, M; Klemm, Konstantin; Vazquez, Federico; Eguíluz, Víctor M; San Miguel, Maxi

    2009-01-01

    We study the voter model, under node and link update, and the related invasion process on a single strongly connected component of a directed network. We implement an analytical treatment in the thermodynamic limit using the heterogeneous mean-field assumption. From the dynamical rules at the microscopic level, we find the equations for the evolution of the relative densities of nodes in a given state on heterogeneous networks with arbitrary degree distribution and degree–degree correlations. We prove that conserved quantities as weighted linear superpositions of spin states exist for all three processes and, for uncorrelated directed networks, we derive their specific expressions. We also discuss the time evolution of the relative densities that decay exponentially to a homogeneous stationary value given by the conserved quantity. The conservation laws obtained in the thermodynamic limit for a system that does not order in that limit determine the probabilities of reaching the absorbing state for a finite system. The contribution of each degree class to the conserved quantity is determined by a local property. Depending on the dynamics, the highest contribution is associated with influential nodes reaching a large number of outgoing neighbors, not too influenceable ones with a low number of incoming connections, or both at the same time

  1. Electric Vehicle Longitudinal Stability Control Based on a New Multimachine Nonlinear Model Predictive Direct Torque Control

    M’hamed Sekour

    2017-01-01

    Full Text Available In order to improve the driving performance and the stability of electric vehicles (EVs, a new multimachine robust control, which realizes the acceleration slip regulation (ASR and antilock braking system (ABS functions, based on nonlinear model predictive (NMP direct torque control (DTC, is proposed for four permanent magnet synchronous in-wheel motors. The in-wheel motor provides more possibilities of wheel control. One of its advantages is that it has low response time and almost instantaneous torque generation. Moreover, it can be independently controlled, enhancing the limits of vehicular control. For an EV equipped with four in-wheel electric motors, an advanced control may be envisaged. Taking advantage of the fast and accurate torque of in-wheel electric motors which is directly transmitted to the wheels, a new approach for longitudinal control realized by ASR and ABS is presented in this paper. In order to achieve a high-performance torque control for EVs, the NMP-DTC strategy is proposed. It uses the fuzzy logic control technique that determines online the accurate values of the weighting factors and generates the optimal switching states that optimize the EV drives’ decision. The simulation results built in Matlab/Simulink indicate that the EV can achieve high-performance vehicle longitudinal stability control.

  2. Effects of transcranial direct current stimulation for treating depression: A modeling study

    Csifcsák, Gábor; Boayue, Nya Mehnwolo; Puonti, Oula

    2018-01-01

    Background: Transcranial direct current stimulation (tDCS) above the left dorsolateral prefrontal cortex (lDLPFC) has been widely used to improve symptoms of major depressive disorder (MDD). However, the effects of different stimulation protocols in the entire frontal lobe have not been investiga......Background: Transcranial direct current stimulation (tDCS) above the left dorsolateral prefrontal cortex (lDLPFC) has been widely used to improve symptoms of major depressive disorder (MDD). However, the effects of different stimulation protocols in the entire frontal lobe have not been...... regions. We evaluated effects of seven bipolar and two multi-electrode 4 × 1 tDCS protocols. Results: For bipolar montages, EFs were of comparable strength in the lDLPFC and in the medial prefrontal cortex (MPFC). Depending on stimulation parameters, EF cortical maps varied to a considerable degree......, but were found to be similar in controls and patients. 4 × 1 montages produced more localized, albeit weaker effects. Limitations: White matter anisotropy was not modeled. The relationship between EF strength and clinical response to tDCS could not be evaluated. Conclusions: In addition to l...

  3. Direct diffusion tensor estimation using a model-based method with spatial and parametric constraints.

    Zhu, Yanjie; Peng, Xi; Wu, Yin; Wu, Ed X; Ying, Leslie; Liu, Xin; Zheng, Hairong; Liang, Dong

    2017-02-01

    To develop a new model-based method with spatial and parametric constraints (MB-SPC) aimed at accelerating diffusion tensor imaging (DTI) by directly estimating the diffusion tensor from highly undersampled k-space data. The MB-SPC method effectively incorporates the prior information on the joint sparsity of different diffusion-weighted images using an L1-L2 norm and the smoothness of the diffusion tensor using a total variation seminorm. The undersampled k-space datasets were obtained from fully sampled DTI datasets of a simulated phantom and an ex-vivo experimental rat heart with acceleration factors ranging from 2 to 4. The diffusion tensor was directly reconstructed by solving a minimization problem with a nonlinear conjugate gradient descent algorithm. The reconstruction performance was quantitatively assessed using the normalized root mean square error (nRMSE) of the DTI indices. The MB-SPC method achieves acceptable DTI measures at an acceleration factor up to 4. Experimental results demonstrate that the proposed method can estimate the diffusion tensor more accurately than most existing methods operating at higher net acceleration factors. The proposed method can significantly reduce artifact, particularly at higher acceleration factors or lower SNRs. This method can easily be adapted to MR relaxometry parameter mapping and is thus useful in the characterization of biological tissue such as nerves, muscle, and heart tissue. © 2016 American Association of Physicists in Medicine.

  4. Research progress from the SCI Model Systems (SCIMS): An interactive discussion on future directions.

    Boninger, Michael L; Field-Fote, Edelle C; Kirshblum, Steven C; Lammertse, Daniel P; Dyson-Hudson, Trevor A; Hudson, Lesley; Heinemann, Allen W

    2018-03-01

    To describe current and future directions in spinal cord injury (SCI) research. The SCI Model Systems (SCIMS) programs funded by the National Institute on Disability, Independent Living, and Rehabilitation Research (NIDILRR) during the 2011 to 2016 cycle provided abstracts describing findings from current research projects. Discussion among session participants generated ideas for research opportunities. Pre-conference workshop before the 2016 American Spinal Injury Association (ASIA) annual meeting. A steering committee selected by the SCIMS directors that included the moderators of the sessions at the ASIA pre-conference workshop, researchers presenting abstracts during the session, and the audience of over 100 attending participants in the pre-conference workshop. Group discussion followed presentations in 5 thematic areas of (1) Demographics and Measurement; (2) Functional Training; (3) Psychosocial Considerations; (4) Assistive Technology; and (5) Secondary Conditions. The steering committee reviewed and summarized discussion points on future directions for research and made recommendations for research based on the discussion in each of the five areas. Significant areas in need of research in SCI remain, the goal of which is continued improvement in the quality of life of individuals with SCI.

  5. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    Li, Yongxin; Li, Zhongrui; Yamanaka, Kazuya; Xu, Ying; Zhang, Weipeng; Vlamakis, Hera; Kolter, Roberto; Moore, Bradley S.; Qian, Pei-Yuan

    2015-03-01

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning ``plug-and-play'' approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  6. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    Li, Yongxin

    2015-03-24

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning plug-and-playa approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  7. Modeling Geometric-Temporal Context With Directional Pyramid Co-Occurrence for Action Recognition.

    Yuan, Chunfeng; Li, Xi; Hu, Weiming; Ling, Haibin; Maybank, Stephen J

    2014-02-01

    In this paper, we present a new geometric-temporal representation for visual action recognition based on local spatio-temporal features. First, we propose a modified covariance descriptor under the log-Euclidean Riemannian metric to represent the spatio-temporal cuboids detected in the video sequences. Compared with previously proposed covariance descriptors, our descriptor can be measured and clustered in Euclidian space. Second, to capture the geometric-temporal contextual information, we construct a directional pyramid co-occurrence matrix (DPCM) to describe the spatio-temporal distribution of the vector-quantized local feature descriptors extracted from a video. DPCM characterizes the co-occurrence statistics of local features as well as the spatio-temporal positional relationships among the concurrent features. These statistics provide strong descriptive power for action recognition. To use DPCM for action recognition, we propose a directional pyramid co-occurrence matching kernel to measure the similarity of videos. The proposed method achieves the state-of-the-art performance and improves on the recognition performance of the bag-of-visual-words (BOVWs) models by a large margin on six public data sets. For example, on the KTH data set, it achieves 98.78% accuracy while the BOVW approach only achieves 88.06%. On both Weizmann and UCF CIL data sets, the highest possible accuracy of 100% is achieved.

  8. Polymorphism in the two-locus Levene model with nonepistatic directional selection.

    Bürger, Reinhard

    2009-11-01

    For the Levene model with soft selection in two demes, the maintenance of polymorphism at two diallelic loci is studied. Selection is nonepistatic and dominance is intermediate. Thus, there is directional selection in every deme and at every locus. We assume that selection is in opposite directions in the two demes because otherwise no polymorphism is possible. If at one locus there is no dominance, then a complete analysis of the dynamical and equilibrium properties is performed. In particular, a simple necessary and sufficient condition for the existence of an internal equilibrium and sufficient conditions for global asymptotic stability are obtained. These results are extended to deme-independent degree of dominance at one locus. A perturbation analysis establishes structural stability within the full parameter space. In the absence of genotype-environment interaction, which requires deme-independent dominance at both loci, nongeneric equilibrium behavior occurs, and the introduction of arbitrarily small genotype-environment interaction changes the equilibrium structure and may destroy stable polymorphism. The volume of the parameter space for which a (stable) two-locus polymorphism is maintained is computed numerically. It is investigated how this volume depends on the strength of selection and on the dominance relations. If the favorable allele is (partially) dominant in its deme, more than 20% of all parameter combinations lead to a globally asymptotically stable, fully polymorphic equilibrium.

  9. Comparison and extension of a direct model reference adaptive control procedure

    Neat, Gregory W.; Kaufman, Howard; Steinvorth, Rodrigo

    1992-01-01

    This paper analyzes and extends an easily implemented direct model reference adaptive control procedure. The paper focuses on the major limitation of this control approach which is the satisfaction of a strictly positive real sufficiency condition in order to guarantee asymptotic tracking. Attempts, to date, to address this problem have been unable to relax simultaneously the stringent condition and maintain asymptotic tracking capabilities. Three different modifications to existing versions of this algorithm are presented which substantially relax the stringent sufficiency condition while providing asymptotic tracking. These three modifications achieve this goal by imposing slight adjustments to existing sufficiency conditions. A simulation example demonstrates that the modifications eliminate the steady error inherent in the existing methods.

  10. Stuttering Intervention in Three Service Delivery Models (Direct, Hybrid, and Telepractice: Two Case Studies

    Daniel T. Valentine

    2015-01-01

    Full Text Available This study assessed outcomes in stuttering intervention across three service delivery models: direct, hybrid, and telepractice for two 11-year old children who stutter. The goal of the study was to investigate whether short-term goals were maintained through the telepractice sessions. The Stuttering Severity Instrument, Fourth Edition (SSI-4 was administered to each child before and after each intervention period and weekly fluency samples (percentage of stuttered syllables in a monologue were obtained in each of the 10-week intervention periods. In addition, the Communication Attitudes Test-Revised was used to assess the children’s attitudes toward speaking. Following the telepractice period, parents and children completed a questionnaire concerning the therapy experience via telepractice. Both children continued to improve fluency as measured by the weekly fluency samples. SSI-4 severity ratings improved for one child and remained consistent for the other. These outcomes appear to demonstrate that telepractice is viable for improving and maintaining fluency.

  11. Model-independent determination of the WIMP mass from direct dark matter detection data

    Drees, Manuel; Shan, Chung-Lin

    2008-01-01

    Weakly interacting massive particles (WIMPs) are one of the leading candidates for dark matter. We develop a model-independent method for determining the mass m χ of the WIMP by using data (i.e. measured recoil energies) of direct detection experiments. Our method is independent of the as yet unknown WIMP density near the Earth, of the form of the WIMP velocity distribution, as well as of the WIMP–nucleus cross section. However, it requires positive signals from at least two detectors with different target nuclei. In a background-free environment, m χ ∼50 GeV could in principle be determined with an error of ∼35% with only 2 × 50 events; in practice, upper and lower limits on the recoil energy of signal events, imposed to reduce backgrounds, can increase the error. The method also loses precision if m χ significantly exceeds the mass of the heaviest target nucleus used

  12. Direct phase derivative estimation using difference equation modeling in holographic interferometry

    Kulkarni, Rishikesh; Rastogi, Pramod

    2014-01-01

    A new method is proposed for the direct phase derivative estimation from a single spatial frequency modulated carrier fringe pattern in holographic interferometry. The fringe intensity in a given row/column is modeled as a difference equation of intensity with spatially varying coefficients. These coefficients carry the information on the phase derivative. Consequently, the accurate estimation of the coefficients is obtained by approximating the coefficients as a linear combination of the predefined linearly independent basis functions. Unlike Fourier transform based fringe analysis, the method does not call for performing the filtering of the Fourier spectrum of fringe intensity. Moreover, the estimation of the carrier frequency is performed by applying the proposed method to a reference interferogram. The performance of the proposed method is insensitive to the fringe amplitude modulation and is validated with the simulation results. (paper)

  13. Input-constrained model predictive control via the alternating direction method of multipliers

    Sokoler, Leo Emil; Frison, Gianluca; Andersen, Martin S.

    2014-01-01

    This paper presents an algorithm, based on the alternating direction method of multipliers, for the convex optimal control problem arising in input-constrained model predictive control. We develop an efficient implementation of the algorithm for the extended linear quadratic control problem (LQCP......) with input and input-rate limits. The algorithm alternates between solving an extended LQCP and a highly structured quadratic program. These quadratic programs are solved using a Riccati iteration procedure, and a structure-exploiting interior-point method, respectively. The computational cost per iteration...... is quadratic in the dimensions of the controlled system, and linear in the length of the prediction horizon. Simulations show that the approach proposed in this paper is more than an order of magnitude faster than several state-of-the-art quadratic programming algorithms, and that the difference in computation...

  14. Electroejaculation functions primarily by direct activation of pelvic musculature: Perspectives from a porcine model

    Adam M.R. Groh

    2018-03-01

    Full Text Available Ejaculatory dysfunction is a significant cause of infertility in men that have incurred spinal cord injury or iatrogenic lesions to the sympathetic nerves in the retroperitoneum. For such patients, electroejaculation – whereby a voltage is applied transrectally under general anesthesia – is a highly-effective procedure to obtain ejaculate. At present, however, there remains uncertainty as to the physiological mechanism by which electroejaculation prompts seminal emission in males with neurogenic anejaculation. Thus, in the present study, we aimed to determine, for the first time, whether electroejaculation functions by mimicking a neurophysiological response, or by directly activating local pelvic musculature. Using electroejaculation in a novel porcine model, we monitored the strength of contraction of the internal urethral sphincter (a smooth muscle involved in ejaculation before and after lesioning its sympathetic innervation with a combination of progressively-worsening surgical and pharmacological insults in three anesthetized boars (46.1 ± 7.4 kg. Importantly, prior to this investigation, we confirmed the comparative structural anatomy of the porcine model to humans through gross dissection and histological analysis of the infrarenal retroperitoneal sympathetic nerves and ganglia in 18 unembalmed boars. Prior to sacrifice, three of these boars underwent functional testing to confirm control of the internal urethral sphincter by the hypogastric nerves. Our results demonstrate that electroejaculation-induced contraction of the internal urethral sphincter was preserved following each progressive neural insult compared to the control state (p > 0.05. In contrast, these same insults resulted in paralysis/paresis of the internal urethral sphincter when its sympathetic innervation was directly stimulated with bipolar electrodes (p < 0.05. Taken together, our results provide the first empirical evidence to suggest that

  15. Is Russia successful in attracting foreign direct investment? Evidence based on gravity model estimation

    Mariev Oleg

    2016-09-01

    Full Text Available The aim of this paper is twofold. First, it is to answer the question of whether Russia is successful in attracting foreign direct investment (FDI. Second, it is to identify partner countries that “overinvest” and “underinvest” in the Russian economy. We do this by calculating potential FDI inflows to Russia and comparing them with actual values. This research is associated with the empirical estimation of factors explaining FDI flows between countries. The methodological foundation used for the research is the gravity model of foreign direct investment. In discussing the pros and cons of different econometric methods of the estimation gravity equation, we conclude that the Poisson pseudo maximum likelihood method with instrumental variables (IV PPML is one of the best options in our case. Using a database covering about 70% of FDI flows for the period of 2001-2011, we discover the following factors that explain the variance of bilateral FDI flows in the world economy: GDP value of investing country, GDP value of recipient country, distance between countries, remoteness of investor country, remoteness of recipient country, level of institutions development in host country, wage level in host country, membership of two countries in a regional economic union, common official language, common border and colonial relationships between countries in the past. The potential values of FDI inflows are calculated using coefficients of regressors from the econometric model. We discover that the Russian economy performs very well in attracting FDI: the actual FDI inflows exceed potential values by 1.72 times. Large developed countries (France, Germany, UK, Italy overinvest in the Russian economy, while smaller and less developed countries (Czech Republic, Belarus, Denmark, Ukraine underinvest in Russia. Countries of Southeast Asia (China, South Korea, Japan also underinvest in the Russian economy.

  16. Adapting to a Changing Environment: Modeling the Interaction of Directional Selection and Plasticity.

    Nunney, Leonard

    2016-01-01

    Human-induced habitat loss and fragmentation constrains the range of many species, making them unable to respond to climate change by moving. For such species to avoid extinction, they must respond with some combination of phenotypic plasticity and genetic adaptation. Haldane's "cost of natural selection" limits the rate of adaptation, but, although modeling has shown that in very large populations long-term adaptation can be maintained at rates substantially faster than Haldane's suggested limit, maintaining large populations is often an impossibility, so phenotypic plasticity may be crucial in enhancing the long-term survival of small populations. The potential importance of plasticity is in "buying time" for populations subject to directional environmental change: if genotypes can encompass a greater environmental range, then populations can maintain high fitness for a longer period of time. Alternatively, plasticity could be detrimental by lessening the effectiveness of natural selection in promoting genetic adaptation. Here, I modeled a directionally changing environment in which a genotype's adaptive phenotypic plasticity is centered around the environment where its fitness is highest. Plasticity broadens environmental tolerance and, provided it is not too costly, is favored by natural selection. However, a paradoxical result of the individually advantageous spread of plasticity is that, unless the adaptive trait is determined by very few loci, the long-term extinction risk of a population increases. This effect reflects a conflict between the short-term individual benefit of plasticity and a long-term detriment to population persistence, adding to the multiple threats facing small populations under conditions of climate change. © The American Genetic Association. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Rotating shaft model updating from modal data by a direct energy approach : a feasibility study

    Audebert, S.

    1996-01-01

    Investigations to improve the rotating machinery monitoring tend more and more to use numerical models. The aim is to obtain multi-fluid bearing rotor models which are able to correctly represent their dynamic behaviour, either modal or forced response type. The possibility of extending the direct energy method, initially developed for undamped structures, to rotating machinery is studied. It is based on the minimization of the kinetic and strain energy gap between experimental and analytic modal data. The preliminary determination of a multi-linear bearing rotor system Eigen modes shows the problem complexity in comparison with undamped non rotating structures: taking into account gyroscopic effects and bearing damping, as factors of rotor velocities, leads to complex component Eigen modes; moreover, non symmetric matrices, related to stiffness and damping bearing contributions, induce distinct left and right-hand side Eigen modes (left hand side Eigenmodes corresponds to the adjoint structure). Theoretically, the extension of the energy method is studied, considering first the intermediate case of an undamped non gyroscopic structure, second the general case of a rotating shaft: dta used for updating procedure are Eigen frequencies and left- and right- hand side mode shapes. Since left hand side mode shapes cannot be directly measured, they are replaced by analytic ones. The method is tested on a two-bearing rotor system, with a mass added; simulated data are used, relative to a non compatible structure, i.e. which is not a part of the set of modified analytic possible structures. Parameters to be corrected are the mass density, the Young's modulus, and the stiffness and damping linearized characteristics of bearings. If parameters are influent in regard with modes to be updates, the updating method permits a significant improvement of the gap between analytic and experimental modes, even for modes not involves in the procedure. Modal damping appears to be more

  18. A comparison and update of direct kinematic-kinetic models of leg stiffness in human running.

    Liew, Bernard X W; Morris, Susan; Masters, Ashleigh; Netto, Kevin

    2017-11-07

    Direct kinematic-kinetic modelling currently represents the "Gold-standard" in leg stiffness quantification during three-dimensional (3D) motion capture experiments. However, the medial-lateral components of ground reaction force and leg length have been neglected in current leg stiffness formulations. It is unknown if accounting for all 3D would alter healthy biologic estimates of leg stiffness, compared to present direct modelling methods. This study compared running leg stiffness derived from a new method (multiplanar method) which includes all three Cartesian axes, against current methods which either only include the vertical axis (line method) or only the plane of progression (uniplanar method). Twenty healthy female runners performed shod overground running at 5.0 m/s. Three-dimensional motion capture and synchronised in-ground force plates were used to track the change in length of the leg vector (hip joint centre to centre of pressure) and resultant projected ground reaction force. Leg stiffness was expressed as dimensionless units, as a percentage of an individual's bodyweight divided by standing leg length (BW/LL). Leg stiffness using the line method was larger than the uniplanar method by 15.6%BW/LL (P method by 24.2%BW/LL (P stiffness from the uniplanar method was larger than the multiplanar method by 8.5%BW/LL (6.5 kN/m) (P stiffness estimate with the multiplanar method. Given that limb movements typically occur in 3D, the new multiplanar method provides the most complete accounting of all force and length components in leg stiffness calculation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Crack initiation modeling of a directionally-solidified nickel-base superalloy

    Gordon, Ali Page

    Combustion gas turbine components designed for application in electric power generation equipment are subject to periodic replacement as a result of cracking, damage, and mechanical property degeneration that render them unsafe for continued operation. In view of the significant costs associated with inspecting, servicing, and replacing damaged components, there has been much interest in developing models that not only predict service life, but also estimate the evolved microstructural state of the material. This thesis explains manifestations of microstructural damage mechanisms that facilitate fatigue crack nucleation in a newly-developed directionally-solidified (DS) Ni-base superalloy components exposed to elevated temperatures and high stresses. In this study, models were developed and validated for damage and life prediction using DS GTD-111 as the subject material. This material, proprietary to General Electric Energy, has a chemical composition and grain structure designed to withstand creep damage occurring in the first and second stage blades of gas-powered turbines. The service conditions in these components, which generally exceed 600°C, facilitate the onset of one or more damage mechanisms related to fatigue, creep, or environment. The study was divided into an empirical phase, which consisted of experimentally simulating service conditions in fatigue specimens, and a modeling phase, which entailed numerically simulating the stress-strain response of the material. Experiments have been carried out to simulate a variety of thermal, mechanical, and environmental operating conditions endured by longitudinally (L) and transversely (T) oriented DS GTD-111. Both in-phase and out-of-phase thermo-mechanical fatigue tests were conducted. In some cases, tests in extreme environments/temperatures were needed to isolate one or at most two of the mechanisms causing damage. Microstructural examinations were carried out via SEM and optical microscopy. A continuum

  20. The development of an erosive burning model for solid rocket motors using direct numerical simulation

    McDonald, Brian A.

    A method for developing an erosive burning model for use in solid propellant design-and-analysis interior ballistics codes is described and evaluated. Using Direct Numerical Simulation, the primary mechanisms controlling erosive burning (turbulent heat transfer, and finite rate reactions) have been studied independently through the development of models using finite rate chemistry, and infinite rate chemistry. Both approaches are calibrated to strand burn rate data by modeling the propellant burning in an environment with no cross-flow, and adjusting thermophysical properties until the predicted regression rate matches test data. Subsequent runs are conducted where the cross-flow is increased from M = 0.0 up to M = 0.8. The resulting relationship of burn rate increase versus Mach Number is used in an interior ballistics analysis to compute the chamber pressure of an existing solid rocket motor. The resulting predictions are compared to static test data. Both the infinite rate model and the finite rate model show good agreement when compared to test data. The propellant considered is an AP/HTPB with an average AP particle size of 37 microns. The finite rate model shows that as the cross-flow increases, near wall vorticity increases due to the lifting of the boundary caused by the side injection of gases from the burning propellant surface. The point of maximum vorticity corresponds to the outer edge of the APd-binder flame. As the cross-flow increases, the APd-binder flame thickness becomes thinner; however, the point of highest reaction rate moves only slightly closer to the propellant surface. As such, the net increase of heat transfer to the propellant surface due to finite rate chemistry affects is small. This leads to the conclusion that augmentation of thermal transport properties and the resulting heat transfer increase due to turbulence dominates over combustion chemistry in the erosive burning problem. This conclusion is advantageous in the development of

  1. Investigation of Pupils' Levels of MVPA and VPA during Physical Education Units Focused on Direct Instruction and Tactical Games Models

    Harvey, Stephen; Smith, Lindsey; Fairclough, Stuart; Savory, Louise; Kerr, Catherine

    2015-01-01

    We investigated the moderate to vigorous physical activity (MVPA) and vigorous physical activity (VPA) levels of pupils during coeducational physical education units focused on direct instruction and tactical games models (TGM). Thirty-two children (11-12 years, 17 girls) were randomly assigned to either a direct instruction (control) or TGM…

  2. Effects of transcranial direct current stimulation for treating depression: A modeling study.

    Csifcsák, Gábor; Boayue, Nya Mehnwolo; Puonti, Oula; Thielscher, Axel; Mittner, Matthias

    2018-07-01

    Transcranial direct current stimulation (tDCS) above the left dorsolateral prefrontal cortex (lDLPFC) has been widely used to improve symptoms of major depressive disorder (MDD). However, the effects of different stimulation protocols in the entire frontal lobe have not been investigated in a large sample including patient data. We used 38 head models created from structural magnetic resonance imaging data of 19 healthy adults and 19 MDD patients and applied computational modeling to simulate the spatial distribution of tDCS-induced electric fields (EFs) in 20 frontal regions. We evaluated effects of seven bipolar and two multi-electrode 4 × 1 tDCS protocols. For bipolar montages, EFs were of comparable strength in the lDLPFC and in the medial prefrontal cortex (MPFC). Depending on stimulation parameters, EF cortical maps varied to a considerable degree, but were found to be similar in controls and patients. 4 × 1 montages produced more localized, albeit weaker effects. White matter anisotropy was not modeled. The relationship between EF strength and clinical response to tDCS could not be evaluated. In addition to lDLPFC stimulation, excitability changes in the MPFC should also be considered as a potential mechanism underlying clinical efficacy of bipolar montages. MDD-associated anatomical variations are not likely to substantially influence current flow. Individual modeling of tDCS protocols can substantially improve cortical targeting. We make recommendations for future research to explicitly test the contribution of lDLPFC vs. MPFC stimulation to therapeutic outcomes of tDCS in this disorder. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Maximizing time from the constraining European Working Time Directive (EWTD): The Heidelberg New Working Time Model.

    Schimmack, Simon; Hinz, Ulf; Wagner, Andreas; Schmidt, Thomas; Strothmann, Hendrik; Büchler, Markus W; Schmitz-Winnenthal, Hubertus

    2014-01-01

    The introduction of the European Working Time Directive (EWTD) has greatly reduced training hours of surgical residents, which translates into 30% less surgical and clinical experience. Such a dramatic drop in attendance has serious implications such compromised quality of medical care. As the surgical department of the University of Heidelberg, our goal was to establish a model that was compliant with the EWTD while avoiding reduction in quality of patient care and surgical training. We first performed workload analyses and performance statistics for all working areas of our department (operation theater, emergency room, specialized consultations, surgical wards and on-call duties) using personal interviews, time cards, medical documentation software as well as data of the financial- and personnel-controlling sector of our administration. Using that information, we specifically designed an EWTD-compatible work model and implemented it. Surgical wards and operating rooms (ORs) were not compliant with the EWTD. Between 5 pm and 8 pm, three ORs were still operating two-thirds of the time. By creating an extended work shift (7:30 am-7:30 pm), we effectively reduced the workload to less than 49% from 4 pm and 8 am, allowing the combination of an eight-hour working day with a 16-hour on call duty; thus, maximizing surgical resident training and ensuring patient continuity of care while maintaining EDTW guidelines. A precise workload analysis is the key to success. The Heidelberg New Working Time Model provides a legal model, which, by avoiding rotating work shifts, assures quality of patient care and surgical training.

  4. Innovative three-dimensional neutronics analyses directly coupled with cad models of geometrically complex fusion systems

    Sawan, M.; Wilson, P.; El-Guebaly, L.; Henderson, D.; Sviatoslavsky, G.; Bohm, T.; Kiedrowski, B.; Ibrahim, A.; Smith, B.; Slaybaugh, R.; Tautges, T.

    2007-01-01

    Fusion systems are, in general, geometrically complex requiring detailed three-dimensional (3-D) nuclear analysis. This analysis is required to address tritium self-sufficiency, nuclear heating, radiation damage, shielding, and radiation streaming issues. To facilitate such calculations, we developed an innovative computational tool that is based on the continuous energy Monte Carlo code MCNP and permits the direct use of CAD-based solid models in the ray-tracing. This allows performing the neutronics calculations in a model that preserves the geometrical details without any simplification, eliminates possible human error in modeling the geometry for MCNP, and allows faster design iterations. In addition to improving the work flow for simulating complex 3- D geometries, it allows a richer representation of the geometry compared to the standard 2nd order polynomial representation. This newly developed tool has been successfully tested for a detailed 40 degree sector benchmark of the International Thermonuclear Experimental Reactor (ITER). The calculations included determining the poloidal variation of the neutron wall loading, flux and nuclear heating in the divertor components, nuclear heating in toroidal field coils, and radiation streaming in the mid-plane port. The tool has been applied to perform 3-D nuclear analysis for several fusion designs including the ARIES Compact Stellarator (ARIES-CS), the High Average Power Laser (HAPL) inertial fusion power plant, and ITER first wall/shield (FWS) modules. The ARIES-CS stellarator has a first wall shape and a plasma profile that varies toroidally within each field period compared to the uniform toroidal shape in tokamaks. Such variation cannot be modeled analytically in the standard MCNP code. The impact of the complex helical geometry and the non-uniform blanket and divertor on the overall tritium breeding ratio and total nuclear heating was determined. In addition, we calculated the neutron wall loading variation in

  5. Scalar Dissipation Modeling for Passive and Active Scalars: a priori Study Using Direct Numerical Simulation

    Selle, L. C.; Bellan, Josette

    2006-01-01

    Transitional databases from Direct Numerical Simulation (DNS) of three-dimensional mixing layers for single-phase flows and two-phase flows with evaporation are analyzed and used to examine the typical hypothesis that the scalar dissipation Probability Distribution Function (PDF) may be modeled as a Gaussian. The databases encompass a single-component fuel and four multicomponent fuels, two initial Reynolds numbers (Re), two mass loadings for two-phase flows and two free-stream gas temperatures. Using the DNS calculated moments of the scalar-dissipation PDF, it is shown, consistent with existing experimental information on single-phase flows, that the Gaussian is a modest approximation of the DNS-extracted PDF, particularly poor in the range of the high scalar-dissipation values, which are significant for turbulent reaction rate modeling in non-premixed flows using flamelet models. With the same DNS calculated moments of the scalar-dissipation PDF and making a change of variables, a model of this PDF is proposed in the form of the (beta)-PDF which is shown to approximate much better the DNS-extracted PDF, particularly in the regime of the high scalar-dissipation values. Several types of statistical measures are calculated over the ensemble of the fourteen databases. For each statistical measure, the proposed (beta)-PDF model is shown to be much superior to the Gaussian in approximating the DNS-extracted PDF. Additionally, the agreement between the DNS-extracted PDF and the (beta)-PDF even improves when the comparison is performed for higher initial Re layers, whereas the comparison with the Gaussian is independent of the initial Re values. For two-phase flows, the comparison between the DNS-extracted PDF and the (beta)-PDF also improves with increasing free-stream gas temperature and mass loading. The higher fidelity approximation of the DNS-extracted PDF by the (beta)-PDF with increasing Re, gas temperature and mass loading bodes well for turbulent reaction rate

  6. Wind directions predicted from global circulation models and wind directions determined from eolian sandstones of the western United States-A comparison

    Parrish, Judith T.; Peterson, F.

    1988-01-01

    Wind directions for Middle Pennsylvanian through Jurassic time are predicted from global circulation models for the western United States. These predictions are compared with paleowind directions interpreted from eolian sandstones of Middle Pennsylvanian through Jurassic age. Predicted regional wind directions correspond with at least three-quarters of the paleowind data from the sandstones; the rest of the data may indicate problems with correlation, local effects of paleogeography on winds, and lack of resolution of the circulation models. The data and predictions suggest the following paleoclimatic developments through the time interval studied: predominance of winter subtropical high-pressure circulation in the Late Pennsylvanian; predominance of summer subtropical high-pressure circulation in the Permian; predominance of summer monsoonal circulation in the Triassic and earliest Jurassic; and, during the remainder of the Jurassic, influence of both summer subtropical and summer monsoonal circulation, with the boundary between the two systems over the western United States. This sequence of climatic changes is largely owing to paleogeographic changes, which influenced the buildup and breakdown of the monsoonal circulation, and possibly owing partly to a decrease in the global temperature gradient, which might have lessened the influence of the subtropical high-pressure circulation. The atypical humidity of Triassic time probably resulted from the monsoonal circulation created by the geography of Pangaea. This circulation is predicted to have been at a maximum in the Triassic and was likely to have been powerful enough to draw moisture along the equator from the ocean to the west. ?? 1988.

  7. On numerical modeling of low-head direct chill ingot caster for magnesium alloy AZ31

    Mainul Hasan

    2014-12-01

    Full Text Available A comprehensive 3D turbulent CFD study has been carried out to simulate a Low-Head (LH vertical Direct Chill (DC rolling ingot caster for the common magnesium alloy AZ31. The model used in this study takes into account the coupled laminar/turbulent melt flow and solidification aspects of the process and is based on the control-volume finite-difference approach. Following the aluminum/magnesium DC casting industrial practices, the LH mold is taken as 30 mm with a hot top of 60 mm. The previously verified in-house code has been modified to model the present casting process. Important quantitative results are obtained for four casting speeds, for three inlet melt pouring temperatures (superheats and for three metal-mold contact heat transfer coefficients for the steady state operational phase of the caster. The variable cooling water temperatures reported by the industry are considered for the primary and secondary cooling zones during the simulations. Specifically, the temperature and velocity fields, sump depth and sump profiles, mushy region thickness, solid shell thickness at the exit of the mold and axial temperature profiles at the center and at three strategic locations at the surface of the slab are presented and discussed.

  8. Modeling of direct wafer bonding: Effect of wafer bow and etch patterns

    Turner, K. T.; Spearing, S. M.

    2002-12-01

    Direct wafer bonding is an important technology for the manufacture of silicon-on-insulator substrates and microelectromechanical systems. As devices become more complex and require the bonding of multiple patterned wafers, there is a need to understand the mechanics of the bonding process. A general bonding criterion based on the competition between the strain energy accumulated in the wafers and the surface energy that is dissipated as the bond front advances is developed. The bonding criterion is used to examine the case of bonding bowed wafers. An analytical expression for the strain energy accumulation rate, which is the quantity that controls bonding, and the final curvature of a bonded stack is developed. It is demonstrated that the thickness of the wafers plays a large role and bonding success is independent of wafer diameter. The analytical results are verified through a finite element model and a general method for implementing the bonding criterion numerically is presented. The bonding criterion developed permits the effect of etched features to be assessed. Shallow etched patterns are shown to make bonding more difficult, while it is demonstrated that deep etched features can facilitate bonding. Model results and their process design implications are discussed in detail.

  9. Modeling boundary-layer transition in direct and large-eddy simulations using parabolized stability equations

    Lozano-Durán, A.; Hack, M. J. P.; Moin, P.

    2018-02-01

    We examine the potential of the nonlinear parabolized stability equations (PSE) to provide an accurate yet computationally efficient treatment of the growth of disturbances in H-type transition to turbulence. The PSE capture the nonlinear interactions that eventually induce breakdown to turbulence and can as such identify the onset of transition without relying on empirical correlations. Since the local PSE solution at the onset of transition is a close approximation of the Navier-Stokes equations, it provides a natural inflow condition for direct numerical simulations (DNS) and large-eddy simulations (LES) by avoiding nonphysical transients. We show that a combined PSE-DNS approach, where the pretransitional region is modeled by the PSE, can reproduce the skin-friction distribution and downstream turbulent statistics from a DNS of the full domain. When the PSE are used in conjunction with wall-resolved and wall-modeled LES, the computational cost in both the laminar and turbulent regions is reduced by several orders of magnitude compared to DNS.

  10. Direct simulation Monte Carlo modeling of relaxation processes in polyatomic gases

    Pfeiffer, M.; Nizenkov, P.; Mirza, A.; Fasoulas, S.

    2016-02-01

    Relaxation processes of polyatomic molecules are modeled and implemented in an in-house Direct Simulation Monte Carlo code in order to enable the simulation of atmospheric entry maneuvers at Mars and Saturn's Titan. The description of rotational and vibrational relaxation processes is derived from basic quantum-mechanics using a rigid rotator and a simple harmonic oscillator, respectively. Strategies regarding the vibrational relaxation process are investigated, where good agreement for the relaxation time according to the Landau-Teller expression is found for both methods, the established prohibiting double relaxation method and the new proposed multi-mode relaxation. Differences and applications areas of these two methods are discussed. Consequently, two numerical methods used for sampling of energy values from multi-dimensional distribution functions are compared. The proposed random-walk Metropolis algorithm enables the efficient treatment of multiple vibrational modes within a time step with reasonable computational effort. The implemented model is verified and validated by means of simple reservoir simulations and the comparison to experimental measurements of a hypersonic, carbon-dioxide flow around a flat-faced cylinder.

  11. Direct simulation Monte Carlo modeling of relaxation processes in polyatomic gases

    Pfeiffer, M.; Nizenkov, P.; Mirza, A.; Fasoulas, S.

    2016-01-01

    Relaxation processes of polyatomic molecules are modeled and implemented in an in-house Direct Simulation Monte Carlo code in order to enable the simulation of atmospheric entry maneuvers at Mars and Saturn’s Titan. The description of rotational and vibrational relaxation processes is derived from basic quantum-mechanics using a rigid rotator and a simple harmonic oscillator, respectively. Strategies regarding the vibrational relaxation process are investigated, where good agreement for the relaxation time according to the Landau-Teller expression is found for both methods, the established prohibiting double relaxation method and the new proposed multi-mode relaxation. Differences and applications areas of these two methods are discussed. Consequently, two numerical methods used for sampling of energy values from multi-dimensional distribution functions are compared. The proposed random-walk Metropolis algorithm enables the efficient treatment of multiple vibrational modes within a time step with reasonable computational effort. The implemented model is verified and validated by means of simple reservoir simulations and the comparison to experimental measurements of a hypersonic, carbon-dioxide flow around a flat-faced cylinder

  12. Direct simulation Monte Carlo modeling of relaxation processes in polyatomic gases

    Pfeiffer, M., E-mail: mpfeiffer@irs.uni-stuttgart.de; Nizenkov, P., E-mail: nizenkov@irs.uni-stuttgart.de; Mirza, A., E-mail: mirza@irs.uni-stuttgart.de; Fasoulas, S., E-mail: fasoulas@irs.uni-stuttgart.de [Institute of Space Systems, University of Stuttgart, Pfaffenwaldring 29, D-70569 Stuttgart (Germany)

    2016-02-15

    Relaxation processes of polyatomic molecules are modeled and implemented in an in-house Direct Simulation Monte Carlo code in order to enable the simulation of atmospheric entry maneuvers at Mars and Saturn’s Titan. The description of rotational and vibrational relaxation processes is derived from basic quantum-mechanics using a rigid rotator and a simple harmonic oscillator, respectively. Strategies regarding the vibrational relaxation process are investigated, where good agreement for the relaxation time according to the Landau-Teller expression is found for both methods, the established prohibiting double relaxation method and the new proposed multi-mode relaxation. Differences and applications areas of these two methods are discussed. Consequently, two numerical methods used for sampling of energy values from multi-dimensional distribution functions are compared. The proposed random-walk Metropolis algorithm enables the efficient treatment of multiple vibrational modes within a time step with reasonable computational effort. The implemented model is verified and validated by means of simple reservoir simulations and the comparison to experimental measurements of a hypersonic, carbon-dioxide flow around a flat-faced cylinder.

  13. European Working Time Directive and the use of simulators and models in Irish orthopaedics.

    Egan, C

    2011-09-07

    OBJECTIVE: To report on the perceptions of a group of orthopaedic trainees and trainers on perceived effects of the proposed introduction of European Working Time Directive (EWTD) restrictions into Ireland and on the use of simulators in training orthopaedic skills. METHODS: A structured questionnaire was developed to evaluate the opinions of a group of orthopaedic surgeons and trainees at the annual national orthopaedic conference. RESULTS: There were 44 participants [12 consultants, 32 trainees (15 specialist registrars, 8 registrars, 9 senior house officers)]. Seventy-five percent of participants felt that both the quality of patient care and training would be negatively affected. A higher proportion of consultants than trainees felt that quality of life would be affected. A high proportion of participants (81.8%) had used a simulator or model to learn a surgical skill and 100% would consider using them again. CONCLUSIONS: While we wait for the full introduction of the EWTD hours the perception is that both quality of patient care and training will be affected. Models and simulators are well perceived as a method of training.

  14. European Working Time Directive and the use of simulators and models in Irish orthopaedics.

    Egan, C; Elliott, R; Fleming, P

    2012-03-01

    To report on the perceptions of a group of orthopaedic trainees and trainers on perceived effects of the proposed introduction of European Working Time Directive (EWTD) restrictions into Ireland and on the use of simulators in training orthopaedic skills. A structured questionnaire was developed to evaluate the opinions of a group of orthopaedic surgeons and trainees at the annual national orthopaedic conference. There were 44 participants [12 consultants, 32 trainees (15 specialist registrars, 8 registrars, 9 senior house officers)]. Seventy-five percent of participants felt that both the quality of patient care and training would be negatively affected. A higher proportion of consultants than trainees felt that quality of life would be affected. A high proportion of participants (81.8%) had used a simulator or model to learn a surgical skill and 100% would consider using them again. While we wait for the full introduction of the EWTD hours the perception is that both quality of patient care and training will be affected. Models and simulators are well perceived as a method of training.

  15. A model of human nasal epithelial cells adapted for direct and repeated exposure to airborne pollutants.

    Bardet, Gaëlle; Achard, Sophie; Loret, Thomas; Desauziers, Valérie; Momas, Isabelle; Seta, Nathalie

    2014-08-17

    Airway epithelium lining the nasal cavity plays a pivotal role in respiratory tract defense and protection mechanisms. Air pollution induces alterations linked to airway diseases such as asthma. Only very few in vitro studies to date have succeeded in reproducing physiological conditions relevant to cellular type and chronic atmospheric pollution exposure. We therefore, set up an in vitro model of human Airway Epithelial Cells of Nasal origin (hAECN) close to real human cell functionality, specifically adapted to study the biological effects of exposure to indoor gaseous pollution at the environmental level. hAECN were exposed under air-liquid interface, one, two, or three-times at 24 h intervals for 1 h, to air or formaldehyde (200 μg/m(3)), an indoor air gaseous pollutant. All experiments were ended at day 4, when both cellular viability and cytokine production were assessed. Optimal adherence and confluence of cells were obtained 96 h after cell seeding onto collagen IV-precoated insert. Direct and repeated exposure to formaldehyde did not produce any cellular damage or IL-6 production change, although weak lower IL-8 production was observed only after the third exposure. Our model is significantly better than previous ones due to cell type and the repeated exposure protocol. Copyright © 2014. Published by Elsevier Ireland Ltd.

  16. Process-scale modelling of microstructure in direct chill casting of aluminium alloys

    Bedel, M.; Heyvaert, L.; Založnik, M.; Combeau, H.; Daloz, D.; Lesoult, G.

    2015-06-01

    The mechanical properties of an alloy being related to its microstructure, the understanding of the mechanisms responsible for the grain structure formation in direct chill casting is crucial. However, the grain size prediction by modelling is difficult since a variety of multi-scale coupled phenomena have to be considered. Nucleation and growth of the grains are interrelated, and the macroscopic transport phenomena such as the motion of grains and inoculant particles with the flow impact the nucleation-gowth competition. Thus we propose to study the grain size distribution of a 5182 alloy industrial scale slab of 510 mm thickness, both non-inoculated and inoculated with Al-3Ti-1B, for which experimental grain size measurements are available. We use a volume-averaged two-phase multi-scale model that describes nucleation from inoculant particles and grain growth, fully coupled with macroscopic transport phenomena: fluid flow induced by natural convection and solidification shrinkage, heat, mass and solute mass transport, grains and inoculant particles motion. We analyze the effect of liquid and grain motion as the effect of grain morphology on microstructure formation and we show in which extent those phenomena are responsible for the grain size distribution observed experimentally. The effect of the refiner level is also studied.

  17. A directed walk model of a long chain polymer in a slit with attractive walls

    Brak, R; Owczarek, A L; Rechnitzer, A; Whittington, S G

    2005-01-01

    We present the exact solutions of various directed walk models of polymers confined to a slit and interacting with the walls of the slit via an attractive potential. We consider three geometric constraints on the ends of the polymer and concentrate on the long chain limit. Apart from the general interest in the effect of geometrical confinement, this can be viewed as a two-dimensional model of steric stabilization and sensitized flocculation of colloidal dispersions. We demonstrate that the large width limit admits a phase diagram that is markedly different from the one found in a half-plane geometry, even when the polymer is constrained to be fixed at both ends on one wall. We are not able to find a closed form solution for the free energy for finite width, at all values of the interaction parameters, but we can calculate the asymptotic behaviour for large widths everywhere in the phase plane. This allows us to find the force between the walls induced by the polymer and hence the regions of the plane where either steric stabilization or sensitized flocculation would occur

  18. A three-dimensional non-isothermal model for a membraneless direct methanol redox fuel cell

    Wei, Lin; Yuan, Xianxia; Jiang, Fangming

    2018-05-01

    In the membraneless direct methanol redox fuel cell (DMRFC), three-dimensional electrodes contribute to the reduction of methanol crossover and the open separator design lowers the system cost and extends its service life. In order to better understand the mechanisms of this configuration and further optimize its performance, the development of a three-dimensional numerical model is reported in this work. The governing equations of the multi-physics field are solved based on computational fluid dynamics methodology, and the influence of the CO2 gas is taken into consideration through the effective diffusivities. The numerical results are in good agreement with experimental data, and the deviation observed for cases of large current density may be related to the single-phase assumption made. The three-dimensional electrode is found to be effective in controlling methanol crossover in its multi-layer structure, while it also increases the flow resistance for the discharging products. It is found that the current density distribution is affected by both the electronic conductivity and the concentration of reactants, and the temperature rise can be primarily attributed to the current density distribution. The sensitivity and reliability of the model are analyzed through the investigation of the effects of cell parameters, including porosity values of gas diffusion layers and catalyst layers, methanol concentration and CO2 volume fraction, on the polarization characteristics.

  19. Verification of extended model of goal directed behavior applied on aggression

    Katarína Vasková

    2016-01-01

    Full Text Available The study was aimed to verify Model of Goal Directed Behavior (EMGB by Perugini and Bagozzi (2001 applied on aggression by Richetin, Richardson and Boykin (2011. Two different studies were performed. Firstly original form of model was verified. In the second study, modification of EMGB through new conceptualization of scale of perceived behavioral control was executed. The research sample consisted together from 385 students of University of P.J. Šafárik and High school in Košice (182 respondents (78 men, 104 women with average age 20,84 years and standard deviation 1,94, who were involved in first study and 203 students (49 men and 154 women, with average age 19,71 and standard deviation 1,99 participated in second study who were administrated questionnaire by Richetin et al. (2011 and Richardson Conflict Response Questionnaire (Richardson & Green, 2006. Expectancy of comparable relationships between particular factors of EMGB in comparison to its published original version was verified. Data were analyzed by structural equation modeling. In first study was shown insufficient fit of EMGB model. There were hypothesized two main sources of problems. At first, weak relationship between attitudes and behavioral desire was shown. Following statistical procedures confirmed its direct impact on intention, what is in correspondence with another studies (see Leone, Perugini & Ercolani, 2004, Perugini & Bagozzi, 2001, Richetin et al., 2011. Second source of problems was identified in factor named perceived behavioral control. Difficulties from our point of view lied in conceptualization of the term and its subsequent measurement. In the second study was involved new conceptualization of control. It corresponded with Baumeister´s understanding of selfcontrol as asserting control over one´s emotions, thoughts and behavior. After this modification sufficient fit of EMGB was shown. Besides this, factor of self-control was the strongest predictor of

  20. Internal Fixation of Complicated Acetabular Fractures Directed by Preoperative Surgery with 3D Printing Models.

    Liu, Zhao-Jie; Jia, Jian; Zhang, Yin-Guang; Tian, Wei; Jin, Xin; Hu, Yong-Cheng

    2017-05-01

    The purpose of this article is to evaluate the efficacy and feasibility of preoperative surgery with 3D printing-assisted internal fixation of complicated acetabular fractures. A retrospective case review was performed for the above surgical procedure. A 23-year-old man was confirmed by radiological examination to have fractures of multiple ribs, with hemopneumothorax and communicated fractures of the left acetabulum. According to the Letounel and Judet classification, T-shaped fracture involving posterior wall was diagnosed. A 3D printing pelvic model was established using CT digital imaging and communications in medicine (DICOM) data preoperatively, with which surgical procedures were simulated in preoperative surgery to confirm the sequence of the reduction and fixation as well as the position and length of the implants. Open reduction with internal fixation (ORIF) of the acetabular fracture using modified ilioinguinal and Kocher-Langenbeck approaches was performed 25 days after injury. Plates that had been pre-bent in the preoperative surgery were positioned and screws were tightened in the directions determined in the preoperative planning following satisfactory reduction. The duration of the operation was 170 min and blood loss was 900 mL. Postoperative X-rays showed that anatomical reduction of the acetabulum was achieved and the hip joint was congruous. The position and length of the implants were not different when compared with those in preoperative surgery on 3D printing models. We believe that preoperative surgery using 3D printing models is beneficial for confirming the reduction and fixation sequence, determining the reduction quality, shortening the operative time, minimizing preoperative difficulties, and predicting the prognosis for complicated fractures of acetabulam. © 2017 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.

  1. Modeling of the Transport Phenomena in Passive Direct Methanol Fuel Cells Using a Two-Phase Anisotropic Model

    Zheng Miao

    2014-04-01

    Full Text Available The transport phenomena in a passive direct methanol fuel cell (DMFC were numerically simulated by the proposed two-dimensional two-phase nonisothermal mass transport model. The anisotropic transport characteristic and deformation of the gas diffusion layer (GDL were considered in this model. The natural convection boundary conditions were adopted for the transport of methanol, oxygen, and heat at the GDL outer surface. The effect of methanol concentration in the reservoir on cell performance was examined. The distribution of multiphysical fields in the membrane electrode assembly (MEA, especially in the catalyst layers (CLs, was obtained and analyzed. The results indicated that transport resistance for the methanol mainly existed in the MEA while that for oxygen and heat was primarily due to natural convection at the GDL outer surface. Because of the relatively high methanol concentration, the local reaction rate in CLs was mainly determined by the overpotential. Methanol concentration between 3 M and 4 M was recommended for passive liquid feed DMFC in order to achieve a balance between the cell performance and the methanol crossover.

  2. Modeling analysis of urea direct injection on the NOx emission reduction of biodiesel fueled diesel engines

    An, H.; Yang, W.M.; Li, J.; Zhou, D.Z.

    2015-01-01

    Highlights: • The effects of urea direct injection on NO x emissions reduction was investigated. • Aqueous urea solution was proposed to be injected after the fuel injection process. • The optimized injection strategy achieved a reduction efficiency of 58%. • There were no severe impacts on the CO emissions and BSFC. - Abstract: In this paper, a numerical simulation study was conducted to explore the possibility of an alternative approach: direct aqueous urea solution injection on the reduction of NO x emissions of a biodiesel fueled diesel engine. Simulation studies were performed using the 3D CFD simulation software KIVA4 coupled with CHEMKIN II code for pure biodiesel combustion under realistic engine operating conditions of 2400 rpm and 100% load. The chemical behaviors of the NO x formation and urea/NO x interaction processes were modeled by a modified extended Zeldovich mechanism and urea/NO interaction sub-mechanism. To ensure an efficient NO x reduction process, various aqueous urea injection strategies in terms of post injection timing, injection angle, and injection rate and urea mass fraction were carefully examined. The simulation results revealed that among all the four post injection timings (10 °ATDC, 15 °ATDC, 20 °ATDC and 25 °ATDC) that were evaluated, 15 °ATDC post injection timing consistently demonstrated a lower NO emission level. The orientation of the aqueous urea injection was also shown to play a critical role in determining the NO x removal efficiency, and 50 degrees injection angle was determined to be the optimal injection orientation which gave the most NO x reduction. In addition, both the urea/water ratio and aqueous urea injection rate demonstrated important roles which affected the thermal decomposition of urea into ammonia and the subsequent NO x removal process, and it was suggested that 50% urea mass fraction and 40% injection rate presented the lowest NO emission levels. At last, with the optimized injection

  3. Genetic parameters for direct and maternal calving ease in Walloon dairy cattle based on linear and threshold models.

    Vanderick, S; Troch, T; Gillon, A; Glorieux, G; Gengler, N

    2014-12-01

    Calving ease scores from Holstein dairy cattle in the Walloon Region of Belgium were analysed using univariate linear and threshold animal models. Variance components and derived genetic parameters were estimated from a data set including 33,155 calving records. Included in the models were season, herd and sex of calf × age of dam classes × group of calvings interaction as fixed effects, herd × year of calving, maternal permanent environment and animal direct and maternal additive genetic as random effects. Models were fitted with the genetic correlation between direct and maternal additive genetic effects either estimated or constrained to zero. Direct heritability for calving ease was approximately 8% with linear models and approximately 12% with threshold models. Maternal heritabilities were approximately 2 and 4%, respectively. Genetic correlation between direct and maternal additive effects was found to be not significantly different from zero. Models were compared in terms of goodness of fit and predictive ability. Criteria of comparison such as mean squared error, correlation between observed and predicted calving ease scores as well as between estimated breeding values were estimated from 85,118 calving records. The results provided few differences between linear and threshold models even though correlations between estimated breeding values from subsets of data for sires with progeny from linear model were 17 and 23% greater for direct and maternal genetic effects, respectively, than from threshold model. For the purpose of genetic evaluation for calving ease in Walloon Holstein dairy cattle, the linear animal model without covariance between direct and maternal additive effects was found to be the best choice. © 2014 Blackwell Verlag GmbH.

  4. Modelling tools to support the harmonization of Water Framework Directive and Common Agricultural Policy

    Tediosi, A.; Bulgheroni, C.; Sali, G.; Facchi, A.; Gandolfi, C.

    2009-04-01

    After a few years from the delivery of the EU Water Framework Directive (WFD) the need to link agriculture and WFD has emerged as one of the highest priorities; therefore, it is important to discuss on how the EU Common Agricultural Policy (CAP) can contribute to the achievements of the WFD objectives. The recent CAP reform - known as Mid Term Review (MTR) or Fischler Reform - has increased the opportunities, offering to farmers increased support to address some environmental issues. The central novelty coming from the MTR is the introduction of a farm single payment which aims to the Decoupling of EU Agricultural Support from production. Other MTR important topics deal with the Modulation of the payments, the Cross-Compliance and the strengthening of the Rural Development policy. All these new elements will affect the farmers' behaviour, steering their productive choices for the future, which, in turn, will have consequences on the water demand for irrigation. Indeed, from the water quantity viewpoint, agriculture is a large consumer and improving water use efficiency is one of the main issues at stake, following the increasing impacts of water scarcity and droughts across Europe in a context of climate change. According to a recent survey of the European Commission the saving potential in the agricultural sector is 43% of present abstraction and 95% of it is concentrated in southern europe. Many models have been developed to forecast the farmers' behaviour as a consequence of agricultural policies, both at sector and regional level; all of them are founded on Mathematical Programming techniques and many of them use the Positive approach, which better fits the territorial dimension. A large body of literature also exists focusing on the assessment of irrigation water requirements. The examples of conjunctive modelling of the two aspects are however much more limited. The work presented has got some innovative aspects: not only does it couple an economical model

  5. Direct numerical simulation of particle laden flow in a human airway bifurcation model

    Stylianou, Fotos S.; Sznitman, Josué; Kassinos, Stavros C.

    2016-01-01

    Highlights: • An anatomically realistic model of a human airway bifurcation is constructed. • Direct numerical simulations are used to study laminar and turbulent airflow. • Aerosol deposition in the bifurcation is studied with lagrangian particle tracking. • Carinal vortices forming during steady expiration are reported for the first time. • Stokes number determines deposition differences between inspiration and expiration. - Abstract: During the delivery of inhaled medicines, and depending on the size distribution of the particles in the formulation, airway bifurcations are areas of preferential deposition. Previous studies of laminar flow through airway bifurcations point to an interplay of inertial and centrifugal forces that leads to rich flow phenomena and controls particle deposition patterns. However, recent computational studies have shown that the airflow in the upper human airways is turbulent during much of the respiratory cycle. The question of how the presence of turbulence modifies these effects remains open. In this study, we perform for the first time Direct Numerical Simulations (DNS) of fully developed turbulent flow through a single human airway bifurcation model, emulating steady prolonged inspiration and expiration. We use the rich information obtained from the DNS in order to identify key structures in the flow field and scrutinize their role in determining deposition patterns in the bifurcation. We find that the vortical structures present in the bifurcation during expiration differ from those identified during inspiration. While Dean vortices are present in both cases, a set of three dimensional “carinal vortices” are identified only during expiration. A set of laminar simulations in the same geometries, but at lower Reynolds numbers, allow us to identify key differences in aerosol deposition patterns between laminar and turbulent respiration. We also report deposition fractions for representative Stokes numbers for both

  6. 75 FR 7942 - Airworthiness Directives; Airbus Model A310-203, -221, -222 Airplanes; and Model A300 F4-605R and...

    2010-02-23

    ... Airworthiness Directives; Airbus Model A310-203, -221, -222 Airplanes; and Model A300 F4-605R and -622R...-222 airplanes, all serial numbers. (2) Airbus Model A300 F4-605R and A300 F4-622R airplanes, all...

  7. 75 FR 28480 - Airworthiness Directives; Airbus Model A300 Series Airplanes; Model A300 B4-600, B4-600R, F4-600R...

    2010-05-21

    ... Airworthiness Directives; Airbus Model A300 Series Airplanes; Model A300 B4-600, B4-600R, F4-600R Series..., B4-622, B4- 605R, B4-622R, F4-605R, F4-622R, and C4-605R Variant F airplanes; and Model A310-203...

  8. Unifying Pore Network Modeling, Continuous Time Random Walk Theory and Experiment - Accomplishments and Future Directions

    Bijeljic, B.

    2008-05-01

    This talk will describe and highlight the advantages offered by a methodology that unifies pore network modeling, CTRW theory and experiment in description of solute dispersion in porous media. Solute transport in a porous medium is characterized by the interplay of advection and diffusion (described by Peclet number, Pe) that cause spreading of solute particles. This spreading is traditionally described by dispersion coefficients, D, defined by σ 2 = 2Dt, where σ 2 is the variance of the solute position and t is the time. Using a pore-scale network model based on particle tracking, the rich Peclet- number dependence of dispersion coefficient is predicted from first principles and is shown to compare well with experimental data for restricted diffusion, transition, power-law and mechanical dispersion regimes in the asymptotic limit. In the asymptotic limit D is constant and can be used in an averaged advection-dispersion equation. However, it is highly important to recognize that, until the velocity field is fully sampled, the particle transport is non-Gaussian and D possesses temporal or spatial variation. Furthermore, temporal probability density functions (PDF) of tracer particles are studied in pore networks and an excellent agreement for the spectrum of transition times for particles from pore to pore is obtained between network model results and CTRW theory. Based on the truncated power-law interpretation of PDF-s, the physical origin of the power-law scaling of dispersion coefficient vs. Peclet number has been explained for unconsolidated porous media, sands and a number of sandstones, arriving at the same conclusion from numerical network modelling, analytic CTRW theory and experiment. Future directions for further applications of the methodology presented are discussed in relation to the scale- dependent solute dispersion and reactive transport. Significance of pre-asymptotic dispersion in porous media is addressed from pore-scale upwards and the impact

  9. Semi-empirical models for the estimation of clear sky solar global and direct normal irradiances in the tropics

    Janjai, S.; Sricharoen, K.; Pattarapanitchai, S.

    2011-01-01

    Highlights: → New semi-empirical models for predicting clear sky irradiance were developed. → The proposed models compare favorably with other empirical models. → Performance of proposed models is comparable with that of widely used physical models. → The proposed models have advantage over the physical models in terms of simplicity. -- Abstract: This paper presents semi-empirical models for estimating global and direct normal solar irradiances under clear sky conditions in the tropics. The models are based on a one-year period of clear sky global and direct normal irradiances data collected at three solar radiation monitoring stations in Thailand: Chiang Mai (18.78 o N, 98.98 o E) located in the North of the country, Nakhon Pathom (13.82 o N, 100.04 o E) in the Centre and Songkhla (7.20 o N, 100.60 o E) in the South. The models describe global and direct normal irradiances as functions of the Angstrom turbidity coefficient, the Angstrom wavelength exponent, precipitable water and total column ozone. The data of Angstrom turbidity coefficient, wavelength exponent and precipitable water were obtained from AERONET sunphotometers, and column ozone was retrieved from the OMI/AURA satellite. Model validation was accomplished using data from these three stations for the data periods which were not included in the model formulation. The models were also validated against an independent data set collected at Ubon Ratchathani (15.25 o N, 104.87 o E) in the Northeast. The global and direct normal irradiances calculated from the models and those obtained from measurements are in good agreement, with the root mean square difference (RMSD) of 7.5% for both global and direct normal irradiances. The performance of the models was also compared with that of other models. The performance of the models compared favorably with that of empirical models. Additionally, the accuracy of irradiances predicted from the proposed model are comparable with that obtained from some

  10. 75 FR 6865 - Airworthiness Directives; The Boeing Company Model 737-700 (IGW) Series Airplanes Equipped With...

    2010-02-12

    ... replacing aging float level switch conduit assemblies, periodically inspecting the external dry bay system... Model 737-700 (IGW) Series Airplanes Equipped With Auxiliary Fuel Tanks Installed in Accordance With... airworthiness directive (AD) for certain Model 737-700 (IGW) series airplanes. This proposed AD would require...

  11. (Reinforcing) Factors Influencing a Physical Education Teacher's Use of the Direct Instruction Model Teaching Games

    Jayantilal, Kumar; O'Leary, Nick

    2017-01-01

    The purpose of this study was to explore how a physical education (PE) teacher employed the direct instruction model (DIM) teaching games in a United Kingdom secondary school. The research sought to identify how the teacher utilised the DIM and those factors that influenced his use of the model. Occupational socialization was used to identify the…

  12. 75 FR 47203 - Airworthiness Directives; McDonnell Douglas Corporation Model MD-11 and MD-11F Airplanes Equipped...

    2010-08-05

    ... Airworthiness Directives; McDonnell Douglas Corporation Model MD- 11 and MD-11F Airplanes Equipped With General... Sec. 39.13 by adding the following new AD: 2010-16-03 McDonnell Douglas Corporation: Amendment 39... applies to McDonnell Douglas Corporation Model MD-11 and MD-11F airplanes, certified in any category...

  13. 75 FR 34347 - Airworthiness Directives; Honeywell International Inc. Auxiliary Power Unit Models GTCP36-150(R...

    2010-06-17

    ... Airworthiness Directives; Honeywell International Inc. Auxiliary Power Unit Models GTCP36-150(R) and GTCP36-150...) models GTCP36- 150(R) and GTCP36-150(RR). This AD requires inspecting the fuel control unit (FCU...-150(R) and GTCP36-150(RR). We published the proposed AD in the Federal Register on December 23, 2009...

  14. Noise Reduction of MEMS Gyroscope Based on Direct Modeling for an Angular Rate Signal

    Liang Xue

    2015-02-01

    Full Text Available In this paper, a novel approach for processing the outputs signal of the microelectromechanical systems (MEMS gyroscopes was presented to reduce the bias drift and noise. The principle for the noise reduction was presented, and an optimal Kalman filter (KF was designed by a steady-state filter gain obtained from the analysis of KF observability. In particular, the true angular rate signal was directly modeled to obtain an optimal estimate and make a self-compensation for the gyroscope without needing other sensor’s information, whether in static or dynamic condition. A linear fit equation that describes the relationship between the KF bandwidth and modeling parameter of true angular rate was derived from the analysis of KF frequency response. The test results indicated that the MEMS gyroscope having an ARW noise of 4.87°/h0.5 and a bias instability of 44.41°/h were reduced to 0.4°/h0.5 and 4.13°/h by the KF under a given bandwidth (10 Hz, respectively. The 1σ estimated error was reduced from 1.9°/s to 0.14°/s and 1.7°/s to 0.5°/s in the constant rate test and swing rate test, respectively. It also showed that the filtered angular rate signal could well reflect the dynamic characteristic of the input rate signal in dynamic conditions. The presented algorithm is proved to be effective at improving the measurement precision of the MEMS gyroscope.

  15. Modeling and Optimization of Direct Chill Casting to Reduce Ingot Cracking

    Das, Subodh K.

    2006-01-09

    A successful four-year project on the modeling and optimization of direct chill (DC) casting to reduce ingot cracking has been completed. The project involved close collaboration among private industries, national laboratories, and universities. During the four-year project, 16 quarterly meetings brought the industrial partners and the research team together for discussion of research results and research direction. The industrial partners provided guidance, facilities, and experience to the research team. The research team went to two industrial plants to measure temperature distributions in commercial 60,000-lb DC casting ingot. The collaborative research resulted in several major accomplishments or findings: (1) Surface cracks were shown to be a result of hot tearing rather than cold cracks, as was thought before this project. These cracks form on the surface of a DC cast ingot just above the impingement point of the secondary cooling water jets. The cracks form along dendrite and grain boundaries, where solute and impurity elements are highly segregated. This understanding led to the development of a new technique for determining the mechanical properties in the nonequilibrium mushy zone of alloys and to thermodynamic predictions of the hot tearing propensity of DC cast ingots. (2) The apparent heat transfer coefficient (HTC) at the ingot surface in the water cooling region during DC casting was determined on the basis of temperature measurements in commercial DC casting ingots and an inverse heat transfer analysis. HTCs were calculated as a function of temperature and time, and covered the different regimes of heat transfer expected during DC casting. The calculated values were extrapolated to include the effect of water flow rate. The calculated HTCs had a peak at around 200 C, corresponding to the high heat transfer rates during nucleate boiling, and the profile was consistent with similar data published in the literature. (3) A new method, termed the

  16. A carbon in molten carbonate anode model for a direct carbon fuel cell

    Li Hongjiao; Liu Qinghua [Tianjin Key Laboratory of Catalysis Science and Technology, School of Chemical Engineering, Tianjin University, Weijing Road 92, Tianjin 300072 (China); State Key Laboratory for Chemical Engineering (Tianjin University), School of Chemical Engineering, Tianjin University, Weijing Road 92, Tianjin 300072 (China); Li Yongdan, E-mail: ydli@tju.edu.c [Tianjin Key Laboratory of Catalysis Science and Technology, School of Chemical Engineering, Tianjin University, Weijing Road 92, Tianjin 300072 (China); State Key Laboratory for Chemical Engineering (Tianjin University), School of Chemical Engineering, Tianjin University, Weijing Road 92, Tianjin 300072 (China)

    2010-02-15

    The electrochemical oxidation of carbon at the anode of a direct carbon fuel cell (DCFC) includes charge transfer steps and chemical steps. A microstructural model of carbon particle is built, in which perfect graphene stacks are taken as the basic building blocks of carbon. A modified mechanism taking account of the irreversibility of the process and supposing that the electrochemical oxidation of carbon takes place only at the edges of the graphene sheets is proposed. A Tafel type overall rate equation is deduced along with expressions of exchange current density (j{sub 0}) and activation polarization (eta{sub act}). The performance of carbon black and graphite as the fuel of DCFC is examined. It has been found that j{sub 0} is in the range of 0.10-6.12 mA cm{sup -2} at 923-1123 K and eta{sub act} is in the range of 0.024-0.28 V at 923-1123 K with current density in 10-120 mA cm{sup -2}. Analysis of the j{sub 0}, eta{sub act} values and the product composition reveals that the charge transfer steps as well as the oxygen ion absorption steps are both important for the reaction rate. The activity of the carbon material with respect to atom location is introduced to the open circuit potential difference (OCP) calculation with Nernst equation.

  17. Modeling direct band-to-band tunneling: From bulk to quantum-confined semiconductor devices

    Carrillo-Nuñez, H.; Ziegler, A.; Luisier, M.; Schenk, A.

    2015-06-01

    A rigorous framework to study direct band-to-band tunneling (BTBT) in homo- and hetero-junction semiconductor nanodevices is introduced. An interaction Hamiltonian coupling conduction and valence bands (CVBs) is derived using a multiband envelope method. A general form of the BTBT probability is then obtained from the linear response to the "CVBs interaction" that drives the system out of equilibrium. Simple expressions in terms of the one-electron spectral function are developed to compute the BTBT current in two- and three-dimensional semiconductor structures. Additionally, a two-band envelope equation based on the Flietner model of imaginary dispersion is proposed for the same purpose. In order to characterize their accuracy and differences, both approaches are compared with full-band, atomistic quantum transport simulations of Ge, InAs, and InAs-Si Esaki diodes. As another numerical application, the BTBT current in InAs-Si nanowire tunnel field-effect transistors is computed. It is found that both approaches agree with high accuracy. The first one is considerably easier to conceive and could be implemented straightforwardly in existing quantum transport tools based on the effective mass approximation to account for BTBT in nanodevices.

  18. Modeling direct band-to-band tunneling: From bulk to quantum-confined semiconductor devices

    Carrillo-Nuñez, H.; Ziegler, A.; Luisier, M.; Schenk, A.

    2015-01-01

    A rigorous framework to study direct band-to-band tunneling (BTBT) in homo- and hetero-junction semiconductor nanodevices is introduced. An interaction Hamiltonian coupling conduction and valence bands (CVBs) is derived using a multiband envelope method. A general form of the BTBT probability is then obtained from the linear response to the “CVBs interaction” that drives the system out of equilibrium. Simple expressions in terms of the one-electron spectral function are developed to compute the BTBT current in two- and three-dimensional semiconductor structures. Additionally, a two-band envelope equation based on the Flietner model of imaginary dispersion is proposed for the same purpose. In order to characterize their accuracy and differences, both approaches are compared with full-band, atomistic quantum transport simulations of Ge, InAs, and InAs-Si Esaki diodes. As another numerical application, the BTBT current in InAs-Si nanowire tunnel field-effect transistors is computed. It is found that both approaches agree with high accuracy. The first one is considerably easier to conceive and could be implemented straightforwardly in existing quantum transport tools based on the effective mass approximation to account for BTBT in nanodevices

  19. Modeling direct band-to-band tunneling: From bulk to quantum-confined semiconductor devices

    Carrillo-Nuñez, H.; Ziegler, A.; Luisier, M.; Schenk, A. [Integrated Systems Laboratory ETH Zürich, Gloriastrasse 35, 8092 Zürich (Switzerland)

    2015-06-21

    A rigorous framework to study direct band-to-band tunneling (BTBT) in homo- and hetero-junction semiconductor nanodevices is introduced. An interaction Hamiltonian coupling conduction and valence bands (CVBs) is derived using a multiband envelope method. A general form of the BTBT probability is then obtained from the linear response to the “CVBs interaction” that drives the system out of equilibrium. Simple expressions in terms of the one-electron spectral function are developed to compute the BTBT current in two- and three-dimensional semiconductor structures. Additionally, a two-band envelope equation based on the Flietner model of imaginary dispersion is proposed for the same purpose. In order to characterize their accuracy and differences, both approaches are compared with full-band, atomistic quantum transport simulations of Ge, InAs, and InAs-Si Esaki diodes. As another numerical application, the BTBT current in InAs-Si nanowire tunnel field-effect transistors is computed. It is found that both approaches agree with high accuracy. The first one is considerably easier to conceive and could be implemented straightforwardly in existing quantum transport tools based on the effective mass approximation to account for BTBT in nanodevices.

  20. Use of fused deposit modeling for additive manufacturing in hospital facilities: European certification directives.

    Otero, Joel J; Vijverman, An; Mommaerts, Maurice Y

    2017-09-01

    The goal of this study was to identify current European Union regulations governing hospital-based use of fused deposit modeling (FDM), as implemented via desktop three-dimensional (3D) printers. Literature and Internet sources were screened, searching for official documents, regulations/legislation, and views of specialized attorneys or consultants regarding European regulations for 3D printing or additive manufacturing (AM) in a healthcare facility. A detailed review of the latest amendment (2016) of the European Parliament and Council legislation for medical devices and its classification was performed, which has regularly updated published guidelines for medical devices, that are classified by type and duration of patient contact. As expected, regulations increase in accordance with the level (I-III) of classification. Custom-made medical devices are subject to different regulations than those controlling serially mass-produced items, as originally specified in 98/79/EC European Parliament and Council legislation (1993) and again recently amended (2016). Healthcare facilities undertaking in-house custom production are not obliged to fully follow the directives as stipulated, given an exception for this scenario (Article 4.4a, 98/79/EC). Patient treatment and diagnosis with the aid of customized 3D printing in a healthcare facility can be performed without fully meeting the European Parliament and Council legislation if the materials used are ISO 10993 certified and article 4.4a applies. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  1. Principles for scaling of distributed direct potable water reuse systems: a modeling study.

    Guo, Tianjiao; Englehardt, James D

    2015-05-15

    Scaling of direct potable water reuse (DPR) systems involves tradeoffs of treatment facility economy-of-scale, versus cost and energy of conveyance including energy for upgradient distribution of treated water, and retention of wastewater thermal energy. In this study, a generalized model of the cost of DPR as a function of treatment plant scale, assuming futuristic, optimized conveyance networks, was constructed for purposes of developing design principles. Fractal landscapes representing flat, hilly, and mountainous topographies were simulated, with urban, suburban, and rural housing distributions placed by modified preferential growth algorithm. Treatment plants were allocated by agglomerative hierarchical clustering, networked to buildings by minimum spanning tree. Simulations assume advanced oxidation-based DPR system design, with 20-year design life and capability to mineralize chemical oxygen demand below normal detection limits, allowing implementation in regions where disposal of concentrate containing hormones and antiscalants is not practical. Results indicate that total DPR capital and O&M costs in rural areas, where systems that return nutrients to the land may be more appropriate, are high. However, costs in urban/suburban areas are competitive with current water/wastewater service costs at scales of ca. one plant per 10,000 residences. This size is relatively small, and costs do not increase significantly until plant service areas fall below 100 to 1000 homes. Based on these results, distributed DPR systems are recommended for consideration for urban/suburban water and wastewater system capacity expansion projects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Mathematical model of snake-type multi-directional wave generation

    Muarif; Halfiani, Vera; Rusdiana, Siti; Munzir, Said; Ramli, Marwan

    2018-01-01

    Research on extreme wave generation is one intensive research on water wave study because the fact that the occurrence of this wave in the ocean can cause serious damage to the ships and offshore structures. One method to be used to generate the wave is self-correcting. This method controls the signal on the wavemakers in a wave tank. Some studies also consider the nonlinear wave generation in a wave tank by using numerical approach. Study on wave generation is essential in the effectiveness and efficiency of offshore structure model testing before it can be operated in the ocean. Generally, there are two types of wavemakers implemented in the hydrodynamic laboratory, piston-type and flap-type. The flap-type is preferred to conduct a testing to a ship in deep water. Single flap wavemaker has been explained in many studies yet snake-type wavemaker (has more than one flap) is still a case needed to be examined. Hence, the formulation in controlling the wavemaker need to be precisely analyzed such that the given input can generate the desired wave in the space-limited wave tank. By applying the same analogy and methodhology as the previous study, this article represents multi-directional wave generation by implementing snake-type wavemakers.

  3. Direct ink writing of 3D conductive polyaniline structures and rheological modelling

    Holness, F. Benjamin; Price, Aaron D.

    2018-01-01

    The intractable nature of conjugated polymers (CP) leads to practical limitations in the fabrication of CP-based transducers having complex three-dimensional geometries. Conventional CP device fabrication processes have focused primarily on thin-film deposition techniques; this study explores novel additive manufacturing processes specifically developed for CP with the ultimate goal of increasing the functionality of CP sensors and actuators. Herein we employ automated polymer paste extrusion processes for the direct ink writing of 3D conductive polyaniline (PANI) structures. Realization of these structures was enabled through a modified fused filament fabrication delta robot equipped with an integrated polymer paste extruder to fabricate high-resolution 3D conductive PANI structures. The required processability of PANI was achieved by means of a counterion-induced thermal doping method. The effect of thermal doping on the PANI-DBSA paste by means of a constitutive relationship to describe the paste flow as a function of the thermal doping time is explored. This relationship is incorporated within a flow model to predict the extruded track width as a function of various process parameters including: print speed, gauge pressure, nozzle diameter, and pre-extrusion thermal doping time.

  4. Parallel Factor-Based Model for Two-Dimensional Direction Estimation

    Nizar Tayem

    2017-01-01

    Full Text Available Two-dimensional (2D Direction-of-Arrivals (DOA estimation for elevation and azimuth angles assuming noncoherent, mixture of coherent and noncoherent, and coherent sources using extended three parallel uniform linear arrays (ULAs is proposed. Most of the existing schemes have drawbacks in estimating 2D DOA for multiple narrowband incident sources as follows: use of large number of snapshots, estimation failure problem for elevation and azimuth angles in the range of typical mobile communication, and estimation of coherent sources. Moreover, the DOA estimation for multiple sources requires complex pair-matching methods. The algorithm proposed in this paper is based on first-order data matrix to overcome these problems. The main contributions of the proposed method are as follows: (1 it avoids estimation failure problem using a new antenna configuration and estimates elevation and azimuth angles for coherent sources; (2 it reduces the estimation complexity by constructing Toeplitz data matrices, which are based on a single or few snapshots; (3 it derives parallel factor (PARAFAC model to avoid pair-matching problems between multiple sources. Simulation results demonstrate the effectiveness of the proposed algorithm.

  5. Modeling of the anode side of a direct methanol fuel cell with analytical solutions

    Mosquera, Martin A.; Lizcano-Valbuena, William H.

    2009-01-01

    In this work, analytical solutions were derived (for any methanol oxidation reaction order) for the profiles of methanol concentration and proton current density, by assuming diffusion mass transport mechanism, Tafel kinetics, and fast proton transport in the anodic catalyst layer of a direct methanol fuel cell. An expression for the Thiele modulus that allows to express the anodic overpotential as a function of the cell current and kinetic and mass transfer parameters was obtained. For high cell current densities, it was found that the Thiele modulus (φ 2 ) varies quadratically with cell current density; yielding a simple correlation between anodic overpotential and cell current density. Analytical solutions were derived for the profiles of both local methanol concentration in the catalyst layer and local anodic current density in the catalyst layer. Under the assumptions of the model presented here, in general, the local methanol concentration in the catalyst layer cannot be expressed as an explicit function of the position in the layer. In spite of this, the equations presented here for the anodic overpotential allow the derivation of new semi-empirical equations

  6. System modelling and online optimal management of MicroGrid using Mesh Adaptive Direct Search

    Mohamed, Faisal A. [Department of Electrical Engineering, Omar Al-Mukhtar University, P.O. Box 919, El-Bieda (Libya); Koivo, Heikki N. [Department of Automation and Systems Technology, Helsinki University of Technology, P.O. Box 5500, FIN-02015 HUT (Finland)

    2010-06-15

    This paper presents a generalized formulation to determine the optimal operating strategy and cost optimization scheme for a MicroGrid. Prior to the optimization of the MicroGrid itself, models for the system components are determined using real data. The proposed cost function takes into consideration the costs of the emissions, NO{sub x}, SO{sub 2}, and CO{sub 2}, start-up costs, as well as the operation and maintenance costs. A daily income and outgo from sold or purchased power is also added. The MicroGrid considered in this paper consists of a wind turbine, a micro turbine, a diesel generator, a photovoltaic array, a fuel cell, and a battery storage. In this work, the Mesh Adaptive Direct Search (MADS) algorithm is used to minimize the cost function of the system while constraining it to meet the customer demand and safety of the system. In comparison with previously proposed techniques, a significant reduction is obtained. (author)

  7. Direct dimethyl-ether (DME) synthesis by spatial patterned catalyst arrangement. A modeling and simulation study

    McBride, K.; Turek, T.; Guettel, R. [Clausthal Univ. of Technology (Germany). Inst. of Chemical Process Engineering

    2011-07-01

    The effect of spatially patterned catalyst beds was investigated for direct DME synthesis from synthesis gas as an example. A layered arrangement of methanol synthesis and dehydration catalyst was chosen and studied by numerical simulation under typical operating conditions for single-step DME synthesis. It was revealed that catalyst layers significantly influence the DME productivity. With an increasing number of layers from 2 to 40, an increase in DME productivity was observed approaching the performance of a physical catalyst mixture for an infinite number of layers. The results prove that a physical mixture of methanol synthesis and dehydration catalyst achieves the highest DME productivity under operating conditions chosen in this study. This can be explained by the higher average methanol concentration for the layered catalyst arrangement and thus stronger equilibrium constraints for the methanol synthesis reaction. Essentially, the layered catalyst arrangement is comparable to a cascade model of the two-step process, which is less efficient in terms of DME yield than the single-step process. However, since a significant effect was found, the layered catalyst arrangement could be beneficial for other reaction systems. (orig.)

  8. Stochastic Modeling of Direct Radiation Transmission in Particle-Laden Turbulent Flows

    Banko, Andrew; Villafane, Laura; Kim, Ji Hoon; Esmaily Moghadam, Mahdi; Eaton, John K.

    2017-11-01

    Direct radiation transmission in turbulent flows laden with heavy particles plays a fundamental role in systems such as clouds, spray combustors, and particle-solar-receivers. Owing to their inertia, the particles preferentially concentrate and the resulting voids and clusters lead to deviations in mean transmission from the classical Beer-Lambert law for exponential extinction. Additionally, the transmission fluctuations can exceed those of Poissonian media by an order of magnitude, which implies a gross misprediction in transmission statistics if the correlations in particle positions are neglected. On the other hand, tracking millions of particles in a turbulence simulation can be prohibitively expensive. This work presents stochastic processes as computationally cheap reduced order models for the instantaneous particle number density field and radiation transmission therein. Results from the stochastic processes are compared to Monte Carlo Ray Tracing (MCRT) simulations using the particle positions obtained from the point-particle DNS of isotropic turbulence at a Taylor Reynolds number of 150. Accurate transmission statistics are predicted with respect to MCRT by matching the mean, variance, and correlation length of DNS number density fields. Funded by the U.S. Department of Energy under Grant No. DE-NA0002373-1 and the National Science Foundation under Grant No. DGE-114747.

  9. Stereo imaging and cytocompatibility of a model dental implant surface formed by direct laser fabrication.

    Mangano, Carlo; Raspanti, Mario; Traini, Tonino; Piattelli, Adriano; Sammons, Rachel

    2009-03-01

    Direct laser fabrication (DLF) allows solids with complex geometry to be produced by sintering metal powder particles in a focused laser beam. In this study, 10 Ti6Al4V alloy model dental root implants were obtained by DLF, and surface characterization was carried out using stereo scanning electron microscopy to produce 3D reconstructions. The surfaces were extremely irregular, with approximately 100 microm deep, narrow intercommunicating crevices, shallow depressions and deep, rounded pits of widely variable shape and size, showing ample scope for interlocking with the host bone. Roughness parameters were as follows: R(t), 360.8 microm; R(z), 358.4 microm; R(a), 67.4 microm; and R(q), 78.0 microm. Disc specimens produced by DLF with an identically prepared surface were used for biocompatibility studies with rat calvarial osteoblasts: After 9 days, cells had attached and spread on the DLF surface, spanning across the crevices, and voids. Cell density was similar to that on a commercial rough microtextured surface but lower than on commercial smooth machined and smooth-textured grit-blasted, acid-etched surfaces. Human fibrin clot extension on the DLF surface was slightly improved by inorganic acid etching to increase the microroughness. With further refinements, DLF could be an economical means of manufacturing implants from titanium alloys. (c) 2008 Wiley Periodicals, Inc.

  10. Effects of Adaptation on Discrimination of Whisker Deflection Velocity and Angular Direction in a Model of the Barrel Cortex

    Mainak J. Patel

    2018-06-01

    Full Text Available Two important stimulus features represented within the rodent barrel cortex are velocity and angular direction of whisker deflection. Each cortical barrel receives information from thalamocortical (TC cells that relay information from a single whisker, and TC input is decoded by barrel regular-spiking (RS cells through a feedforward inhibitory architecture (with inhibition delivered by cortical fast-spiking or FS cells. TC cells encode deflection velocity through population synchrony, while deflection direction is encoded through the distribution of spike counts across the TC population. Barrel RS cells encode both deflection direction and velocity with spike rate, and are divided into functional domains by direction preference. Following repetitive whisker stimulation, system adaptation causes a weakening of synaptic inputs to RS cells and diminishes RS cell spike responses, though evidence suggests that stimulus discrimination may improve following adaptation. In this work, I construct a model of the TC, FS, and RS cells comprising a single barrel system—the model incorporates realistic synaptic connectivity and dynamics and simulates both angular direction (through the spatial pattern of TC activation and velocity (through synchrony of the TC population spikes of a deflection of the primary whisker, and I use the model to examine direction and velocity selectivity of barrel RS cells before and after adaptation. I find that velocity and direction selectivity of individual RS cells (measured over multiple trials sharpens following adaptation, but stimulus discrimination using a simple linear classifier by the RS population response during a single trial (a more biologically meaningful measure than single cell discrimination over multiple trials exhibits strikingly different behavior—velocity discrimination is similar both before and after adaptation, while direction classification improves substantially following adaptation. This is the

  11. Simple, distance-dependent formulation of the Watts-Strogatz model for directed and undirected small-world networks

    Song, H. Francis; Wang, Xiao-Jing

    2014-12-01

    Small-world networks—complex networks characterized by a combination of high clustering and short path lengths—are widely studied using the paradigmatic model of Watts and Strogatz (WS). Although the WS model is already quite minimal and intuitive, we describe an alternative formulation of the WS model in terms of a distance-dependent probability of connection that further simplifies, both practically and theoretically, the generation of directed and undirected WS-type small-world networks. In addition to highlighting an essential feature of the WS model that has previously been overlooked, namely the equivalence to a simple distance-dependent model, this alternative formulation makes it possible to derive exact expressions for quantities such as the degree and motif distributions and global clustering coefficient for both directed and undirected networks in terms of model parameters.

  12. Transcutaneous spinal direct current stimulation of the lumbar and sacral spinal cord: a modelling study

    Fernandes, Sofia R.; Salvador, Ricardo; Wenger, Cornelia; de Carvalho, Mamede; Miranda, Pedro C.

    2018-06-01

    Objective. Our aim was to perform a computational study of the electric field (E-field) generated by transcutaneous spinal direct current stimulation (tsDCS) applied over the thoracic, lumbar and sacral spinal cord, in order to assess possible neuromodulatory effects on spinal cord circuitry related with lower limb functions. Approach. A realistic volume conductor model of the human body consisting of 14 tissues was obtained from available databases. Rubber pad electrodes with a metallic connector and a conductive gel layer were modelled. The finite element (FE) method was used to calculate the E-field when a current of 2.5 mA was passed between two electrodes. The main characteristics of the E-field distributions in the spinal grey matter (spinal-GM) and spinal white matter (spinal-WM) were compared for seven montages, with the anode placed either over T10, T8 or L2 spinous processes (s.p.), and the cathode placed over right deltoid (rD), umbilicus (U) and right iliac crest (rIC) areas or T8 s.p. Anisotropic conductivity of spinal-WM and of a group of dorsal muscles near the vertebral column was considered. Main results. The average E-field magnitude was predicted to be above 0.15 V m-1 in spinal cord regions located between the electrodes. L2-T8 and T8-rIC montages resulted in the highest E-field magnitudes in lumbar and sacral spinal segments (>0.30 V m-1). E-field longitudinal component is 3 to 6 times higher than the ventral-dorsal and right-left components in both the spinal-GM and WM. Anatomical features such as CSF narrowing due to vertebrae bony edges or disks intrusions in the spinal canal correlate with local maxima positions. Significance. Computational modelling studies can provide detailed information regarding the electric field in the spinal cord during tsDCS. They are important to guide the design of clinical tsDCS protocols that optimize stimulation of application-specific spinal targets.

  13. Modeling of Social Effect of Foreign Direct Investment in The Regions of Kazakhstan

    Dinara Zhaksylykovna Rakhmatullayeva

    2015-06-01

    Full Text Available In the article, the authors estimated the social effect of foreign direct investments (FDI in the regions of Kazakhstan. In order to do it, the authors studied the dynamics of FDI of the region operating enterprises with foreign participation and the regional six indicators of socio-economic development during 2003-2013 on the basis of database of RK Agency on statistics. There are 16 regions of Kazakhstan were involved in the experiment (14 provinces and 2 cities of republican significant — Almaty and Astana. The research was carried out using the “simplified” version of the T. Saati’s Analytic Hierarchy Process (AHP mathematical apparatus and MS Excel. The constructed economic-mathematical model of an assessment of FDI impact on the population welfare and living quality in the regions was hypothetical as the expert estimates of hypothetical expert were used. The authors made a hypothesis: to receive tools for an assessment of the social effect of FDI in the regions of Kazakhstan — the Rating of regional priority of the factors (RPF Rating. The RPF Rating allowed to define a priority of the factors of the population welfare and living quality in the regions of the country and to calculate aggregate social effect of FDI in Kazakhstan, having allocated the directions of its action on each of six factors in a regional section. The research did not reveal a negative impact of FDI on socio-economic development of the regions; moreover the aggregate social effect of FDI is positive for all regions of Kazakhstan. The authors believe that RPF Rating can become as the important tool of soundness of socio-economic policy in the area of development of public-private partnership in the regions of Kazakhstan, and also positive social effects of FDI growth in the long term — all of this will result in promoting a long-term positive impact on the welfare and living quality of the population of the republic.

  14. Numerical modeling on air quality in an urban environment with changes of the aspect ratio and wind direction.

    Yassin, Mohamed F

    2013-06-01

    Due to heavy traffic emissions within an urban environment, air quality during the last decade becomes worse year by year and hazard to public health. In the present work, numerical modeling of flow and dispersion of gaseous emissions from vehicle exhaust in a street canyon were investigated under changes of the aspect ratio and wind direction. The three-dimensional flow and dispersion of gaseous pollutants were modeled using a computational fluid dynamics (CFD) model which was numerically solved using Reynolds-averaged Navier-Stokes (RANS) equations. The diffusion flow field in the atmospheric boundary layer within the street canyon was studied for different aspect ratios (W/H=1/2, 3/4, and 1) and wind directions (θ=90°, 112.5°, 135°, and 157.5°). The numerical models were validated against wind tunnel results to optimize the turbulence model. The numerical results agreed well with the wind tunnel results. The simulation demonstrated that the minimum concentration at the human respiration height within the street canyon was on the windward side for aspect ratios W/H=1/2 and 1 and wind directions θ=112.5°, 135°, and 157.5°. The pollutant concentration level decreases as the wind direction and aspect ratio increase. The wind velocity and turbulence intensity increase as the aspect ratio and wind direction increase.

  15. Testing the dual-route model of perceived gaze direction: Linear combination of eye and head cues.

    Otsuka, Yumiko; Mareschal, Isabelle; Clifford, Colin W G

    2016-06-01

    We have recently proposed a dual-route model of the effect of head orientation on perceived gaze direction (Otsuka, Mareschal, Calder, & Clifford, 2014; Otsuka, Mareschal, & Clifford, 2015), which computes perceived gaze direction as a linear combination of eye orientation and head orientation. By parametrically manipulating eye orientation and head orientation, we tested the adequacy of a linear model to account for the effect of horizontal head orientation on perceived direction of gaze. Here, participants adjusted an on-screen pointer toward the perceived gaze direction in two image conditions: Normal condition and Wollaston condition. Images in the Normal condition included a change in the visible part of the eye along with the change in head orientation, while images in the Wollaston condition were manipulated to have identical eye regions across head orientations. Multiple regression analysis with explanatory variables of eye orientation and head orientation revealed that linear models account for most of the variance both in the Normal condition and in the Wollaston condition. Further, we found no evidence that the model with a nonlinear term explains significantly more variance. Thus, the current study supports the dual-route model that computes the perceived gaze direction as a linear combination of eye orientation and head orientation.

  16. Model for radiation damage in cells by direct effect and by indirect effect: a radiation chemistry approach

    Michaels, H.B.; Hunt, J.W.

    1978-01-01

    A model is presented to describe the contributions of direct and indirect effects to the radiation damage of cells. The model is derived using principles of radiation chemistry and of pulse radiolysis in particular. From data available in the literature, parameters for cellular composition and values of rate constants for indirect action have been used in preliminary applications of the model. The results obtained in calculations of the protective effect of .OH and .H scavengers are consistent with experimental data. Possible modifications and improvements to the model are suggested, along with proposed future applications of the model in radiobiological studies

  17. Direct Simulation Monte Carlo Application of the Three Dimensional Forced Harmonic Oscillator Model

    2017-12-07

    NUMBER (Include area code) 07 December 2017 Journal Article 24 February 2017 - 31 December 2017 Direct Simulation Monte Carlo Application of the...is proposed. The implementation employs precalculated lookup tables for transition probabilities and is suitable for the direct simulation Monte Carlo...method. It takes into account the microscopic reversibility between the excitation and deexcitation processes , and it satisfies the detailed balance

  18. Correction to the crack extension direction in numerical modelling of mixed mode crack paths

    Lucht, Tore; Aliabadi, M.H.

    2007-01-01

    In order to avoid introduction of an error when a local crack-growth criterion is used in an incremental crack growth formulation, each straight crack extension would have to be infinitesimal or have its direction corrected. In this paper a new procedure to correct the crack extension direction...

  19. Axial mercury segregation in direct current operated low-pressure argon-mercury gas discharge: Part II. Model

    Gielen, John W A M; Groot, Simon de; Dijk, Jan van; Mullen, Joost J A M van der

    2004-01-01

    In a previous paper we had presented experimental results on mercury segregation due to cataphoresis in direct current operated low-pressure argon-mercury gas discharges. In this paper, we present our model to describe cataphoretic segregation in argon (or another noble gas)-mercury discharges. The model is based on the balance equations for mass and momentum and includes electrophoresis effects of electrons on mercury. Good agreement is found between the experimental results and model calculations. The model confirms our experimental observation that the mercury vapour pressure gradient depends on the local mercury vapour pressure. Furthermore, the model predicts the reversal of the direction of the transport of mercury under certain conditions (the phenomenon known as retrograde cataphoresis)

  20. Extended Fitts' model of pointing time in eye-gaze input system - Incorporating effects of target shape and movement direction into modeling.

    Murata, Atsuo; Fukunaga, Daichi

    2018-04-01

    This study attempted to investigate the effects of the target shape and the movement direction on the pointing time using an eye-gaze input system and extend Fitts' model so that these factors are incorporated into the model and the predictive power of Fitts' model is enhanced. The target shape, the target size, the movement distance, and the direction of target presentation were set as within-subject experimental variables. The target shape included: a circle, and rectangles with an aspect ratio of 1:1, 1:2, 1:3, and 1:4. The movement direction included eight directions: upper, lower, left, right, upper left, upper right, lower left, and lower right. On the basis of the data for identifying the effects of the target shape and the movement direction on the pointing time, an attempt was made to develop a generalized and extended Fitts' model that took into account the movement direction and the target shape. As a result, the generalized and extended model was found to fit better to the experimental data, and be more effective for predicting the pointing time for a variety of human-computer interaction (HCI) task using an eye-gaze input system. Copyright © 2017. Published by Elsevier Ltd.

  1. Exact and Direct Modeling Technique for Rotor-Bearing Systems with Arbitrary Selected Degrees-of-Freedom

    Shilin Chen

    1994-01-01

    Full Text Available An exact and direct modeling technique is proposed for modeling of rotor-bearing systems with arbitrary selected degrees-of-freedom. This technique is based on the combination of the transfer and dynamic stiffness matrices. The technique differs from the usual combination methods in that the global dynamic stiffness matrix for the system or the subsystem is obtained directly by rearranging the corresponding global transfer matrix. Therefore, the dimension of the global dynamic stiffness matrix is independent of the number of the elements or the substructures. In order to show the simplicity and efficiency of the method, two numerical examples are given.

  2. Modeling and Optimization of Direct Chill Casting to Reduce Ingot Cracking

    Das, S.K.; Ningileri, S.; Long, Z.; Saito, K.; Khraisheh, M.; Hassan, M.H.; Kuwana, K.; Han, Q.; Viswanathan, S.; Sabau, A.S.; Clark, J.; Hyrn, J. (ANL)

    2006-08-15

    Approximately 68% of the aluminum produced in the United States is first cast into ingots prior to further processing into sheet, plate, extrusions, or foil. The direct chill (DC) semi-continuous casting process has been the mainstay of the aluminum industry for the production of ingots due largely to its robust nature and relative simplicity. Though the basic process of DC casting is in principle straightforward, the interaction of process parameters with heat extraction, microstructural evolution, and development of solidification stresses is too complex to analyze by intuition or practical experience. One issue in DC casting is the formation of stress cracks [1-15]. In particular, the move toward larger ingot cross-sections, the use of higher casting speeds, and an ever-increasing array of mold technologies have increased industry efficiencies but have made it more difficult to predict the occurrence of stress crack defects. The Aluminum Industry Technology Roadmap [16] has recognized the challenges inherent in the DC casting process and the control of stress cracks and selected the development of 'fundamental information on solidification of alloys to predict microstructure, surface properties, and stresses and strains' as a high-priority research need, and the 'lack of understanding of mechanisms of cracking as a function of alloy' and 'insufficient understanding of the aluminum solidification process', which is 'difficult to model', as technology barriers in aluminum casting processes. The goal of this Aluminum Industry of the Future (IOF) project was to assist the aluminum industry in reducing the incidence of stress cracks from the current level of 5% to 2%. Decreasing stress crack incidence is important for improving product quality and consistency as well as for saving resources and energy, since considerable amounts of cast metal could be saved by eliminating ingot cracking, by reducing the scalping thickness of

  3. Direct stratospheric injection of biomass burning emissions: a case study of the 2009 Australian bushfires using the NASA GISS ModelE2 composition-climate model

    Field, Robert; From, Mike; Voulgarakis, Apostolos; Shindell, Drew; Flannigan, Mike; Bernath, Peter

    2014-05-01

    Direct stratospheric injection (DSI) of forest fire smoke represents a direct biogeochemical link between the land surface and stratosphere. DSI events occur regularly in the northern and southern extratropics, and have been observed across a wide range of measurements, but their fate and effects are not well understood. DSIs result from explosive, short-lived fires, and their plumes stand out from background concentrations immediately. This makes it easier to associate detected DSIs to individual fires and their estimated emissions. Because the emissions pulses are brief, chemical decay can be more clearly assessed, and because the emissions pulses are so large, a wide range of rare chemical species can be detected. Observational evidence suggests that they can persist in the stratosphere for several months, enhance ozone production, and be self-lofted to the middle stratosphere through shortwave absorption and diabatic heating. None of these phenomena have been evaluated, however, with a physical model. To that end, we are simulating the smoke plumes from the February 2009 Australia 'Black Saturday' bushfires using the NASA GISS ModelE2 composition-climate model, nudged toward horizontal winds from reanalysis. To-date, this is the best-observed DSI in the southern hemisphere. Chemical and aerosol signatures of the plume were observed in a wide array of limb and nadir satellite retrievals. Detailed estimates of fuel consumption and injection height have been made because of the severity of the fires. Uncommon among DSIs events was a large segment of the plume that entrained into the upper equatorial easterlies. Preliminary modeling results show that the relative strengths of the equatorial and extratropical plume segments are sensitive to the plume's initial injection height. This highlights the difficulty in reconciling uncertainty in the reanalysis over the Southern Hemisphere with fairly-well constrained estimates of fire location and injection height at the

  4. How directional mobility affects coexistence in rock-paper-scissors models

    Avelino, P. P.; Bazeia, D.; Losano, L.; Menezes, J.; de Oliveira, B. F.; Santos, M. A.

    2018-03-01

    This work deals with a system of three distinct species that changes in time under the presence of mobility, selection, and reproduction, as in the popular rock-paper-scissors game. The novelty of the current study is the modification of the mobility rule to the case of directional mobility, in which the species move following the direction associated to a larger (averaged) number density of selection targets in the surrounding neighborhood. Directional mobility can be used to simulate eyes that see or a nose that smells, and we show how it may contribute to reduce the probability of coexistence.

  5. Proposition of a modeling and an analysis methodology of integrated reverse logistics chain in the direct chain

    Mimouni, F.; Abouabdellah, A.

    2016-07-01

    Propose a modeling and analysis methodology based on the combination of Bayesian networks and Petri networks of the reverse logistics integrated the direct supply chain. Network modeling by combining Petri and Bayesian network. Modeling with Bayesian network complimented with Petri network to break the cycle problem in the Bayesian network. Demands are independent from returns. Model can only be used on nonperishable products. Legislation aspects: Recycling laws; Protection of environment; Client satisfaction via after sale service. Bayesian network with a cycle combined with the Petri Network. (Author)

  6. Proposition of a modeling and an analysis methodology of integrated reverse logistics chain in the direct chain

    Faycal Mimouni

    2016-04-01

    Full Text Available Purpose: Propose a modeling and analysis methodology based on the combination of Bayesian networks and Petri networks of the reverse logistics integrated the direct supply chain. Design/methodology/approach: Network modeling by combining Petri and Bayesian network. Findings: Modeling with Bayesian network complimented with Petri network to break the cycle problem in the Bayesian network. Research limitations/implications: Demands are independent from returns. Practical implications: Model can only be used on nonperishable products. Social implications: Legislation aspects: Recycling laws; Protection of environment; Client satisfaction via after sale service. Originality/value: Bayesian network with a cycle combined with the Petri Network.

  7. Modeling directional effects in land surface temperature derived from geostationary satellite data

    Rasmussen, Mads Olander

    This PhD-thesis investigates the directional effects in land surface temperature (LST) estimates from the SEVIRI sensor onboard the Meteosat Second Generation (MSG) satellites. The directional effects are caused by the land surface structure (i.e. tree size and shape) interacting with the changing...... sun-target-sensor geometry. The directional effects occur because the different surface components, e.g. tree canopies and bare soil surfaces, will in many cases have significantly different temperatures. Depending on the viewing angle, different fractions of each of the components will be viewed...... by the sensor. This is further complicated by temperature differences between the sunlit and shaded parts of each of the components, controlled by the exposure of the components to direct sunlight. As the SEVIRI sensor is onboard a geostationary platform, the viewing geometry is fixed (for each pixel), while...

  8. MODELLING THE DEVELOPMENT OF THE INTEGRATION PROCESSES DIRECTION IN THE BAKING INDUSTRY

    Tetyana Kublikova; Svetlana Stupak

    2013-01-01

    The paper presents the characteristics of the economic interaction between organizations and enterprises within the system of cluster type and the direction of their investment and innovation transformation through the implementation of the integration processes in the bakery industry.

  9. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    Li, Yongxin; Li, Zhongrui; Yamanaka, Kazuya; Xu, Ying; Zhang, Weipeng; Vlamakis, Hera; Kolter, Roberto; Moore, Bradley S.; Qian, Pei-Yuan

    2015-01-01

    validating this direct cloning plug-and-playa approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation

  10. An on-line modelling study of the direct effect of atmospheric aerosols over Europe

    Palacios, L.; Baro, R.; Jimenez-Guerrero, P.

    2015-01-01

    Atmospheric aerosols affect human health, ecosystems, materials, visibility and Earth’s climate. Those effects are studied in this present work and depend mainly on the aerosol optical properties and how they influence the Earth’s radiation budget. Such properties can be divided on direct and semi-direct effect, produced by the scattering and absorption of radiation; and indirect effect, which influences the aerosols-cloud interactions. The aim of this work is to assess the direct effect through the study of the mean temperature; the radiation that reaches the Earth’s surface and at the top of the atmosphere; and the interaction of these meteorological variables with particulate matter (PM10). Results indicate decreases in temperature and radiation that reaches the Earth's surface, together with increases in the outgoing radiation at top of the atmosphere, and changes in the particulate matter, thus proving a colder climate due to the direct effect of atmospheric aerosols. (Author)

  11. Direct methods for limit and shakedown analysis of structures advanced computational algorithms and material modelling

    Pisano, Aurora; Weichert, Dieter

    2015-01-01

    Articles in this book examine various materials and how to determine directly the limit state of a structure, in the sense of limit analysis and shakedown analysis. Apart from classical applications in mechanical and civil engineering contexts, the book reports on the emerging field of material design beyond the elastic limit, which has further industrial design and technological applications. Readers will discover that “Direct Methods” and the techniques presented here can in fact be used to numerically estimate the strength of structured materials such as composites or nano-materials, which represent fruitful fields of future applications.   Leading researchers outline the latest computational tools and optimization techniques and explore the possibility of obtaining information on the limit state of a structure whose post-elastic loading path and constitutive behavior are not well defined or well known. Readers will discover how Direct Methods allow rapid and direct access to requested information in...

  12. An on-line modelling study of the direct effect of atmospheric aerosols over Europe

    Palacios, L.; Baro, R.; Jimenez-Guerrero, P.

    2015-07-01

    Atmospheric aerosols affect human health, ecosystems, materials, visibility and Earth’s climate. Those effects are studied in this present work and depend mainly on the aerosol optical properties and how they influence the Earth’s radiation budget. Such properties can be divided on direct and semi-direct effect, produced by the scattering and absorption of radiation; and indirect effect, which influences the aerosols-cloud interactions. The aim of this work is to assess the direct effect through the study of the mean temperature; the radiation that reaches the Earth’s surface and at the top of the atmosphere; and the interaction of these meteorological variables with particulate matter (PM10). Results indicate decreases in temperature and radiation that reaches the Earth's surface, together with increases in the outgoing radiation at top of the atmosphere, and changes in the particulate matter, thus proving a colder climate due to the direct effect of atmospheric aerosols. (Author)

  13. An on-line modelling study of the direct effect of atmospheric aerosols over Europe

    Palacios, L.; Baro, R.; Jimenez-Guerrero, P.

    2015-07-01

    Atmospheric aerosols affect human health, ecosystems, materials, visibility and Earths climate. Those effects are studied in this present work and depend mainly on the aerosol optical properties and how they influence the Earths radiation budget. Such properties can be divided on direct and semi-direct effect, produced by the scattering and absorption of radiation; and indirect effect, which influences the aerosols-cloud interactions. The aim of this work is to assess the direct effect through the study of the mean temperature; the radiation that reaches the Earths surface and at the top of the atmosphere; and the interaction of these meteorological variables with particulate matter (PM10). Results indicate decreases in temperature and radiation that reaches the Earth's surface, together with increases in the outgoing radiation at top of the atmosphere, and changes in the particulate matter, thus proving a colder climate due to the direct effect of atmospheric aerosols. (Author)

  14. Current applications and future directions for the CDISC Operational Data Model standard: A methodological review.

    Hume, Sam; Aerts, Jozef; Sarnikar, Surendra; Huser, Vojtech

    2016-04-01

    In order to further advance research and development on the Clinical Data Interchange Standards Consortium (CDISC) Operational Data Model (ODM) standard, the existing research must be well understood. This paper presents a methodological review of the ODM literature. Specifically, it develops a classification schema to categorize the ODM literature according to how the standard has been applied within the clinical research data lifecycle. This paper suggests areas for future research and development that address ODM's limitations and capitalize on its strengths to support new trends in clinical research informatics. A systematic scan of the following databases was performed: (1) ABI/Inform, (2) ACM Digital, (3) AIS eLibrary, (4) Europe Central PubMed, (5) Google Scholar, (5) IEEE Xplore, (7) PubMed, and (8) ScienceDirect. A Web of Science citation analysis was also performed. The search term used on all databases was "CDISC ODM." The two primary inclusion criteria were: (1) the research must examine the use of ODM as an information system solution component, or (2) the research must critically evaluate ODM against a stated solution usage scenario. Out of 2686 articles identified, 266 were included in a title level review, resulting in 183 articles. An abstract review followed, resulting in 121 remaining articles; and after a full text scan 69 articles met the inclusion criteria. As the demand for interoperability has increased, ODM has shown remarkable flexibility and has been extended to cover a broad range of data and metadata requirements that reach well beyond ODM's original use cases. This flexibility has yielded research literature that covers a diverse array of topic areas. A classification schema reflecting the use of ODM within the clinical research data lifecycle was created to provide a categorized and consolidated view of the ODM literature. The elements of the framework include: (1) EDC (Electronic Data Capture) and EHR (Electronic Health Record

  15. From Creatures of Habit to Goal-Directed Learners: Tracking the Developmental Emergence of Model-Based Reinforcement Learning.

    Decker, Johannes H; Otto, A Ross; Daw, Nathaniel D; Hartley, Catherine A

    2016-06-01

    Theoretical models distinguish two decision-making strategies that have been formalized in reinforcement-learning theory. A model-based strategy leverages a cognitive model of potential actions and their consequences to make goal-directed choices, whereas a model-free strategy evaluates actions based solely on their reward history. Research in adults has begun to elucidate the psychological mechanisms and neural substrates underlying these learning processes and factors that influence their relative recruitment. However, the developmental trajectory of these evaluative strategies has not been well characterized. In this study, children, adolescents, and adults performed a sequential reinforcement-learning task that enabled estimation of model-based and model-free contributions to choice. Whereas a model-free strategy was apparent in choice behavior across all age groups, a model-based strategy was absent in children, became evident in adolescents, and strengthened in adults. These results suggest that recruitment of model-based valuation systems represents a critical cognitive component underlying the gradual maturation of goal-directed behavior. © The Author(s) 2016.

  16. A Unit-Cell Model for Predicting the Elastic Constants of 3D Four Directional Cylindrical Braided Composite Shafts

    Hao, Wenfeng; Liu, Ye; Huang, Xinrong; Liu, Yinghua; Zhu, Jianguo

    2018-06-01

    In this work, the elastic constants of 3D four directional cylindrical braided composite shafts were predicted using analytical and numerical methods. First, the motion rule of yarn carrier of 3D four directional cylindrical braided composite shafts was analyzed, and the horizontal projection of yarn motion trajectory was obtained. Then, the geometry models of unit-cells with different braiding angles and fiber volume contents were built up, and the meso-scale models of 3D cylindrical braided composite shafts were obtained. Finally, the effects of braiding angles and fiber volume contents on the elastic constants of 3D braided composite shafts were analyzed theoretically and numerically. These results play a crucial role in investigating the mechanical properties of 3D 4-directional braided composites shafts.

  17. Strategic directions for agent-based modeling: avoiding the YAAWN syndrome.

    O'Sullivan, David; Evans, Tom; Manson, Steven; Metcalf, Sara; Ligmann-Zielinska, Arika; Bone, Chris

    In this short communication, we examine how agent-based modeling has become common in land change science and is increasingly used to develop case studies for particular times and places. There is a danger that the research community is missing a prime opportunity to learn broader lessons from the use of agent-based modeling (ABM), or at the very least not sharing these lessons more widely. How do we find an appropriate balance between empirically rich, realistic models and simpler theoretically grounded models? What are appropriate and effective approaches to model evaluation in light of uncertainties not only in model parameters but also in model structure? How can we best explore hybrid model structures that enable us to better understand the dynamics of the systems under study, recognizing that no single approach is best suited to this task? Under what circumstances - in terms of model complexity, model evaluation, and model structure - can ABMs be used most effectively to lead to new insight for stakeholders? We explore these questions in the hope of helping the growing community of land change scientists using models in their research to move from 'yet another model' to doing better science with models.

  18. Perspectives on How Human Simultaneous Multi-Modal Imaging Adds Directionality to Spread Models of Alzheimer’s Disease

    Julia Neitzel

    2018-01-01

    Full Text Available Previous animal research suggests that the spread of pathological agents in Alzheimer’s disease (AD follows the direction of signaling pathways. Specifically, tau pathology has been suggested to propagate in an infection-like mode along axons, from transentorhinal cortices to medial temporal lobe cortices and consequently to other cortical regions, while amyloid-beta (Aβ pathology seems to spread in an activity-dependent manner among and from isocortical regions into limbic and then subcortical regions. These directed connectivity-based spread models, however, have not been tested directly in AD patients due to the lack of an in vivo method to identify directed connectivity in humans. Recently, a new method—metabolic connectivity mapping (MCM—has been developed and validated in healthy participants that uses simultaneous FDG-PET and resting-state fMRI data acquisition to identify directed intrinsic effective connectivity (EC. To this end, postsynaptic energy consumption (FDG-PET is used to identify regions with afferent input from other functionally connected brain regions (resting-state fMRI. Here, we discuss how this multi-modal imaging approach allows quantitative, whole-brain mapping of signaling direction in AD patients, thereby pointing out some of the advantages it offers compared to other EC methods (i.e., Granger causality, dynamic causal modeling, Bayesian networks. Most importantly, MCM provides the basis on which models of pathology spread, derived from animal studies, can be tested in AD patients. In particular, future work should investigate whether tau and Aβ in humans propagate along the trajectories of directed connectivity in order to advance our understanding of the neuropathological mechanisms causing disease progression.

  19. Examining the Support Peer Supporters Provide Using Structural Equation Modeling: Nondirective and Directive Support in Diabetes Management.

    Kowitt, Sarah D; Ayala, Guadalupe X; Cherrington, Andrea L; Horton, Lucy A; Safford, Monika M; Soto, Sandra; Tang, Tricia S; Fisher, Edwin B

    2017-12-01

    Little research has examined the characteristics of peer support. Pertinent to such examination may be characteristics such as the distinction between nondirective support (accepting recipients' feelings and cooperative with their plans) and directive (prescribing "correct" choices and feelings). In a peer support program for individuals with diabetes, this study examined (a) whether the distinction between nondirective and directive support was reflected in participants' ratings of support provided by peer supporters and (b) how nondirective and directive support were related to depressive symptoms, diabetes distress, and Hemoglobin A1c (HbA1c). Three hundred fourteen participants with type 2 diabetes provided data on depressive symptoms, diabetes distress, and HbA1c before and after a diabetes management intervention delivered by peer supporters. At post-intervention, participants reported how the support provided by peer supporters was nondirective or directive. Confirmatory factor analysis (CFA), correlation analyses, and structural equation modeling examined the relationships among reports of nondirective and directive support, depressive symptoms, diabetes distress, and measured HbA1c. CFA confirmed the factor structure distinguishing between nondirective and directive support in participants' reports of support delivered by peer supporters. Controlling for demographic factors, baseline clinical values, and site, structural equation models indicated that at post-intervention, participants' reports of nondirective support were significantly associated with lower, while reports of directive support were significantly associated with greater depressive symptoms, altogether (with control variables) accounting for 51% of the variance in depressive symptoms. Peer supporters' nondirective support was associated with lower, but directive support was associated with greater depressive symptoms.

  20. 76 FR 13063 - Airworthiness Directives; EUROCOPTER FRANCE Model SA330F, SA330G, and SA330J Helicopters

    2011-03-10

    ... Airworthiness Directives; EUROCOPTER FRANCE Model SA330F, SA330G, and SA330J Helicopters AGENCY: Federal... system and the pedals rocking forward. After investigation, it was determined that the Loctite bond on the ``tall pilot'' stop nut was damaged, most likely due to aging of the adhesive. The nut came loose...